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Staying with the Hubble Trouble
Christoph Becker

Abstract: This thesis investigates the tension between the expansion

rate, also known as the Hubble-Lemaître constant, H0, measurements by

a number of independent early- and late-time observables.

In the first part, we consider an alternative to the standard theory of

gravity, the generalised Proca (GP) theory, which can potentially alleviate

the Hubble tension. Focusing on the GP Lagrangian at cubic order – the

Cubic Vector Galilen (CVG) model – we derive the simplified equations

for gravity and vector modes and implement them in a modified version

of the ECOSMOG N-body code and augmented it further with ray-tracing

modules taken from Ray-RAMSES. Accordingly, we conduct the first broad

simulation study of a cosmologies based on the CVG theory. They explore

the formation, evolution and clustering of dark matter based on matter,

halo, weak lensing and voids statistics.

In the second part, we attempt to answer whether systematic errors

in strong gravitational time delay measurements could partly explain

the Hubble tension. We quantify the impact of line-of-sight structures

on time-delay measurements and in turn, on the inferred value of H0,

and test the reliability of existing procedures for correcting for these

line-of-sight e�ects. In that pursuit we create realistic lightcones using

multiple lens plane ray-tracing to create a set of simulated strong lensing

systems that are derived from the CosmoDC2 semi-analytical extra-

galactic catalogue.
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Introduction

MORE THAN 100 YEARS since Albert Einstein’s elegant and elaborate

theory of General Relativity (GR) was published, it is still the best theory

to describe gravitational physics. A multitude of laboratory, ground-

based and space-borne experiments have tested and verified GR on

sub-mm and solar-system scales with intensifying scrutiny in the last

decades. The year 2016 marked the centennial of Einstein’s theory of

gravity during which another milestone of its verification was reached

by detecting the predicated existence of gravitational waves. However,

for scales beyond the solar system we have simply extrapolated without

rigorous testing. With increasing quantity and quality of observations

on cosmological scales, we have found that the measurements of galaxy

rotation curves and the late-time accelerated expansion might indicate

the break down of GR. Cosmology is in a golden age of discovery and

has entered the era of precision science, allowing to probe some of the

fundamental concepts in physics. This thesis studies modifications to

GR that could explain the late-time acceleration and how the expansion

history of the Universe can be measured based on strong gravitational

lensing. Before diving into the details, we will give a brief walk through

the standard and alternative models of cosmology (Sec. 1.1), how they

can be tested by using observations (Sec. 1.2) alongside computational

simulations (Sec. 1.3).
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1.1 Cosmological Models

The underlying physics on cosmological scales is described (within the

inflationary paradigm) on the basis of two fundamental pillars:

• the cosmological principle, and

• the interpretation of General Relativity.

The cosmological principle – homogeneity and isotropy – is one of the

most important features of the Universe. It stands for the fact, that obser-

vations made from one vantage point are representative of the Universe

as a whole, allowing us to draw conclusions that are independent of our

location within it. This principle has however a limited range of valid-

ity, as anyone who has looked at the night sky realizes that no direction

looks like any other. But we have to understand, that what we can see

with our own eyes is but a mere fraction of the whole. Seeing the ag-

glomeration of luminous matter such as stars (∼ 1 light year apart),

galaxies (∼ 106 light years apart) and clusters of galaxies (∼ 3× 107

light years apart) constitute only ’small’ scales in a cosmological sense.

Cosmology and its first principle, regard the large scales that span& 108

light years (or& 100h−1Mpc 1 to use a more common unit system), 1 One parsec (1pc) is defined as
the distance at which one astro-
nomical unit (the distance from
the Earth to the Sun) subtends an
angle of one arcsecond (1/3600
of a degree). In the SI metric
system: 1pc = 3.0857× 1016m
and 1Mpc = 106pc.

where one starts to see little di�erence between elementary volumes of

the Universe.

Thus in cosmology, one takes the large-scale viewpoint as zeroth-

order approximation, in which the underlying spacetime is described by

the Friedmann-Lemaître-Robertson-Walker (FLRW) metric line element

(1.1) ds2 = −dt2 + a2(t)δijdxidxj.

where t is the cosmic time, a(t) is the scale factor, δij = diag[1, 1, 1] is

the spatial sector of the metric (which here, and throughout this thesis

is taken to be flat), and dx2 is the time-independent metric of the 3-

dimensional space. As its first-order approximation, the smooth large-

scale spacetime, Eq. 1.1, is perturbed by including the gravitational



INTRODUCTION 3

potentials, Φ and Ψ, of the fine-scale structure leading to

(1.2) ds2 = −(1 + 2Ψ)dt2 + a2(t)(1− 2Φ)δijdxidxj.

It is this perturbed metric in Newtonian gauge that we will return to

throughout our work when we run cosmological N-bodysimulations.

The other fundamental pillar is the interpretation of GR. When Einstein

constructed the theory of GR, he pursued it as a purely geometrical con-

cept, ascribing gravitational interactions to the curvature of spacetime.

Even though this interpretation is widely used nowadays, di�erential ge-

ometry a�ords much wider classes of geometric objects to represent the

geometrical properties of manifolds. The two other possible geometrical

objects are based on torsion (TEGR) and non-metricity (CGR), di�er-

ing only by means of a boundary term and giving rise to the same field

equations as the geometrical interpretation. In this work we will adapt

Einstein’s interpretation of GR and will therefore forego a description of

the other two (for more details see, [e.g., 109]).

1.1.1 The Standard Model

In addition to the two fundamental pillars of cosmology, we name two2 2 There are many more concepts
and assumptions that go into
constructing a working model of
cosmology. But it is beyond this
thesis to go into all of them.

more that distinguish the standard model of cosmology from its variants:

• Einstein’s interpretation of GR and his field equations are valid on all

scales.

• The Universe is filled with a cosmological constant Λ, Cold Dark Mat-

ter (CDM), baryons and radiation.

To derive the field equations using the geometric interpretation of GR,

we start with the Einstein-Hilbert action

(1.3) S =
∫

d4x
√
−g
[

R
16πG

+ LM −
Λ

8πG

]
,

where g denotes the determinant of the metric tensor gµν, R is the Ricci

curvature scalar, G is the gravitational constant,LM is the Lagrangian

density3, and Λ is the cosmological constant. Variation with respect to 3 Here, we use the subscript "M"
for both non- and relativistic
matter. Later we shall make
a distinction between dust
(non-relativistic) and radiation
(relativistic) by referring to them
with "m" and "r" respectively.



4 STAYING WITH THE HUBBLE TROUBLE

gµν gives us the Einstein field equation [81],

(1.4) Rµν −
1
2

gµνR + Λgµν = 8πGTµν,

where Rµν is the Ricci curvature tensor, and Tµν is the energy-momentum

tensor. Applying the metric given by Eq. 1.1 to Eq. 1.4, we obtain the

Friedmann equation [91],

(1.5) H2 =
8πG

3
ρ +

Λ
3

.

It is arguably one of the most important equations in cosmology. It re-

lates the expansion rate of the Universe given by H(t) ≡ ȧ/a, the

Hubble factor, to the density, ρ, and the cosmological constant, Λ. Taken

together with the continuity equation and the equation of state, they

provide a closed system which can be solved to determine the history

and fate of the Universe.

While we derived Eq. 1.5, we have made use of the fourth pillar that

defines what the content of the Universe is. Whatever it is, we have to

realize that the cosmological principle guides us to consider each com-

ponent as a homogeneous and isotropic perfect fluid4. If two or more 4 Meaning, that they are char-
acterised by two quantities: the
energy density, ρ(t), and the
pressure, P(t).

components share the same equation of state we can, for cosmological

purposes, just treat them as one. Therefore roughly speaking, in order

to satisfy observational measurements of the Cosmic Microwave Back-

ground (CMB), supernovae, lensing and Baryon Acoustic Oscillations

(BAO) the standard model of cosmology needs to contain the following:

∼ 70% of Λ, 26% of CDM, and 5% of baryonic matter such as stars and

gas that move on in a flat space (K = 0) [173]. As the main contribution

of the radiation density comes from the CMB, its contribution is o�en

negligible at late times. As our focus is on large scale structure growth at

late times, we neglect any radiation in the cosmological simulations we

have used.

To give a more nuanced account, modern cosmology parameterizes

the source terms in the Friedmann equation, Eq. 1.5, through dimension-

less density parameters Ω, for each component. It expresses the energy
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densities in units of the critical density ρcrit = 3H2/(8πG), which repre-

sents the averaged cosmological density in the Universe today. Thus, the

Ω-parameters for the di�erent contents is given by

(1.6) Ωm ≡
8πGρ

3H2 , ΩΛ ≡
Λ

3Hr
, ΩK ≡ −

K
(aH)2

Here, the matter energy density Ωm corresponds to the sum of the con-

tributions of CDM and baryons. Now, we can rewrite the Friedman equa-

tion as,

(1.7) E(z)2 = Ωm(1 + z)3 + ΩΛ + ΩK(1 + z)2,

where we have used E(z) ≡ H(z)/H0, with H(z = 0) ≡ H0 the Hubble-

Lemaître constant and exchanged the scale factor a with the redshi� z

using their relation a = 1/(1 + z).

The relation between redshi� and distance can be reconstructed

through Eq. 1.7. For example, in a Euclidean universe (ΩK = 0), the

angular-diameter distance, DA (i.e. the distance reconstructed from

knowing the physical size and measuring the angle it subtends in the sky)

is given by

(1.8) DA(z) =
1

1 + z

∫ z

0

dz
H(z)

and the corresponding luminosity distance is given by DL = (1 + z)2DA.

By measuring redshi�s and distances of, e.g., stars, galaxies, supernovae

and matching them to DA(z) and DL(z) at z close to 0 we can estimate

H0. Although these two cosmological distances are the most widely used

in order to measure H0, a third exists which will be introduced below and

discussed in more detail in Sec. 4.

To study how the cosmological components form structures out of

the initial density field and how these structures evolve, we need to go

beyond a homogeneous and isotropic universe by including inhomo-

geneities. In other words, instead of using the line elements of Eq. 1.1 we

need to consider Eq. 1.2. Linear perturbation theory allows us to relate
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these inhomogeneities (ρ(t, x)) to small perturbations (δ(t, x)) evolv-

ing on the background (ρ̄(t)) Universe that have grown in time due to

gravitational instabilities as

(1.9) ρ(t, x) = ρ̄[1 + δ(t, x)].

The evolution of the perturbations, δ(t, x), can then be found through

linear perturbation theory using Einstein’s field equations along with the

equations for conversation of mass and momentum. For example, by

combining the (00) and (0i) components of the Einstein field equations,

we obtain the Poisson equation,

(1.10) ∂2Φ =
3
2

Ωma(ρ̄− 1),

where ∂ is the partial derivative with respect to the comoving coordinate.

However, even though the Lambda Cold Dark Matter (ΛCDM) model

is currently the most commonly used model of the Universe, it leaves

many puzzles behind. The most prominent are the mysterious late-time

acceleration and galactic rotation curves, which have motivated the

introduction of dark energy (Λ) and CDM, which are both unidentified.

Therefore, one of the key aims of modern cosmology is to reveal the

identities of these two unknown components. Despite many years of

research, their origin has not yet been identified.

1.1.2 Alternative Models

Chapters 2 and 3 investigate an alternative cosmological model to

ΛCDM, based on the generalised form of the classical Proca action that

describes a massive vector field with derivative self-interactions. To sat-

isfy theoretical consistency, the modifications to the Einstein-Hilbert

action (Eq. 1.3) suggested by the alternative theories to GR discussed

here need to be treated as an e�ective theory, which is valid only at low

energy scales. Thus, these gravity models alone remain di�icult to rec-

oncile with our current knowledge of quantum fields and further study is

needed to extend them to higher energy scales. While exploring the Gen-
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eralised Proca (GP) action, we compared it and found relations to other

already well studied modified gravity theories which we briefly introduce

here.

Starting from Einstein’s theory of gravity, Eq. 1.4, there are basically

two approaches to alter it such that it accounts for the late-time acceler-

ated expansion: modifying the spacetime curvature terms (Rµν − 1
2 gµνR)

on the l.h.s., or by including an exotic matter source with a negative pres-

sure in the energy-momentum tensor (Tµν) on the r.h.s5. Following the 5 However, it is important to
realize that the two approaches –
modifying le� or right hand side
of Eq. 1.4 – do not matter in GR, as
we can always rephrase one into
the other by defining a suitable
conserved energy-momentum
tensor that equals the Einstein
tensor.

mathematical and conceptual framework for contemporary elementary

particle physics, these modifications inevitably introduce either, e.g.,: a

higher dimensional spacetime or extra degrees of freedom [109].

The first approach is to remove Λ and modify the right-hand side

of the Einstein equations given in Eq. 1.4 by considering specific forms

of the energy-momentum tensor, Tµν, with a negative pressure. The-

ories following this strategy are knwon as "modified matter models".

One of the representative models that belongs to this class, are the so-

called quintessence6 models [232]. The term "quintessence" is used 6 According to ancient Greek
science, the quintessence (from
Latin "fi�h element") denotes a
fi�h cosmic element a�er earth,
fire, water, and air.

to denote a slowly evolving scalar field ϕ that interacts with all other

components only through standard gravity. Generally, the gravitational

interaction/coupling of matter with a scalar field gives rise to an ad-

ditional force, that is felt by matter and di�erent from the four known

types of fundamental forces, referred to as fi�h force. But in case of the

quintessence field, its clustering on small scales is too small to leave any

significant impact on the geodesic of matter and structure formation.

This means that the Lagrangian density,LM, does not depend on ϕ.

Neither directly, nor through the rescaling of the metric, which deter-

mines the geodesics of matter particles. For such models the modified

Einstein-Hilbert action takes the form of

(1.11) S =
∫

d4x
√
−g
[

R
16πG

+ LM +
1
2
∇µ ϕ∇µ ϕ + V(ϕ)

]
.

Quintessence models are generally portrayed as the simplest alternative

to Λ, as they modify the expansion rate of the Universe while modifica-
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tion of GR are insignificant. However, from a theoretical point of view,

if one introduces a scalar field into a model, then one could expect it to

couple to the remaining matter degrees of freedom directly. That is, stan-

dard quintessence models need to include an explanation for a vanishing

coupling strength. These models are therefore somewhat less natural

when compared to coupled quintessence models, where the scalar field

interacts explicitly (that is, beyond the gravitational coupling) with ordi-

nary matter.

The second approach is to modify the le�-hand side of the Einstein

equation, Eq. 1.4. Theories following this strategy are knwon as "modi-

fied gravity models". One representative model that belongs to this class

is the Dvali-Gabadadze-Porrati gravity (DGP) model [78]. In this model

the late-time acceleration of the Universe is realized by a scalar field ϕ,

which can be understood geometrically as the perturbation of the po-

sition of a four-dimensional brane in a five-dimensional spacetime (the

bulk). It follows the idea to dilute gravity by allowing gravitons to leak

into the fi�h dimension (on large scales), while confining ordinary matter

onto the four-dimensional brane. The gravitational action of the model is

given by

(1.12) S =
∫

d4x
√
−g
[

R
16πG

+ LM

]
+
∫

d5x(5)
√

g(5)
[

R(5)

16πG(5)

]
,

where g and R have the same meaning as before on the 4D brane, while

g(5), R(5), and G(5) are respectively their equivalents in the 5D bulk. A

characteristic parameter that can be defined for this model is the quan-

tity

(1.13) rc ≡
1
2

G(5)

G
,

known as the crossover scale/radius, which determines the distance

scale on the brane above which the gravitational e�ects from the fi�h

dimension become important. This model is characterized by two

branches of solutions. Firstly the self-accelerating branch of the Dvali-

Gabadadze-Porrati model (sDGP), which has the advantage that it does
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not require an additional dark energy field to explain the accelerated

expansion, but is plagued by ghost instabilities (degrees of freedom

whose energy is unbounded from below) and is ruled out by the CMB and

SNIa data. Secondly the normal branch of the Dvali-Gabadadze-Porrati

model (nDGP), which contains the same fi�h force e�ects as the sDGP

model but requires an explicit dark energy term to be added to the four-

dimensional part of the action. In the DGP model, deviations from GR can

be quantified by the parameter H0rc. As H0rc → ∞ the expansion of the

Universe is close to that of ΛCDM.

The reason that makes the DGP model interesting is that it features

the Vainshtein mechanism. This mechanism leads to the suppression

of the modifications on GR in regions where the second derivatives of

the potential are large, such that the model can be made compatible

with the stringent solar system tests [213]. This screening mechanism

operates in models whose Equation Of Motion (EOM) for the scalar field

ϕ contains nonlinear second order derivative terms, of which the DGP is

just one example. The Vainshtein mechanism will be studied in greater

detail in Sec. 2.3.3, but due to its importance we will briefly introduce

it here. Consider a model whose scalar field EOM takes the following

symbolic form:

(1.14) A
( ϕ,r

r

)2
+ B

( ϕ,r

r

)
= Cρ,

where A, B, and C are some model specific constants that can depend

on time and ,r denotes partial di�erentiation w.r.t. the radial coordinate

r. If ρ is small, then the spatial gradient of ϕ should be small. In this case,

the nonlinear term in Eq. 1.14 can be neglected compared with the other

terms and one has that ϕ,r/r ∼ ρ. Recalling that for normal gravity we

have that Φ,r/r ∼ ρ, then the ratio of the fi�h to the normal gravity force

becomes

(1.15) F5th
FGR
∼ f (t),

i.e., a function of time alone and not space. On the other hand, when the
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density gets high, the nonlinear term in Eq. 1.14 dominates, which results

in ϕ,r/r ∼ √ρ. In this case, we have

(1.16) F5th
FGR
∼ 1
√

ρ
→ 0, i f ρ→ ∞,

and the fi�h force is suppressed compared with standard gravity.

These derivative self-interactions that were introduced by the DGP

model have furthermore the interesting property, that they are invariant

under Galileon transformations of the scalar field

(1.17) ∂µφ→ ∂µφ + bµ,

with c and bµ being a constant scalar and four-vector respectively.

Motivated by these findings, more general forms of derivative self-

interactions that give rise to second order equations of motion were

sought and led to the construction of the Galileon model, which is de-

scribed by the following modified Einstein-Hilbet action

(1.18) S =
∫

d4x
√
−g

[
R

16πG
+ LM −

1
2

5

∑
i=1

ciL
]

in whichLi (i = 1, ..., 5) are the five allowed components of the Galileon

Lagrangian density specified by the constant coe�icients, ci, which are

free parameters of the model [160]. The first two Lagrangian densities,

L1,2, are for the quintessence field with a linear potential. The remaining

terms,L3,4,5, are characterised by their power of ϕ. In Sec. 2 we will

encounter a simplified version of this model in which we have setL4,5 =

0, giving it the name: Cubic Scalar Galileon (csG) model. Its Lagrangian

density terms are

(1.19)
3

∑
i=1
Li = M3 ϕ +∇µ ϕ∇µ ϕ +

2
M3�ϕ∇µ ϕ∇µ ϕ,

where M is a new mass scale characterising the onset of the acceleration

epoch, which is defined by M3 ≡ H2
0 MPl with MPl the reduced Planck

mass, and� = ∇µ∇µ is the d’Alambertian.

Besides the construction of viable theories of gravity that replace
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the cosmological constant Λ with a dynamical scalar field ϕ, one can

instead introduce an additional vector field, Aµ, into the gravity sector.

This endeavour is motivated by the standard model of particle physics,

as it relies on vector fields as force carriers. In contrast to scalars, the

directionality of cosmic vector fields leads to large scale anisotropic

expansion. According to CMB observations, these anisotropies are very

faint, being at the order of 10−5. By giving the vector field mass, the

created anisotropy can be suppressed to the level of measurements.

This novel model, known as the GP theory, opens up the possibility to

construct vector-tensor theories with second order EOM, that include the

Vainshtein screening mechanism and exclude ghost instabilities.

In this thesis, we study a sub-class of the GP theory that contains all

Lagrangian densities up to cubic order [108]. Due to its similarity to the

csG model we refer to it as the Cubic Vector Galileon (cvG) model. Both

models are of great interest for this work, as each of them can resolve

the Hubble tension (as shown by [20] for csG and [111] for cvG). One

important di�erence between them is, that the cvG model can tune the

strength of the fi�h force while its background expansion history stays

unchanged [26]. This opens up possibilities to overcome challenges

faced by the csG model, such as void lensing and the Integrated Sachs-

Wolfe E�ect (ISW) [18, 14], while maintaining its ability fit early- and

late-time measurements of H0.

The implication of this vector theory of gravity for astrophysical ob-

jects is tremendous and rich in phenomenology, beyond the extensively

studied scalar-tensor theories. The impact on the observations of large-

scale structures and weak lensing makes it is possible to distinguish

this model from ΛCDM according to both expansion history and growth

of cosmic structures. Future galaxy surveys such as the DESI [71], Eu-

clid [206], LSST [207], Nancy Grace Roman Space Telescope [6, formerly

WFIRST] hold the potential to test the nature of gravity on cosmological

scales; allowing us to put constraints on the parameter space of such

modified gravity models or potentially to rule out deviations from the

standard cosmological paradigm.
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1.2 Cosmological Tests of Gravity

In the previous section we have seen that nonstandard gravity models

can be obtained by modifying Einstein’s field equation (Eq. 1.4), by intro-

ducing new degrees of freedom (via a scalar field ϕ or a vector field Aµ).

They ultimately lead to modifications in the Friedmann equation (Eq. 1.5)

and the Poisson equation (Eq. 1.10), which can be observed through

measurements of, e.g., the rate of cosmic structure growth D+(t) and

the background expansion history H(t). However, the highly nonlinear

nature of the evolution of large-scale structures can’t be captured by

linear perturbation theory. To complete our understanding of model

behaviours in cosmology beyond linear perturbation theory, numerical

simulations are quintessential. Such cosmological simulations provide

the means to test gravity models beyond the well-established tests in

the solar or other small systems, in that they probe completely di�erent

environments and much larger length scales. In this section, we will give

a brief description of some of the most commonly used cosmological

measurements.

1.2.1 Probes of the Density Field

The chapters 2 and 3 of this work test the GP model by studying its phe-

nomenology in the nonlinear regime of large-scale structure formation

and identify potential observables that can help to verify or falsify it. The

focus of the study is kept on summary statistics of dark matter field, dark

matter haloes, weak lensing maps, and void properties. A commonly

used statistic to describe the distribution of, e.g., matter as a function of

scale is the power spectrum P(k). As most cosmological fields are ap-

proximately Gaussian random fields in the linear regime, P(k) contains

all the information to fully describe them. The power spectrum of matter

distribution is obtained by Fourier transforming δ(x),

(1.20) δ(k) =
∫

δ(x)exp(ik · x)d3x,
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where k is the comoving wavevector of a given Fourier mode. The power

spectrum is then given by

(1.21) 〈δ∗(k′)δ(k)〉 = (2π)3P(k)δ(3)(k− k′),

in which we have explicitly written the k-dependence of δ, δ∗ is the com-

plex conjugate of δ, δ(3) is the 3D Dirac δ-function, and 〈·〉means the

ensemble average over cosmological scales. We could of course stay in

configuration space and instead use the two-point correlation function

ξ(r) – which is the inverse Fourier transform of P(k) – given by

(1.22) ξ(r) ≡ 〈δ(x)δ(x + r)〉 = (2π)−3
∫

P(k)exp(ik · r)d3k.

But using P(k) is o�en preferred as it is faster to compute. Although P(k)

and ξ(r) carry in principle the same information of δ(x), in practice this

is not guaranteed since our analyses are restricted to a finite range of

scales, and moreover, configuration and Fourier space statistics are im-

pacted di�erently by systematic e�ects, which require slightly di�erent

analysis strategies (e.g. the treatment of shot noise).

In cosmological simulations, the continuous field δ(x) is accurately

probed by tracer particles allowing the computation of P(k) over a wide

range of scales depending on the simulation box size and resolution.

When dealing with observational data, one can only probe δ(x) with

sparse "biased" tracers, such as dark matter haloes and galaxies. As

these biased tracers do not follow the same clustering of the underlying

matter field, various bias terms are needed to account for the di�erences.

In the linear regime, i.e. large scales and δ � 1, the bias factor is ap-

proximately scale independent and can relate the observed halo number

density (δh) to the underlying matter fluctuations (δ) as

(1.23) δh(x) = bδ(x),

where b is the linear bias factor. The halo number density is given by

δh ≡ nh/n̄h − 1, where the subscript h denotes "halo" and nh(x), n̄h are
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the halo number density at x and the mean halo number density, respec-

tively. Galaxies can be related to the underlying matter distribution in the

same way.

A cosmological quantity that is of particular importance in the linear

regime is the linear growth factor of cosmic structure D+(a). It deter-

mines the normalisation of the linear matter power spectrum relative to

the initial density perturbation power spectrum as

(1.24) δ(k, a) = D+(a)δ(k, a0),

where t0 is the physical time today and D+(a = 1) = 1. In the case of a

matter dominated Universe, the linear growth factor is D+(t) ∝ t2/3 ∝

a(t). Its logarithmic derivative, the dimensionless linear growth rate

(1.25) f =
dlnδ

dlna
=

dlnD+

dlna
,

determines the amplitude of peculiar velocity flows and redshi� distor-

tions [e.g., 167]. When the overdensity reaches a value of δ ∼ 1, the

linear treatment of structure growth is no longer valid. In such case the

nonlinear evolution is computed through numerical simulations.

1.2.2 Probes of the Expansion History

In the two decades since the discovery of the accelerated late-time ex-

pansion, distance measurements have improved steadily and led to the

detection of a significant tension between the local distance ladder de-

termination of the Hubble-Lemaître constant H0 by Riess et al. [178] and

that inferred by the Planck satellite assuming a flat ΛCDM model [173]7. 7 With 4σ to 6σ disagreement
depending on the datasets
considered.The tension could be due to an unknown source of systematic errors in

the measurements, or it could be indicative of new physics, such as new

degrees of freedom or a larger e�ective number of relativistic species. To

find answers from an empirical standpoint will require further improve-

ments in the precision of independent distance measurements.

Chapter 4 of this work discusses the relatively new approach to cos-

mic distance measurements that is independent of more traditional
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methods, gravitational strong lensing time delays. This approach relies

on the deflection of photons, that are emitted by a background source

(such as a galaxy, quasar, supernova, or gravitational wave event), by

a deep gravitational potential. If the background source appears to be

stretched tangentially around a massive object, it is said to be weakly

lensed (in Sec. 3.4.6 we study weak-lensing statistics in context of the GP

theory). In rare occasions however, the Line-Of-Sight (LOS) of the source

is suitably well aligned with an intervening object of su�icient mass that

the deflection is strong enough for multiple images to appear for the

observer. The arrival time of the images depends on the interplay of the

geometric and gravitational delays specific to the configuration. Thus,

if the emission from the gravitationally lensed source is variable in time

(such as an active galactic nucleus or a supernova), the di�erence in ar-

rival time is measurable. The time delay of image i, relative to the case of

no lensing, is

(1.26) t(θi; β) =
D∆t

c
φ(θi; β),

where θi is the position of the lensed image i, β is the position of the

source, D∆t is the so-called "time delay distance", and φ is the "Fermat

potential" related to the lens mass distribution. The time-delay distance

for a lens at redshi� zd and a source at redshi� zs is

(1.27) D∆t = (1 + zd)
DdDs

Dds
,

where Dd, Ds, and Dds are respectively the angular diameter distances

of the lens, the source, and between the lens and the source. Through

Eq. 1.27 D∆t is inversely proportional to H0, and more weakly dependent

on other cosmological parameters.

Initially, time delay cosmography was marred by controversies and

systematic errors due to the low quality and incompleteness of data.

With the beginning of modern monitoring campaigns at the turn of the

millennium, these issues were overcome and the focuses shi�ed to the

modeling of the lens mass distribution to constrain φ. As the available in-
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formation on the lensing system was o�en limited to the multiple image

positions, their time delays and flux ratios the best one could do was to

assume a simple form for the lens mass distribution, such as a singular

isothermal sphere [124], and to neglect the e�ects of structure along the

LOS. These necessary but oversimplistic assumptions lead to grossly

underestimated uncertainties on the obtained estimates of D∆t and

significant inconsistencies between research groups and measurement

techniques.

Since then, two methods have been pursued in order to obtain more

realistic estimates of the uncertainties. One consists of using large sam-

ples of systems with relatively weak priors ([e.g., 163] and used in our

work in Sec. 4). The other method consists of obtaining high quality

data for each lens system, including high signal-to-noise ratio and high-

resolution imaging of the host galaxy of the lensed object, spectroscopic

measurement of the stellar velocity dispersion, and measurements to

model the e�ect of mass inhomogeneities along the LOS and in the im-

mediate neighborhood of the main deflector [e.g., 199, 211, 225].

With ever more strong lens time delays being measured and more

ancillary data obtained, time delay cosmography is becoming equally

precise to the more traditional techniques. Ultimately its advantage is,

that it yields an absolute measurement of distance without relying on

Cepheids or any other local rung of the distance ladder. Furthermore,

unlike luminosity distance measurements, it is insensitive to dust or

other photometric errors.

1.3 Cosmological simulations

Cosmological large-scale structure formation is an inherently complex

process, which simple analytical methods are unable to describe down

to small, nonlinear scales. The situation is exacerbated by many modified

gravity models that rely on screening mechanisms, which are a nonlinear

phenomena to evade the constraints imposed by the observed solar sys-

tem tests. As cosmology is entering the era of precision science, in which
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the next generation of cosmological surveys will dramatically improve

constraints on GR by up to two orders of magnitude [87], N-body sim-

ulations are quintessential, as they are one of the most powerful ways

to obtain theory predictions in the fully nonlinear regime, in real- and

redshi�-space, for any considered statistic.

N-body simulations follow the evolution of a portion of the Universe,

by sampling the phase-space density via a finite number of tracer par-

ticles. The positions and velocities of these particles are obtained by

solving the Newtonian equations of motion, embedded in an expanding

(background) Universe. As mentioned in Sec 1.1.1, the majority of matter

in the Universe is dark matter (DM). As we are only interested in extra-

galactic phenomena that involve the distribution and dynamics of DM,

we can simplify our N-body simulations by neglecting any baryonic or

radiation physics and only treat DM particles.

Thus, the central task of our simulations is to solve the gravitational

forces acting on each particle, as DM interacts through gravity only. There

are two common ways to do this computation: summation of forces from

individual and groups of particles, or finite di�erence of the gravitational

potential computed on a grid. Although the former approach is compu-

tationally ine�icient it can be sped up using recursive tree algorithms,

where nearby particles are treated collectively as a single large particle to

reduce the number of summation operations. It is however not suitable

for nonstandard models of gravity, as it assumes the law of superposition

for the gravitational force, which generally does not hold. The latter ap-

proach calculates the potential on a mesh first to find the forces through

finite di�erence. This allows the discrete Poisson equation to be solved

through fast Fourier transform in standard cosmological simulations and

through the relaxation method for nonstandard gravity models [for more

details see 132].

To run a single N-body simulation, the first step is to create the ICs by

positioning the tracer particles in accordance to a matter power spec-

trum, P(k) ∼ |δ|2 that provides the information of the initial small scale

matter inhomogeneities, δρm, at some time t. Here, it is important that
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the Fourier modes of the perturbations at the scales k and time t at which

the ICs are generated are well inside the linear regime, so that linear

theory approximations are valid. Each particle is then attributed with

gravitationally-induced velocities following e.g. the Zel’dovich approx-

imation (first order perturbation theory) or a second-order Lagrangian

perturbation theory ( 2LPTic). This creation of ICs is identical for ΛCDM

and screened modified gravity theories with the same cosmological pa-

rameters and simulation specifications, because the e�ect of modified

gravity – and to some extent dark energy in many dark energy models – is

negligible at high redshi�s, zini & 50.

Once the ICs is set up, the remaining tasks are to evolve the particle

positions and velocities following Vlasov equation which represents the

EOM for the particles. For Chapter 2 and 3 we use modified versions of

the publicly available simulation code RAMSES [205], while for Sec. 4 we

use the Outer Rim simulation [113] run with HACC [100].

DM-only simulations are able to study the evolution of structure for-

mation, at a much lower computational cost than more physically mo-

tivated hydrodynamical simulations. In Chapter 3 we will outline the

creation of 25 DM-only N-body simulations to create five lightcones, each

for a di�erent cosmology that is based on the GP gravity theory. State of

the art computing facilities and simulation codes enable far larger num-

bers of N-bodysimulation than used in this work, such as the QUIJOTE

simulation suite [216] which comprises 43100 full N-body simulations

encompassing over 7000 di�erent cosmological models, specifically de-

signed to provide high quality data to train machine learning algorithms.

1.4 Outline of Contents

In this thesis we study the nonlinear growth of large-scale structure in

the GP theory of gravity, and the constraining power of strong lensing

time-delays on H0 using various N-body cosmological simulations. The

thesis is split into two parts as described below.

The first part of the thesis focuses on the analysis of the GP model.
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In Chapter 2, we present the first N-body code that can solve the field

equations of a sub-class of the GP model. In Chapter 3, we conduct a

comprehensive study of the phenomenology of this model by analysing a

total of 13 matter, halo, weak lensing and void statistics.

The second part, Chapter 4, we assess the influence of additional

structures along the line-of-sight on time-delay measurements of D∆t

and in turn, on the inferred value of H0.

Finally, in Chapter 5, we present our general conclusions and sum-

marise our findings as well as advise on future research directions.





2

Proca-stinated Cosmology I: A N-body code

for the vector Galileon

WE INVESTIGATE the nonlinear growth of large-scale structure in the

Generalised Proca (GP) theory, in which a self-interacting massive vec-

tor field plays the role of driving the acceleration of the cosmic expan-

sion. Focusing to the Proca Lagrangian at cubic order – the cubic vector

Galileon model – we derive the simplified equations for gravity as well

as the longitudinal and transverse modes of the vector field under the

weak-field and quasi-static approximations, and implement them in a

modified version of the ECOSMOG N-body code. Our simulations incor-

porate the Vainshtein screening e�ect, which reconciles the fi�h force

propagated by the longitudinal mode of the cubic vector Galileon model

with local tests of gravity. The results confirm that for all scales probed

by the simulation, the transverse mode has a negligible impact on struc-

ture formation in a realistic cosmological setup. It is well known that in

this model the strength of the fi�h force is controlled by a free model

parameter, which we denote as β̃3. By running a suite of cosmological

simulations for di�erent values of β̃3, we show that this parameter also

determines the e�ectiveness of the Vainshtein screening. The model

behaves identically to the cubic scalar Galileon for β̃3 → 0, in which

the fi�h force is strong in unscreened regions but is e�iciently screened

in high-density regions. In the opposite limit, β̃3 → ∞, the model ap-
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proaches its ‘quintessence’ counterpart, which has a vanishing fi�h force

but a modified expansion history compared to ΛCDM. This endows the

model with rich phenomenology, which will be investigated in future

works.

2.1 Introduction

Our present understanding about the Universe is founded upon GR,

which is the only theory that is compatible with the basic requisite of a

single massless spin-2 field that respects Lorentz invariance [99, 218, 66].

Even though the predictions of GR have been validated against many

tests, these tests are usually limited to small scales such as the solar sys-

tem, and it leaves the cosmological scales underexplored [128]. These

latter scales coincide with those on which the dynamics of luminous

matter within galaxies and at Mpc scales, as well as the expansion rate

of the Universe, currently lack clear and convincing explanations. These

enigma are commonly attributed to invisible energy contents that inter-

act with gravity but not with baryons, called dark matter (motivated by

e.g. galaxy dynamics) and dark energy (motivated by observed late time

acceleration) [181]. However, it is also possible that they are simply sig-

natures that the law of gravity is modified on large scales, as exemplified

by many modified gravity (MG) models [9, 109, 87].

The last decades have seen many attempts to modify GR. According

to the Lovelock theorem, GR is the only theory with second-order local

equations of motion for the metric field, which is derivable from a 4-

dimensional action [128], and therefore modifications to GR o�en involve

new dynamical degrees of freedom in addition to the metric field, non-

locality, higher-dimensional spacetimes and/or higher-order equations.

The simplest MG models, for example, usually involve a single scalar

degree of freedom with self-interactions or interactions with curvature.

It has been well-established that such models can be brought under the

umbrella of the Horndeski theory [118, 123, 70].

One of the well-known subclasses of the Horndeski theory is the
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Galileon model [160, 69, 68], a 4-dimensional e�ective theory which

involves a scalar field with universal coupling to matter and derivative

self-interactions. The theory implements the Vainshtein screening e�ect

[213] – a mechanism encountered in theories such as Fierz-Pauli massive

gravity [12] and the Dvali-Gabadadze-Porrati (DGP) model [78] – to de-

couple the scalar field from matter near massive objects and therefore

can be compatible with Solar system tests of gravity. The model mod-

ifies the background expansion history such that it reaches a de Sitter

solution in the future without requiring a cosmological constant. Its sim-

plicity makes it possible to study its phenomenology with the help of

cosmological N-body simulations [17, 136].

In contrast to the scalar Galileon, the GP theory [108, 8, 29], involves

a massive vector field, Aµ, with a broken U(1) gauge symmetry and

second-order equation of motion (EOM). The theory features Galileon-

type derivative self-interactions and couplings to matter. At the back-

ground level, the temporal component of the vector field, A0, gives rise

to a self-accelerating de Sitter attractor, corresponding to a dark energy

equation of state wDE = −1 [61]. From the gravitational wave event

GW170817 [2] with accompanying gamma-ray burst GRB170817A [95]

and other optical counterparts, the speed of propagation of the gravita-

tional waves cT has been tightly constrained to be identical to the speed

of light, c. This places strong constraints on the allowed operators within

the higher order GP Lagrangian. However, even with this restriction, the

GP theory is still cosmologically interesting, with a theoretically con-

sistent parameter space that is free of ghost and Laplacian instabilities

[61].

By introducing non-linear functions into the field Lagrangian of the GP

theory to describe its derivative self interactions and couplings with mat-

ter, it is very versatile and flexible. However, in cosmological applications

one o�en specialises to simple choices of these non-linear functions,

such as power laws, and a number of studies have been conducted, lead-

ing to a good understanding of the cosmological behaviours of the model

at background and linear levels. For example, in Ref. [64], an MCMC like-
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lihood analysis was performed for the particular GP theories proposed

in Refs. [61, 62], by exploiting the observational data from type Ia super-

novae (SNIa), Cosmic Microwave Background (CMB), Baryonic Acoustic

Oscillations (BAO), the Hubble expansion rate H(z), and Redshi� Space

Distortion (RSD). The cross correlation between galaxy field and the In-

tegrated Sachs Wolfe (ISW) e�ect, which has been a powerful probe to

constrain the scalar Galileon models, has also been used to constrain

parameters of the GP theory [154].

The aim of this Chapter is to carry on the analyses into the non-linear

regime, beyond the use of linear perturbation theory [65] or statistical

field theory [110], by using cosmological N-body simulations. From a

phenomenological point of view, there are several reasons for doing so.

One is that we know perturbation theory to not be good at quantifying

the e�ects of screening, which is an inherently non-linear phenomenon.

N-body simulations are the only known tool to accurately quantify the

evolution of the Universe on small, highly non-linear, scales, and can

be used to validate or calibrate the predictions of other approaches.

Being able to probe small scales will enable us to test a given model

against more observational data more accurately, e.g., access scales or

regimes that are inaccessible to perturbation theory. To this end, we

have developed a modified version of the ECOSMOGcode [135], which can

be easily adapted to any variant of the GP theory. This is the first Chapter

of two to explore the non-linear regime for this theory; here we will focus

on deriving the simplified equations, code tests and initial simulations to

gain some qualitative insight into its cosmological behaviour.

This Chapter is arranged as follows. In Section 2.2 we give a brief re-

view of the key points of the GP theory, specialise to a simple variant of

it, and derive the simplified Einstein and GP field equations of motion

that are applicable to typical cosmological simulations which are fea-

tured by weak fields and slow motions of matter. A particularly detailed

account will be given of the approximations used and their justifications.

In Section 2.3 we introduce an internal unit system which is used to write

the background and perturbation evolution equations into dimension-
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less forms. We give expressions of various physical quantities that are

key to understanding the behaviours of the theory, and compare them

with the predictions from other related gravity models. In Section 2.4,

we first carry out a range of tests of a new N-body code developed for

simulating the GP field, and then show the first results from a suite of

cosmological simulations. We show that the transverse mode of the GP

vector field plays a negligible role in the non-linear evolution of the Uni-

verse, as it does in linear theory. We also demonstrate how the enhanced

growth of non-linear cosmic structures and the screening of fi�h force

depends on the single additional parameter of the model. Finally we

summarise, conclude and layout a future workplan in Section 2.5.

Throughout this Chapter, we use the (−, +, +, +) notation for the

signature of the metric. We set c = 1 except in expressions where c ap-

pears explicitly. Greek indices run over 0, 1, 2, 3 while Roman indices run

over 1, 2, 3. MPl is the reduced Planck mass and is related to Newton’s

constant, G, by M−2
Pl = 8πG.

2.2 Generalised Proca Theory

This section gives a short description of the GP theory. We start from

a complete form and then specialise to a particular case with a simple

functional form of the Lagrangian. The choice of the theory and the

resulting field equations are given in Section 2.2.1. In Section 2.2.2 we

apply these to a perturbed spacetime around a flat homogeneous and

isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) metric, to derive

the equations which govern the dynamics of the Proca field and its e�ect

on the total gravitational force. These will provide us with the essential

equations for the N-body simulations.

2.2.1 Action and general field equations

In its standard form, the Proca action describes the dynamics of a mas-

sive vector field Aµ , and is of little use to modify GR. This is because,

since we observe no deviation from GR in our solar system, any new
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terms which we add to the Einstein-Hilbert action have to converge to

GR in deep potentials. This requires the mass of the vector field to be so

small, that it makes the field negligible on all scales. One way around

this dilemma is by adding further terms to the action that make the be-

haviour of the vector field dependent on potential depths. This can be

achieved by derivative self-interactions of the vector field. Interestingly,

there exist only six derivative self-interactions that preserve the number

of degrees of freedom of the vector field and do not create ghosts (such

as the Ostrogradsky instability) [108, 29]. The resulting four-dimensional

action has the following structure [108],

(2.1) S =
∫

d4 x
√
−g

[
Lm + LF +

6

∑
i=2
Li

]
,

where g denotes the determinant of the metric tensor gµν , and Lm is the

matter Lagrangian, which is related to the energy-momentum tensor of a

perfect fluid as,

(2.2) T(m)
µν = − 2√−g

δ(
√−gLm)

δgµν .

Assuming that matter is minimally coupled to gravity, T(m)
µν satisfies the

standard conservation equation

(2.3) ∇µ T(m)
µν = 0,

where∇µ denotes the covariant derivative compatible with gµν . Intro-

ducing the first derivative of the vector field as Bµν = ∇µ Aν , we can

build the anti-symmetric Faraday tensor as Fµν ≡ Bµν − Bνµ . The dy-

namics of Aµ is described by the kinetic term of the Proca Lagrangian,

LF ,

(2.4) LF = − 1
4

bF Fµν Fµν ,

and the self-interaction terms of the vector field,
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L2 = G2(X , Fµν , F̃µν),(2.5)

L3 = G3(X)[B],(2.6)

L4 = G4(X)R + G4,X (X)([B]2 − [B2 ]),(2.7)

L5 = G5(X)Gµν Bµν − 1
6

G5,X (X)([B]3 − 3[B][B2 ] + 2[B3 ]) + G̃5(X) F̃αµ F̃β
µ Bαβ ,(2.8)

L6 = G6(X)Lµναβ Bµν Bαβ +
1
2

G6,X (X) F̃αβ F̃µν Bαµ Bβν ,(2.9)

where X ≡ 1
2 Aµ Aµ , G2,3,4,5,6 are general algebraic functions of X,

F̃ ≡ ∗F is the Hodge-dual of the Maxwell tensor given by F̃µν =

E µναβ Fαβ /2, where E µναβ is the Levi-Civita tensor satisfying the nor-

malization E µναβEµναβ = −4!. The square brackets around an operator

designate the trace of a tensor. While L3,4,5,6 contain the derivative self

interactions, the non-minimal derivative couplings of the vector field to

the Ricci scalar R, the Einstein tensor Gµν , and the double dual Riemann

tensor Lµναβ defined by

(2.10) Lµναβ =
1
4
E µνρσE µνγδ Rρσγδ ,

where Rρσγδ is the Riemann tensor, are due to L4,5,6. Note that bF

in Eq. (2.4) is a constant coe�icient which has mass dimension zero in

natural unit, and thus is sometimes set to 1 in the literature; in physical

unit it is not dimensionless, which is important when converting the field

equations into code units, as will be seen below.

Exposing the full action given by Eq. (2.1) to constraints from the

observed gravitational wave event GW170817 [2] with gamma-ray burst

GRB170817A [95] and other optical counterparts, we can already make

a judgement on the viability of L4,5. The GW170817/GRB170817A event

measured a speed of tensor perturbations cT very close to that of light

c [1]. In this work we consider the subclass of Proca theory with L5 =

L6 = 0 and L4 = 1
2 M2

Pl R, which satisfies the requirement that

cT = c1: 1 Note that this requirement does
not excludeL5 entirely (as G̃5
remains) and leaves interactions
withinL6 viable, since they are
not sensitive to the background
due to involved symmetries of the
background and the interactions
themselves [109].
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(2.11)
4

∑
i=2
Li = G2(X) + G3(X)∇µ Aµ +

(
M2

Pl
2

)
R,

where L4 has simplified to the standard Einstein-Hilbert term. In the

literature, a common choice of the functions G2,3(X) is the power-law

form,

G2(X) = b2 X p2 , G3(X) = b3 X p3 ,(2.12)

where b2 ≡ m2 is the mass-squared of the vector field that characterises

the onset of the acceleration epoch, and b3 , p2 , p3 of mass dimension

zero in natural unit. The choice is generic enough, leaving a viable pa-

rameter space in which the theory is free of ghost and Laplacian insta-

bilities. Importantly, due to the derivative self-interaction of the vector

field in L3, the gravitational e�ect of the field can be screened in dense

regions as required by solar system tests. The screening mechanism in

this model is known to be analogous to the Vainshtein mechanism for

scalar Galileons [61], as we will also demonstrate below, but there are

also important di�erences between these two classes of models.

Based on the analyses of linear perturbations in this model, obser-

vational constraints on p2,3 have been obtained in the literature, e.g.,

[64, 154, 65]. In this work we set p2 = p3 = 1 as a working example

to study the qualitative behaviour of the Proca field and its impact on

the cosmic structure formation, and leave the study of general functions

G2,3(X) to future work. With this choice, the GP theory behaves as the

standard scalar Galileon model in certain limits, as we will show later.

Having carefully chosen the components in our action, we can derive

the EOM from it [63]. Variation with respect to gµν gives us the modified

Einstein equation,

(2.13) G (F)
µν + G (2)

µν + G (3)
µν + G (4)

µν =
1
2

T(m)
µν ,

with
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G (F)
µν =

1
4

gµν(∇ρ Aσ∇ρ Aσ − ∇ρ Aσ∇σ Aρ)(2.14)

− 1
2

(
∇ρ Aµ∇ρ Aν + ∇µ Aρ∇ν Aρ − 2∇ρ A(ν∇µ) Aρ

)
G (2)

µν = − 1
2

gµν G2 −
1
2

G2,X Aµ Aν(2.15)

G (3)
µν = − 1

2
G3,X (Aµ Aν∇ρ Aρ + gµν Aλ Aρ∇λ Aρ − 2Aρ A(µ∇ν) Aρ)(2.16)

G (4)
µν =

M2
Pl

2

(
Rµν −

1
2

gµν R
)

.(2.17)

where we have used the shorthand notation Gi,X ≡ ∂Gi /∂X with

i = 2, 3. Variation with respect to Aµ gives us the EOM of the vector

field,

(2.18) 0 = ∇µ Fµν − b2 Aν + 2b3 A [µ∇ν] Aµ ,

where the square bracket around indices mean their anti-symmetrisation.

We can see from Eq. (2.13), that the existence of a vector field with

derivative self-coupling induces additional gravitational interactions

with matter. We want to study whether such interactions are viable in

non-linear regimes of cosmological structure formation.

2.2.2 Cosmological field equations

In order to derive the perturbation equations relevant for the study of

large-scale structure formation, we work with the perturbed FLRW metric

in the Newtonian gauge

(2.19) gµν = −(1 + 2Ψ)dt2 + a2(t)(1 − 2Φ)δi jdx idx j ,

where a(t) is the time-dependent scale factor which is normalised to

a(t0) = 1 at the present day, and δi j = diag(+1, +1, +1) represents

the spatial sector of the background metric that is taken here to be flat,

k = 0.

We write the Proca field Aµ in its component form as Aµ = (A0 , Ai) =

(ϕ, Ai), and further disentangle the spatial part of the Proca field, Ai ,
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through the Helmholtz’s theorem into a longitudinal and a transverse

component

(2.20) Ai = Bi + ∇i χ,

where Bi obeys the divergence-free condition,∇i Bi = 0, and χ is the

longitudinal scalar. Thus when deriving the components of the Einstein

equations, we can apply the curl operator to filter out Bi and the diver-

gence operator to obtain the contribution of χ.

Note that, rigorously speaking, the metric in Eq. (2.19) does not have

enough physical degrees of freedom to fully describe the spacetime

perturbations induced by a GP field. For example, the helicity-1 modes

of the vector field produces vector mode perturbations of the metric.

However, the interactions of the helicity-0 modes are typically stronger

(in magnitude) than those of the helicity-1 modes [67]. We will verify

this numerically below, so that we can neglect their e�ects on cosmo-

logical structure formation2. For this reason, our approach to treat the 2 In the linear perturbation
regime or for spherical mass
distributions, it has been shown
that the transverse component
of the vector field vanishes
identically, e.g. [63].

transverse component in this study is a ‘passive’ one, where we solve Bi

as sourced by matter and χ, but neglect the ‘backreaction’ of Bi on the

evolution of the latter, with a posteriori check that such a neglecting is

justified. This greatly simplifies the field equations solved in the N-body

simulation, which would have been extremely cumbersome otherwise.

Solving cosmological structure formation is inherently computation-

ally expensive, even without adding the transverse degree of freedom Bi

to the action. Therefore we apply two other approximations to further

simplify the field equations. The first is the quasi-static approxima-

tion (QSA), under which all time derivatives of the field perturbations

are assumed to be small compared with their spatial derivatives (e.g.,

| ˙δϕ| � |δϕ,i|) and can therefore be dropped. We shall in addition as-

sume that the time derivatives of the gravitational potentials are much

smaller than their corresponding spatial derivatives,

(2.21) |Φ̇| ∼ |Ψ̇| � |Φ,i| ∼ |Ψ,i|, Φ̈ ∼ HΦ̇� |Φ,i
,i|,
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where ,i denotes derivative with respect to the comoving coordinate

xi and an overdot the derivative with respect to the physical time t. As

galaxy-survey data are still mostly available on scales small compared

to the cosmological horizon, the QSA is usually a good approximation

for N-body simulations. Nevertheless, we add the caveat here that for

models like scalar Galileons and GP theory, the field equations are so

complicated that a full N-body simulation in which all time derivatives

are included is yet to be done, which means that the validity of the QSA

remains largely an assumption. Actually, there have been suspicions

that the approximations used to simplify the field equations in the scalar

Galileon models, including QSA, may be linked to some artificial nu-

merical issues encountered in simulations (see, e.g., [16, 17, 136, 224]

for some discussions). Due to this caveat, we shall explicitly mention it

every time we apply the QSA. The second is the weak-field limit (WFL),

which says that terms such as ϕ,i ϕ,i are much smaller compared with

ϕ,i
,i. The application of both the QSA and the WFL considerably reduce

the computational cost of running a simulation.

The physical units of quantities

Before proceeding to the cosmological field equations, and convert them

into code-unit equations to be implemented in the N-body simulation

code, it is useful to first clarify the physical unit of physical quantities in

the GP theory.

Based on the action of the GP theory, we know that G2(X), G3(X)∇µ Aµ

and G4(X)R = c4R/(16πG) have the same unit. Given that [R] = L−2,

[c] = LT−1 and [G] = M−1L3T−2, where L, T, M represent respectively

the units for length, time and mass, the unit of G4(X)R and hence of

G2(X) and G3(X)∇µ Aµ, must be ML−1T−2. Therefore,

(2.22) ML−1T−2 = [G2(X)] = [b2][X] = [b2][Aµ]2,
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and

(2.23) ML−1T−2 = [G3(X)∇µ Aµ] = [b3][L]−1[Aµ]3

where we have used G2(X) = b2 X and G3(X) = b3 X. We choose

the unit of the time component of the Proca field, ϕ, as [ϕ] = L−1

so that the field has mass dimension 1 in natural unit as required (it

is also possible to choose [ϕ] = T−1 by rescaling ϕ with c). Thus

[b2 ] = MLT−2, [b3 ] = ML3 T−2 and similarly [bF ] = ML3 T−2. Note

that because ϕ has the same unit as Ai = Bi + ∇i χ, it follows that χ is

dimensionless and [Bi ] = L−1.

The modified Poisson equation

The (00) component of the perturbed Einstein equation, Eq. (2.13), a�er

dropping terms according to the QSA and WFL, can be simplified as (with

all c factors restored)

(2.24)
1
2

ρ̄m c2 (1 + δm) =
c4

16πG

[
2
a2 ∂2Φ + 3

H2

c2

]
− 1

4
bF a−4∂i B j

(
∂i B j − ∂ j Bi

)
− 1

4
b2 ϕ2 +

1
2

b3 ϕ2
[

3
H
c

ϕ − a−2∂2χ

]
.

Note that we replaced∇ by ∂ (which is the partial derivative with respect

to the comoving coordinate) since k = 0, ϕ = ϕ̄(t) + δϕ(t,~x), where

an overbar denotes background averaged quantities and δϕ the field

perturbation; ρ̄m and δm denote respectively the background density

and density contrast of non-relativistic matter, where radiation has been

neglected. We have, for this equation only, included the contribution

from the transverse component of the Proca field (i.e., the term contain-

ing Bi), for illustration purpose, since it gives us a rough idea of what

quantities to look at when comparing the contributions by the transverse

versus longitudinal components to justify the neglecting of the former.

The above equation can be cleanly split into a purely background

part, i.e., the modified Friedmann equation,

(2.25) 3H2 = 8πG ρ̄m(a) +
1
2

β2c2 ϕ̄2 − 3β3cH ϕ̄3 ,
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and a perturbation part, which corresponds to the modified Poisson

equation (including the contribution from Bi again)

(2.26) ∂2Φ ≈ 4πG
c2 ρ̄m a2δ +

1
2

β3 ϕ̄2∂2χ +
1
2

βF c2 a−4∂i B j

(
∂i B j − ∂ j Bi

)
,

where we have redefined the parameters b2 , b3 , bF as β i ≡ 8πGc−4bi

with i = 2, 3, F. Note that β2 is dimensionless while [β3 ] = [βF ] = L2.

Eq. (2.26) solves the metric potential Φ provided a matter density

field and configuration of χ. However, it is the other potential Ψ whose

gradient is the gravitational force. The EOM of the (i j) components

of the perturbed Einstein equation contain further information on the

relation between ∂2Ψ, Ai , and matter perturbation, as well as between

the sum of ∂2(Φ + Ψ) and the anisotropic stress of the Proca field

Ai . The latter can be used to solve Ψ given Φ. However, to the same

approximation that the contribution from the transverse component Bi

is negligible to leading order, it can be shown that the anisotropic stress

of the Proca field vanishes, allowing us to approximate

(2.27) Φ ≈ −Ψ.

In this case, χ behaves very similarly to the (cubic) scalar Galileon field.

As a sanity check, we have confirmed that the expressions for G (F,2,3)
µν we

have found satisfy the Bianchi identity.

Equation of motion for the longitudinal mode

Proceeding with the EOM of the Proca field given in Eq. (2.18), we begin

with the temporal component, ϕ, which is given by,

(2.28) 0 = bF a−2
(

∂2 χ̇ − c∂2 ϕ
)
+ b2cϕ − 3b3 H ϕ2 + a−2b3cϕ∂2χ.

The background part of this equation reads

(2.29) b2c = 3b3 H ϕ̄,
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which can be used to solve the background value of ϕ given H. This can

be further rewritten, using β2 and β3, as

(2.30) β2c = 3β3 H ϕ̄.

On the other hand, at the perturbation level we have

(2.31) bF

(
c∂2 ϕ − ∂2 χ̇

)
≈ b3c ϕ̄∂2χ,

where we have employed the WFL to neglect terms such as b2δϕ and

−6b3 H ϕ̄δϕ, and we have also used ∂2 ϕ instead of ∂2δϕ to lighten the

notation. This equality makes it possible to replace the time derivatives

of ∂i χ and ∂i ϕ in the equation of motion for χ. To see this, let us con-

sider the EOM of the spatial component, Ai = (∂i χ, Bi),

0 = bF

(
c∂ j ϕ̇ − ∂ j χ̈ − B̈ j

)
+ bF H

(
c∂ j ϕ − ∂ j χ̇ − Ḃ j

)
+bF a−2c2∂2 B j − b2c2

(
∂ j χ + B j

)
− b3c2 ϕ̄

(
∂ j ϕ − ϕ̄∂ j Ψ

)
+b3

(
c ˙̄ϕ + 3cH ϕ̄ − a−2c2∂2χ

) (
∂ j χ + B j

)
−b3c2 a−2

(
∂ j ∂k χ + ∂ j Bk

)
(∂k χ + Bk) .(2.32)

We make two simplifications to this equation. First, as we are interested

in the EOM for the longitudinal component χ in this subsection, we

remove all the transverse components and leave them for the next sub-

section. Note that this does not mean that all terms involving Bi should

be dropped: for example, the term Bk ∂ j Bk = ∂ j(Bk Bk)/2 is a total

derivative and has a nonzero divergence; on the other hand, terms such

as B̈ j , Ḃ j and ∂2 B j will be considered in the next subsection. Second,

terms such as B j ∂2χ, ∂ j Bk ∂k χ and Bk ∂ j ∂k χ are dropped on the ground

that the ‘back-reaction’ of Bi on the dynamics of χ is negligible (the ar-

gument for this requires a better knowledge of the equation that governs

Bi , and will be deferred to the next subsection).

Taking the divergence of Eq. (2.32) to single out the longitudinal con-
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tributions, and dropping the terms that contain Bi , we find

0 = bF

(
c∂2 ϕ̇ − ∂2 χ̈

)
+ bF H

(
c∂2 ϕ − ∂2 χ̇

)
− b2c2∂2χ

−b3c2 ϕ̄
(

∂2 ϕ − ϕ̄∂2Ψ
)
+ b3c ( ˙̄ϕ + 3H ϕ̄) ∂2χ

−b3c2 a−2
[(

∂2χ
)2
− ∂i ∂ j χ∂i ∂ j χ

]
,(2.33)

This equation has two undesirable properties: first, it contains not just

the spatial derivatives of χ but also of ϕ; second, it contains also spatial

derivatives of χ̇ and χ̈. On the face it seems to suggest that some sort of

quasi-static approximation should be employed to drop terms such as

∂ j χ̈ and ∂ j χ̇. It however turns out that one can use Eq. (2.31) and its time

derivative

(2.34) bF

(
c∂2 ϕ̇ − ∂2 χ̈

)
= b3c ˙̄ϕ∂2χ + b3c ϕ̄∂2 χ̇,

to rewrite Eq. (2.33) in the following more convenient form,

ϕ̄2∂2Ψ =

[
b2

b3
− 2c−1 ( ˙̄ϕ + 2H ϕ̄) +

b3

bF
ϕ̄2
]

∂2χ

+a−2
[(

∂2χ
)2
− ∂i ∂ j χ∂i ∂ j χ

]
.(2.35)

Note that this means all time derivatives are eliminated exactly, so that

we do not have to resort to the QSA. As a final step, we replace b2,3,F

with β2,3,F as before, and use the modified Poisson equation, (2.26)

(excluding the contributions from Bi) and the relation Φ ≈ −Ψ in

Eq. (2.27) to eliminate Ψ, and obtain

4πG
c2 a2 ρ̄m δm = ∇2ΦN =

[
1

ϕ̄2
β2

β3
− 2c−1

( ˙̄ϕ
ϕ̄2 + 2H

1
ϕ̄

)
+

β3

βF
− 1

2
β3 ϕ̄2

]
∂2χ

+
1

ϕ̄2 a2

[(
∂2χ

)2
− ∂i ∂ j χ∂i ∂ j χ

]
,(2.36)

where ΦN = ΨN is the standard Newtonian potential. This is the main

equation that we will convert to code unit and implement into the N-

body simulation code in the next section.
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Equation of motion for the transverse mode

Singling out the transverse part of Eq. (2.32) by applying the curl operator

once would leave a numerically inconvenient equation behind. This

can be bypassed by simply applying the curl once more on itself and

simplifying things using the vector identity,

(2.37) ∇ × (∇ × B) = ∇ (∇ · B) − ∇2B = −∇2B,

where in the second step we have used the fact that B satisfies∇ · B =

0. Thus we obtain, for the EOM of Bi ,

0 = bF c−2∂2B̈ + bF c−2 H∂2Ḃ − a−2bF ∂4B + b2∂2B

−b3

(
c−1 ˙̄ϕ + 3c−1 H ϕ̄ − a−2∂2χ

)
∂2B

+b3

[
∂2Ψ~∂ϕ2 − ∂2 ϕ2~∂Ψ +

(
~∂Ψ ·~∂

)
~∂ϕ2 −

(
~∂ϕ2 ·~∂

)
~∂Ψ
]

+b3∂2χ~∂
(

c−1 ϕ̇ + 3c−1 H ϕ − a−2∂2χ
)

−b3∂2
(

c−1 ϕ̇ + 3c−1 H ϕ − a−2∂2χ
) (

~∂χ + B
)

+b3

[(
~∂χ + B

)
·~∂
]
~∂
(

c−1 ϕ̇ + 3c−1 H ϕ − a−2∂2χ
)

−b3

[
~∂
(

c−1 ϕ̇ + 3c−1 H ϕ − a−2∂2χ
)
·~∂
] (

~∂χ + B
)

,(2.38)

where we have used~∂ to denote the vector gradient. This expression is

still too complex for a cosmological simulation, making it necessary to

apply further simplifications with the following arguments.

First, the QSA is applied to drop the time derivatives of Bi , namely

|∂2B̈| ∼ |H∂2Ḃ| � |∂4B|, from the equation. Therefore, the above

equation can be considered as a constraint equation in which B, or ∂2B,

is sourced by various terms. The term a−2bF ∂4B contains the Laplacian

of ∂2B, which should be what other terms are compared against to

decide the relative importance.

For example, we start with comparing the magnitudes of b2∂2B and

a−2bF ∂4B. Schematically we can write |∂2B| ∼ η−2 |∆B|, where

η is the size (in Mpc/h) of the mesh cells on which we will discretise

the equation and numerically solve it in the simulation, and ∆B is the
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typical di�erence between the values of B in neighbouring cells of the

mesh. Likewise, |∂4B| ∼ η−4 |∆B|3. Therefore, the ratio of these two 3 Because we are only interested
in an order-of-magnitude esti-
mate, we neglect the fact that the
∆B values are di�erent in these
two cases, and assume that they
are of similar magnitudes.

quantities can be estimated as

(2.39) |b2∂2B|
|a−2bF∂4B| ∼

b2

bF
η2 =

β2

βF
η2 =

β̃2

β̃F
η2
(

c
H0

)−2

where we have defined the dimensionless variables

β̃2 ≡ β2,

β̃3,F ≡ β3,F

(
c

H0

)−2
,(2.40)

that will be used later to write the field equations in code unit. We have

the freedom to set β̃F = 1 by a field redefinition, β̃3 is a free parameter

of the model studied here for which we are interested inO(10−6) .

β̃3 . O(100), and β̃2 is related to β̃3 through Eq. (2.51) below as β̃2 =

−541/3(1 − Ωm)1/3 β̃2/3
3 with Ωm ≈ 0.3 being the matter density

parameter today. Therefore β̃2 . 70; combining with the fact that

c/H0 ≈ 3000h−1Mpc and η . 1h−1Mpc in typical simulations, this

means that the ratio in Eq. (2.39) is much smaller than 1, and so the term

b2∂2B can be neglected from Eq. (2.38).

As another example, we compare b3c−1 ˙̄ϕ∂2B and b3c−1H ϕ̄∂2B

against a−2bF∂4B. We can regard the former two quantities as the same

order because ˙̄ϕ ∼ H ϕ̄, so we focus on b3c−1H ϕ̄∂2B. The ratio is

(2.41) |b3c−1H ϕ̄∂2B|
|a−2bF∂4B| ∼

b3

bF
c−1H ϕ̄η2 =

β̃3

β̃F
c−1H ϕ̄η2 =

β̃2

3β̃F
η2
(

c
H0

)−2
� 1,

where in the last equality we have used Eq. (2.30). Therefore these terms

can also be dropped from Eq. (2.38).

Second, consider the term b3a−2∂2χ∂2B. We have for cosmological

objects |ΦN| . O(10−4), and can use Eq. (2.36) to estimate the size of χ.

This can be divided into two cases. The first is when the le�-hand side of

Eq. (2.36) is dominated by the first term, which is linear in ∂2χ – there are

four terms in the bracket in front of ∂2χ in Eq. (2.36), and with a lengthy
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but trivial calculation it can be shown that their relative magnitudes vary

depending on the parameter value of β̃3 and the time a. For simplicity,

this whole bracket can be written as ε
(

β̃3/β̃2
)
+
(

β̃3/β̃F
)

, where ε is

a time-dependent function of orderO(10) or larger. In the second case,

the non-linear term dominates the le�-hand side of Eq. (2.36), and one

has

(2.42) 1
a2 ϕ̄2

1
η4 |∆χ|2 ∼ 1

η2 |∆ΦN | ⇒
β̃3

β̃2
|∆χ| ∼ 1

3
a
√
|ΦN |η

(
c

H0

)−1 H0

H
,

where we have used

(2.43) ϕ̄−1 =
3 β̃3

β̃2

c
H0

H
H0

,

which itself is derived from Eq. (2.30). Following the previous logic, the

ratio to bF a−2∂4B is given by

(2.44) |b3 a−2∂2χ∂2B|
|bF a−2∂4B| ∼ b3

bF

η−2 |∆χ| · η−2 |∆B|
η−4 |∆B| ∼ β̃3

β̃F
|∆χ|.

It can then be straightforwardly checked that the ratio in Eq. (2.44) is

always much smaller than 1 for both cases, and when either β̃3/ β̃2

or β̃3/ β̃F dominates in the first case. Therefore this term can also be

dropped from Eq. (2.38).

Third, consider the terms such as ∂2Ψ~∂ϕ2 ∼ ϕ̄∂2Ψ~∂ϕ that can also

source ∂2B, in the second line of Eq. (2.38). Integrating Eq. (2.31) once,

one finds

(2.45) bF (c∂i ϕ − ∂i χ̇) ≈ b3c ϕ̄∂i χ ⇒ ∂i ϕ ≈ c−1∂i χ̇ +
b3

bF
ϕ̄∂i χ,

so that |∂i ϕ| is approximately of the same order as b3/bF ϕ̄|∂i χ| or

c−1 |∂χ̇| ∼ c−1 H |∂i χ|, whichever dominates. In practice, the two

terms on the right-hand side of Eq. (2.45) can di�er by a factor of up

toO(10). To demonstrate that terms such as b3 ϕ̄∂2Ψ~∂ϕ, instead of

showing that its amplitude is much smaller than |bF a−2∂4B|, we will

seek to show that it is much smaller than the amplitude of certain other
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terms in Eq. (2.38), in particular b3∂2χ~∂i ∂2χ – consider the ratio

|b3 ϕ̄∂2Ψ~∂ϕ|
|b3∂2χ~∂∂2χ|

∼ c−1 H ϕ̄
|∂2ΦN | · |~∂χ|
|∂2χ~∂∂2χ|

∼ c−1 H ϕ̄
η−3 |∆χ|2
η−5 |∆χ|2

[
ε

β̃3

β̃2
+

β̃3

β̃F

]
∼ β̃2

3 β̃3

[
ε

β̃3

β̃2
+

β̃3

β̃F

]
η2
(

c
H0

)−2

� 1,(2.46)

where in the first ‘∼’ we have assumed that |~∂ϕ| ∼ c−1 H |~∂χ| �

(b3/bF ) ϕ̄|~∂χ|, |ΦN | ∼ |Φ|, and in the second ‘∼’ we have as-

sumed that the term proportional to∇2χ dominates the le�-hand

side of Eq. (2.36). It can be similarly shown that the ratio is also much

smaller than 1 in the other limits, e.g., when |~∂ϕ| ∼ (b3/bF ) ϕ̄|~∂χ| �

c−1 H |~∂χ| and/or the non-linear term dominates the le�-hand side of

Eq. (2.36), though the details are omitted here for brevity. This indicates

that these source terms can also be safely dropped o� from Eq. (2.38).

Fourth, in Eq. (2.38) a number of terms can be neglected by realising

that c−1 |~∂ ϕ̇| ∼ c−1 H |~∂ϕ| � a−2 |~∂∂2χ|. The proof of these relations

is straightforward and we shall not repeat them here.

Finally, therefore, we see that terms like ∂2χ∂i ∂
2χ are the remaining

sources for ∂4 Bi . For the former, we have |∂2χ∂i ∂
2χ| ∼ η−5 |χ| · |∆χ|,

and for the latter we have |∂4 Bi | ∼ η−4 |∆Bi |. This suggests that

|∆Bi | ∼ |χ| · η−1∆χ � η−1 |∆χ| and confirms that |∂Bi | � |∂2χ| is

self-consistent.

With the above approximations, the equation can be simplified to

(2.47) βF ∂4 Bi = β3∂ j
[

∂i χ∂ j ∂
2χ − ∂ j χ∂i ∂

2χ
]

.

Eqs. (2.26, 2.36, 2.47) are the key equations of this Chapter – the last

one is used to calculate Bi and verify that the transverse component

makes negligible contribution (‘feedback’) to the dynamics of Φ and χ,

the second one is used to solve χ given a matter distribution, and finally

the first one is used to find the total gravitational potential (and therefore

the total gravity force) for the given matter distribution and the resulting
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spatial configuration of χ.

As β̃3 ≡ b3(8πGH2
0 )/(c6) is the only ‘free’ parameter that enters

in all three key equations it is practical to use it as the model parameter.

Previous works denote the model parameters that behave similarly to β̃3

as λ [64, 154] and qv [62, 110], which are both inversely proportional to

β̃3. We do not present the exact relations between those parameters and

β̃3 here.

2.3 N-body Equations

In this section we describe the numerical implementation of the above-

derived equations into the N-body code ECOSMOG[135]. For this purpose,

we will need to recast the equations in ECOSMOG’s code units, in which all

quantities are rescaled so that only dimensionless quantities appear. In

order to acquire a better understand about the cvG model behaviour we

juxtapose it with the well studied cosmologies of ΛCDM, self-accelerating

branch of the Dvali-Gabadadze-Porrati model (sDGP, [78]), and the

tracker solution of the cubic scalar Galileon (csG, [16, 19])4 where ap- 4 Note that although the csG is a
generalisation of the sDGP that
arises from its decoupling limit,
their phenomenology is very
di�erent.

propriate. For the csG model, we assume that for the entire time period

of interest here the model follows the tracker solution [60], which is an at-

tractor of the evolution; in practice, the time at which the model merges

onto this common late-time evolution trajectory depends on the initial

conditions (ICs) of the background csG field, but it was demonstrated in

Ref. [20] that the merging onto the tracker solution should happen before

the onset of the acceleration era, a ∼ 0.5, in order to satisfy CMB con-

straints. In all visualisations of the models we adopt the following two

cosmological parameters: Ωm = 0.3089 and H0 = 67.74 kms/s/Mpc. For

the sDGP specific parameters we use Ωrc = 0.25, while the csG specific

parameters are the following: Ωϕ = 1−Ωm, ξ =
√

6Ωϕ, c2 = −1,

and c3 = 1/(6ξ) (see Ref. [19] for more details). To better understand

the e�ects of the fi�h force we compare the csG and cvG model to their

quintessence counterpart, Quintessence Cold Dark Matter (QCDM), which

is a variant that only considers the modified background expansion his-
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tory, but uses standard Newtonian gravity, in the simulation.

2.3.1 Code units

The main challenge in N-body simulations of models such as cvG gravity

is to solve the scalaron Eq. (2.60), which is in general highly nonlinear.

One way to achieve this is to use a mesh (or a set of meshes) on which

cvG could be solved. This implies that mesh-based N-body codes are

most convenient. On the other hand, tree-based codes are more di�icult

to apply here, as we do not have an analytical formula for the modified

force law (such as r−2 in the Newtonian case) due to the complexities

stemmed from the breakdown of the superposition principal, or the

invalidity of Birkho� theorem in modified gravity.

In order to implement the equations into ECOSMOG, we introduce a

set of dimensionless quantities that are based on H−1
0 for measuring

time, the simulation box size L in units of Mpc/h, the particle velocity

v, the critical density today ρc0 = 8πG/(3H2
0) and the matter density

Ωm = Ωb + Ωc at the present day:

x̃ =
x
L

ρ̃ =
ρa3

ρc0Ωm
ṽ =

(
a

LH0

)
v

c̃ =
c

H0L
dt̃ = H0a−2dt Φ̃ =

(
ac

LH0

)2
Φ.(2.48)

The N-body solver is implemented in conformal time, t̃, which allows a

straightforward implementation of comoving coordinates. The details

of these so-called “super-comoving coordinates” can be found in [144]

and references therein. In this coordinate system the background matter

density is unity, ˜̄ρ = 1.

To transform the quantities introduced by the Proca theory to code

units, we need to know their physical units. As mentioned above, the

Proca field Aµ has mass dimension 1 in natural unit, and we have [Ai] =

L−1 in physical unit, so that the longitudinal mode χ is dimensionless.

However, since χ plays an equivalent role as Φ in determining the force,

we transform it into code unit in the same way as for Φ; on the other

hand, the transverse component Bi has unit [Bi] = L−1, we multiply it
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by the box size L to get B̃i; to get the code-unit expression for ϕ̄, which

has unit [ϕ̄] = L−1, instead of multiplying it by L, we multiply it by c/H0

because this variable is only used to calculate background quantities.

The results are:

ϕ̃ =
c

H0
ϕ̄ B̃i = a4 c̃4 LBi χ̃ =

(
ac

LH0

)2
χ,(2.49)

where we have also included a factor a4 c̃4 in B̃i to further simply the

code-unit equation of Eq. (2.47).

2.3.2 Background and perturbation equations

The modified Friedmann equation, Eq. (2.25), can be simplified as

(2.50) 3H2 = 8πG ρ̄m(a) − 1
18

β̃3
2

β̃2
3

H4
0

H2 ,

where we have used Eq. (2.30) and the definitions of β̃2 and β̃3.

As the Friedmann equation is commonly expressed as a relation

between density parameters today, we can follow this practice for the

Proca field by defining ΩP (similar to Ωϕ in the csG model) as the links

between the two coupling constants β̃2 and β̃3 through

(2.51) ΩP ≡ −
1

54
β̃3

2

β̃2
3
= 1 − Ωm ,

where note that β̃2 < 0. This leads to the following result of E(a) ≡

H(a)/H0 for the cvG model, which we show together with the expres-

sions for the other cosmologies for clarity,

(2.52) E2 =



Ωm a−3 + ΩΛ , ΛCDM,

Ωm a−3 + 2Ωrc + 2
√

Ωm a−3 + 2Ωrc , sDGP,

1
2

[
Ωm a−3 +

√
Ω2

m a−6 + 4 (1 − Ωm)
]

, cvG, csG, QCDM.
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where we have assumed the Universe to be spatially flat (k = 0) and

considered only non-relativistic matter; the inclusion of radiation and

massive neutrinos is straightforward. Therefore, the background expan-

sion history in this model is completely determined by H0 and Ωm , and

mimics precisely the tracker solution of the csG model, e.g., [16, 19]. This

can be seen clearly in the top-le� panel of Fig. 2.1, which shows a com-

parison of the background expansion history in the cvG model with those

of the DGP and csG models.

We also give the e�ective equation of state, weff = −1− 2Ḣ/(3H2),

in the top-right panel of the same figure

(2.53) weff =



Ωm−1
1−Ωm+Ωm a−3 , ΛCDM,

2
3βsDGP

, sDGP,

−1 +
Ωm a−3+

Ω2
m a−6√

Ω2
m a−6+4(1−Ωm )

Ωm a−3+
√

Ω2
m a−6+4(1−Ωm )

, cvG, csG, QCDM.

The modified Poisson equation, Eq. (2.26), takes the following form in

code unit,

(2.54) ∂̃2Φ̃ =
3
2

Ωm a (ρ̃ − 1) + α∂̃2 χ̃,

where

(2.55) α(a) ≡ 1
2

β̃3 ϕ̃2 =
1

2 3
√

2
β̃1/3

3 Ω−1/3
P

[√
Ω2

m a−6 + 4ΩP − Ωm a−3
]

,

is a time-dependent function that is fully fixed by specifying Ωm and

β̃3. The le�-bottom panel of Fig. 2.1 shows how α(a) evolves in time for

di�erent values of β̃3.
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Recasting Eq. (2.47) in code units gives

(2.56) ∂̃4 B̃i =
β̃3

β̃F
∂̃ j
[

∂̃i χ̃∂̃ j ∂̃
2 χ̃ − ∂̃ j χ̃∂̃i ∂̃

2 χ̃
]

.

As mentioned above, we can set β̃F = 1, which is achievable by a

field redefinition, without loss of generality. Therefore β̃F is not a free

parameter of the Proca model here.

Finally, the EOM for the longitudinal mode of the Proca field, χ,

Eq. (2.36), can be rewritten in code unit as,

3
2

Ωm a (ρ̃ − 1) =

[
β̃2

β̃3 ϕ̃2
− 6

β̃3

β̃2

(
2 − H ′

H

)
E2 +

β̃3

β̃F
− 1

2
β̃3 ϕ̃2

]
∂̃2 χ̃

+
1

ϕ̃2 a4

[(
∂̃2 χ̃

)2
− ∂̃i ∂̃ j χ̃∂̃i ∂̃ j χ̃

]
,(2.57)

where we have used Eq. (2.29), so that H ϕ̇ = Ḣ ϕ, to eliminate ϕ̇, and ′

denotes the dimensionless derivative with respect to ln(a). If we define

the following two dimensionless and time-dependent functions

(2.58) β(a) ≡ β̃2

β̃3 ϕ̃2
− 6

β̃3

β̃2

(
2 − E ′

E

)
E2 +

β̃3

β̃F
− 1

2
β̃3 ϕ̃2 ,

and

(2.59) Rc(a) ≡ 1
ϕ̃

,

the equation can be further simplified to

(2.60) ∂̃2 χ̃ +
R2

c
βa4

[(
∂̃2 χ̃

)2
− ∂̃i ∂̃ j χ̃∂̃i ∂̃ j χ̃

]
=

3
2β

Ωm a (ρ̃ − 1) .

This has a very similar form to the corresponding equations in the DGP or

the csG model. Note that |Rc | plays a similar role as the crossover radius

in the DGP braneworld model.

One can again use Eq. (2.29) to further simplify β(a) by eliminating ϕ̃

as

(2.61) β(a) = −3
β̃3

β̃2

(
1 − 2

H ′

H

)
E2 + β̃3 + 3ΩP

β̃3

β̃2
E−2 ,
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where we have used β̃F = 1 and Eq. (2.51). Using the following relations

E−2 =
1

2ΩP

[√
Ω2

m a−6 + 4ΩP − Ωm a−3
]

,(2.62)

E2 − 2EE ′ = 2Ωm a−3 + 2
Ω2

m a−6 + ΩP√
Ω2

m a−6 + 4ΩP
,(2.63)

and using again Eq. (2.51) this further becomes

(2.64) β(a) =
1
2

(
β̃3

2ΩP

)1/3 [
5Ωm a−3 +

3Ω2
m a−6√

Ω2
m a−6 + 4ΩP

]
+ β̃3 .

Similarly

(2.65) R2
c (a) =

1
2

β̃2/3
3 (2ΩP)

−2/3
[

Ωm a−3 +
√

Ω2
m a−6 + 4ΩP

]
.

The top-right panel of Fig. 2.1 shows how R2
c (a) depends on the

model parameter β̃3. Note that both functions, β(a) and Rc(a), are fully

fixed by specifying Ωm and β̃3. Therefore there is one free parameter in

this model, given by β̃3 > 0.

2.3.3 Vainshtein screening

One of the key quantities in models employing the Vainshtein screening

mechanism is the distance to the source, called the Vainshtein radius,

rV , where the linear perturbation analysis breaks down and the theory

enters the non-linear regime. For scalar field models with derivative self-

interactions it is the cubic- and higher-order terms that produce Vain-

shtein screening. It has been demonstrated that to explain the late-time

cosmic acceleration, the Proca field has to be very light, b2 = m2 → 0,

and a non-zero coupling coe�icient b3 activates the screening mecha-

nism to ensure the theory is consistent with solar-system tests of gravity

[63].

We have seen in Eq. (2.60) that the non-linear term, which is what pro-

duces Vainshtein screening, is determined by β(a) and R2
c (a), both of

which depend on the free model parameter b3, or its code-unit counter-

part β̃3. To make an educated choice of β̃3, we compare the cvG model
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Figure 2.1: The time evolution of various background quantities in the cvG (coloured lines
with di�erent β̃3 values as indicated by the colour bar on the top), csG (grey dashed line),
sDGP (black solid line) and ΛCDM (black dotted line) models. Top le�: The ratios of Hubble
expansion rate in other cosmologies with respect to ΛCDM; note that the cvG results do not
depend on β̃3 and are identical to the csG prediction. Top right: The e�ective equation of
state parameter, weff, given in Eqs. (2.53). Bottom le�: The cvG model function α given in
Eq. (2.55). Bottom right: The cvG model function R2

c given in Eq. (2.65).

with the sDGP and csG models, whose behaviour has been well under-

stood. To do this fairly, we follow [17] (for the case of csG) to re-scale

χ̃ such that the source term of Eq. (2.60) becomes exactly identical to

that of the EOM of the sDGP brane-bending mode as given by Eq. (18)

in [137]; then we can simply compare the coe�icients of the non-linear

terms in these equations to decide for which values of β̃3 does csG have a

stronger Vainshtein screening than sDGP. This is achieved by introducing

the redefined scalar mode, χ̃′, as

(2.66) χ̃ =
3βsDGP

2β
χ̃ ′ ,
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where we have used the βsDGP function, which describes the coupling

strength to matter of the brane-bending mode in the sDGP model given

by

(2.67) βsDGP = −
1
2 Ωm a−3 + Ωrc√

Ωrc (Ωm a−3 + Ωrc)
,

with a typical value Ωrc = 1
4H2

0 R2
c
= 0.25. In this case, Eq. (2.60) can be

rewritten as the following equation for χ̃ ′ :

(2.68) ∂̃2 χ̃ ′ +
1

3γa4

[(
∂̃2 χ̃ ′

)2
−
(

∂̃i ∂̃ j χ̃
′) ( ∂̃i ∂̃ j χ̃ ′

)]
=

1
βsDGP

Ωm a (ρ̃ − 1) ,

where the source term on the right-hand side is now identical to that in

the sDGP equation [137], and we have defined a new time-dependent

function

(2.69) γ(a) ≡ 2β2

9βsDGP R2
c

.

Similarly, the Poisson equation, Eq. (2.54), should be changed to

(2.70) ∂̃2Φ̃ =
3
2

Ωm a (ρ̃ − 1) +
3βsDGP

2β
α∂̃2 χ̃ ′ .

From here on, without otherwise specified, we will drop the prime in χ̃ ′

to lighten our notations.

To have a sense of the e�ect of Vainshtein mechanism analytically, we

consider a static spherically symmetric top-hat density distribution of

radius R̃ with the enclosed mass M̃ being

(2.71) M̃( r̃) ≡ 4π
∫ r̃

0
(ρ̃(ξ ) − 1) ξ2dξ ,

where we are using code units, such that ρ̃ is defined as in Eq. (2.48); r̃

is also in code unit such that r̃ = r/L and similarly R̃ = R/L with R

being the radius of the top-hat in physical unit. Note that ρ̃ = 1 outside

the top-hat, so that the mass M̃ stops growing and becomes a constant

at r̃ ≥ R̃.

We relate the mass distribution to χ̃ using Eq. (2.68). Realising that χ̃
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depends only the radial coordinate, r̃, we obtain

(2.72) 1
r̃2

d
dr̃

(
r̃2 χ̃, r̃

)
+

2
3γa4

1
r̃2

d
dr̃

(
r̃χ̃,2r̃

)
=

Ωm a
βsDGP

(ρ̃ − 1) ,

where , r̃ ≡ d/dr̃. We integrate over the top-hat density distribution to

yield

(2.73) χ̃, r̃ +
2

3γa4
1
r̃

χ̃,2r̃ =
Ωm a

4πβsDGP

M̃( r̃)
r̃2 .

Solving this second-order algebraic equation for χ̃, r̃ we get

(2.74) χ̃, r̃ =
4R̃3

3βsDGP R̃3
V

√( R̃V

R̃

)3

+ 1 − 1

 F̃N( r̃),

for r̃ ≤ R̃, where we substituted the Newtonian acceleration in code

unit (which can be solved using Eq. (2.70) without taking into account the

Proca field contributions),

(2.75) F̃N( r̃) =
dΦ̃
dr̃

=
3Ωm a

8π

M̃( r̃)
r̃2 ,

and

(2.76) χ̃, r̃ =
4r̃3

3βsDGP R̃3
V

√( R̃V
r̃

)3

+ 1 − 1

 F̃N( r̃),

for r̃ > R̃, where the Newtonian acceleration in code unit becomes

(2.77) F̃N( r̃) =
3Ωm a

8π

M̃(R̃)

r̃2 .

Here we identified the Vainshtein radius (in code unit) to be

(2.78) R̃3
V =

8 c̃2 R̃S
9βsDGPγa3 =

4 c̃2 R2
c R̃S

β2 a3 ,

where R̃S ≡ 3Ωm M̃(R̃)/(4π c̃2) is the Schwarzschild radius of the

source in code unit. We note that the screening mechanism in the cubic-

order Proca theory has been previously studied in Ref. [63]. However, due

to di�erent coordinate systems, our redefinition of the scalar mode (χ̃ ′),

and defining the vector field as covariant instead contravariant, a direct
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comparison of the solutions of χ̃, r̃ between this Chapter and Ref. [63]

is di�icult and not pursued here. We have, however, checked that our

spherical equation for ϕ agrees with that given in Ref. [112] in the weak-

field limit. The physical meaning of the Vainshtein mechanism can be

seen by considering the two limits, r̃, R̃ � R̃V and r̃ � R̃V . In the

former case the solution Eq. (2.74) applies and we obtain, according to

Eq. (2.70), the following result for the fi�h-force (in code unit),

(2.79) 3βsDGP
2β

α
dχ̃

dr̃
→ 2

α

β

(
R̃

R̃V

) 3
2

F̃N( r̃) � F̃N( r̃),

which represents the regime in which the fi�h-force is strongly sup-

pressed. In the latter case, we find

(2.80) 3βsDGP
2β

α
dχ̃

dr̃
→ α

β
F̃N( r̃),

which shows that the fi�h-force takes a constant ratio α/β to the Newto-

nian acceleration.
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Figure 2.2: le�: The time evolution of the relation between Vainshtein radius and top-hat
radius for a given body. right: Coe�icient of the non-linear derivative terms of the re-
scaled scalar field equations. The figure compares the cvG model for di�erent β̃3 model
parameters (colored solid lines) to sDGP (black solid lines), csG (grey dashed line).

In the le� panel of Fig. 2.2 we show the ratio between the Vain-

shtein radius R̃V and the top-hat radius R̃200, for di�erent values of
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β̃3 (coloured solid lines), and compare to sDGP (black solid line) and csG

(dashed line). Note, that due to the di�erent background expansions

this is not a fair comparison of sDGP to csG and cvG. In order to calculate

the ratio, we have assumed that the spherical top-hat has a constant

density within r̃ ≤ R̃ which is equal to 200 times the critical density

ρc(a) = 3H(a)2/8πG and equals

(2.81) R3
200 =

3M200

4π200ρc(a)
,

making the ratio between RV and R200 (note that here we ignore the

tildes as this is equal to the ratio between the code-unit versions R̃V and

R̃200)

(2.82)
(

RV
R200

)3
=

800R2
c

β2

(
H
H0

)2
=

800R2
c

β2 E2 .

For clarity we write down the corresponding equations for each of the

considered cosmologies,

(2.83) RV
R200

=



3
√

1600R2
c E2

9β2
sDGP

, sDGP ,

3
√

1600E2

9β1,csG β2,csG
, csG ,

3
√

800R2
c E2

β2 , cvG ,

where β1,csG and β2,csG are β functions defined for the csG model in

Ref. [17] (to avoid confusion with the β function for the cvG model in this

Chapter we have added a csG label to the subscript of its β’s, separated

by a comma).

It can be seen from the le� panel that the Vainshtein radius in the

cvG model is insensitive to β̃3 at early times, but becomes very strongly

dependent on β̃3 at a & 0.1. For example, choosing a β̃3 ∼ O(100)

results in a screening radius that is nearly an order-of-magnitude smaller

than its csG counterpart (the dashed line, which corresponds to β̃3 → 0)
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at a ' 1, setting it approximately equal to the size R200 of the over-

density itself (note that at a ' 1 we have E ' 1).

In the right panel of the same figure we show the time evolution of the

coe�icient of the non-linear derivative terms of the re-scaled scalar field

equations, as given in Eq. (2.68) for the cvG model. This coe�icient can be

thought of as the controlling strength of the Vainshtein screening – the

larger it is, the more e�icient the screening becomes. Because it is also

present in the sDGP and csG cosmology, we show a comparison to the

sDGP and the re-scaled csG model. Instead of showing the coe�icients

themselves, we have defined a new quantity ε as follows,

(2.84) ε =



−R2
c /βsDGP, sDGP ,

−β1,csG β2,csG/βsDGP , csG ,

−γ, cvG .

Again we note that values of β̃3 < O(0.01) seem to closely mimic the

csG model behaviour. While for β̃3 ∼ O(100) there is less e�icient

screening, we can now see that the fi�h-force starts to become weaker

compared to the csG model starting from z ≈ 4, ending with a ε that is

∼ O(3) larger today.

The fact that RV /R200 and ε of the cvG model approach their corre-

sponding values in the csG model for β̃3 → 0 deserves a couple of com-

ments here. First, as mentioned earlier, the dynamics of the csG model

depends on the initial condition (ICs) of the scalar field, and di�erent ICs

can lead to di�erent late-time behaviour. However, as we consider the

tracker solution of the csG model, the late-time model behaviour show in

Fig. 2.2 is a unique limiting case.

Second, it may seem that, because β̃3 ∝ b3, as β̃3 → 0 we have

b3 → 0, and we would expect the G3 term in the Proca Lagrangian van-

ishes and the theory goes back to the GR limit with a massive vector field,
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rather than the csG limit. Here we distinguish between two scenarios.

The first is to keep β̃2 (or equivalently b2) fixed while reducing β̃3 (or b3):

here we do get back to the GR limit but the expansion history will also

be dependent on β̃3 – this is not the scenario followed in this Chapter.

The second scenario is to keep the background expansion history fixed

and decrease β̃3: then according to Eq. (2.51) β̃2 decreases accordingly;

this is the scenario of this Chapter. In this case, there is a special scaling

degeneracy which exists for Galileon-type models (see, e.g., Section IIIB

of [18] for a more detailed discussion), which we briefly review here. For

simplicity, let us assume that the Proca vector field has only a longitu-

dinal mode, and so the Lagrangians L2,3 can be schematically written

as

L2 ∝ b2∇µ χ∇µ χ,

L3 ∝ b3∇µ χ∇µ χ�χ.(2.85)

If we multiply b2 by T2, multiply b3 by T3 and divide χ by T, with T

being an arbitrary constant, then the physics is una�ected. Therefore,

reducing β̃2 and β̃3 simultaneously with β̃3
2/ β̃2

3 fixed would keep the

physics unchanged by increasing χ̃ accordingly. This is what happens

in the csG model. In the cvG model, the presence of the LF Lagrangian

slightly complicates things, and breaks this scaling degeneracy, but the

scaling degeneracy can be approximately restored with β̃3 → 0 (or

b3 → 0). To see this, let us look at Eqs. (2.58) - (2.60) and consider the

limit where β̃2,3 → 0 simultaneously with β̃3
2/ β̃2

3 fixed. To be concrete,

we introduce the following scalings (with T � 1):

β̃2 → T2 β̃2 ,(2.86)

β̃3 → T3 β̃3 ,(2.87)

χ̃ → T−1 χ̃,(2.88)

ϕ̃ → T−1 ϕ̃,(2.89)

Rc → TRc ,(2.90)
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in which Eq. (2.89) is needed for the rescaled quantities to still satisfy

Eq. (2.43), and Eq. (2.90) is because of Eq. (2.59). Then, of the 4 terms

on the right-hand side of Eq. (2.58), all scale as T apart from β̃3/ β̃F –

however, because β̃F = 1, we can see that with T → 0 the term β̃3/ β̃F

goes to zero more quickly than the other three terms and can therefore

be neglected in this limit, and the function β scales as T approximately.

Then all terms in Eq. (2.60) scale as T−1, which means that the physics

encoded in this equation is una�ected by the scaling, which is exactly

the case for the csG discussed in [18]. The observation that in this limit

the cvG model behaves similarly to csG can be explained by the fact that

the only term contributed by LF and involving β̃F (i.e., the β̃3/ β̃F term

in Eq. (2.58)) – which has no counterpart in the csG model – has been

neglected (as well as the similarity between L2,3 in the two models).

2.3.4 Linear growth of the density field
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Figure 2.3: Le�: Time evolution of the e�ective gravitational constant Geff/G. Right:
Time evolution of the relative di�erence of the square of the density contrast. The figure
compares the cvG model for di�erent β̃3 model parameters (colored solid lines) to sDGP
(black solid lines), csG (grey dashed line), and ΛCDM(black dotted line).

Before we continue to explore late-time perturbations on sub-horizon

scales, it is instructive to study the evolution of density fluctuations in

linear perturbation theory. Of particular relevance is the linear rate of
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growth of cosmic structures, δM(a) = D(a)δ0, where D is the normal-

ized linear growth factor with D(a = 1) = 1. The growth is governed by

(2.91) D ′′ + (2 + F) D ′ − 3
2

Geff
G

Ωm(N)D = 0,

where a prime denotes the derivative with respect to N = ln(a) as

before, F = E ′/E is the friction term, and Geff/G is a time-dependent

function that carries the modifications of the Newtonian potential, either

due to a modified gravitational force or the clustering of dark energy. In

the linear regime, each mode of the perturbed density field evolves inde-

pendently. Their evolution is fully determined by Ωm(N), F and Geff.

Note that in this Chapter we use Ωm(N) to denote the matter density

parameter at time a, to be distinguished from Ωm , which is the present-

day value of the matter density parameter. To disentangle the relative

importances of the modified gravitational strength Geff and modified

expansion history E (or F) on the growth factor, we introduce the QCDM

version of the cvG. The QCDM considers only modifications to the expan-

sion history but not to the Newtonian potential, and is therefore identical

for the cvG and csG models. For the set of considered models, the matter

density parameter evolves as

(2.92) Ωm(N) =
Ωm e−3N

E2 ,

with E2 given by Eq. (2.52). The friction coe�icient for the di�erent mod-

els can be written as,

(2.93) F =



− 3
2 Ωm(N), ΛCDM,

− 3
2 Ωm

e−3N
√

Ωrc
√

Ωm e−3N+Ωrc+Ωm e−3N+Ωrc
, sDGP,

1
2 −

1
E2

(
Ωm e−3N + Ω2

m e−6N+(1−Ωm )√
Ω2

m e−6N+4(1−Ωm )

)
, cvG, csG, QCDM.
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The modification of the Newtonian potential, which is proportional

to the ratio between the fi�h force, F5, and the Newtonian gravity force,

FN, is characterised by Geff/G which in linear theory is given by the fol-

lowing time-dependent but scale-independent functions for the various

models:

(2.94) Geff
G

= 1 +
F5

FN
=



1, ΛCDM, QCDM,

1 + 1
3βsDGP

, sDGP,

1 − 4c3 β1,csG
3β2

2,csG
, csG,

1 + α
β , cvG.

The deviation of Geff from ΛCDM for the various models can be seen

in the le�-hand panel of Fig. 2.3. To solve Eq. (2.91) we use the ICs at

ai = 0.01: D(a = ai) = ai and D ′(a = ai) = 1, which correspond to

the matter-dominated-era solution, δ ∝ a. The results can be seen on the

right-hand panel of Fig. 2.3.

At early times, a . 0.1, Geff/G ≈ 1 in all models, and therefore

the di�erences from ΛCDM are mainly driven by the modified expansion

history, H, and di�erent matter densities Ωm(a). In all modified grav-

ity models except sDGP, both H and Ωm are larger than in ΛCDM, so

that their e�ects cancel out. The same happens in the sDGP cosmology

though in this case H and Ωm are smaller than in ΛCDM, and the growth

of linear density perturbations is slightly slower. As a result, the relative

di�erence (δ/δΛCDM)2 − 1 is almost zero in such early times.

At a & 0.1, the evolution of δ is determined by the interplay of the

modifications in H, Ωm , and Geff/G. We see how the modifications

to e�ective gravitational constant enhance structure formation at late

times for the cvG and csG models, while suppressing it in the sDGP
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model. As shown in the le� panel of Fig. 2.3, for values of β̃3 . 0.01,

the evolution of Geff in cvG is indistinguishable from that in csG. This,

together with the fact that H(z) and Ωm are identical in the csG and cvG

models, explains why in the right-hand panel of Fig. 2.3 the evolutions

of (δ/δΛCDM)2 are also indistinguishable between csG and cvG with

β̃3 . 0.01. On the other hand, for large values of β̃3, the behaviour of

the cvG model approaches that of QCDM due to Geff/G → 15. This 5 Note that it is possible to
achieve a weaker gravity,
Geff/G < 1, if one uses the
full Lagrangian described in
Eq. (2.1). With our restriction to
the cubic order of the Lagrangian,
we neglect the contributions of
L4,5,6 which enter in very specific
ways into Geff as explained in the
Ref. [62].

indicates that the cvG model, with a proper QCDM limit, could have a

healthy behaviour regarding the ISW e�ect, which has proven to be an

issue for the viability of the csG model. Cosmological constraints on the

Proca theory have been studied in several works, e.g., Refs. [64, 154, 65] –

some of which actually have made use of the ISW data – and these have

placed strong constraints on the functional forms G2(X) and G3(X),

disfavouring the simple model studied here with G2 = G3 = X. We will

briefly comment on this and on the viability of the model in the end of

Section 2.4.2.

2.4 Code tests and N-body Simulations

In this section we present the results of full N-body simulations based on

the equations derived in the previous section. We begin in Section 2.4.1

with showing the outcomes of multiple tests which are essential for us to

be confident about the reliability of the code. A�erwards in Section 2.4.2,

we present the results of the first set of the cosmological simulations

of the simplified GP theory given in Section 2.2. For details on the code

algorithm we refer the reader to [135] and [17].

2.4.1 Code Tests

All tests of the N-body code use a box-size of L = 64 Mpc/h, and a

domain grid of 2563 cells with no grid refinement.
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One dimensional density fields

The first set of tests is concerned with verifying the correct implemen-

tation of the linear terms in the cvG equation. By limiting ourselves to

a one-dimensional matter distribution, the non-linear terms in the cvG

equations simply vanish, and Eq. (2.68) reduces to,

(2.95) d2

dx2 χ̃(x) =
Ωma
βsDGP

δ(x).

This means that an analytical expression can be easily obtained and

comparable with the code results. Following [135], we first distribute the

dark matter according to a one-dimensional sine field specified by,

(2.96) δ(x) = −4π2 βsDGP
Ωma

Acos(2πx),

such that the scalar field becomes

(2.97) χ̃(x) = Acos(2πx).

We have performed the test with various values of A and β̃3. The result

for A = 10−8 and β̃3 = 10−6 can be seen in the le� column of Fig. 2.4,

where the numerical solution (red dots), taken along a line which is

parallel to the x-axis, are compared to the analytical solution (blue line)

of χ̃. In the top panel we show the chosen dark matter distribution,

followed by the confirmation that the longitudinal mode, χ̃, matches

the analytical result. In the bottom panel we show just the x-component

of the second partial derivative of the transverse mode, ∂̃2B̃x, as the y-

and z-component share the same result. As the matter distribution is

one dimensional, the source term in Eq. (2.47) vanishes and therefore

the transverse mode is expected to be zero. The fact that the numerical

result for the transverse modes is zero, furthermore indicates not only

that the linear terms are correctly implemented, but also that the non-

linear source term of Eq. (2.47) does not cause unwanted behaviour.

The second test uses a one dimensional Gaussian dark matter distri-
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bution, given by

(2.98) δ(x) = 1 +
βsDGP
Ωma

2α

σ2 A
(

1− 2
(x− 0.5)2

σ2

)
exp

[
− (x− 0.5)2

σ2

]
,

and leads to a scalar field distribution of

(2.99) χ(x) = A
(

1 − αexp
[
− (x − 0.5)2

σ2

])
.

Again we have conducted multiple test for various values of A, σ, α, and

β̃3. The result for A = 10−6, σ = 0.09, α = 0.01 and β̃3 = 10−6 can

be seen in the central column of Fig. 2.4, where the numerical (red dots)

and analytical (blue line) are compared. Again, χ̃ follows accurately the

analytical result and the transverse mode vanishes with high precision.

Three dimensional density fields

A�er having performed tests for one dimensional matter distributions,

we now move on to conduct more advanced tests using three dimen-

sional distributions. This will reveal if there are any implementation

errors of the non-linear terms, when they are needed. The simplest test

in three-dimensions is the spherical symmetric top-hat distribution of

matter. The analytical solution for r̃ ≤ R̃ is given by Eq. (2.74), which can

be re-written as

(2.100) dχ̃

dr̃
=

β2 a4

6βsDGP R2
c

[√
4Ωm δin R2

c
β2 a3 + 1 − 1

]
r̃,

and Eq. (2.76) for r̃ > R̃ which can be re-written as

(2.101) dχ̃

dr̃
=

β2 a4

6βsDGP R2
c

√ 4Ωm δout R2
c

β2 a3

(
R̃
r̃

)3

+ 1 − 1

 r̃,

where r̃ is the comoving coordinate scaled by the boxsize L, while R̃

is the radius of the spherical over-density scaled by L. The density in-

side the top-hat is given by δin while it is δout outside, which are both

constants by definition.

Given the value χ̃( r̃ = 0), these equations can be integrated to find



PROCA-STINATED COSMOLOGY I: A n-BODY CODE FOR THE VECTOR GALILEON 59

χ̃( r̃ > 0) from its analytical expression. We call the χ̃( r̃) obtained in

this way the ‘analytical solution’, even though in practice a numerical

integration is required to get it. We tested various values of R̃, δin, and

δout, where these values are always tuned in such a way as to make

the average matter density ˜̄ρ = 1 (and equivalently the average δ =

0) in the entire simulation box. In the numerical implementation, the

spherical top-hat is placed at the centre of the box, as illustrated in the

upper right panel of Fig. 2.4.

The middle and bottom panels of the right column of Fig. 2.4 shows

the test result for a spherical top-hat of radius R̃ = 0.1 with δin = 23.77

and δout = −0.1. We can see that the numerical result for χ̃ (red points

in the middle row), taken along a line which is parallel to the x-axis in

a y-z plane at the centre of the box, is in excellent agreement with the

analytical solution (blue line), especially on small r̃. Far away from the

centre, the agreement becomes less perfect since the analytical solution

does not assume periodicity of the spherical density, while the numerical

code uses periodic boundary condition so that the spherical density sees

its own images.

With regards to ∂̃2 B̃x , we can verify its accuracy by considering the

analytical solution of B̃i in the spherical coordinate system centered

on the top-hat. In this setting, the θ- and φ-components of B̃i vanish as

χ̃ only varies along the radial coordinate, r. Furthermore, as the trans-

verse mode must obey the traceless condition∇i B̃i = 0 and boundary

condition B̃r ( r̃ = 0) = 0, the radial component of B̃i has to van-

ish too. The numerical test solutions of ∂2 Bi , for i = x and along the

same axis as above, are shown as the red dots in the lower right panel of

Fig. 2.4, where we can see that it is indeed very close to zero, with a small

nonzero amplitude of orderO(10−8) due to numerical error and due to

the fact that exact spherical symmetry is broken on a mesh of cubic cells.
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Figure 2.4: The various code tests conducted by assuming that the matter distribution is
given by the following three ideal cases. Le� column: A 1D sine-type matter density field
as described by Eq. (2.96) with A = 10−8. Middle column: A 1D Gaussian-shaped matter
density field described by Eq. (2.98), with A = 10−6, σ = 0.09, and α = 0.01. Right column:
A 3D spherical top-hat over-density with δin = 23.77, δout = −0.1, and R0 = 0.1, as
described in Section 2.4.1. For all three tests we have used β̃3 = 10−6, a simulation box of
L = 64 Mpc/h, and 256 grid cells in each dimension. For each test and field quantity we
compare the numerical result of the test simulations (red points), taken along a line which
is parallel to the x-axis in a y-z plane near the centre of the box, to its analytical solution
(blue line).
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2.4.2 Cosmological simulations

Having verified the code implementation, we move on to run the code

in a cosmological context with two objectives in mind. Firstly, we want

to justify our assumptions, described in Section 2.2.2, in which we ne-

glect any ’backreaction’ of Bi on the evolution of χ. Secondly, we want to

study what influence the model parameter β̃3 has on large-scale struc-

ture formation.

To this end, all simulations used in this section employ the same ICs,

which were generated using 2LPTic [54]. The power spectrum of the

initial density field, at a scale factor of aini = 0.02, assumes a flat ΛCDM

cosmology obtained with CAMB [131]. One possible concern may be that,

at this scale factor, di�erences of matter clustering are already present.

However, judging from Fig. 2.3, at this time the di�erence between the

growth factors of the cvG model with ΛCDM is well below sub-percent

level. The fact that we use the same initial condition for simulations of

di�erent cosmologies ensures that the initial density fields have the

same phases, and any di�erences at later times can solely be attributed

the di�erent dynamics and force laws. For comparisons, for every cvG

simulation, we also run one for its QCDM counterpart, which has the

expansion history of cvG but without modifications to the law of gravity.

The standard cosmological parameters used in the creation of the

initial condition and simulations are

(2.102) h = 0.6774, ΩΛ = 0.6911, Ωm = 0.3089, ΩB = 0.0223, σ8 = 0.8159

(taken from the Planck Collaboration [5]). All cosmic simulations use a

box-size of L = 200 Mpc/h, and a total number of dark matter particles

of Np = 2563. The convergence criterion for the Gauss-Seidel algorithm

is set to |dh | < ε = 10−9. As it is not our objective to explore in

great detail the predictions of various observables in the cvG model

here, we use these small simulations in this Chapter to get a sense of

the qualitative behaviours, and will report results from larger, higher-
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resolution simulations in follow-up works.

In N-body simulations for cubic and quartic scalar Galileon models,

there is a well-documented problem that the numerical computation

fails [17, 136] because the equation does not admit a physical solution

under certain conditions [16]. In the case of csG, this happens during a

simulation when the scale factor a & 0.8 (the exact time at which this

happens depends on the resolution, initial condition and cosmological

parameters), in regions where matter density is very low, i.e., ρ̃ → 0. This

problem can be traced to Eq. (2.73), which does not posses real solutions

of χ̃,r̃ if

(2.103) ∆ ≡ 1 +
12Ωm

H2
0 a3 r̃3

∫ r̃

0
[ρ̃(ξ ) − 1] ξ2dξ < 0.

There has been suggestion [224] that this is a real problem of the model

itself, rather than a consequence of the approximations employed to

simplify the field equations. Given that csG is a limiting case of the cvG

model, we have found the same problem in our simulations for the latter,

and followed the ad hoc fix employed in [17] by setting ∆ = 0 whenever

the corresponding quantity becomes negative in a simulation mesh cell.

The role of Bi in cosmological simulations

In order to confirm that the negligence of Bi proposed in Section 2.2.2

is justified, we ran a cosmological simulation with β̃3 = 10−6, and a

domain grid of 2563 cells with no grid refinement.

A visualisation of the resulting fields including the gravitational poten-

tial and the extra degrees of freedom is shown in Fig. 2.5. The maps have

the same side length as the box, a depth of 0.86 Mpc/h, and are cut out

around the centre of the box. In the top row we show the gravitational

potential ΦcvG (le�) and the di�erence of Φ between cvG and its QCDM

counterpart (right). As outlined earlier, the QCDM version only contains

the background expansion and misses the fi�h-force term which results

in a weaker clustering of matter as compared to cvG. This is clearly visible

in the right panel, where the blue (red) indicates a higher matter density
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Figure 2.5: A visualisation of the spatial configurations of various fields taken from a slice
of one cell size (with a thickness of 0.86Mpc/h) in the simulations. Top le�: Distribution
of the total potential, Φ, in the full cvG simulation. Top right: Di�erence between Φ in cvG
and QCDM simulations, from which a stronger clustering in the former can be seen. Bottom
le�: The longitudinal vector mode, χ. Bottom right: The second derivative of the transverse
vector mode, Bx .

around haloes in the cvG model (voids in the QCDM model).

In the bottom panels we present visualisations of the χ field (le�) and

the ∂2Bx component of the transverse mode (right) for the same slice

of the simulation box. The χ field, like the potential Φ, is very smooth

with a similar dependence on the underlying dark matter density and

reaches local minima within halos and local maxima in voids. This is as

expected as, apart from strongly screened regions, the fi�h-force due to

~∇χ generally has the same direction as and is proportional in magnitude

to standard gravity. The distribution of ∂2Bi on the other hand is very

rich in texture. This is because ∂2Bi is sourced by higher-order derivatives

of χ, cf. Eq. (2.47). While the complexity of Eq. (2.47) makes it di�icult to

interpret this map intuitively, we observe that it follows the patterns of

the other maps in general.
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While Fig. 2.5 intuitively shows the spatial configurations of various

physical quantities in their own physical units, the comparison between

the amplitudes of χ and ∂2Bi should not be used as a direct indicator to

assess the relative importance of the longitudinal and transverse modes

in a�ecting structure formation. Actually, from the field decomposition,

Eq. (2.20) in Section 2.2, we can see that a fairer comparison can be done

by comparing the magnitudes of ∂iχ and Bi. For simpler computation,

we show the power spectra of ∂x∂2χ and ∂2Bx at various times in Fig. 2.6.

Note that, because ∂i∂
2χ and ∂2Bi both have unit of (h/Mpc)3, their

power spectra have the unit of (h/Mpc)3.

As the magnitude of the cvG longitudinal mode χ increases with

matter density perturbations, the P(k) of ∂2∂i χ, which we visualise

for a ∈ [0.3, 1.0] in Fig. 2.6, also increases continuously as expected.

It is interesting to note that while the matter power spectrum peaks

k ∼ O
(

10−2) h/Mpc, the power spectrum for ∂2∂i χ has a significantly

more flattened shape until k ∼ O(1)h/Mpc, which is because of the

additional spatial derivative in ∂x ∂2χ (on large scales the power spectra

of ∂2χ, ∂2Φ and matter density are expected to have similar shapes

because of the weak screening).

The right panel of Fig. 2.6 shows the time evolution of the power

spectrum of ∂2 Bx . While this quantity also increases over time, we note

that its amplitude is∼ 15-20 orders of magnitude smaller than the

∂x ∂2χ power spectrum on all scales probed by the simulation. This

serves as a confirmation that the transverse mode plays a very minor

role compared with the longitudinal mode, on linear scales (as it was

previously shown by [62]) as well as on non-linear scales. In particular, it

verifies that it is a good approximation to neglect the terms involving Bi

in the vector field equation of motion (2.32). This is the approximation

that we shall take in what follows, and in future simulations of the cvG

model.
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Figure 2.6: The power spectrum of (spatial derivatives of) the longitudinal (le�) and trans-
verse (right) mode of the Proca field, for β̃3 = 10−6. The di�erent lines are results at
di�erent values of the scale factor a, as indicated by the colour bar on the top. Note the
large amplitude di�erences between the two panels.

The dependence on β̃3

We have seen above that, unlike the csG model, the cvG model has a free

parameter which we choose to be represented by β̃3. This parameter

does not a�ect the background expansion history of the model, but con-

trols the strength of the fi�h-force of Geff/G, cf. Eq. (2.94) and Fig. 2.3.

Also, in Fig. 2.2 we have seen that the degree of non-linear Vainshtein

screening depends on β̃3. As the screening e�ect on large-scale structure

formation is most accurately captured by N-body simulations, here we

give a first idea about this e�ect, while leaving a more detailed study of

various non-linear observables in the cvG model to future works.

For this, we have run three cosmological simulations employing the

full set of equations derived in Section 2.3 using β̃3 = (10−6, 1, 100),

using a domain grid of 2563 cells. The cells are refined when the e�ective

number of particles Np > 9.0 up until a finest resolution of 216 cells per

dimension (if they were to cover the whole simulation box) is reached.

The simulations each ran in only about 1500 core-hours, underlining the

viability of much larger and better resolution simulations simulations

with our code.
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To get an understanding of the impact of β̃3 on the cvG cosmology

through a enhanced e�ective gravitational constant, Geff/G, and the

Vainshtein screening, RV , we have run four additional simulations using

the same settings as outline above. One of these is the above-mentioned

QCDM variant, which di�ers from a ΛCDM simulation only by a mod-

ified (cvG) background expansion history6, and is used to isolate the 6 Note that that the background
expansion history is independent
of β̃3, so that only one QCDM
simulation is needed.

e�ect of the latter. For the other three sets of simulations, we neglect the

non-linear terms in the EOM of χ, which is equivalent to removing the

screening mechanism by simply re-writing Eq. (2.70) as,

(2.104) ∂̃2Φ̃ =
3
2

Ωm a
(

1 +
α

β

)
(ρ̃ − 1) ,

using Eq. (2.94). These are what we call linearised simulations, and the

comparison of them with the full simulations can illustrate the quantita-

tive impact of the Vainshtein screening.

Fig. 2.7 compares the linear matter power spectrum (black dotted

lines) with the predictions by the linearised (black dashed) and fully

non-linear (coloured) simulations, at a = 0.6 (le�), a = 0.8 (centre)

and a = 1.0 (right). The linear power spectrum P(k; z) is obtained by

multiplying the initial power spectrum P(k; zini) with [D(z)/D(zini)]
2,

where D is the linear growth factor discussed in Section 2.3.4. The non-

linear matter power spectra are measured from the simulations using

POWMES [52]. The relative di�erence of the matter power spectra of the

cvG and QCDM models, ∆P(k)/PQCDM(k), has been smoothed using a

Savitzky–Golay filter of third order with a kernel width of 51 data-points.

The shaded region in each panel indicates the regime of k beyond the

Nyquist frequency7. The lower row of Fig. 2.7 shows the relative di�er- 7 Note that the Nyquist frequency,
kNy, marks the absolute max-
imum up to which we can the
power spectrum can be trusted.
First alterations can already
appear at kNy/8.

ences of the matter power spectra given by linear theory (dotted lines),

linearised simulations (dashed) and full simulations (solid) with respect

to their QCDM counterparts (i.e., QCDM linear theory and simulation

predictions).

Fig. 2.7 allows for a number of conclusions. Firstly, we have seen in
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Figure 2.7: The matter power spectrum in the cvG model. Each column shows the results for
a di�erent scale factor: le�: a = 0.6, centre: a = 0.8, right: a = 1.0. Top: The matter power
spectrum of linear perturbation theory (dotted) and the cvG model for three values of β̃3 =
(10−6, 1, 100), indicated by a purple, orange, and red line respectively. Bottom: Relative
di�erence of the matter power spectra of the cvG and QCDM models, ∆P(k)/PQCDM(k) ≡
(PcvG(k) − PQCDM(k))/PQCDM(k). A Savitzky–Golay filter has been used to smooth
∆P(k)/PQCDM(k). Each panel compares linear perturbation theory (black dotted), to
results obtained from full (coloured solid) and linearised (black dashed) simulations. The
vertical grey shaded region in each panel indicates where k > kNy where kNy is the Nyquist
frequency.

Section 2.3 that the csG model is a limiting case of the cvG model with

β̃3 → 0, and the result in Fig. 2.7 confirms that the power spectrum in

the case of β̃3 = 10−6 behaves similarly to what was found in Ref. [17]

for the csG model – this serves as an independent check of the new

numerical implementation in ECOSMOG.

Secondly, as expected from Fig. 2.3, a larger value of β̃3 leads to a

smaller enhancement of matter clustering with respect to QCDM. We

can also assess how e�ective the Vainshtein screening is for the di�erent

values of β̃3 by comparing the results of the full (coloured solid lines) and

linarised (black dashed) simulations in the bottom row. It becomes strik-

ingly clear how the neglect of the non-linear terms in the EOM of χ leaves

over-densities unscreened, leading to a much higher clustering power

at small scales. The e�ect of the neglected screening mechanism propa-
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gates to larger scales the smaller β̃3 is: at a = 1, scales of k & 4 h/Mpc

are screened for β̃3 = 10−6 and 1, while for β̃3 = 100 the clustering is

only weakly damped. This is as expected from the le� panel of Fig. 2.2,

which shows that the screening radius decreases when β̃3 increases,

meaning that for large values of β̃3 the non-linear screening e�ect will be

restricted to smaller scales and will be weaker. The observable peaks in

the coloured lines in the lower panels, that becomes more pronounced

with time, are a clear signature of the Vainshtein mechanism at work to

bring gravity back to Newtonian on small scales. Interestingly, a qualita-

tively similar result has been obtained in Ref. [110] based on the kinetic

field theory.

Thirdly, we note that on large scales (k < k∗) the predictions by

linear theory, the full and the linearised simulations all agree. The ex-

act value of k∗ depends on redshi� and the model parameter β̃3. As an

example, at a = 0.6 we have k∗ ' 0.3h/Mpc for β̃3 = 100 while

k∗ ' 0.15h/Mpc for β̃3 ≤ 1; by the time a = 1, however, k∗ has be-

come much smaller for all β̃3 values. The dependence on β̃3 is due to the

same reason as mentioned above, namely a larger β̃3 means a smaller

Vainshtein radius. The dependence on redshi� is a combined conse-

quence of the time evolution of the Vainshtein radius (cf. the le� panel of

Fig. 2.2) and the progressively non-linear matter clustering. Overall, the

full simulation result actually agrees better with linear perturbation the-

ory than the linearised simulation, due to the stronger fi�h-force e�ect

of the latter, and we can conclude that the screening mechanism does

not a�ect the large scales typically associated with linear perturbation

theory (k . 0.1h/Mpc), which is therefore still a valid approximation on

those scales.

Finally, we stress again that in this plot the linear matter power spec-

trum is calculated by simply extrapolating the initial power spectrum

using the linear growth factor in the cvG model, rather than based on a

full perturbation analysis. Therefore the good agreement between the

linear theory and full simulation predictions can not be used as an evi-

dence of the validity of the quasi-static approximation employed in this
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Chapter. However, it was shown, by using a modified version of CAMB,

in [17] that the QSA does not have appreciable impact on P(k) at large

scales for the csG model which is very similar to the cvG model with

β̃3 = 10−6. Comparing the behaviour of the relative di�erence between

the full theory cvG and QCDM power spectra to the results of [17] adds

confidence on the applicability of the QSA on large scales for the cvG

model.

Before finishing this subsection, let us briefly comment on the impli-

cation of the β̃3-dependence of the fi�h-force e�ect in the cvG model on

its viability. The cvG model has an identical background expansion his-

tory to the csG model with the same cosmological parameters, and both

do not have a ΛCDM limit, which suggests that the simple model stud-

ied in this Chapter could struggle in matching observations such as the

CMB shi� parameter and BAO [64, 154, 65]. In Ref. [19], including massive

neutrinos was proposed as an alternative way to generalising G2 and G3

into non-linear functions of X to bring compatibility of the csG model

with those observations. But the simplest csG model with linear G2 and

G3 still faces other challenges including void lensing (e.g., [22, 14]) and

a wrong sign of the ISW e�ect (e.g., Refs. [19, 20, 176, 168]), due to a very

fast increase of Geff/G at late times (cf. Fig. 2.3, β̃3 = 10−6). The cvG

model with β̃3 � 1 o�ers a potential way around this problem while

maintaining other properties of the csG model, because Geff/G can be

strongly suppressed towards unity. We hope to revisit the cosmological

constraints on the cvG model in a future publication.

2.5 Discussion and conclusions

To summarise, in this Chapter we have performed the first self-consistent

non-linear cosmological simulations of the GP theory, or the vector

Galileon model, up to cubic order (cvG). This was achieved by adapt-

ing the ECOSMOG simulation code, to implement the relevant equations

under the weak-field and quasi-static approximations. We find that the

cvG equation for the longitudinal mode of the vector field has the same
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structure in terms of spatial derivatives as, while di�ering in the time evo-

lution of the coe�icients from, the cubic scalar Galileon (csG) and sDGP

models (see Section 2.2 for equations in natural units and Section 2.3 for

equations in code units). In particular, cvG has the same background ex-

pansion history as csG for the same cosmological parameters. However,

unlike the csG model, the cvG model has a free parameter β̃3 which con-

trols the strength of the fi�h-force and the e�ectiveness of the Vainshtein

screening.

We investigated the time evolution of various quantities including

the screening radius, RV , the magnitude of non-linear screening terms,

ε, the e�ective gravitational constant, Geff, and the relative di�erence

of the density contrast δ/δΛCDM (cf. Fig. 2.2, 2.3). For all quantities we

found their evolution in the cvG and csG models to be indistinguishable

at early times, a . 0.1. This trend is continued at late times, a & 0.1,

for a cvG model parameter β̃3 → 0. If however β̃3 → ∞, than RV → 0,

ε → ∞, Geff/G → 1, and δ/δΛCDM converges to the QCDM variant of

the cvG model. This makes the cvG model more versatile and endows it

with richer phenomenology.

In deriving the equations for N-body implementation, we have made

a couple of simplifications. The first is that we have used the perturbed

constraint equation satisfied by the temporal component of the Proca

field, ϕ, to eliminate the time derivatives within the equation of motion

for the longitudinal mode χ, cf. Eq. (2.35). This is done exactly, without

resorting to the usual quasi-static approximation. The second is that

we have manipulated the equation of motion for the transverse model,

Eq. (2.38), to obtain a much simplified approximate version, Eq. (2.47).

This allows the Bi field to be calculated easily in simulations, and allows

the validity of the approximations used to be tested a posteriori.

We ran a set of moderate cvG cosmological simulations to investigate

three questions. Firstly, proof that the transverse mode, Bi , is negligi-

ble compared with the longitudinal mode, χ. By measuring their power

spectra, we show that P(k; ∂i ∂
2χ) is about 15-20 orders of magnitude

larger than P(k; ∂2 Bi) on all scales probed by the simulation. Conse-



PROCA-STINATED COSMOLOGY I: A n-BODY CODE FOR THE VECTOR GALILEON 71

quently, we expect the ‘back-reaction’ of Bi on the evolution of χ to be

very small, justifying the neglect of the Bi field in future simulations and

confirming the findings of [62].

Secondly, verification of the suppression of the fi�h-force by the Vain-

shtein mechanism for the cvG model. To this end we have run cosmolog-

ical simulations of the full cvG model and its linearised counterpart with

β3 = (10−6 , 100 , 102). By comparing their relative power spectrum

enhancement with respect to QCDM, ∆P(k)/PQCDM(k), the suppres-

sion of the fi�h-force is quantified, c.f. Fig. 2.7. The comparison has made

it clear how the neglect of the non-linear terms in the EOM of χ leaves

over-densities unscreened, leading to a much higher clustering power at

small scales.

Finally, we show how the cvG model parameter β̃3 a�ects the screening

behaviour. The results in Fig. 2.7 confirm that the matter power spec-

trum in the case of β̃3 = 10−6 behaves similarly to what was found

in Ref. [17] for the csG model. However, the larger β̃3 is, the smaller the

enhancement of matter clustering with respect to QCDM becomes. The

e�ect of the weakened screening mechanism also propagates to larger

scales the smaller β̃3 is: at a = 1, scales of k & 4 h/Mpc are screened

for β̃3 = (10−6, 1), while for β̃3 = 100 the clustering is only weakly

damped. This agrees qualitatively with what we find in Fig. 2.2, but the

full non-linear simulations allow the e�ects to be more accurately quanti-

fied.

A more comprehensive investigation of the predictions of various

physical quantities by the cvG model is needed to better understand

the cosmological behaviours and observational implications of the

model. This, however, requires more independent realisations of higher-

resolution simulations covering more values of β̃3, which are beyond
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the scope of this work and will be le� for future work. We also note that,

while this publication has focused on the simplest Proca theory at cubic

order, with G2 = G3 = X, it should be very straightforward to extend

our code to simulate models with generic non-linear functions for G2,3

in the future. Such functions add further flexibilities to the GP theory –

indeed, ongoing research conducted by one of the authors has found

that the GP theory up to cubic order can o�er a better fit to available

observational data than the standard ΛCDM model; see also Ref. [65] for

some recent progress in developing linear Boltzmann codes for the GP

theory.

Even for the simplest case with G2 = G3 = X, the cvG model’s

dependency on β̃3 makes it an extension of the csG model from a phe-

nomenological point of view, and this opens up possibilities to overcome

the challenges the csG model faces in terms of void lensing and the ISW

e�ect. These challenges originate from the fact that, if the csG field is

the driving force of the accelerated cosmic expansion at late times, a

byproduct is the quickly-deepening gravitational potential during this

period. For the ISW e�ect, this is in contrast to ΛCDM, where the poten-

tial becomes shallower due to the accelerated expansion, and therefore

leads to a wrong sign of the ISW-galaxy correlation. As the deepening

of the gravitational potential at late times can be weakened using an

increased β̃3, the cvG model o�ers a potential way around these issues,

while maintaining the other properties of csG. We will investigate these

possibilities in the future.

Finally, even though we have justified the neglect of the transverse

mode of the vector field Bi in cosmological simulations, it is possible that

in other situations this is no longer a good approximation. For example,

the Proca field does not have to be the driving force behind the accel-

erated cosmological background expansion, but might have e�ects on

galactic scales and the transverse modes could give rise to a change of

structure formation on such scales. With some appropriate adaption and

extension, our code will be able to be used as a tool for investigations in

such circumstances.
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Proca-stinated Cosmology II: Matter, Halo, and

Lensing Statistics in the vector Galileon

THE GP theory is a modified gravity model in which the acceleration of

the cosmic expansion rate can be explained by self interactions of a cos-

mological vector field. In this Chapter we study a particular sub-class of

the GP theory, with up to cubic order Lagrangian, known as the cubic

vector Galileon (cvG) model. This model is similar to the cubic scalar

Galileon (csG) in many aspects, including a fi�h force and the Vainshtein

screening mechanism, but with the additional flexibility that the strength

of the fi�h force depends on an extra parameter – interpolating between

zero and the full strength of the csG model – while the background ex-

pansion history is independent of this parameter. It o�ers an interesting

alternative to ΛCDM in explaining the cosmic acceleration, as well as a

solution to the tension between early- and late-time measurements of

the Hubble-Lemaître constant H0 [64, 111]. To identify the best ways to

test this model, in this Chapter we conduct a comprehensive study of

the phenomenology of this model in the nonlinear regime of large-scale

structure formation, using a suite of N-body simulations run with the

modified gravity code ECOSMOG. By inspecting thirteen statistics of the

dark matter field, dark matter haloes and weak lensing maps, we find

that the fi�h force in this model can have particularly significant e�ects

on the large-scale velocity field and lensing potential at late times, which
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suggest that redshi�-space distortions and weak lensing can place strong

constraints on it.

3.1 Introduction

Understanding the laws of physics that govern cosmic structure forma-

tion is indispensable for probing into the true nature of gravity, because

gravity is the dominant one of the four fundamental forces on cosmo-

logical scales. Ever since its establishment, General Relativity (GR) has

been a cornerstone of modern cosmology. Even though the predictions

of GR have been validated against many tests, these tests are usually

limited to small scales such as the solar system [223], leaving the cos-

mological scales underexplored. The current observational results of

these latter scales, which trace the dynamics of luminous and dark

matter such as stars, galaxies, galaxy clusters, and extended filaments

surrounding enormous voids, are generally in good agreement with the

current concordance model of cosmology, ΛCDM, despite the fact that

in recent years a number of tensions between the cosmological param-

eter estimates from di�erent observational probes have emerged [e.g.,

215, 212, 116, 11, 117]. However, there is currently no compelling ex-

planation of the smallness of the cosmological constant in this model,

which is why alternative models to explain the cosmic acceleration, such

as dynamical dark energy and modified gravity (MG), have been widely

considered. In particular, in most alternative theories of gravity, the time

evolution of large-scale structures can be significantly influenced, so that

the observational data in cosmology may allow accurate tests of such

models on large scales [for a recent review see 128].

The last decades have seen many attempts to modify GR. According

to the Lovelock theorem, GR is the only theory with second-order local

equations of motion for the metric field, which is derivable from a 4-

dimensional action [128], and therefore modifications to GR o�en involve

new dynamical degrees of freedom in addition to the metric field, non-

locality, higher-dimensional spacetimes and/or higher-order equations.
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The simplest MG models, for example, usually involve a single scalar

degree of freedom with self-interactions or interactions with curvature.

It has been well-established that such models can be brought under the

umbrella of the Horndeski theory [118, 123, 70].

One of the most well-known subclasses of the Horndeski theory is

the Galileon model [160, 69, 68], a 4-dimensional e�ective theory which

involves a scalar field with universal coupling to matter and derivative

self-interactions. The theory implements Vainshtein screening [213] – a

nonlinear mechanism also encountered in theories such as Fierz-Pauli

massive gravity [12] and the Dvali-Gabadadze-Porrati (DGP) model [78] –

to decouple the scalar field from matter near massive objects and there-

fore can be compatible with Solar system tests of gravity. The model

modifies the background expansion history such that it reaches a de Sit-

ter solution in the future without requiring a cosmological constant. Its

simplicity makes it possible to study its phenomenology with the help of

cosmological N-body simulations [136, 17]. We refer to this model as the

scalar Galileon below.

In contrast to the scalar Galileon, the GP theory [108, 8, 29], involves

a massive vector field, Aµ , with a broken U(1) gauge symmetry and

second-order equation of motion (EOM). The theory features Galileon-

type derivative self-interactions and couplings to matter. At the back-

ground level, the temporal component of the vector field, A0, gives rise

to a self-accelerating de Sitter attractor, corresponding to a dark energy

equation of state wDE = −1 [61]. From the gravitational wave event

GW170817 [2] with accompanying gamma-ray burst GRB170817A [95]

and other optical counterparts, the speed of propagation of the gravita-

tional waves cT has been tightly constrained to be identical to the speed

of light, c. This places strong constraints on the allowed operators within

the higher order GP Lagrangian. However, even with this restriction, the

GP theory is still cosmologicaly interesting, with a theoretically consis-

tent parameter subspace that is free of ghost and Laplacian instabilities

[61], and in which cT = c.

By introducing non-linear functions into the field Lagrangian of the
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GP theory to describe its derivative self interactions and couplings with

matter, it can be very versatile and flexible. However, in cosmological

applications one o�en specialises to simple choices of these non-linear

functions, such as power-law functions, and a number of studies have

been conducted along this direction, leading to a good understanding

of the cosmological behaviours of the model at background and lin-

ear levels. For example, in Refs. [64, 111], Markov Chain Monte Carlo

likelihood analyses were performed for the particular GP theories pro-

posed in Refs. [61, 62], by exploiting the observational data from type

Ia supernovae (SNIa), the cosmic microwave background (CMB), Bary-

onic Acoustic Oscillations (BAO), the Hubble expansion rate H(z), and

redshi�-space distortions (RSD). The cross correlation between galaxy

field and the Integrated Sachs Wolfe (ISW) e�ect, which has been a pow-

erful probe to constrain the scalar Galileon models, has also been used to

constrain parameters of the GP theory [154].

In this work, we conduct a broad phenomenological study of a set of

five cosmologies based on the toy GP model studied in [26]. Using the

N-body code developed in [26] and augmenting it with an independent

set of ray-tracing modules taken from Ray-RAMSES[24], we can supple-

ment previous results with the measurements of non-linear scales and

unexplored statistics of the matter field, haloes, weak lensing, and voids.

There are several motivations for doing so. One is that we know pertur-

bation theory is not good at quantifying the e�ects of screening, which

is an inherently non-linear phenomenon. N-body simulations are the

only known tool to accurately study the evolution of the Universe on

small, highly non-linear, scales, and can be used to validate or calibrate

the predictions of other approaches. Being able to probe small scales

(k & 1h−1Mpc) will enable us to test a given model against more ob-

servational data more accurately, e.g., access scales or regimes that are

inaccessible to perturbation theory. For this reason, we will analyse a

total of 13 matter, halo, weak lensing and void statistics, in the e�ort to

identify the ones which are most sensitive to the e�ect of the fi�h force in

the GP theory.
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In Section 3.2 we describe the set up of the N-body and ray-tracing

simulations on which all following results are based. This is followed

by presentations of the main results of the dark matter field (Section

3.3), haloes (Section 3.4), and weak lensing (Section 3.4.6). Finally, we

summarise and discuss in Section 3.5.

Throughout this Chapter, we will use the (−, +, +, +) signature of

the metric and abbreviations ∂A = ∂µ Aµ , (∂A)2 = ∂µ Aµ ∂ν Aν . We set

c = 1 except in expressions where c appears explicitly. Greek indices run

over 0, 1, 2, 3 while Roman indices run over 1, 2, 3.

3.2 Cosmological simulations

In this section we present the set of dark-matter-only simulations for

five di�erent cosmologies which we use to investigate the phenomenol-

ogy of the cvG model. Four of these take di�erent values of the model

parameter of the cvG model, β̃3 = [10−6 , 100 , 101 , 102 ], and one is

their QCDM counterpart1, in the simulation. It is equivalent to the limit 1 This is a variant that only con-
siders the modified background
expansion history, but uses stan-
dard Newtonian gravity to evolve
particles

β̃3 → ∞ [26]. To study the cvG e�ects on the weak lensing (Weak Lensing

(WL)) signal, we extended the N-body code developed in the previous

work [26] by adding an independent set of ray-tracing modules taken

from Ray-RAMSES[24]. This allows us to calculate the WL signal ‘on-the-

fly’ as proposed by [221, 134], while taking full advantage of the time and

spatial resolution available in the N-body simulation.

We construct a light-cone for each cosmology by tiling a set of five

simulation boxes, all having an edge-length of Lbox = 500 h/Mpc,

as shown in Fig. 3.1. The simulations treats dark matter as collisionless

particles described by a phase-space distribution function f (x, p, t) that

satisfies the Vlasov equation

(3.1) d f
dt

=
∂ f
∂t

+
p

m0a2 · ∇ f −m0 (∇Ψ) · ∂ f
∂p

= 0,

where p = a2m0∂x/∂t, m0 is the particle mass, and Ψ is the modified

Newtonian potential given by Eq. (2.70). Note that, as we do not include

matter species such as photons and massive neutrinos the two Bardeen
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potentials are equivalent, Ψ = Φ. The exclusion of photons should not

have a noticeable impact on our simulations, which are only run at low

redshi�s. The impact of neglecting massive neutrinos depends on the

neutrino mass, and for the currently allowed mass range, we do not ex-

pect qualitative changes. We plan to run simulations including massive

neutrinos in the future. Hence to solve Ψ, and prior to it the longitudinal

Proca mode, via Eq. (2.68), they are discretised and evaluated on meshes

using the nonlinear Gauss-Seidel relaxation method [137]. The domain

grid – which is the coarsest uniform grid that covers the entire simulation

box – consists of Ngrid = 5123 cells, which is equal to the number of

tracer particles, Np. ECOSMOG is based on the adaptive-mesh-refinement

(AMR) code RAMSES [205], which allows mesh cells in the domain grid to

be hierarchically refined – split into 8 child cells – when some refinement

criterion is satisfied. In our simulations, a cell is refined whenever the

e�ective number of particles inside it exceeds 8. This gives a higher force

resolution in dense non-linear regions, where the Vainshtein screen-

ing becomes important. The Gauss-Seidel algorithm is run until the

di�erence of the two sides of the PDE, dh, is smaller than a predefined

threshold ε. We verified that for a value of ε = 10−9 > |dh|, the solution

of the PDE no longer changes significantly when ε is further reduced.

We use the same set of five di�erent initial conditions (ICs), for each

of the five simulations that make up a light-cone for a given cosmology

are di�erent, for the di�erent cosmologies. The ICs were generated

using 2LPTic [54], with cosmological parameters taken from the Planck

Collaboration [5],

(3.2) h = 0.6774, ΩΛ = 0.6911, Ωm = 0.3089, ΩB = 0.0223, σ8 = 0.8159.

The linear matter power spectrum used to generate the ICs is obtained

with CAMB [131]. The simulation starts at a relatively low initial redshi�2 2 Note, that di�erences of matter
clustering between the di�erent
cosmologies are already present
at this redshi� but negligible as
shown in [26].

zini = 49, or aini = 0.02, justifying the use of second-order Lagrangian

perturbation theory codes such as 2LPTic. One possible concern may
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Figure 3.1: Light-cone layout. The light cone (solid blue line) is made up of five simulation
boxes (red squares). All simulated boxes have a side length of 500 h/Mpc and the light
cone has an opening angle of 10× 10 deg2. The comoving distance to the observer and
redshi� are respectively labelled in the lower and upper axes. The vertical dotted lines,
which are at distances equal to 1/4 and 3/4 times the box size from the nearer side of each
box, correspond to the redshi�s at which particle snapshots are outputted.

be that, at this scale factor, di�erences of matter clustering are already

present. However, judging from our experience [26], at this time the

di�erence between the growth factors of the cvG model with ΛCDM

is well below sub-percent level, so that modified e�ects on the initial

matter clustering can be neglected. Additionally, it has been shown that

ICs generated with 2LPTic at zini = 49 can produce accurate matter field

statistics for our simulation size and resolution at z = 0 [54].

Table 3.1: Summary of technical details that are identical for all simulations performed for
this work. Here kNy denotes the Nyquist frequency. ε is the residual for the Gauss-Seidel
relaxation used in the code [135], and the two values of the convergence criterion are for
the coarsest level and refinements respectively.

Lbox Nr. of particles kNy force resolution convergence
500 h/Mpc 5123 3.21 h−1Mpc 30.52 h/kpc |ε| < 10−12/10−9

The light-cone, outlined by solid blue lines in Fig. 3.1, is constructed

by positioning the five simulation boxes, outlined by solid red lines in

Fig. 3.1, relative w.r.t. the observer. The geometrical set-up was con-

structed to place the sources at zs = 1, which is the starting point when

the growth rate of matter density perturbations becomes higher than in

ΛCDM [26]. The Field-Of-View (Field-of-View (FOV)) is set to 10× 10 deg2

(so that the wide end of the light-cone is still narrow enough to fit in the

simulation box), within which 2048 × 2048 rays are followed by Ray-

RAMSES to compute quantities of interest. Ray-RAMSES is an on-the-fly
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ray-tracing code. The rays are initialised when a given simulated box

reaches a defined redshi� (for the closest and furthest box to the ob-

server the initialisation redshi� is respectively zi = 0.17 and zi = 1.0),

and end a�er they have traveled the covered length of the box, mean-

ing 500 h/Mpc. As here we are interested in the lensing convergence,

κ, the quantity that is computed along the rays is the two-dimensional

Laplacian of the lensing potential,

(3.3) ∇̃2Φ̃lens,2D = ∇̃1∇̃1Φ̃lens,2D + ∇̃2∇̃2Φ̃lens,2D,

where 1, 2 denote the two directions on the sky perpendicular to the

line of sight (LOS). The values of these two-dimensional derivatives of

Φlens,2D can be obtained from its values at the centre of the adaptive

mesh refinement (AMR) cells via finite di�erencing and some geometrical

considerations (see Refs. [134, 24]). Integrating this quantity as

(3.4) κ =
1
c2

∫ χs

0

χ (χs − χ)

χs
∇̃2Φ̃lens,2D(χ,~β(χ))dχ,

where c is the speed of light, χ is the comoving distance, χs the comoving

distance to the lensing source, and~β(χ) indicates that the integral is

performed along the perturbed path of the photon (χ is not to be con-

fused with the longitudinal mode of the Proca field). The integral is split

into the contribution from each AMR cell that is crossed by a ray, which

ensures that the ray integration takes full advantage of the (time and spa-

tial) resolutions attained by the N-body run. For the WL signal we wish

to study in this Chapter, we employ the Born approximation, in which the

lensing signal is accumulated along unperturbed ray trajectories. We will

make further notes on the calculations in Sec. 3.4.7.

3.3 Matter field statistics

In this section we present the results of various dark matter statistics

of the di�erent cvG models and compare them with the predictions by

QCDM, to study the impact of the Proca field on these key observables.
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We start with an analysis of the power spectra in Sect. 3.3.1. In Section

3.3.2, we consider the leading non-Gaussian statistic in large-scale struc-

ture clustering, the bispectrum, which is thus sensitive to deviations from

linear evolved perturbations from single field inflation.

To support the analysis and interpretation of the results, we will com-

pare the results of the N-body simulations to Eulerian standard per-

turbation theory (SPT), and limit the comparison only to the tree-level

statistics. In SPT, the energy and momentum conservation equations can

be solved order by order to obtain higher-order corrections to the quan-

tities of interest. The expansion in powers of the linear density field is a

simple time dependent scaling of the initial density field (in the Einstein

de Sitter approximation),

(3.5) δ(k, τ) =
∞

∑
i=1

Dn(τ)δ(i)(k),

for which the n-th order solution is

(3.6) δ(n)(k) ∼
∫

d3k1...d3knδ(D)(k− k1...n)Fn(k1, ..., kn)δ
(1)(k1, τini)...δ(1)(kn, τini),

with the conformal time τ =
∫

dt/a, k1...n ≡ k1 + ... + kn, the density

contrast δ = ρ/ρ̄, δ(D) the 3D Dirac delta function, andFn the SPT

fundamental mode coupling kernel [96, 188].

When comparing a cvG model to the QCDM counterpart, we do so

through their relative di�erence which we write in short hand as

(3.7) ∆A
AQCDM

≡
AX − AQCDM

AQCDM
,

with A a placeholder of the summary statistics, and X will be one of the

four cvG models. We calculate ∆A/AQCDM for each of the five pairs of

cvG and QCDM simulations that share the same initial conditions to find

its average and 1σ uncertainty. Taking this ratio removes contributions

from cosmic variance, and so its uncertainty is not a direct indicator of

how sensitive the various summary statistics are to di�erences between
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the cvG models. To provide an estimate of this sensitivity given a survey

volume as large as our simulation box, we calculate the signal-to-noise

ratio (Signal-to-Noise Ratio (SNR)) of the di�erence between cvG mod-

els and their QCDM counterpart for some summary statistics using the

expression

(3.8) SNR ≡ ∆A
σ

=
AX − AQCDM√

σ2
X + σ2

QCDM

,

where ∆A is the average and σ is the standard deviation of the five simu-

lations per cosmological model. We note that the SNR values obtained in

this way could be subject to sample variance, owing to the small number

of realisations. This is not a problem for the qualitative study presented

in this Chapter, but more simulation volume is needed before we can

place reliable quantitative constraints on this model. This will be le� for

future work.

3.3.1 Matter and velocity power spectra

To gain insights into the di�erences of matter clustering and peculiar ve-

locities on linear and nonlinear scales among the various models in this

work, we begin our study of dark matter phenomenology by considering

the auto power spectra of the matter over-density, δ, given by

(3.9) 〈δ(k1, t)δ(k2, t)〉 = (2π)3δ(D)(k1 + k2)Pδδ(k1, t).

Cosmic structure formation is driven by the spatially fluctuating part of

the gravitational potential, Φ(x, t), in Eq. (2.19), induced by the density

fluctuation δ. In cvG cosmologies we expect an additional boost to the

standard gravitational potential with respect to its QCDM counterpart,

induced by χ described by Eq. (2.70), in regions where the fi�h force

is not screened by the Vainshtein mechanism. Thus, clustering will be

enhanced in the cvG models on some scales, which can be captured by

Pδδ.

The top row of Fig. 3.2 compares the linear matter power spectra
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Figure 3.2: The matter power spectrum in the cvG model. Each column shows the results
for a di�erent scale factor: outer le�: a = 0.6, inner le�: a = 0.7, inner right: a = 0.8,
outer right: a = 1.0. Top: The matter power spectrum of linear perturbation theory (dotted)
and the cvG model for four values of β̃3 = (10−6, 1, 10, 100), indicated by a blue, green,
orange and red line respectively. Centre: Relative di�erences between the matter power
spectra of the cvG and QCDM models. A Savitzky–Golay filter has been used to smooth
∆Pδδ(k)/Pδδ,QCDM(k) for k > 0.2 h−1Mpc. Each panel compares linear perturbation
theory (black dotted), to results obtained from full simulation (coloured solid). The vertical
grey shaded region in each panel indicates where k > kNy where kNy is the Nyquist
frequency. Bottom: The signal-to-noise ratio of the di�erence between the cvG models and
their QCDM counterpart.

(black dotted lines) with the simulation results of each cosmology

(coloured lines with shaded regions), at a = 0.6 (outer le�), a = 0.7

(inner le�), a = 0.8 (inner right), and a = 1.0 (outer right). The linear

power spectrum, P(11)
δδ (k; z), is obtained by multiplying the initial matter

power spectrum at zini = 49, Pδδ(k; zini), with [D(z)/D(zini)]
2. The

nonlinear matter power spectra are measured from particle snapshots

using the POWMES3 code [52]. The mean Pδδ of the five realisations per 3 The code is in the
public domain,
www.vlasix.org/index.php?n=Main.Powmescosmology is shown as a coloured line while the standard deviation is in-

dicated as shaded region. The standard deviation is largest at large scales

(k . 0.1h−1Mpc) due to cosmic variance and the limited simulation size.

The vertical shaded region near the right edge of each panel indicates the

regime of k beyond the Nyquist frequency4. 4 Note that the Nyquist frequency,
kNy, marks the absolute maxi-
mum up to which we can trust the
power spectrum.
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The centre row of Fig. 3.2 shows the relative di�erences, Eq. (3.7), of

the matter power spectra. The relative di�erence has been smoothed to

remove noise at scales k > 0.2 h−1Mpc, using a Savitzky–Golay filter

of second order with a kernel width of 13 data points [182]. The power

spectrum results agree with the results found in Ref. [26] and extend

them by including larger scales and measurement uncertainties.

The bottom panel of Fig. 3.2 shows the SNR of the di�erence between

cvG cosmologies and their QCDM counterpart. From it we can see that

the SNR is larger at large k as σ is smaller, reflecting the fact that more

Fourier modes can be sampled in that k regime. This implies that the

e�ects of the cvG model are stronger on smaller, more non-linear scales,

and for smaller β̃3 values. However, note that the matter power spectrum

is not directly observable, and later in this Chapter we will look at the

behaviours of quantities more directly related to observables, such as

the lensing power spectrum and halo correlation function.

The real-space positions of tracers of the matter distribution are not

directly measurable, preventing us from comparing Pδδ to observations,

which rely on the redshi� measurement to infer distances. The reason

is that peculiar velocities (i.e., additional velocities to the Hubble flow)

of the tracers distort the redshi� signal along the line of sight. Thus, Pδδ

is di�erent from its counterpart in redshi� space, Ps
δδ, which becomes

anisotropic despite the statistical isotropy of the Universe; on large scales

the two are related by the linear Kaiser formula

(3.10) Ps
δδ(k, µ) =

(
1 + f µ2

)2
Pδδ(k),

where µ is the angle between the wavevector and the LOS, and f is the

linear growth rate defined as f = d(lnδ)/d(lna) [121].

The Kaiser formula can be improved down to quasi linear scales with

additional information about the auto power spectrum of the velocity

divergence5, θ = ∇ · v, denoted as Pθθ , as well as their cross spectrum 5 Strictly speaking, one should
consider the complete velocity
field, which would also involve
its vorticity∇i × vi . However,
just as the transverse mode of
the Proca field,∇i × Bi , it has a
much smaller magnitude than its
divergence and is thus neglected
in SPT.
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Figure 3.3: The velocity divergence power spectrum in the cvG model. Each column shows
the results for a di�erent scale factor: outer le�: a = 0.6, inner le�: a = 0.7, inner right:
a = 0.8, outer right: a = 1.0. Top: The velocity divergence power spectrum of linear
perturbation theory (dotted) and the cvG model for four values of β̃3 = (10−6, 1, 10, 100),
indicated by a blue, green, orange and red line respectively. Bottom: Relative di�erences
between the velocity divergence power spectra of the cvG and QCDM models.

Pδθ , since the velocity field is more sensitive to tidal gravitational fields

compared to the density field on large scales [186, 204, 120].

The first row of Fig. 3.3 compares the linear velocity divergence power

spectrum (black dotted lines) and measured nonlinear (coloured) simu-

lations, at a = 0.6 (outer le�), a = 0.7 (inner le�), a = 0.8 (inner right),

and a = 1.0 (outer right). The linear power spectrum P(11)
θθ (k; z) can be

related to P(11)
δδ (k; z) through the zeroth-moment of Eq. (3.1), yielding the

continuity equation,

(3.11) δ̇ +
1
a
∇ · [v (1 + δ)] = 0.

On linear scales we can assume that the quadratic terms in Eq. (3.11)

vanish leaving us with

(3.12) θ = −aδ̇ = −aH f δ.
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Thus, the linear power spectrum of the velocity divergence is given by

(3.13) P(11)
θθ (k; z) = (aH f )2 P(11)

δδ (k; z).

This relation is expected to fail on non- and quasi-linear scales, as ve-

locities grow more slowly than the linear perturbation theory predicts.

Therefore, any di�erences in P(11)
θθ between the di�erent cvG models will

appear on these scales.

In order to measure the non-linear Pθθ from the numerical simula-

tions, we first use a Delaunay tessellation field estimator (DTFE6, [44]) to 6 The code is in the
public domain,
www.astro.rug.nl/ voronoi/DTFE/dtfe.html.obtain the volume weighted velocity divergence field on a regular grid.

This procedure constructs the Delaunay tessellation from the dark matter

particle locations and interpolates the field values onto a regular grid,

defined by the user, by randomly sampling the field values at a given

number of sample points within the Delaunay cells and then taking the

average of those values. For our 500 h/Mpc simulation boxes, we gen-

erate a grid with 5123 cells. From that we then measure Pθθ using the

public available code nbodykit7[106]. 7 The code is in the public do-
main, nbodykit.readthedocs.io.

We can see from the top row of Fig. 3.3 that the results of the simu-

lations for all models have approached the linear theory prediction on

scales k . 0.1 h−1Mpc for all times. On these scales, the time evolu-

tion of the power spectrum of all models is scale independent and, the

relative di�erence encapsulates the modifications to the time evolution

of P(11)
θθ via H and f in Eq. (3.13). On smaller scales, the formation of

non-linear structures tends to slow down the coherent (curl-free) bulk

flows that exist on larger scales. This leads to an overall suppression of

the divergence of the velocity field compared to the linear theory results

for scales k & 0.1 h−1Mpc.

A careful look into the relative di�erence ∆Pθθ(k)/Pθθ,QCDM(k) in

the bottom row of Fig. 3.3 also reveals a number of other interesting

features on all scales. Firstly, we see that the wavenumber at which

linear theory and simulation results for ∆Pθθ(k)/Pθθ,QCDM(k) agree,

k∗, depends both on β̃3 and the scale factor. The value of k∗ is pushed
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to ever larger scales as a → 1 and β̃3 → 0. A similar observation

has been made by [137] for the DGP model. This is important for the

growth rate measurement from redshi� distortions, because it gives

useful information about on which scales we can extract the growth

rate based on the predictions of linear perturbation theory. Secondly,

on small scales, k & 1h−1Mpc, we can see how deviations from QCDM

are suppressed by the screening mechanism, reflecting the fact that

inside dark matter haloes the screening is very e�icient. As also shown

by ∆Pδδ(k)/Pδδ,QCDM(k), the screening mechanism becomes more

e�ective as β̃3 → 0. Thirdly, for a → 1 and β̃3 → 0 we see a growing

peak that for the case of β̃3 = 10−6 protrudes above the linear theory

prediction at k ∼ 0.7h−1Mpc. A similar feature was also observed by

[137] for the DGP model.

The di�erence of Pθθ between the cosmological models compared

to its magnitude is very small at early times, e.g., at percent level for

all models when a . 0.6, but increases rapidly over time, reach-

ing 35% for β̃3 = 10−6 at a = 1.0. This is unlike the behaviour of

∆Pδδ(k)/Pδδ,QCDM(k) which increases much more slowly and only

reaches∼ 5% for β̃3 = 10−6 at a = 1.0. This di�erence is because

the velocity field, being the first integration of the forces, responds more

quickly to a rapid growth of the fi�h-force magnitude than does the mat-

ter field, which is the second integration of the forces. It shows the rapid

increase of the linear growth rate of the cvG model at late times (a & 0.8),

and suggests that redshi�-space distortions (RSD) in this time window

can be a strong discriminator of this model.

3.3.2 Matter Bispectrum

As we have mentioned, even if cosmological fields are initially Gaussian,

they inevitably develop non-Gaussian features as the dynamics of grav-

itational instability is nonlinear. Consequently, the structures found in

the density field can no longer be fully described by two-point statis-

tics alone, and higher-order correlation functions are needed in order
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to unlock additional information, in particular regarding the nature of

gravitational interactions. To obtain first impressions of this informa-

tion we use the Fourier space counterpart of the three-point correlation

function, the bispectrum, which is receiving increased attention in the

recent literature, not only for making more accurate predictions (see,

e.g., [107, 80, 72, 161]), but also as a probe of e�ects beyond ΛCDM (e.g.

[94, 28, 152, 40, 41, 101, 150]).

We restrict ourselves to the study of the matter field in real space at

z = 0, for which the bispectrum is given by

(3.14) 〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δ(D)(k1 + k2 + k3)B(k1, k2, k3),

with the three wave vectors forming a closed triangle. If we were mea-

sure the bispectrum in redshi� space we expect the small-scales to be

heavily damped by the Finger-of-God e�ect [166], which leads to an in-

creased impact of shot noise and thus less significant deviations from

ΛCDM. As the study of the e�ects on bispectrum due to modifications

to GR are still in its infancy, we shall be as comprehensive as possible by

considering all possible triangle configurations between the two extreme

scales kmin and kmax, given a specific bin width ∆k1 = |∆k1| for each

side. A detection of strong configuration dependence can be regarded

as a compelling motivation to further investigate higher-order statistics.

It would allow us to disentangle the modified gravity signal from other

potential cosmological e�ects, which might be degenerate in two-point

statistics and other alternative measures.

The top panel of Fig. 3.4 compares the bispectrum of equilateral

triangles at the tree-level (dotted line), to the measurements (solid line).

It furthermore contains the measured bispectrum of squeezed triangles

(long dashed), folded triangles (short dashed), and all other triangle

configurations (scattered dots). Vertical lines are spaced ∆k = |∆k|

apart. As we assume a primordial Gaussian random field, we can apply

the Wick theorem to write the bispectrum as products of power spectra

summed over all possible pairings. Thus, the lowest-order bispectrum
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that is able to capture non-Gaussian features at late times has to expand

one of the fields in the correlator of three Fourier modes to second order,

yielding

(3.15) B(211)(k1, k2, k3) = 〈δ(2)(k1)δ
(1)(k2)δ

(1)(k3)〉′ + cyc. = 2F2(k1, k2)P(11)(k1)P(11)(k2) + cyc.,

where δ(n) is given in Eq. (3.6), the primed ensemble average indicates

that we have dropped the factor of (2π)3 as well as the momentum

conserving Delta function, and "cyc." stands for the two remaining per-

mutations over k1, k2 and k3. Note here, that we have assumed that SPT

gives an appropriate description of perturbations in the cvG model and

does not fail to include further mode couplings that might be introduced

through the additional Proca vector field. We will see below that this is

indeed an excellent approximation. The resulting bispectrum scales as

square of the linear power spectrum, P(11), and exhibits a strong con-

figuration dependence as it is directly proportional to the second-order

perturbation theory kernel,F2, which is given by [30],

(3.16) F2 =
17
21

+
1
2

k1 · k2

k1k2

[
k2

k1
+

k1

k2

]
+

2
7

[
(k1 · k2)

2

k2
1k2

2
− 1

3

]
.

To measure the bispectrum from the simulations, we first use fourth-

order density interpolation on two interlaced cubic grids [189] of N =

256 cells per side. Next, we measure B(k1, k2, k3) using an implemen-

tation of the bispectrum estimator presented in Ref. [187]. Starting from

kmin = 2k f = 0.025h−1Mpc, where k f denotes the fundamental

mode, we loop through all configurations satisfying k1 > k2 > k3 and

k1 ≤ k2 + k3 (the triangle closure condition). We stop a�er the values of

k, which are evenly spaced by ∆k = 2k f , reach the kmax = 1.0h−1Mpc,

up until which point the shot noise is sub-dominant. With these settings

– which are chosen to keep memory consumption at bay, as it would

increase rapidly otherwise – we obtain a total of 5910 distinct triangle

configurations.

The top panel of Fig. 3.4 shows that the tree-level prediction B(211)
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Figure 3.4: Top: real-space bispectrum measurements for cvG cosmologies (coloured
points) and their QCDM counterpart (black points). Each data point corresponds to one of
5910 triangle configurations (see the text for more details). The vertical lines are spaced by
the bin width ∆k ≈ 0.025h−1Mpc and indicate the value of |k1|, i.e., the largest triangle
side. The bispectrum for equilateral configurations are shown at the tree-level (dotted),
B211, and simulation measurement (solid). The measured bispectra for the squeezed and
folded configurations are shown as long and short dashed lines respectively. Middle: The
relative di�erence between the cvG models and their QCDM counterpart. Again we show
the tree-level (dotted lines) and simulation (using the same line styles as in the top panel)
results. Bottom: The signal-to-noise ratio of the di�erence between the cvG models and
their QCDM counterpart.

(dotted line) for the equilateral configuration converges to the simulation

measurements of B (solid line) on k ≈ 0.07h−1Mpc, which is agreement

with Pδδ(k) and [15]. In this panel we have also indicated the folded,

squeezed and equilateral configurations by lines (see the legends). It

does not come as a surprise that the measured bispectrum for equilateral

triangles is consistently lower than all other configurations as in our

considered range of k, the power spectrum decreases with increasing

k (as can be seen in Fig. 3.2). The folded triangles, on the other hand,

tend to have the largest amplitude, while the squeezed triangles are in

between.

The middle panel of Fig. 3.4 shows the relative di�erence, Eq. (3.7),

of the bispectrum of equilateral triangles at the tree-level (dotted line),
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and measurements (solid line); for the latter the bispectra for all triangle

configurations are indicated by scattered dots. Again, the results which

correspond to equilateral, squeezed and folded triangle configurations

are shown by lines (the same line styles as in the top panel). We can draw

the following conclusions. Firstly, as it is the case for matter and velocity

divergence power spectra, the tree-level bispectrum is a good estimator

on large scales (k < k∗) while the exact value of k∗ depends on redshi�

and the model parameter β̃3. However, we can see that in general linear

theory gives accurate predictions of ∆B/BQCDM at k < k∗ ∼ 0.1h−1Mpc

for all models. Compared to the matter power spectra, the relative dif-

ference of the bispectra is roughly twice as large as ∆Pδδ/Pδδ,QCDM,

monotonically increasing from 1% for β̃3 = 100 to∼ 9% for β̃3 = 10−6.

Secondly, the order of triangle configurations yielding the largest sig-

nal is reversed to the top row, with the equilateral triangles yielding the

largest relative di�erence between cosmologies with fi�h force and those

without, while squeezed and folded triangles seem to converge to the

same relative di�erence for larger values of β̃3. This is in agreement with

[40], who arrived at a similar conclusion for f (R) and DGP cosmologies.

Figure 3.5: Top: relative di�erence between cvG models and their QCDM counterpart of the
reduced bispectrum measurements, Q. Bottom: relative di�erence between cvG models
and their QCDM counterpart of the ratio between the measured reduced bispectrum and
its tree-level approximation, Q(0). Each data point corresponds to one of 5910 triangle con-
figurations (see the text for more details). The lines represent equilateral (solid), squeezed
(long dashed), and folded (short dashed) triangle configurations as in Fig. 3.4.
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The bottom panel of Fig. 3.4 shows the SNR of the di�erence be-

tween cvG cosmologies and their QCDM counterpart. Three general

trends are revealed: Firstly, an enhancement in the bispectrum sig-

nal with increasing β̃3 relative to QCDM, as we have seen in the middle

panel above. Secondly, the SNR significantly increases towards smaller,

nonlinear, scales. Thirdly, there is no clear trend which triangular con-

figuration results in the highest SNR. The median taken over the range

0.1 < k [h−1Mpc] < 1 for each cvG cosmology is: 0.88 (β̃3 = 10−6), 0.77

(β̃3 = 1), 0.54 (β̃3 = 10) and 0.22 (β̃3 = 100), respectively.

A very useful statistical quantity, that isolates the configuration de-

pendence of the triangles by removing the propagator corrections from

the modified Poisson equation (contained in the nonlinear power spec-

trum), is the reduced bispectrum,

(3.17) Q(k1, k2, k3) ≡
B(k1, k2, k3)

P(k1)P(k2) + cyc. .

The relative di�erence between the reduced bispectra for the cvG mod-

els and their QCDM counterpart is displayed in the top row of Fig. 3.5.

We indeed see how the strong scale dependencies of ∆B/BQCDM are

removed, leaving only sub-percent deviations. The SNR of the di�erence

of Q between the cvG models and their QCDM counterpart (not shown)

revealed a very weak signal on all scales for all models, with a median of

∆Q/σ . 0.05. Therefore we shall not try to interpret the trends revealed

by the individual cvG models, and instead conclude that Q is very weakly

dependent on β̃3.

To quantify how much extra mode coupling the cvG models have

experienced compared to their QCDM counterpart beyond the leading

term,F2 (defined in Eq. (3.16)), we can divide the reduced bispectrum by

its tree level term to define a new quantity,

(3.18) R(k1, k2, k3) ≡
Q

Q(0)
=

B(k1, k2, k3)

2F2(k1, k2)P(k1)P(k2) + cyc. .

The relative di�erence between the R of the cvG models and their QCDM

counterpart is displayed in the bottom row of Fig. 3.5. Again, the results
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are in the sub-percent level and the SNR of the di�erence of R between

the cvG models and their QCDM counterpart (not shown) reveals a very

weak signal on all scales for all models, with a median of ∆Q/σ . 0.06.

The fact that for Q and R the relative di�erence between the cvG

models and QCDM is fairly small, suggests that the fi�h force in the cvG

model does not produce substantial extra mode coupling corrections.

This is a useful result because it means that the cvG e�ect mainly enters

through the modified growth factors, which simplifies the modelling of

the bispectrum. We stress that this does not imply that the bispectrum

is incapable of placing additional constraints on the cvG models. That

is because the bispectrum has a di�erent dependence on the growth

factors than the power spectrum and its configuration dependence is

useful in breaking degeneracies with other parameters, e.g. parameters

that describe the background model or galaxy bias, such that the com-

bination of the two statistics can still be expected to yield significant

improvements.

Modifications of gravity will not only impact the clustering of galaxies,

but also their infall and virial velocities, and consequently alter the RSD

of clustering statistics. In Sec. 3.4.4 below, we discuss the monopole

and quadrupole of the two-point correlation function in redshi� space.

While we have not studied the e�ect of RSD on the bispecctrum, based

on results in [7] for the nDGP model, we expect that the same qualitative

changes would a�ect the bispectrum in cvG gravity.

Finally, let us note again that here we have only looked at the bispec-

trum of the matter density field, rather than the halo or galaxy fields. We

have tried haloes, but due to the box size and resolution in our simula-

tions, the results are noisy and the model di�erences unclear. Therefore

we have decided not to show them here.

3.4 Halo statistics

This section is devoted to a detailed study of halo properties. Haloes are

identified using two di�erent algorithms, as they give complementary
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information about the haloes and can serve in some cases as verification.

Firstly, we use the algorithm developed by [198] to find friends-of-friends

groups to represent the ‘main’ haloes, and then run SUBFIND to identify

substructures in the ‘main’ haloes (from now on we shall refer to the halo

and subhaloes identified in this way as SUBFIND halos). Secondly, we use

ROCKSTAR8 [27] to identify FOF haloes in the 6D phase space where sub- 8 The code is in the
public domain,
https://bitbucket.org/gfcstanford/

rockstar/src/main/
structure is more easily identifiable (from now on we will refer to these

as ROCKSTAR haloes). In most of this section we show results of SUBFIND

haloes, although we have checked that the ROCKSTAR haloes give similar

results. We use ROCKSTAR haloes to study the halo concentration mass

relation, because this is directly measured by ROCKSTAR.

Note that, in principle, the unbinding procedure employed by the halo

finding algorithms would need to be modified due to the presence of

the fi�h force induced by the Proca field. However, [133] found the e�ect

of this modification to be quite small for chameleon models. Also, we

will see below, the fi�h force in the cvG models is strongly suppressed

by Vainshtein screening, and so we expect its e�ect will be even smaller

here. Thus, we use identical versions of SUBFIND and ROCKSTAR for the

di�erent cosmologies.

We compare the cvG models to their QCDM counterpart in the same

way as we have done in Sec. 3.3 via Eq. (3.7) and Eq. (3.8).

3.4.1 Halo mass function

We start the analysis of the halo populations with the one-point distri-

bution of halo masses – the halo mass function (HMF). The halo mass

is defined as the mass enclosed in the spherical region of radius R200

around the centre of the over-density, within which the mean density is

200 times the critical density ρc at the halo redshi�,

(3.19) M200c =
4π

3
R3

200200ρc, with ρc =
3H2

8πG
.

In the top row of Fig. 3.6 we show the cumulative HMF, n(> M200c),

which is the number density of dark matter haloes more massive than
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the given M200c, at a = 0.6 (outer le�), 0.7 (inner le�), 0.8 (inner right)

and 1.0 (outer right). The bottom-up picture of structure formation, i.e.,

small-scale objects collapse first and merge to form increasingly massive

objects as time proceeds, is clearly visible, which follows from the fact

that in our model dark matter is cold.

Figure 3.6: Top: panels show the cumulative halo mass function, n (> M200c), for the cvG
model (coloured) and their QCDM (black) counterpart. Each column shows the results
for a di�erent scale factor: outer le�: a = 0.6, inner le�: a = 0.7, inner right: a = 0.8,
outer right: a = 1.0. Bottom: the relative di�erences to QCDM. The results shown are
obtained by averaging over the simulations of the 5 di�erent initial condition realizations
and the shaded region show the standard deviation over these realizations. The vertical
shaded region corresponds to haloes with fewer than 100 simulation particles, for which
the number is incomplete due to the lack of resolution.

The bottom row of Fig. 3.6 shows the relative di�erence between

the cvG models and their QCDM counterpart. The median of SNR of

the di�erences between the models over the range shown in the figure

is: 7.1 (β̃3 = 10−6), 6.4 (β̃3 = 1), 5.5 (β̃3 = 10), 2.9 (β̃3 = 100).

We find good agreement with [17], and have verified that the result is

consistent between SUBFIND and ROCKSTAR. The fi�h force enhances

the abundance of dark matter haloes in the entire mass range probed

by the simulations, with the enhancement stronger at late times and for

high-mass haloes, which mimics the e�ect of the csG model [21]. This is

to be expected because the strength of the fi�h force increases over time
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[26]. Note that for massive haloes the increase in abundance is mainly

due to an increase in individual halo masses, as can be seen from the top

panels: we remark that more massive haloes are not necessarily more

strongly screened in Vainshtein models (see, e.g., Fig. 8 of [114]), and

the enhanced gravity around these massive haloes helps to bring more

matter from their (matter-rich) surroundings to their vicinity, allowing

them to grow larger. On the other hand, models with more e�icient

screening, such as β̃3 > 1, show a more restrained enhancement of the

HMF.

To be able to use cluster number counts to constrain the cvG model, a

few more steps have to be undertaken. The observational estimate of the

halo mass function will require, in addition to the detailed specifications

of individual cluster surveys (completeness, redshi� distribution, observ-

ing technology, etc.), a more accurate quantification of the cvG e�ect on

the high-mass end of the HMF (for which our simulation volume is not

enough) and better knowledge of the cluster scaling relations (which are

needed to connect halo mass to cluster observable such as X-ray temper-

ature, YX , YSZ, because the cluster’s mass is not a direct observable). A

detailed study of cluster constraints on this class of models will be le� as

future work.

3.4.2 Two-point correlation functions

The configuration-space counterpart of the matter power spectrum, Pδδ,

presented in Sec. 3.3.1, is the two-point correlation function (2PCF), ξ(r).

In principle these two measures would carry the same information, but

in practice this is not guaranteed since our analyses are restricted to a

finite range of scales, and moreover, configuration and Fourier space

statistics are impacted di�erently by systematic e�ects, which require

slightly di�erent analysis strategies (e.g. the treatment of shot noise).

For this analysis we use SUBFIND haloes, since these catalogues

contain the subhaloes which can be proxies of satellite galaxies, and

without which ξ(r) would decay at r . 1-2 h/Mpc due to the halo



PROCA-STINATED COSMOLOGY II: MATTER, HALO, AND LENSING STATISTICS IN THE VECTOR GALILEON
97

exclusion e�ect. We show their respective 2PCFs in the top row of Fig. 3.7

for a = 0.6 (outer le�), a = 0.7 (inner le�), a = 0.8 (inner right) and a =

1.0 (outer right). As expected, the 2PCFs drop o� with halo separation,

and can be well described by a power law across the entire range of

scales probed here.

Figure 3.7: Top: The halo 2PCFs in the QCDM model. Each column shows the results for a
di�erent scale factor: outer le�: a = 0.6, inner le�: a = 0.7, inner right: a = 0.8, outer right:
a = 1.0. Note that to prevent the plot from appearing cluttered we have not shown the
results for the cvG models. Furthermore, we included the standard deviation as a shaded
region, but it is too small to see. Bottom: The relative di�erences between models. The cvG
model for four values of β̃3 = (10−6, 1, 10, 100) are shown, indicated by a blue, green,
orange and red line respectively. The shaded regions are the standard deviations among
the five simulation realizations.

The relative di�erence between the 2PCFs of the cvG models and their

QCDM counterpart for SUBFIND haloes is shown in the bottom row of

Fig. 3.7. As for the power spectrum of the matter field, Fig. 3.2, we see

more enhanced clustering for smaller values of β̃3 as a → 1. The rapid

increase of the relative di�erences, ∆ξ/ξQCDM, starting at a ≈ 0.8 is a

consequence of the fast increase of the e�ective Newton constant at late

times (see [26]). However, the cvG enhancement for halo clustering is

smaller than for matter clustering, implying slightly smaller halo biases

in stronger cvG models. This is because haloes are biased tracers of

the dark matter field, and their bias generally decreases over time, as
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structure formation progresses: the enhanced gravity in cvG models

simply speeds this up. Note that the enhancement of the halo 2PCF is

nearly constant down to∼ 3 h/Mpc, consistent with the behaviour of

the matter power spectrum (cf. Fig. 3.2), and reflecting the fact that in the

cvG model the growth factor is enhanced in a scale-independent way in

the linear regime.

3.4.3 Mean halo pairwise velocity

As outlined earlier, it is quintessential to develop a theoretical model

of the pairwise velocity statistics as well as the real-space correlation

function for cosmological analyses with redshi� surveys, such as Euclid

and DESI. Although we do not strive to actually test the cosmological

models investigated here, we measure the relevant quantities to gain

an intuition of how they are a�ected by the cvG model and to aid future

work.

For this analysis we use SUBFIND haloes, as they contain the smallest

haloes and subhaloes and thus can enable measurements to smaller

scales, including the virial motions of subhaloes inside main haloes. We

show the measured mean pairwise velocities for the di�erent models in

the top row of Fig. 3.8, comparing linear estimates (dotted lines) to the

simulation results (solid lines) at a = 0.6 (outer le�), a = 0.7 (inner le�),

a = 0.8 (inner right) and a = 1.0 (outer right). The linear mean pairwise

velocity, v〈ij〉, is intimately related to the 2PCF of the matter field, ξ(r),

through the pair conservation equation, Eq. (3.20), just as Pθθ is to Pδδ

(see Sec. 3.3.1) through the continuity equation, Eq. (3.11) [167],

(3.20) ξ̇ij +
1
a
∇ij ·

[
v〈ij〉

(
1 + ξij

)]
= 0.

We can replace the 2PCF in Eq. (3.20) with its Fourier space counterpart

in first order, P(11)
δδ , using the first-order Bessel function j1, and obtain the

linear theory prediction of v〈ij〉 expressed as

(3.21) v〈ij〉(r) = −r
f b
π2

∫
dkP(11)

δδ (k)j1(kr)k,
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where b is the linear bias of halos, f is the linear growth rate and j1 is the

spherical Bessel function of order 1 [175]. To get the bias values used

in the linear theory prediction for Fig. 3.8, cf. Eq. (3.21), we compute

the halo power spectrum, Phh, divide it by the matter power spectrum,

b2 ≈ Phh/Pδδ. Due to the sparseness of haloes, the shot-noise be-

comes sub-Poisson on larger scales than it does for dark matter particles.

Therefore we restrict the calculation of b to scales where the relation

stays approximately constant, 0.025 < k h/Mpc < 0.1. We find that

at each scale factor, the di�erent cosmological models have the same

fitted value of b (averaged over all 5 simulation realisations) up to the

second decimal. Beyond the second decimal b indeed increases with β̃3

as expected from the relation of ξ(r) and Pδδ(k).
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Figure 3.8: Top: the mean pairwise radial velocity of dark matter haloes. In each panel we
show the mean measurements from the simulations (solid lines) with their one standard
deviation (shaded regions), together with the linear theory predictions (dotted lines). Each
column shows the results for a di�erent scale factor: outer le�: a = 0.6, inner le�: a = 0.7,
inner right: a = 0.8, outer right: a = 1.0. Bottom: the relative di�erences between the cvG
models and QCDM. Note that the velocities are rescaled by H so that they have the unit of
length.

The relative di�erence between v〈ij〉 of the cvG models and their

QCDM counterpart is shown in the bottom row of Fig. 3.8, which con-

verges to the linear-theory prediction for all cvG models at scales r >
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10 h/Mpc. Note that in linear theory the fi�h force leads to a scale-

independent enhancement of the velocity [26]. From the top row of

Fig. 3.8 we can see that non-linearity starts a�ecting the velocity statistics

at. 20− 30 h/Mpc. However, the bottom row shows that modified

gravity e�ect, i.e., the enhancement with respect to QCDM can be well

described by linear theory down to' 10 h/Mpc. As an example, for

β̃3 = 10−6 the relative di�erence settles on∼ 0.15 for large scales, which

is approximately half of ∆Pθθ(k)/Pθθ,QCDM(k) shown in Fig. 3.3, partially

due to the fact that Pθθ ∝ f 2. If ROCKSTAR-halos are considered the same

qualitative trend is found on the larger scales.

3.4.4 Redshi� space clustering

Motivated by the results of the real space clustering and mean pairwise

velocity, we carry on to study the halo 2PCF in redshi� space. In real ob-

servations, instead of their radial distances, we measure the redshi�s

of galaxies. The conversion from redshi� space to real-space galaxy

coordinates is not only determined by the Hubble expansion, but also

a�ected by the peculiar velocities of galaxies. This induces anisotropies

on what would be an isotropic galaxy correlation function, known as

redshi�-space distortions (RSD). RSD is a useful probe of the peculiar

velocity field, and consequently the growth rate of matter. In particular,

the quadrupole of the redshi�-space galaxy correlation function is sen-

sitive to the galaxy (or halo) pairwise infall velocity, which we have seen

above can be strongly enhanced by the fi�h force in the cvG model. We

use haloes (subhaloes) as proxies of galaxies in this study.

The mapping of the halo coordinates from real space to redshi� space

is given by,

(3.22) s = r +
v(r) · ẑ

aH ẑ,

where ẑ is the unit vector in the line of sight direction which we have

chosen to be along the z-axis of the simulation box, assuming that the
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Figure 3.9: Top: the monopole, ξs
0, and quadrupole, ξs

2, moments of the 2PCF in redshi�
space. The results are obtained by averaging over the five simulations for each cosmology
(solid lines) and shaded region show the standard deviation over these realization, which
we show only for QCDM to maintain clearness. We have not shown the cvG results to
prevent the plot from appearing cluttered. Central and bottom: the relative di�erences of
ξs

0 and ξs
2 respectively. Each column shows the results for a di�erent scale factor: outer le�:

a = 0.6, inner le�: a = 0.7, inner right: a = 0.8, outer right: a = 1.0.

galaxies are far away from the observer (plane-parallel approximation).

Thus, the anisotropic correlation function is given by

(3.23) ξs(s, µ) = 〈δ(x)δ(x + s)〉,

where s is the halo separation vector, s its magnitude, s‖ the halo separa-

tion along the line of sight direction, and µ = cos(s‖/s) is the cosine of

the angle between s and the LOS. We measure ξs(s, µ), using SUBFIND-

halos for the same reason stated in the previous section, over 40 bins of

µ = [0, 1] and 40 bins of s = [0, 40] h/Mpc. In order to increase the SNR

ratio, it is helpful to project ξs(s, µ) onto a one-dimensional object which

depends on s only. Therefore, we decompose the measured ξs(s, µ) into
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multipole moments using its Legendre expansion,

(3.24) ξs(s, µ) = ∑
`

ξs
`(µ)L`(µ),

where ` is the order of the multipole and L`(µ) is the Legendre polyno-

mial at the `-th order. Inverting Eq. (3.24) and integrating over µ, we find

(3.25) ξs
`(s) =

2`+ 1
2

∫ 1

−1
dµξs(s, µ)L`(µ).

As the redshi� space correlation function is symmetric in µ, only even

values of ` give a non-zero contributions. Of these, we study the two

lowest multipoles: the monopole (` = 0), and the quadrupole (` = 2).

We omit higher order multipoles (l ≥ 4), as they do not have a big impact

on the estimation of the correlation function and are noisier than the

monopole and quadrupole [105].

In the top row of Fig. 3.9, we show the monopole, ξs
0, and quadrupole,

ξs
2, moments of the QCDM model, at a = 0.6 (outer le�), 0.7 (inner

le�), 0.8 (inner right) and 1.0 (outer right). We limit the study to scales

< 40 h/Mpc which is roughly 1/10 of the simulation box size. We know,

however, that the peak position of the baryon acoustic oscillations (BAO)

will be a�ected by the cvG model, as β̃3 → ∞ converges to QCDM and

β̃3 → 0 converges to the cosmology of the csG, both being di�erent

from ΛCDM. The csG model is known to be unable to reproduce the BAO

position [64, 154, 65] (see however [19]).

The central and bottom rows of Fig. 3.9 show the relative di�erences

between the cvG models and their QCDM counterpart, for the monopole

and quadrupole, respectively. Both show the suppression of the fi�h

force due to the Vainshtein screening on small scales, r . 10h−1Mpc,

resulting in their respective reduction of the enhancement with respect

to QCDM. As it has been the case for ξ and v〈ij〉, the relative di�erence

of the cvG model to its QCDM counterpart increases with a decreas-

ing value of β̃3 especially on scales > 20 h/Mpc, due to the higher

growth rate and stronger matter fluctuations, both of which are con-
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sequences of the enhanced gravitational force. This implies that with

decreasing β̃3 the contours of the two-dimensional 2PCF in redshi�

space, ξs(s‖, s⊥), are more squashed, as could already be anticipated

from the results shown in Fig. 3.2. The scales below 20 h/Mpc are

in principle observable using galaxy clustering measurements from

galaxy surveys. However, to accurately model galaxy clustering from

the halo clustering shown here, and hence to constrain the cvG model

using real observations, requires a dedicated study which will be le�

for the future. In this work, we only show the qualitative behaviours

of the few models simulated. The values of ∆ξ2/ξ2,QCDM converge on

large scales for each cvG model to approximately the same values as

for ∆v〈ij〉/v〈ij〉,QCDM. The median SNR at a = 1 (outer right panel),

taken over the range 20 < s/( h/Mpc) < 40, is approximately equal

up to 7.2 for the monopole and 3.5 for the quadrupole for the strongest

cvG model β̃3 = 10−6. Although the relative di�erence is larger in

the quadrupole, the SNR values are larger for the monopole, which

is because the quadrupole is sensitive to the pairwise infall velocity

v〈ij〉, which has a larger scatter than the real-space correlation function

(see Figs. 3.8 and 3.7) that dominates the monopole signal. The RSD

quadrupole can be a more promising probe to constrain the cvG model if

the statistical uncertainties can be reduced by large amount of data.

3.4.5 Concentration-mass relation

For dark matter haloes, the strongest e�ect of Vainshtein screening is

perhaps in the density profiles. This is because the interiors of haloes are

expected to be strongly screened, see e.g., [84, 85, 114]. The Vainshtein

screening radius can be even larger in the csG model and cvG models

with β̃3 → 0, than in the DGP model at late times [26], so we expect the

screening to be strong and the internal properties of haloes protected by

it from the influence of the fi�h force.

The density distribution inside dark matter halos is well described by
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the universal Navarro-Frenk-White (NFW; [156, 157]) profile,

(3.26) ρNFW(r) =
ρs

r/Rs (1 + r/Rs)
2 ,

where ρs and Rs are the characteristic density and scale radius respec-

tively, which can vary from halo to halo. Thus the halo mass, M200c, can

be obtained by integrating the NFW density profile

(3.27) M200c =
∫ R200c

0
4πr2ρ(r)dr = 4πρsR3

200c f (c200) ,

where we have defined the function

(3.28) f (x) = ln (1 + x)− x
1 + x

,

and the concentration parameter,

(3.29) c200 ≡
R200c

Rs
,

which describes the steepness of the density profile. Using Eq. (3.26),

we can relate ρs to c200, and therefore the NFW profile can be fully

parametrised using M200 and c200. Here we use the publicly available

phase-space friends-and-friends code ROCKSTAR [27] to calculate the

halo concentrations. ROCKSTAR solves the concentration using the fol-

lowing equation:

(3.30) GM200c

R200c

c200

f (c200)
= v2

max
2.163

f (2.163)
,

where vmax =
√

GM(< Rmax)/Rmax is the maximum circular velocity

inside a halo, which occurs at r = Rmax ' 2.163Rs for an NFW density

profile. Note that we do not attempt to do a full fitting of the NFW profile

Eq. (3.26) for individual haloes in this work.

The top row of Fig. 3.10 shows the halo concentration-mass relations

at a = 0.6 (outer le�), a = 0.7 (inner le�), a = 0.8 (inner right), and a =

1.0 (outer right). To ensure accurate measurements, we have excluded all
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Figure 3.10: The top panels show the relationship between halo mass, M200c, and the
NFW definition of halo concentration, c200 for the QCDM model (the results for the cvG
variants are not shown here because they are very close to the QCDM one). The bot-
tom panels show the relative di�erences of the cvG models to QCDM, ∆c/cQCDM =
(ccvG − cQCDM) /cQCDM. Each column shows the results for a di�erent scale factor: outer
le�: a = 0.6, inner le�: a = 0.7, inner right: a = 0.8, outer right: a = 1.0. The results
shown are obtained by averaging over the 5 independent realisations of simulations, and
the shaded region show the standard deviation over these realisations. We do not show the
results for M200 & 1.5× 1015 M�/h, since in this mass ranges there are only a few haloes.

haloes with fewer than 1000 simulation particles from this figure which,

combined with the small box size of our simulations, allows us to analyse

the c200-M200c relationship for halo masses that span only one order of

magnitude. Nevertheless, we can clearly see that the relationship follows

a power law [143, 158, 77]. Note that the statistics is poor at large mass

and early times, due to a lack of haloes.

Without the screening mechanism we would expect haloes in a Proca

universe to be more concentrated than their counterparts in a QCDM

cosmology, since the strength of gravity increases quickly at late times

[26], which causes a faster steepening of the gravitational potential

inside haloes, attracting more matter to the central region and leading

to a steeper density profile [148]. However, in the cvG model, just as for

the csG model [21], the Vainshtein screening is by design e�ective in

suppressing any e�ect of the fi�h force, as can be seen from the bottom

panels of Fig. 3.10.
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3.4.6 Weak Lensing statistics

In the final section we focus on the study of weak-lensing statistics. We

start by analysing the lensing convergence field (κ) which can be used

together with the matter power spectrum and bispectrum to circumvent

the dependence on tracer bias (e.g., [231]), and end with an analysis of

the abundances and tangential shear profiles of voids identified from WL

maps [56, 59].

3.4.7 Weak lensing convergence and peak statistics

Weak lensing (WL) is governed by the lensing potential, Φlens, which is

given by

(3.31) Φlens =
Φ + Ψ

2
,

with Φ and Ψ being the two Bardeen potentials in the metric Eq. (2.19).

Φ and Ψ are related to each other through the anistropic stress. At late

times, since we neglect matter species such as photons and neutrinos,

in the cvG and qcdm models, the anisotropic stress is negligible so that

we have Φ = Ψ. Therefore, in the cvG model not only massive parti-

cles can feel deviations from GR, but also can massless particles, as the

dynamical and lensing potentials are equal and can both be modified

substantially in the case of β̃3 → 0. This is in contrast to some other

models of gravity, such as f (R) gravity and the DGP modely, which do

not modify the lensing potential directly through a modified Poisson

equation.

The relation between κ and Φlens and how those quantities are solved

‘on-the-fly’ during the simulation run time was summarised in Sec. 3.2.

Here we would like to be more explicit how Eq. (4.1) is a�ected by the cvG

compared to the QCDM. For the qcdm cosmology we have, in ECOSMOG’s

code units,

(3.32) ∇̃2Φ̃QCDM
lens = ∇̃2Φ̃ΛCDM

lens = 4πGa2δρ̃,
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Figure 3.11: We visualise a portion of the κ maps, smoothed by a Gaussian kernel with a
width θ = 2.5 arcmin, of in qcdm (le�), and the di�erence between the cvG model and
their qcdm counterpart with ∆κ = κ(β̃3)− κQCDM, for β̃3 = [10−6, 102] (centre and right
respectively). The maps show the ray tracing results for the redshi� range z = [0.08, 1.0].
Notice the enhanced clustering in the centre compared to the right panel, indicating
that more matter is moved towards (away from) overdense (underdense) regions in cvG
cosmologies with smaller β̃3.

where G is the gravitational constant and δρ̃ the density contrast. How-

ever, as the expansion history is altered in qcdm compared to ΛCDM

their κ field will not be the same. For the cvG model, where the fi�h force

and screening mechanism are included, the lensing potential is

(3.33) ∇̃2Φ̃cvG
lens = ∇̃

2Φ̃ΛCDM
lens +

3βsDGP

2β
α∂̃2χ̃,

where βsDGP is the coupling strength between matter and the brane-

bending mode in the sDGP model, and β and α are given by Eq. (2.64)

and Eq. (2.55) respectively. This modification of the lensing potential will

modify Eq. (4.1) in the linear regime as

(3.34) κ =
1
c2

∫ χs

0

χ (χs − χ)

χs

(
1 +

α

β

)
∇̃2Φ̃lens,2D(χ,~β(χ))dχ,

in addition to the modified expansion history. Here χ, which is the co-

moving distance, should not be confused with the longitudinal Proca

mode, χ̃. This simple rescaling does not account for the e�ects of the

screening mechanism and can only be accurately predicted through

simulations as used in this work.
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It is important to note here, that we solve the integral of Eq. (3.34)

between z = [0.08, 1.0], as we found that artefacts appear for the β̃3 =

10−6 cvG model. The reason behind this might be explained through the

failure of numerical computation of the χ̃ field in under-dense regions.

This is a problem which has been reported multiple times [17, 136, 16,

224] and discussed in terms of the cvG model in [26].

The resulting κ map is shown in Fig. 3.11 for qcdm (le�), together with

the residual between qcdm and the cvG model, ∆κ = κ(β̃3)− κQCDM,

for β̃3 = [10−6, 102] (centre and right respectively). All maps have been

Figure 3.12: Weak lensing statistics: lensing convergence angular power spectra (top),
probability distribution function of the weak lensing convergence field (middle), weak
lensing peak abundance plotted as a function of peak height (bottom). The results shown
here are obtained using a 10× 10 deg2 partial sky-map for a redshi� range z = [0.08, 1.0].
We show results of the κ maps (faint) and the κ maps including the galaxy shape noise map,
NGSN, and smoothed with a Gaussian kernel of width θ = 2.5 arcmin (bright) for the cvG
model variants (colour) and their qcdm (black) counterpart.
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smoothed with a Gaussian kernel of width θ = 2.5 arcmin which we

will abbreviate as SG. It is clearly visible how underdense and overdense

regions are more pronounced for β̃3 → 0 while for β̃3 → ∞ the model

approaches the behaviour of the qcdm cosmology.

In the middle panel of Fig. 3.11 we can see a number of ‘dipole’ fea-

tures, where a positive-residual ‘hot spot’ (∆κ > 0) is aligned with a ‘cold

spot’ (∆κ < 0). This is produced by the transverse (i.e., perpendicular to

the line of sight) motion of the halo which contributes most for a given

line of sight: for this case the κ peak in the le� panel would have moved

slightly, causing this dipole feature in the residual map. Such dipoles are

harder to find in the right panel, again because for β̃3 → 0 the model be-

haves very similarly to QCDM, so that haloes move little compared with

the latter case.

Another feature worth mentioning in the middle panel of Fig. 3.11 is

that we can see that near the massive structures the convergence field is

enhanced by over 10%. This is partly due to the increased halo masses,

but most likely the dominant e�ect here is the fact that the Proca field

can also modify the lensing potential, as mentioned above. While we

shall not investigate it here, let us note that this means that weak lensing

by galaxy clusters can be a potential probe to constrain this model.

However, as in the case of csG [23], we expect that the constraining

power of cluster lensing may be limited by Vainshtein screening in the

vicinity of clusters. We shall see shortly that this strong enhancement of

convergence can be detected in the convergence power spectrum (or the

shear correlation function) which can probe large-scale variations of the

lensing potential.

In observations, the WL signal is obtained by averaging the shearing

of source galaxy shapes over a large number of source galaxies whose

intrinsic ellipticity dominates over the physical tangential shear signal.

This e�ect is known as galaxy shape noise (Galaxy Shape Noise (GSN))

and is a main source of uncertainty on small angular scales. We include

the GSN by modelling it as a Gaussian random field which we will denote

as NGSN. Therefore we assume that NGSN is independent of the underly-
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ing κ. Furthermore, we assume that the correlation function of NGSN is a

δ function, thus pixel values show no correlation. The standard deviation

of the Gaussian distribution is given by

(3.35) σ2
pix =

σ2
int

2θpixngal
,

where σint is the intrinsic ellipticity dispersion of the source galaxies, θpix

is the width of each pixel, and ngal is the measured source galaxy number

density. We use σint = 0.4 and ngal = 40 arcmin−2, which match LSST

specifications [3].

The GSN can strongly impact the small-scale features of the lensing

map, which is why for noisy maps one usually needs to apply a smooth-

ing, SG. The size of the smoothing filter (i.e., the smoothing scale, θ),

needs to be carefully chosen so that it is large enough to suppress the

noise e�ects, and small enough to not smooth away too much physical

signature. In practice, the smoothing scale needs to be checked for dif-

ferent statistics from the lensing map, and for di�erent noise levels (e.g.,

di�erent surveys have di�erent source galaxy number densities, which

can lead to di�erent levels of noise impact). In this Chapter, because

the statistics we analyse and the survey specifications are the same as

those of [59], we have applied the same filter as there. Note that in this

plot we are showing statistics measured from an ideal lensing map with-

out smoothing and a noisy map a�er smoothing, the former is just for

theoretical interest.

In the top row of Fig. 3.12 we show the results for the power spec-

trum of the κ maps (faint) and the κ-NGSN-SG maps (bright). We do not

include the linear theory prediction, as it holds up to ` . 102 and is

thus outside of the range of multipoles we are able to extract from the

maps. The le� panel shows the absolute power spectra measurements

for which we have not included the results for ` > 104 as such small

angular scales are not well-resolved given our simulation resolution. In

terms of the relative di�erence between the cvG models to their qcdm

counterpart in the right panel, the curves show the expected behaviour
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that, on large angular scales (` < 104), the amplitude is higher in the

cvG models with smaller β̃3. However, since we use a partial-sky map of

10× 10 deg2, the power spectra in the le� panel could su�er from a large

sample variance. This, however, should not strongly a�ect the result

of the relative di�erence, as it roughly cancels out. As we go to smaller

angular scales, l → 104, all cvG models converge toward their qcdm

counterpart, which reflects the operation of the screening mechanism on

small scales, e.g., inside haloes. Note that the smoothed maps behave

similarly, though not identically, to the unsmoothed ones at ` . 103,

while on smaller angular scales the smoothing significantly changes the

model di�erence. This indicates a potential limitation on using the con-

vergence power spectrum or shear two-point correlation function to test

the cvG model, but we note that the large angular scales are where the

model di�erence is most prominent anyway.

The middle row of Fig. 3.12 shows the one-point distribution of the

κ maps (faint) and the κ-NGSN-SG maps (bright). It contains informa-

tion on non-Gaussian aspects of the convergence field that are not in-

cluded in the convergence power spectra. We can see that cvG models

with smaller β̃3 have larger numbers of pixels with both high and low

κ values. This behaviour is expected because the fi�h force in the cvG

models helps to move more matter towards (from) dense (underdense)

regions, as can be seen in Fig. 3.11. It is good to see that increasing the

β̃3 parameter indeed leads a smooth transition to QCDM, which is what

is needed to cure the problem of having too strong a lensing e�ect in

the csG model. The same happens to the void γt profiles too, as will be

shown in the next subsection.

The bottom row of Fig. 3.12 shows the WL peak abundance for the

κ-NGSN-SG maps. This result is useful on its own because WL peak statis-

tics can be a useful cosmological probe (e.g., [119, 74, 192, 139, 141, 58,

88, 53]) but will also be useful for the study of void identified through WL

peaks in the next subsection. We identify peaks as pixels whose κ values

are larger than those of their eight neighbours. For consistent definitions

between the di�erent cosmological models, we define the amplitude of ν
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of a map pixel as

(3.36) ν =
κ

σGSN
,

where σGSN = 0.007 is the standard deviation of the NGSN-SG map

generated using the LSST specifications given above. From the bottom

panels of Fig. 3.12, we can see that for β̃3 → 0, there is a significant in-

crease in the numbers of the high-amplitude peaks, which indicates that

the fi�h force strongly enhances the lensing signal of these pixels (note

that the fi�h force also increases the halo masses as found in Fig. 3.6,

which also contributes to this). On the other hand, the abundance of

small peaks (ν < 1) is reduced as β̃3 → 0, because some of the haloes

that produce peaks with ν < 1 in qcdm have been able to produce peaks

with ν > 1 in the cvG models. This trend agrees qualitatively with results

found for the nDGP cosmology [57].

Thus, in this work we only consider voids for their weak lensing and

not for other properties that can be used to test gravity. One void statisic

that we have not pursued in this work, but which could provide poten-

tially stringent cosmological constraints, is the measurement of RSD

around 3D voids (e.g., [102]). This is not studied here mainly due to the

small box sizes our simulations, and will be le� for future work.

3.4.8 Cosmic voids

Cosmic voids are regions in the Universe where the densities of dark

matter or tracers are low. In recent years it has been shown that voids

(e.g., [214, 47, 98]) can be a useful probe for a variety of models (e.g.,

[39, 42, 22, 172, 25, 103, 115, 86, 43, 164, 57, 14, 171, 13, 104]), includ-

ing the test of modified gravity models that are featured by Vainshtein

screening [22, 25, 86, 14]. There are a large number of methods to find

voids. Typically, they are identified from the full 3D distribution of matter

(traced by tracers such as galaxies), for which void statistics such as their

abundance, radial galaxy/matter density profiles and shapes contain use-

ful cosmological information (see, e.g., [222, 92, 36, 39, 129]). Recently, it
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has been argued that void identification based on WL convergence maps

can lead to the better constraints of certain modified gravity theories

[57].

This has motivated us to use voids from the two dimensional conver-

gence field through the tunnel and watershed algorithms as the resulting

void catalogues have been shown to be amongst the most promising

[59].

Whilst the convergence profiles of voids allow for a simpler physical

interpretation of the mass content, where positive and negative κ corre-

spond to projected over-dense and under-dense regions, it is the tangen-

tial shear which can be measured directly in observations. Therefore, to

o�er a more straightforward comparison with observations, we study the

void tangential shear profile γt(r), which is related to the convergence

profile through

(3.37) γt(r) = κ̄(< r)− κ(r),

where

(3.38) κ̄(< r) =
1

πr2

∫ r

0
2πr′κ(r′)dr′,

is the mean enclosed convergence within radius r.

Tunnels

The tunnel algorithm of [43, 56, 57] identifies voids based on a WL

peaks catalogue. We will from now on refer to these voids as tunnels.

We find peaks using the κ map smoothed by a compensated Gaussian

kernel wither an inner kernel width of θinner = 2.5 arcmin and a outer

kernel width of θouter = 15 arcmin, which we will abbreviate as ScG. The

use of ScG instead of SG is motivated by the larger number of identified

peaks, which again will results in more identified tunnels and thus bet-

ter statistics. Each identified peak is placed into three categories based

on Eq. (3.36): ν > [1, 2, 3]. For each category, a Delaunay tessellation
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with the peaks at the vertices is constructed. This produces a tessellation

of Delaunay triangles, with a peak at the corner of each triangle, and

no peaks within the triangles. Each Delaunay triangle is then used to

construct its corresponding circumcircle, with the three vertices of the

triangle falling on the circumcircle’s circumference. This unique tessel-

lation, by definition, produces circles which do not enclose any peaks.

In order to increase the number of tunnels, which is necessary because

of the small area of our convergence maps, we use all possible tunnels,

including neighbouring ones which have a large degree of overlap in our

study.

The top row of Fig. 3.13 shows the tunnel size distribution identified

from peak catalogues of di�erent significance: ν > 1 (le�), ν > 2

(centre), and ν > 3 (right). The smallest tunnels are generated by the

ν > 1 peak catalogue, which also produces the most tunnels, because

the large number of peaks in this catalogue tends to partition the map

into smaller Delaunay triangles. As the ν threshold increases, the typical

tunnel size increases, however there are also fewer tunnels overall. This

Figure 3.13: Top: the tunnel abundance as a function of their radii for the three WL peak
categories: le�: ν > 1, centre: ν > 2, right: ν > 3. Bottom: relative di�erence between the
cvG cosmologies and their qcdm counterpart.
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implies that each of the three categories should respond di�erently

to the large scales modes of the κ map, and thus creating the tightest

constraints through combined analyses. Due to our small sample size,

this remains to be tested.

The bottom row of Fig. 3.13 shows the relative di�erence between the

cvG models and their qcdm counterpart. It is interesting to observe, that

while smaller tunnels (Rv . 0.2 deg) are more abundant in cvG with

β̃3 → 0 than in qcdm it is vice versa for larger voids (Rv & 0.2 deg).

This is a consequence of a higher abundance in WL peaks for the cvG

cosmologies compared to their QCDM counterpart for all of our peak

categories, see Fig. 3.12. The high abundance leads to the brake up of

large voids into smaller ones, resulting in more small voids and fewer

large voids in the cvG models.

Fig. 3.14 shows the tangential shear profiles, Eq. (3.37), of the three

tunnel catalogues shown in Fig. 3.13. The profile are based on the κ-

NGSN maps, as smoothing would dampen the void profiles and the dif-

Figure 3.14: Top: Tunnel tangential shear profiles as a function of the scaled distance from
the centre, r/Rv, for qcdm (black) and cvG models with β̃3 = 10−6 (blue), 100 (green), 101

(orange) and 102 (red). The shaded region indicates the standard deviation of all tunnels
in the qcdm map (for clarity we do not show this for the other models). The shaded region
indicates the standard deviation. Bottom: The relative di�erence between the cvG models
and their qcdm counterpart. From le� to right the panels are respectively for tunnels
identified from peak catalogues with peak height ν > 1, 2 and 3. We do not show the
standard deviation as they very large due to our small sample size.
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ferences between the cosmological models. We compute the γt profiles

statistics by stacking all voids in a given catalogue, weighting them de-

pending on their size (the smaller the void, the less its statistical weight).

This is done, since larger voids are better resolved, as they cover more

pixels of the weak lensing map and more source galaxies. To obtain the

1-σ error, indicated by the shaded region in the top row, we loop through

100 bootstrap resamples. We recover the typical tangential shear profile,

which indicates that voids act as concave lenses. The extrema of the pro-

file is located at r ≈ Rv for all void categories and is increasing as the

void sizes increase.

In the bottom row of Fig. 3.14 we can clearly see that the potential well

get deeper as β̃3 → 0, reflecting the e�ects of enhanced structure forma-

tion and modified photon geodesics. We do not show the bootstrapped

1-σ error for the relative di�erences, as our sample size is too small.

Watershed

Figure 3.15: Statistics for the watershed voids. Le�: the cumulative void abundance as
a function of the e�ective radius of the watershed voids, Rv. Right: the tangential shear
signal of these voids, as a function of the scaled radius from void centre, r/Rv. The upper
panels show the results for qcdm (black) and cvG models with β̃3 = 10−6 (blue), 100

(green), 101 (orange) and 102 (red), while the lower panels show the relative (for the
void abundance) and absolute (for the tangential shear profile) di�erences between the
cvG models and their qcdm counterpart. The shaded region in the top row indicates the
standard deviation of all profiles in the qcdm model.
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The watershed algorithm of [174] identifies voids based on the basins

in the topographic map which is constructed from the κ map. To find the

watershed basins, each pixel of the κ map is connected to its neighbour

with the lowest κ value – a process that is repeated for successive neigh-

bours until a local minimum emerges. All pixels connected to the same

minimum in this way form one watershed basin, with ridges of local high

κ values along the basin boundary. We could have used the WL peak

catalogues to identify watershed voids, as is done for tunnels, but the

results are generally very noisy [59]. To mitigate the impact of GSN, [59]

found that the height of the basin boundary should have a minimum κ

value of hboundary = σGSN/2. This means, that in our analysis we de-

fine the merge criteria as follows: we compare the average amplitude

of each basin boundary with the amplitude of their corresponding min-

ima. If the absolute di�erence in amplitude between the two is less than

hboundary, we merge that basin with its neighbour, which creates a single

larger basin. This choice of hboundary allows watershed basins, that have

been artificially split by spurious structures introduced by GSN, to be re-

merged. The impact of varying hboundary on our results was tested in [59]

and found to have little impact on the obtained void profile statistics. Un-

like tunnels, the watershed voids are formed by a collection of Delaunay

cells, and therefore have irregular shapes. We define the void centre to

be the barycentre of all selected cells for a given watershed void, and the

void radius Rv as the radius of a sphere whose volume is equal to that of

the void. The watershed algorithm has the advantage of simplicity from

fewer free parameters in the void identification process, since no tracers

are used, multiple WL peak catalogues do not need to be defined. How-

ever, Ref. [59] also find that tangential shear profile from the watershed

algorithm is more susceptible to GSN than the tunnel algorithm.

The le� column of Fig. 3.15 shows the watershed void abundance as

a function of the void radius, Rv, and the relative di�erence between the

cvG models and QCDM. In contrast to tunnels, there are overall fewer

watershed voids, and they never reach the large void size as tunnels do.
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This is because watershed voids by definition cannot overlap. Among the

di�erent models, little di�erence is found, apart from the large-Rv end,

where the cvG models produce up to∼ 20% fewer voids than QCDM.

The main reason for this is a change of void sizes, rather than a decrease

in their number. This is likely due to the enhanced κ field magnitude in

local overdensities residing in larger underdense regions, which means

that these structures would more easily have κ > σGSN/2 and therefore

become basin boundaries in the cvG models, leading to a split of a large

waterbasin into smaller ones.

The right column of Fig. 3.15 shows the tangential shear profiles,

γt(r), of watershed voids and their relative di�erence between the cvG

models and their qcdm counterpart. They are smoother, wider, and

shallower compared to all tunnel categories. However, both tunnels and

watershed voids reach their tangential shear profile minimum at 0.9−

1.1 Rv. The error bars on the qcdm tangential shear profiles from the two

algorithms are also similar in size, which suggests that both algorithms

may o�er similar constraining power, consistent with Ref. [59] which

finds roughly similar tangential shear signal-to-noise ratios between the

two algorithms. The relative di�erences between the cvG models and

their qcdm counterpart peak at the minimum of the profile, with a 10%

di�erence for cvG with β̃3 = 10−6, roughly the same as the relative

di�erence found for tunnels in the same size range (which is the tunnel

category for ν > 1).

3.5 Discussion and conclusions

In this Chapter, we have performed a thorough phenomenological study

of a simplified version of the GP theory, the vector Galileon model (cvG).

To study the impact of the cvG model’s free parameter, β̃3, we have run a

set of five realizations of simulations for β̃3 = [10−6, 100, 101, 102] and

their qcdm counterpart, resulting in a total of 25 simulations. The study

relied on an adapted version of the ECOSMOG N-body code augmented

with the ray-tracing modules of the Ray-RAMSES algorithm. We used the
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five independent realisations for each model to create a light cone that

covers a field of view of 10× 10 deg2 from z = 0.08 to a source redshi�

of z = 1 (cf. Sec. 3.2 and Fig. 3.1). This allows us to study the matter, halo,

weak lensing and voids statistics. In the following we shall summarise

the results of each those three topics.

The study of dark matter field statistics finds good agreement with

[26] about the matter power spectrum (Pδδ, cf. Sec. 3.3.1 and Fig. 3.2),

but extends the results of that Chapter by including larger scales and

showing statistical uncertainties. In addition:

• the simulation measurements of the velocity divergence power spec-

trum (Pθθ , cf. Sec. 3.3.1 and Fig. 3.3) converge to the linear-theory predic-

tion on scales k . 0.1h−1Mpc for all times, while for k & 0.1h−1Mpc

we reproduce the well-known result that Pθθ is suppressed compared to

the linear theory results. The relative di�erence, ∆Pθθ(k)/Pθθ,QCDM(k),

shows that the wavenumber at which linear theory and simulation re-

sults agree reasonably, k∗, is pushed to ever larger scales as a → 1 and

β̃3 → 0. Finally, for a → 1 and β̃3 → 0 we see a growing peak that for

the case of β̃3 = 10−6 protrudes above the linear theory prediction at

k ∼ 0.7 h−1Mpc. A similar feature was also observed by [137] for the DGP

model.

• for the matter bispectrum (B, cf. Sec. 3.3.2 and Figs. 3.4, 3.5), we find

that the magnitudes depend on the triangle configurations, and increase

in the order of equilateral, squeezed, and folded triangle configurations.

However, this order is reversed when considering the relative di�erence.

The relative di�erence confirms that, as it is the case for Pδδ and Pθθ ,

the tree-level bispectrum is a good estimator on large scales k < k∗ ∼

0.1 h−1Mpc, while the exact value of k∗ decreases with a → 1 and

β̃3 → 0. We show that the enhancement of the bispectrum due to the

fi�h force is marginally stronger than in the case of power spectrum,

but the reduced bispectrum shows that B/BQCDM is to a very good

approximation equal to
(

P/PQCDM
)2. The scales at which we are able to

measure the bispectrum do not show a strong signature of the Vainshtein

screening.
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The study of halo statistics is mostly based on SUBFIND cagalogues,

as they contain the smallest haloes and subhaloes and thus can enable

measurements to smaller scales, although where possible we have also

cross-validated the results with FOF haloes. The main observations are

the following:

• the halo mass function (n(> M), cf. Sec. 3.4.1 and Fig. 3.6) shows

that the fi�h force enhances the abundance of dark matter haloes in the

entire mass range probed by the simulations, with the enhancement

stronger at late times and for high-mass haloes. Models with a weaker

fi�h force, e.g., with β̃3 → ∞, show a more restrained enhancement of

the HMF.

• the two-point correlation function (ξ(r), cf. Sec. 3.4.2 and Fig. 3.7)

shows more strongly enhanced clustering for smaller values of β̃3, for

which the fi�h force is stronger. The enhancement of the halo ξ(r) is

nearly constant down to∼ 3 h/Mpc, consistent with Pδδ, and reflecting

the fact that in the cvG model the growth factor is enhanced in a scale-

independent way in the linear regime. However, the enhancement in

halo clustering is weaker than in matter clustering, for all models at all

times.

• the relative di�erence of the mean halo pairwise velocity (v〈ij〉,

cf. Sec. 3.4.3 and Fig. 3.8) remains constant for all cvG models at scales

r > 10 h/Mpc, in very good agreement with linear-theory prediction.

For the latter, we have measured the halos bias, b, for four di�erent scale

factors through the relation between the halo and matter correlation

functions. The resulting measurements of b for the di�erent models are

similar, but show a slight decrease as β̃3 → 0, as the fi�h force enhances

matter clustering more than halo clustering, as mentioned above.

• the redshi� space halo clustering (ξ`(s), cf. Sec. 3.4.4 and Fig. 3.9)

is sensitive to the halo pairwise velocity and hence the fi�h force. The

relative di�erence between cvG and qcdm can be up to∼ 3 times larger

for the quadrupole, ξ2(s), than for the monopole, ξ0(s), although its SNR

is∼ 0.5 times smaller on the range 20 < s h−1Mpc < 40 due to larger

statistical uncertainly in the halo velocity field. Future data of redshi�
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space distortions should provide strong constraints on β̃3.

• the result of the halo concentration-mass relation (c200, cf. Sec. 3.4.5

and Fig. 3.10) shows that in the cvG model, just as for the csG model, the

Vainshtein screening is strong enough inside haloes that there is little

e�ect of the fi�h force.

Our final section concerns the properties of the weak lensing con-

vergence, peak and void statistics, where voids are identified using the

tunnel and watershed algorithms. The main results are the following:

• the di�erence of the convergence map (κ, cf. Sec. 3.4.7 and Fig. 3.11)

between qcdm and cvG for β̃3 = 10−6 shows that around massive

structures the convergence field is enhanced by over 10%. However, we

caution about taking this as an indication that weak lensing by galaxy

clusters can be a potential probe to constrain this model, as we have not

performed an analysis of stacked weak lensing convergence profiles.

• the relative di�erence of the angular power spectrum (C`, cf. Sec. 3.4.7

and Fig. 3.11) is largest on linear scales ` . 3× 102, reaching∼ 30% for

β̃3 → 0. These scales are also where the smoothing of the map has

little impact on the relative di�erence. For higher multipoles the model

di�erences reduce.

• the relative di�erence of the probability distribution function of κ

(PDF(κ), cf. Sec. 3.4.7 and Fig. 3.11) shows that cvG models with β̃3 → 0

have more pronounced under- and overdense regions.

• the relative di�erence of the weak lensing peak abundance (Np,

cf. Sec. 3.4.7 and Fig. 3.11) shows larger (smaller) numbers of high- (low-

)amplitude peaks for ν > 1 (ν < 1) in the cvG models with β̃3 → 0,

because the fi�h force enhances the convergence values of the peak

pixels.

• the relative di�erence of the tunnel and watershed void abundances

(N(> Rv), cf. Sec. 3.4.8 and Fig. 3.13, 3.15) shows fewer large-sized voids

in the cvG cosmologies compared to their qcdm counterpart, since they

produce more weak lensing peaks which splits large voids into smaller

ones (for the tunnel case), or increase the convergence values so that the

regions satisfying the chosen void definition criterion shrink in size (for
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the watershed case).

• the relative di�erence of the tangential shear profile for tunnels and

watershed voids (cf. Sec. 3.4.8 and Fig. 3.14, 3.15) peak at approximately

the void radius, with up to 10% di�erence for the cvG model with β̃3 =

10−6 (similar to what has been observed in the convergence maps), and

the model di�erence decreases as β̃3 → ∞.

Overall, we find that for the cvG model studied here, the fi�h force ef-

fect is strongest on velocity and lensing statistics. The former is because

velocity is the first integration of acceleration, and thus reacts quickly to

the enhancement of gravity due to the fi�h force, which happens only

at late times; the matter density field, in contrast, reacts more slowly as

the second integration of acceleration. The latter is because in the cvG

model, unlike for some other MG models, photon geodesics are a�ected

in two di�erent ways: (1) indirectly, by the modified growth of matter

fluctuations, and (2) directly, by the fi�h force. This suggests that redshi�

space distortions and weak lensing shear correlation functions can both

be promising cosmological probes to constrain the β̃3 parameter in this

model. On small scales, the models are generally more di�icult to con-

strain because the screening mechanism suppresses the fi�h force e�ect;

for example, internal properties of haloes, such as the concentration-

mass relation, are insensitive to the fi�h force. Another potentially useful

way to constrain this model is by cross-correlating galaxies with the in-

tegrated Sachs-Wolfe e�ect [154], because as β̃3 → 0 the fi�h force

becomes stronger, causing the lensing potential to getting deeper rather

than shallower [26] as suggested by observations. This possibility will

be investigated in future. What is a bit surprising is that weak lensing by

voids do not seem to be as promising a probe, even though the lensing

potential is significantly modified in low-density regions: perhaps this

is because weak lensing is a cumulative e�ect along the line of sight,

and this strong e�ect in low-density regions is somehow cancelled out

by the weaker e�ects in high-density regions. However, this conclusion

only applies to voids found from the lensing maps. It will be of interest

to look at the properties of the 3D voids found from halo or mock galaxy
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catalogues, especially the redshi�-space distortion around them, using

larger-volume simulations in a future work.

Recently, various studies to constrain the GP theory using cosmolog-

ical observations have been conducted, see, e.g., [64, 65, 111]. These

studies focused on general nonlinear functional forms for G2,3, because

linear forms of these functions, such as the models studied here, have

been found as a poor fit to observational data. However, as suggested by

[26], adding massive neutrinos with significantly nonzero mass (see, e.g.,

[19]) may be a way to make the GP model with linear G2,3 agree better

with data. This possibility will be studied in a follow-up work, and corre-

spondingly we hope to include massive neutrinos in future simulations.





4

The impact of line-of-sight structures on mea-

suring H0 with strong lensing time-delays

Measurements of The Hubble-Lemaître constant from early- and local-

universe observations show a significant discrepancy. In an attempt to

understand the origin of this mismatch, independent techniques to mea-

sure H0 are required. One such technique, strong lensing time delays, is

set to become a leading contender amongst the myriad methods due to

forthcoming large strong lens samples. It is therefore critical to under-

stand the systematic e�ects inherent in this method. In this Chapter, we

quantify the influence of additional structures along the line-of-sight by

adopting realistic light cones derived from the CosmoDC2 semi-analytical

extra-galactic catalogue. Using multiple lens plane ray-tracing to cre-

ate a set of simulated strong lensing systems, we have investigated the

impact of line-of-sight structures on time-delay measurements and in

turn, on the inferred value of H0. We have also tested the reliability of

existing procedures for correcting for line-of-sight e�ects. We find that

if the integrated contribution of the line-of-sight structures is close to a

uniform mass sheet, the bias in H0 can be adequately corrected by in-

cluding a constant external convergence κext in the lens model. However,

for realistic line-of-sight structures comprising many galaxies at di�erent

redshi�s, this simple correction over-estimates the bias by an amount

that depends linearly on the median external convergence. We therefore
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conclude that lens modelling must incorporate multiple lens planes to

account for line-of-sight structures for accurate and precise inference of

H0.

4.1 Introduction

The Hubble-Lemaître constant, H0, is a cornerstone of the standard cos-

mological model, setting the distance scale, age and critical density of

the Universe. Accurate estimation of the value of H0 is therefore critical

for constraining cosmological models in the era of precision cosmol-

ogy. However, presently, there is a significant mismatch between H0

determined from early- and late-universe probes [177, 177], for instance,

measurements of the Cosmic Microwave Background [CMB; see 177, 177]

and Baryon Acoustic Oscillations [BAO; see 4, 48] and those made in the

more local Universe using supernovae [SNe;see 73, 142], the tip of the

red giant branch [TRGB; see 90, 230] and Cepheid variables [177, 169].

Independent from any of the aforementioned methods, strong lensing

time delays provide valuable measurements of H0 [e.g., 228, 191] which

may assist in the understanding of these discrepancies once systematic

uncertainties in the technique are fully calibrated. With such systematics

in mind, in this Chapter we focus on the e�ects of line-of-sight structure,

one of the most dominant sources of error in the lens time delay method.

Strong lensing time delays are observed when a variation in flux of

a strongly-lensed background source such as a quasar, supernova or

a gravitational wave event is detected at di�erent times between its

multiple images. The deflection of the light path from the source due

to the gravitational potential of a lens, as well as the structures along

the line-of-sight, leads to both a geometrical and a gravitational delay

of the arrival time of the light from the source. The geometrical delays

are sensitive to H0 [see 185]. Therefore, measuring the time delays and

reconstructing the mass distribution of the lens accurately allows H0

to be estimated. The existing relative paucity of strong-lens systems

suitable for this method and the necessary long monitoring campaigns
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has somewhat limited the use of this technique but good progress has

already been made with only a handful of systems [e.g., 199, 200, 34,

227, 38, 228, 46, 55]. However, this is set to dramatically change [162, 49]

with the advent of the Rubin Observatory Legacy Survey of Space and

Time1 (LSST), which will give rise to about 400 well-measured time delay 1 https://www.lsst.org/

systems to constrain H0 to within only a few percent [140, 75].

Even with precise time delay measurements, the reliability of esti-

mates of H0 depends on how faithfully the lens mass model follows the

true lensing mass. Degeneracies and inadequacies in the parameteri-

sation of the lens mass model can directly propagate into the inferred

value of H0 [e.g., see 184, 190, 229, 153, 209, 203, 220, 217] as can se-

lection e�ects within the lens sample [see 50]. In addition, perturba-

tive e�ects from sub-structure within the main lens and from structure

along the line-of-sight can significantly modify time delays which can

bias measurements of H0 if not properly taken into account. One ap-

proach to account for these e�ects is to directly characterise perturbing

structures identified in observations [e.g., 226, 149, 179, 195, 225]. An-

other common technique is to use external shear, γext, and external

convergence, κext, in the lens model. By connecting cosmological sim-

ulations and real observations, an estimate of the distribution function

of the amplitude of these external lensing e�ects can be obtained [e.g.,

199, 200, 97, 51, 179, 35, 210]. However, the corrections provided by γext

and κext are isotropic and cannot properly capture the complexity of real

perturbing structures. Motivated by this, more sophisticated approaches

have been developed using multiple lens planes or approximations

thereof [e.g., 146, 35, 147].

In this work, we investigate the influence of halos along the line-of-

sight on measurements of H0 by using multiple lens plane ray-tracing

simulations. To obtain simulated time delays we construct the light cone

of each lens from a state-of-the-art semi-analytic model [CosmoDC22; 2 https://portal.nersc.gov/

project/lsst/cosmoDC2

127] based upon the large Outer Rim cosmological N-body simulation

[113]. By modelling these time delays with the same methods used for

real data, we directly assess the biases introduced by line-of-sight e�ects

https://www.lsst.org/
https://portal.nersc.gov/project/lsst/cosmoDC2
https://portal.nersc.gov/project/lsst/cosmoDC2


128 STAYING WITH THE HUBBLE TROUBLE

and the e�icacy with which these can be accounted for using external

corrections such as γext and κext.

The Chapter is structured as follows. We outline the methodology

used for determining strong lensing time delays in the cases of the

single-lens plane and multiple-lens planes in Section 4.2. Details of

the simulations and the process of estimating H0 from the simulated

data are given in Sections 4.3 and 4.4 respectively. We present our find-

ings in Section 4.5, then conclude with a summary and discussion in

Section 4.6. The cosmological model adopted in this Chapter is that

used by CosmoDC2: ΛCDM with ΩΛ = 0.735, ΩM = 0.265, and

H0 = 71 km s−1 Mpc−1.

4.2 Strong Lensing Time Delays

In this section, we present a basic description of the theory of time-

delays in strong lensing systems with multiply-lensed point sources we

have used in this work, for the cases of single and multiple lens planes.

Throughout the Chapter, we have applied the thin lens approximation.

For more details, we refer the reader to [183] and [155].

4.2.1 Time Delays in Single Lens Planes

For the case of a lensing system with a single deflector, adhering to the

thin lens approximation, one can project the three-dimensional mass

distribution to a two-dimensional mass sheet normal to the line-of-sight

from the observer to the source. The dimensionless surface mass density

of a thin lens plane can be written as a function of the lens plane angular

position vector, θ, as

(4.1) κ(θ) = Σ(θDd)/Σcrit ,

with the critical surface mass density

(4.2) Σcrit =
c2

4πG
Ds

Dd Dds
,
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where Ds and Dd are the angular diameter distances from the source

and lens to the observer respectively, Dds is the angular diameter dis-

tance from the lens to the source, and Σ(θDd) is the surface mass den-

sity of the lens. The lensing potential is given by

(4.3) ψ(θ) =
1
π

∫
d2θ

′
κ(θ

′
)ln|θ− θ

′ | ,

and the deflection angle vector is given by

(4.4) α(θ) =
1
π

∫
d2θ

′
κ(θ

′
)

θ− θ
′

|θ− θ
′ |2

.

Once the deflection field at the lens plane is known, we can construct

the lensing equation for a given set of source planes. For example, in

the case of a single lens plane and a single source plane, the lensing

equation is simply

(4.5) β = θ− α(θ) ,

where β is the angular source plane position vector that maps to θ in the

image plane (or, equivalently, “lens plane” for the case of single lens-

plane). Based on Eq. 4.5, ray-tracing simulations can be performed from

the observer, crossing the lens plane to the source plane to produce

lensed images. For extended source-like galaxies, to create distorted

lensed images, interpolation can be used in the source plane to map

spatially varying surface brightness back to the image plane. However,

for the point sources used in this work, one has to adopt triangle map-

ping and a barycentric coordinate system to solve the lensing equations

numerically. Details of the approach are discussed in Sec. 4.3.3.

In the case of a single lens plane, the delay of the arrival time of a light

ray from the source to the observer is

(4.6) τ(θ, β) =
(1 + zd)

c
DdDs

Dds

[
(θ− β)2

2
− ψ(θ)

]
,

where zd is the redshi� of the lens. The last term in Eq. 4.6 is also known
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as the Fermat potential,

(4.7) Φ(θ, β) ≡
[
(θ− β)2

2
− ψ(θ)

]
.

This delay is undetectable, the true observable being the di�erence

between the arrival time of two separate lensed images (say, image A

and image B), tAB ≡ τA − τB. From Eq. 4.6, the time di�erence can be

written

(4.8) tAB =
D∆τ

c
∆ΦAB ,

where,

(4.9) D∆τ ≡ (1 + zd)
Dd Ds

Dds

and

(4.10) ∆Φ ≡ Φ(θA , β) − Φ(θB , β) .

Note that

(4.11) Da(z) =
c

H0(1 + z)

∫ z

0

dz
′

E(z ′ )

where

(4.12) E(z) =
√

Ωr (1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ .

These equations show that

(4.13) tAB ∝ D∆τ ∝
1

H0

and thus H0 can be measured from tAB if the mass distribution of the

lens is reconstructed accurately.
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4.2.2 Time Delays in Multiple Lens Planes

In the case of multiple lens planes, the lens equation must be modified to

account for multiple deflections;

(4.14) β = θ−
N

∑
i=1

αi(θi) ,

where the quantities retain their definition from the single lens plane

case but now take on a subscript referring to a specific lens plane. We

consider N mass distributions, each characterised by a surface mass

density Σi , at redshi� zi , ordered such that zi < z j for i < j and such

that the source has a redshi� zs > zN . The physical distance, ξ j , of

the intersections on the lens planes from the optic axis (i.e., the impact

parameters) are then

(4.15) ξ j =
D j

D1
ξ1 −

j−1

∑
i=1

Di j α̂i(ξ i) ,

where Di is the angular diameter distance from the observer to each lens

plane, Di j (such that i < j) is the angular diameter distance from the ith

lens plane to the jth lens plane and α̂i is the deflection angle at the ith

lens plane (see Fig. 4.1). For simplicity, we convert the physical distance

to angular positions on the sky θi = ξ i /Di and the deflection angles to

e�ective movements on the sky

(4.16) αi =
Dis
Ds

α̂i ,

where Dis is the angular diameter distance from the ith lens plane to the

source plane. By defining a factor Bi j

(4.17) Bi j =
Di j Ds

D j Dis
,

eq. 4.15 becomes

(4.18) θ j = θ1 −
j−1

∑
i=1

Bi j αi(θi) .
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In particular, for j = N + 1 = s, Bis = 1, thus,

(4.19) β ≡ θN+1 = θ1 −
N

∑
i=1

αi(θi) .

The delay of the arrival time of a deflected light path compared to a

straight light path is the integral of the time di�erence along the line-of-

sight though all lens planes. For instance, the time delay created by lens

plane i and j is

(4.20) τi j(θi , θ j) =
1 + zi

c
Di D j

Di j

[
1
2
(θi − θ j)

2 − Bi j ψ(θi)

]
,

where the first term is the geometric delay and the second is the gravi-

tational delay. Replacing j with i + 1 and summing over all time delays

gives the total time delay through the whole line-of-sight,

(4.21) τ(θ1 , ..., θN , β) =
N

∑
i=1

τi,i+1(θi , θi+1) .

Therefore, similar to the case of a single lens plane, the time delay be-

tween two separate lensed images A and B can be given by

tAB ≡ τA − τB

=
N

∑
i=1

τi,i+1(θA,i , θA,i+1) −
N

∑
i=1

τi,i+1(θB,i , θB,i+1) ,(4.22)

which means that deflection fields, lensing potentials and the angular

positions of the intersections on the lens planes are all required for the

calculation of time delays in multiple lens plane systems. In section 3, we

discuss how we construct a light cone and model the lenses to obtain the

information required to implement time-delay simulations with multiple

lens planes.

4.3 Simulations

To quantify the influence of galaxies along the line-of-sight on measuring

H0 with strong lensing time-delays, we generated simulated images fol-
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Figure 4.1: A schematic view of the multi-plane formalism, as described in Section 4.2.2.
A light ray (solid black line) experiences a deflection only when it passes through a lens
plane (vertical solid grey lines). The deflection angle α̂i is the actual deflection of a ray
passing through the ith lens plane, calculated from the surface density Σi on the ith lens
plane. Using the deflection angle α̂i and the position of the intersection of the light ray at
the (i− 1)th lens plane, ξ i−1, and that at the ith lens plane, ξ i , the physical position of the
intersection at the (i + 1)th plane, ξ i+1, can be obtained.

lowing the formalism in Sec. 4.2 for both single and multiple lens planes

with a strong lensing simulation pipeline named PICS [138]. In this sec-

tion, we describe the simulations used and how the lens equations are

solved using a triangle-mapping algorithm.

4.3.1 Semi-Analytic Lightcones

For creating light cones with realistic spatial and redshi� distributions

of the galaxies, we extract light cones from the CosmoDC2 synthetic

source catalogue [127]. Designed for an LSST data challenge project, it

is established upon a large cosmological simulation called The Outer

Rim Simulation run by the Argonne Cosmology Group using the Hy-

brid/Hardware Accelerated Cosmology Code [HACC, 100]. CosmoDC2

covers 500 square degrees in the redshi� range 0.0 ≤ z ≤ 3.0 and is

complete to a magnitude depth of 28 in the r-band. Each galaxy is charac-

terised by a multitude of properties including stellar mass, morphology,

spectral energy distributions, broadband filter magnitudes, host halo

information and weak lensing shear.

The light cones for each of our strong lensing simulations are cut

out from the full light cone of CosmoDC2. Each extracted light cone is

centred on a bright central galaxy (BCG) identified in the cosmoDC2 cata-

logue since these massive central elliptical galaxies are likely strong lens-
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Raytracing

Interpolation

Figure 4.2: The Interpolation scheme used for determining image positions of point
sources. The regular grid of rays in the image plane (le� filled circles) is used to parti-
tion the image plane into triangles (grey lines in the le� panel). The image positions (the
open white circle in the le� panel) of a source inside a triangle (the grey triangle in the right
panel) formed by the backtraced rays on the source plane (grey filled circles in the right
panel) is then determined by using linear interpolation in the barycentric coordinates.

ing candidates. Each BCG forms the primary lens mass in its correspond-

ing light cone (see Section 4.3.2). The field of view of the light cones is

20′′ × 20′′, and the corresponding simulated images are 512× 512 pixels

in size. To focus on the impact of line-of-sight galaxies, we select light

cones with the primary lens located in the redshi� range zd = 0.5± 0.01

and we assume a fixed source redshi� of zs = 2.0. We calculate the

Einstein radius of the primary lens of each light cone and then discard

light cones that yield Einstein radii outside the range of [1.3′′, 2.4′′].

The lower limit avoids resolution issues encountered by ground-based

telescopes/surveys (such as CFHT, DES, and LSST) and the upper limit

discards systems which give year-like time delays. In total, we selected

500 light cones adhering to these criteria (although this is ultimately re-

duced further by additional selection criteria - see the following section

and Section 4.5). Furthermore, within each light cone, we remove any

deflectors with Einstein radii larger than 0.3′′ to concentrate our study on

the e�ects of secondary perturbations to the lensing potential. The sub-

structures of the primary lens are also not included so that our analysis

solely concentrates on the influence of line-of-sight structures.
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4.3.2 Ray-tracing Simulations

For each light cone, we run two sets of simulations for generating the

lens time delays. The first set includes only a single lens plane containing

the primary lens galaxy. In this set, the omitted line-of-sight halos are

approximated with a constant external convergence, κext, and a con-

stant external shear, γext, in the lens model when computing deflection

angles. For each light cone, we estimate the value of κext and γext by

tracing multiple rays throughout it as described in more detail below. In

the second set of simulations, we include all halos in the light cone and

use a separate lens plane for each halo including the primary lens.

In both sets of simulations, we assume a Singular Isothermal Ellipsoid

(SIE) density profile for all halos (although in our lens modelling, we

use a more general elliptical power-law profile; see Section 4.4). The SIE

profile, which provides a realistic model for the total mass profile of real

elliptical galaxies [125, 37, 193], has deflection angles given by [126, 122],

(4.23) αx ≡ ψx =
bq√

(1 − q2)
tan−1

[√
1 − q2θx

φ

]
,

(4.24) αy ≡ ψy =
bq√

(1 − q2)
tanh−1

[√
1 − q2θy

φ

]
,

where φ2 = q2 x2 + y2, q is the minor to major axis ratio and b is an

e�ective factor to represent Einstein radius,

(4.25) b =
4π
√

q

( σ

c

)2 Dl s
Ds

.

In the case of circular lenses, b can be calculated from the velocity dis-

persion. The lensing potential can be computed according to the rela-

tionship between the lensing potential and the deflection field of SIE

model [122],

(4.26) ψ(θx , θy) = θx ψx + θy ψy .
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The complete parameter set required by equations (4.23− 4.26) is

{x1 , x2 , σv , q, Θ, zd}, where (x1 , x2) is the angular position of the

SIE profile centre with respect to the centre of the field of view, σv is

the velocity dispersion of the lens, q is the ellipse axis ratio, Θ is the

position angle of the ellipsoid and zd is the redshi� of the deflector.

The parameters x1 , x2 , q, Θ, zd are taken directly from the cosmoDC2

catalogue. σv is derived from the L − σ scaling relation from the bright

sample of [165] given by

(4.27) σv = 142
(

L
L?

)(1/3)
km s−1 ,

where, log10(L/L?) = −0.4(magr − magr?), and magr is the appar-

ent r-band magnitude of the galaxy given by the cosmoDC2 catalogue.

We adopt the assumption in [151] that magr? evolves with redshi� as

magr? = +1.5(z − 0.1) − 20.44 [83].

Sources are described by the parameter set {y1 , y2 , ms , zs}, where

(y1 , y2) is the angular position of the source with respect to the optic

axis, ms is the apparent r-band magnitude of the source and zs is the

redshi�, fixed to zs = 2. The angular positions are randomly sampled in

the source plane in the vicinity of the caustic structures. We only retain

simulated data in which quadruply-lensed images are produced in both

versions of a given light cone, i.e. both the single and the multiple lens-

plane version. This reduces our initial selection of 500 light cones (see

Section 4.3.1) to 400.

With a fully parametrically-defined light cone, the simulated lensed

images can be produced by ray-tracing and image-finding. For our single

lens-plane simulations, we determine κext and γext in the following

manner. First, we trace rays through a given light cone from the image

plane, computing the deflections caused by all halos (including the

primary lens), each in their own lens plane. To obtain γext, along each

ray, we compute the cumulative external shear from all halos. We take

γext to be the median of the distribution of values of the cumulative

external shear along di�erent rays in the light cone. For the external
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convergence, along each ray, we compute an ’external halo convergence’

by summing κ as given by Eq. 4.1 for all secondary halos excluding the

primary lens halo. This external halo convergence ignores the divergence

caused by voids and so we must apply a correction to obtain κext. The

correction uses the results of [51] who showed that κext can be obtained

by subtracting the median convergence along random sight lines from

the external halo convergence. The resulting κext has an uncertainty

associated with it due to the scatter in the relationship between the

two quantities, but negligible bias. Firing rays along random lines-of-

sight in our light cones and computing the convergence, again using

Eq. 4.1, yields a value of κcorr = 0.048. When correcting the external

halo convergence, we distribute κcorr across all lens planes according

to the lensing weights (Dds Dd /Ds) for each plane and subtract them

separately.

Figure 4.3 shows the probability distribution functions (PDFs) of the

mean and median values of κext across all light cones obtained in the

manner described. We note that our peak of κext ' 0.1 is higher than

that of previous studies, for example, peaks of 0.075 and 0.05 in [200]

and [147] respectively. We speculate that this is mainly due to our selec-

tion of BCGs from cosmoDC2 and their location within more over-dense

galaxy groups. Secondary e�ects also likely include a di�erence in mass

models and simulated light cones. Nevertheless, many of our light cones

yield external convergences that are consistent with these studies and so

in our analysis, we explore how inferred values of H0 vary with varying

κext.

With κext determined, we include it in the primary lens model for the

single-plane simulations and calculate maps of the deflection angle and

the lensing potential. The lensing equation in Eq. 4.5 is used to map the

image plane back to the source plane. Since the sources in this Chapter

are point sources, we have to adopt a triangle-mapping algorithm to

solve the lensing equation. This is described further in Section 4.3.3.

For the case of multiple lens-planes, we ray-trace through the whole

light cone in the same manner as outlined above when computing the
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Figure 4.3: The distribution of the mean (blue) and median (orange) convergence of all fully
ray-traced light cones used in this work. The blue and orange curves show a smoothed
version of the distributions calculated using kernel density estimates.

external halo convergence, placing each halo on its own lens plane. As

Eq. 4.20 shows, to calculate the total time delay, the deflection map and

lensing potential for every lens plane must be computed. The intersec-

tions of the light rays traced from the image plane (given by Eq. 4.18) are

required for the calculation of the time delay between two lens planes.

These are summed over all neighbouring pairs of lens planes to obtain

the total time delay according to Eq. 4.21. Again, for our adopted point

source, we have to apply triangle mapping and barycentric interpolation

to obtain the position of lensed images for a given source position on the

source plane (see Section 4.3.3). The same image-finding process is ap-

plied to locate the intersections of the light rays between neighbouring

lens planes (see Eq. 4.20).

Since we are concerned purely with the e�ects of line-of-sight struc-

ture in this study, we have not included the e�ects of measurement error

in our simulated data, i.e. we do not scatter any of the time delays, image

positions or flux ratios. However, we do use priors in the modelling to

allow exploration of parameter degeneracies. More details are given in

Section 4.4.
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4.3.3 Image Finding

Since we are concerned with multiply-imaged point-like sources, e.g.

AGNs or SNe, in this work, solving the lensing equation for point sources

is a critical issue in the simulation. To determine the apparent positions

of our point-sources, we make use of a triangle mapping technique

described in [185]. First, a set of Delaunay triangles is constructed from

a regular grid of image plane positions which define the intersections

of light rays from the source (see Fig. 4.2). These image plane vertices

are then mapped to the source plane. Any image plane triangles which

map to a triangle in the source plane containing the source position

are identified. For each of these identified image-plane triangles, we

compute the barycentric coordinate of the source position inside the

corresponding source-plane-mapped triangle using the relation

(4.28)


x1 x2 x3

y1 y2 y3

1 1 1




λ1

λ2

λ3

 =


xP

yP

1


where, (xP , yP) are the Cartesian coordinates of the point source inside

its triangle of vertices (x1 , y1), (x2 , y2), and (x3 , y3); the correspond-

ing barycentric coordinates are (λ1 , λ2 , λ3). We then assume that the

barycentric co-ordinates are conserved between the image and source

planes and use them, with the vertices of the image-plane triangle to

determine the position of each image of the source.

For the case of multiple lens planes, the intersections between the

light rays from the source and the lens planes are required for the cal-

culation of total time-delays. Hence, we need to ascertain all the inter-

sections. If there are N lens planes plus one source plane in the lensing

system, there are N parent triangles for the triangle on the source plane.

Also, we assume the barycentric coordinates of the source are conserved

in the source triangle and all parent triangles. Then the intersections

can be obtained. The intersections on the first lens plane (0th plane in

Fig. 4.1) are the positions of the lensed images.
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4.4 Strong Lens Modelling

We use the multi-purpose open-source lensing package LENSTRONOMY3 3 https://github.com/

sibirrer/lenstronomy

[33, 32] to measure H0 from our simulated data. For our lens modelling,

instead of the SIE profile used to create our simulated data, we use the

more general Singular Elliptical Power Law (SEPL) profile. The param-

eters of the SEPL are the Einstein radius, θE, the two components of

complex ellipticity, e1 and e2, the SEPL power-law index, γ and the co-

ordinates of the SEPL centre, (θ1, θ2). Also included as free parameters in

the modelling are the co-ordinates of the source, (β1, β2), in the source

plane. Finally, we apply the SEPL model both with and without external

shear (see below). We use the complex shear parameterised by γext,1

and γext,2. We apply generous uniform priors to all model parameters in

LENSTRONOMY as detailed in Table 4.1.

We model all four di�erent combinations arising from the two lens

model configurations (i.e., the SEPL with and without external shear)

and the two sets of simulated data (i.e., the single and multiple lens

plane light cones). We designate the simulations with a single lens plane

as ’SGK’ (SIE + γext + κext) and those with the multiple lens plane as

’SL’ (SIE + Lens planes). Similarly, we designate the lensing model that

includes external shear as ’SG’ (SEPL + γext) and that without as ’S’.

The four combinations, labelling the simulation type first, are therefore

referred to herea�er as ’SGK|S’, ’SGK|SG’, ’SL|S’ and ’SL|SG’. Note that

in all cases we fix κext = 0 and retrospectively apply the correction to

H0 for external convergence determined from the simulated light cones

following the procedure used by existing studies (see Section 4.5). In

cases where external shear is not included as a free parameter in the lens

model (SGK|S and SL|S), we fix γext = 0.

The simulated data that we fit with LENSTRONOMY are the four image

positions, the three flux ratios, and the three time delays. For optimi-

sation of the lens model parameters and H0, we use LENSTRONOMY’s

particle swarm optimiser (PSO) [79] since this technique performs well

in lower dimensional parameter spaces such as ours [see 33]. We apply

https://github.com/sibirrer/lenstronomy
https://github.com/sibirrer/lenstronomy
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Model component Parameter Prior

Lens, Einstein radius θE (arcsec) U (0.01, 10)
Lens, power index γ U (1.7, 2.3)
Lens, ellipticity e1,2 U (−0.5, 0.5)
Lens, position θ1,2 (arcsec) U (−10, 10)
External shear γext,1 U (0.0, 0.5)
External shear angle θγ,ext (rad) U (−π , π)

Source, position β1,2 (arcsec) U (−10, 10)
Hubble-Lemaître
constant

H0 (km/s/Mpc) U (20, 120)

Table 4.1: Uniform priors applied to parameters in the lens modelling.

the PSO with 200 particles, a particle scatter of 1, and a maximum num-

ber of iterations of 500. These choices yield an acceptable computation

time whilst still allowing a thorough exploration of the model parameter

space.

4.5 Results

In carrying out the modelling, we find that not all measurements of H0

obtained are valid. This is due to the limited precision of the simulations;

when a source is almost coincident with the caustic in the source plane,

the magnifications of the simulated lensed images become unreliable

because of the finite image grid size, despite our interpolation. These

problematic cases can be e�ectively removed by imposing a likelihood

threshold of log(L) > −1000. This further reduces our sample of

400 lens systems to 364, 372, 366, and 394 lenses in the cases of SGK|S,

SGK|SG, SL|S, and SL|SG respectively. By applying this threshold in like-

lihood, we also remove poor fits arising from large perturbations from

substructures not caught by the 0.3′′ cut in Einstein radius.

First we consider our analysis of the simulations created with LOS

structure approximated by a constant external convergence and shear.

Fig 4.4 shows the PDFs of the fractional di�erence between the input and

inferred H0 obtained for the two di�erent lens models applied, i.e. the

SEPL-only model (SGK|S) and the SEPL+γext model (SGK|SG). Taking the

median of each of these distributions, we find that without including any

external convergence in the modelling, the inferred value of H0 is biased
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high by∼ 11 per cent in both cases. The inclusion of external shear in

the lens model reduces the spread of the distribution but does nothing to

remove the bias.

Following the procedure commonly used in the literature to correct for

external convergence e�ects [see, for example 202], we apply a correc-

tion of 1 − κext (with κext determined from the simulations as explained

in Section 4.3.2) to the biased measurements of H0 from the SGK |SG

configuration. The green histogram shown in Fig 4.4 shows the results of

this correction. Clearly, the correction in this simplified case works well,

recovering a median value of H0 that di�ers from the input value by only

−0.7 per cent.

In Fig 4.5, we show the two-dimensional probability distributions of all

parameter pair combinations for the SGK |SG configuration. Note that

in addition to the bias in H0, there is also a similar bias in the inferred

Einstein radius, θE. This is a result of the strong degeneracy between θE

and H0 caused by the fact that the external convergence impacts both

quantities by the same factor of 1 − κext. As Fig 4.5 shows, correcting

θE by the factor 1 − κext (to give the quantity θc
E in the figure), the input

value of the Einstein radius is reliably recovered.

Second, we consider our modelling of the simulations created with

the full light cones containing halos (i.e., the cases of SL|S and SL|SG).

Fig. 4.6 shows the distribution of inferred values of H0 for both cases.

This time, we find that the biases in inferred H0 are significantly smaller

than the biases observed with the single lens plane light cones. Now,

we find a median value that is 3 and 4 percent higher than the input

value of H0 for the SL|S and SL|SG cases respectively. Once again, the

inclusion of external shear in the lens model does little to improve the

bias. Furthermore, the inclusion of external shear does not reduce the

scatter in inferred values of H0, unlike the single lens plane modelling.

Fig. 4.6 also shows the histogram of inferred H0 from the modelling

that includes external shear (SL|SG) corrected by 1 − κext, where again,

κext is determined from ray tracing through the light cone. This time,

the correction is too severe and leads to an underestimation of H0 such
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that the corrected distribution has a median that is o�set by -7 per cent

from the input value. We therefore conclude that statistically, the 1 −

κext correction can not be reliably used to account for clumpy external

convergence.

Similar to Fig 4.5, Fig 4.7 shows the two-dimensional probability dis-

tributions of all parameter pair combinations for the SL|SG configuration.

Again, the figure includes both Hc
0 and θc

E, the inferred values of H0 and

Einstein radius corrected by 1 − κext. This time, however, the degeneracy

between H0 and θE has been removed by the more complex lens geom-

etry caused by the line-of-sight structure; clumpy external convergence

a�ects the time delays in a di�erent way to the way in which it a�ects

the inferred Einstein radius, unlike when a uniform external convergence

is assumed. In the same way that the inferred H0 is not biased as high

with the full light cones, neither is the inferred Einstein radius and so the

correction provided by the factor of 1 − κext is also too severe and also

results in a bias of -7 per cent from the input value on average.

Since our simulations span a range of lens systems each with a dif-

ferent median external convergence, κext, we can investigate whether

there is any correlation between the bias we see in inferred H0 and κext.

Identifying such a correlation might instruct future studies on how best

to minimise the bias. Fig. 4.8 shows the scatter plot of the bias in inferred

H0 versus κext for each lens system with the SL|SG configuration. As

the figure shows, there is a positive correlation such that the fractional

bias in H0 due to the over-correction correlates with the median exter-

nal convergence. The scatter plot can be fitted using a linear function

∆H0/H0 = 0.626κext − 0.005. Unsurprisingly, selecting a lens system

in an environment with a stronger level of external convergence is more

likely to bias the value of H0 inferred from that system.
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Figure 4.4: PDFs of the fractional di�erences between measured H0 and the true value
in the case of the simulations with constant κext and γext. The blue histogram shows the
PDF of fractional di�erences in H0 with the single SEPL mass model only. The orange
histogram shows the PDF of fractional di�erences with the mass model of SEPL+γext, i.e.
including external shear as a free parameter. The green histogram shows the corrected
fractional di�erences of the orange histogram with constant κext correction. The vertical
dashed lines show the median of each PDF whilst the black vertical solid line is placed at
zero bias.

4.6 Discussion and Conclusions

To quantify the influence of secondary deflectors on the measurement

of H0 with strong lensing time delays, we have simulated approximately

800 galaxy-scale strong lensing systems with quadruply-lensed vari-

able point sources; half of these were created with a primary lens and

line-of-sight halos and half with the same primary lens plus a constant

external convergence and shear. The light cones were extracted from a

semi-analytic model based on the Outer Rim large-scale cosmological

simulation and are centred on the location of central galaxies of groups

of galaxies. In the simulations constructed with external convergence

and shear, we used a single lens-plane located at the redshi� of the pri-

mary lens galaxy whereas in the simulations containing halos, each halo

has its own lens plane. Using an SIE mass profile for the primary lens

galaxy and the halos, and an interpolative mapping method to refine

the location of the lensed point source images, we generated time de-
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Figure 4.5: Corner plot showing the distribution of best-fit parameters of all 372 systems
simulated with a single lens plane and uniform external convergence and shear. The plot
includes the Einstein radius and H0 corrected by the simplistic factor of 1− κext. These are
denoted θc

E and Hc
0 respectively. γ is the power index of the SEPL mass model, e1 and e2

are the two components of the complex ellipticity of lenses, γext,1 and γext,2 are the two
components of the complex external shear, Hm

0 is the best-fit uncorrected Hubble constant
and H0 is the input Hubble constant. The contours show the 1- and 2-sigma confidence
intervals. The plot is created with Corner.py [89].
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Figure 4.6: The same as Fig 4.4, except using the fully ray-traced simulations containing
line-of-sight halos.

lay data. This time-delay data was then modelled using LENSTRONOMY

to estimate H0 with a singular ellipsoidal power law lens profile and

external shear and compared to the known input value of H0.

Our main conclusion is that incorporating constant external conver-

gence in the modelling only works reliably if the lensed time delays are

subjected to a uniform external convergence. If time-delays are sub-

jected to perturbations due to halos lying close to the line-of-sight as

expected in the real Universe, and no correction for external convergence

is made in the modelling, the inferred value of H0 is over-estimated by

approximately 4 per cent on average. However, if a constant external

convergence is incorporated in the lens model with a normalisation set

by the median or mean convergence of the line-of-sight halos, then an

over-correction of H0 occurs such that it is biased low by∼ 7 per cent

on average. These results were obtained from our simulations where we

measure a relatively high median external convergence of κext ' 0.11

but we find that the size of the fractional bias in H0 scales almost pro-

portionally with κext = 0.11 on average (see below for details). Nev-

ertheless, even with low levels of external convergence, this e�ect can

not be ignored, since the uncertainties of current measurements of H0

from strong lensing time delays are typically quoted as being lower than

this [38, 46, 228, 31, 180]. With the forthcoming large sample of strong
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Figure 4.7: Corner plot showing the distribution of best-fit parameters of all 394 systems
simulated by ray tracing through light cones containing line of sight halos. All parameters
are the same as those in Fig 4.5 and the contours again show the 1- and 2-sigma confidence
intervals.
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Figure 4.8: The relationship between the fractional bias seen in the corrected value of H0,
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0, and the median external convergence measured across all 394 fully ray-traced light
cones containing line of sight halos. The contours show the 1- and 2-sigma confidence
intervals and the black line shows the best-fit linear relationship which exhibits almost
exact proportionality: 1− Hc

0/H0 = 0.626κext − 0.005.

lensing time delay systems observed by the future time domain large

scale surveys, e.g., Mephisto4 and LSST, the e�ect becomes even more 4 http://www.swifar.ynu.edu.

cn/info/1015/1073.htm

problematic.

Qualitatively, our conclusions are consistent with those of [147] in the

sense that line-of-sight structures significantly a�ect the accuracy of the

measurement of H0. We find a larger median external convergence of

κext ' 0.11 compared to the value of 0.05 from [147]. We attribute this

to the fact that we have selected central galaxies of galaxy groups as the

primary lenses in our light cones and because we have included more

line-of-sight structures; we include galaxies from cosmoDC2 down to an

r-band apparent magnitude of 28, compared to the i-band limit of 21.5

adopted by [147]. Nevertheless, our findings indicate that even small

values of κext bias H0 on average. We have shown that the fractional bias

in inferred H0 correlates with median external convergence according to

the linear relationship ∆H0/H0 = 0.626κext − 0.005 .

We have also investigated the e�ects of incorporating external shear

in the lens model. In the simulations using line-of-sight halos, adding an

external shear term to the SEPL lens model makes a negligible impact

on the distribution of recovered values of H0. Not unexpectedly, we also

find that correcting this SEPL+γext model with the average constant

http://www.swifar.ynu.edu.cn/info/1015/1073.htm
http://www.swifar.ynu.edu.cn/info/1015/1073.htm


THE IMPACT OF LINE-OF-SIGHT STRUCTURES ON MEASURING h0 WITH STRONG LENSING TIME-DELAYS
149

external convergence also leads to a∼ 7 per cent underestimation,

which implies that the influence of external shear is negligible in the

case of our study. This conclusion di�ers from that of McCully et al., most

likely because we cleaned our lens sample by removing secondary halos

that give rise to an Einstein radius of greater than 0.3 arcsec.

The Outer Rim simulations used to populate our lensing light cones

with halos include only dark matter. As such, we have used SIE profiles

in place of identified halos to better represent the total mass (baryons +

dark matter) profiles of real lens galaxies. One e�ect this may have is that

the lensing strength of any lower mass halos, which in the real Universe

may not have accrued baryons, could be artificially enhanced by the

more e�icient isothermal profile. In addition, our simulated datasets do

not include any large scale structure such as filaments although this is

expected to be a small e�ect. We have explored the use of truncated SIE

profiles in place of the non-truncated profiles used in this work but find

that our results do not change significantly. Finally, we have ignored the

e�ects of environmental structure in the simulations in the sense that

our assumed smooth SIE profiles for the primary lens do not include

substructure. We will leave consideration of these additional e�ects for

future work.

To summarise, simple corrections for line-of-sight structure such as

external shear or external convergence in estimations of H0 using lensed

time delays can not be relied upon in general. Time delay studies opt

for lens systems that are apparently free of strong perturbers in an at-

tempt to exclude line-of-sight e�ects, or they select systems where the

perturbers are low in number and can be easily incorporated in the lens

model. Our simulations have mimicked the former selection to a degree

by removing halos from all of our light cones that produce a deflection

resulting in an Einstein radius larger than 0.3 arcsec. Since this may still

allow a significant flexion shi�, an improved technique is to include

perturbers in the lens model with a flexion shi� above a certain thresh-

old [e.g., 180]. However, our work reveals that the culmination of many

small line of sight perturbers continues to result in a significant portion
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of the measured bias in H0 and more sophisticated modelling meth-

ods, for example, including more lens planes by lowering flexion shi�

thresholds are key to reliable measurements of H0 from the hundreds

of well-measured time-delay systems anticipated in forthcoming large

strong lens samples.



5

Summary, Conclusions, and Future Work

5.1 Summary and Conclusions

THE CONCORDANCE MODEL OF COSMOLOGY, ΛCDM, has undoubtedly

withstood the tests of time. In many ways, it is remarkable that this rel-

atively simple model is able to successfully fit and predict a vast range

of phenomena in the Universe, such as the temperature fluctuations ob-

served in the CMB, and the large-scale distribution of galaxies. The con-

tinuous development of sophisticated numerical and semi-analytic tech-

niques have facilitated tests of this model on non-linear scales where,

recently, hydrodynamical simulations within a ΛCDM context have man-

aged to successfully reproduce a large set of observed galaxy properties

at low redshi�.

Cubic Vector Galileon

The analysis of Chapters 2 and 3 was devoted to the investigation of

nonlinear growth of large-scale structure in a sub-class of the GP theory

of gravity, the Cubic Vector Galileon (cvG). We derived the simplified

equations for gravity as well as the longitudinal and transverse modes of

the vector field under the weak-field and quasi-static approximation, and

implemented them in a modified version of the ECOSMOG code.

The study of various cvG quantities (Sec. 2.3), that define the Vain-
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shtein mechanism and the strength of the fi�h-force, revealed that their

evolution at early times (a . 0.1) is indistinguishable from equiva-

lent quantities in the Cubic Scalar Galileon (csG) model. At late tames

(a & 0.1), the evolution of the cvG quantities is determined by the free

model parameter β̃3. For β̃3 → 0 the evolution is identical to csG while

for β̃3 → ∞ the quantities evolve according to the QCDM variant of the

cvG model. Furthermore have we found, that the EOM of longitudinal

mode of the cvG field posseses the same structure in terms of spatial

derivatives as the csG and the Dvali-Gabadadze-Porrati (sDGP) models.

The first set of cosmological simulations of the cvG model (presented

in Sec. 2.4) have shown the following. Firstly, the transverse vector mode

is negligible compared with the longitudinal vector mode on all scales

probed by the simulations (Fig. 2.6). Consequently, we expect the ‘back-

reaction’ of transverse mode on the evolution of longitudinal mode

to be very small, justifying the neglect of the transverse vector field in

future simulations and confirming the findings of [62]. Secondly, the

Vainshtein mechanism e�iciently suppresses the cvG fi�h force (Fig. 2.7).

This was shown through the comparison of the relative power spectrum

enhancement with respect to QCDM of the full cvG model simulations

and its linearised counterpart. The comparison has made it clear how

the neglect of the non-linear terms in the EOM of the longitudinal vector

mode leaves over-densities unscreened, leading to a much higher clus-

tering power at small scales. Finally, we have investigated what e�ect

the cvG model parameter β̃3 has on the Vainshtein screening behaviour.

As we have seen from the time evolution of various cvG quantities, for

small(large) β̃3 values, β̃3 = 10−6 (102), the cvG model behaves similar

to the csG(QCDM) model.

Chapter 3 was devoted to a thorough phenomenological study of

the cvG model and its matter, halo, weak lensing and void statistics. In

that pursuit we have created a set of five simulated lightcones for the

free model parameter β̃3 = [10−6 , 100 , 101 , 102 ] and their QCDM

counterpart. The N-body code of Chapter 2 was hereto augmented

with the ray-tracing modules of the Ray-RAMSES algorithm. We have
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compared the simulation results to linear perturbation theory when

possible and found that their agreement is pushed to ever larger scales

as a → 1 and β̃3 → 0. In the following we summarise the results of each

of those four topics.

We extend the study of dark matter field statistics by including

the simulation measurements of the velocity divergence power spec-

trum (Pθθ , cf. Sec. 3.3.1 and Fig. 3.3) and the matter bispectrum (B,

cf. Sec. 3.3.2 and Figs. 3.4, 3.5). On small scales (k & 0.1 h/Mpc) we

reproduce the well-known result that Pθθ is suppressed compared to the

linear theory results. For a → 1 and β̃3 → 0 we see a growing peak

that for the case of β̃3 = 10−6 protrudes above the linear theory pre-

diction at k ∼ 0.7 h/Mpc. For B we find that the magnitudes depend

on the triangle configurations, and increase in the order of equilateral,

squeezed, and folded triangle configurations. We show that the enhance-

ment of B due to the fi�h force is marginally stronger than in the case of

Pδδ , but the reduced bispectrum shows that B/BQCDM is to a very good

approximation equal to
(

P/PQCDM
)2.

The study of halo statistics includes five di�erent summary statis-

tics which are mostly based on SUBFIND cagalogues. Firstly, the halo

mass function (n(> M), cf. Sec. 3.4.1 and Fig. 3.6) shows that the fi�h

force enhances the abundance of dark matter haloes in the entire mass

range probed by the simulations, with the enhancement stronger at late

times, small β̃3, and high-mass haloes. Secondly, the two-point corre-

lation function (ξ (r)) shows the smaller β̃3 is the more enhanced the

clustering, which is nearly constant down to∼ 3 h/Mpc. However, the

enhancement in halo clustering is weaker than in matter clustering, for

all models at all times. Thirdly, the relative di�erence of the mean halo

pairwise velocity (v〈i j〉 , cf. Sec. 3.4.3 and Fig. 3.8) remains constant for

all cvG models at scales r > 10 h/Mpc, in very good agreement with

linear-theory prediction. For the latter, we have measured the haloes

bias, b, through the relation between the halo and matter correlation

functions, which showed a slight decrease as β̃3 → 0, as the fi�h force

enhances matter clustering more than halo clustering, as mentioned
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above. Fourthly, the results of the redshi� space halo clustering (ξ `(s),

cf. Sec. 3.4.4 and Fig. 3.9) reveal that the relative di�erence between cvG

and QCDM can be up to∼ 3 times larger for the quadrupole, ξ2(s), than

for the monopole, ξ0(s), although its SNR is∼ 0.5 times smaller on the

range 20 < s h−1Mpc < 40 due to larger statistical uncertainty in the

halo velocity field. Lastly, the result of the halo concentration-mass rela-

tion (c200, cf. Sec. 3.4.5 and Fig. 3.10) shows that in the cvG model, just

as for the csG model, the Vainshtein screening is strong enough inside

haloes that there is little e�ect of the fi�h force.

The study of the weak lensing convergence and peak statistics are

based on 10 × 10 deg2 partial-sky maps. Firstly, the analysis of the

convergence map (κ, cf. Sec. 3.4.7 and Fig. 3.11) shows that for smaller

β̃3 the convergence field is enhanced around massive structures for cvG

with respect to its QCDM counterpart. This is reflected in the relative dif-

ference of the probability distribution function of κ (PDF(κ), cf. Sec. 3.4.7

and Fig. 3.11), which shows that cvG models with β̃3 → 0 have more

pronounced under- and overdense regions. Secondly, the relative dif-

ference of the angular power spectrum (C` , cf. Sec. 3.4.7 and Fig. 3.11)

is largest on linear scales ` . 3 × 102, while for higher multipoles

the model di�erences reduce. Lastly, the relative di�erence of the weak

lensing peak abundance (Np , cf. Sec. 3.4.7 and Fig. 3.11) shows larger

(smaller) numbers of high- (low-)amplitude peaks for ν > 1 (ν < 1)

in the cvG models with β̃3 → 0, because the fi�h force enhances the

convergence values of the peak pixels.

The last topic we studied was 2D void statistics based on the same

partial-sky maps that we used for weak lensing statistics. Firstly, the rela-

tive di�erence of the tunnel and watershed void abundances (N(> Rv),

cf. Sec. 3.4.8 and Fig. 3.13, 3.15) show fewer large-sized voids in the cvG

cosmologies compared to their QCDM counterpart, since they produce

more weak lensing peaks which split large voids into smaller ones in

case of tunnel voids, or increase the convergence values so that the re-

gions satisfying the chosen void definition criterion shrink in size in case

of watershed voids. Secondly, the relative di�erence of the tangential
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shear profile for tunnels and watershed voids (cf. Sec. 3.4.8 and Fig. 3.14,

3.15) peak at approximately the void radius, with larger enhancements as

β̃3 → 0.

In conclusion, we find that for the studied cvG model, the strongest

imprint of the modifications to Einstein’s theory of gravity is on velocity

and lensing statistics. This suggests that redshi� space distortions and

weak lensing shear correlation functions can both be promising cos-

mological probes to constrain the β̃3 parameter in this model. On small

scales, the cvG model is generally more di�icult to constrain because

the screening mechanism suppresses the fi�h force e�ect; for example,

internal properties of haloes, such as the concentration-mass relation,

are insensitive to the fi�h force.

Strong Lensing

The last part of the thesis, Chapter 4, is devoted to quantify the influence

of secondary deflectors along the line-of-sight on time-delay measure-

ments of H0. We base our analysis on 800 galaxy-scale lensing systems

with quadruply-lensed variable point sources. Half of the lensing systems

were created with multiple lens plane ray-tracing, one plane for the pri-

mary lens and each line-of-sight halo, while the other half use one lens

plane that includes the same primary lenses plus a constant external

convergence and shear. The light cones were derived from the CosmoDC2

semi-analytical extra-galactic catalogue. As it is based on a DM-only sim-

ulation, we have used SIE profiles in place of identified haloes to better

represent the total mass (baryons + dark matter) profiles of real lens

galaxies. A side e�ect of this can be that the lensing strength of any lower

mass haloes, which in the real Universe may not have accrued baryons,

could be artificially enhanced by the more e�icient isothermal profile.

In addition, our simulated datasets do not include any large scale struc-

ture such as filaments although this is expected to be a small e�ect. As

time delay studies select lens systems that are apparently free of strong

perturbers in an attempt to exclude line-of-sight e�ects, we mimicked
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this choice to a degree by removing haloes from all of our light cones

that produce a deflection resulting in an Einstein radius larger than 0.3

arcsec.

Our main conclusion is that simple corrections for line-of-sight struc-

ture, such as through constant external shear or external convergence,

in estimations of H0 using lensed time delays can not be relied upon in

general. If time-delays are subjected to perturbations due to haloes lying

close to the line-of-sight the inferred value of H0 is over-estimated by

approximately 4% on average with no correction or the incorporation

of a constant external shear and under-estimated by∼ 7% per cent on

average if a constant external convergence is incorporated.

These results were obtained from simulations with a relatively high

median external convergence (κext ' 0.11). Our findings indicate

however, that even small values of κext bias H0 on average. We have

shown that the fractional bias in inferred H0 correlates with median

external convergence according to the linear relationship ∆H0/H0 =

0.626κext − 0.005 .

With the forthcoming large sample of strong lensing time delay

systems observed by the future time domain large scale surveys, e.g.,

Mephisto1 and LSST, the e�ect becomes even more problematic. 1 http://www.swifar.ynu.edu.

cn/info/1015/1073.htm

5.2 Future Work

Naturally, the work developed for this thesis could only cover a finite

number of investigations of the phenomenology of the cvG model and

time-delay cosmography. Next, and before we finish, we briefly outline

what we believe are amongst the most interesting ways to extend the

analysis.

Cubic Vector Galileon

To better understand the cosmological behaviours and observational

implications of the cvG model studied in this thesis, a more compre-

hensive investigation of the predictions of various physical quantities is

http://www.swifar.ynu.edu.cn/info/1015/1073.htm
http://www.swifar.ynu.edu.cn/info/1015/1073.htm
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needed, which requires more independent realisations of larger volume

and higher resolution simulations. This will allow us to, e.g., understand

better why weak lensing by 2D voids do not seem to be as promising a

probe, even though the lensing potential is significantly modified in low-

density regions. Extending the analysis to properties of 3D voids found

from halo or mock galaxy catalogues is also of interest, especially the

redshi�-space distortion around them. We have also seen indications for

weak lensing by galaxy clusters being a powerful probe to constrain the

cvG model. To follow up on this finding, we will need to perform an anal-

ysis of stacked weak lensing convergence profiles, which will be doable

once we have produced lightcones that cover a larger patch of sky.

Furthermore in Chapter 3 we set out to find key statistics that can

be used to put tight constrains the cvG model parameter. However,

in order to make a connection between the N-body simulations and

galaxy surveys, it is necessary to include galaxies. This can be done

through semi-analytical models of galaxy formation, such as GALFORM.

The coupling of semi-analytical models to the cvG simulations is not

straightforward as care needs to be taken to ensure that the equations

of the semi-analytical models are appropriately modified to take the

e�ects of the screening mechanisms into account. This would open

up the possibility to investigate more accurately how the cvG model

can be constrained using cross-correlation between galaxies and the

integrated Sachs-Wolfe (ISW) e�ect, a test that has already been shown

to be promising by [154], using our ray-tracing code presented in Sec. 3.2.

Another approach would be to include baryonic matter and run hy-

drodynamic simulations. Although they are far slower than DM-only

simulations, they have increased in computational e�iciency and are

now able to model in detail the evolution galaxy population in cosmo-

logical volumes over cosmic time, achieving encouraging matches to

observations [e.g., 145, 170, 130]. Recently, [114] have extended the SHY-

BONE (Simulating HYdrodynamics BeyONd Einstein) simulations [10] to

explore galaxy formation in the nDGP model. These simulations use the

Arepo code [197] and employed its AMR modified gravity solver together
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with the IllustrisTNG galaxy formation model [219, 170]. Modifying the

SHYBONE extensions, one can implement the cvG model in a similar

manner.

Besides improving the cosmological simulations, we can also improve

the cosmological model that was studied. Various studies that use ob-

servations to constrain the GP model [e.g., 64, 65, 111] have shown that

the model studied here, with linear functional form for G2,3, has a poor

fit to the observational data. Therefore it is of interest to extend the sim-

ulations to the more general case in the G2,3 are not linear. However, our

work suggests, that adding massive neutrinos with significantly nonzero

mass [see, e.g., 19] may be a way to make the GP model with linear G2,3

agree better with data. A promising path to add massive neutrinos into

the cosmological simulations would be to make use of the "δ f " method

as implemented by [82] in SWIFT [208].

Finally, even though we have justified the neglect of the transverse

mode of the vector field Bi in cosmological simulations, it is possible that

in other situations this is no longer a good approximation. For example,

the GP field does not have to be the driving force behind the accelerated

cosmological background expansion, but might have e�ects on galactic

scales and the transverse modes could give rise to a change of structure

formation on such scales. With some appropriate adaption and exten-

sion, our code will be able to be used as a tool for investigations in such

circumstances.

Strong Lensing

To decrease the measurement uncertainties of H0 based on strong lens-

ing time-delays, we can improve our methodology along multiple paths.

Firstly, the results based on the Outer Rim cosmological N-body sim-

ulation can be made more accurate by including sub-structure of the

primary lens in to the ray-tracing routine through which lensing observ-

ables are obtained. These are currently neglected as we assume a single

smooth SIE profile for each primary lens. Their inclusion will improve
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bias and uncertainty estimates, as it is known that even microlensing can

significantly magnify and demagnify the lensed object [e.g., 45, 76]. Since

our simulations span a range of lens systems each with a di�erent me-

dian external convergence, κext, it will also be interesting to investigate

whether there is any correlation between the bias we see in inferred H0

and κext. Identifying such a correlation might instruct future studies on

how best to minimise the bias. Another open question that should be

answered in the future, is how our results are a�ected by changing the

lens system selection criterion, which currently depends solemnly on the

size of the Einstein radius, to consider the flexion shi� as done by [180].

Their approach would result in a di�erent catalogue of lens systems and

thus might alter the estimation of H0. A removal of the H0 bias through a

di�erent lens system catalogue alone is however not expected as long as

the lens modelling does not incorporate multiple lens planes to account

for line-of-sight structures that will be present in some systems.

Secondly, as for the cvG simulations our current results are based on

DM-only simulations which can be improved by using hydrodynamic

simulation. Besides leading to more realistic lens mass profiles, it would

allow for a more realistic lens-galaxy selection based on currently con-

firmed strong lenses from, e.g., the Sloan Lens ACS Survey (SLACS, [e.g.,

159, 194]) and the Strong Lensing Legacy Survey (SL2S, [e.g., 93, 196]).

Using hydrodynamic simulations lets us include more observables based

on the stellar population of galaxies to select and model lens-galaxies,

such as stellar mass and stellar velocity dispersion. Especially including

measurements of the latter in the modelling process can reduce the er-

ror on D∆t by a factor of 10 [201]. With next generation lensing surveys

(for example with EUCLID [206]), the number of lenses for which such

additional observables will be available will increase by orders of magni-

tude and it is thus important to study di�erent methodologies through

simulations.
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5.3 Concluding remarks

It is an exciting time to be cosmologist. The deluge of data, both on the

scales of the faintest galaxies in the local Universe, as well as on the

largest, cosmological scales means that we currently have more infor-

mation in our hands about our Universe than at any time previously.

It brings with it potential challenges to our current understanding of

the physical foundations of cosmology. One of the most statistically

significant challenges is the disagreement between predictions of the

Hubble-Lemaître constant made by a number of independent early- and

late-time probes from measurements of distances and redshi�s. This

thesis has presented the study of a novel theoretical model that could

alleviate and systematic errors within strong lensing time delay mea-

surements that could explain the Hubble tension. The results presented

here will help to design new observational tests and avoid catastrophic

systematic errors in the interpretation of upcoming high-precision data

delivered by, e.g., DESI, LSST, EUCLID.
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