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Abstract 

 

Plants grow both in height, and in width. The process of radial expansion, known as 

secondary growth, generates the majority of the plant biomass through expansion of the 

vasculature, the plant’s water and nutrient conducting tissues. It is therefore imperative to 

understand how vascular growth is regulated. Secondary growth is facilitated by a collection 

of stem cells present in a meristem called the vascular cambium. The cambium gives rise to 

the water-conducting xylem and nutrient conducting phloem, on opposing sides via periclinal 

cell divisions. A receptor-like kinase PXY has been found to promote cell division in the 

cambium, and to control its ability to maintain distinct domains for xylem and phloem. Loss 

of PXY results in interspersal of these cell types.  

PXY interacts with other components in regulating secondary growth. It was seen to 

genetically interact with another receptor-kinase and its family of genes, ER. However, 

comprehensive exploration of how these two genes and their families interact had not been 

determined. Similarly, PXY was shown to indirectly suppress the transcription factor MP in 

stem, but to be promoted by MP in root. Both components were also found to be localized in 

the same domain on the xylem side of the cambium, where the hormone auxin was shown to 

accumulate. Disruption of the auxin pattern or removal of PXY or MP results in defects in 

cambial function, but the basis of these interactions is not fully understood. 

To address the questions surrounding PXY’s role in secondary growth, a bespoke 

method for measuring cell sizes and shapes from cross-sections of plants was developed. This 

method was employed to analyse PXY and ER families single and combinatorial mutants. 

Finally, a theoretical three-cell mathematical model was proposed examining PXY’s 

relationship with the transcription factor MP in controlling the accumulation of auxin in the 

cambium. 

The results of these studies demonstrated that loss of PXY and ER families results in 

different consequences in stem and hypocotyl. In hypocotyl and in the absence of the PXY 

family, ER and its genetic paralogues promote hypocotyl radial growth in part, compensating 

for loss of PXY by promoting cell size increases, but this was not observed in stem. Moreover, 
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loss of all of the PXY and ER genes results in complete suspension of secondary growth, 

suggesting that these two genetic pathways are required for the transition between primary 

and secondary growth. In the investigation of PXY’s relationship with the transcription factor 

MP in root, it was shown both numerically and analytically that a negative feedback loop 

between the two provides stability to the system, thus generating a more stable auxin 

gradient in the cambium. Thus, PXY interacts with both ER and MP to maintain vascular 

organisation and growth, and these interactions are essential for the induction of secondary 

expansion, as well as hormone patterning in order to promote cambial activity.  
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Foreword 

 

The focus of this thesis is the study of plant vascular development during secondary 

growth, otherwise known as the radial increase of plant organs. Here, I target the underlying 

signalling mechanisms which govern both this expansion and the associated tissue patterning 

in plants. In the centre of the investigation is the cambium - the meristem that generates 

secondary growth in plants - and a receptor-kinase PHLOEM INTERCALATED WITH XYLEM 

(PXY) expressed in the cambium, and coordinating the cell division rate and cell division plane. 

This thesis addresses gaps in the literature associated with PXY’s activity in interacting with 

its own genetic paralogues and other components responsible for secondary growth and 

patterning. I argue that in order to fulfil its role, PXY collaborates with several key regulators 

of secondary growth, including other receptor families and hormonal downstream 

components.  

To address the question of how PXY performs its function, I employ: first, a theoretical 

investigation; second, I develop a bespoke image analysis method to analyse and compare 

mutants with PXY family background; third, I construct a mathematical model to test PXY’s 

role in promoting cambial activity (divisions in the cambium) during secondary growth. I 

conclude that PXY is involved in several complex relationships cross-tissue and in the 

cambium, in order to coordinate the proliferation and organisation of the vasculature.  

This thesis consists of a compilation of both published and unpublished work, utilising 

conceptual research, image analysis techniques and mathematical modelling to pursue 

deeper understanding of the regulation of secondary growth and organization. Below, I will 

summarise the structure, chapter by chapter. 

The first chapter describes the relevant research background and is comprised of 

three parts. The first part discusses a general overview of vascular tissue in plants and the 

importance of the cambium for secondary growth. The second part covers signalling 

mechanisms that regulate the activity of the cambium. The final part of the chapter 

summarises several important papers in biology which use computational techniques in order 

to support their testing of hypothesis in plant science. Together, the subsections of Chapter 

1 provide the necessary knowledge-base required to conduct the bulk research of this thesis. 

The following three chapters discuss the methods and results of my investigations. To 
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elucidate the relationship between the PXY gene family and another receptor-kinase ERECTA 

(ER) and its paralogues, I needed to study different loss-of-function plant mutants from these 

gene families and compare their phenotypical variation. For this, quantification of cell 

measurements such as area, perimeter and elongation were required of cells from cross-

sections of the various genotypes. In Chapter 2, I will introduce a research approach capable 

of acquiring and evaluating such information from images. The original use of this method for 

investigating the PXY and ER interaction in vascular development will be covered in Chapter 

3. Chapter 4’s focus is the formulation of a mathematical model to test the PXY and MP 

relationship for the regulation of cambial activity. The model was explored both analytically 

and numerically to propose insights into the mechanisms governing hormone patterning in 

plants. In the last chapter of this thesis I offer a discussion on my research work, outputs and 

limitations. 

This thesis takes a multi-disciplinary approach to science and explores the different 

pathways that can be used to build upon current understandings in a field. From reviewing 

existing publications and identifying a gap in the literature, to employing a bespoke method 

for analysis of phenotypical variation between plant mutants and finally composing a 

mathematical model for exploring the internal logic of a signalling system, I have approached 

vascular tissue development from several different angles. As such, I believe I have 

contributed to the field and hope you enjoy my work. 
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Chapter 1: Research Background 
 

 

Multi-disciplinary research requires insight into several distinct types of existing 

literature. In this chapter, I will explore the three different research backgrounds necessary 

to provide foundation for this thesis. 

The first section will cover a brief review of vascular tissue structure, function and its 

role in secondary growth. In the second part, I will tackle sub-cellular regulation, consisting of 

my published review of the signalling mechanisms underlying vascular establishment and 

maintenance. Finally, I will examine some of the major multi-disciplinary studies that combine 

mathematical modelling with biology. This third section will offer evidence of the value of 

mathematical techniques in unravelling complex questions in biology.  

Read together, this three-part chapter will demonstrate how experimental and 

analytical tools can be combined to provide deeper understanding of research questions and 

hypothesis. 

 

1.1 Plant vascular tissue 
  

1.1.1 Overview 
 

Plants are integral for supporting all life on Earth. They play an important part in 

sustaining ecosystems [4-6], providing vital habitats [4, 6], nutrients[7-11] and improving soil 

quality [4, 5, 7, 12]. For humans, plants are a source of fuel [13-15] and food [4, 7, 16, 17], 

presently rising in importance for the ever-increasing global population. Plant tissues and the 

chemical compounds they produce are key ingredients in the making of medicines [7, 18-22], 

paper[23-25] and clothing [26]. Plants are used in the manufacturing of many everyday items 

and furniture[25-28], and furthermore contribute to our well-being and relationship with 

nature[7, 29-31]. In our fight against climate change, they are some of our most powerful 

allies [8, 9, 32-35]. By absorbing carbon dioxide, storing it and producing oxygen, they purify 

the air we breathe [32-36]. The study of plant development contributes to identifying new, 

more sustainable resources[37, 38], boosting crop production[7, 8, 11, 17, 39-42], discovering 
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cures for diseases [7, 18-22] and enhancing our understanding of the world.  

In general, three main groups of tissues can be distinguished in plants: dermal (which 

serves as a protective mechanism between the plant and the external environment) [43], 

vascular (which facilitates nutrient and water transport, as well as providing mechanical 

support) [43-45] and ground tissue (constituting all remaining tissues) [43-45]. Ground tissues 

sustain several functions, including surrounding and supporting the vascular bundles (the 

discrete structural units of the vascular tissue), partaking in regeneration processes and 

contributing to nutrient storage and photosynthesis [43-45].  

Zones of actively dividing cells in the plant, known as meristems, are responsible for 

the development of all plant tissues [43-45]. Apical meristems located at the root and shoot 

tips facilitate primary growth, i.e. elongation of the plant body. These are known as root 

(RAM) and shoot (SAM) apical meristems [43, 44]. These primary meristems give rise to the 

primary body of the plant [44]. Many vascular (or land) plants are formed entirely of primary 

tissues (most monocots and a number of small dicots, to be explained later) [44]. However, 

other vascular plants expand radially as well. This process, called secondary growth, is 

facilitated through of the activity of a lateral meristem, the cambium, which bidirectionally 

gives rise to a strictly organised internal structure of the plant[43-45]. Here, xylem and 

phloem, the two main types of transporting tissues, are differentiated on either side of the 

cambium and are spatially separated [43-45]. Xylem is formed on the inner side of the 

cambium, while phloem is formed on the outer side of the cambium[43-45]. The resulting 

increase in organ thickness contributes to the vascular tissue making up the majority of plant 

biomass. It is therefore imperative to understand how these tissues are established and 

maintained. Such research efforts must be based on understanding both the physical 

properties of the vascular tissue, and the molecular interactions that govern it. In this section, 

I will tackle the former, providing an overview of the structure and function of the vasculature, 

along with the key cells which comprise it [43-45]. 

. 

1.1.2 Secondary growth as a feature of dicots 
 

The two major classes of flowering plants in nature are monocots and dicots. 

Monocots and dicots differ in several aspects, with the presence of one or two cotyledons, 

i.e. embryonic leaves in the seed, marking a major such distinction. Other features include, 
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respectively for monocots and dictots, leaf venation (parallel vs ‘branched’), number of 

flowers in a cluster (three vs four or five) and root (upper-soil mass of splayed out thin roots 

of approximately equal length vs a deeper-growing thicker main root with lateral roots) [44]. 

In primary stems, there is also a distinction between vascular bundle organisation. In 

monocots, the vascular bundles are scattered, while in dicots they are arranged in a ring 

(Figure 1) [44]. 

Secondary growth which results in the formation of secondary xylem and phloem for 

organ thickening, is not a typical trait of monocots. In the few monocot species where radial 

expansion is observed (such as in palm trees and Yucca plants), the underlying mechanisms 

involve what is called anomalous secondary growth, i.e. processes such as proliferation in the 

parenchyma or the functioning of a cambial variant which behaves irregularly to the typical 

vascular cambium. Since the focus of this study is the regulation of vascular tissue during 

secondary growth, unless otherwise specified, I will focus on the dicot model plant 

Arabidopsis thaliana, whose genome is small and well annotated. In Arabidopsis thaliana, 

secondary growth occurs in root, hypocotyl and stem [1] In what follows, the concepts of 

primary and secondary vascular pattern will be described, as well as organisation of the 

vascular tissue patterns in these three Arabidopsis organs. 

Figure 1: Primary vascular tissue organisation in dicot stems (on the left) vs monocot stems (on 

the right). Vascular bundles in dicots form a ring around the circumference of the stem with 

ground tissue in the middle, whereas monocots have scattered vascular bundles surrounded by 

ground tissue. 
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1.1.2.1 Primary vascular pattern in root and hypocotyl 
 

Development of the vasculature is broadly understood as a continuous process [1] 

(Figure 2). The formation post-fertilization of the complete plant embryo is known as 

embryogenesis and is consisted of several stages: embryo sac, zygote, one, eight and sixteen 

cell stage, early and late globular, transition stage, heart stage and finally seedling. The correct 

patterning of xylem and phloem can be traced back to the globular stage, when post-

fertilization the meristematic tissues are first formed [46, 47].  

Root and hypocotyl follow a similar developmental process in terms of both primary 

and secondary vascular patterning (Figure 2) [48-50]. In Arabidopsis thaliana, organisation of 

the vasculature is offset by four initial cells that undergo periclinal cell division [46, 47]. The 

subsequent primary pattern represents a template for the establishment of the mature 

vasculature and is comprised of two protoxylem poles linked by a bridge of metaxylem cells, 

thus creating a central xylem axis (Figure 2) [47]. This xylem axis is flanked by procambium 

Figure 2: From: Ragni & Greb (2017) [1]. Fig 2. Layout of vascular tissue organisation in higher 

plants in young and old root, hypocotyl and stem.Left-hand side is a schematic. The right-hand 

side is the cross sections of images. Based on Ragni & Greb (2017) [1], red is phloem, light blue 

is cambium, purple is interfascicular cambium, yellow is xylem, black is epidermis, blue is 

periderm. Scale bar iss 50 𝜇𝑚. In this diagram, young is primary growth, old is secondary. 
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cells, on the other side of which resides a single pole of phloem cells to be expanded into a 

ring with the offset of secondary growth [47, 51]. In this way, the xylem axis creates a cross-

like shape with the two phloem poles positioned at 3 and 9 o’clock relative to the centrally 

spanning 12 to 6 o’clock xylem axis (Figure 2). This bisymmetric (diarch) pattern is essential 

for the normal establishment of the mature root/hypocotyl [1, 52]. 

 

1.1.2.2 Secondary vascular pattern in root and hypocotyl 
 

The diarch pattern described above is a characteristic of both root and hypocotyl 

primary vascular organisation [43]. In the next stage of development, secondary vascular 

tissues are produced via periclinal cell divisions from the lateral cambium [43, 53, 54]. This is 

marked by the growth of the procambium into mature cambium and expansion of the two 

phloem poles to create a ring around the circumference of the root and hypocotyl. From its 

initial axis, the xylem also grows, eventually becoming restricted to the central vascular 

cylinder (Figure 2) [55, 56]. This process of seconday growth results in the full secondary 

vascular pattern, constituting a ring of cambial cells which generate xylem on their inward-

facing side and phloem on their outward-facing side [43-45]. Notably, hypocotyls are a 

particularly good model for observing secondary growth due to their large radial expansion 

during this stage, paired with lack of elongation [55-58].  

 

1.1.2.3 Primary and secondary vascular pattern in stems  
 

Unlike the root and the hypocotyl, the primary vascular pattern in stem consists of 

several vascular bundles arranged in a ring [1, 59, 60]. This is known as a collateral pattern 

(Figure 1, left; Figure 2). Each bundle within this arrangement is characterized by a central 

collection of cambial (fascicular) cells, an inner layer of xylem cells and outer layer of phloem 

cells [1, 59, 60]. This collateral pattern, however, is changed as radial expansion is triggered. 

During the process of secondary growth, cells between the vascular bundles obtain a cambial 

identity (becoming the so-called interfascicular cambium) and connect the individual vascular 

bundles [1, 59, 60] (Figure 2). As a result of this, continuous rings emerge and, similarly to 

mature root and hypocotyl, a connected secondary vascular pattern is formed (Figure 2).  
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1.1.2.4 Similarities and differences in vascular pattern in Arabidopsis organs 
 

As discussed above, mature secodary vascular patterns in root, hypocotyl and stem 

are similar (Figure 2). Notably, in root and stem, the transition to secondary growths forms a 

gradient, with observable primary pattern at the tips gradually expanding into a secondary 

pattern [48, 59]. By contrast, hypocotyl secondary growth is mostly uniform[1, 49]. Common 

regulatory mechanisms have been identified between root, hypocotyl and stem growth and 

development [61-64], suggesting that many of the mechanisms identified in different organs 

during secondary growth may overlap. In all three organs, the cambium regulates the radial 

expansion, directing the differentiation of new cells according to positional information and 

thus determining which side the phloem and xylem are generated on [65]. In the next section, 

I will give an overview of the key cells in the vasculature and discuss their structure and 

functional specificity[43-45] 

 

1.1.3 Main cell types 
 

Typically, xylem cells, with their role in fluid transport and plant mechanical support, 

occupy the inner perimeter of the cambium. Phloem, on the other hand, is a carrier of 

nutrients throughout the plant and is located on the outer cambial ring [43-45]. Derivation 

from the cambium of both these types of cells happens in an oriented manner, with the 

division occurring mostly periclinally down the long axis of cambial cells, pushing old cells 

outward and away from the cambial ring [43-45]. This strict architecture of the division plane 

is preserved through the entirety of the plant’s life and is essential for the maintenance of 

normal physiological functions of the organism [43-45]. It is therefore crucial to gain a better 

understanding of the mechanisms responsible for this cell patterning.  

 

1.1.3.1 Xylem 
 

Conduction of water is essential for terrestrial plants. Approximately 500 million years 

ago, as organisms adapted to life on land, structural changes took place in order to provide 

plants with the necessary tools to exist aboveground rather than in water [66]. The evolution 

of xylem marks this transition[66]. The new conditions of life required an inner transporting 

system that was mechanically strong and able to extract water from the ground and distribute 
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it throughout increasingly taller plants [66]. Xylem tissues served such functions. 

In flowering plants (angiosperms), xylem is composed of conductive tracheary 

elements (TE) divided into xylem vessels and tracheids, as well as xylem parenchyma and 

xylem fibres [43-45]. TEs are essentially ‘dead’, lignified cells that have lost their protoplast 

(Figure 3 B,C) [43-45]. Of these, vessels constitute a majority; they are shorter and larger cells, 

with perforation end plates and pits (Figure 3 C). When stacked up, vessels form columns of 

hollow tubes that act as channels for moving water throughout the plant. Such perforated 

end plates are lacking in tracheids (Figure 3 B), the second type of TEs [43-45]. However, 

tracheids still have pits on their shared walls, which, along with their elongated shape, allows 

them to use adhesion to retain water against gravity[67]. Xylem fibres are smaller cells, with 

thicker lignified cell walls. Just like TE’s, they are dead cells (Figure 3 A) [43-45]. They can be 

found around TEs, thus primarily operating as mechanical support and protection of the major 

water-conducting cells within the plant body [43-45]. Xylem parynchema is the only ‘living’ 

part of the xylem (Figure 3 D) [43-45]. It largely serves storage purposes, but it is also 

responsible for some short-distance transport, such as radial conduction of water [43-45]. 

With its role in transport and mechanical strength, xylem constitutes the bulk of plant biomass 

and in trees, it is known as ‘wood’ [44].  

 

 

Figure 3: Diagram of xylem cell types. Longtiudinal section of xylem fibres(A), tracheids (B), 

xylem vessels organised in channels for water transport(C) and transverse section of xylem 

parenchyma cells. 
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1.1.3.2 Phloem 
 

Unlike xylem, phloem cells are still alive and function primarily as conductors of sap 

(water-based solution of sugars, hormones and minerals) throughout the plant[43-45]. This 

transport is multi-directional, whereas xylem carries water only from root upwards. Broadly, 

the phloem is composed of sieve-tube elements, companion cells, parenchyma and fibres 

(Figure 4 A, B) [43-45]. Nutrient storage and some transport is performed by the parenchyma, 

while fibres provide support. The main conductors of nutrients, however, are the sieve 

elements[43-45]. They lack nuclei and most organelles, which makes them metabolically 

dependent on adjacent companion cells (major component of the parenchyma) (Figure 4 A,B) 

[43-45]. In fact, a single meristematic mother-cell gives rise to both the seive-tube and its 

companions [44]. This mother-cell produces several daughter-cells, among which typically the 

largest one differentiates into a seive-tube [44]. One or more of the remaining cells become 

companion cells which reside in close proximity to one or more of the seive-tube’s cell walls. 

Phloem’s ability to transport nutrients and hormones from sites of production (sources) to 

sinks, has been attributed to a pressure flow mechanism hypothesized by Ernst Munch in 

1930. This pressure flow mechanism uses osmotic pressure gradients from regions with high 

nutrient concentration to draw water from adjacent cells. The resulting hydrostatic (turgor) 

pressure then facilitates the transporting function [44].  

 

1.1.3.3 Parenchyma 
 

In the above discussion, I briefly mentioned parenchyma cells and their roles as a 

subcategory of the xylem and phloem tissues. Part of the ground tissue, parenchyma cells 

generally constitute wide-spread differentiated cells that serve a range of functions[43-45]. 

They are largely unspecialized living cells, produced from different meristematic regions, with 

overall thin walls, vacuoles, protoplasts and a variety of contents depending on the cells’ 

purpose. In the previous context, parenchyma cells were correspondents to activity of 

transport tissues, but they also provide photosynthetic, secretive, respiratory function, serve 

as a ‘filler’ between other structural units or even divide to perform meristematic role upon 

occurrences such as injury [43-45]. Usually large in size, parenchyma are often polyhedral, but 

this may change under external influences and proximity to other cells (Figure 4 C) [43, 44]. 
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Similarly, they can alter their composition and lignify to provide better support, develop pits 

for transport or lesions to allow flexibility and oxygen-retention for aquatic plants [43, 44]. 

The versatility of parenchyma alongside its meristematic potential make it an important 

attribute to plant growth and development [68]. 

 

   

 

Figure 4: Diagram of a longitudinal cross-section of phloem seive tube and companion cell pair 

(A) vs a transverse cross section of the same. A cluster of general parenchyma cells are given 

by (C). 

 

1.1.3.4 Cambium 
 

At the centre of vascular development and secondary growth is the generation of 

tissues from the vascular cambium. This lateral meristem generates files of cells on either of 

its sides via periclinal divisions [44, 69]. A schematic of the orientation of cell divisions from 

the perspective of longitudinal and transverse section is given in Figure 5 A and B, 

respectively. The cambium consists of small, undifferentiated cells that show exceptional 

polarity [60], preserving the direction of original cell division and differentiation, even during 

grafting experiments where tissue sections were cut out and replaced at a 180° orientation 

[70, 71].  

Notably, this bidirectional property of the cambium was seen to be true even at the 

pre-formation stage. In an experiment by Siebers (1971), incised sections were chosen from 

hypocotyls in locations where the cambium was expected to emerge. Inversion of these 

pieces did not alter the pre-cutting layout of the vasculature, suggesting polarity of the 

vascular ring formation was determined prior to the experiment and that the cambium 
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operates using short-term signals [70]. As discussed later, cambium bidirectionality has been 

more thoroughly investigated in recent publications by Smetana et al., (2019) [72] and Shi et 

al., (2019) [73]. 

In terms of structure, the cambium can be distinguished into two cell types: fusiform 

and ray initials [43, 44, 68, 74] (Figure 5 C). The fusiform cells are thin and more elongated, 

with wider tangential walls and wedge-shaped ends; they form the axial system of the 

cambium. Ray initials are somewhat elongated, close to isodiametric, and form the radial 

system of the vascular cambium. Both types differentiate into xylem and phloem according 

to the vascular patterning (Figure 5). The ray initials correspond to the production of the more 

radial transport system, such as the xylem parenchyma and the phloem parenchyma, whereas 

fusiform cells generate axial transport cells (TEs, sieve tubes, fibres) [43, 44, 68, 74]. 

 

Figure 5: Longitudinal section of cambium, phloem and xylem sections with the correct 

orientation of division plane (A). Transverse cross section of the same organisation is given in 

(B). The two main types of cambium initials are in longitudinal direction in (C). 
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1.1.4 Summary 
 

The role of the different cells in the vasculature contributes to the health, resilience 

and growth of the plant. Structural distinction of these cells provides better understanding 

how tissues perform their function and highlights the significant level of organisation required 

to maintain processes within the plant. The ability of the plant to produce spatially separated 

specialised cells in the required numbers and with the required properties for tissue 

formation is under the governance of a single cell type - the vascular cambium. Nevetherless, 

much is still poorly understood about the components that control cambial activity (divisions 

in the cambium).  

Here, I aim to investigate the regulatory mechanisms that control cambium activity 

through short and long-distance signals, including hormones and peptide ligands. Of 

particular interest for this research are root, hypocotyl and stem vascular organisation in 

Arabidopsis. In the next section I will review the signalling mechanisms which impact the 

cambium and coordinate the correct establishment and expansion of the vasculature. 
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1.2 Review of major signalling mechanisms 
regulating cambial activity during secondary growth 

 

Having examined the vascular tissue structure and function, I will now discuss how it 

is regulated. The work done for this section has been published as ‘Connections in the 

cambium, receptors in the ring’ in Current Opinion in Plant Biology [75]. It represents a review 

of the up-to-date literature of the signaling mechanisms that govern the vascular 

development and maintenance. The review discusses major hormone contributors, receptor-

ligand interactions and their downstream components, as well as present progress in the 

scientific understanding of the cambium role in establishing and sustaining the correct tissue 

patterning during secondary growth. In addition, the review outlines several unanswered 

questions and directions for future research, thus building a overall picture of the field. The 

full publication can be found in Appendix A.  

 

1.2.1 Review introduction 
  
As previously discussed, in the vascular tissue, xylem provides mechanical strength to 

support the plant body, whilst also faciliatating the movement of water and solutes from 

roots to shoots. Meanwhile, the phloem distributes photosynthates and conducts the bulk 

flow of phytohormones (reviewed in Refs. [76, 77]) including auxin [78], cytokinin [79-82], 

gibberellin [83-85] and abscisic acid (ABA) [86-89], to drive physiological responses and 

regulate plant development. Both cell types are derived from the cambium, with the 

specification of their cell type identity and function summarised in recent reviews [90-97]. 

Here, I will discuss the signalling mechanisms that regulate the homeostasis of the cambium 

to allow it to generate tissues in the vasculatures. 

 

1.2.2 Hormone harmonies 
 

Most plant hormones play a role in the regulation of cambial activity [85, 98-100], but 

the most prominent and well-studied are auxin and cytokinin. Auxin is involved in numerous 

developmental processes, operating through a signalling pathway that includes auxin/indole-

3-acetic acid inducible Aux/IAA proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) receptor, 

and the AUXIN RESPONSE FACTOR (ARF) family of genes [101-106]. ARFs act as transcriptional 
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regulators [58, 59]. 

Auxin’s interaction with ARFs is established via a de-repression mechanism modulated 

by auxin. In the absence of auxin, ARFs are blocked by heterodimerization by auxin/indole-3-

acetic acid inducible Aux/IAA proteins [101-109] and are thus unable to facilitate subsequent 

signalling responses. Auxin’s role to offset downstream activity involves TIR1 protein which 

forms a ubiquitin-ligase complex SCFTIR1 with SKIP-CULLIN-FBOX (SCF) and acts as an auxin 

receptor [110-113]. As it is introduced into the cell, auxin directly binds to SCFTIR1’s Leucine 

Rich Repeats (LRR) domain and promotes interaction with Aux/IAA proteins. This triggers the 

degradation of these Aux/IAA proteins and releases ARFs to perform their function [102, 112]. 

Of the ARFs, ARF5/MONOPTEROS (MP) regulates proliferation in the vascular stem cell niche, 

as well as performing distinct roles in early and late stages of vascular development. During 

embryogenesis, mp mutants fail to establish a central axis in the provascular cylinder [114, 

115]. Weak mp alleles also demonstrate disrupted auxin transport [114, 116, 117] due to MP 

directly activating transcription of several PIN-FORMED (PIN) auxin efflux transporters [118, 

119]. Thus, in early development, MP promotes vascular proliferation. Late in development, 

during secondary growth, mp mutants demonstrate increased cambial divisions, suggesting 

that in this context MP suppresses vascular expansion [120, 121]. Conversely, other auxin 

response factors, ARF3 and ARF4, have been shown to operate in concert to upregulate 

cambium activity [121]. 

Cytokinin also contributes to cambium development, with loss of cytokinin-

synthesizing genes deterring cambium formation and thus radial vascular expansion [122, 

123]. Cytokinin signalling occurs via a phosphorelay, which begins with cytokinin perception 

by its family of receptors CYTOKININ RESPONSE 1 (CRE1)/WOODEN LEG (WOL)/ Arabidopsis 

HISTIDINE KINASE4 (AHK4), AHK2 and AHK3 [123-127]. Following perception, ARABIDOPSIS 

PHOSPHOTRANSFER PROTEINS (AHPs) AHP1- AHP6 are activated [128-130], with AHP1-AHP5 

promoting cytokinin signalling, and AHP6, acting as a pseudo-AHP and thus as a negative 

regulator of the signal [128-131]. In the final steps of the signalling cascade, AHPs 

phosphorylate type-B ARABIDOPSIS THALIANA RESPONSE REGULATORS (ARRs), transcription 

factors that promote cytokinin responses including vascular proliferation. AHPs also trigger 

the transcription of type-A ARRs, which in turn suppress cytokinin responses, thus buffering 

the system [132-137]. 

Auxin and cytokinin ratios influence the balance between cell division and 
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differentiation during plant development [138-142]. Their concentration gradients span the 

vascular tissue with a cytokinin maxima in the phloem, and an auxin maxima on the xylem 

side of the cambium (Figure 7) [120, 121, 143]. Cross-talk between these hormones is likely 

important in establishing the auxin/cytokinin ratios. Auxin stimulates the expression of 

cytokinin oxidase (CKX), a major cytokinin deactivating enzyme [144], and suppresses the 

transcription of isopentenyl tranferase (IPT) genes that encode cytokinin-promoting enzymes 

[145, 146]. Auxin also increases expression of AHP6 which, as described above, dampens 

cytokinin signalling [80, 129, 131]. In the root xylem axis, MP/ARF5 promotes the transcription 

of TARGET OF MONOPTEROS 5 (TMO5), a bHLH transcription factor that forms a heterodimer 

with LONESOME HIGHWAY (LHW). In turn, the TMO5/LHW heterodimer upregulates 

cytokinin biosynthesis genes LONELY GUY3/4 (LOG3/4) [52, 147]. Cytokinin notoriously acts 

on auxin by controlling distribution and levels of auxin transport’s main conductors, the PIN 

proteins [80, 140, 142, 148, 149]. Cytokinin application strongly affects PIN transcription 

levels, downregulating PIN1-PIN4 and upregulating PIN7 [142]. In developing roots and 

shoots, transcription levels of auxin biosynthesis genes were stimulated by cytokinin, thus 

promoting auxin production[150]. Cytokinin also induces expression of a group of related 

DOF-family transcription factors, DOF2.1, DOF6, TMO6, PHLOEM EARLY DOF 1 (PEAR1), 

PEAR2, OBF BINDING PROTEIN 2 (OBP2) and HIGH CAMBIAL ACTIVITY 2 (HCA2) which 

promote procambial cell divisions [151-154].  

 

1.2.3 Peptides and proliferation 
 

 Peptide ligands and their cognate receptors contribute substantially to secondary 

growth and patterning. The cambium-expressed, leucine-rich repeat receptor-like protein 

kinase (LRR-RLK) PXY, also known as TDIF-RECEPTOR (TDR) [154, 155] and its phloem-

expressed ligand TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) are 

essential for cell proliferation and division plane specification (Figure 7 and 8a) [155-159]. 

TDIF, encoded by CLAVATA3/ENDOSPERM SURROUNDING REGION 41 (CLE41), CLE42 and 

CLE44, was identified as a repressor of xylem differentiation and is structurally similar to 

CLAVATA3 (CLV3) [156] a peptide ligand that regulates meristem maintenance in shoots and 

signals to receptor CLV1 [160, 161]. pxy mutants were first described as lacking separation 

between cambium-derived phloem and xylem tissues and as having disrupted orientation of 

cambial cell divisions [154]. Hirakawa et al. independently identified PXY by testing loss-of-



25 
 

function mutants in relatives of CLV1, for TDIF insensitivity [155]. 

Since CLV signalling acts to repress expression of homeodomain transcription factor 

WUSCHEL (WUS) [162, 163], potential transcript targets of TDIF/PXY signalling were 

hypothesised to be members of the WUSCHEL-RELATED HOMEOBOX (WOX) family [164, 165]. 

WOX4 exhibited a rise in expression levels following TDIF treatment, and WOX14 was 

identified as being down-regulated in pxy mutants. Both WOX4 and WOX14 were seen to 

stimulate cambial cell proliferation [158, 159], with WOX14 cooperatively controlling 

expression of LOB DOMAIN-CONTAINING PROTEIN (LBD4) transcription factor with a DOF 

transcription factor, TMO6 (7 and 8a) [166]. 

The PXY/TDIF signalling module influences outputs of auxin signalling. For instance, 

PXY acts to repress one glycogensynthase kinase-3 (GSK3), BIN2-LIKE 1 (BIL1). In the absence 

of PXY, BIL1 phosphorylates MP (Figure 8a), which is thought to loosen MP’s interaction with 

an IAA suppressor, thus releasing it to control gene expression [120]. Recently, Smetana et al. 

have reported a positive influence of auxin/MP on PXY expression in the initial stages of 

cambium formation in roots [72]. Since the PXY-BIL1-MP negative interactions were shown to 

function in the stem [120], an interesting question is whether a negative feedback loop might 

exist between MP and PXY, wherein MP attenuates its own activity by boosting PXY 

expression or whether the regulation is organ-specific. While PXY represses BIL1, it activates 

other GSK3s and most notably, BRASSINOSTEROID INSENSITIVE 2 (BIN2) in the presence of 

TDIF. Active BIN2, in turn, phosphorylates a transcription factor BRI1 EMS SUPPRESSOR 1 

(BES1), marking it for degradation. BES1 promotes xylem differentiation (Figure 7 and 8a), 

thus its removal protects the cambium from differentiation [91]. 

 

1.2.4 Ring of receptors 
 

LRR-RLKs of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, 

including BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1), are thought to form complexes with 

PXY at the plasma membrane in the presence of TDIF (Figure 8a) [167]. BAK1 also functions 

as a co-receptor for brassinolide with BRAS-SINOSTEROID INSENSITIVE 1 (BRI1), and as a co-

receptor for bacterial flagellin peptide (flg22) with FLAGELLIN SENSING 2 (FLS2), and in these 

interactions the ligands act as molecular glue for the BAK1-BRI1 and BAK1-FLS2 interaction 

[168-170]. The PXY-SERK interactions likely differ from those described for other receptors. 

PXY LRR domains are shorter, and the receptor domain lacks the curvature of BRI1 and FLS2. 
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TDIF binds PXY further from the membrane, clear of the BAK1-PXY interaction site and thus 

its function, in this respect, is distinct in that it is unlikely to mediate a SERK-RLK interaction 

[171]. 

In pursuit of other vascular regulators, Yang et al. analysed gain-of-function activation-

tagging lines, one of which, xvp-d, demonstrated pxy-like morphology [172] (Figure 8). XVP 

encodes a cambium-expressed transcription factor of the NAC family which surprisingly 

localised to the plasma membrane. Bimolecular fluorescence complementation (BiFC), a split 

ubiquitin yeast-two-hybrid system(mbSUS) and a Fluorescence Resonance Energy Transfer 

(FRET) assay support the notion that XVP binds to the PXY-BAK1 complex (Figures 71 and 8a, 

d, e). Removal of XVP enhanced TDIF activity, suggesting that XVP represses vascular 

proliferation by allowing xylem differentiation to occur. xvp-d gain-of-function lines 

demonstrated increased CLE44 expression, while CLE41 and CLE44 overexpression lines 

demonstrated reduced XVP expression. Thus, XVP promotes the expression of TDIF-encoding 

genes, but suppresses the TDIF signal and is itself repressed by TDIF (Figure 8a) [172]. 

In the hypocotyl, ERECTA(ER) and its paralogues ERECTA-LIKE (ERL1)  and ERECTA-LIKE 

(ERL2) (abbreviated the ERf gene family) have been reported to promote auxin biosynthesis 

[173]. Of these, ER and ERL1, have been shown to prevent premature xylem fibre formation, 

as er erl1 lines exhibit precocious fibre differentiation [55]. er enhances the loss-of-function 

phenotype for another LRR-RLK, SUPPRESSOR OF BIR-1 (SOBIR1)/EVERSHED (EVR) [174], 

which is also responsible for preventing early xylem fibre formation in Arabidopsis hypocotyls. 

ER and SOBIR1 physically interact at the plasma membrane to perform this function. ER family 

members regulate not only the xylem, but also the cambium. ER and ERL1 are thought to 

restrict radial expansion of hypocotyls as er erl1 lines exhibit increases in xylem area (Figures 

7 and 8a) [55]. Moreover, ER family regulation of vascular development occurs via a genetic 

interaction with members of the PXY gene family (PXY, PXY-LIKE 1 (PXL1) and PXL2, together 

the PXf), with er mutation worsening the pxf phenotype [158] ( Figure 6). Thus, ER is involved 

in several pathways regulating cell division and organisation in the vascular tissue (Figures 7 

and 8b, c) [3]. 
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Figure 6: Adapted from Etchells et al. (2013) [158], Figure 10. er mutations enhance pxy defects 
in vascular tissue. Transverse sections of Arabidopsis (A)wild type, (B)pxy, (C) er, (D) pxy er. 
Scale bars: 50 𝜇m. 

 

 

 

 

 

Figure 7: Source: Bagdassarian et al (2020)[2], Figure 1. Stylised depiction of Arabidopsis stem 
protein distribution and auxin and cytokinin accumulation across the vascular cambium in 
wild type plants. Cytokinin has a concentration maxima in the phloem; auxin on xylem-
adjacent cambium. RLK’s MOL1 and PXY are expressed on phloem facing and xylem facing 
cambium, respectively; ERf receptor expression spans the cambium. TDIF ligand is expressed 
in the phloem and perceived by PXY. Transcription factors WOX4, WOX14, and XVP exhibit 
maxima in the cambium. BES1 is present in the xylem; TMO6 and LBD4 expression as at the 
edge of  the cambium on the phloem side. 
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Figure 8: Signals that regulate cambium activity in Arabidopsis. (a) Schematic representation of 
phloem, cambium and xylem with signal components shown in the plasma membrane (PM), 
cytoplasm, and nucleus. RLK’s are shown in the PM. PXY ligand components are light blue, 
transcription factors are pale yellow, and GSK3’s are light grey. ‘??’ on blue dashed arrows 
indicates limited understanding (signals promoting XVP translocation to the nucleus are not 
known; partial evidence for a physical interaction between PXY and ER family receptors has 
been reported). ‘P’ indicates phosphorylation. (b- c) Hypocotyl transverse sections, with wild 
type (WT; (b)) showing distinct phloem (ph), xylem (xy) and cambial (ca) domains. (c) Loss of 
both PXY and ER family of genes results in loss of distinct tissue domains. Plants also fail to make 
the transition to true secondary growth. (d-e) Stem sections stained for lignin, adapted from 
Yang et al. [94], with the permission from the publisher. (d) WT shows lignin deposition and 
thus xylem differentiation in a single arc (d). xvp-d/+ lines demonstrate premature xylem 
differentiation in the regions marked by arrowheads.  
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Like ER and ERL1, a LRR-RLK, MORE LATERAL GROWTH (MOL1), also suppresses 

cambial activity as mol1 mutants demonstrated larger cambium-derived domains compared 

to wild type [100, 175]. MOL1 was identified in a set of experiments where Arabidopsis 

inflorescence stem explants were subjected to auxin (NAA) treatments. These treatments 

initiated cambium formation in the explants which were then subjected to transcriptome 

analysis. REDUCED IN LATERAL GROWTH (RUL1), a receptor with a positive effect on cambium 

activity, was additionally identified in these experiments [100]. While ER’s signal peptides 

have been determined to belong to the EPIDERMAL PATTERNING FACTOR LIKE (EPFL) family 

[147-154], exactly which of them control cell division in the cambium is yet to be determined. 

Ligands for MOL1, RUL1 and SOBIR1 are also to be discovered. 

      

1.2.5  Ontogeny of the organiser 
 
 The cambium represents a group of mostly periclinally dividing cells with the ability 

to generate xylem and phloem, on its two opposite sides [73, 151, 176]. A vascular organizer 

in xylem cells adjacent to the initiating cambium that is characterized by high auxin levels, 

imposes stem-cell function on its neighbour to initiate cambial divisions [151]. Since at the 

secondary growth stage xylem cells have already undergone programmed cell death, thus 

stripping them from signalling ability, Smetana et al. proposed that cell identity information 

must be passed on earlier, during xylem formation [72]. Auxin, acting through MP, ARF7 and 

ARF19, promotes the expression of HD-ZIP III genes, which have been previously reported as 

regulators of xylem identity [177-180] downstream of auxin [181, 182]. Here, they were linked 

to the correct establishment of the vascular organizer [72]. WOX4 and PXY, which are needed 

for auxin responses in the cambium [183], were also required in the stem-cell organizer [72]. 

While Smetana et al. characterised the ability of the xylem to specify the position of 

the initiating cambium in adjacent cells in the Arabidopsis root [72], Shi et al. aimed to explore 

pattern in the established hypocotyl vasculature [73]. The cambium was found to be 

separated into three distinct sub-domains in each cell file along the radial axis’ proximal, 

central, and distal. Independently, both Smetana et al. and Shi et al. defined PXY and WOX4 

as part of the xylem-facing side of the cambium, that is the organizer side of the cambium, 

verifying the importance of these components for the cambium activity [72, 73]. They also 

confirmed a long-standing hypothesis in which the cambium stem cells (central) are flanked 
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by mother cells of the xylem (proximal) and phloem (distal) within each vascular cell file [1]. 

 

1.2.6 Summary 
 
 Interactions between LRR-RLKs, their ligands, cytoplasmic signalling intermediates, 

and their targets are increasingly well-defined in our understanding of cambium regulation 

[184, 185]. A recent study has proposed a transcriptional network that may explain many of 

the relationships between these components [166]. Identification of further signalling 

elements, such as ligands for MOL1 and RUL1, will help refine this picture. Remaining 

challenges surround hormones such as gibberellic acid and jasmonic acid, known to 

contribute to radial growth [99, 186], but whose role in the existing networks is largely 

unexplored. Much of what is known has also been characterised in a single tissue type, but 

differences in cambium regulation occur along the apical-basal axis of the plant [144] and how 

those differences underpin variations in morphology remains unclear. Finally, this review has 

focussed mostly on Arabidopsis, and entirely on dicot species. A recent analysis of cambium-

regulating genes identified a small number of genes that were absent in the monocot clade 

[187]. Thus, an important question concerns how these networks may have been modified to 

give rise to the significantly different scattered vascular morphology of grass species. 

As discussed above, cambium activity is in the centre of secondary growth regulation 

and establishment. In the previous two sections, I looked at vascular structure and function 

as well as the current understanding of how the cambium interacts with other signalling 

components to coordinate the formation and maintenance of the vascular tissue. Questions 

into the contemporary unknowns in this field were also highlighted. Below, I will discuss some 

of the interdisciplinary approaches, particularly mathematical modelling and analysis, that 

can be used to unveil such questions. 
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1.3 Review of mathematical models 
 

While most of the studies in the previous section use genetics and molecular biology 

to explore signalling components and their pathways, there are aspects of these genetic 

networks that are not intuitively explained with genetics alone. This is where multi-

disciplinary approaches can be of assistance.  

Using mathematical tools to analyse biological systems has become an increasingly 

widespread approach in recent years, with many researchers employing a combination of 

experimental and mathematical methods. There are a number of reasons for this. As more 

information becomes available on the mechanisms controlling plant growth and 

development, it becomes more challenging to study individual, coupled and chain-triggered 

events in the grander context of the existing knowledge.  

For example, in plant biology, plant hormones and their downstream components are 

involved in a complex system of interactions such that gaining a comprehensive 

understanding of small and large-scale effects and consequences is a challenging and 

resource-expensive process[188-190]. Such questions can be answered by manipulating 

mathematical frameworks built through comparison to real-life data. Once calibrated to 

produce results that match experiments, such models allow for an interactive relationship 

with the hypothesis, reorientation of perspective during testing and ability to alter the basic 

framework to address new questions[191]. Moreover, it is often the case that small, abstract 

models, which are easy to test and design, are built upon over time as more information is 

acquired. Such endeavours follow the emergence of novel tools, collaboration between 

models which exhibit different properties and the identification of fresh questions [191, 192]. 

Here, I will discuss several illustrative examples of mathematical modelling from the 

literature to show the various contexts in which such frameworks have provided valuable 

insight in plant biology. I will trace how such models undergo developments over time as they 

are expanded to accommodate more features, asses different hypotheses or are fed new 

data. I show that by iteratively expanding on models and challenging perspectives, the 

biological knowledge base is enriched to explain phenomena and secure future directions. 

Moreover, I argue that when used alongside experimental results, mathematical models 

provide flexibility in research and can be used as a powerful tool to supplement data-based 

science.  
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Since the model described in Chapter 4 centres around auxin distribution across the 

vascular tissues and the influence of its response factor MP, PIN transport and PXY, I will focus 

on models investigating hormonal interactions, downstream pathways and auxin active 

transport in Arabidopsis thaliana.  

 

1.3.1 Modelling the auxin signalling loop 
 

Since auxin is involved in most developmental and growth processes [146, 193-207], 

particularly through accumulating concentration maximas to produce a response, 

understanding how its distribution is controlled is particularly helpful. Auxin behavior, 

however, is not intuitive. Hormone cross-talk, interaction with signalling components and 

responses to the environment are among the many variables that impact auxin dynamics. A 

number of models have been dedicated to unravelling auxin’s distribution and regulation, 

typically with an increase in complexity of formulation over time due to building on previous 

work.  

Auxin interaction, with its downstream response factors, lays in the centre of auxin’s 

relationship with other molecular and genetic components in the plant.Thus, understanding 

the dynamics of this interplay is essential for the unravelling of further biological problems. 

In this section, I will discuss an example of a modelling effort commenced with a single 

network that captures auxin’s molecular dynamics but is then developed through the years 

to reach a more comprehensive and realistic framework that includes multiple cells, various 

transport mechanisms, and other hormones.  

Middleton et al. (2010) [208] translated the central link between auxin, Aux/IAA 

proteins and ARFs in mathematical terms. On sub-cellular level, their study focused on the 

negative feedback loops at the core of auxin action within plant systems, using a Michaelis-

Menten kinetics approach to describe the dynamics of Aux/IAA signalling. By combining the 

model with data from the literature, Middleton et al. (2010) [208] were able to assert that 

the ratio of Aux/IAA protein and mRNA is essential for modulating the behavior of the system. 

Moreover, for a small such ratio, the simulations identified a stable limit cycle illustrating a 

biologically sound oscillation in Aux/IAA expression, such as the one previously documented 

by Smet et al. (2007) [209] for the two protoxylem cells in the basal root meristem region. 

Alternative dynamic regimes caused by auxin treatment versus auxin pulse exhibited stable 
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node or stable spiral steady state, both of which had also been experimentally observed in 

members of the Aux/IAA family [210]. Thus, this model provided an efficient tool in testing 

and examining auxin signalling. 

A later model by Muraro et al. (2011) [211] expanded Middleton et al. (2010)’s work 

[208] into a larger root cell model, which incorporated elements of the cytokinin signalling. 

Specifically, the model included the member of the Aux/IAA family, IAA3/SHORT HYPOCOTYL2 

(SHY2), known to be promoted by cytokinin-activated type-B ARRs, and seen to repress PINs 

[139]. The model aimed to define the relationship between auxin and cytokinin for the 

establishment and maintenance of lateral roots and meristem size, thereby introducing 

elements of active transport and regulation to investigate this hormonal cross-talk [211]. 

In particular, the model [211] explored the hypothesis that cell division and 

differentiation are governed by the concentration ratio between auxin and cytokinin [144]. 

The model was matched to experimentally obtained results from the literature [212] and 

compared to data on hormone concentration derived from shy2 loss-of-function and gain-of-

function mutants. Importantly, finding disagreements between the model output and the 

experimental data conveyed the possibility of missing components in the system. In this way, 

Muraro et al. (2011)[211] utilized mathematical frameworks to suggest directions for further 

experimental testing to be explored.  

A further expansion to Middleton et al. (2010) [208] and Muraro et al. (2011) [211] 

was presented in Muraro et al. (2013) [213]. Here, re-evaluation of the previously proposed 

models at sub-cellular and multi-cellular level was used to investigate aspects of primary root 

composition and lateral root initiation. More specifically, the authors discussed how 

hormonal cross-talk can influence division domain localisation and scope, as well as how 

related periodicity of hormone levels might trigger the emergence of lateral roots [213].  

Unlike the earlier versions of the model, aspects of tissue identity and root zonation 

were incorporated. The model suggested PIN over-expression may result in a longer root 

relative to wild type, with a larger elongation zone and smaller division zone. In order to 

address the question of how efflux carriers may alter root composition, a three-part modelling 

design was employed, highlighting the flexibility of mathematical analysis to re-align a 

functional framework to answer newly raised questions [213].  

First, a sub-cellular model intended to match experimental data on oscillatory 

behavior was designed using delayed Hill kinetics. This was compiled as a basis for the 
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subsequent analysis. Next, several domains (cells) were introduced and linked by diffusion to 

deploy cell-to-cell communication to the model. An independent model, described in 

Griensen et al. (2007) [214], (discussed in section 1.3.3 of this chapter) was used as a source 

for PIN localisation parameters. The solutions were compared to outputs of Muraro et al. 

(2011) [211] for validity. 

Differences in cytokinin distribution yielded changes in the behavior of the Aux/IAA in 

different zones, which was interpreted as a possible explanation for tissue specification. For 

instance, where cytokinin was high in the basal tissues, the oscillatory solutions for Aux/IAA 

were suppressed, whereas low cytokinin levels in the apical domains allowed for Aux/IAA 

periodicity [208, 211] to dominate [213]. 

Finally, Muraro et al. (2013) [213] addressed the question of how cell proliferation and 

elongation are managed under the influence of hormonal crosstalk. A one-dimensional model 

construct was designed from the previous models, with different root zones specified through 

literature-informed auxin-cytokinin distributions. Introducing growth rates and regions, 

Muraro et al. (2013) [213] proposed an analysis of zone size and hormone dependence. The 

final continuum model, calibrated to wild type experimental results that linked growth and 

elongation to specific auxin-cytokinin relationships, could be used for simulation of 

hypothetical scenarios to direct experimental testing [213].  

The investigation of hormone cross-talk for the regulation of root growth was 

continued in a later model by Muraro et al. (2016) [215], wherein the effects of gibberellin in 

the hormonal regulation of the root meristem size was included. The two-dimensional 

multiscale model allowed for passive and active transport and auxin flux effect between cells. 

Experimentally-obtained segmented image data of longitudinal root sections was used for 

callibration. Set at the stage of root meristem specification, the model explored cell-to-cell 

communication and zone characterisation using differential equations embedded in each cell 

structure[215].  

Initially, the model suggested that in roots grown at reduced gibberellin levels, ARR1 

would accumulate more in the meristem than in the elongation zone during root growth. The 

staining image data generated by the group, however, showed the opposite. The required 

pattern could only be reproduced with an additional, ARR1-inhibiting component X. In pursuit 

of the unknown component, suitable genetic candidates were identified from existing 

microarray data. From the mutant lines that were grown, two exhibited the required 
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phenotype of an enlarged elongation zone and reduced meristem size. However, neither 

could individually account for the restricted expression of ARR1 in meristems, suggesting 

either that the required gene X was absent from the original sample, or that multiple 

regulators were responsible for X’s effects [215]. In this way, the Muraro et al. (2016) [215] 

proposed a model which could be used to examine impact of hormonal perturbations, provide 

hypotheses for molecular genetic experimentation, and point to future scientific projects. 

The above models are an example of model correspondence, evolution of technique, 

scientific hypothesis and conclusion. Together, they argue in favour of the various 

contributions to research offered by mathematical analysis. In addition to informing each 

other, these models can guide experimental research by identifying gaps in the existing data. 

In the next part of this thesis, I will discuss how highly dynamic processes, such as active 

transport though the plant, can be explained by mathematical tools, and how such models 

propose hypotheses to explain complex processes from biology.  

 

1.3.2 Models of auxin active transport 
 

A challenging aspect of understanding auxin behavior is its movement via PIN proteins. 

In efforts to elucidate how such dynamics define auxin patterning, mathematical models have 

proven essential for visualisation and interactive testing. In this section, I will discuss 

hypotheses related to auxin movement in root, describing how different studies culminated 

in explanations for emergence and maintenance of auxin distribution, and how these studies 

complement each other to offer, together, a much fuller picture of auxin flow through 

Arabidopsis root.  

Auxin is known to flow rapidly from shoots down the phloem, accumulating in the root 

cap [77]. However, the molecular processes behind this accumulation are not easily 

understood. Two notable early studies, dating back to 1969 and 1980, attempted to eludicate 

how such local maxima may be achieved, each proposing a possible mechanism of action. The 

first, known as the source-decay mechanism, described by Wolpert (1969)[216] 

conceptualised the generation of a morphogen gradient (such as auxin in the context of the 

root cap) as the result of local production, diffusion and decay. The second, the uni-directional 

transport mechanism, suggested transport of morphogen as a constrained space phenomena 

where the end limit of the domain allows morphogen to accumulate [217]. That is, the first  
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source-decay mechanism was reaction-driven [216], whereas the uni-directional transport 

mechanism [217] involved flow and a geometric limit. 

More recently, another mechanism by Grieneisen et al. (2007) [214] was proposed to 

model auxin’s shoot-root dynamics. Here, using modern computational techniques, the 

authors showed that, crucially, PIN active transport is sufficient to achieve the required auxin 

peak in the root apex.  

Grieneisen et al. (2007)’s [214] investigation of hormone gradients utilised several 

novel ideas in a multi-cellular 2D model. Within their model, a longitudinal root section was 

represented as a rectangular lattice of cells, consisted of an internal ‘vascular’ domain 

surrounded by ‘epidermis’. To investigate hormone gradient effect on growth and 

development, auxin was driven through the structure using flux and active transport 

processes. The result was a robust, realistic distribution of auxin, with auxin moving down the 

root (from the shoots) through the central vascular region, accumulating in the distal regions 

of the root apex and then pushing up and out through the periphery (epidermis). 

In simulating the model, auxin maxima localisation was shown to be unaffected by 

growth or abrupt halt of the auxin supply, supporting the idea that hormone distribution may 

operate independently of the shoot (the source) to collect auxin in the root tip. This was 

validated experimentally by cutting off the shoot and taking measurements of auxin reporter 

genes [214]. Despite the limitation of a pre-prescribed PIN positioning, the model was able to 

integrate several aspects of auxin-driven growth as well as illustrate that morphogenesis can 

be established and maintained by directional permeability and diffusion. This model was 

subsequently referred to as the reverse fountain model [214]. In the following years, the 

pattern output in the study was experimentally tested in Petersson et al. (2009) [218] who 

combined data from 14 green fluorescent protein (GFP)-expressing lines to map endogenous 

IAA with fluorescence-activated cell sorting (FACS) and mass spectrometry. This confirmed 

the computational framework’s validity, and a number of subsequent mathematical 

investigations of auxin dynamics in the root followed, using rectangular templates 

representing a schematic illustration of longitudinal root section in Arabidopsis thaliana. 

While Grieneisen et al.(2007) [214] was able to explain how the auxin distribution is 

maintained (even in the absence of the supply point), the requirement for prescribed PIN 

expression levels left the question as to how those PIN levels can be achieved in young root. 

This problem was addressed by a later model by Mironova et al. (2010) [219], who used a 
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similar two-dimensional template consisting of vascular and non-vascular cells and targeting 

the emergence of auxin behavior prior to the growth stages described in the Grieneisen et 

al.(2007) [214] framework [219].  

In the initial stages of model development, Mironova et al. (2010) [219] prescribed 

PIN positioning to a file of cells to mirror auxin flow along the central axis of the vascular 

cylinder. To allow PIN levels to be calibrated to real-life data, a self-regulatory mechanism was 

introduced for auxin wherein PINs were positively influenced by low levels of auxin and 

inhibited by high levels of auxin. With this adjustment, the single-file construct successfully 

generated the correct hormone distribution, motivating the introduction of a more realistic, 

two-dimensional template of a root, with added diffusion between the cells. Testing the 

model showed that a wide range of parameters yielded the correct PIN and auxin dynamics, 

making it a fitting supplementary mechanism to the reverse fountain setup. This model by 

Mironova et al. (2010) [219] was thus referred to as the reflected flow model. 

The limitations of the models developed in Grieneisen et al. (2007)[214] and Mironova 

et al. (2010)[219] motivated a combined approach wherein the virtues of each mathematical 

design could explain a different part of the root development process. A two-phase system 

was introduced, able to link root gradient emergence [219] and maintenance [214]. In 

Mironova et al. (2012) [220] early root was governed by the mechanisms described in 

Mironova et al. (2010) [219] and as the prescribed PIN expression levels emerged, the 

Grieneisen et al. (2007) [214, 221] setup was triggered, allowing a robust maintenance of the 

correct auxin pattern. Notably, the reflected flow model acquired the additional role of a 

‘recovery’ mechanism, meaning it was activated following damage or disruption to the plant 

root system to restore auxin flow pattern. 

As the above examples indicate, alongside the ability to determine connections 

between different setups and enriching pre-existing frameworks to fill in knowledge gaps, 

mathematical approaches are also an excellent tool for critically evaluating hypotheses and 

establishing the limits of their validity. For instance, following the publication of the model by 

Grieneisen et al. (2007) [214], a later discussion (by Grieneisen et al. (2012) [221]) assessed it 

against the previously mentioned older theories postulating means for morphogen gradient 

generation [216, 217, 221]. 

Within Grieneisen et al. (2012) [221], the three mechanisms, the source-decay 

mechanism, described by Wolpert (1969)[216], the uni-directional transport mechanism 
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[217], and the ‘reverse fountain model’ by Griensen et al. (2007)[214] (here named reflux-loop 

instead), were compared to investigate how they could or could not be implemented to the 

establishment of auxin gradient in Arabidopsis root. 

From a mathematical perspective, the source-decay model was represented using 

partial differential equations and solved analytically. With the introduction of particular 

parameter values corresponding to auxin, however, the Wolpert (1969) [216] hypothesis 

yielded a gradient that was too shallow to distinguish between domains and communicate 

positional information. Working backwards to establish what combination of parameters may 

yield the necessary slope, Grieneisen et al. (2012) [221] confirmed that such modified 

parameters would require an unrealistically slow process or a morphorgen that did not travel 

the distance necessary for auxin to supply sufficiently large portion of the plant.  

The unidirectional transport mechanism was described using a framework consisting 

of a file of cells where auxin was driven downwards by active transport [221]. A system of 

ODEs was deployed. However, upon implementing the PIN permeability parameter derived 

from the literature, Griensen et al. (2012) [221] determined that the resulting gradient was 

too steep, due to a rapid 20-fold concentration decrease with every cell. A large increase in 

the background permeability was seen to give the correct behavior. However, such large 

background permeability contradicted experimental data in three ways: it overrode the 

contribution of PIN proteins for increasing the plasma membrane permeability, substantially 

decreased the active transport rate, and failed to attribute the correct high auxin-maxima 

pattern to PIN-expressing cells.  

Finally, Grieneisen et al. (2012) [221] discussed the ability of the reflux-loop model to 

recreate the correct auxin pattern in root using experimentally justified parameters. The 

output of the model, its spatial and temporal scales were compared to the other two 

hypotheses, concluding that it was the only one out of the three to establish a stable, realistic 

gradient in reasonable time and space. 

In a different modelling approach inspired by Grieneisen et al. (2012) [221], Band et 

al. (2014) [222] used the auxin signalling reporter DII-VENUS as part of the modelling setup to 

examine the auxin distribution in root. The authors incorporated realistic cell geometry, auxin 

influx and efflux carriers into their framework. The model setup was aligned with the reverse 

fountain framework of Griensen et al. (2007; 2012) [214, 221] and investigated the role of 

cellular regulation and auxin transporters for emergence and maintenance of auxin response 
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and patterning.  

A novelty of the model was the use of a new tool for generating experimental data 

with high accuracy. A common approch to validating models against biological data, is the use 

of confocal images which provide not only realistic cell geometries, but can map relative 

hormone response and protein levels through assessment of the portrayed pixel intensity. 

Such data, however, can be characterized by imperfections and unclear regions. Thus, to 

overcome the lack of focus in the different areas of the images, the authors also developed a 

software SurfaceProject able to extrapolate a higher resolution image from a stack of images. 

Next, the model capabilities were assessed by comparing the resulting patterning of the DII-

VENUS component in the model with the experimentally collected data manipulated by 

SurfaceProject. The model outcomes could not be matched to reality when efflux carriers 

were used alone. Thus, a non-polar AUXIN1/LIKE-AUX1 (AUX1/LAX) influx carrier was 

introduced into the framework, correcting the behavior [222] . 

To test the model for validity, the efflux carriers were removed and the DII-VENUS 

distribution was compared to the one of a loss-of-function aux1 mutant [222]. The results of 

the model matched experimental data, thus confirming the model’s conclusions that influx 

carriers are required for correct patterning. Moreover, AUX1 was seen to direct the upflow of 

the reverse fountain by driving shootward auxin movement through the lateral root cap. 

Further analysis suggested that while PIN carriers may be necessary to establish the direction 

of auxin transport, efflux carriers limit high auxin levels to specific tissues [222]. 

The above Band et al. (2014) [222] model framework was employed as a foundation 

for investigation of lateral root formation in Xuan et al. (2016) [223]. Xuan et al. (2016) [223] 

hypothesized that programmed cell death in the root cap releases auxin and allows lateral 

root induction further up the primary root. Along with confirming the idea, the model showed 

that the appropriate auxin oscillations from the root cap necessary to trigger lateral roots, 

were linked to the presence of AUX1 in the root cap [223]. 

Conversely, the multicellular model developed by Band et al. (2014) [222] was used as 

an expansion to a compartment ODE homeostasis framework in Mellor et al. (2017) [224] to 

discuss the spatial aspect of auxin oxidation and conjugation in roots. In later models, such as 

Mellor et al. (2020) [225], the ideas and conclusions of Band et al. (2014) [222] were expanded 

to encompass other means of auxin active transport, such as transport through the 

plasmodesmata (a narrow channel through the cell walls of adjacent cells that allows cell 
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communication).  

In a different branch out of the Griensen et al. (2007) [214] reverse fountain model, 

concerned with physical perturbation, Laskowski et al. (2008) [226] examined root 

architecture and sites of lateral root emergence [166]. The study combined experimental 

observations, imaging and mathematical modelling to discuss the effect of auxin distribution 

pattern on lateral root formation. The focus of the model were auxin transporters and root 

geometry, with Laskowski et al. (2008) [226] hypothesizing a tendency in lateral roots to form 

when the primary root was subjected to bending [226]. 

By inverting seedlings for a different amount of time prior to recovering their correct 

position, Laskwoski et al. (2008) [226] determined that the longer the seedlings were 

inverted, the larger the root curve angle and hence the probability of a lateral root forming. 

When bending roots in a J shape, lateral roots were seen to form preferentially on the outer 

side of the full curve length, where cells were more elongated. Thus, Laskwoski et al. (2008) 

[226] argued that cell geometry may trigger developmental changes such as determining the 

sites of lateral root formation.  

To address this question, Laskwoski et al. (2008) [226] developed a mathematical 

model, wherein active transport and auxin dynamics were embedded in a realistic cell 

geometry. As in Grieneisen et al. (2007) [214], transporter location and polarisation was 

determined experimentally and the overall root structure behaved according to the reverse 

fountain mechanism published previously. The model root was then subjected to bending, 

which triggered rapid auxin accumulation in the bent region, with higher levels seen in the 

outer, more elongated cells. This result was seen to be particularly strong when cell volume 

was maintained during deformation, and also proved incredibly robust to parameter changes, 

different widths of cell walls and switch to mature cell sizes, hence confirming the Laskwoski 

et al. (2008) [226] hypothesis. 

Previously, AUX1 importer had been shown to be positively regulated by auxin [226] 

while loss of AUX1 reduced the number of lateral roots [227]. Experimental results in 

Laskwoski et al. (2008) [226] also indicated an overlap between auxin response and AUX1. 

Model simulations, on the other hand, revealed that AUX1 was accumulating in the pericycle 

cells exclusively during bending, drawing auxin in the region to create an auxin maxima while 

draining neighbouring cells of the hormone. Thus, Laskowski et al. (2008) [226] reasoned that 

the bias in auxin accumulation imposed by the bend and cell shape geometry, was magnified 
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by AUX1 activity, driving lateral root formation. Altogether, the study illustrated an excellent 

collaboration between experiments and computational techniques, proposing a convincing 

mechanisms for lateral root initiation [226]. 

 

1.3.3 Hormone interactions from a modelling perspective 
 

Hormone cross-talk is a complex set of processes moderated by a variety of factors. 

Even though hormones play a crucial role in all aspects of growth and development, 

investigating the particulars of their effects remains challenging. To aid such research efforts, 

mathematical tools provide a highly informative way to study interactions at different levels 

of intricacy. 

In this review, I have already mentioned two examples of modelling the synergy of 

hormones for root growth. Indeed, previously I discussed the work of Muraro et al. (2016) 

[215] and Muraro et al. (2013) [213] who built upon Middleton et al. (2010)’s [208] model of 

simple auxin signalling, by including other hormones - cytokinin, and cytokinin and gibberelin, 

respectively. In this section, I will discuss further examples of using computational techniques 

to elucidate hormonal interactions and how such studies pointed towards absent 

components in the knowledge base and possible directions for experimental work. Notably, 

PIN active transport, which was the focus of the previous section, is also subject to hormone 

regulation. The models discussed here will thus include hormone interaction with particular 

Figure 9: Root zonation and auxin flow. Arrows indicate active transport direction. Dark blue 
arrows indicate flow to and from the shoots. Light blue arrows indicate auxin accumulation 
in the root tip and movement out of the accumulation zone.  
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reference to those that regulate PIN activity. 

In an expansion of the Grieneisen et al. (2007) [214] framework, Di Mambro et al. 

(2017) [228] modelled the switch between cell division and differentiation under the 

influence of auxin-cytokinin interactions in root. In order to integrate the effect of cytokin on 

its hormone counterpart, the authors used realistic root geometry, supplied with 

experimentally valid cell sizes and shapes. In addition, PIN expression patterns were 

measured and embedded into the model such that the added inhibitory effect of cytokinin on 

them would be illustrated reliably. This refinement altered the earlier patterning achieved in 

the reverse fountain framework, introducing now an auxin maximum in the quiescent centre, 

followed by reduction towards the shoot and another increase in the differentiation zone 

(Figure 9) of all tissues [229, 230]. Model simulations proposed that the existence of the auxin 

dip was attributed to two cytokinin-dependent mechanisms: cytokinin’s suppression of auxin 

transporters and the introduction of auxin degradation rate linked to cytokinin. This auxin 

minimum was specified at the site of emergence of differentiating cells, with increase in 

cytokinin supply shifting the dip downward along with reducing meristem size (enhanced 

differentiation), while increasing auxin supply by reducing degradation was seen to propel the 

opposed (rise in cell divisions). These tendencies were observed both theoretically and 

experimentally.  

Another example, this time of a single-cell model, was reported by Liu et al. (2010) 

[231], examining the correspondence between auxin, cytokinin and ethylene for root growth, 

specifically through the POLARIS(PLS) gene whose loss had been reported to produce shorter 

roots and defective vasculature in leaves [232]. PLS had been previously examined by the 

group and linked to auxin-cytokinin homeostasis, as it was shown to be auxin-inducible and 

exhibited a sensitivity to exogenous cytokinin [232], whereas ethylene was seen to suppress 

PLS [233]. The exact mechanisms of interaction between these hormones and PLS, however, 

had not been identified, motivating the introduction of a mathematical framework. 

Mass action and Michaelis-Menten kinetics were used to describe auxin induction of 

PLS [232], PLS downregulation by ethylene [233]and cytokinin ihibition by auxin [145]. For 

auxin-ethylene cross-talk, an additional species X inhibiting auxin active transport was added 

to callibrate the model to experimental data obtained by the group. With this component in 

place, the model outputs were able to match previous results of the sensitivity of PLS to 

exogenous cytokinin as well as of the link between auxin and ethylene function in root 



43 
 

growth[232, 233]. Thus, PLS-centered predictions could be made.  

For example, disagreement between model output and experimental measurements 

of auxin levels after application of the ethylene precursor 1-aminocyclopropane-1-carboxylic 

acid (ACC) suggested adjustments to the model to incorporate PLS regulation of auxin 

biosynthesis. Another proposed outcome was that root length was shown to be connected to 

auxin concentration - an agreement with the earlier Griensen et al. (2007) [214] model. Liu et 

al. (2010)’s [231] single-cell model was subsequently expanded in space in Moore et al. (2015) 

[234]. 

To better understand how hormone interactions coordinate root growth through PLS 

mediation, PIN activity and localisation, Moore et al. (2015) [234] utilised the ideas of Liu et 

al. (2010) [231] and a similar spatio-temporal structure to the one described by Griensen et 

al. (2007) [214]. The cells were represented by a grid, with individual points having prescribed 

cell wall and cytosol properties. Many of this model’s scientific approaches and conclusions 

were in line with the previously discussed Band et al. (2014) [222] model. For example, Moore 

et al. (2015) [234]’s framework was similarly validated against confocal images and also 

proposed that both PINs and auxin influx carriers AUXIN1/LIKE-AUX1 (AUX1/LAX) ( modelled 

as a singular, collective AUX1 component) were needed to generate pattern. Furthermore, to 

fit the model, cytokinin needed to be synthesized in vascular and pericycle cells only. The 

authors argued that this latter adjustment suggested either a restriction of this sort existing 

in plants or that the model required this particular simplification, due to cytokinin and 

cytokinin response not being modelled separately. 

The subsequent auxin pattern matched data from IAA2::GUS staining and the auxin 

signalling reporter DII-VENUS in wild type and mutants. Expression patterns of PLS, efflux and 

influx transporters and ethylene were correctly predicted by the model, suggesting that such 

network could explain these components’ distribution and concentration. Furthermore, while 

previous models had suggested either PIN [214] or AUX1 ([222] to be discussed later) 

sufficiency in generating root chemical profile, Moore et al. (2015) [234] proposed that a 

correspondence between the two was necessary. 

While discussion so far has been concerned primarily with models of Arabidopsis 

thaliana genetic networks and phenotype, an interesting model by Mellor et al. (2019) [235] 

discussed vascular development as dynamic structure across different species. I provide this 

example to illustrate once more the variety of contexts in which mathematical models can be 
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used to address biological queries. 

Mellor et al. (2019) [235] designed a simple, three-component framework concerned 

only with auxin, cytokinin and a generalised PIN protein, to explain the effect of external 

factors on predisposing flowering plants to developing different number of xylem poles in the 

post-embryonic stage. By simulating a ring template of 8 to 26 cells, Mellor et al. (2019) [235] 

created a Hill-kinetics based predictive model which upon perturbation correlated a tendency 

for a large number of xylem poles with the increase in template size. Thus, a relationship 

between root size (as a form of spacial constraint) and structural properties (number of xylem 

poles) was observed.  

Introducing a bias of higher auxin concentration in the xylem poles according to 

preiviously published data [51], the model produced a diarch vascular pattern in all 

subsequent template sizes, demonstrating that auxin supply can override random effects and 

enforce pattern [235]. To simulate growth, the model was run to steady state with inactive 

division and expansion, then, to mimic post-embryonic development, the template was 

allowed to grow until it reached a certain number of cells. Growth was seen to reduce the 

range of xylem pole numbers for the different templates, thus stabilising the pattern. The 

same results were confirmed ‘in reverse’, with a starting template of 40 or 20 cells and 

continuous reduction of number of cells. 

Investigating mutant lines similarly confirmed the validity of the model. For example, 

mutant lines, such as a loss-of-function lhw mutant, were simulated, wherein the mutated 

gene was represented by halving the production of cytokinin. Single-pole pattern was 

produced both mathematically and experimentally. Thus, a simple model of hormone 

interactions and transport could account for morphological changes and tendencies in 

different cell templates and thus, in different plant species. 

 

1.3.4 Vascular development in mathematical frameworks 
 

In the previous sections, I focused specifically on hormone transport, distribution and 

regulation, from sub-cellular to organ level. Of the above examples, a single study, by Mellor 

et al. (2019) [235] examined vascular dynamics, by questioning how external factors 

coordinate the number of xylem poles developed in a plant post-embryonically. Here, I will 

discuss further models with relevance to vascular organisation and secondary growth.  
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Three models on root vascular patterning stand out in the literature – Muraro et al. 

(2014) [82], el-Showk et al. (2015) [236] and De Rybel et al. (2014) [52]. I will briefly summarise 

their setup and conclusions before examining a single publication by Mellor et al. (2017) [224] 

which incorporates a collaborative effort between the three groups to test the consensus 

between the three frameworks computationally. 

Muraro et al. (2014) [82] was the first published study that used computational 

approaches to describe the primary root vasculature. The project aimed to identify a minimal 

network to stabilise radial patterning and explain the impact of auxin-cytokinin interactions 

on spatial organization. The study concluded that along with hormone activity, tissue 

arrangement is dependent on the signalling of several other key components: the SHORT 

ROOT (SHR) transcription factor, mobile microRNA 165/6 and the member of the HD-ZIP III 

family transcription factor PHABULOSA (PHB), all of which were previously shown to interact 

in controlling xylem patterning [177, 237]. To construct the model, a vascular tissue template 

was used, utilising realistic cell geometries with PIN proteins embedded in the cell 

membranes and Hill kinetics governing the network dynamics in each cell. The model output 

was cross checked with data on IAA2 patterning in plants, while the ability of the model to 

recreate phenotypes was validated against experimentally obtained shr mutants. The model 

proposed an unidentified cytokinin suppressor to be experimentally sought, as well as a 

requirement for a mutually inhibitory PHB-microRNA 165/6 relationship [82]. 

 De Rybel et al. (2014)’s [52] model also centred on auxin-cytokinin interaction and PIN 

active transport, but this time in the context of vascular development at the early embryonic 

stage. Of particular interest to the study were the relationships between initial structural 

geometry, auxin concentration bias and subsequent emergence of a correct vascular pattern. 

By encoding a system of ordinary differential equations into a cell template mimicking the 

heart-shaped stage of embryonic development, the authors simulated a growing model in the 

software VirtualLeaf [238]. Two auxin ‘source’ cells were defined in the centre of the template 

and prescribed higher auxin concentration. Auxin was modelled to promote cytokinin 

production but to inhibit its response, while cytokinin suppressed PIN localization at the cell 

membranes and activated periclinal cell divisions. The final outputs of the model were 

compared to the real life vascular phenotype. This computational approach allowed De Rybel 

et al. (2014) [52] to make a surprising discovery - geometric constraints were seen to be 

essential for the normal development of the plant vasculature. Indeed, stable patterns were 
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found only in the presence of a bridge connecting the two source cells at the centre of the 

template, although varying the size of the bridge and its involvement in cellular signalling 

dynamics proved irrelevant to the model output. The model furthermore found that local 

cytokinin activation in the xylem axis was central for development. Since cytokinin is not 

experimentally observable, this hypothesis was tested otherwise, by tracking cytokinin 

response markers in root instead. Experimental work supported the modelling hypothesis by 

finding a gradient of cytokinin response from the xylem axis that diffused outward. In this 

way, De Rybel et al. (2014) [52] proposed a uniquely dynamic tool for investigating growth 

and hormonal link to cell division and tissue organisation[52]. 

 The third model by El-Showk et al. (2015) [236] examined auxin profile in the root tip 

to unravel how auxin interaction with its counterpart cytokinin allowed vascular cell identities 

to be specified during development. The Grieneisen et al. (2007) [214] framework was utilised 

as a starting point for the study. El-Showk et al. (2015)’s [236] model included hormone 

responses, PIN transport and diffusion in an interactive, geometrically sound template. The 

outputs of the model showed that, surprisingly, the auxin profile was independent of 

cytokinin concentration pattern, but that to achieve accurate distribution, auxin instead was 

required to mediate cytokinin response. Moreover, the model suggested that, just as Moore 

et al. (2015) [234] and Band et al. (2014) [222] had proposed earlier, both influx and efflux 

carriers were necessary for auxin patterning, with AUX1 and LAX1/2 playing an important role. 

This hypothesis was verified experimentally by the group by comparing the results from the 

computational simulations again loss-of-functio aux1 and lax1/2 mutants. 

The three models above were later discussed in Mellor et al. (2017) [224]. Here, a 

series of computational tests were carried out to evaluate the extent of agreement between 

the frameworks. 

Although the three publications discussed root, embryonic root and root tip 

vasculatures (Muraro et al. (2014) [82], De Rybel et al. (2014) [52] and El-Showk et al. (2015) 

[236], respectively), there were a number of similarities between the models. PIN transport, 

for instance, was included in all three. However, due to the complexity of the auxin transport 

system, each model focused on a specific aspect of the PIN function and regulation. Both De 

Rybel et al. (2014) [52] and Muraro et al. (2014) [82] chose a summarily defined PIN protein 

(dubbed PIN7 in Muraro et al. (2014) [82]’s case), while El-Showk et al (2015) [236] permitted 

several explicitly described PINs (PIN1, 2, 3 and 7) and a summative auxin importer. Cytokinin-
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dependent regulation of PINs differed between models, with De Rybel et al. (2014) [52] 

choosing to focus on the inhibitory effect of cytokinin on PIN localisation, whereas Muraro et 

al. (2014) [82] was interested in the ability of cytokinin to induce PIN7. 

To explore how asymmetry in the model setup relates to pattern formation, the works 

of De Rybel et al. (2014) [52] and Muraro et al. (2014) [82] were examined more closely. In 

Muraro et al. (2014) [82], a temporary auxin bias is needed at the initial stages of the model 

establishment, while De Rybel et al. (2014)’s [52] model operates with a continuously higher 

auxin input in the two ‘source’ initials. Upon swapping these conditions for the two models, 

adopting De Reybel et al. (2014)’s [52] initial bias onto Muraro et al. (2014) [82]’s model, and 

providing only a transient bias for De Reybel et al. (2014)’s [52] growing template, the 

experiment showed that the Muraro et al. (2014) [82] model retained reliability of output, 

while the De Reybel et al. (2014)’s [52] one did not. Notably, these results indicated a 

necessity in auxin asymmetry at initial stages of vascular establishment, but only a transient 

skew at the later stages of development [82, 236]. 

Next, cytokinin behaviour was analysed. De Rybel et al. (2014) [52] had proposed the 

xylem axis as a principal source of cytokinin. As mentioned previously, while cytokinin 

response markers are measurable, cytokinin itself cannot be examined experimentally and 

thus many cytokinin-related parameters, such as degradation and diffusion, are unknown. 

Thus, to explore the hypothesis of cytokinin distribution stated in De Rybel et al. (2014) [52], 

several tests were run. First, the question was asked as to whether the De Rybel et al. (2014) 

[52] model could create accurate patterns in the absence of a cytokinin gradient from the 

xylem axis. Upon increasing diffusion rates, it was revealed that the De Rybel et al. (2014) [52] 

framework was capable of realistic outputs at a much shallower gradient than previously 

suggested, although the need of a maxima in the xylem axis remained. The authors speculated 

that cytokinin’s inhibition of PIN localization may be imposing the need for such a gradient. 

To test this, the cytokinin-PIN relationship was flipped, with cytokinin now promoting PIN 

localisation. The results confirmed that under this change a gradient for cytokinin was no 

longer needed, suggesting that further work was required on how the hormone interacts with 

active transport at different stages and in different tissues. 

Next, the two remaining models were examined to test the cytokinin distribution 

hypothesis. Under appropriate parameter choices, the El-Showk et al (2015) [236] model was 

able to recreate a cytokinin gradient to match De Rybel et al. (2014) [52]’s results. The same 
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held for Muraro et al. (2014) [82]. However, the parameter set able to achieve this was 

distinctly small, suggesting that regulation of cytokinin production by other sources is likely 

necessary to recreate wild type behaviour more robustly. Thus, through examining the 

already constructed models and introducing various conditions and novel questions, Mellor 

et al. (2017)[224] proposed a valuable discussion on the ability of mathematical frameworks 

to offer insights. 

Shortly after the publication of Muraro et al. (2014) [82], a different model exploring 

primary root patterns emerged, this time aimed at unravelling the mechanisms which drive 

stele pattern in plant species as a whole. In Carteni et al. (2014) [239], the goal was to provide 

proof of concept, namely to show that there is a commonality in the mechanisms which 

underline plant vascular structures, across taxa. For this, a reaction-diffusion framework was 

designed in MATLAB, and embedded into a circular structure mimicking the process of 

differentiation of the procambium, xylem and phloem. Numerical simulations were able to 

recreate the majority of vascular patterns in plants, with varying degrees of complexity. Thus, 

the model provided an excellent tool for examining hypotheses of vascular emergence across 

multiple species[239].  

VirtualLeaf was recently used in another exploration of secondary growth. A 

computationally-based study by Lebovka et al. (2020) [240] built up on the group’s previous 

experimental conclusions (Shi et al., 2019) which found that the hypocotyl cambium was 

marked by PXY on the proximal side and the phloem-promoting SUPPRESSOR OF MAX2 1-LIKE 

PROTEIN 5 (SMLX5) gene [241] expression on the distal [73]. To unravel the minimal network 

required for the cambium’s ability to dynamically produce distinct vascular tissues on its 

opposite sides, Lebovka et al. (2020) [240] designed a computational model, in the centre of 

which was the TDIF-PXY signalling module. Within this model, cells were set to grow to an 

experimentally verified size, and cambium cells were to divide upon reaching a certain 

threshold. Since activated PXY (TDIF bound to a PXY receptor) had been shown to suppress 

xylem differentiation but promote divisions [91, 155], the model was initially set to require 

low PXY-active levels in order for cells to differentiate into xylem, and high PXY-active levels 

for divisions to occur. This produced a cell template where proximal cambial cells were 

hindered from differentiating into xylem due to high active PXY but were able to proliferate, 

whereas the opposite was true distally. No phloem, however, was yet procured [240]. 

The distally expressed MOL1 had been seen to repress the cambium [100]. To program 
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phloem emergence, a local inhibitor with these properties was introduced. Phloem 

differentiation was coded such that low active PXY levels in a cambial cell of appropriate size 

would produce a xylem cell, whereas high PXY levels would trigger the opposite. This resulted 

in a realistic vascular pattern with a dominant division region in the proximal domain. Thus, 

key vascular proliferation and organization features were embedded under the governance 

of only few components, allowing for the dynamics of such system to be studied [240].  

Despite the ability of the model to reproduce wild type vascular properties, there were 

disagreements with the pxy mutants. First, in experiments, promoter domains of PXY and 

SMLX5 were seen to be completely separate, suggesting their distinction was not the result 

of the TDIF-PXY module as originally assumed by the authors through simulations. Secondly, 

removal of PXY in the model halted all divisions, whereas in practice, pxy mutants would still 

be able to produce more cells,s albeit at a lower rate. Finally, upon studying the cell type 

numbers between wild type and pxy, Lebovka et al. (2020) [240] found that unlike the model, 

no changes in the number of xylem vessels could be noticed, but instead a difference between 

parenchyma to fibre ratio was in place. Thus, the authors concluded that while PXY appeared 

to positively regulate fibre formation, it could not singularly account for xylem 

regulation[240].  

To account for this new information, a number of modifications were introduced. The 

model was altered to include a mechanism for cell divisions in the absence of PXY by 

introducing a phloem-derived component similar to the previously identified DOF 

transcription factor PHLOEM EARLY DOF (PEAR) and able to stimulate cell proliferation [242]. 

Since evidence suggested xylem vessels were not just PXY-dependent, the formula was 

changed, with appropriately positioned xylem cells that had reached the required cell size 

now able to differentiate into xylem. Phloem poles and phloem parenchyma was 

distinguished, with a self-regulatory mechanism that enforced default phloem poles to be 

produced unless they were in the vicinity of other phloem pole cells. In this way, a dynamic 

framework able to reproduce vascular patterning of mature hypocotyl was accomplished, 

pointing to several candidates with MOL1 and PEAR properties for the missing components 

to be sought experimentally [240].  
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1.3.5 Summary 
  

The above modelling examples discuss varying levels of computational complexity, 

often developing with time into more elaborate models and addressing a range of biological 

questions. I have discussed how mathematical frameworks can be used to independently 

answer a question, challenge ideas, or complement each other in order to produce a more 

fullfilling explanation of phenomena. In addition, I showed how a single model can be the 

foundation for several subsequent studies which address vastly different developmental 

aspects. I argued that, in partnership with experimental data, computational tools are a key 

part of research.  

In Chapter 4 of this thesis, I will introduce a small model centered around PXY, auxin 

and MP’s relationship. With the discussion above, I provided evidence that such small models 

are an essential part of addressing early stage hypotheses. Thus, I will be proposing the model 

in Chapter 4 as a formative step towards understanding the relationship between PXY and 

MP for regulating auxin pattern. 

 

1.4 Conclusions and aims 
 

In this introduction, an argument in favour of multi-disciplinary projects that combine 

biology and mathematics, has been made. In section 1.1, I described vascular patterning 

during primary and secondary growth in different Arabidopsis plant organs. In section 1.2, the 

underlying mechanisms that regulate the activity of the cambium, the lateral meristem that 

produces the vasculature [43-45], were described. Section 1.3 argued how mathematical 

tools can assist experimental work in answering biological questions.  

In the chapters that follow, the background described in sections 1.1, 1.2 and 1.3 will 

be used to explain the relationship between several cambial regulators – PXY, MP and ER. 

Oftentimes, to understand the role of different genetic components in plant growth and 

development, images of plants and plant mutants are examined. The goal of Chapter 2 is to 

present a method to assist in examining phenotypical variation between such images. This 

method is MATLAB-based, strengthening the argument provided in section 1.3 here about 

the benefits of computational approaches in biology.  

The goal of Chapter 3, is to understand the relationship between the PXY and ER family 
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of genes, described in section 1.2. To do this, combination mutants of these families were 

used and analysed with the help of the method described in Chapter 2. In accordance with 

section 1.1, I will show that the difference in regulation in stems and hypocotyls is reflected 

in phenotypical, as well as gene expression disparities, between these two organs. 

The aim of Chapter 4 is to examine a hypothesis that the PXY and MP genes are tied 

into a negative feedback loop. This hypothesis is explored using a 3-cell mathematical model, 

as loss of MP is lethal to the plant in a directly experimental sense. The result of the 

mathematical analysis suggests that such negative feedback loop would stabilize the existing 

biological network.  

Overall, the aim of this thesis is to use a combination of mathematical and 

experimental techniques in order to contribute to the understanding of how the cambium is 

regulated on a genetic level. 
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Chapter 2: Versatile method for 
quantifying and analyzing 
morphological differences in 
experimentally obtained images 

 

In the previous chapter, I discussed the research background to this thesis, particularly 

describing the vascular tissues and the complex regulatory mechanisms that underpin its 

establishment and maintenance. To study how these mechanisms operate, loss and gain-of-

function mutants are often generated and their phenotypes studied to understand gene role. 

However, such data is not always easy to interpret with subjective observations alone.  

Here, I will discuss a bespoke method that I developed to quantify and analyse the 

morphological differences between images of plant mutants. The method was developed 

specifically for the investigation I will describe in Chapter 3, but was published independently 

in Plant Signalling and Behavior. The publication itself can be found in Appendix C with the 

detailed protocol given in Appendix B. Below, I will introduce the rationale for developing this 

particular scientific approach, the detailed procedure, how it was used for anatomical images 

of plants and finally, the associated limitations of the method. Later, in Chapter 3, I will 

present how this method was used in combination with laboratory work to investigate the 

relationship between the PXY and ER family of genes. 

 

2.1 Method rationale 
 

In many branches of science, an important step in investigating a mechanism or 

structure involves obtaining high-resolution images of the observed behaviors and/or 

morphology. In biology, the incorporation of image analysis tools has been increasing in 

popularity [243-245]. Several methods to analyze the histology of roots and root architecture 

were introduced over the past decade [246-248] and more recently, machine-learning-based 

tools have begun to emerge [57, 249]. Additionally, open-source platforms such as 

LithoGraphX, developed from the former MorphoGraphX9 [250], have also been established. 
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In the study of plant vascular tissue, one means of investigating genetic interactions 

includes the use of microscopy to image transverse or longitudinal sections of plants and plant 

mutants. By studying the phenotypes generated through genome editing using CRISPR-Cas9, 

it is possible to characterize the contribution of a specific gene to the plant growth and 

development. However, while an intuitive understanding of the differences between 

genotypes is crucial for formulating hypotheses and prompting further tests, it is oftentimes 

difficult to quantify how significant certain variabilities are. Despite advances in automatic 

image analysis of plant organs and tissues [57, 246-250], these tools are not suited for 

analysing highly irregular mutant phenotypes, especially ones that have not been previously 

identified and recorded. In such mutants, cell size and localization, and tissue patterning does 

not always match data from wild type, thus hidering computer recognition algorithms. The 

absence of a methodology for quantifying cell differences across mutant genotypes, limits the 

rigorous assessment of gene roles beyond what is observable. 

Here, I describe a bespoke method for quantifying the vascular mutations between a 

range of genotypes using a MATLAB algorithm and appropriate statistical tools. This method 

can be applied to a range of similar research questions in various disciplines but was 

specifically employed in Wang et al. (2019) [3] to quantify phenotypic variation in Arabidopsis 

stems and hypocotyls. Discussion of the work done in Wang et al. (2019) [3] will be given in 

the Chapter 3, where I will review the relevant laboratory work done to motivate my analysis, 

then present my results. 

 

2.2 Implementation 
 

2.2.1 Preparation 
 

In Wang et al. (2019) [3] the aim was to address the question of how two gene families, 

the PXY family (PXf) [154] and the ER family (ERf) [251], function in concert to coordinate cell 

division and organization. To achieve this, the phenotypical variation between the different 

single and combination loss-of-function PXf and ERf mutants had to be meticulously 

quantified. Due to the defects of these mutants, however, such qauntification was not trivial. 

To address this problem, I developed a procedure, including manual data preparation and 

computational tools, aimed at extracting size and shape differences of cell types across 
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different plant genotypes based on images. Here, I will describe this procedure.  

The desired Arabidopsis mutant lines to be analyzed were generated through the 

crossing of the pxf and erf lines. A total of six mutant lines were produced – pxf, pxf er, pxf er 

erl1, pxf er erl2 and pxf erf . The mutant lines were grown using standard protocols, and tissue 

was prepared for light microscopy imaging following fixation with FAA, embedding in JB4 

resin, and sectioning [3]. 

To study the morphological differences, six images obtained through brightfield 

microscopy from each genotype were selected. The focus of the study was four of the main 

vascular cell types: xylem vessels, xylem fibres, phloem cells, and parenchyma. From each 

image, a minimum of 10 cell representatives from each cell type were selected from a wedge 

of a pre-defined size (60°). In order to account for the naturally occurring size variation from 

the centre to border, all the cells along the length of the radius were included. The four cell 

types were assigned a unique color and using the software GIMP, the cell interiors were 

manually colored as appropriate (see: Appendix B). 

Next, a MATLAB code was generated to study the properties of the individual cell 

types across the genotypes. The MATLAB Image Processing Toolbox was used, with the overall 

logic of the algorithm described below, but the specific results of the application of this 

precedure will be presented separately, in Chapter 3. 

 

2.2.2 Algorithm 
 

The manually manipulated images were separated into folders according to genotype. 

The programme then looped over the images in that folder. For each image in the folder, four 

entirely black images of the same size were generated (for each of the four cell types under 

consideration). The original images were scanned, and the pre-defined cell colors were 

recognized. The entirely black images were then manipulated as follows: whenever a pixel of 

a ‘known’ color was identified in a position (i,j), the pixel in position (i,j) in the new black image 

was colored white. This left the images completely black with the exception of the selected 

plant cells, which were white (Figure 10; Figure 11). This was performed for each individual 

color, isolating the different cell types for analysis, with one original cross-section image 

yielding four (new) binary images corresponding to the four cell types of interest (Figure 10; 

Figure 11). To optimise the method, connectivity (4 or 8) was chosen individually for each cell 
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type via examining binary images against original and selecting the superior connectivity level. 

This was checked for all muntant types under investigation. Since small non-selected pixels or 

pixel clusters could match the chosen colour, noise removal was necessary. To remove noise, 

i.e. data obtained from objects that were wrongly classified as connected components within 

the algorithm (e.g. stray pixels), the code was devised to discard data that yielded 

unrealistically small values for perimeter and area (perimeter value of 0 𝜇𝑀, area smaller than 

1 𝜇𝑚2). The data were converted from pixels to μm using a calibration factor, in order to yield 

results consistent with laboratory observations. This was done for all mutants. 

 

Figure 10: Example of transforming a micrograph (a), into binary images (b) with each image 

corresponding to four cell types: xylem vessels (xy), xylem parenchyma (pa), fibres (fi) and 

phloem cells (ph). Scale is 100𝜇𝑀 in the first image (a). Each white object on the binary images 

(b) can be investigated as a connected component of white pixels and its properties such as 

area, perimeter and axis, measured.  
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The new images were read as binary images in the program. The previously selected 

cells were now represented as white objects on a black background and their properties (area, 

perimeter, major and minor axis) could be quantified as follows. Each white object represents 

a connected component of pixels. Specifically, the binary images are scanned by the program 

as a matrix of pixels, where each region of adjacent pixels with the same value (here, the color 

white) is assigned a number identity by the program. The various properties of that region 

can then be measured in pixels (Figure 10(b)). 

The correspondence between pixel size and the actual size can be determined using 

an image of known size and calculating the micrometer per pixel ratio. Using this method, the 

data were transformed from pixels to microns/microns squared to calculate the correct 

perimeter and area of the sampled cells. The ellipticity of the objects (arguably, their 

geometry) was measured as the ratio of major to the minor axis, which is a dimensionless 

parameter not requiring conversion. 

In Wang et al. (2019) [3] the converted measurements were then saved into an excel 

spreadsheet where each row corresponded to measurements taken from a different plant. 

This was done in order to implement a nested ANOVA analysis using R (packages multicomp, 

Figure 11 : Block diagram illustrating the main parts of the algorithm. The first row of blocks show the 

key stages of obtaining the data, with the steps comprising the extraction phase in the bubble below. 
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ggplot2, graphics), or other statistical tools as required. 

The data from MATLAB was rearranged in an R-readable format of one column of 

measurements matched to a column of corresponding plant ID’s and a column of 

corresponding plant genotypes. A nested ANOVA analysis and a post hoc Tukey HSD test were 

performed to identify which genotypes were pairwise significantly different. 

The code used in Wang et al. (2019) [3] can be obtained from GitHub 

(https://bit.ly/2Kht0BI [252]) [177]. A standard operating procedure is available in Appendix 

B. 

 

2.3 Discussion 
 

The method described above was developed for ease of design compared to other 

tools and for adjustment and tailoring to a specific research question. For instance, the 

method can be used to investigate the influence of different factors on organisms through 

changes in cell deformation and cell size using images of longitudinal and transverse sections. 

Other questions that can be addressed include: extracting measurements of bubbles or 

polyhype structures in physics, engineering, and chemistry as well as topological research 

(especially regarding objects of similar color scheme) and applying statistical analysis. 

 

2.4 Materials and methods  
 

2.4.1 Experimental methods  
 

Plant lines for this section were not generated by the author of this thesis. Full 

description of all the methods is provided in Appendix D, Materials and Methods[75]. Genome 

editing was done using the CRISPR/Cas9 methodology [75]. The author of this thesis was 

involved in embedding, sectioning, staining and imaging. The methods for this will be 

described bellow.  

Images to study vascular morphology were obtained from stems and hypocotyls 

embedded in JB4 resin. Stem tissues were collected from 0.5 cm above the rossette. The 

fixative for the tissue was Formaldehyde Alcohol Acetic Acid (FAA). The stem tissues were 

dehydrated in ethanol, infiltated with JB4 and embedded. For the sections, Thermo Fisher 

https://bit.ly/2Kht0BI
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Scientific Finesse ME 240 microtome was used after 0.02% aqueous Toluidine Blue staining 

and mounting with histomount. Images of the sections were subsequently taken. Hypocotyl 

tissues were taken from middle of the hypocotyl and the same procedure was repeated as in 

stems. Manual sampling of cell representatives was done using GIMP. This involved colouring 

cells in a specific colour to ensure recognition by the programme. The way the cells were 

chosen to be sampled for the particular study in Chapter 3 will be outlined there, in section 

3.2.2. 

 

2.4.2 Personal contributions  
 

My contributions for this chapter involve the development of the MATLAB-based 

image analysis method described here. The development of the method was done under the 

supervision of Dr. Ian H. Jermyn. Sectioning, staining and imagining was done together with  

Rebecca E. Doherty and Katherine A. Connor. The prerequisite experimental work (such as 

gene expression analysis) leading to the application of the image analysis tool described here 

will be provided in the first part of Chapter 3. The results of the image analysis in the results 

section of Chapter 3 below. 
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Chapter 3: PXY family of genes - study 
of genetic interactions and 
morphology 
 

In section 1.2 of Chapter 1, I summarised key mechanisms that coordinate vascular 

development during secondary growth. Chapter 2 then offered a method that can be used to 

analyse anatomical images and complement experimental studies and observations. In this 

chapter, I will describe the results of applying this procedure in the context of secondary 

growth. 

As discussed in Chapter 2, of interest for my investigation were the PXf and ERf, 

previously outlined as major cambial regulators, and seen to interact [158]. As mentioned in 

Chapter 1, ERf and PXf each consist of three genes, with ER and PXY having two paralogues, 

ERL1 and ERL2 [251], and PXL1 and PXL2 [167]. Prior to the results outlined in this chapter, 

exhaustive study of the individual and combined effects of the paralogues had not been 

conducted, thus aspects of the ERf and PXf interaction were unknown. To address this 

knowledge gap, gene expression and phenotypic analysis was carried out in ERf and PXf loss-

of-function mutants [3]. The full work was published in Development as ‘Organ-specific 

genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial 

patterning in Arabidopsis vascular tissue’. Here, I will describe the relevant experiments and 

background, as well as my contribution as a first co-author, showing that PXf and ERf 

collaborate in stem and hypocotyl to regulate secondary growth.  

 

3.1. Background 
 

The cambium is regulated by a variety of components, with mobile signals such as 

ligand-receptor interactions, governing key aspects of the activity of this meristem (see: 

Chapter 1, section 1.2).  

The ligand TDIF is produced from the phloem-expressed CLE41 and CLE44 genes, 

which undergo translation into 100 amino acid proteins that are later cleaved into a 12 amino 

acid peptide ligand TDIF [156]. TDIF is perceived by its receptor kinase PXY in the adjacent 
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cambium cells to produce a signal that regulates vascular organisation and promotes cell 

divisions. Loss-of-function pxy mutants are characterised with disruption of the regular xylem-

cambium-phloem arrangement, reduction in cell divisions and early xylem differentiation 

[154-157, 159] (Figure 6B). 

The ER gene family interacts with PXY, with removal of the er gene in a pxy background 

enhancing the pxy phenotype [158] (Figure 6). Similarly to PXY, ER is a receptor-kinase. The 

EPF/EPFL family of genes encode the ligands EPFL4 and EPFL6 which signal to ER [253-258]. 

Functionally, the EPFL-ER ligand-receptor pair has been found to regulate a variety of 

processes, including cell elongation and division [251, 259], vascular growth in the stem [260] 

and prevention of precocious xylem differentiation [55]. In contrast to PXY, which is a cambial 

promoter [154, 155, 157, 159], ER and ERL1 were shown to repress hypocotyl expansion as er 

erl1 lines resulted in increase in hypocotyl diameter [55, 186]. 

ER and EPFL4/6 expression patterns differ between different organs. In stems, ER is 

expressed in the phloem, whereas in hypocotyls the ER expression is broader, spanning the 

phloem, xylem and cambium [55, 254, 261]. Ligands EPFL4 and EPFL6 are endodermis-

expressed in stems (endodermis is the area outside the phloem) [254], whereas GUS staining 

in 5-week-old Arabidopsis hypocotyls demonstrated high expression levels of EPFL4/6 in 

xylem parenchyma and cambium-adjacent xylem. Low expression was also found in the 

cambium [3] and phloem (Figure 12). Thus, both PXY-TDIF and ER-EPFL4/6 are examples of 

non-cell autonomous signalling mechanisms, making these ligand-receptor pairs particularly 

important for understanding how information is communicated across different tissues. 

Together with their paralogues, PXY and ER had been seen to control secondary growth, 

though their means of interaction for this process had not been elucidated [55, 154, 155, 157-

159, 186, 260]. Here, I describe experimental evidence that suggests how members of the 

two families interplay in development in both stem and hypocotyl. 
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3.1.1 ER interacts with PXf for vascular organization  
 

In addition to er mutations, other receptor kinase mutants, notably the PXY 

paralogues, PXL1 and PXL2, have been reported to enhance the pxy phenotype [154, 158]. 

However, transverse sections of standalone er and pxl1 pxl2 stems showed no distinct 

phenotype relative to wild type [3] (Figure 13; Figure 14 C, D, E; Figure 18 B, D), indicating that 

both ER and PXL1 and PXL2 act redundantly with PXY [3]. Quadruple mutant lines, however, 

er pxf (er pxy pxl1 pxl2) demonstrated substantially fewer cells per vascular bundle compared 

to pxf, pxy er or er stems (Figure 14 A) [3], indicating a genetic interaction between ER, PXL1 

and PXL2 that affected stem bundles [3]. For vascular bundle cell counts, cells derived from 

the procambium were counted. This includes cells within a specific area: those inside the 

endodermis on the phloem side of the bundles, and those characterised by secondary cell 

walls on the xylem side of the procambium [3]. In addition to the reduced cell numbers, stem 

vascular bundle shape was also different in the higher order mutants. Shape was measured 

by measuring the tangential to radial ratio of the bundles [3]. While in wild type, stem bundles 

Figure 12: Adapted from Wang et al. (2019) [3], Figure 1.  Distribution of gene expression of 
EPFL4 (A) and EPFL6 (B) genes in 5-week-old Arabidopsis hypocotyl transverse sections using 
GUS staining. Scale bars: 50µm in upper A, B images, 20µm in lower A, B images. xy, xylem; c, 
cambium; ph, phloem; p, xylem parenchyma; xv, xylem vessels. 
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are expected to have more vascular tissue along the radial axis compared to the tangential 

(radial:tangential ratio was 0.61 in the Wang et al. (2019)[3]), in er pxf this ratio changed 

dramatically to 2.30 (Figure 14 B). Thus, the ER gene was seen to coordinate stem vascular 

growth together with PXL1 and PXL2 [3].  
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Figure 13:Source: Wang et al. (2019) Figure 2. Violin plots for bundle cell count (A) and bundle 
shape as tangential to radial axis ratio (B). Transverse section of Arabidopsis wild type (C), er 
(D), pxf (E), and pxf er (F) stems. Arrows in (F) show uninterrupted phloem distribution that 
does not form bundles as in the other genotypes (C-E). For (A-B) p-values were calculated with 
ANOVA and Least Significant Difference (LSD) post-hoc test. Scale bars: 50µm. xy, xylem; ph, 
phloem 

Figure 14: Source Wang et al. (2019) [3], Figure S1. Inflorescence stems transverse section for 
wild type (A) and pxl1 pxl2 (B). Hypocotyl transverse sections of wild type (C) and pxl1 pxl2 (B). 
Scale bars: 50µm. 
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ER’s relationship with the PXL genes was further supported by expression data. 

Indeed, er mutants were described with elevated PXL1 and PXL2 expression (PXY was 

unaffected). Interestingly, this was not matched by experiments in hypocotyls where no such 

increase in expression was observed. Thus, only stem levels of PXL1 and PXL2 are negatively 

regulated by ER [3] (Figure 15) and the three genes are interlinked in regulating vascular 

bundle cell count and shape. Together, the data demonstrated a complex relationship 

between ER and PXf in vascular development that needs to be explored further. 

 

3.1.2 pxf er mutations result in opposite regulation of ERL1 and 
ERL2 expression levels in stems and hypocotyl 

 

Previous studies of 3-day old plants and 9-day-old seedlings [55, 260] showed absence 

of ERL2 gene expression, even when ER and ERL1 expression was detected and linked to 

suppression of both hypocotyl growth and precocious xylem fibre differentiation [55, 260]. 

However, 5-week-old hypocotyls demonstrated ERL2 gene expression which broadly 

overlapped with that of the other ERf members, suggesting a role for ERL2 in these older 

hypocotyls [3]. Moreover, ERf transcriptional  reporters, ER::GUS, ERL1::GUS, and ERL2::GUS 

marked most cell types in the mature hypocotyl, with peaks in the cambial and xylem initials, 

and in the periderm. Interestingly, in pxy mutants these maxima were not as clearly 

distinguished, suggesting PXf directs ERf maxima in hypocotyl[3]. 

Figure 15: Adapted from Wang et al. (2019) [3], Figure 1. Bar chart of qRT-PCT results for PXY, 
PXL1 and PXL2 expression levels in 5-week old wild type and er stem (A) and hypocotyl (B). 
Levels are normalized to ACT2. Error bars represent standard error, 𝑛 = 3. 
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qRT-PCR tests performed in both stems and hypocotyls, revealed that expression 

levels of ER were not affected by pxf mutations [3] (Figure 16). ER’s paralogues, ERL1 and 

ERL2, similarly were not significantly changed in er and pxf plants. Loss of both pxf and er 

genes, however, demonstrated a clear impact. In hypocotyls, ERL1 and ERL2 expression was 

substantially higher in pxf er mutants, whereas in stems with the same mutation, ERL1 and 

ERL2 expression demonstrated a decrease. This indicated organ-specific difference in 

regulation, with a positive PXf influence on ERL1 and ERL2 in stem but negative one in 

hypocotyl (Figure 17) [3]. 

 

Figure 16: Adapted from Wang et al. (2019) [3] 
Figure 4, 5. Bar chart of qRT-PCT results for ER 
levels in stem (A) and hypocotyl (B) for wild type 
and pxf. Expression levels are normalized to A18S 
rRNA. p values were calculated using ANOVA with 
an LSD post-hoc test. 
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3.1.3 PXf and ERf regulate rate and orientation of cell division in 
secondary growth 

 

Cross-sections of 5-week old hypocotyls in wild type and erf mutants are characterised 

by highly oriented cell divisions, perpendicular to the radial axis of the stem (Figure 18B, C). 

Fisher and Turner (2007) [154] previously demonstrated that division plane orientation 

changes in plants lacking pxf (Figure 18D-F), leading to vascular organisation phenotypes 

Figure 17: Adapted from Wang et al. (2019), [3] 
Figure 4, 5. Bar chart of qRT-PCT results for ERL1 
levels in stem (A), (B) and hypocotyl (C), (D) for 
wild type, er, pxf and er pxf. Expression levels are 
normalized to A18S rRNA. p values were 
calculated using ANOVA with an LSD post-hoc 
test 
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described above (Figure 18 B,D-F). Consistent with this phenotype, images of higher order 

mutants lacking ERf and PXf genes are also characterised by loss of vascular organisation 

(Figure 18 B, D-F).  

As will be shown in section 3.2.1 through direct radial measurements taken by me the 

rate of vascular proliferation decreases with loss of ERf in pxy mutant backgrounds, with 

slowest rate observed in pxf erf (Figure 18A). This shows that in addition to regulating vascular 

organisation, ERf and PXf also regulate the rate of vascular cell division. Moreover, the pxf erf 

(pxy pxl1 pxl2 er erl1 erl2) sextuple mutant demonstrated two distinctly preserved phloem 

poles, similar to those found in the embryo (see: Chapter 1, section 1.1). In the same mutant, 

little expansion of the phloem around the circumference of the hypocotyl could be detected. 

As this expansion occurs as transition is made between primary and secondary growth, this 

suggests that in pxf erf such transitions do not commence, i.e. secondary growth was not 

triggered. Thus, loss of both ERf and PXf entirely suspended secondary growth (Figure 18F) 

[3]. 

Here, the method described in Chapter 2 will be used to determine how members of 

the PXf and ERf coordinate cell division and expansion in stems and hypocotyl. Below, I will 

show using the Chapter 2 image analysis method method that, as pxf mutations cause 

reduction in the cell division rates, members of the ER family function as a compensatory 

mechanism to maintain hypocotyl size through cell expansion. 

 

3. 2 Results 
 

3.2.1 ERL2 plays greatest role in hypocotyl radial size 
 

In hypocotyls ER and ERL1 had been previously described as suppressors of radial 

growth [55]. Wang et al. (2019) demonstrated that ERL1 and ERL2 expression in pxf er 

hypocotyls was elevated (Figure 17 C, D), suggesting that ER and the PXf suppress ERL1 and 

ERL2 expression [3] (Figure 17 C,D). Given that the PXf are promoters of cell division and 

hypocotyl expansion [154, 155, 158], these results suggest that one mechanism for PXf’s 

ability to boost radial size may be related to ERL1 and ERL2 suppression [3]. To assess ERL1/2 

function during secondary growth, brightfield microscopy images of hypocotyls of 6-week- 

old wild type, pxf, pxf er, pxf er erl1, pxf er erl2 and pxf erf mutants were generated. The short 
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radius of 6 representative hypocotyls from each of these mutants was measured from images 

using MATLAB. The length of the radii in pixels was subsequently converted to µm. A one-way 

ANOVA, followed by a post-hoc Tukey HSD test was used to determine pairwise variation 

between the means (Figure 18A). 

Wild type and pxf mutants showed no difference in hypocotyl radial sizes (Figure 18A). 

pxf er and pxf er erl1 lines similarly were insignificantly different, suggesting that loss of ERL1 

did not substantially change hypocotyl size. By contrast, pxf er erl2 and pxf erf radii were 

significantly smaller than pxf er erl1 plants and controls (Figure 18A). This suggested that 

growth was supported by the presence of ERL1 and ERL2 in pxf er hypocotyls. Because pxf er 

erl1 hypocotyls were larger than those of pxf er erl2 lines, a greater role was attributed to 

ERL2 compared to ERL1 [3]. How this role was linked to morphology, however, was not clear.  

Indeed, since fewer divisions occur in mutants lacking PXY genes [154-157, 159], yet 

the organ size was not substantially changed between wild type and pxf, one explanation 

could be a change in cell size or shape to compensate for reduced cell proliferation (Figure 

18A). To test this hypothesis and better understand discrepancy in plant morphology across 

mutants, sections of pxf, pxf er, pxf er erl1, pxf er erl2 Arabidopsis hypocotyls and stems were 

analysed using the method described in Chapter 2.  
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Figure 18: Transverse sections of hypocotyls 
from pxf erf lines. (A) Boxplot showing hypocotyl 
radii of pxf lines with differing numbers of erf 
mutations. n=6 (B) Wild-type, (C) erf, (D) pxf, (E) 
pxf er erl2 and (F) pxf erf vascular tissue. Sites of 
phloem poles in pxf erf are marked with red 
arrows in the left-hand panel of F (see Fig. S5 for 
higher magnification). Red arrowheads in B-F 
align with cell divisions. Scale bars: 100µm (left); 
50µm (right); xv, xylem vessel; f, fiber.  
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3.2.2 Implementation of method for quantifying cell morphology  
 

The four main vascular cell types - xylem vessels, xylem fibres, phloem and 

parenchyma (not present in stem) – were examined to unravel morphological changes based 

on gene loss. The MATLAB code described in Chapter 2 and detailed in Appendix D was used 

to extract the intrinsic properties of each cell type. The area, perimeter and long/short axis 

length of the cells were then calibrated to real-life accurate sizes and stored in files for 

analysis. 

The only cell type that was not measured across all genotypes was xylem fibre, which 

in the case of pxf erf plants was present in insufficient numbers and could not be assessed for 

both stem and hypocotyl. 

To test the significance of the variation between cell properties across the different 

genotypes, a nested ANOVA was performed in R at 5% significance level. This was carried out 

for all four cell types. To conduct the nested ANOVA, the data were classified according to 

genotype (treatment) and plant ID (plants within that treatment), with the response variable 

either the cell area, cell perimeter or cell axis ratio (ratio of major to minor axis). A post-hoc 

Tukey HSD test was performed to determine the significance of the pairwise differences 

between the means of the areas, perimeter and axis ratio of the different mutants.  

 

3.2.3 Hypocotyl phenotypic variation 
 

In hypocotyls, consistent across all cell types, the perimeter of pxf cells were larger 

than wild type, demonstrating that compensatory cell expansion must indeed occur to allow 

for similar hypocotyl radial size of both wild type and pxf mutants (Figure 18A; Figure 19A, 

left). Between pxf and pxf er (additional loss of ER gene), no significant difference could be 

seen in cell sizes, with the only exception of xylem parenchyma where the pxf er mutants 

showed smaller measurements. Previously, I showed that pxf hypocotyls were larger than pxf 

er (Figure 18A). This suggests that the decrease observed in pxf er radii is the consequence of 

the er mutation affecting xylem parenchyma size. The remaining cell types were 

indistinguishable from those of pxf lines and as such were larger than wild type (Figure 19). 

This compensatory property was lost with removal of more ERf genes in both xylem vessels 

and parenchyma, bringing those cells back to wild type size. Notably, the largest reductions 
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in perimeter were observed in genotypes carrying the erl2 mutation (pxf er erl2, pxf erf). Thus, 

in hypocotyls ERf family members, and especially ERL2, promoted cell expansion in the 

absence of PXf. Measurements of cell areas supported the conclusions of the perimeter 

analysis. Cell areas in xylem vessels and parenchyma in pxf and pxf er plants were larger than 

wild type. As with the perimeter, er erl1 and er erl2 mutations lost this increase (Figure 19A, 

right). 

Xylem fibres were an exception to the above trends. While pxf and pxf er still had 

larger fibres in terms of area and perimeter, erf mutations did not rescue this increase. 

Ellipticity of the cells was the final property that was measured across the different 

genotypes. As discussed in Chapter 1, section 1.1, parenchyma cells are adaptable, able to 

change shape in order to accommodate changes in surrounding cells. Since the increase in 

cell size (perimeter and area) was most dramatic in xylem vessels, which have rigid secondary 

cell walls and are therefore unmalleable, it was hypothesized that deformation in 

parenchyma may have occurred across the different genotypes to accommodate pressure 

from the xylem vessels. The ratio of major to minor axis was a convenient measure for such 

change, showing elongation changes across the cells. However, upon examining the data, no 

significant difference in this ratio was detected among genotypes (Figure 20). Thus, no 

substantial deformation was observed. 

Full table of 𝑝-values for hypocotyl differences in perimeter and area between differen 

genotypes is given in Figure 21 and 22. 
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Figure 19: Comparisons of hypocotyl 
cell morphology. (A-D) Boxplots on left 
show mean cell perimeter for xylem 
vessels (A), xylem parenchyma (B), 
fibres (C) and phloem cells (D). Boxes 
represent the 25th to 75th percentile, 
the horizontal line marks the median. 
Whiskers’ endpoints are the min/max 
points within the interval spanning Q1 − 
1.5 × IQR (lower) and Q3 − 1.5 × IQR 
(upper). IQR = Q3 − Q1 (the length of the 
box). Asterisks mark significant 
differences (ANOVA plus Tukey;∗∗∗P < 
0.001, ∗∗P < 0.01; see Table S4 for 
pairwise comparisons of P values). 
Ridgeline plots on the right show the 
distributions of cell areas divided into 
quartiles. Areas of pxf lines were greater 
than those of pxf er erl2 lines in xylem 
vessels, phloem and parenchyma (P ≤ 
0.001) but not fibres. Differences were 
calculated with ANOVA and a Tukey 
post-hoc test. 
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Figure 20: Measurements of the cell axis ratio in hypocotyls. (A-D) Boxplots show mean ellipticity for xylem 
vessels (A), phloem (B), fibres (C) and parenchyma cells (D). 



74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: 𝑝 values from comparisons of cell perimeters measured from the vascular cells of 
each genotype tested (ANOVA + Tukey) in hypocotyl. Values in grey boxes were not 
significantly different at the 95% confidence level. 
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Figure 22: 𝑝 values from comparisons of cell perimeters measured from the vascular cells of 
each genotype tested (ANOVA + Tukey). Values in grey boxes were not significantly different 
at the 95% confidence level. 
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3.2.4 Stem phenotypic variation 
 

Next, the phenotypical variation was examined in stems. Notably, stem morphology 

of the same genotypes differed from hypocotyl in several regards. 

Images of cross-sections of stems revealed a similarity between pxf er erl2 and pxf erf, 

both of which exhibited strongly reduced vascular bundles and very small xylem vessels 

(Figure 23 D, E; Figure 24A). Tissue layers in pxf er erl2 and pxf erf were also substantially 

different compared to the other mutants. In the sextuple pxf erf no phloem cap was detected, 

whereas in pxf er erl2 the phloem cap could be observed breaching the cortex (Figure 23) [3]. 

To answer the question of how the phenotypic variation was reflected in cell size and 

shape, the method described in Chapter 2 was employed, as before. As with hypocotyls, pxf 

erf fibres could not be assessed due to insufficient numbers. The comparison of cell sizes 

showed different regulation by PXf and ERf compared to the hypocotyl results. Unlike the 

general trend of increased cell sizes observed in hypocotyl upon removal of the pxf, in stem 

there was reduction in the area and perimeter of xylem vessels and phloem cells in those 

mutants, further enhanced as ERL genes were lost (Figure 24A, C, left). In particular, though 

removal of the PXf genes resulted in significant decrease between the cell perimeters of wild 

type vs pxf and pxf er xylem vessels and phloem, perimeter results for pxf and pxf er did not 

differ significantly. However, additional loss of the ER paralogues, particularly erl2, showed a 

substantial decrease in perimeter relative to wild type (Figure 24A, C, left). The data for area 

matched that of perimeter measurements (Figure 24, right). Together, this suggested an 

interaction between PXf and ERf in sustaining cell size for stem xylem vessels and phloem. 

Figure 23: Source: Wang et al. (2019) [3], Figure 8. Vascular tissues in stems of wild type(A), erf(B), pxf 
(C), pxf er erl2 (D) and pxf erf. Red arrows indicate phloem, while asterisks correspond to phloem cap-
like morphology. Scale bar: 50µm; xv, xylem vessel; pc, procambium; ph, phloem; ph-c, phloem cap; en, 
endodermis 
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Interestingly, xylem fibres did not demonstrate the same behaviour. Indeed, pxf 

mutants showed a substantial increase in xylem fibre perimeters relative to wild type and pxf 

mutants(Figure 24B), suggesting a role for ER gene in suppressing xylem fibre growth. 

Notably, this increase was not seen in pxf er erl2 stems, whose perimeters were close to wild 

type ones. The perimeter data for xylem fibres here also was supported by similar data for 

cell area (Figure 24). 

As with hypocotyls, the third measurement, major to minor axis, revealed no 

substantial differences across the different genotypes (Figure 25). 

Combined, these results indicate a link between the PXf and ERf for patterning in cell 

size. 

Full table of 𝑝-values for stem differences in perimeter and area between differen 

genotypes is given in Figure 26 and 27. 
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Figure 24: Comparisons of morphology of 
cells in stem vascular bundles. (A-C) Boxplots 
on left show mean cell perimeter for xylem 
vessels (A), xylem fibres (B) and phloem cells 
(C). Boxes represent the 25th to 75th 
percentile, the horizontal line marks the 
median. Whiskers’ endpoints are the 
min/max points within the interval spanning 
Q1−1.5×IQR (lower) and Q3−1.5×IQR 
(upper). Asterisks mark significant 
differences (ANOVA plus Tukey; ∗ ∗ ∗P < 
0.001, ∗ ∗ P < 0.01; see Table S6 for pairwise 
comparisons of P values). Ridgeline plots on 
the right show the distributions of cell areas 
divided into quartiles. Areas of pxf er lines 
were greater than those of pxf er erl2 lines 
in all three cell types (P ≤ 0.05). Differences 
were calculated with ANOVA and a Tukey 
post-hoc test; see Table S7 for pairwise 
comparisons of P values 
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Figure 25: Measurements of the cell axis ratio in hypocotyls. (A-c) Boxplots show mean ellipticity for xylem 
vessels (A), phloem (B), fibres (C). 



80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26  𝑝 values from comparisons of cell perimeters measured from the vascular 
cells of each genotype tested (ANOVA + Tukey) in stem. Values in grey boxes were 
not significantly different at the 95% confidence level. 
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3.3 Discussion 
 

The importance of PXf and ERf for growth and development has been previously 

established [55, 154-157, 159, 186, 251, 259, 260]. Both gene families encode receptor-

kinases which receive signals cross-tissue and have been proposed as essential regulators of 

vascular organisation and maintenance. This chapter demonstrates the complexity of gene 

interactions, at different stages of development and in different organs.  

As part of the genetic study of PXf-ERf interactions conducted alongside my 

quantification of cell morphology, PXL1 and PXL2 expression in er stems demonstrated a 

significant increase in expression, which had not been observed in hypocotyls. This suggested 

a role for ER in suppressing PXL1 and PXL2 transcript levels in the stem. Likewise, ERL1 and 

ERL2 expressions were contrastingly regulated in stem and hypocotyl. In er pxf hypocotyls, 

Figure 27: 𝑝 values from comparisons of cell perimeters measured from the vascular 
cells of each genotype tested (ANOVA + Tukey). Values in grey boxes were not 
significantly different at the 95% confidence level. 
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ERL1 and ERL2 expression levels were shown to increase significantly, whereas in stems, a 

decrease was observed instead [3]. 

The work described in this chapter demonstrates that PXf and ERf interact to maintain 

organ size and vascular morphology [3]. In hypocotyls, which are characterized by substantial 

radial expansion during secondary growth, ER and ERL1 are expressed early in development 

[55, 186], but ERL2 expression is initiated later [3]. The analysis performed here, revealed that 

ERL2 function is required to maintain hypocotyl size with other members of the ERf, 

particularly in the absence of pxf.  

pxf lines were reduced in size as members of the ERf families were removed. This was 

particularly true for plants carrying a loss-of-function erl2 mutation (Figure 18A). This implies 

that the elevated ERL1 and ERL2 levels in er pxf hypocotyls may act to support growth rates 

in pxf er. This is controversial because previous authors have suggested that ER and ERL1 act 

as hypocotyl growth inhibitors  [3, 55, 186]. 

Next, to better understand how ERL1 and ERL2 might be regulating growth, I examined 

the impact of loss-of-function erf mutations on pxf mutants in the key vascular cell types: 

xylem vessels, xylem fibres, phloem and parenchyma. pxf hypocotyls, which have reduced cell 

divisions, were comparable in size to wild type, while their cells, along with the cells of pxf er 

mutants, were larger than wild type. Losing further members of the ERf, and particularly ERL2, 

rescued this phenotype, bringing the cell size to the original wild type parameters. Thus, 

hypocotyls lost the ability to trigger compensatory cell expansion to oppose pxf-related 

reductions in cell divisions, when the ERf genes were removed. Even more strikingly, full loss 

of the PXf and ERf genes stopped secondary growth in hypocotyls. This suggests that both 

gene families, PXf and ERf are required for secondary growth, and that their interactions 

maintain normal cell sizes. 

In stems, and in accordance with the gene expression data [3], an opposing tendency 

was observed. Loss of pxf er genes was not associated with cell size increase and instead, 

vascular cells in stems were generally smaller, with the exception of xylem fibres. This could 

be due to stems undergoing little radial growth and thus requiring alternative regulation of 

overall size constraint.  

In particular, outside the phloem, the stem has endodermis, cortex and epidermis in 

which the ability to grow is limited. In hypocotyls, the cork cambium, a proliferative tissue, is 

present outside the phloem allowing for considerable radial expansion. Additional reason for 
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the difference in regulation could be the difference in gene expression between stems and 

hypocotyls. ER expression in the hypocotyl includes the phloem, xylem and cambium (the 

proliferation meristem)[55], whereas in stems, ER is expressed in the phloem only [261]. This 

suggests that the reason for the compensatory cell expansion caused by ERf in the absence 

of the PXY family could be caused by ER presence in the meristematic cambium in hypototyls 

[55], which is not observed in stems [261].  

Together, these data suggest that receptor families which communicate with their 

ligands cross-tissue, also genetically interact in a manner specific to the plant organ or stage 

in development. Thus, signalling mechanisms coordinate plant processes on multiple levels of 

complexity, including by imposing compensatory mechanism when gene function is impaired.  
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Chapter 4: A model including an MP-
PXY negative feedback loop in the 
cambium stabilises the auxin maxima 
during secondary growth 

 

 
In this chapter, a hypothesis to explain the relationship between PXY and MP in 

regulating cambial division (i.e. cambial activity) during secondary growth will be derived and 

tested using a mathematical model. 

The PXY-MP interaction has not been well defined in the past. MP was found to 

promote PXY transcription in root [72], whereas PXY was seen to indirectly inhibit MP in stem 

[120]. Similarly unclear, is MP’s role in regulating cambial divisions. MP was shown to promote 

the activity of the cambium in root [72], yet suppress it in stem base [121]. PXY, on the other 

hand, has been universally marked as a cambial promoter [154, 155, 157, 159]. A recent 

publication has also identified PXY and MP as marking the domain of the cambium 

characterised by an auxin maxima and required for cell divisions in root [72]. The focus of the 

study described here is the hypothesis that, in root, the two reactions of MP’s promotion of 

PXY [72] and PXY’s inhibition of MP [120] coexist and form a negative feedback loop. To test 

this hypothesis, the currently existing root network was embedded in a three-cell 

mathematical model. This was then tested for robustness against an alternative network 

containing the proposed PXY-MP negative feedback loop in the cambium. Three main reasons 

motivated the development of a bespoke three-cell model. First, a custom-made algorithm 

for calculating the concentration of components in each cell allowed tight control over the 

behaviour of the system of equations, the accuracy of results and insight into how calculations 

are conducted (including ability to map every individual step of the numerical calculations ). 

Secondary, features such as automated MATLAB equation solvers are slower, which becomes 

time-expensive over a large number of calculations. Finally, three cells were chosen for 

simplicity of analysisng how the dynamics of the two possible networks, with and without a 

PXY-MP negative feedback loop, compare in the absence of specific parameters.  
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To compare the two possible networks on their ability to reproduce auxin maxima in 

the cambium, numerical tools and closed form analysis were used [143, 262-264]. As the 

network containing the PXY-MP negative feedback loop was seen to reproduce an auxin 

maximum more readily, it was concluded that the network with PXY-MP negative feedback 

loop is more robust in this function. Moreover, in the case of a stable or abundant MP protein, 

this PXY-MP reaction was shown to be particularly important for generating an auxin 

maximum in the cambium. Thus, by examining a hypothetical reaction and its effects on auxin 

accumulation, this model provides a basis for experimental testing and reconciles 

contradictory elements in the PXY-MP literature.  

4.1 Overview of relevant literature 
 
The discussion below will cover the key components identified from the literature to 

build a model of auxin, PXY and MP interactions for cambial activity (cell division).  

 

4.1.1 Auxin is necessary for cambial activity 
 
The phytohormone auxin has been implicated in multiple developmental and growth 

processes, with its distribution patterns, local maxima and gradient formation dynamically 

directing the plant response [146, 193-207]. In vascular development, auxin was also shown 

to have a profound effect on the activity of the cambium. Removal of the auxin source by 

severing the shoots of Pinus sylvestris L. saplings resulted in suspension of secondary growth 

[265], while exogenous application of auxin partially rescued this phenotype [100, 266, 267]. 

In Arabidopsis stems, an increase in auxin gave rise to more cambial divisions [100, 121] and 

similarly, in Populus and Pinus trees, auxin was reported to accumulate in the vascular 

cambium to drive radial expansion [143, 262-264]. In Arabidopsis root, an auxin maxima was 

identified on the xylem side of the cambium, in the domain recently revealed to initiate 

cambial activity  [72]. Together, these data suggest a requirement for auxin presence for 

normal cambial activity, with auxin maxima in the cambium regulating correct radial 

expansion.  

 

4.1.2 PIN active transport coordinates auxin distribution 
 
In general, auxin moves down the root, then accumulates in the root quiescent centre, 
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before being transported back up through the lateral cap and into the epidermis [268, 269]. 

Auxin is transported throughout the plant using two main routes of distribution. The first one 

is a fast unregulated shoot-to-root flux of auxin from the synthesis sites in the plant (such as 

leaves and flowers), down through the phloem to sites of sink (the root) using a pressure-flow 

mechanism [205, 269]. The second means of auxin transport is cell-to-cell active transport, 

mainly conducted by the PIN auxin efflux carriers [138, 268-273]. This type of transport refines 

auxin distribution across tissues [274, 275]. The basically-localized auxin importer AUX1 also 

plays a role in root-ward auxin transport [78, 276]. PIN’s contribution to auxin’s flow down 

the root has been previously modelled [214, 219, 220], with some models also incorporating 

AUX1[222, 234]. 

Active transport is slower, a more refined short-distance means of distribution, and 

coordinates multiple developmental processes, including organogenesis [193, 277-279], the 

establishment of the embryonic axis [280], gravitotropic response [281, 282] and indeed, root 

patterning [138, 283]. Since auxin is a weak acid, it becomes protonated in the acidic apoplast. 

This allows it to diffuse into the cell, where it is ionised, thereby becoming unable to leave 

[275]. Thus, a mechanism is needed for the removal of auxin from the cell. The PIN proteins 

perform this function. Polarly localized at the plasma-membrane, they export auxin in a 

particular direction through direct translocation across the plasma membrane, thus 

coordinating auxin distribution and directing the emergence of auxin gradients and local auxin 

maximas [138, 270, 284, 285]. PIN1, PIN3, PIN4 and PIN7, were shown to regulate vascular 

development in root [196, 200, 272, 280, 282, 286, 287]. In order to understand how auxin is 

distributed across the secondary vascular tissues from the phloem-restricted bulk flow so as 

to accumulate in the cambium, PIN active transport must be considered [138, 270-273]. 

 

4.1.3 Downstream auxin response factor MP activates PIN 
transport and influences cambial divisions 

 
Aspects of PIN active transport are linked to the activity of auxin itself. Auxin's 

signalling pathway operates through the ARF family of genes (see: Chapter 1, section 1.1.2 for 

details), whose proteins mediate the auxin downstream response [105, 106, 108, 288, 289]. 

A particularly well-established member of the ARF family is MP/ARF5, expressed on the xylem 

side of the cambium and encoding a transcription factor [72]. Null mp alleles were shown to 
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prevent the establishment of the hypocotyl/root axis and the corresponding organs [115]. In 

addition, the mp phenotype exhibited similarity to plants with PIN1 transport defects, thus 

MP was linked to PIN activation [114, 116, 117]. At least three PINs, PIN1, PIN3 and PIN7, 

were subsequently shown to require MP function during secondary growth [121]. 

Despite its prominence in multiple regulatory processes, MP’s role in cambial activity 

is contradictory. In different organs and at different stages of development, MP was seen to 

regulate cambial activity differently. In a recent publication by Smetana et al., (2019) [72], MP 

was reported to promote cambial activity during root cambial initiation. Contrastingly, in 

earlier publications by Brackmann et al., (2018)[121] and Han et al. (2018) [120], MP’s 

function was shown to be the opposite in stems and hypocotyls, with MP suppressing cell 

divisions in the cambium. Studying MP function in detail, however, is particularly challenging, 

as loss of MP is lethal to the plant [114].  

 

4.1.4 Cytokinin negatively regulates auxin transport via 
downregulation of PIN proteins 

 
A second hormone that interacts with auxin and plays an important role in 

development and PIN regulation is cytokinin [122, 123]. Loss of cytokinin-synthesizing genes 

results in a striking root vascular phenotype, characterized by absence of cambium, 

substantially smaller radial size, and a single layer of vasculature, cortex, epidermis and 

pericycle [122]. Like auxin, cytokinin is distributed by fast phloem-constrained rootward 

transport and xylem-constrained transport from root to shoot [79]. Auxin and cytokinin have 

been implicated in several mutually-reliant feedback mechanisms (reviewed in [149, 290-

292]). The auxin-cytokinin cross-talk is key to balancing cell differentiation and division 

processes[62, 139, 141, 142, 262]. The gradients of auxin and cytokinin, through the vascular 

tissues, display different patterns. Auxin has a maximum in the cambium while cytokinin’s 

maximum is in the phloem (Figure 24) [72, 143, 262-264] . Negative regulation between auxin 

and cytokinin has been previously established, post embryonically. For example, auxin was 

seen to stimulate the expression of the cytokinin-deactivating enzyme CKX [144]. Auxin 

suppresses the transcription of the IPT genes, which encode cytokinin-promoting enzymes 

[145, 146]. Auxin also promotes the histidine phosphotransfer domain (HPt) protein AHP6, 

known to negatively regulate cytokinin signalling [129-131]. In turn, cytokinin suppresses 
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auxin active transport through decreasing the PIN levels at the post-transcriptional stage 

[140, 148, 293-296]. Together, auxin and cytokinin are interconnected in vascular regulation, 

with PIN active transport comprising a key node of correspondence between the hormones. 

 
 
 

 
Figure 28: Adapted from Fischer et al. (2019) [62], Figure 2b. A schematic of the distribution of 
auxin and cytokinin across the vascular tissue. Auxin and cytokinin are transported down the 
phloem, with auxin then peaking in the cambium, while cytokinin is highest in the phloem. 

 

4.1.5 The PXY receptor kinase promotes cambial activity 
 

The cambium-expressed PXY and its downstream target, the WOX4 transcription 

factor are promoters of cambial activity [154, 155, 157, 159]. PXY’s ligand, TDIF, signals to PXY 

from the phloem, activating the PXY pathway [154, 155, 157-159]. PXY’s interaction with 

auxin and auxin signalling has been demonstrated in several studies, with WOX4 also shown 

to be required for auxin response in the cambium [183]. 

In the vascular cambium, PXY expression was described to overlap with auxin and 

areas of cambial activity. In root, PXY was seen to accumulate on the xylem side of the 

cambium. This is the same region where auxin was shown to reach a maxima in order to 

promote cell divisions [72, 175]. Similar observations were made in stems, where markers of 

auxin response were seen to overlap with both the PXY domain and the area of cambial 

activity [121]. Subsequent experiments of increased endogenous auxin concentration in cells 

containing PXY resulted in a boost of cambial divisions [121]. Together these studies support 

the idea that PXY and auxin co-expression and interaction drive cambial activity [72, 121, 175]. 

Moreover, the auxin response factor MP was also found in cells marked by PXY expression 

and characterised by an auxin maximum [72, 121]. This shows a further link between the auxin 
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signalling pathway, the auxin maxima in the cambium and PXY signaling for regulating cambial 

activity.  

The PXY-MP interaction, however, is complex. To study MP, whose loss terminates the 

plant [114], a gain-of-function, dominant form of MP (MPΔ) was developed [297]. This 

represents a truncated artificial MP allele, able to resist inhibition by AUX/IAA proteins [297]. 

In root, MPΔ was seen to induce PXY and its downstream component WOX4, thus promoting 

divisions in the cambium [72].  

A contrasting relationship between PXY and MP was identified, however, in stem 

[120]. PXY had been previously shown to interact with the GSK3 family of genes [91], among 

which is BIL1, a recently established activator of MP phosphorylation [120]. Secondary growth 

in stems saw PXY restriction of BIL1 [120]. By suppressing BIL1, PXY inhibits the loosening of 

MP’s bonds with its IAA suppressor, effectively hindering the MP downstream response [120]. 

In this way, PXY was shown to boost cambial activity in hypocotyls and stems, where MP was 

seen to counteract cambial divisions [120, 121].  

 

4.2 Hypothesis  
 

In the above, PXY and MP were described to coexist in the same region of the 

cambium, where auxin accumulates in order to perform its function of promoting cell 

divisions [72, 121, 175]. This indicates that PXY, auxin and auxin’s downstream response 

factor MP could interact for regulating cambial activity. Notably, PXY is a known cambial 

promoter [154, 155, 157, 159], whereas MP promotes cambial divisions in root [72] but not 

in stem and hypocotyl [120, 121]. Moreover, PXY and MP were shown to interact in two 

distinctly different ways in different plant organs. In root, MP was shown to promote PXY, 

whereas in stem, PXY was seen to suppress MP [72, 120]. Thus, the question emerges as to 

how these data can be reconciled to explain the PXY-MP-auxin relationship for regulating cell 

divisions. 

The main hypothesis of this chapter is that MP’s promotion of PXY [72] in root and the 

inhibition of MP by PXY [120], are both present in root and form a negative feedback loop on 

MP regulation (Figure 29). Within this study, mathematical modelling is used to explore this 

hypothesis. Specifically, the aim is to investigate the emergence of an auxin maxima in the 

cambium in the context of the PXY-MP interaction. 
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4.3 Model formulation 

 
As discussed above, auxin and cytokinin play an important role in vascular 

development, but differ in their distribution patterns – auxin maximum is in the cambium, 

whereas cytokinin’s maximum is in the phloem [72, 143, 262-264] (Figure 28). In order to 

study how these auxin and cytokinin patterns are obtained, a model was constructed 

corresponding to a simplified vascular structure and consisting of three domains to represent 

the main vascular cells - phloem, cambium and xylem. The components embedded in the 

model have been implicated in cambial activity and auxin patterning, i.e. the hormone auxin 

itself [100, 143, 262-267], the hormone cytokinin [122], auxin’s efflux transporters, the PIN 

proteins PIN1, PIN3 and PIN7 [196, 200, 272, 280, 282, 286, 287], and their activator MP/ARF5 

Figure 22: Diagram of the main hypothesis of this chapter. A schematic of the PXY-MP 
relationship in root (A) and stem (B). The hypothesis proposed in this thesis combines both and 
is provided in (C). 
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[72, 119, 121] together with the receptor-kinase PXY and its ligand TDIF [72, 120, 154, 155, 

157, 159] (see section 4.1 for details).  

 

4.3.1 Model simplifications 
 

To efficiently address the hypothesis described above, several simplifications were 

introduced. In the case of this model, only total concentration of auxin and cytokinin in each 

cell was required to resolve if the auxin and cytokinin patterns match the patterns from Figure 

28. Thus, the specific location of the auxin and cytokinin concentration maxima within the 

cells was not of interest (Figure 28). Each cell was therefore assumed to be well-mixed. 

Similarly, and as a result of the well-mixed assumption, the PIN proteins included in this study, 

namely PIN1, PIN3 and PIN7, were collectively described as a singular PIN, functioning to 

export auxin, as their localization in the cells was not considered. The dynamics of auxin flow 

down the phloem using PIN proteins [138, 268-273] and basally-located AUX1 importers [78, 

276] is not modelled explicitly (see: section 4.3.4). This is the case as auxin is considered to be 

continuously replenished by sources in the shoots [78, 138, 270, 282, 286] and only the auxin 

that enters the cambium is required for comparison between homeostasis of the cambium in 

the networks with and without the PXY-MP negative feedback loop. Translation and 

transcription were not modelled as individual steps, since only the final product of these 

processes was of relevance. The model equations, parameters and dynamics will be discussed 

next. 

 

4.3.2 Reaction-diffusion network 
 

The model’s dynamics were described, using reaction-diffusion equations (1)-(10) 

below. Square brackets correspond to concentration values of the components within them.  

𝑑[𝐴𝑢𝑥𝑐]

𝑑𝑡
= 𝐹𝑎[𝐴𝑢𝑥𝑝] + 𝑟8 (

1

2
[𝑃𝐼𝑁𝑥]) [𝐴𝑢𝑥𝑥]  − 𝑟8[𝐴𝑢𝑥𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑐]   (1) 

𝑑[𝐴𝑢𝑥𝑥]

𝑑𝑡
= 𝑟8 (

1

2
[𝑃𝐼𝑁𝑐]) [𝐴𝑢𝑥𝑐] − 𝑟8[𝐴𝑢𝑥𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑥]    (2) 

𝑑[𝑃𝐼𝑁𝑐]

𝑑𝑡
= 𝑟6[𝑀𝑃𝑐] − 𝑟7[𝐶𝐾𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑐]      (3) 

𝑑[𝑃𝐼𝑁𝑥]

𝑑𝑡
= 𝑟6[𝑀𝑃𝑥] − 𝑟7[𝐶𝐾𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝑃𝐼𝑁 [𝑃𝐼𝑁𝑥]       (4) 

𝑑[𝑀𝑃𝑐]

𝑑𝑡
= 𝑟5[𝐴𝑢𝑥𝑐] − 𝑟3[𝑃𝑋𝑌𝑎][𝑀𝑃𝑐] − 𝑑𝑀𝑃 [𝑀𝑃𝑐]      (5) 

𝑑[𝑀𝑃𝑥]

𝑑𝑡
= 𝑟5[𝐴𝑢𝑥𝑥] − 𝑑𝑀𝑃 [𝑀𝑃𝑥]        (6) 
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𝑑[𝑃𝑋𝑌𝑖𝑛]

𝑑𝑡
= 𝑟4[𝑀𝑃𝑐] − 𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹] − 𝑑𝑃𝑋𝑌𝑖𝑛

[𝑃𝑋𝑌𝑖𝑛]     (7) 
𝑑[𝑃𝑋𝑌𝑎]

𝑑𝑡
= 𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹𝑝] − 𝑑𝑃𝑋𝑌𝑎 [𝑃𝑋𝑌𝑎]       (8) 

𝑑[𝐶𝐾𝑐]

𝑑𝑡
= 𝐷𝑐𝑘

𝜕2

𝜕𝑥2
[𝐶𝐾] − 𝑟1[𝐴𝑢𝑥𝑐][𝐶𝐾𝑐] − 𝑑𝐶𝐾[𝐶𝐾𝑐]      (9) 

𝑑[𝐶𝐾𝑥]

𝑑𝑡
= 𝐷𝑐𝑘

𝜕2

𝜕𝑥2
[𝐶𝐾] − 𝑟1[𝐴𝑢𝑥𝑥][𝐶𝐾𝑥] − 𝑑𝐶𝐾[𝐶𝐾𝑥]      (10) 

 

In the equations (1)-(10), cell association for each component in the network (auxin, 

cytokinin, MP, PINs, PXY, TDIF) is marked by a subscript related to the correct tissue type (‘c’ 

for the cambium, ‘p’ for the phloem and ‘x’ for the xylem). For example auxin in the phloem, 

cambium and xylem is given by [𝐴𝑢𝑥𝑝], [𝐴𝑢𝑥𝑐] and [𝐴𝑢𝑥𝑥], respectively, and each of these 

concentrations is governed by a separate equation. Parameters 𝑟∗ where ‘*’ is a number, 

denote reaction rates. 𝑑† are basal degradation rates where † corresponds to the component 

the degradation belongs to (e.g. 𝑑𝐴𝑢𝑥 is the degradation of auxin). 𝐹𝑎 is the rate of influx of 

auxin, 𝐷𝑐𝑘 is the diffusion coefficient of cytokinin. In the phloem, the concentrations 

[𝐴𝑢𝑥𝑝], [𝐶𝐾𝑝] and [𝑇𝐷𝐼𝐹𝑝] are constant, with reasoning for this given in section 4.3.4. 

Together, [𝐴𝑢𝑥𝑝], [𝐶𝐾𝑝], [𝑇𝐷𝐼𝐹𝑝], 𝐹𝑎, 𝐷𝑐𝑘, 𝑟1,  𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6,   𝑟7,   𝑟8, 𝑑𝐴𝑢𝑥,  𝑑𝐶𝐾,   𝑑𝑃𝐼𝑁, 

 𝑑𝑀𝑃,  𝑑𝑃𝑋𝑌𝑖𝑛
,  𝑑𝑃𝑋𝑌𝑎

 are the network’s parameters. Their units are given in Table 1. Full 

description of the network dynamics will be given in sections 4.3.3-4.3.6. 

Equations (1)-(10) represent both networks to be investigated, the network with the 

PXY-MP negative feedback loop (hypothesized in section 4.2 above) and the network without 

it. In the case where the PXY-MP negative feedback loop is included (section 4.2), all reaction 

rates are non-zero. Conversely, in the absence of a PXY-MP feedback loop (this is the currently 

existing network in the literature), all of the related reaction rates 𝑟2, 𝑟3, 𝑟4, 𝑑𝑃𝑋𝑌𝑖𝑛
, 𝑑𝑃𝑋𝑌𝑎

 are 

set to zero and the concentration of TDIF in the phloem [𝑇𝐷𝐼𝐹𝑝] is also set to zero.  
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Table 1: Table of all the parameters in the model and their corresponding units 

The network is schematically represented in Figure 30. Basal degradations are omitted 

from Figure 30 for clarity of illustration. The reactions and references are provided in Table 2 

(compare with Figure 30). Each of the reactions seen in Figure 30 (equations (1)-(10) and Table 

2) are discussed in detail below.  

 

Auxin concentration in the phloem Units 

[𝐴𝑢𝑥𝑝] 𝜇𝑀 

Auxin flux Units 

𝐹𝑎  𝑠−1 
Cytokinin concentration in the phloem Units 

[𝐶𝐾𝑝] 𝜇𝑀 

Concentration of TDIF in the phloem Units 

[𝑇𝐷𝐼𝐹𝑝] 𝜇𝑀 

Diffusion coefficient Units 

𝐷𝑐𝑘 𝜇𝑚2/𝑠 
Reaction rates Units 

𝑟1 𝜇−1𝑠−1 
𝑟2 𝜇−1𝑠−1 
𝑟3 𝜇−1𝑠−1 
𝑟4 𝑠−1 
𝑟5 𝑠−1 
𝑟6 𝑠−1 
𝑟7 𝜇−1𝑠−1 
𝑟8 𝜇−1𝑠−1 

𝑑𝐴𝑢𝑥 𝑠−1 
𝑑𝐶𝐾 𝑠−1 
𝑑𝑃𝐼𝑁 𝑠−1 
𝑑𝑀𝑃 𝑠−1 

𝑑𝑃𝑋𝑌𝑖𝑛
 𝑠−1 

𝑑𝑃𝑋𝑌𝑎
 𝑠−1 



94 
 

 
Figure 30: A schematic of the reaction-diffusion network domains and interactions. Three main 
cells are illustrated. The phloem (pale orange) is viewed as an inexhaustible hormone source 
and a source of TDIF. All orange components are mobile (cytokinin, auxin, TDIF). Blue arrows 
indicate promotion/activation. Blunted arrows indicate suppression. Brown solid arrows 
represent the influx of auxin from the phloem. Pale yellow dashed arrows indicate interaction 
between PINs and auxin for auxin export from the cell in a given direction. Black dotted lines 
correspond to cytokinin diffusion. Reaction rates are shown next to arrows in italics. Basal 
degradation is not shown for clarity of diagram. The hypothesis being tested is represented by 
the reactions with reaction rates 𝑟2, 𝑟3 and 𝑟4 (compare to Figure 25 C). 

 

 

 

Network Interactions 

Reaction rate Interaction summary Reference 

𝑟1 Aux ⊣CK  [80, 129, 131, 141, 144, 145] 

𝑟2 TDIF binds to PXY [154-157]  

𝑟3 PXY ⊣MP/ARF5 [120] 

𝑟4 MP →PXY  [72] 

𝑟5 Aux →MP  
[105, 106, 111, 288, 289, 
298]  

𝑟6 MP → PINs [114, 115, 117, 119, 147]  

𝑟7 CK ⊣PINs [140-142, 148, 293, 295]  

𝑟8 PIN transports auxin [138, 270-272] 

Table 2: A table of the model reactions, where column 1 provides the name given to the 
reaction inside the model, column 2 gives a schematic description of the reaction. Blunted 
arrows correspond to suppression, arrows correspond to promotion/activation. Column 3 
contains the references for each reaction. 
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4.3.3 Hormone movement 
 

Auxin enters the cambium as a flux from the phloem (𝐹𝑎, Figure 30). Subsequent 

movement of auxin out of the cambium and xylem is governed by PIN proteins (𝑟8, Figure 30) 

[275]. Since cytokinin does not require protein carriers to exit the cell, cytokinin was modelled 

as diffusing freely through the system from the phloem ( 𝐷𝑐𝑘, Figure 30), as done in previous 

models [214, 234]. However, the cytokinin diffusion coefficient has not been measured. Thus, 

here, the diffusion constant from the Moore et al. (2015) [234] model (which also studied 

hormone patterning in root; see: Chapter 1, section 1.3), was used  i.e. 𝐷𝐶𝐾 = 220 𝜇𝑚2/𝑠 . 

For the cell radial distances travelled by diffusion, mean realistic cell sizes were used (see: 

Figure 30). Full description of diffusion dynamics is given in section Methods 4.6 below. 

 

4.3.4 Phloem source 
 

Within the model, the phloem is viewed as an inexhaustible source of auxin, cytokinin 

and TDIF. Cytokinin [79] and auxin [78, 138, 270, 282, 286] are rapidly transported down the 

phloem from shoot to root. Similarly, PXY’s peptide ligand, TDIF, undergoes translation and 

transcription in the phloem from where it signals to PXY in the cambium [155-157].Thus, the 

concentrations of auxin, cytokinin and TDIF ([𝐴𝑢𝑥𝑝], [𝐶𝐾𝑝], [𝑇𝐷𝐼𝐹𝑝], Figure 30) in the phloem 

remain constant as any movement of auxin and cytokinin out of the phloem is instantly 

replenished by the flow. Loss of TDIF is replenished by its production in the phloem.  

 
 

4.3.5 Cambium reactions 
 

The hormones cytokinin and auxin both move from the phloem towards the cambium. 

Upon entering the cambium, auxin can only exit with the assistance of PIN proteins, either by 

moving back towards the phloem or by being transported into the xylem [275, 299, 300]. Any 

auxin which is transported by PINs back into the phloem is thought to instantly drain down 

the phloem and is disregarded. In the cambium, auxin and cytokinin interact, with auxin 

deactivating cytokinin [80, 129, 131, 141, 144, 145] (𝑟1 , Figure 30) and cytokinin suppressing 

PIN proteins [140-142, 148, 293, 295] (𝑟7, Figure 30). Auxin promotes the release of its 
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downstream response factor MP/ARF5 from inhibition (𝑟5, Figure 30), while MP/ARF5 

activates PIN proteins [114, 116, 117, 119, 298] (𝑟6, Figure 30). In the root cambium, MP was 

seen to induce the transcription of PXY (𝑟4, Figure 30) to produce an inactive form of PXY 

(PXYin, Figure 30). Inactive PXY interacts with TDIF (𝑟2, Figure 30), activating the PXY protein 

(PXYa, Figure 30) [154, 155, 157-159].  

The hypothesised PXY-MP negative feedback loop is also in the cambium. This loop 

consists of active PXY’s repression of MP (𝑟3, Figure 30) [120] and MP’s promotion of inactive 

PXY. Note, MP inhibition by active PXY is not direct, and is in fact facilitated through an 

intermediate component, BIL1 [120], which is suppressed by active PXY and thereby stopped 

from promoting MP [120]. However, as BIL1’s role here is only to promote MP 

phosphorylation, BIL1’s behaviour is not of individual interest.  

 

4.3.6 Xylem reactions 
 

The final cell in the model is the xylem. Auxin is transported from the cambium into 

the xylem using PIN-regulated active transport [138, 270-273]. As in the cambium, in the 

xylem auxin suppresses cytokinin [129-131, 144], cytokinin inhibits PINs [140-142, 148, 293, 

295] and auxin de-represses its downstream target MP [52, 108, 147]. PIN proteins in the 

xylem transport auxin back towards the cambium, exiting the xylem. Any auxin that exits the 

xylem is disregarded as it leaves the system. 

 

4.4 Results 
 

For the hormone concentration patterns in the model to match the patterns from the 

literature, cytokinin is to be highest in the phloem and gradually reduce towards the xylem 

[143, 262], whereas auxin needs to peak in the cambium [72, 143, 262-264] (Figure 30). Thus, 

in order for the correct hormone pattern to be reproduced by the model, the following 

inequalities must be satisfied, 

 

[𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥]         (11) 

[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝]          (12) 
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[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥]          (13) 

 

Inequality (11) describes the required cytokinin pattern, while inequalities (12) & (13) 

correspond to the required auxin pattern.  

 

4.4.1 The cytokinin pattern in the model always matches the 
literature 

 

Consider first condition (11). In both networks under investigation (with and without 

PXY-MP negative feedback), cytokinin diffuses from its source in the phloem and moves 

towards the xylem [79]. Diffusion is the product of random particle movement. The net result 

of diffusion is the movement of particles from a space with higher concentration, to a space 

with lower concentration. Thus, particles diffusing away from a source obtain a concentration 

pattern that is highest at the source and decreases as the distance from the source is 

increased. Since the phloem is the sole source of cytokinin in the network, a diffusion-only 

regulated cytokinin would have the following pattern: [𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥]. In the model, 

cytokinin concentration is also influenced by auxin. Auxin deactivates cytokinin in the 

cambium and xylem [80, 129, 131, 141, 144, 145], thereby further reducing the concentration 

of active cytokinin in those cells (reaction 𝑟1). Thus, the following dynamics occur. As cytokinin 

diffuses into the cambium, the concentration of cytokinin in the cambium (given by [𝐶𝐾𝑐]) 

becomes lower than in the phloem. In the cambium, auxin deactivates cytokinin (reaction 𝑟1), 

further reducing the concentration of cytokinin in the cambium. Similarly, cytokinin diffuses 

from the cambium into the xylem. Thus, the concentration of cytokinin in the xylem (given by 

[𝐶𝐾𝑥]) is lower than in the cambium. In the xylem, the concentration of cytokinin is again 

reduced by auxin deactivation, becoming even lower. The inequality [𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥] 

holds, satisfying (11). All simulations conducted in sections 4.3.2-4.3.5 support this 

conclusion. 
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4.4.2 The network with the PXY-MP negative feedback loop is 
more robust at reproducing the hormone patterns than the network 
without the PXY-MP negative feedback loop 

 

First, the question was asked whether the networks with and without the PXY-MP 

negative feedback loop were capable of generating an auxin maximum in the cambium. To 

address this question, equations (1)-(10) were solved numerically, using the Euler method 

(see: section 4.6.1 and 4.6.2 Methods). The steady state solutions were evaluated for fulfilling 

conditions (11)-(13). As the majority of parameter values were not known (namely, all the 

reaction rates 𝑟1 - 𝑟8, the auxin flux from the phloem 𝐹𝑎, and the phloem-sourced 

concentrations of auxin [𝐴𝑢𝑥𝑝], cytokinin [𝐶𝐾𝑝], and TDIF [𝑇𝐷𝐼𝐹𝑝]), parameter values for the 

equations were sampled from a uniform interval [0,20]. As will be shown in section 4.4.6, 

where the results of a closed form analysis of equations (1)-(10) will be discussed, the 

conclusions made throughout this study hold irrespective of the particular sampling interval. 

2, 500 parameter sets were generated independently for each network. The individual 

parameters were sampled using the sampling strategy for the global sensitivity technique, the 

Morris method (results of the Morris method application are given in 4.4.4), which involves 

perturbing parameters with a step Δ (see section 4.6.3: Methods). The Morris sampling 

strategy relies on discretising the parameter intervals into equally spaced points to be chosen 

from, with level of partitioning 𝑝 (𝑝 Morris level) related to the perturbation step Δ. Here, the 

Morris level 𝑝 was chosen as 𝑝 = 41, as it corresponds to a perturbation step Δ = 0.5 (see 

section 4.6: Methods for full details). To ensure that all reactions were present unless 

otherwise specified, the value 0.001 was added post-sampling to all parameters in the case 

where the PXY-MP loop was present, and to all parameters except 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝],  𝑑𝑃𝑋𝑌𝑎
, 

𝑑𝑃𝑋𝑌𝑖𝑛
 in the case where it was not.  

Term parameter sets that satisfy conditions (11)-(13) as ‘successful’ and those that do 

not pattern as ‘unsuccessful’. Running the simulations revealed three key findings. 

First, all simulations (for both the network with and without the PXY-MP loop) 

confirmed the previously discussed assessment of the cytokinin pattern (see section 4.4.1), 
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with final steady state concentrations of cytokinin across the cells always satisfying condition 

(11), i.e. [𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥].  

Second, in all parameter sets condition (13), i.e. [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥], held. This result 

agrees with the closed form analysis which will be discussed in section 4.4.6 and Appendix E3, 

showing that [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥] holds regardless of parameter choices.  

Third, as conditions (11) and (13) are always satisfied, successful parameter sets are 

those that satisfy condition (12). Of the 2,500 parameter sets ran in the network without the 

PXY-MP negative feedback loop, a total of 467 parameter sets (18.68%) were successful. Of 

the 2,500 parameter sets ran in the network with the PXY-MP negative feedback loop was 

present, 725 parameters (29%) were successful (Figure 31). This data shows that the network 

with the PXY-MP negative feedback loop can achieve an auxin maximum in the cambium for 

a larger number of parameters under the same parameter sampling strategy. Thus, adding 

PXY inhibition of MP to the root makes the network more robust for generating an auxin 

maximum in the cambium.  
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4.4.3 The network with the PXY-MP negative feedback loop 
expands the conditions under which an auxin maximum in the 
cambium can be achieved 
 
 Having established that the network containing the PXY-MP negative feedback loop is 

more robust at satisfying conditions (11)-(13), the question was asked if the additional 

successful parameter sets were truly a result of the added PXY-MP negative feedback loop. 

To answer this question, two experiments were conducted.  

 The first experiment examined if there were successful parameter sets in the network 

with the PXY-MP negative feedback loop, for which the negative feedback loop was required 

for a successful pattern. To this end, from the 725 successful parameter sets obtained from 

the network with the PXY-MP negative feedback loop, the parameters related to the loop 

were removed (Figure 31). That is, the values of 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

 were set to zero 

and the new (adjusted) parameter sets were run to steady state in the model. 

Of the 725 parameter sets that had previously patterned in the presence of the PXY-

Figure 31: A bar chart of number of successful parameters in both networks: and without 
PXY-MP negative feedback loop. 
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MP negative feedback loop, 248 (34.21%) could no longer achieve a pattern when the 

negative feedback loop was removed. Thus, there were parameter sets for which the PXY-MP 

negative feedback loop was required. 

The second experiment tested to see if in the parameter sets that were able to 

successfully pattern in the absence of the PXY-MP negative feedback loop, there existed 

parameter sets for which the introduction of the PXY-MP negative feedback loop would result 

in an unsuccessful pattern. Similarly to the first experiment above, the 467 successful 

parameter sets for the network without the PXY-MP negative feedback loop (Figure 31) were 

adjusted for the network with the PXY-MP negative feedback loop. Instead of having the 

parameters 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

  in the 467 parameter sets equal to zero (as is 

the case with all parameter sets for the network without the PXY-MP negative feedback loop), 

values for of 𝑟2, 𝑟3, 𝑟4, 𝑇𝐷𝐼𝐹, 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

  were randomly sampled from a continuous 

interval [0.001, 20]. For each of the 467 parameter sets, 10 sets of 𝑟2, 𝑟3, 𝑟4, 𝑇𝐷𝐼𝐹, 𝑑𝑃𝑋𝑌𝑎
, 

𝑑𝑃𝑋𝑌𝑖𝑛
 were generated at random, resulting in a total of 4670 new parameter sets. Each 

parameter set was solved to steady state and assessed for successful patterning.  

All 4670 parameter sets produced a successful pattern. To test if this could be the 

result of the interval choice [0.001, 20], the experiment was repeated twice for larger 

intervals, with values for 𝑟2, 𝑟3, 𝑟4, 𝑇𝐷𝐼𝐹, 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

 randomly sampled from the 

continuous intervals [20.001,100] and [100.001,1000]. As before, for each of the 467 

parameter sets, 10 sets of 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

  were generated, resulting in 

another 4670 new parameter sets in each of the two cases. In each iteration of the 

experiment, all 4670 parameter sets produced a successful pattern. Thus, there were no 

occasions where adding the PXY-MP negative feedback loop to a parameter set that was 

successful in the network without the PXY-MP negative feedback loop, resulted in the 

successful patterning being lost. In section 4.4.6.2, it will be further discussed that the 

conclusions of this section always hold.  

Taken together, the above two experiments suggest that a negative feedback 

mechanism between PXY and MP in the root network improves the ability of the network to 

retain an auxin maxima in the cambium. 

 

4.4.4 Sensitivity analysis shows that both networks are 
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insensitive to perturbations 
 

In this section, the aim was to investigate the networks’ sensitivity to parameter 

perturbations for satisfying inequality (11)-(13) at steady state. The Morris method (fully 

described in section 4.6.3) is a computationally inexpensive method for calculating measures 

of sensitivity for parameters. Thus, the Morris method was chosen to be used. 

For the questions addressed within this thesis, successful or unsuccessful pattern is 

considered, not the numerical values of concentrations. Thus, of interest were the instances 

when a parameter perturbation resulted in changing the network’s steady state pattern from 

successful to unsuccessful, or vice versa. The Morris method was modified to fit this 

requirement (see: section 4.6.3). A parameter perturbation that resulted in a change in the 

network’s steady state pattern from successful to unsuccessful, or vice versa, was attributed 

sensitivity value 1. For example, if in a parameter set the parameter 𝑟1 was perturbed and the 

network’s patterning state changed from successful to unsuccessful, then 𝑟1 obtained 

sensitivity value 1. If perturbation of 𝑟1 in the next parameter set also changed the network’s 

patterning state from successful to unsuccessful, or vice versa, 𝑟1’s sensitivity value increases 

to 2, and so on. Upon the completion of the Morris method, the parameters were ranked in 

order of sensitivity values. The parameter with the highest sensitivity value has Morris rank 

1. 

For the Morris method sensitivity analysis, 50 parameter sets were selected from the 

2,500 parameter sets used to generate Figure 31, such that they were maximally distant from 

all other remaining parameter sets. That is, 50 parameter sets were chosen whose sum of 

Euclidean distances to the remaining parameter sets was largest. Parameters were chosen in 

this way to maximise the spread of parameter sets within the parameter space.  

The Morris method creates new parameter sets from old ones by randomly perturbing 

each network parameter exactly once (see section 4.6.3 for full description). The network 

with the PXY-MP negative feedback loop has a total of 18 parameters. Thus, from one 

parameter set in the network with the PXY-MP negative feedback loop, 18 additional 

parameter sets were created through Morris perturbations. It follows that a total of 18 ×

50 = 900 Morris perturbations occur for the network with the PXY-MP negative feedback 

loop. The network without the PXY-MP negative feedback loop has 12 parameters as the 
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parameters making up the negative feedback loop, i.e. 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

, are 

absent. In the case when no PXY-MP negative feedback loop is present, a total of 12 × 50 =

600 Morris perturbations occur. 

First, the resulting Morris ranking for each individual parameter for the network with 

the PXY-MP negative feedback loop was recorded and depicted in a bar graph found in 

Appendix E1.1. For 𝑝 = 41 this is Figure 1S (C). As each component in the network is linked 

to several parameters, these individual Morris rankings do not explain how components 

impact the biological system. For example, for the network with the PXY-MP negative 

feedback loop, the two parameters with the highest Morris ranking , rank 1, were 𝑑𝐴𝑢𝑥 and 

𝑑𝑃𝑋𝑌𝑎
. The three rank 2 parameters (𝑟2, 𝑟4, [𝑇𝐷𝐼𝐹𝑝]) were all linked to PXY concentration. No 

lower ranks were recorded. This suggests that parameter sets for the network with the PXY-

MP loop negative feedback loop experience most changes in pattern from successful to 

unsuccessful or vice versa when the concentration of PXY is changed. Thus, looking at the 

Morris ranking of parameter groupings rather than the Morris ranking of individual 

parameters would give insight into the effects of components on the ability of the network to 

satisfy conditions (11)-(13). 

To look into the effects of components on the ability of the model to satisfy conditions 

(11)-(13), individual parameters were grouped into component-related categories to provide 

a mean sensitivity value for each component. The mean sensitivity value was calculated by 

averaging the sensitivity values of the parameters within the component group. The five 

major component groups were as follows: auxin-related parameters, cytokinin-related 

parameters, PIN-related parameters, MP-related parameters and PXY-related parameters. A 

parameter was considered a member of a component group if it directly affected the 

concentration of the component after which the group was named. Under this schema, the 

group of auxin-related parameters had 3 members ([𝐴𝑢𝑥𝑝], 𝐹𝑎, 𝑑𝐴𝑢𝑥), the group of cytokinin-

related parameters had 3 members ([𝐶𝐾𝑝], 𝑟1, 𝑑𝐶𝐾), the group of MP-related parameters had 

3 members (𝑟3, 𝑟5, 𝑑𝑀𝑃), the group of PIN-related parameters had 4 members (𝑟6, 𝑟7,𝑟8, 𝑑𝑃𝐼𝑁) 

and the group of PXY-related parameters had 5 ( 𝑟2, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑖𝑛
, 𝑑𝑃𝑋𝑌𝑎

). That is, of the 

900 perturbations in total, 50 × 3 = 150 perturbations directly impact auxin, cytokinin and 

MP concentrations, while 50 × 4 = 200 perturbations impact PIN concentration and 50 ×

5 = 250 impact PXY concentration. An example of a mean sensitivity value calculation: if a 
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total of 10 changes from successful to unsuccessful state, or vice versa were recorded for MP-

related parameters (a component group which has 3 members), the statistic for that 

component group would be 
10

3
= 3.33 (2 d.p.). The component groups were then ranked, with 

the component group with the highest mean sensitivity value obtaining Morris rank 1. 

Mean sensitivity value results are given in Figure 32 below. Different parameter 

categories are marked by different colours (e.g. PXY-related parameters are blue; see legend 

in Figure 32). 

 

 

The results of 𝑝 = 41 indicated highest sensitivity to PXY-related parameters, rank 1, 

and lower sensitivity to auxin-related parameters at rank 2. However, out of the 

900 perturbations in the network with the PXY-MP negative feedback loop, a total of only 7 

instances (0.78%) of changes (from successful to unsuccessful or vice versa) were detected 

and distributed across the different parameter groups, with no changes at all detected for the 

Figure 32: Mean sensitivity value results for Morris levels p=41, 21, 11 (corresponding to step 
size change 𝛥 = 0.5, 1, 2) and all three combined for the network with the PXY-MP negative 
feedback loop. Numbers on top of each bar are rankings Rank 1 corresponds to the parameter 
group that the model is most sensitive to, while 5 corresponds to the parameter group that 
the network is least sensitive to. 
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group of cytokinin, MP or PIN-related parameters. 5 changes were caused by perturbing PXY-

related parameters (2 % of the 250 changes related to PXY) and 2 by auxin-related parameters 

(1.33% of the 150 changes linked to auxin). Overall, this indicated that for 𝑝 = 41 with a step-

size Δ = 0.5, the network with the PXY-MP negative feedback loop was insensitive to 

perturbations and the initial state of successful or unsuccessful is retained under almost all 

single-step perturbations. A summary of the number of group-related and total changes is 

given in Table 3 below. 

 

Table 3: Table of changes under Morris perturbations in the network with the PXY-MP loop. 
Column 1 is headings. Row 1 gives the total number of observed changes across all parameters 
(Column 2) and the number of changes observed in different parameter groups (Auxin, CK, MP, 
PIN and PXY-related parameters). Remaining rows correspond to Morris levels 𝑝 = 41, 𝑝 =
21, 𝑝 = 11. Each cell from rows 2-4 provide a net number and proportion. All percentages are 
reported to 2 d.p. 

 

To address the question of whether higher sensitivity may be detected at larger step 

size (i.e. lower Morris levels 𝑝; see section 4.6.3 for full details), the above experiment was 

replicated for Morris levels 𝑝 = 21 and 𝑝 = 11. This corresponded to perturbation step sizes 

Δ = 1 (5% of the interval size of 20) and Δ = 2 (10% of the interval), respectively. 2, 500 

parameter sets were generated independently for the network with the PXY-MP negative 

feedback loop using the Morris sampling strategy, this time with Morris levels set to 𝑝 = 21 

and 𝑝 = 11. Parameter intervals remained [0, 20] (with a subsequent addition of 0.001).  

Network with 
PXY-MP loop 

All groups Auxin-related 
parameters 

CK-related 
parameters 

MP-related 
parameters 

PIN-related 
parameters 

PXY-related 
parameters 

Total number 
of changes 

 
900 

 
150 

 
150 

 
150 

 
200 

 
250 

Number of 
changes for 
p=41 

 
7 (0.78%) 

 
2 (1.33%) 

 
0 

 
0 

 
0 

 
5 (2 %) 

Number of 
changes for 
p=21 

 
25 (2.78% ) 

 
10 (6.67%) 

 
0 

 
3 (2%) 

 
8 (4%) 

 
4 (1.6 %) 

Number of 
changes for  
p=11 

 
16 (1.78%) 

 
9 (6%) 

 
0 

 
2 (1.33 %) 

 
3 (1.5%) 

 
1 (0.4%) 
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 Of each of the 2, 500 independently generated parameter sets for 𝑝 = 21 and 𝑝 =

11, 50 maximally distant parameter sets were selected from each (as done for the 𝑝 = 41 

case) and the Morris method was used. The results of the Morris ranking are given in Figure 

28, for 𝑝 = 21 and 𝑝 = 11. In both cases, the Morris perturbations at higher step size yielded 

more changes from successful to unsuccessful pattern, or vice versa. The results indicated 

that the network was most sensitive to auxin-related parameters and PIN-related parameters 

(ranks 1 and 2). MP-related parameters were rank 3, while ranks 4 and 5 were either the PXY 

or CK component group. The results show that for smaller perturbations, at 𝑝 = 41, the 

network is more sensitive to PXY-related parameters, but at larger perturbations, auxin and 

PIN transport dominate in ability to produce changes in the parameter sets’ state (from 

successful to unsuccessful or vice versa).  

To gain an overview of the sensitivity of the model for all step sizes studied, the results 

of all the 𝑝 = 41, 21 and 11 were also combined (Figure 32). Here, auxin and PIN-related 

parameters retained ranks 1 and 2, showing that parameter sets were most likely to change 

from successful to unsuccessful or vice versa if members of the auxin-related or PIN-related 

parameter group were perturbed. Ranks 3, 4 and 5 were held by MP-related, PXY-related and 

cytokinin-related parameters. The breakdown for individual Morris parameter rankings (given 

in Appendix E1.1, Figure 1S) showed that changes in state (from successful to unsuccessful 

pattern, or vice versa) were not caused by perturbations in one specific parameter in a group, 

but generally spread out across the members of the group.  

Although more pattern state changes were recorded for 𝑝 = 21 and 𝑝 = 11 

compared to 𝑝 = 41, the total number of changes was still low in each case. A total of 25 

(2.78% of the total 900) changes occurred for the 𝑝 = 21 case and 16 (1.78% ) changes for 

the 𝑝 = 11 case, spread out across all 5 groups of parameters. This suggests that the network 

is not particularly sensitive to perturbations (the details of the number of changes are 

summarized in Table 3). The parameter groups whose perturbation seemed to most 

consistently generate a state change for parameter sets (from successful to unsuccessful or 

vice versa) were those of auxin and PIN-related parameters. Thus, even though a single step 

perturbation is unlikely to cause a change in the network’s behaviour, such change is most 

likely to happen if parameters belonging to the auxin or PIN group are perturbed.  
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The same sensitivity analysis was performed on the network without a PXY-MP 

negative feedback loop. The results of the individual parameter sensitivity is given in Appendix 

E1.2, Figure 2S. As before, parameter groups were identified: the groups of auxin, cytokinin, 

MP and PIN-related parameters. No PXY-related parameter group is observable in the case of 

the network with no PXY-MP negative feedback loop. The group of MP-related parameters 

here contains only 2 parameters, 𝑟5 and 𝑑𝑀𝑃. The remaining parameter groups are the same 

as for the case of the network with the PXY-MP negative feedback loop. Thus, of the 600 

perturbations in total, 50 × 3 = 150 perturbations directly impact auxin and cytokinin 

concentration, while 50 × 4 = 200 perturbations impact PIN concentration and 2 × 5 = 100 

impact MP concentration. As before, the mean sensitivity value was calculated for each 

component group by averaging the sensitivity values of the parameters within the component 

group. 

The results of applying the Morris method to the network with no PXY-MP negative 

feedback loop are given in Figure 33 below. For 𝑝 = 41, auxin-related parameters obtained 

rank 1, while PIN-related parameters ranked 2. Perturbations in none of the parameters of 

the remaining groups caused any changes in state from successful to unsuccessful or vice 

versa. However, of the 600 perturbations conducted for the network without a PXY-MP 

negative feedback loop, a total of only 2 state changes from successful to unsuccessful or vice 

versa (Appendix E1.2 C; Table 4) were recorded for 𝑝 = 41 (0.33% of the total). As with the 

case of the network with the PXY-MP negative feedback loop, the small step size Δ was 

assumed to be the reason. Thus, Morris sensitivity analysis was repeated with larger step sizes 

Δ = 1 , or 5% of the sampling interval (this corresponds to Morris levels 𝑝 = 21), and Δ = 2, 

equivalent to 10% of the sampling interval (or Morris levels 𝑝 = 11). 2, 500 parameter sets 

were independently generated for the network without the PXY-MP negative feedback loop 

using the Morris sampling strategy at Morris levels 𝑝 = 21 and 𝑝 = 11. 50 maximally distant 

parameter sets were selected and the Morris sensitivity analysis was applied to them. The 

results of the Morris ranking are given in Figure 29, for 𝑝 = 21 and 𝑝 = 11. In both cases, 

more changes were detected compared to the case of 𝑝 = 41. 
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At 𝑝 = 21, a total of 10 changes in state occurred from successful to unsuccessful or 

vice versa (1.67% of the total of 600 perturbations). The network showed to be most sensitive 

to MP-related parameters (rank 1), followed closely by PIN-related parameters (rank 2) and 

finally auxin-related parameters (rank 3) (Table 4; Figure 33). At the largest step-size Δ = 2 at 

𝑝 = 11, an overall of 22 instances of changes in state from successful to unsuccessful or vice 

versa were recorded (3.67% of the 600 perturbations). In this case the network was most 

sensitive to auxin-related parameters (rank 1), followed by MP-related parameters (rank 2) 

and PIN-related parameters (rank 3) (Table 4). Sensitivity to CK-related parameters ranked 

last (rank 4). The combined ranking data from 𝑝 = 11, 21, 41 showed that MP-related 

parameters overall hold rank 1, auxin-related parameters hold rank 2, PIN-related parameters 

have rank 3 and CK-related parameters rank 4 (Figure 29). Overall, this data shows that 

perturbations in MP-related and auxin-related parameters are most likely to cause a change 

in state in a parameter set, from successful to unsuccessful or vice versa. Higher sensitivity 

was attributed to MP-related parameters for the cases of 𝑝 = 21 (rank 1) and 𝑝 = 11 (rank 

Figure 33: Mean sensitivity value results for Morris levels p=41, 21, 11 (corresponding to step 
size change 𝛥 = 0.5, 1, 2) and all three combined for the network without the PXY-MP negative 
feedback loop. Numbers on top of each bar are rankings Rank 1 corresponds to the parameter 
group that the network is most sensitive to, while 4 corresponds to the parameter group that 
the model is least sensitive to. 
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2) compared to the network with PXY-MP negative feedback loop (where MP-related 

parameters ranked 3rd or lower), outranking PIN-related parameters in sensitivity measure 

(Figure 32; Figure 33). MP-related parameters also ranked 1 in the 𝑝 = 11, 21, 41 combined 

graph (Figure 33) compared to having rank 4 in the network with the PXY-MP negative 

feedback loop (Figure 32). This suggests that the addition of the PXY-MP negative feedback 

loop reduces sensitivity of the pattern to MP-related parameters. As in the network with the 

PXY-MP negative feedback loop, although more changes were detected for 𝑝 = 21 and 𝑝 =

11 compared to the 𝑝 = 41 case (where only 0.33% of the perturbations cased a change), 

changes overall were still few (1.67% and 3.67% for 𝑝 = 11 and 𝑝 = 21, respectively). This 

indicates that both with and without the PXY-MP negative feedback loop, the network is 

insensitive to state change under the influence of a single perturbation. 

Table 4: Table of changes under Morris perturbations in the network without the PXY-MP loop. 
Column 1 is headings. Row 1 gives the total number of observed changes across all parameters 
(Column 2) and the number of changes observed in different parameter groups (Auxin, CK, MP, 
PIN and PXY-related parameters). Remaining rows correspond to Morris levels 𝑝 = 41, 𝑝 =
21, 𝑝 = 11. Each cell from rows 2-4 provides a net number and proportion. All percentages 
are reported to 2 d.p. 

 

4.4.5 The PXY-MP feedback loop is required for patterning if 
MP degradation is small 
 
 In section 4.4.2 the network with the PXY-MP negative feedback loop was shown to 

be more robust at generating an auxin maximum in the cambium, with the PXY-MP negative 

Network 
without PXY-

MP loop 

All groups Auxin-related 
parameters 

 

CK-related 
parameters 

 

MP-related 
parameters 

 

PIN-related 
parameters 

 

Total number 
of changes 

 
600 

 

 
150 

 
150 

 
100 

 
200 

Number of 
changes for 

p=41 

 
2 (0.33%) 

 
1 (0.67%) 

 
0 

 
0 

 
1 (0.5%) 

Number of 
changes for 

p=21 

 
10 (1.67%) 

 
1 (0.67%) 

 
0 

 
4 (4%) 

 
5 (2.5%) 

Number of 
changes for  

p=11 

 
22(3.67%) 

 
11 (7.33%) 

 
2 (1.33%) 

 
6 (6%) 

 
3 (1.5%) 
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feedback loop required for 34.21% of the successful parameter sets in Figure 31 (see section 

4.3.3). Here, the question was asked whether there were parameter sampling ranges which 

maximise the proportion of parameter sets for which the PXY-MP negative feedback loop is 

required. 

In order to find regions for which the network with the PXY-MP negative feedback 

loop would have more successful parameter sets compared to the network without the PXY-

MP negative feedback loop, the data from Figure 31 were considered. Of the 725 successful 

parameter sets for 𝑝 = 41 in the network with the PXY-MP negative feedback loop, 248 

required the PXY-MP negative feedback loop for a successful pattern, while the remaining 

477 parameter sets did not. From these two successful parameter sets, two probability 

density graphs were generated for each parameter shared by both networks (i.e. all of 

[𝐴𝑢𝑥𝑝], 𝐹𝑎, [𝐶𝐾𝑝],   𝑟1,  𝑟5,   𝑟6,  𝑟7,  𝑟8, 𝑑𝐴𝑢𝑥,  𝑑𝐶𝐾, 𝑑𝑃𝐼𝑁, 𝑑𝑀𝑃). This was done in order to 

determine whether there were differences in how parameter values are distributed between 

the successful parameter sets that required the PXY-MP negative feedback loop and those 

that did not. Probability density functions were chosen, rather than histograms, to manage 

the difference in sample sizes (248 vs 477 parameter sets). Of the two probability density 

graphs generated for each of the shared parameters, one corresponded to a distribution of 

the values of the parameter from the successful parameter sets for which the PXY-MP 

negative feedback loop was not required (the collection of 477 parameter sets). The other 

probability density graph showed the distribution of values of that parameter in the 

successful parameter sets which required the PXY-MP negative feedback loop to be successful 

(the collection of 248 parameter sets).  

 The basal rate of degradation of MP, 𝑑𝑀𝑃, showed the most striking contrast between 

distributions for the successful parameters that required a PXY-MP negative feedback loop 

and those that did not (Figure 34 A, B). The graphs for the remaining shared parameters can 

be found in Appendix E2, Figure 3S. In Figure 34 A, the distribution of 𝑑𝑀𝑃 across the 

parameter range showed an upward tendency. That is, in the successful parameter sets for 

which the PXY-MP negative feedback loop was not required, the largest values for 𝑑𝑀𝑃 most 

frequently belonged to a successful parameter set. Conversely, a downward trend was 

observed in 𝑑𝑀𝑃 in the successful parameter sets that required the PXY-MP negative feedback 

loop (Figure 34 B), where the majority of the values were close to zero. Thus, 𝑑𝑀𝑃 values 

closer to zero are most likely to require the PXY-MP negative feedback loop. It was reasoned 
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that smaller 𝑑𝑀𝑃 values require the PXY-MP negative feedback because the degradation rate 

of [𝑀𝑃𝑐] in the network without the PXY-MP negative feedback loop is only 𝑑𝑀𝑃. However, 

when the PXY-MP loop is added, [𝑀𝑃𝑐] is degraded by rate 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] in the cambium.  

 

In order to explore if an opposing trend between the two degradation rates 𝑑𝑀𝑃 and 

𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] existed in the successful parameter sets that required PXY-MP negative 

Figure 34: Probability density functions of the distribution of 𝑑𝑀𝑃 in the successful parameter 
set that do not require the PXY-MP negative feedback loop (A) and in those that require a PXY-
MP negative feedback loop (B). Bin count = 20. Each bin contains 2 possible choices of values, 
except the last one which contains 3. The distribution of 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] is given in (C). The 
panel in the right upper corner corresponds to a values of 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] between 0 and 300 
to enable a better view of the data. Red rectangles represent the same regions. Bin count = 20. 
Darker blue corresponds to smaller probability, lighter is higher probability. 
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feedback loop, the probability density function for 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] (with [𝑃𝑋𝑌𝑎] being the 

𝑃𝑋𝑌𝑎 concentration at steady state) was plotted (Figure 34 C). Several outlier large values 

were observed in the plot. The majority of values were accumulated closer to the [0, 300] 

interval. To see the data more clearly, an additional graph was plotted (in the right upper 

Figure 35: Probability density function of the distributions of [𝑃𝑋𝑌𝑎] final steady state 
concentration (A), the reaction 𝑟3 (B) in the successful parameter set that require the PXY-MP 
negative feedback loop. Probability density function of the final steady state concentration of 
[𝑀𝑃𝑐] in the successful parameter sets that do not require a PXY-MP negative feedback loop 
(C) and in the successful parameter sets that do (D) Bin count = 20. Each bin contains 2 possible 
choices of values, except the last one which contains 3. In (A), the panel in the right upper 
corner corresponds to a values of 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] between 0 and 50 to enable a better view 
of the data. Red rectangles represent the same regions. Bin count = 20. Darker blue 
corresponds to smaller probability, lighter is higher probability. 
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corner of Figure 34 C) which focused on the interval 0 to 300. In this graph (Figure 34 C), a 

downward trend could be observed, similar to the one in Figure 34 B. Thus, for the successful 

parameter sets which require the PXY-MP loop, the 𝑑𝑀𝑃 and 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] trends (Figure 

34B, C) were similar.  

To understand why 𝑑𝑀𝑃 and 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] have the same trend, the distributions 

of [𝑃𝑋𝑌𝑎] and 𝑟3 (Figure 35 A, B), were examined. Note that the probability density functions 

of the remaining parameters from the PXY-MP negative feedback loop, (𝑟2,  𝑟3,  𝑟4,  𝑇𝐷𝐼𝐹,  

𝑑𝑃𝑋𝑌𝑎
,  𝑑𝑃𝑋𝑌𝑖𝑛

 ) are in Appendix E2, Figure 4S. As with Figure 34 A and the expression 𝑑𝑀𝑃 +

𝑟3[𝑃𝑋𝑌𝑎], the distribution of [𝑃𝑋𝑌𝑎] had several large outlier values. The majority of values 

were accumulated closer to the [0, 50] interval. As before, a graph was plotted for clarity (in 

the right upper corner of Figure 35 A) which focused on the interval 0 to 50. In this focused 

graph depicting the [0, 50] range, [𝑃𝑋𝑌𝑎] values in the successful parameter sets that 

required the PXY-MP negative feedback loop, showed a downward trend, with most values 

accumulating closer to zero (Figure 35 A). 

The 𝑟3 distribution in the successful parameter sets in the network with the PXY-MP 

negative feedback loop, was seen to have an upward trend (Figure 35 B ). Thus, a higher 

degradation of MP via PXY enables successful patterning. As discussed above, however, 

[𝑃𝑋𝑌𝑎] values in the successful parameter sets that required the PXY-MP negative feedback 

loop, had an opposing, downward trend (Figure 35 A). To understand the [𝑃𝑋𝑌𝑎] trend, the 

distribution of [𝑀𝑃𝑐] was considered. 

The final steady state concentration of [𝑀𝑃𝑐] in the successful parameter sets that 

required and did not require the PXY-MP negative feedback loop, both showed a distribution 

with a downward trend, with the number of values decreasing away from zero (Figure 35 C, 

D). This indicated that lower concentrations of [𝑀𝑃𝑐] at steady state are more likely to 

produce a successful pattern. It was reasoned that this is the case as lower concentrations of 

[𝑀𝑃𝑐] result in less PINs being activated in the cambium via the reaction 𝑟6 (Figure 30). Less 

availability of PINs reduces auxin transport out of the cambium and thus more auxin is 

retained to produce a maxima. This hypothesis was supported by the data showing that the 

𝑟3 distribution in the successful sets in the network with the PXY-MP negative feedback loop 

has an upward trend (Figure 35 B). Thus, a higher rate of repression of MP via PXY (reaction 

𝑟3) promotes patterning by restricting [𝑀𝑃𝑐] levels. [𝑃𝑋𝑌𝑎] corresponds to the final steady 

state concentration of 𝑃𝑋𝑌𝑎, the resulting product of activating the inactive form of PXY, 
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𝑃𝑋𝑌𝑖𝑛. Within the network, 𝑃𝑋𝑌𝑖𝑛 concentration is promoted by MP via reaction 𝑟4 (Figure 

30). Thus, a lower concentration of MP at time 𝑡 ultimately results in a lower concentration 

of 𝑃𝑋𝑌𝑎 at time 𝑡. Since lower [𝑀𝑃𝑐] concentrations are preferred for a pattern to be 

achieved, upon reaching steady state, lower concentration levels of MP are observed in the 

cambium. This results in lower final concentration of [𝑃𝑋𝑌𝑎], explaining the observations in 

Figure 35A. The downward trends of 𝑑𝑀𝑃 and[𝑃𝑋𝑌𝑎], in turn, influence the expression 𝑑𝑀𝑃 +

𝑟3[𝑃𝑋𝑌𝑎]. Therefore, in the successful parameter sets that require the PXY-MP loop for a 

successful pattern, both the new degradation rate 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] and the base 

degradation 𝑑𝑀𝑃 (which appears in that expression), share a similar trend (Figure 34C). 

The data in Figure 30 indicate that a parameter range of 𝑑𝑀𝑃 closer to zero is less likely 

to pattern without the PXY-MP negative feedback loop. To test whether a choice of 𝑑𝑀𝑃 closer 

to zero will maximise the number of successful parameter sets that require a PXY-MP negative 

feedback loop, two new experiments were performed.  

Previously, all parameters were sampled from the interval [0,20] before the value 

0.001 was added to shift all parameters away from zero. Here (and similarly to section 4.4.2), 

2, 500 parameters were generated independently for each of the networks with and without 

the PXY-MP negative feedback loop, for two 𝑑𝑀𝑃 ranges: 𝑑𝑀𝑃 sampled from the interval [0,5] 

and 𝑑𝑀𝑃 sampled from the interval [0,1]. The 0.001 shift was added in both cases. The 

resulting parameter sets were then run to steady state and evaluated for number of the 

successful parameter sets within them.  
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The results of the experiment are provided in Figure 36. To visualize the impact of 

gradually moving the 𝑑𝑀𝑃 sampling closer to zero, the data from the original experiment (𝑑𝑀𝑃 

chosen in the interval [0,20] as all other parameters), from Figure 31 was included in Figure 

36 on the leftmost side of the graph. When 𝑑𝑀𝑃 was chosen from the interval [0,20], 467 

(18.68%) parameter sets were successful in the network without the PXY-MP negative 

feedback loop (of the 2,500 generated ones), versus 725 (or 29%) in the presence of a PXY-

MP negative feedback loop (Figure 36, leftmost bar graph). As discussed previously, of these 

725 parameter sets that succeeded in the network with the PXY-MP negative feedback loop, 

248 (34.21%) were no longer successful when the loop was removed (Table 5, column 2; 

section 4.4.3). 

 

 

𝑑𝑀𝑃 ∈ [0, 20] 𝑑𝑀𝑃 ∈ [0, 5] 𝑑𝑀𝑃 ∈ [0, 1] 

Figure 36: Bar graphs of the number of parameter sets of the 2,500 sampled independently 
for the network with and without a PXY-MP loop. Leftmost bar graph matches the results of 
Figure 24. The second bar graph shows the results of 𝑑𝑀𝑃 sampled in the interval [0,5] and 
the third bar shows the results of 𝑑𝑀𝑃 sampled in the interval [0,1]. 
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Table 5: Table showing the number of successful parameter sets for different 𝑑𝑀𝑃 ranges in 
the network with a PXY-MP loop vs the network without a loop. The first column corresponds 
to 𝑑𝑀𝑃 ∈ [0, 20], the second column corresponds to 𝑑𝑀𝑃 ∈ [0, 5], and the third one – to 
𝑑𝑀𝑃 ∈ [0, 1]. Row one gives the number of successful parameter sets in the network without 
the PXY-MP loop from the independently generated 2, 500 parameter for each of the ranges. 
Row two gives the number of successful parameter sets from the independently generated 2, 
500 ones for the network without the PXY-MP loop. Row 3 gives the proportion of parameters 
from the ones given in row 2, which cannot produce an auxin pattern when the PXY-MP loop 
is removed. All percentages are reported to 2 d.p. 

 

The two subsequent experiments where 𝑑𝑀𝑃 was sampled from the interval [0,5] and 

[0,1] are shown in the second and third bar graph (Figure 36). Of the 2,500 parameter sets 

where 𝑑𝑀𝑃 was sampled from the interval [0,5], 279 (10.36%) were successful without the 

PXY-MP negative feedback loop. In the network with the PXY-MP negative feedback loop, 679 

(27.16%) of the 2, 500 parameters were successful. Of those, 425 (62.59% of the 679 

parameters) required the PXY-MP negative feedback loop to be successful (Table 5, column 

3). In the case where 𝑑𝑀𝑃 was chosen from the interval [0, 1], only 132 of the 2,500 

parameters (5.28%) succeeded in the network without the PXY-MP negative feedback loop. 

615 (24.6%) of the parameters generated for the network with the PXY-MP negative feedback 

loop, were successful. Of those, 494 (80.33%) required the PXY-MP negative feedback loop to 

succeed (Table 5, column 4). 

  
𝑑𝑀𝑃 ∈ [0, 20] 

 
𝑑𝑀𝑃 ∈ [0, 5] 

 
𝑑𝑀𝑃 ∈ [0, 1] 

Number of 
parameters (out of 2, 
500) that succeed in 
network without the 
PXY-MP loop 

 
 

467 (18.68%) 

 
 

279 (10.36%) 

 
 

132 (5.28 %) 

Number of 
parameters (out of 2, 
500) that succeed in 
network with the PXY-
MP loop 

 
 

725 (29%) 

 
 

679 (27.16%) 

 
 

615 (24.6%). 

Number of 
parameters of the 
above that only 
succeed in the 
presence of the PXY-
MP loop 

 
 

248 (34.21%) 

 
 

425 (62.59%) 

 
 

494 (80.33%) 
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Thus, as the 𝑑𝑀𝑃 sampling interval is moved closer to zero, a decreasing proportion of 

the 2, 500 parameter sets sampled are successful in the network without the PXY-MP negative 

feedback loop (18.68%, 10.36% and 5.28% for each of the 3 cases 𝑑𝑀𝑃 ∈ [0,20], [0,5] and 

[0,1], respectively; Table 5). The network with the PXY-MP negative feedback loop 

demonstrates only a small decrease in the proportion of successful parameter sets when 

𝑑𝑀𝑃 ∈ [0,20], [0,5] and [0,1] (29%, 27.16% and 24.6%; Table 5). Thus, the difference between 

the proportion of successful parameter sets in network with the PXY-MP negative feedback 

loop and the network without, increases as the chosen 𝑑𝑀𝑃  range moves closer to zero. The 

proportion of successful parameter sets that required the PXY-MP negative feedback loop, 

also increased as the 𝑑𝑀𝑃 interval was chosen closer to zero (34.21%, 62.59% and 80.33% for 

𝑑𝑀𝑃 ∈ [0,20], [0,5] and [0,1], respectively; Table 5). This suggests that if 𝑑𝑀𝑃 is small, then 

the presence of a PXY-MP negative feedback loop makes the network much more robust for 

generating an auxin maxima in the cambium.  

Interestingly, the results of this section that smaller 𝑑𝑀𝑃 values require the PXY-MP 

negative feedback loop, are supported by the individual Morris rankings from section 4.4.4. 

In the network with the PXY-MP negative feedback loop, no changes at all from successful to 

unsuccessful, or vice versa, were recorded for perturbations in the parameter 𝑑𝑀𝑃. However, 

in the network without the PXY-MP negative feedback loop, for the cases for 𝑝 = 11 and 𝑝 =

21, perturbations in 𝑑𝑀𝑃 caused changes in state and had rank 3 and 1, respectively (Appendix 

E1.2). This indicates that the presence of a PXY-MP negative feedback loop reduced sensitivity 

towards the MP basal degradation rate 𝑑𝑀𝑃. Together with the analysis conducted in this 

section, this suggests that the PXY-MP negative feedback loop makes the network more 

robust against 𝑑𝑀𝑃 perturbations by expanding the possible values 𝑑𝑀𝑃 can take and allowing 

𝑑𝑀𝑃 to be sampled closer to zero. 

 

4.4.6 Closed form analysis confirms numerical results 
 

4.4.6.1 Analysis conditions  
 

In section 4.4.1 above, the cytokinin concentration pattern across the network was 

shown to always satisfy inequality (11), which was confirmed numerically in section 4.4.2. So, 
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in the following closed form analysis, inequality (11) is assumed to hold, i.e. [𝐶𝐾𝑝] > [𝐶𝐾𝑐] >

[𝐶𝐾𝑥] holds.  

In this section, closed form analysis was used to address the question: are there 

analytical conditions for which successful patterning with an auxin maxima in the cambium is 

achieved (i.e. inequalities (12) and (13) hold)? These successful patterning conditions would 

be derived in such a way as to minimise their dependence on final steady state concentrations 

of the components in the network (exceptions are the phloem-based concentrations [𝐴𝑢𝑥𝑝], 

[𝐶𝐾𝑝] and [𝑇𝐷𝐼𝐹𝑝] which are constant and are part of the parameter set for the networks). 

Once derived, the successful patterning conditions would: one, provide a better 

understanding of patterning behaviour as a product of parameter interactions and two, make 

the model more predictable during numerical simulations, wherein the final outcome could 

be foreseeable at the parameter-specifying step. Together, this would allow the two 

networks, with and without the PXY-MP negative feedback loop, to be analysed at steady 

state and compared in a generalised way, independently of specific parameter values or 

components concentrations. In order to derive successful patterning conditions for network 

with and without the PXY-MP negative feedback loop, equations (1)-(10) were separately 

solved at steady state for the two networks. 

For the case of the network without a PXY-MP negative feedback loop, no PXY-related 

reactions feedback into the system (i.e. 𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 𝑑𝑃𝑋𝑌𝑎
, 𝑑𝑃𝑋𝑌𝑖𝑛

 were all equal to 

zero). As the analysis was conducted at steady state, no change in concentration occurs, and 

thus the diffusion term is equal to zero. The system to be analysed was given by 

𝐹𝑎[𝐴𝑢𝑥𝑝] +
1

2
𝑟8[𝐴𝑢𝑥𝑥][𝑃𝐼𝑁𝑥] − 𝑟8[𝐴𝑢𝑥𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑐] = 0    

1

2
𝑟8[𝐴𝑢𝑥𝑐][𝑃𝐼𝑁𝑐] − 𝑟8[𝐴𝑢𝑥𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑥] = 0      

𝑟6[𝑀𝑃𝑐] − 𝑟7[𝐶𝐾𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑐] = 0       

𝑟6[𝑀𝑃𝑥] − 𝑟7[𝐶𝐾𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝑃𝐼𝑁 [𝑃𝐼𝑁𝑥] = 0       

𝑟5[𝐴𝑢𝑥𝑐] − 𝑑𝑀𝑃 [𝑀𝑃𝑐] = 0         

𝑟5[𝐴𝑢𝑥𝑥] − 𝑑𝑀𝑃 [𝑀𝑃𝑥] = 0         

 

Taking into account the relationship [𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥], the equations were solved for 

each of the conditions (12) and (13),  [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] and [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥], respectively. 
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First, proof by contradiction was used to show that [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥] always holds at steady 

state. This matched the numerical results obtained in section 4.4.2, confirming inequality (13) 

would always hold, regardless of parameter sampling. The condition for [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] is 

shown in Table 6. The full analysis is given in Appendix E3.1. 

Closed form analysis was conducted for the network containing the PXY-MP negative 

feedback loop. The equations for this case are, 

 

𝐹𝑎[𝐴𝑢𝑥𝑝] +
1

2
𝑟8[𝐴𝑢𝑥𝑥][𝑃𝐼𝑁𝑥] − 𝑟8[𝐴𝑢𝑥𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑐] = 0    

1

2
𝑟8[𝐴𝑢𝑥𝑐][𝑃𝐼𝑁𝑐] − 𝑟8[𝐴𝑢𝑥𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑥] = 0      

𝑟6[𝑀𝑃𝑐] − 𝑟7[𝐶𝐾𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑐] = 0       

𝑟6[𝑀𝑃𝑥] − 𝑟7[𝐶𝐾𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝑃𝐼𝑁 [𝑃𝐼𝑁𝑥] = 0       

𝑟5[𝐴𝑢𝑥𝑐] − 𝑟3[𝑃𝑋𝑌𝑎][𝑀𝑃𝑐] − 𝑑𝑀𝑃 [𝑀𝑃𝑐] = 0       

𝑟5[𝐴𝑢𝑥𝑥] − 𝑑𝑀𝑃 [𝑀𝑃𝑥] = 0         

𝑟4[𝑀𝑃𝑐] − 𝑑𝑃𝑋𝑌𝑖𝑛
[𝑃𝑋𝑌𝑖𝑛] − 𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹] = 0      

𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹𝑝] − 𝑑𝑃𝑋𝑌𝑎 [𝑃𝑋𝑌𝑎] = 0        

 

Taking into account the relationship [𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥], the equations were solved for 

[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] and [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥]. As before, proof by contradiction was used to show 

that [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥] always holds at steady state for the network with the PXY-MP negative 

feedback loop, confirming the numerical results from section 4.4.2. The successful patterning 

condition for [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] is shown in Table 6. The full analysis is provided in Appendix 

E3.2. As seen in Table 6, the successful patterning condition derived for the network with the 

PXY-MP negative feedback loop is not independent of final steady state concentrations; it 

depends on the final steady state concentration of [𝑃𝑋𝑌𝑎]. This is the case due to the 

additional 𝑟3[𝑃𝑋𝑌𝑎][𝑀𝑃𝑐] term in equation (5) in the network with the PXY-MP negative 

feedback loop. This term increases the complexity of the analysis, removing the ability to form 

an expression for [𝑀𝑃𝑐] that depends only on final steady state concentration of auxin. 

Without this ability to rewrite [𝑀𝑃𝑐] in terms of auxin, the [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] relationship 

cannot be used to yield successful patterning condition that are independent of final steady 

state concentrations. Other attempts at the analysis were performed, however all of them 

resulted in dependence on more final steady state concentrations for one or both networks, 
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with and without the PXY-MP negative feedback loop. Moreover, the conditions in Table 6 

showed similarity, making them easy to compare as will be done in section 4.4.6.2 below. 

Thus, at the point of writing, the analysis given in Appendix E3.2 and the resulting successful 

patterning conditions (Table 6) were deemed most satisfactory.  

 

Conditions for auxin pattern in both networks 
 

 
Conditions for 
cambial auxin 

maxima 
 

 
[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] 

 
[𝐴𝑢𝑥𝑐]
> [𝐴𝑢𝑥𝑥] 

 

No PXY-MP loop Condition 1: 
 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6[𝐴𝑢𝑥𝑝] 

(𝑟7[𝐶𝐾𝑝]+𝑑𝑃𝐼𝑁)
(

1

𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0  

 

Always true 

With PXY-MP 
loop 

Condition 2: 
 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑟5[𝐴𝑢𝑥𝑝]

(𝑟7[𝐶𝐾𝑝]+𝑑𝑃𝐼𝑁)
(

1

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0  

with  

𝑃𝑋𝑌𝑎 > −
𝑑𝑀𝑃

2𝑟3
+

1

2
√(

𝑑𝑀𝑃 

𝑟3
)

2

+
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹)

 

 

Always true 

 

4.4.6.2 The network in which PXY downregulates MP is more robust at 
satisfying the condition [𝑨𝒖𝒙𝒄] > [𝑨𝒖𝒙𝒑] 

 
 

In sections 4.4.1-4.4.5, it was shown numerically that the network containing the PXY-

MP negative feedback loop is more robust for obtaining an auxin maxima in the cambium 

than the network without the PXY-MP negative feedback. In section 4.4.6 above, conditions 

were derived for successful patterning of the two networks (Table 6). Here, these conditions 

will be compared.  

Since in both networks the condition [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥] was seen to hold (Table 6), it 

remained to test which network’s condition satisfied [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] for a larger parameter 

Table 6: A summary table for the successful patterning conditions in both possible networks: with and 

without the PXY-MP negative feedback loop. Column 1 shows headings. Column 2 shows the conditions 

for auxin accumulation in the cambium over the phloem. Column 3 shows that the auxin concentration 

in the cambium in both system exceeds the auxin concentration in the xylem. 
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space. Note that the conditions in both networks were similar, differing in the term 
1

𝑑𝑀𝑃
 for 

the network without the PXY-MP negative feedback loop (condition 1, Table 6), versus the 

term 
1

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
  for the network with the PXY-MP negative feedback loop (condition 2, 

Table 6). Thus, conditions 1 and 2 differed in the terms associated with the degradation rate 

of MP in the cambium, [𝑀𝑃𝑐]. This confirms that the PXY-MP negative feedback loop impacts 

the patterning ability of the network by altering the [𝑀𝑃𝑐] degradation rate from 𝑑𝑀𝑃 to the 

expression 𝑟3[𝑃𝑋𝑌𝑎] + 𝑑𝑀𝑃 (see: Figure 30; section 4.4.5). 

Here, conditions 1 and 2 were used to confirm the numerical results shown in section 

4.4.3. To conduct the analysis, two notation simplifications were made as follows. 

Conditions 1 and 2 (Table 6) are given by 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6[𝐴𝑢𝑥𝑝]

𝑑𝑀𝑃(𝑟7[𝐶𝐾𝑝]+𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0   (condition 1) 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6[𝐴𝑢𝑥𝑝]

(𝑟7[𝐶𝐾𝑝]+𝑑𝑃𝐼𝑁)
(

1

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0  (condition 2) 

Denote 𝑋 = 𝐹𝑎 − 𝑑𝐴𝑢𝑥 and 𝑌 =
1

2
𝑟8

𝑟5𝑟6[𝐴𝑢𝑥𝑝]

𝑟7[𝐶𝐾𝑝]+𝑑𝑃𝐼𝑁
. Thus, the above conditions 1 and 2 

are rewritten as  

𝑋 −
𝑌

𝑑𝑀𝑃
> 0  (condition 1.1) 

𝑋 −
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
> 0. (condition 2.1) 

 

Firstly, it was asked if conditions 1 and 2 could be used to confirm the results in section 

4.4.2: all successful parameter sets in the network without the PXY-MP negative feedback 

loop are also successful once the PXY-MP negative feedback loop is added. The analysis for 

this is given below. 

Consider condition 1.1. If condition 1.1 holds and patterning is successful, then  

𝑋 −
𝑌

𝑑𝑀𝑃
> 0  (condition 1.1) 

𝑋 >
𝑌

𝑑𝑀𝑃
  (condition 1.2) 

Note that here 𝑑𝑀𝑃 ≠ 0. Since 𝑑𝑀𝑃 is a non-negative parameter, 𝑑𝑀𝑃 > 0. Next, 

consider condition 2.1 and rearrange. 

The rearranged condition 2.1 gives 

𝑋 −
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
> 0 (condition 2.1) 
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𝑋 >
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
. (condition 2.2) 

For condition 2.2, 𝑟3 > 0 because of the presence of the PXY-MP negative feedback 

loop. [𝑃𝑋𝑌𝑎] > 0 is also true as only the cases where [𝑃𝑋𝑌𝑎] is present are considered, thus 

the term 𝑟3[𝑃𝑋𝑌𝑎] > 0. As 𝑟3[𝑃𝑋𝑌𝑎] > 0 and 𝑑𝑀𝑃 > 0, 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] > 𝑑𝑀𝑃. Therefore, 

the following inequality can be derived 

𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] > 𝑑𝑀𝑃 

1 >
𝑑𝑀𝑃

𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎]
 

1

𝑑𝑀𝑃
>

1

𝑑𝑀𝑃+𝑟3[𝑃𝑋𝑌𝑎]
 (inequality 1) 

Now consider 𝑌. The case with 𝑌 =  0 is trivial as it leads to the same 

inequality 𝑋 >  0 for both conditions 1.1 and 2.1, showing that when condition 1 holds, so 

does condition 2 for 𝑌 =  0. For the case when 𝑌 > 0  inequality 1 becomes 

1

𝑑𝑀𝑃
>

1

𝑑𝑀𝑃+𝑟3[𝑃𝑋𝑌𝑎]
 (inequality 1) 

𝑌

𝑑𝑀𝑃
>

𝑌

𝑑𝑀𝑃+𝑟3[𝑃𝑋𝑌𝑎]
  (inequality 2) 

Thus, the right-hand side of condition 1.2 is greater than or equal to the right-hand 

side of condition 2.2. Merging condition 1.2 and inequality 2 obtains the following, 

𝑋 >
𝑌

𝑑𝑀𝑃
>

𝑌

𝑟3[𝑃𝑋𝑌𝑎] + 𝑑𝑀𝑃
, 

which gives condition 2.2 

𝑋 >
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
.  (condition 2.2) 

Thus, if condition 1.1 holds, then condition 2.1 holds. It then follows that if condition 1 holds, 

so does condition 2. This result agrees with the numerical results from section 4.4.3. 

Next, the second result of section 4.4.3 was tested: that there exist parameter sets 

which require the PXY-MP negative feedback loop to be successful. The analysis below will 

show that if condition 1 is broken condition 2 still holds.  

Suppose that condition 1 is broken. This is the equivalent of condition 1.1 being 

broken, or  

𝑌

𝑑𝑀𝑃
> 𝑋  (condition 1.3) 

being satisfied. 

Let condition 2 hold. Condition 2 is equivalent to condition 2.2  
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𝑋 >
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
.  (condition 2.2) 

Merge conditions 1.3 and 2.2 to get 

𝑌

𝑑𝑀𝑃
> 𝑋  (condition 1.3) 

𝑋 >
𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
     (condition 2.2) 

𝑌

𝑑𝑀𝑃
> 𝑋 >

𝑌

𝑟3[𝑃𝑋𝑌𝑎]+𝑑𝑀𝑃
  (condition 2.3) 

Furthermore, for 𝑌 > 0 it was shown that 

𝑌

𝑑𝑀𝑃
>

𝑌

𝑑𝑀𝑃+𝑟3[𝑃𝑋𝑌𝑎]
  (inequality 2) 

Inequality 2 holds independently of whether condition 1.1 (equivalent to condition 1) is 

satisfied (provided 𝑌, 𝑑𝑀𝑃 , 𝑑𝑀𝑃 + 𝑟3[𝑃𝑋𝑌𝑎] > 0, as is the case here). Since inequality 2 

holds, there exists parameter space where the value of 𝑋 = 𝐹𝑎 − 𝑑𝐴𝑢𝑥 is such that condition 

1 is broken and condition 2 is satisfied (condition 2.3). 

The analysis in this section supports the previous numerical results, that the addition 

of the PXY-MP negative feedback loop to the root system results in a more robust network.  

 

4.4.6.3 Numerical test confirms that the analytical conditions are 
necessary but not sufficient 
 

Conditions 1 and 2 were checked numerically using the parameter sets generated in 

section 4.4.2. For the 2,500 parameter sets in the network without the PXY-MP negative 

feedback loop, all successful parameter sets satisfied condition 1 (Table 6). However, 225 

unsuccessful parameter sets also satisfied condition 1. Similarly for the network with the PXY-

MP negative feedback loop, all successful parameter sets satisfied condition 2, but 206 

unsuccessful parameter sets also satisfied condition 2. Thus, while all successful parameter 

sets satisfy condition 1 and 2 for their respective networks, some unsuccessful parameters 

also satisfy condition 1 and 2, suggesting that conditions 1 and 2 are necessary but not 

sufficient for generating a successful auxin pattern. Thus, while no pattern can be obtained 

without satisfying conditions 1 and 2, it is not possible to predict if a pattern will be successful 

by ensuring conditions 1 and 2 are satisfied. 

To identify at what stage of the analysis sufficiency is lost, the analysis in Appendix E3 

was tested numerically, using the parameter sets generated in section 4.4.2 and their 

corresponding steady state component concentrations. At each step of the analysis, starting 



124 
 

from equation 1, unsuccessful parameter sets were sought that satisfied condition 1 and 2 at 

that step of derivation. It was found that sufficiency loss occurred when directly using the 

relationships [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝], likely due to the fact that this is not always a close inequality. 

Thus, a different relationship 𝑁 in addition to [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝] will be needed to provide 

sufficiency for both networks. However, the requirement for the two networks to satisfy 

condition 1 and condition 2 will remain, where condition 2 is still stronger than condition 1. 

Thus, the fact that the conditions 1 and 2 are necessary but not sufficient does not impact the 

conclusions made in this section or in sections 4.4.3. 

 

4.5 Discussion 
 

MP and PXY were previously shown to function with auxin in directing cambial activity 

[72, 73, 120, 154, 155, 157, 159, 175, 183]. However, MP was seen to promote the activity of 

the cambium in root [72], yet suppress it in stem base [121]. PXY is a cambial promoter [154, 

155, 157, 159]. Different relationships between MP and PXY were observed in different plant 

organs, with MP promoting PXY in root [72] and PXY suppressing MP in stem[120]. Here, it 

was proposed that the two reactions may coexist in a single tissue, with the balance of 

interacting factors explaining the contradictory relationship between PXY and MP. 

Mathematical modelling was used to compare the currently existing network in root with a 

network which contained a PXY-MP negative feedback loop.  

By independently sampling a large number of parameter sets using the Morris method 

sampling strategy and inputting them into the two networks, it was concluded that the 

additional feedback loop allows a larger proportion of the sampled parameter sets to produce 

the auxin pattern observed in nature (an auxin maximum in the cambium) [72]. Moreover, 

while all parameter sets which produced a successful pattern without a PXY-MP loop, 

continued to do so when the loop was added, the opposite was not true. There were some 

parameter sets which, while successful at producing an auxin pattern in the presence of the 

PXY-MP loop, were no longer able to do so without it. Thus, the network which contained a 

PXY-MP loop was more robust at producing a correct auxin pattern than its counterpart. This 

is likely to be the case due to MP’s activation of PIN transport. As PXY suppresses MP in the 

cambium, PIN transport is restricted, allowing more auxin to accumulate in the cambium and 

produce the correct hormone pattern for cambial division. It can be argued that because the 
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vascular organizer in roots is marked by both PXY and MP, their presence is not coincidental. 

Instead, it might be the case that the presence of both MP and PXY is required to assist in 

auxin accumulation in the cambium [72].  

Closed form analysis confirmed that the addition of a PXY-MP loop is always beneficial, 

regardless of the intervals chosen to sample parameters. This suggests a greater flexibility in 

a biologically-based system which does contain a PXY-MP loop, and thus a biologically 

preferential mechanism. 

Sensitivity analysis of the two networks further revealed a higher influence of the 

basal degradation rate 𝑑𝑀𝑃 for auxin accumulation when the loop was absent, but an ability 

of the PXY-MP loop to abolish 𝑑𝑀𝑃 sensitivity. Comparing the distributions of the model 

parameters in the successful parameter sets which did not require the PXY-MP loop, and 

those that did, 𝑑𝑀𝑃 was seen to show the most striking trend. In the parameter sets that did 

not require the PXY-MP negative feedback loop, most 𝑑𝑀𝑃 values were large. The opposite 

was true in the parameter sets that required the PXY-MP loop. This suggested that the 

network without the PXY-MP loop may struggle to produce a pattern when the value for 𝑑𝑀𝑃 

is small. By contrast, the PXY-MP loop loosens this constraint as it provides an additional 

mechanism for degrading MP (Figure 30 A, B) and overall makes the network more robust. 

This aligns with earlier observation that the PXY-MP loop appears to desensitize the network 

to 𝑑𝑀𝑃 perturbations and that the ability of the network with the PXY-MP loop to more readily 

generate a pattern is linked to indirectly suppressing PIN active transport.  

Upon restricting the 𝑑𝑀𝑃 range gradually closer to zero, the network with the PXY-MP 

loop was seen to allow an increasingly higher proportion of parameter sets to produce a 

pattern compared to its counterpart. Thus, in the case when MP has a low degradation rate, 

i.e. is particularly stable or particularly abundant, a PXY-MP loop or a similar mechanism is 

needed to make the network more robust.  

These results are meaningful in helping to resolve some of the conflicting data around 

the PXY-MP relationship (Smetana et al. (2019) [72] and Han et al. (2018) [120]). In particular, 

the investigation conducted here helps to identify a potential schema within the vascular 

tissue, wherein one branch of the PXY-MP relationship dominates at different stages to create 

a balanced system. High auxin maxima in the cambium results in increased MP concentration. 

Overabundance of MP, however, activates auxin transport out of the cambium, thus 

exporting auxin out of the cambium and lowering the auxin availability in the cambium. The 
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lowered availability of auxin does not necessarily resolve MP overabundance, especially if the 

basal degradation of MP is low. The reduction in auxin in the cambium, caused by MP, reduces 

divisions in the cambium. The overabundance of MP also boosts PXY transcription, PXY being 

a cambial promoter. PXY, in turn, inhibits MP phosphorylation, curbing MP’s overabundance 

and restricting auxin maxima in the cambium.  

The hypothesis that a PXY-MP negative feedback loop exists in both stem and root 

remains to be tested experimentally. To investigate whether a negative feedback loop exists 

between the MP and PXY gene, the following experimental designs could be employed. First, 

pxy roots could be grown and tested on their MP expression levels relative to wild type. If the 

hypothesis is true, MP expression should be elevated in these tissues. Similarly, roots with 

PXY overexpression should trigger the opposite, reducing MP expression levels in root. The 

presence of a negative feedback loop should also be tested in stem. Thus, to examine whether 

MP is a PXY promoter in stem, PXY expression levels should be measured in mutants with 

overexpressed MP gene. Provided that PXY expression levels are increased, the negative 

feedback loop will be shown to hold in stem.  

Several potential directions for testing loss-of-function mp mutants can also be 

deployed to test whether mp mutants show reduced PXY expression levels in stems and roots. 

One option is the loss of the weak mp-S319 described by Cole et al. (2009) [301]. Silencing of 

small RNAs is one means of overcoming loss-of-gene lethality [302, 303], however this can be 

unreliable as only partial reduction in transcription is observed. More sophisticated methods 

also exist, but they can be complex and difficult to execute (Cre/lox-based clonal deletion 

system[304-306]; zinc finger nuclease [307]; transcription activator-like effector nuclease-

based gene editing systems [308]). More recently developed methodologies include inducible 

genome editing (IGE) [309], a cross between CRISPR/Cas9 technology [310] and an XVE-based, 

cell-type-specific inducible system [311, 312]. 

The model described here is small and answers a predominantly theoretical question. 

However, as argued in Chapter 1, part 3, there have been many examples of mathematical 

models in biology that have started from small initial frameworks and expanded through 

multiple iterations and data collection. Chapter 4 is therefore proposed as first step in 

modelling PXY-MP interactions and suggests that with more data, it will be possible to explain 

multiple aspects of this relationship.  
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4.6 Methods 
 

To understand the behaviour of the system, equations (1)-(10) were solved 

numerically to steady state in MATLAB. The original numerical solver was written by N. Savage 

and edited by K. Bagdassarian [313] (GitHub link: https://bit.ly/3g8tFWe [313]). The model is 

a reaction-diffusion system, the reaction and diffusion part of the model were solved 

separately. The reaction part of the model was solved using a simple Euler method. The 

diffusion part of the model is only relevant to cytokinin behaviour and is calculated using a 

modification of the Euler method where the cytokinin concentration is updated with a 

diffusion matrix at each time-step. The Euler method and the diffusion matrix derivation are 

detailed below. 

 

4.6.1 Euler method 
 

4.6.1.1 Overview 
 

The explicit Euler method for solving differential equations was used in this study. For 

simplicity, the explicit Euler method will be discussed in one dimension. Consider an initial 

value problem of the form 

 

 
 d𝑦(𝑡)

 d𝑡
= 𝑓(𝑡, 𝑦(𝑡))  

 𝑦(𝑡0) = 𝑦0,  

 

where 𝑦 is a function of 𝑡, 𝑓 is a function of 𝑦(𝑡) and 𝑡, and 𝑦0 is the value of 𝑦 at the 

point 𝑡0.To solve the implicit Euler equation (above) over the time interval 𝐼 = [𝑎, 𝑏], where 

𝑎, 𝑏 are real numbers, 𝐼 is discretized into smaller time sections of size ℎ [314]. Then from 

time 𝑡 = 𝑎 to 𝑡 = 𝑏, the method approximates the value of the function 𝑦(𝑡) for each of the 

time points 𝑡 = 𝑎, 𝑡 = 𝑎 + ℎ, 𝑡 = 𝑎 + 2ℎ, … . 𝑡 = 𝑏 as will be detailed below. The smaller the 

size of ℎ, the more accurate the final approximation. Smaller ℎ results in a larger number of 

calculations to reach the end of the interval, which increases the required computational 

power. In this study, ℎ = 1 × 10−7 was used, which, for computational efficiency, is the 

highest value that can be chosen to ensure accuracy for this model [314].  

Let 𝑦𝑛 denote the value of the function at time step 𝑛, where 𝑛 = 0,1, 2 … is a 

https://bit.ly/3g8tFWe
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sequence in time. Let 𝑡0 be the initial time point at which the function is calculated. Then 𝑡𝑛 

is such that 𝑡𝑛 = 𝑡0 + 𝑛ℎ. Thus, at time-step 𝑡𝑛+1 the explicit Euler method is, 

 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛).  

 

The above formula is applied iteratively until the end of the interval 𝐼 is reached such 

that the final time-point is given by 𝑡𝑛+1 = 𝑏. An illustrative example is given below. For the 

initial value problem  

 
 d𝑦(𝑡)

 d𝑡
= 𝑓(𝑡, 𝑦(𝑡)) 

 𝑦(𝑡0) = 𝑦0, 

three steps of the explicit Euler will be shown. The first step is given by 

𝑦1 = 𝑦0 + ℎ𝑓(𝑡0, 𝑦0) 

Next, 𝑦2 is approximated from the above 

𝑦2 = 𝑦1 + ℎ𝑓(𝑡1, 𝑦1) 

Finally,  

𝑦3 = 𝑦2 + ℎ𝑓(𝑡2, 𝑦2) 

Thus, after calculating the value of the function at the initial timestep, 𝑦(𝑡0) = 𝑦0, the 

values of the function are approximated at three subsequent time points as 𝑦1, 𝑦2 and 𝑦3.  

 

4.6.2 Diffusion matrix 
 

This section will describe the derivation of the diffusion matrix used to solve the 

diffusion part of the system (1)-(10). Cytokinin is the only component in the network whose 

movement is governed by diffusion. The equations describing how the concentration of 

cytokinin changes over time are given by 

 

 
 d[𝐶𝐾𝑐]

 d𝑡
= 𝐷𝑐𝑘

𝜕2[𝐶𝐾𝑐]

𝜕𝑥2 − 𝑟1[𝐴𝑢𝑥𝑐][𝐶𝐾𝑐] − 𝑑𝐶𝐾[𝐶𝐾𝑐] 

 
 d[𝐶𝐾𝑥]

 d𝑡
= 𝐷𝑐𝑘

𝜕2[𝐶𝐾𝑥]

𝜕𝑥2 − 𝑟1[𝐴𝑢𝑥𝑥][𝐶𝐾𝑥] − 𝑑𝐶𝐾[𝐶𝐾𝑥] 
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Figure 37: Diagram of distance travelled by diffusion. Red dashed lines indicate diameters of 
cells. Black arrows indicate directions of diffusion. Distances travelled are denoted by 𝛥𝑥1, 𝛥𝑥2 
and 𝛥𝑥3. 

Let Δ𝑡 be the diffusion time increment, while Δ𝑥1, Δ𝑥2 and Δ𝑥3 denote the distances 

between the centre of the phloem and the centre of the cambium cell, between the centre 

of the cambium and the xylem cell, and between the centre of the xylem cell and the edge of 

the system (Figure 37). Distances Δ𝑥1, Δ𝑥2 and Δ𝑥3 are travelled by cytokinin and will be used 

below in describing how cytokinin concentration is influenced by diffusive movement within 

each time increment. Diffusion depends on time and space (𝐷𝐶𝐾 = 220 𝜇𝑚2/𝑠, the units are 

area over time). In order to solve the diffusion equation within the model, the diffusion 

coefficient (𝐷𝐶𝐾 = 220 𝜇𝑚2/𝑠) is scaled using Δ𝑡 and Δ𝑥𝑖 such that the resulting new term is 

dimensionless and the diffusion equation can be solved in each cell 

 

 𝐷𝑖𝑓𝑓𝑝𝑐 = 𝐷𝑐𝑘
Δ𝑡

(Δx1)^2    
  

 𝐷𝑖𝑓𝑓𝑐𝑥 = 𝐷𝑐𝑘
Δ𝑡

(Δx2)^2
  

 𝐷𝑖𝑓𝑓𝑥 = 𝐷𝑐𝑘
Δ𝑡

(Δx3)^2
.  
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To derive the numerical solution to the diffusion equation within the model, consider 

each cell individually, accounting for the contributions of cytokinin concentration from 

neighbouring cells as well as the loss of cytokinin towards neighbouring cells. Recall that, in 

the model, cytokinin does not diffuse left outside of the phloem (Figure 30; Figure 37) and 

that the supply of cytokinin in the phloem remains constant, i.e. 

 𝐶𝐾𝑝
𝑡+1 = 𝐶𝐾𝑝

𝑡,  

where the superscript 𝑡 describes the concentration of cytokinin at time-step 𝑡. 

Consider each cell individually. The concentration of cytokinin in the cambium at time 𝑡 + 1 

depends on the diffusion of cytokinin at time 𝑡 out towards the xylem and phloem as well as 

the input of cytokinin from the same phloem and xylem. This is represented by the following 

equation: 

 

 𝐶𝐾𝑐
𝑡+1 = 𝐶𝐾𝑐

𝑡 + 𝐷𝑖𝑓𝑓𝑝𝑐𝐶𝐾𝑝
𝑡 − 𝐷𝑖𝑓𝑓𝑝𝑐𝐶𝐾𝑐

𝑡 + 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑥
𝑡 − 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑐

𝑡 .  

 

Similarly, as cytokinin from the cambium diffuses towards the xylem, cytokinin in the 

xylem diffuses out of the three cell structure. Thus, for the change of concentration of 

cytokinin in the xylem we have 

 𝐶𝐾𝑥
𝑡+1 = 𝐶𝐾𝑥

𝑡 + 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑐
𝑡 − 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑥

𝑡 − 𝐷𝑖𝑓𝑓𝑥𝐶𝐾𝑥
𝑡 .  

Grouping terms and rearranging gives us the following system,  

 𝐶𝐾𝑝
𝑡+1 = 𝐶𝐾𝑝

𝑡  

 𝐶𝐾𝑐
𝑡+1 = 𝐷𝑖𝑓𝑓𝑝𝑐𝐶𝐾𝑝

𝑡 + (1 − 𝐷𝑖𝑓𝑓𝑝𝑐 − 𝐷𝑖𝑓𝑓𝑐𝑥)𝐶𝐾𝑐
𝑡 + 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑥

𝑡  

 𝐶𝐾𝑥
𝑡+1 = 𝐷𝑖𝑓𝑓𝑐𝑥𝐶𝐾𝑐

𝑡 + (1 − 𝐷𝑖𝑓𝑓𝑐𝑥 − 𝐷𝑖𝑓𝑓𝑥)𝐶𝐾𝑥
𝑡 ,  

which is in matrix form  

 [

𝐶𝐾𝑝(𝑡 + 1)

𝐶𝐾𝑐(𝑡 + 1)
𝐶𝐾𝑥(𝑡 + 1)

] = [

1 0 0
𝐷𝑖𝑓𝑓𝑝𝑐 1 − 𝐷𝑖𝑓𝑓𝑝𝑐 − 𝐷𝑖𝑓𝑓𝑐𝑥 𝐷𝑖𝑓𝑓𝑐𝑥

0 𝐷𝑖𝑓𝑓𝑐𝑥 1 − 𝐷𝑖𝑓𝑓𝑐𝑥 − 𝐷𝑖𝑓𝑓𝑥

] [

𝐶𝐾𝑝(𝑡)

𝐶𝐾𝑐(𝑡)
𝐶𝐾𝑥(𝑡)

]. 
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Thus, in order to obtain the concentration of cytokinin in all three cells at the next time step 

𝑡 + 1, the right-hand-side of the above matrix is applied, using the concentration of cytokinin 

at time 𝑡 in all three cells. 

 

4.6.3 The Morris method 
 

The code for the Morris method for this study was written by K. Bagdassarian 

(GitHub https://bit.ly/3g8tFWe [315]) 

 

4.6.3.1 Overview 
 

The Morris method consists of individually randomised univariate sensitivity analysis 

experiments [316-318]. Refer to the total number of model parameters as 𝑘. Thus, a vector 𝐱 

of model parameters has 𝑘 dimensions, i.e. 𝐱 can be represented as 𝐱 = [𝑥1, 𝑥2, . . . , 𝑥𝑘], 

where 𝑥𝑖  are the individual parameters, for 𝑖 = 1, . . , 𝑘. 

At step 1, the Morris method selects an initial (base) vector of model parameters 

denoted 𝐱∗ = [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑘
∗]. The method by which the base vector is chosen will be 

described in section 4.6.3.2. Step 2, a parameter from 𝐱∗, is selected at random, 𝑥𝑖
∗, and its 

value is changed by an increment ±Δ, (±Δ  is described in section 4.6.3.2) where the sign of 

Δ is chosen at random with equal probability. The new vector of parameters denoted 𝐱𝟏, is 

identical to 𝐱∗ apart from the parameter in the i-th position, 𝑥𝑖
∗ = 𝑥𝑖

∗ ±  Δ . Thus, 𝐱𝟏 =

[𝑥1
∗, 𝑥2

∗, . . . , 𝑥𝑖
∗ ±  Δ, … , 𝑥𝑘

∗]. Step 3, a parameter from 𝐱𝟏 is selected at random, 𝑥𝑗
∗ where 𝑖 ≠

𝑗. The value of 𝑥𝑗
∗ is changed incrementally to give the new parameter vector 𝐱𝟐 =

[𝑥1
∗, 𝑥2

∗, . . . , 𝑥𝑗
∗ ±  Δ, … , 𝑥𝑖

∗ ±  Δ, … , 𝑥𝑘
∗]. This process continues until all 𝑘 parameters are 

incrementally changed exactly once. Thus, the Morris method draws a trajectory through the 

parameter space, where the coordinates of each point differ by exactly 1 parameter from the 

subsequent point [316-318]. To illustrate, let 𝑘 = 3. Below is one possible trajectory through 

three dimensional parameter space, in matrix form. Note that each of the rows in the matrix 

on the right-hand side is a parameter set, representing a point in the parameter space. 

 

https://bit.ly/3g8tFWe
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[

𝐱∗

𝐱𝟏

𝐱𝟐

𝐱𝟑

] = (

𝑥1 𝑥2 𝑥3

𝑥1 𝑥2 𝑥3 ±  Δ
𝑥1 ±  Δ 𝑥2 𝑥3 ±  Δ
𝑥1 ±  Δ 𝑥2 ±  Δ 𝑥3 ±  Δ

) 

  

In this study, the Morris method was applied in section 4.4.4, generating trajectories 

from a sample of 50 parameter sets for each of the networks with and without the PXY-MP 

negative feedback loop. Each of the parameter sets generated through these trajectories 

were used within the model, with the equations solved to steady state and the final 

corresponding hormone pattern marked as successful or unsuccessful. In what follows, the 

method for measuring sensitivity employed in this study will be described. Note that this is a 

modification of the classic Morris method (see: [121, 316-318]) as here total concentration 

value of the components was not considered, only successful or unsuccessful pattern. 

Let 𝐘 denote the output of the model at steady state, i.e. successful or unsuccessful 

pattern (see:  section 4.4.2). 𝐘(𝐱𝐦) is the steady state solution of the model using parameter 

set 𝐱𝐦 = [𝑥1, 𝑥2, … , 𝑥𝑘]. In this model, a successful 𝐘(𝐱𝐦) = 𝟏, while unsuccessful is 

𝐘(𝐱𝐦) = 𝟎. 

Denote 𝑌𝑌 the difference in output resulting from a parameter perturbation. In 

particular, suppose vectors 𝐱𝐦and 𝐱𝐦+𝟏 differ in their 𝑙-th parameters, with 𝑙 ⊂ [1,2, . . . , 𝑘]. 

That is, 𝐱𝐦 = [. . . 𝑥𝑙 . . . ] and 𝐱𝐦 = [. . . 𝑥𝑙 ± Δ. . . ]. The outputs of the two simulations would 

be given by 𝐘(𝐱𝐦) and 𝐘(𝐱𝐦+𝟏). Then 𝑌𝑌𝑙 for parameter 𝑥𝑙  for this trajectory is defined as 

 𝑌𝑌𝑙  = |𝐘(𝐱𝐦+𝟏) − 𝐘(𝐱𝐦)| 

The straight brackets, on the right-hand side, refer to the positive value of the 

expression inside them. Here, an illustrative example will be given to show how 

measurements of sensitivity are taken. Consider a perturbation ±Δ in the parameter set 𝐱𝐦 

which results in a new parameter set 𝐱𝐦+𝟏. The two outcomes of the parameter sets 𝐱𝐦 and 

𝐱𝐦+𝟏 are given by 𝐘(𝐱𝐦) and 𝐘(𝐱𝐦+𝟏). If the parameter set 𝐱𝐦 was successful, then 𝐘(𝐱𝐦) =

1. If 𝐱𝐦+𝟏, the parameter set resulting from the perturbation ±Δ in the parameter set 𝐱𝐦, is 

unsuccessful, then 𝐘(𝐱𝐦+𝟏) = 0. The difference in output between the two parameter sets 
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𝐱𝐦 and 𝐱𝐦+𝟏 would be given by 𝑌𝑌𝑙  = |𝐘(𝐱𝐦+𝟏) − 𝐘(𝐱𝐦)| = |𝟎 − 𝟏| = 1. Thus, the 

resulting measurement of sensitivity has value 1. 

By generating 𝑟  trajectories (𝑟 = 50 in this study, see section 4.4.4), the measures of 

sensitivity for parameter are then summed. That is, for the above parameter 𝑥𝑙, and for 

trajectories 𝑛 = 1,2, . . . 𝑟, the measure of sensitivity for parameter 𝑥𝑙would be given by 

 𝜇𝑙 = ∑𝑟
𝑛=1 𝑌𝑌𝑙

𝑛 

The larger the 𝜇 of a parameter, the larger the impact of that parameter on the 

network, the more sensitive the network is to perturbations in that parameter. By arranging 

𝜇 of all parameters by size, a ranking of the parameters in terms of importance for the output 

is obtained, with rank 1 (largest value) indicating the parameter that the model is most 

sensitive to, and rank 𝑘 corresponding to the parameter that the model is least sensitive to.  

 

4.6.3.2 Sampling for Morris 
 

Here, the method for choosing the base parameter set, 𝑥∗, will be described. The user 

must define the intervals within which parameter values will be chosen. Define a general 

interval [𝑎, 𝑏] where 𝑎, 𝑏 are real numbers (𝑎, 𝑏 ⊆ ℝ). The Morris method samples parameter 

values from a finite set of numbers within the defined parameter intervals. The finite sets of 

parameters are generated by dividing the intervals into equal sections, creating 𝑝 equally 

spaces parameter values within the intervals and 𝑝 − 1 number of intervals. Thus, the user 

must also define 𝑝 (termed the number of Morris levels), where 𝑝 is a natural number (𝑝 ⊆

ℕ). Hence, the base vector is sampled from the set {𝑎, 𝑎 +
(𝑏−𝑎)

(𝑝−1)
, 𝑎 +

2(𝑏−𝑎)

(𝑝−1)
, … , 𝑎 +

(𝑝−2)(𝑏−𝑎)

(𝑝−1)
, 𝑏}. Denote the space between parameter values as Δ,  Δ =

(𝑏−𝑎)

(𝑝−1)
. The larger the 

value of 𝑝 (number of possible points to be sampled), the smaller Δ , and the closer parameter 

values will be within each interval. In one run of the Morris method, each parameter value is 

changed, in turn, by ± Δ. This means that for large 𝑝 a smaller amount of parameter space 

will be explored during one Morris run .  
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To generate the base vector, the probability of choosing any of the interior values from 

the finite set of parameter values, {  𝑎 +
(𝑏−𝑎)

(𝑝−1)
, 𝑎 +

2(𝑏−𝑎)

(𝑝−1)
, … , 𝑎 +

(𝑝−2)(𝑏−𝑎)

(𝑝−1)
}, is set to (𝑏 −

𝑎)/(𝑝 − 1), whereas the probability of choosing the end-values (𝑎 and 𝑏) is set to (𝑏 −

𝑎)/2(𝑝 − 1). This is the case as the end-points 𝑎 and 𝑏 have only 1 neighbour in their interval, 

forcing the sign of the perturbation to be +Δ and – Δ, respectively. Interior points have 2 

neighbouring points that can be reached with equal probability with perturbations ±Δ. Thus, 

to avoid over-exploring the neighbours of 𝑎 and 𝑏, the probability choosing 𝑎 and 𝑏 is halved 

[316-318]. 
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Chapter 5: Discussion 
 

Plant development is a complex process, whose understanding is of growing 

importance for biodiversity, sustainability and agriculture. However, the mechanisms 

underlying the highly coordinated process of radial thickening and thereby the production of 

the majority of the plant biomass, are still not well understood. In this thesis, I employed a 

cross-disciplinary approach to studying the receptor-kinase PXY, one of the key actors in cell 

proliferation and vascular tissue organisation during secondary growth.  

The goal of this thesis was to understand how PXY organizes the vascular tissue layers 

and drives cell division together with other components and hormone signals. To address this, 

two distinct approaches were used. First, a bespoke method was developed to quantify cell 

variation across different genotypes. This method was used to examine the relationship 

between the PXY and ER family of genes in the context of morphological changes caused by 

mutations. Second, a mathematical framework was designed to test PXY’s interaction with 

MP in the context of hormone patterning. Both of these investigations were able to tackle 

different aspects of PXY’s role for secondary growth. 

The method described in Chapter 2 represents a purpose-built tool chosen to allow 

the study of highly irregular mutant phenotypes. Outside the field of biology, the protocol can 

be easily adapted to other questions by introducing small changes in the code. The use of 

such techniques alongside subjective phenotypical assessment of anatomical and other 

images enhances our understanding of morphological changes and visualizes trends much 

more clearly. As shown in Chapter 3, using this method on sampled cells from different 

mutants allowed to unravel subtle differences in how the individual genes from the ER and 

PXY families regulate morphology. For example, cell size data distinctly showed that in 

hypocotyl, the larger cell size of pxF and pxF er mutants was not maintained with additional 

erl mutations (Figure 19), implicating ERL1 and ERL2 as the genes behind the increase. Using 

the same technique, I was able to rule out cell deformation as a morphological property of 

any of the mutants, through measuring ellipticity of the cells and finding no differences across 

the genotypes (Figure 20). Together with the data of hypocotyl radial size, I demonstrated 

that ERL2 was the gene critical to maintaining hypocotyl size.  
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Another interesting result of the study was the distinction between PXf-ERf interaction 

in regulating different plant organs during secondary growth. In particular, while ERf was seen 

to promote cell size expansion in hypocotyl, the opposite was observed in stem (Figure 19; 

Figure 22). One explanation is that an underlying network that is activated under different 

developmental regimes, and determining the components of such network and the 

corresponding developmental regimes could be addressed in future study. Indeed, further 

look into components linked to PXf and ERf could provide essential insight into what allows 

plants to enlarge and produce xylem/woody tissues. For example, as the MOL1 pathway is 

broadly unexplored but points to an opposing function to that of PXY (i.e. MOL1 being a 

cambial inhibitor), it would be interesting to examine how the ERf may interact with MOL1 

and its yet undiscovered ligand [175]. The final result of the study, that loss of PXf and ERf 

genes wholly suspends secondary growth, points to an interruption in the key genetic 

networks responsible for radial expansion, and thus the process of plant body growth. This 

discovery is truly striking and poses the question: do the two genetic pathways balance the 

process of secondary growth induction, with ERf stabilizing growth in the absence of PXf but 

repressing it otherwise? More research will be needed to answer such questions.   

The method described in Chapter 2, has some limitations. While the selection of 

objects with identical or close in range colour scheme can be done automatically within the 

code, this is not possible when such requirements are not fulfilled. As a result, the sampling 

of cells described in this thesis was performed manually, which can be time consuming. To 

overcome this limitation, changes beyond the timescale allowed for this PhD thesis would 

have to be conducted. To be able to direct the programme in selecting objects, a number of 

details would need to be known a priori, such as conditions of proximity or probability of 

emergence in certain locations in the plant. One possible direction for further development 

of the code could then be the possibility of employing a detailed conditions schema to be 

adjusted as required at the start of the programme. A number of sliders could be made 

available corresponding to features of plant mutants. Using experimentally obtained images 

as input, the user would be able to perform trial and error adjustments to the images in real 

time in order to identify when the sampling is optimal. Another possibility would be building 

a coherent and well-organized database of images of known mutants and imposing a 

probabilistic machine learning algorithm to automate sampling for related genes. The latter 
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option requires a substantial initial time investment and the collection of high quality 

experimental images. Nevertheless, obtaining a dataset of this type would be invaluable to 

unravelling complex genetic interactions in future studies. 

In addition to ER, auxin has also been reported to cross-talk with PXY signalling. One 

point of convergence between these two signalling mechanisms is represented by a potential 

PXY-MP feedback loop to robustify auxin pattern. It was argued that such mechanism could 

explain the contradictory findings of PXY and MP’s relationship (MP is reported to be both 

promoter and repressor of cambial cell division [72, 120, 121]). It is possible that 

overabundance of MP caused by auxin accumulation drives auxin out of the cambium, thus 

inhibiting cell divisions. Overabundance of MP, however, results in MP-driven increase in PXY 

transcription. Once activated by TDIF, PXY then inhibits additional MP phosphorylation 

through BIL1, slowing down the accumulation of MP and allowing it to degrade. Auxin 

accumulation is thus restored and cambial activity is promoted. The fact PXY and MP 

expression overlaps with auxin maxima in the cambium [72] to promote cell division points 

to other future possibilities that impinge on the results from Chapter 3 in this thesis. It would 

be interesting to establish whether an auxin peak in the cambium is lacking, limited or 

displaced in pxy mutants and thus loss of vascular organisation in such plants is the result of 

reduced ability to retain auxin in the cambium. If this is indeed the case, worsening of the pxy 

phenotype under the additional loss of the paralogues PXL1 and PXL2 could be related to a 

further decrease in the ability of auxin to accumulate, such that perhaps when removed 

alone, pxl1 pxl2 mutants do not produce a noticeable change, but elimination of all 3 genes 

generates an augmented effect. It would therefore be even more beneficial to examine auxin 

patterning in a range of pxF mutants, and indeed pxF erF mutants, to unravel whether auxin 

levels may lie in the core of the extremely drastic pxF erF phenotype. 

Two types of follow-up research can be outlined for the work conducted in Chapter 4: 

experimental, and mathematical. The model proposed in Chapter 4 still remains to be tested 

experimentally. Due to time constraints, this was not possible during the course of my PhD. 

As discussed in section 4.5, one set of experiments involves examining the presence of a PXY-

MP negative feedback loop in stem and hypocotyl by testing for the reaction from the loop 

not found in each organ. This would involve, firstly, to study the effects of pxy mutation on 

MP expression in roots – expecting MP levels to be elevated. Secondly, overexpressing PXY to 
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check if MP expression is reduced in root. Third, studying MP overexpression in stems for an 

increase in PXY expression. More complex techniques [301-312] can allow for testing loss-of-

function mp roots and stems for decreased PXY expression.  

Another set of possible experimental directions should involve testing hypocotyls for 

the existence of a PXY-MP negative feedback loop. PXY expression was shown to mark the 

xylem side of the cambium in hypocotyls, and to be responsible for the bidirectional property 

of the cambium in hypocotyl in Shi et al. (2019) [73]. In Han et al. (2018), MP was shown to 

be promoted by BIL1 in both stem and hypocotyl [120]. PXY was shown to directly interact 

with BIL1 on the plasma membrane [91] and to inhibit BIL1 in stem [120]. PXY’s interaction 

with BIL1 in hypocotyl, however, has not been tested. Investigating PXY and BIL1’s interaction 

in hypocotyl could suggest a possible expansion of the PXY-MP negative feedback loop 

hypothesis to incorporate all three of stem, hypocotyl and root. In particular, BIL1 expression 

levels should be tested in pxy hypocotyls and PXY overexpression hypocotyls, expecting them 

to respectively increase in the former and decrease in the latter.  

The second direction for improving the work done in Chapter 4 involves mathematical 

investigations. As mentioned in Chapter 4, while it was possible to analytically derive 

necessary conditions for the two networks to pattern, conditions that were sufficient were 

not found. Resolving this issue will allow to understand what relationships between 

parameters are required to ensure accurate hormone pattern.  

A second mathematical experiment that could not be conducted due to time 

limitations involved expanding on the use of the Morris method. As discussed in Chapter 4, 

both the network with the PXY-MP loop and the one without the loop showed to be relatively 

robust to single perturbations. Parameter sets that were shown to produce a pattern or not 

to produce a pattern, generally remained in that state under single perturbations. This posed 

the question as to how many random perturbations would be needed to force a parameter 

set to cease to produce a successful pattern. Since the network with the PXY-MP loop was 

seen to be more robust at generating pattern, it was suggested that this network may be 

more stable under long-term perturbations. To conduct this experiment, both networks will 

need to be examined. A sample of parameter sets with maximal spread will be chosen from 

the successful parameter sets obtained for the network with and without the PXY-MP 

negative feedback loop. Perturbations are then to be ran for each of these parameter sets 
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until the parameter set became unsuccessful. The number of perturbation steps required 

would be recorded for both networks, and compared.  

One limitation of the model includes the well-mixed assumption. PIN localization, 

specifically, was not considered in the theoretical model discussed in this thesis. The 

summative PIN which lacked positioning somewhat restricted the ability to observe the 

details of auxin transport under the influence of PXY and MP interactions. This limitation could 

be addressed in later iterations of the model and in a larger cell template to provide better 

comprehension of auxin distribution. For instance, if the PXY-MP loop is shown to exist in 

nature, it will be interesting to specify how auxin distribution, particularly an auxin peak, could 

be influenced by manipulating the MP-PXY relationship. A tool for achieving this could involve 

the incorporation of the software VirtualLeaf [238] (discussed in Chapter 1). VirtualLeaf is 

capable of simulating a growing cell template. This could be an excellent way to overcome 

the lack of definitive parameters in the model by calibrating the output to experimentally 

obtained wild type and mutant phenotypes. Once this is achieved, such a model could be used 

to examine the cambium-localised auxin maxima and PXY-MP interactions, as well as point to 

the discovery of other possible components to the network. Furthermore, the use of 

VirtualLeaf [238] with the data acquired from Chapter 2 and 3 on pxF erF phenotypical data 

can be collated into a uniform investigation of cross-tissue communication and hormone 

pattern. In particular, the components described in this thesis – the members of the PXY and 

ER family, MP and auxin can be incorporated into a singular special structure. Experimental 

data on auxin distribution across pxF, pxF er, pxF er erl1, pxF er erl2 and pxF erF mutats can 

be studied in combination with the data described in this thesis (Chapter 2 and 3) of these 

mutant’s morphology. A VirtualLeaf-based [238] model calibrated in this way could allow the 

study of the regulators of auxin distribution. By callibrating the data to real life phenotypes 

and component expression, it could be possible to identify additional components whose role 

may provide a sufficiency condition for the correct auxin pattern.  

 

Concluding remarks  
 

In this thesis, I have engaged with understanding the underlying components that 

govern the establishment and maintenance of vascular tissue during secondary growth. The 
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focus of my investigation was the receptor-kinase PXY and its interaction with other 

regulators to define the division plane and boost cambial activity. I used a multi-disciplinary 

approach to conduct my research, including the development of a bespoke method for 

analysing cell morphology. Using this method, I showed that the PXY family of genes interacts 

with the ER family of genes for vascular development in an organ-distinct manner, and loss of 

both suspends transition into secondary growth. In the final part of my thesis, another role 

for PXY was investigated – in boosting the accumulation of the hormone auxin in the cambium 

in order to promote cell divisions. This was tested through defining a three cell reaction-

diffusion model and evaluating its ability to produce hormone pattern through the template, 

concluding a PXY-MP negative feedback loop could promote auxin maxima in the cambium. 

Much yet remains to be unravelled. Through the work conducted here I have proposed 

several ideas for addressing knowledge gaps in our understanding of the field, and future 

theoretical and methodological development of these ideas should give a much fuller insight 

into the mechanisms controlling secondary growth. 

 

 

 

1. Ragni, L. and T. Greb. Secondary growth as a determinant of plant shape and form. in 
Seminars in Cell & Developmental Biology. 2018. Elsevier. 

2. Bagdassarian, K.S., et al., Connections in the cambium, receptors in the ring. Current 
Opinion in Plant Biology, 2020. 57: p. 96-103. 

3. Wang, N., et al., Organ-specific genetic interactions between paralogues of the PXY 
and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. 
Development, 2019. 146(10): p. dev177105. 

4. Turner‐Skoff, J.B. and N. Cavender, The benefits of trees for livable and sustainable 
communities. Plants, People, Planet, 2019. 1(4): p. 323-335. 

5. Fargione, J.E. and D. Tilman, Diversity decreases invasion via both sampling and 
complementarity effects. Ecology Letters, 2005. 8(6): p. 604-611. 

6. Tilman, D., The ecological consequences of changes in biodiversity: a search for 
general principles. Ecology, 1999. 80(5): p. 1455-1474. 

7. Clark, K.H. and K.A. Nicholas, Introducing urban food forestry: a multifunctional 
approach to increase food security and provide ecosystem services. Landscape 
Ecology, 2013. 28(9): p. 1649-1669. 

8. Wall, E. and B. Smit, Climate change adaptation in light of sustainable agriculture. 
Journal of sustainable agriculture, 2005. 27(1): p. 113-123. 

9. Stanton, R.A., A plant-based diet—good for us and for the planet. Medical Journal of 
Australia, 2012. 9: p. 5. 



141 
 

10. Cervantes-Godoy, D. and J. Dewbre, Economic importance of agriculture for poverty 
reduction. 2010. 

11. Jones, A.D. and G. Ejeta, A new global agenda for nutrition and health: the 
importance of agriculture and food systems. Bulletin of the World Health 
Organization, 2016. 94(3): p. 228. 

12. Kennedy, T.A., et al., Biodiversity as a barrier to ecological invasion. Nature, 2002. 
417(6889): p. 636-638. 

13. Yuan, J.S., et al., Plants to power: bioenergy to fuel the future. Trends in plant 
science, 2008. 13(8): p. 421-429. 

14. Vogel, K.P. and H.-J.G. Jung, Genetic modification of herbaceous plants for feed and 
fuel. Critical Reviews in Plant Sciences, 2001. 20(1): p. 15-49. 

15. Ballard-Tremeer, G. and H. Jawurek, Comparison of five rural, wood-burning cooking 
devices: efficiencies and emissions. Biomass and Bioenergy, 1996. 11(5): p. 419-430. 

16. Garrity, D.P., Agroforestry and the achievement of the Millennium Development 
Goals. Agroforestry systems, 2004. 61(1): p. 5-17. 

17. Jamnadass, R., et al., Agroforestry, food and nutritional security. 2013. 
18. Fowler, M.W., Plants, medicines and man. Journal of the Science of Food and 

Agriculture, 2006. 86(12): p. 1797-1804. 
19. Farnsworth, N.R., Screening plants for new medicines. Biodiversity, 1988. 15(3): p. 

81-99. 
20. Gossell-Williams, M., R. Simon, and M. West, The past and present use of plants for 

medicines. West Indian Med J, 2006. 55(4): p. 217-218. 
21. Verpoorte, R., H. Kim, and Y. Choi, Plants as source for medicines: New perspectives. 

Frontis, 2006: p. 261-273. 
22. Agosta, W.C., Medicines and drugs from plants. Journal of chemical education, 1997. 

74(7): p. 857. 
23. Keenan, T.J., How trees are converted into paper. Scientific American, 1913. 109(14): 

p. 256-258. 
24. Stockwell, P. and F. Richter, Hybrid forest trees. Yearb. Agr, 1943. 
25. Campinhos, E., Sustainable plantations of high-yield shape Eucalyptus trees for 

production of fiber: the Aracruz case. New Forests, 1999. 17(1): p. 129-143. 
26. Gordon, S. and Y.-l. Hsieh, Cotton: Science and technology. 2006: Woodhead 

Publishing. 
27. Bullard, S.H., Furniture Production and the Forest Resources of Southwest Mississippi. 

1989. 
28. Ratanawilai, T., T. Chumthong, and S. Kirdkong, An investigation on the mechanical 

properties of trunks of palm oil trees for the furniture industry. Journal of Oil Palm 
Research, 2006. 18: p. 114-121. 

29. Xing, Y. and P. Brimblecombe, Trees and parks as “the lungs of cities”. Urban Forestry 
& Urban Greening, 2020. 48: p. 126552. 

30. Howell, A.J., H.-A. Passmore, and K. Buro, Meaning in nature: Meaning in life as a 
mediator of the relationship between nature connectedness and well-being. Journal 
of Happiness Studies, 2013. 14(6): p. 1681-1696. 

31. Houlden, V., et al., The relationship between greenspace and the mental wellbeing of 
adults: A systematic review. PloS one, 2018. 13(9): p. e0203000. 

32. Akbari, H., Shade trees reduce building energy use and CO2 emissions from power 
plants. Environmental pollution, 2002. 116: p. S119-S126. 



142 
 

33. Pan, Y., et al., A large and persistent carbon sink in the world’s forests. Science, 2011. 
333(6045): p. 988-993. 

34. Luyssaert, S., et al., Old-growth forests as global carbon sinks. Nature, 2008. 
455(7210): p. 213-215. 

35. Reichstein, M., et al., Climate extremes and the carbon cycle. Nature, 2013. 
500(7462): p. 287-295. 

36. Verduin, J. and W. Loomis, Absorption of carbon dioxide by maize. Plant physiology, 
1944. 19(2): p. 278. 

37. Siah, W., A. Aminah, and A. Ishak, Edible films from seaweed (Kappaphycus alvarezii). 
International Food Research Journal, 2015. 22(6): p. 2230. 

38. Mooney, B.P., The second green revolution? Production of plant-based 
biodegradable plastics. Biochemical Journal, 2009. 418(2): p. 219-232. 

39. Tadesse, A., Increasing crop production through improved plant protection. 2008, 
Plant Protection Society Of Ethiopia (PPSE). 

40. Bassham, J.A., Increasing crop production through more controlled photosynthesis. 
Science, 1977. 197(4304): p. 630-638. 

41. Gómez, C. and L.G. Izzo, Increasing efficiency of crop production with LEDs. AIMS 
Agriculture and Food, 2018. 3(2): p. 135-153. 

42. Cakmak, I., Potassium for better crop production and quality. 2010, Springer. 
43. Esau, K., Anatomy of seed plants. Soil Science, 1960. 90(2): p. 149. 
44. Evert, R.F., Esau's plant anatomy: meristems, cells, and tissues of the plant body: 

their structure, function, and development. 2006: John Wiley & Sons. 
45. Esau, K., Vascular differentiation in plants. 1965. 
46. De Rybel, B., et al., A bHLH complex controls embryonic vascular tissue establishment 

and indeterminate growth in Arabidopsis. Developmental cell, 2013. 24(4): p. 426-
437. 

47. Scheres, B., et al., Embryonic origin of the Arabidopsis primary root and root 
meristem initials. Development, 1994. 120(9): p. 2475-2487. 

48. Dolan, L. and K. Roberts, Secondary thickening in roots of Arabidopsis thaliana: 
anatomy and cell surface changes. New Phytologist, 1995. 131(1): p. 121-128. 

49. Chaffey, N., et al., Secondary xylem development in Arabidopsis: a model for wood 
formation. Physiologia plantarum, 2002. 114(4): p. 594-600. 

50. Dolan, L., et al., Cellular organisation of the Arabidopsis thaliana root. Development, 
1993. 119(1): p. 71-84. 

51. Bauby, H., et al., Protophloem differentiation in early Arabidopsis thaliana 
development. Plant and cell physiology, 2007. 48(1): p. 97-109. 

52. De Rybel, B., et al., Integration of growth and patterning during vascular tissue 
formation in Arabidopsis. Science, 2014. 345(6197): p. 1255215. 

53. Miyashima, S., et al., Stem cell function during plant vascular development. The 
EMBO journal, 2013. 32(2): p. 178-193. 

54. Jouannet, V., K. Brackmann, and T. Greb, (Pro) cambium formation and proliferation: 
two sides of the same coin? Current opinion in plant biology, 2015. 23: p. 54-60. 

55. Ikematsu, S., et al., ERECTA‐family receptor kinase genes redundantly prevent 
premature progression of secondary growth in the Arabidopsis hypocotyl. New 
Phytologist, 2017. 213(4): p. 1697-1709. 



143 
 

56. Lehmann, F. and C.S. Hardtke, Secondary growth of the Arabidopsis hypocotyl—
vascular development in dimensions. Current opinion in plant biology, 2016. 29: p. 9-
15. 

57. Sankar, M., et al., Automated quantitative histology reveals vascular 
morphodynamics during Arabidopsis hypocotyl secondary growth. Elife, 2014. 3: p. 
e01567. 

58. Ragni, L. and C.S. Hardtke, Small but thick enough–the Arabidopsis hypocotyl as a 
model to study secondary growth. Physiologia plantarum, 2014. 151(2): p. 164-171. 

59. Altamura, M.M., et al., Development of the vascular system in the inflorescence stem 
of Arabidopsis. New Phytologist, 2001. 151(2): p. 381-389. 

60. Nieminen, K., et al., Vascular cambium development. The Arabidopsis 
book/American Society of Plant Biologists, 2015. 13. 

61. Campbell, L. and S. Turner, Regulation of vascular cell division. Journal of 
experimental botany, 2017. 68(1): p. 27-43. 

62. Fischer, U., et al., The dynamics of cambial stem cell activity. Annual review of plant 
biology, 2019. 70: p. 293-319. 

63. Hellmann, E., et al., Plant vascular tissues—Connecting tissue comes in all shapes. 
Plants, 2018. 7(4): p. 109. 

64. Ruonala, R., D. Ko, and Y. Helariutta, Genetic networks in plant vascular 
development. Annual review of genetics, 2017. 51: p. 335-359. 

65. De Rybel, B., et al., Plant vascular development: from early specification to 
differentiation. Nature reviews Molecular cell biology, 2016. 17(1): p. 30. 

66. Bailey, I.W., Evolution of the tracheary tissue of land plants. American Journal of 
Botany, 1953. 40(1): p. 4-8. 

67. Jung, J.-H., et al., Molecular mechanisms underlying vascular development. Advances 
in Botanical Research, 2008. 48: p. 1-68. 

68. Cutter, E.G., Plant anatomy. Part I. Cells and tissues. 1978: Edward Arnold London. 
69. Cutler, D., Plant Anatomy: Experiment and Interpretation. Part 2. Organs. 1972, 

JSTOR. 
70. Siebers, A., Initiation of radial polarity in the interfascicular cambium of Ricinus 

communis L. Acta Botanica Neerlandica, 1971. 20(2): p. 211-220. 
71. Thair, B.W. and T. Steeves, Response of the vascular cambium to reorientation in 

patch grafts. Canadian Journal of Botany, 1976. 54(3-4): p. 361-373. 
72. Smetana, O., et al., High levels of auxin signalling define the stem-cell organizer of 

the vascular cambium. Nature, 2019. 565(7740): p. 485-489. 
73. Shi, D., et al., Bifacial cambium stem cells generate xylem and phloem during radial 

plant growth. Development, 2019. 146(1). 
74. Crang, R., S. Lyons-Sobaski, and R. Wise, Plant anatomy: a concept-based approach 

to the structure of seed plants. 2018: Springer. 
75. Wang, N., et al., Organ-specific genetic interactions between paralogues of the PXY 

and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. 
Development, 2019. 146(10). 

76. Robert, H.S. and J. Friml, Auxin and other signals on the move in plants. Nature 
chemical biology, 2009. 5(5): p. 325-332. 

77. Hoad, G., Transport of hormones in the phloem of higher plants. Plant Growth 
Regulation, 1995. 16(2): p. 173-182. 



144 
 

78. Swarup, R., et al., Localization of the auxin permease AUX1 suggests two functionally 
distinct hormone transport pathways operate in the Arabidopsis root apex. Genes & 
development, 2001. 15(20): p. 2648-2653. 

79. Hirose, N., et al., Regulation of cytokinin biosynthesis, compartmentalization and 
translocation. Journal of experimental botany, 2008. 59(1): p. 75-83. 

80. Bishopp, A., et al., A mutually inhibitory interaction between auxin and cytokinin 
specifies vascular pattern in roots. Current Biology, 2011. 21(11): p. 917-926. 

81. Kudo, T., T. Kiba, and H. Sakakibara, Metabolism and long‐distance translocation of 
cytokinins. Journal of Integrative Plant Biology, 2010. 52(1): p. 53-60. 

82. Muraro, D., et al., Integration of hormonal signaling networks and mobile microRNAs 
is required for vascular patterning in <em>Arabidopsis</em> roots. Proceedings of 
the National Academy of Sciences, 2014. 111(2): p. 857-862. 

83. Lavender, D., et al., Spring shoot growth in Douglas-fir may be initiated by 
gibberellins exported from the roots. Science, 1973. 182(4114): p. 838-839. 

84. Hoad, G. and M. Bowen, Evidence for gibberellin-like substances in phloem exudate 
of higher plants. Planta, 1968. 82(1): p. 22-32. 

85. Israelsson, M., B. Sundberg, and T. Moritz, Tissue‐specific localization of gibberellins 
and expression of gibberellin‐biosynthetic and signaling genes in wood‐forming 
tissues in aspen. The Plant Journal, 2005. 44(3): p. 494-504. 

86. Everant‐Bourbouloux, A., Transport and metabolism of labelled abscisic acid in 
broad‐bean plants (Vicia faba L.). Physiologia Plantarum, 1982. 54(4): p. 431-439. 

87. Ikegami, K., et al., Activation of abscisic acid biosynthesis in the leaves of Arabidopsis 
thaliana in response to water deficit. Journal of plant research, 2009. 122(2): p. 235. 

88. Jiang, F. and W. Hartung, Long-distance signalling of abscisic acid (ABA): the factors 
regulating the intensity of the ABA signal. Journal of experimental botany, 2008. 
59(1): p. 37-43. 

89. Zeevaart, J.A. and G.L. Boyer, Accumulation and transport of abscisic acid and its 
metabolites in Ricinus and Xanthium. Plant Physiology, 1984. 74(4): p. 934-939. 

90. Brodersen, C.R., et al., Functional status of xylem through time. Annual review of 
plant biology, 2019. 70: p. 407-433. 

91. Kondo, Y., et al., Plant GSK3 proteins regulate xylem cell differentiation downstream 
of TDIF–TDR signalling. Nature communications, 2014. 5(1): p. 1-11. 

92. Růžička, K., et al., Xylem development–from the cradle to the grave. New Phytologist, 
2015. 207(3): p. 519-535. 

93. Anne, P. and C.S. Hardtke, Phloem function and development—biophysics meets 
genetics. Current opinion in plant biology, 2018. 43: p. 22-28. 

94. Blob, B., J.-o. Heo, and Y. Helariutta, Phloem differentiation: an integrative model for 
cell specification. Journal of plant research, 2018. 131(1): p. 31-36. 

95. Heo, J.o., et al., Phloem development: current knowledge and future perspectives. 
American journal of botany, 2014. 101(9): p. 1393-1402. 

96. López-Salmerón, V., et al., The phloem as a mediator of plant growth plasticity. 
Current Biology, 2019. 29(5): p. R173-R181. 

97. Otero, S. and Y. Helariutta, Companion cells: a diamond in the rough. Journal of 
experimental botany, 2016: p. erw392. 

98. Love, J., et al., Ethylene is an endogenous stimulator of cell division in the cambial 
meristem of Populus. Proceedings of the National Academy of Sciences, 2009. 
106(14): p. 5984-5989. 



145 
 

99. Sehr, E.M., et al., Analysis of secondary growth in the Arabidopsis shoot reveals a 
positive role of jasmonate signalling in cambium formation. The Plant Journal, 2010. 
63(5): p. 811-822. 

100. Agusti, J., et al., Characterization of transcriptome remodeling during cambium 
formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. 
PLoS genetics, 2011. 7(2). 

101. Gray, W.M., et al., Identification of an SCF ubiquitin–ligase complex required for 
auxin response in Arabidopsis thaliana. Genes & development, 1999. 13(13): p. 1678-
1691. 

102. Gray, W.M., et al., Auxin regulates SCF TIR1-dependent degradation of AUX/IAA 
proteins. Nature, 2001. 414(6861): p. 271-276. 

103. Kieffer, M., J. Neve, and S. Kepinski, Defining auxin response contexts in plant 
development. Current opinion in plant biology, 2010. 13(1): p. 12-20. 

104. Mockaitis, K. and M. Estelle, Auxin receptors and plant development: a new signaling 
paradigm. Annual review of cell and developmental biology, 2008. 24. 

105. Ulmasov, T., G. Hagen, and T.J. Guilfoyle, ARF1, a transcription factor that binds to 
auxin response elements. Science, 1997. 276(5320): p. 1865-1868. 

106. Ulmasov, T., G. Hagen, and T.J. Guilfoyle, Activation and repression of transcription 
by auxin-response factors. Proceedings of the National Academy of Sciences, 1999. 
96(10): p. 5844-5849. 

107. Benjamins, R. and B. Scheres, Auxin: the looping star in plant development. Annu. 
Rev. Plant Biol., 2008. 59: p. 443-465. 

108. Guilfoyle, T.J. and G. Hagen, Auxin response factors. Current opinion in plant biology, 
2007. 10(5): p. 453-460. 

109. Weijers, D., et al., Auxin triggers transient local signaling for cell specification in 
Arabidopsis embryogenesis. Developmental cell, 2006. 10(2): p. 265-270. 

110. Calderon-Villalobos, L.I., et al., Auxin perception—structural insights. Cold Spring 
Harbor perspectives in biology, 2010. 2(7): p. a005546. 

111. Dharmasiri, N., S. Dharmasiri, and M. Estelle, The F-box protein TIR1 is an auxin 
receptor. Nature, 2005. 435(7041): p. 441-445. 

112. Villalobos, L.I.A.C., et al., A combinatorial TIR1/AFB–Aux/IAA co-receptor system for 
differential sensing of auxin. Nature chemical biology, 2012. 8(5): p. 477-485. 

113. Kepinski, S. and O. Leyser, The Arabidopsis F-box protein TIR1 is an auxin receptor. 
Nature, 2005. 435(7041): p. 446-451. 

114. Hardtke, C.S. and T. Berleth, The Arabidopsis gene MONOPTEROS encodes a 
transcription factor mediating embryo axis formation and vascular development. The 
EMBO journal, 1998. 17(5): p. 1405-1411. 

115. Berleth, T. and G. Jurgens, The role of the monopteros gene in organising the basal 
body region of the Arabidopsis embryo. Development, 1993. 118(2): p. 575-587. 

116. Bhatia, N., et al., Auxin acts through MONOPTEROS to regulate plant cell polarity and 
pattern phyllotaxis. Current Biology, 2016. 26(23): p. 3202-3208. 

117. Przemeck, G.K., et al., Studies on the role of the Arabidopsis gene MONOPTEROS in 
vascular development and plant cell axialization. Planta, 1996. 200(2): p. 229-237. 

118. Wenzel, C.L., et al., Dynamics of MONOPTEROS and PIN‐FORMED1 expression during 
leaf vein pattern formation in Arabidopsis thaliana. The Plant Journal, 2007. 49(3): p. 
387-398. 



146 
 

119. Krogan, N.T., et al., The auxin response factor MONOPTEROS controls meristem 
function and organogenesis in both the shoot and root through the direct regulation 
of PIN genes. New Phytologist, 2016. 212(1): p. 42-50. 

120. Han, S., et al., BIL1-mediated MP phosphorylation integrates PXY and cytokinin 
signalling in secondary growth. Nature plants, 2018. 4(8): p. 605-614. 

121. Brackmann, K., et al., Spatial specificity of auxin responses coordinates wood 
formation. Nature communications, 2018. 9(1): p. 1-15. 

122. Matsumoto-Kitano, M., et al., Cytokinins are central regulators of cambial activity. 
Proceedings of the National Academy of Sciences, 2008. 105(50): p. 20027-20031. 

123. Hejátko, J., et al., The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS 
HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in 
<em>Arabidopsis</em> Shoots. The Plant Cell, 2009. 21(7): p. 2008-2021. 

124. Kieber, J.J. and G.E. Schaller, The perception of cytokinin: a story 50 years in the 
making. Plant physiology, 2010. 154(2): p. 487-492. 

125. Inoue, T., et al., Identification of CRE1 as a cytokinin receptor from Arabidopsis. 
Nature, 2001. 409(6823): p. 1060-1063. 

126. Nishimura, C., et al., Histidine kinase homologs that act as cytokinin receptors 
possess overlapping functions in the regulation of shoot and root growth in 
Arabidopsis. The Plant Cell, 2004. 16(6): p. 1365-1377. 

127. Ueguchi, C., et al., The AHK4 gene involved in the cytokinin-signaling pathway as a 
direct receptor molecule in Arabidopsis thaliana. Plant and Cell Physiology, 2001. 
42(7): p. 751-755. 

128. Hutchison, C.E., et al., The Arabidopsis histidine phosphotransfer proteins are 
redundant positive regulators of cytokinin signaling. The Plant Cell, 2006. 18(11): p. 
3073-3087. 

129. Mähönen, A.P., et al., Cytokinin signaling and its inhibitor AHP6 regulate cell fate 
during vascular development. Science, 2006. 311(5757): p. 94-98. 

130. Suzuki, T., et al., Histidine-containing phosphotransfer (HPt) signal transducers 
implicated in His-to-Asp phosphorelay in Arabidopsis. Plant and cell physiology, 1998. 
39(12): p. 1258-1268. 

131. Moreira, S., et al., AHP6 inhibits cytokinin signaling to regulate the orientation of 
pericycle cell division during lateral root initiation. PLoS One, 2013. 8(2). 

132. D'Agostino, I.B., J. Deruere, and J.J. Kieber, Characterization of the response of the 
Arabidopsis response regulator gene family to cytokinin. Plant physiology, 2000. 
124(4): p. 1706-1717. 

133. Hwang, I. and J. Sheen, Two-component circuitry in Arabidopsis cytokinin signal 
transduction. nature, 2001. 413(6854): p. 383-389. 

134. Mason, M.G., et al., Type-B response regulators display overlapping expression 
patterns in Arabidopsis. Plant physiology, 2004. 135(2): p. 927-937. 

135. Tajima, Y., et al., Comparative studies on the type-B response regulators revealing 
their distinctive properties in the His-to-Asp phosphorelay signal transduction of 
Arabidopsis thaliana. Plant and Cell Physiology, 2004. 45(1): p. 28-39. 

136. Sakai, H., et al., ARR1, a transcription factor for genes immediately responsive to 
cytokinins. Science, 2001. 294(5546): p. 1519-1521. 

137. Mason, M.G., et al., Multiple type-B response regulators mediate cytokinin signal 
transduction in Arabidopsis. The Plant Cell, 2005. 17(11): p. 3007-3018. 



147 
 

138. Blilou, I., et al., The PIN auxin efflux facilitator network controls growth and 
patterning in Arabidopsis roots. Nature, 2005. 433(7021): p. 39-44. 

139. Ioio, R.D., et al., Cytokinins determine Arabidopsis root-meristem size by controlling 
cell differentiation. Current Biology, 2007. 17(8): p. 678-682. 

140. Ioio, R.D., et al., A genetic framework for the control of cell division and 
differentiation in the root meristem. Science, 2008. 322(5906): p. 1380-1384. 

141. Müller, B. and J. Sheen, Cytokinin and auxin interaction in root stem-cell specification 
during early embryogenesis. Nature, 2008. 453(7198): p. 1094-1097. 

142. Růžička, K., et al., Cytokinin regulates root meristem activity via modulation of the 
polar auxin transport. Proceedings of the National Academy of Sciences, 2009. 
106(11): p. 4284-4289. 

143. Tuominen, H., et al., A radial concentration gradient of indole-3-acetic acid is related 
to secondary xylem development in hybrid aspen. Plant Physiology, 1997. 115(2): p. 
577-585. 

144. Werner, T., et al., New insights into the biology of cytokinin degradation. Plant 
Biology, 2006. 8(03): p. 371-381. 

145. Nordström, A., et al., Auxin regulation of cytokinin biosynthesis in Arabidopsis 
thaliana: a factor of potential importance for auxin–cytokinin-regulated 
development. Proceedings of the National Academy of Sciences, 2004. 101(21): p. 
8039-8044. 

146. Tanaka, M., et al., Auxin controls local cytokinin biosynthesis in the nodal stem in 
apical dominance. The Plant Journal, 2006. 45(6): p. 1028-1036. 

147. Schlereth, A., et al., MONOPTEROS controls embryonic root initiation by regulating a 
mobile transcription factor. Nature, 2010. 464(7290): p. 913-916. 

148. Šimášková, M., et al., Cytokinin response factors regulate PIN-FORMED auxin 
transporters. Nature communications, 2015. 6: p. 8717. 

149. Pernisová, M., A. Kuderová, and J. Hejátko, Cytokinin and auxin interactions in plant 
development: metabolism, signalling, transport and gene expression. Current Protein 
and Peptide Science, 2011. 12(2): p. 137-147. 

150. Jones, B., et al., Cytokinin regulation of auxin synthesis in Arabidopsis involves a 
homeostatic feedback loop regulated via auxin and cytokinin signal transduction. The 
Plant Cell, 2010. 22(9): p. 2956-2969. 

151. Smet, W., et al., DOF2. 1 controls cytokinin-dependent vascular cell proliferation 
downstream of TMO5/LHW. Current Biology, 2019. 29(3): p. 520-529. e6. 

152. Miyashima, S., et al., Mobile PEAR transcription factors integrate positional cues to 
prime cambial growth. Nature, 2019. 565(7740): p. 490-494. 

153. Guo, Y., et al., Dof5. 6/HCA2, a Dof transcription factor gene, regulates interfascicular 
cambium formation and vascular tissue development in Arabidopsis. The Plant Cell, 
2009. 21(11): p. 3518-3534. 

154. Fisher, K. and S. Turner, PXY, a receptor-like kinase essential for maintaining polarity 
during plant vascular-tissue development. Current Biology, 2007. 17(12): p. 1061-
1066. 

155. Hirakawa, Y., et al., Non-cell-autonomous control of vascular stem cell fate by a CLE 
peptide/receptor system. Proceedings of the National Academy of Sciences, 2008. 
105(39): p. 15208-15213. 

156. Ito, Y., et al., Dodeca-CLE peptides as suppressors of plant stem cell differentiation. 
Science, 2006. 313(5788): p. 842-845. 



148 
 

157. Etchells, J.P. and S.R. Turner, The PXY-CLE41 receptor ligand pair defines a 
multifunctional pathway that controls the rate and orientation of vascular cell 
division. Development, 2010. 137(5): p. 767-774. 

158. Etchells, J.P., et al., WOX4 and WOX14 act downstream of the PXY receptor kinase to 
regulate plant vascular proliferation independently of any role in vascular 
organisation. Development, 2013. 140(10): p. 2224-2234. 

159. Hirakawa, Y., Y. Kondo, and H. Fukuda, TDIF peptide signaling regulates vascular 
stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell, 
2010. 22(8): p. 2618-2629. 

160. Clark, S.E., M.P. Running, and E.M. Meyerowitz, CLAVATA3 is a specific regulator of 
shoot and floral meristem development affecting the same processes as CLAVATA1. 
Development, 1995. 121(7): p. 2057-2067. 

161. Clark, S.E., R.W. Williams, and E.M. Meyerowitz, The CLAVATA1gene encodes a 
putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. 
Cell, 1997. 89(4): p. 575-585. 

162. Brand, U., et al., Dependence of stem cell fate in Arabidopsis on a feedback loop 
regulated by CLV3 activity. Science, 2000. 289(5479): p. 617-619. 

163. Schoof, H., et al., The stem cell population of Arabidopsis shoot meristems is 
maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 
2000. 100(6): p. 635-644. 

164. Haecker, A., et al., Expression dynamics of WOX genes mark cell fate decisions during 
early embryonic patterning in Arabidopsis thaliana. Development, 2004. 131(3): p. 
657-668. 

165. Sarkar, A.K., et al., Conserved factors regulate signalling in Arabidopsis thaliana shoot 
and root stem cell organizers. Nature, 2007. 446(7137): p. 811-814. 

166. Smit, M.E., et al., A PXY-Mediated Transcriptional Network Integrates Signaling 
Mechanisms to Control Vascular Development in Arabidopsis. The Plant Cell, 2020. 
32(2): p. 319-335. 

167. Zhang, H., et al., SERK family receptor-like kinases function as co-receptors with PXY 
for plant vascular development. Molecular plant, 2016. 9(10): p. 1406-1414. 

168. Sun, Y., et al., Structural basis for flg22-induced activation of the Arabidopsis FLS2-
BAK1 immune complex. Science, 2013. 342(6158): p. 624-628. 

169. Hothorn, M., et al., Structural basis of steroid hormone perception by the receptor 
kinase BRI1. Nature, 2011. 474(7352): p. 467-471. 

170. She, J., et al., Structural insight into brassinosteroid perception by BRI1. Nature, 2011. 
474(7352): p. 472-476. 

171. Morita, J., et al., Crystal structure of the plant receptor-like kinase TDR in complex 
with the TDIF peptide. Nature communications, 2016. 7: p. 12383. 

172. Yang, J.H., et al., A membrane‐associated NAC domain transcription factor XVP 
interacts with TDIF co‐receptor and regulates vascular meristem activity. New 
Phytologist, 2019. 

173. Qu, X., Z. Zhao, and Z. Tian, ERECTA regulates cell elongation by activating auxin 
biosynthesis in Arabidopsis thaliana. Frontiers in plant science, 2017. 8: p. 1688. 

174. Milhinhos, A., et al., SOBIR1/EVR prevents precocious initiation of fiber differentiation 
during wood development through a mechanism involving BP and ERECTA. 
Proceedings of the National Academy of Sciences, 2019. 116(37): p. 18710-18716. 



149 
 

175. Gursanscky, N.R., et al., MOL 1 is required for cambium homeostasis in Arabidopsis. 
The Plant Journal, 2016. 86(3): p. 210-220. 

176. Bossinger, G. and A.V. Spokevicius, Sector analysis reveals patterns of cambium 
differentiation in poplar stems. Journal of experimental botany, 2018. 69(18): p. 
4339-4348. 

177. Carlsbecker, A., et al., Cell signalling by microRNA165/6 directs gene dose-dependent 
root cell fate. Nature, 2010. 465(7296): p. 316-321. 

178. Izhaki, A. and J.L. Bowman, KANADI and class III HD-Zip gene families regulate 
embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. 
The Plant Cell, 2007. 19(2): p. 495-508. 

179. Ohashi-Ito, K. and H. Fukuda, HD-Zip III homeobox genes that include a novel 
member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and 
xylem cell differentiation. Plant and Cell Physiology, 2003. 44(12): p. 1350-1358. 

180. Ursache, R., et al., Tryptophan-dependent auxin biosynthesis is required for HD-ZIP 
III-mediated xylem patterning. Development, 2014. 141(6): p. 1250-1259. 

181. Zhou, G.-K., et al., Overexpression of miR165 affects apical meristem formation, 
organ polarity establishment and vascular development in Arabidopsis. Plant and Cell 
Physiology, 2007. 48(3): p. 391-404. 

182. Baima, S., et al., The expression of the Athb-8 homeobox gene is restricted to 
provascular cells in Arabidopsis thaliana. Development, 1995. 121(12): p. 4171-4182. 

183. Suer, S., et al., WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. 
The Plant Cell, 2011. 23(9): p. 3247-3259. 

184. Olsson, V., et al., Look closely, the beautiful may be small: Precursor-derived peptides 
in plants. Annual review of plant biology, 2019. 70: p. 153-186. 

185. Fukuda, H. and C.S. Hardtke, Peptide signaling pathways in vascular differentiation. 
Plant Physiology, 2020. 

186. Ragni, L., et al., Mobile Gibberellin Directly Stimulates <em>Arabidopsis</em> 
Hypocotyl Xylem Expansion. The Plant Cell, 2011. 23(4): p. 1322-1336. 

187. Roodt, D., et al., Loss of wood formation genes in monocot genomes. Genome 
biology and evolution, 2019. 11(7): p. 1986-1996. 

188. Van den Broeck, L., et al., Gene regulatory network inference: connecting plant 
biology and mathematical modeling. Frontiers in genetics, 2020. 11: p. 457. 

189. Prusinkiewicz, P. and A. Runions, Computational models of plant development and 
form. New Phytologist, 2012. 193(3): p. 549-569. 

190. Prusinkiewicz, P. and A.-G. Rolland-Lagan, Modeling plant morphogenesis. Current 
opinion in plant biology, 2006. 9(1): p. 83-88. 

191. Morris, R.J., Mathematical modelling in plant biology. 2018: Springer. 
192. Edelstein-Keshet, L., Mathematical models in biology. 2005: SIAM. 
193. Benková, E., et al., Local, efflux-dependent auxin gradients as a common module for 

plant organ formation. Cell, 2003. 115(5): p. 591-602. 
194. Cassab, G.I., D. Eapen, and M.E. Campos, Root hydrotropism: an update. American 

journal of botany, 2013. 100(1): p. 14-24. 
195. Enders, T.A. and L.C. Strader, Auxin activity: Past, present, and future. American 

journal of botany, 2015. 102(2): p. 180-196. 
196. Gälweiler, L., et al., Regulation of polar auxin transport by AtPIN1 in Arabidopsis 

vascular tissue. Science, 1998. 282(5397): p. 2226-2230. 



150 
 

197. Ibañes, M., et al., Brassinosteroid signaling and auxin transport are required to 
establish the periodic pattern of Arabidopsis shoot vascular bundles. Proceedings of 
the National Academy of Sciences, 2009. 106(32): p. 13630-13635. 

198. Kaneyasu, T., et al., Auxin response, but not its polar transport, plays a role in 
hydrotropism of Arabidopsis roots. Journal of experimental botany, 2007. 58(5): p. 
1143-1150. 

199. Lavenus, J., S. Guyomarc’h, and L. Laplaze, PIN transcriptional regulation shapes root 
system architecture. Trends in plant science, 2016. 21(3): p. 175-177. 

200. Mattsson, J., Z.R. Sung, and T. Berleth, Responses of plant vascular systems to auxin 
transport inhibition. Development, 1999. 126(13): p. 2979-2991. 

201. Mroue, S., A. Simeunovic, and H.S. Robert, Auxin production as an integrator of 
environmental cues for developmental growth regulation. Journal of experimental 
botany, 2018. 69(2): p. 201-212. 

202. Rahman, A., Auxin: a regulator of cold stress response. Physiologia plantarum, 2013. 
147(1): p. 28-35. 

203. Taniguchi, Y.Y., et al., Involvement of Arabidopsis thaliana phospholipase Dζ2 in root 
hydrotropism through the suppression of root gravitropism. Planta, 2010. 231(2): p. 
491-497. 

204. Taylor-Teeples, M., A. Lanctot, and J.L. Nemhauser, As above, so below: Auxin's role 
in lateral organ development. Developmental biology, 2016. 419(1): p. 156-164. 

205. Vanneste, S. and J. Friml, Auxin: a trigger for change in plant development. Cell, 
2009. 136(6): p. 1005-1016. 

206. Wang, Y., K. Li, and X. Li, Auxin redistribution modulates plastic development of root 
system architecture under salt stress in Arabidopsis thaliana. Journal of plant 
physiology, 2009. 166(15): p. 1637-1645. 

207. Zhao, Y., Auxin biosynthesis and its role in plant development. Annual review of plant 
biology, 2010. 61: p. 49-64. 

208. Middleton, A.M., et al., Mathematical modelling of the Aux/IAA negative feedback 
loop. Bulletin of mathematical biology, 2010. 72(6): p. 1383-1407. 

209. De Smet, I., et al., Auxin-dependent regulation of lateral root positioning in the basal 
meristem of Arabidopsis. Development, 2007. 134(4): p. 681-690. 

210. Abel, S., M.D. Nguyen, and A. Theologis, ThePS-IAA4/5-like Family of Early Auxin-
inducible mRNAs inArabidopsis thaliana. Journal of molecular biology, 1995. 251(4): 
p. 533-549. 

211. Muraro, D., et al., The influence of cytokinin–auxin cross-regulation on cell-fate 
determination in Arabidopsis thaliana root development. Journal of theoretical 
biology, 2011. 283(1): p. 152-167. 

212. Laplaze, L., et al., Cytokinins act directly on lateral root founder cells to inhibit root 
initiation. The Plant Cell, 2007. 19(12): p. 3889-3900. 

213. Muraro, D., et al., The role of auxin and cytokinin signalling in specifying the root 
architecture of Arabidopsis thaliana. Journal of theoretical biology, 2013. 317: p. 71-
86. 

214. Grieneisen, V.A., et al., Auxin transport is sufficient to generate a maximum and 
gradient guiding root growth. Nature, 2007. 449(7165): p. 1008-1013. 

215. Muraro, D., et al., A multi-scale model of the interplay between cell signalling and 
hormone transport in specifying the root meristem of Arabidopsis thaliana. Journal of 
theoretical biology, 2016. 404: p. 182-205. 



151 
 

216. Wolpert, L., Positional information and the spatial pattern of cellular differentiation. 
Journal of theoretical biology, 1969. 25(1): p. 1-47. 

217. Mitchison, G., The dynamics of auxin transport. Proceedings of the Royal Society of 
London. Series B. Biological Sciences, 1980. 209(1177): p. 489-511. 

218. Petersson, S.V., et al., An auxin gradient and maximum in the Arabidopsis root apex 
shown by high-resolution cell-specific analysis of IAA distribution and synthesis. The 
Plant Cell, 2009. 21(6): p. 1659-1668. 

219. Mironova, V.V., et al., A plausible mechanism for auxin patterning along the 
developing root. BMC systems biology, 2010. 4(1): p. 1-19. 

220. Mironova, V., et al., Combined in silico/in vivo analysis of mechanisms providing for 
root apical meristem self-organization and maintenance. Annals of botany, 2012. 
110(2): p. 349-360. 

221. Grieneisen, V.A., et al., Morphogengineering roots: comparing mechanisms of 
morphogen gradient formation. BMC systems biology, 2012. 6(1): p. 1-20. 

222. Band, L.R., et al., Systems analysis of auxin transport in the Arabidopsis root apex. 
The Plant Cell, 2014. 26(3): p. 862-875. 

223. Xuan, W., et al., Cyclic programmed cell death stimulates hormone signaling and root 
development in Arabidopsis. Science, 2016. 351(6271): p. 384-387. 

224. Mellor, N., et al., Theoretical approaches to understanding root vascular patterning: 
a consensus between recent models. Journal of Experimental Botany, 2017. 68(1): p. 
5-16. 

225. Mellor, N.L., et al., Auxin fluxes through plasmodesmata modify root-tip auxin 
distribution. Development, 2020. 147(6). 

226. Laskowski, M., et al., Root system architecture from coupling cell shape to auxin 
transport. PLoS Biol, 2008. 6(12): p. e307. 

227. Hobbie, L. and M. Estelle, The axr4 auxin‐resistant mutants of Arabidopsis thaliana 
define a gene important for root gravitropism and lateral root initiation. The Plant 
Journal, 1995. 7(2): p. 211-220. 

228. Di Mambro, R., et al., Auxin minimum triggers the developmental switch from cell 
division to cell differentiation in the Arabidopsis root. Proceedings of the National 
Academy of Sciences, 2017. 114(36): p. E7641-E7649. 

229. Brunoud, G., et al., A novel sensor to map auxin response and distribution at high 
spatio-temporal resolution. Nature, 2012. 482(7383): p. 103-106. 

230. Santuari, L., et al., Positional information by differential endocytosis splits auxin 
response to drive Arabidopsis root meristem growth. Current Biology, 2011. 21(22): 
p. 1918-1923. 

231. Liu, J., et al., Modelling and experimental analysis of hormonal crosstalk in 
Arabidopsis. Molecular Systems Biology, 2010. 6(1): p. 373. 

232. Casson, S.A., et al., The POLARIS gene of Arabidopsis encodes a predicted peptide 
required for correct root growth and leaf vascular patterning. The Plant Cell, 2002. 
14(8): p. 1705-1721. 

233. Chilley, P.M., et al., The POLARIS peptide of Arabidopsis regulates auxin transport 
and root growth via effects on ethylene signaling. The Plant Cell, 2006. 18(11): p. 
3058-3072. 

234. Moore, S., et al., Spatiotemporal modelling of hormonal crosstalk explains the level 
and patterning of hormones and gene expression in Arabidopsis thaliana wild‐type 
and mutant roots. New Phytologist, 2015. 207(4): p. 1110-1122. 



152 
 

235. Mellor, N., et al., A core mechanism for specifying root vascular patterning can 
replicate the anatomical variation seen in diverse plant species. Development, 2019. 
146(6). 

236. el-Showk, S., et al., Parsimonious model of vascular patterning links transverse 
hormone fluxes to lateral root initiation: auxin leads the way, while cytokinin levels 
out. PLoS Comput Biol, 2015. 11(10): p. e1004450. 

237. Miyashima, S., et al., Non-cell-autonomous microRNA165 acts in a dose-dependent 
manner to regulate multiple differentiation status in the Arabidopsis root. 
Development, 2011. 138(11): p. 2303-2313. 

238. Merks, R.M., et al., VirtualLeaf: an open-source framework for cell-based modeling of 
plant tissue growth and development. Plant physiology, 2011. 155(2): p. 656-666. 

239. Cartenì, F., et al., Modelling the development and arrangement of the primary 
vascular structure in plants. Annals of botany, 2014. 114(4): p. 619-627. 

240. Lebovka, I., et al., Computational modelling of cambium activity provides a 
regulatory framework for simulating radial plant growth. bioRxiv, 2020. 

241. Wallner, E.-S., et al., Strigolactone-and karrikin-independent SMXL proteins are 
central regulators of phloem formation. Current Biology, 2017. 27(8): p. 1241-1247. 

242. Miyashima, S., et al., Mobile PEAR transcription factors integrate positional cues to 
prime cambial growth. Nature, 2019. 565(7740): p. 490-494. 

243. Gehan, M.A., et al., PlantCV v2: Image analysis software for high-throughput plant 
phenotyping. PeerJ, 2017. 5: p. e4088. 

244. Wunderling, A., et al., Novel tools for quantifying secondary growth. Journal of 
experimental botany, 2017. 68(1): p. 89-95. 

245. Roeder, A.H., et al., A computational image analysis glossary for biologists. 
Development, 2012. 139(17): p. 3071-3080. 

246. Burton, A.L., et al., RootScan: software for high-throughput analysis of root 
anatomical traits. Plant and Soil, 2012. 357(1): p. 189-203. 

247. Lartaud, M., et al., PHIV-RootCell: a supervised image analysis tool for rice root 
anatomical parameter quantification. Frontiers in plant science, 2015. 5: p. 790. 

248. Chopin, J., et al., Rootanalyzer: a cross-section image analysis tool for automated 
characterization of root cells and tissues. PloS one, 2015. 10(9): p. e0137655. 

249. Hall, H.C., et al., Precision automation of cell type classification and sub-cellular 
fluorescence quantification from laser scanning confocal images. Frontiers in plant 
science, 2016. 7: p. 119. 

250. de Reuille, P.B., et al., MorphoGraphX: A platform for quantifying morphogenesis in 
4D. Elife, 2015. 4: p. e05864. 

251. Shpak, E.D., et al., Synergistic interaction of three ERECTA-family receptor-like kinases 
controls Arabidopsis organ growth and flower development by promoting cell 
proliferation. Development, 2004. 131(7): p. 1491-1501. 

252. Bagdassarian, K.S. GitHub Content. 2019  [cited 2019 August 5]; Available from: 
https://github.com/KristineBagdassarian/PXY-ER_enforce_radial_growth. 

253. Abrash, E.B. and D.C. Bergmann, Regional specification of stomatal production by the 
putative ligand CHALLAH. Development, 2010. 137(3): p. 447-455. 

254. Abrash, E.B., K.A. Davies, and D.C. Bergmann, Generation of signaling specificity in 
Arabidopsis by spatially restricted buffering of ligand–receptor interactions. The 
Plant Cell, 2011. 23(8): p. 2864-2879. 

https://github.com/KristineBagdassarian/PXY-ER_enforce_radial_growth


153 
 

255. Hara, K., et al., The secretory peptide gene EPF1 enforces the stomatal one-cell-
spacing rule. Genes & development, 2007. 21(14): p. 1720-1725. 

256. Hara, K., et al., Epidermal cell density is autoregulated via a secretory peptide, 
EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant and Cell Physiology, 
2009. 50(6): p. 1019-1031. 

257. Hunt, L., K.J. Bailey, and J.E. Gray, The signalling peptide EPFL9 is a positive regulator 
of stomatal development. New Phytologist, 2010. 186(3): p. 609-614. 

258. Hunt, L. and J.E. Gray, The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions 
during Stomatal Development. Current Biology, 2009. 19(10): p. 864-869. 

259. Torii, K.U., et al., The Arabidopsis ERECTA gene encodes a putative receptor protein 
kinase with extracellular leucine-rich repeats. The Plant Cell, 1996. 8(4): p. 735-746. 

260. Uchida, N. and M. Tasaka, Regulation of plant vascular stem cells by endodermis-
derived EPFL-family peptide hormones and phloem-expressed ERECTA-family 
receptor kinases. Journal of experimental botany, 2013. 64(17): p. 5335-5343. 

261. Uchida, N., et al., Regulation of inflorescence architecture by intertissue layer ligand–
receptor communication between endodermis and phloem. Proceedings of the 
National Academy of Sciences, 2012. 109(16): p. 6337-6342. 

262. Immanen, J., et al., Cytokinin and auxin display distinct but interconnected 
distribution and signaling profiles to stimulate cambial activity. Current Biology, 
2016. 26(15): p. 1990-1997. 

263. Uggla, C., et al., Auxin as a positional signal in pattern formation in plants. 
Proceedings of the national academy of sciences, 1996. 93(17): p. 9282-9286. 

264. Uggla, C., E.J. Mellerowicz, and B. Sundberg, Indole-3-acetic acid controls cambial 
growth in Scots pine by positional signaling. Plant Physiology, 1998. 117(1): p. 113-
121. 

265. Sundberg, B. and C. Uggla, Origin and dynamics of indoleacetic acid under polar 
transport in Pinus sylvestris. Physiologia Plantarum, 1998. 104(1): p. 22-29. 

266. Björklund, S., et al., Cross‐talk between gibberellin and auxin in development of 
Populus wood: gibberellin stimulates polar auxin transport and has a common 
transcriptome with auxin. The Plant Journal, 2007. 52(3): p. 499-511. 

267. Johnsson, C., et al., The plant hormone auxin directs timing of xylem development by 
inhibition of secondary cell wall deposition through repression of secondary wall 
NAC‐domain transcription factors. Physiologia plantarum, 2019. 165(4): p. 673-689. 

268. Adamowski, M. and J. Friml, PIN-dependent auxin transport: action, regulation, and 
evolution. The Plant Cell, 2015. 27(1): p. 20-32. 

269. Michniewicz, M., P.B. Brewer, and J. Friml, Polar auxin transport and asymmetric 
auxin distribution. The Arabidopsis Book/American Society of Plant Biologists, 2007. 
5. 

270. Blakeslee, J.J., W.A. Peer, and A.S. Murphy, Auxin transport. Current opinion in plant 
biology, 2005. 8(5): p. 494-500. 

271. Goldsmith, M., The polar transport of auxin. Annual Review of Plant Physiology, 
1977. 28(1): p. 439-478. 

272. Vieten, A., et al., Functional redundancy of PIN proteins is accompanied by auxin-
dependent cross-regulation of PIN expression. Development, 2005. 132(20): p. 4521-
4531. 

273. Zhou, J.-J. and J. Luo, The PIN-FORMED auxin efflux carriers in plants. International 
journal of molecular sciences, 2018. 19(9): p. 2759. 



154 
 

274. Grunewald, W. and J. Friml, The march of the PINs: developmental plasticity by 
dynamic polar targeting in plant cells. The EMBO journal, 2010. 29(16): p. 2700-
2714. 

275. Zažímalová, E., et al., Auxin transporters—why so many? Cold Spring Harbor 
perspectives in biology, 2010. 2(3): p. a001552. 

276. Ljung, K., et al., Sites and regulation of auxin biosynthesis in Arabidopsis roots. The 
Plant Cell, 2005. 17(4): p. 1090-1104. 

277. Reinhardt, D., T. Mandel, and C. Kuhlemeier, Auxin regulates the initiation and radial 
position of plant lateral organs. The Plant Cell, 2000. 12(4): p. 507-518. 

278. Reinhardt, D., et al., Regulation of phyllotaxis by polar auxin transport. Nature, 2003. 
426(6964): p. 255-260. 

279. Heisler, M.G., et al., Patterns of auxin transport and gene expression during 
primordium development revealed by live imaging of the Arabidopsis inflorescence 
meristem. Current biology, 2005. 15(21): p. 1899-1911. 

280. Friml, J., et al., Efflux-dependent auxin gradients establish the apical–basal axis of 
Arabidopsis. Nature, 2003. 426(6963): p. 147-153. 

281. Rakusová, H., et al., Polarization of PIN3‐dependent auxin transport for hypocotyl 
gravitropic response in Arabidopsis thaliana. The Plant Journal, 2011. 67(5): p. 817-
826. 

282. Friml, J., et al., Lateral relocation of auxin efflux regulator PIN3 mediates tropism in 
Arabidopsis. Nature, 2002. 415(6873): p. 806-809. 

283. Friml, J., et al., AtPIN4 mediates sink-driven auxin gradients and root patterning in 
Arabidopsis. Cell, 2002. 108(5): p. 661-673. 

284. Tanaka, H., et al., Spatiotemporal asymmetric auxin distribution: a means to 
coordinate plant development. Cellular and Molecular Life Sciences CMLS, 2006. 
63(23): p. 2738-2754. 

285. Petrášek, J., et al., PIN proteins perform a rate-limiting function in cellular auxin 
efflux. Science, 2006. 312(5775): p. 914-918. 

286. Friml, J., et al., AtPIN4 mediates sink-driven auxin gradients and root patterning in 
Arabidopsis. Cell, 2002. 108(5): p. 661-673. 

287. Scheres, B. and J. Xu, Polar auxin transport and patterning: grow with the flow. 
Genes & development, 2006. 20(8): p. 922-926. 

288. Peer, W.A., From perception to attenuation: auxin signalling and responses. Current 
opinion in plant biology, 2013. 16(5): p. 561-568. 

289. Weijers, D. and D. Wagner, Transcriptional responses to the auxin hormone. Annual 
review of plant biology, 2016. 67: p. 539-574. 

290. El-Showk, S., R. Ruonala, and Y. Helariutta, Crossing paths: cytokinin signalling and 
crosstalk. Development, 2013. 140(7): p. 1373-1383. 

291. Schaller, G.E., A. Bishopp, and J.J. Kieber, The yin-yang of hormones: cytokinin and 
auxin interactions in plant development. The Plant Cell, 2015. 27(1): p. 44-63. 

292. Vanstraelen, M. and E. Benková, Hormonal interactions in the regulation of plant 
development. Annual review of cell and developmental biology, 2012. 28: p. 463-
487. 

293. Bishopp, A., et al., Phloem-transported cytokinin regulates polar auxin transport and 
maintains vascular pattern in the root meristem. Current Biology, 2011. 21(11): p. 
927-932. 



155 
 

294. Marhavý, P., et al., Cytokinin modulates endocytic trafficking of PIN1 auxin efflux 
carrier to control plant organogenesis. Developmental cell, 2011. 21(4): p. 796-804. 

295. Pernisová, M., et al., Cytokinins modulate auxin-induced organogenesis in plants via 
regulation of the auxin efflux. Proceedings of the National Academy of Sciences, 
2009. 106(9): p. 3609-3614. 

296. Zhang, W., et al., Type‐A response regulators are required for proper root apical 
meristem function through post‐transcriptional regulation of PIN auxin efflux 
carriers. The Plant Journal, 2011. 68(1): p. 1-10. 

297. Krogan, N.T., et al., Deletion of MP/ARF5 domains III and IV reveals a requirement for 
Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytologist, 2012. 
194(2): p. 391-401. 

298. Chen, Q., et al., A coherent transcriptional feed-forward motif model for mediating 
auxin-sensitive PIN3 expression during lateral root development. Nature 
communications, 2015. 6(1): p. 1-12. 

299. Rubery, P.H. and A.R. Sheldrake, Carrier-mediated auxin transport. Planta, 1974. 
118(2): p. 101-121. 

300. Raven, J., Transport of indoleacetic acid in plant cells in relation to pH and electrical 
potential gradients, and its significance for polar IAA transport. New Phytologist, 
1975. 74(2): p. 163-172. 

301. Cole, M., et al., DORNROSCHEN is a direct target of the auxin response factor 
MONOPTEROS in the Arabidopsis embryo. 2009. 

302. Borghi, L., et al., Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell 
maintenance, cell differentiation, and lateral organ production. The Plant Cell, 2010. 
22(6): p. 1792-1811. 

303. Guo, J., et al., Inducible knock-down of GNOM during root formation reveals tissue-
specific response to auxin transport and its modulation of local auxin biosynthesis. 
Journal of experimental botany, 2014. 65(4): p. 1165-1179. 

304. Heidstra, R., D. Welch, and B. Scheres, Mosaic analyses using marked activation and 
deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. 
Genes & Development, 2004. 18(16): p. 1964-1969. 

305. Wachsman, G., R. Heidstra, and B. Scheres, Distinct cell-autonomous functions of 
RETINOBLASTOMA-RELATED in Arabidopsis stem cells revealed by the Brother of 
Brainbow clonal analysis system. The Plant Cell, 2011. 23(7): p. 2581-2591. 

306. Wildwater, M., et al., The RETINOBLASTOMA-RELATED gene regulates stem cell 
maintenance in Arabidopsis roots. Cell, 2005. 123(7): p. 1337-1349. 

307. Qi, Y., et al., Targeted deletion and inversion of tandemly arrayed genes in 
Arabidopsis thaliana using zinc finger nucleases. G3: Genes, Genomes, Genetics, 
2013. 3(10): p. 1707-1715. 

308. Christian, M., et al., Targeted mutagenesis of Arabidopsis thaliana using engineered 
TAL effector nucleases. G3: Genes, Genomes, Genetics, 2013. 3(10): p. 1697-1705. 

309. Wang, X., et al., An inducible genome editing system for plants. Nature plants, 2020. 
6(7): p. 766-772. 

310. Ma, X., et al., A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex 
genome editing in monocot and dicot plants. Molecular plant, 2015. 8(8): p. 1274-
1284. 

311. Siligato, R., et al., MultiSite gateway-compatible cell type-specific gene-inducible 
system for plants. Plant physiology, 2016. 170(2): p. 627-641. 



156 
 

312. Zuo, J., Q.W. Niu, and N.H. Chua, An estrogen receptor‐based transactivator XVE 
mediates highly inducible gene expression in transgenic plants. The Plant Journal, 
2000. 24(2): p. 265-273. 

313. Bagdassarian, K.S. and N. Savage. GitHub Code - Numerical Solver. 2021  [cited 2021 
09/06]; Available from: 
https://github.com/KristineBagdassarian/PXY_MP_model_solver.git. 

314. Atkinson, K.E., An introduction to numerical analysis. 2008: John wiley & sons. 
315. Bagdassarian, K.S. GitHub Content - Morris method. Available from: 

https://github.com/KristineBagdassarian/PXY-MP-model_Morris. 
316. Campolongo, F., J. Cariboni, and A. Saltelli, An effective screening design for 

sensitivity analysis of large models. Environmental modelling & software, 2007. 
22(10): p. 1509-1518. 

317. van Houwelingen, H.C., H.C. Boshuizen, and M. Capannesi, Sensitivity analysis of 
state-transition models: How to deal with a large number of inputs. Computers in 
Biology and Medicine, 2011. 41(9): p. 838-842. 

318. Likhachev, D., Parametric sensitivity analysis as an essential ingredient of 
spectroscopic ellipsometry data modeling: An application of the Morris screening 
method. Journal of Applied Physics, 2019. 126(18): p. 184901. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/KristineBagdassarian/PXY_MP_model_solver.git
https://github.com/KristineBagdassarian/PXY-MP-model_Morris


157 
 

 

 

 

 

 

 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 
 

 

Appendix A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Connections in the cambium, receptors in the ring
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Peter Etchells

[128_TD$DIFF]In plants, pluripotent cells in meristems divide to provide cells

for the formation of postembryonic tissues. The cambium is the

meristem from which the vascular tissue is derived and is the

main driver for secondary (radial) growth in dicots. Xylem and

phloem are specified on opposing sides of the cambium, and

tightly regulated cell divisions ensure their spatial separation.

Peptide ligands, phytohormones, and their receptors are

central to maintaining this patterning and regulating

proliferation. Here, we describe recent advances in our

understanding of how these signals are integrated to control

vascular development and secondary growth.
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Introduction
A prerequisite for size is structural support, and the ability

to distribute water and nutrients. The vascular tissue

performs these functions, with xylem providing mechan-

ical strength and movement of water and solutes from

roots, and phloem distributing photosynthates and bulk

flow of phytohormones (reviewed in Refs. [1,2]) including

auxin [3], cytokinin [4–7], gibberellin [8–10] and abscisic

acid (ABA) [11–14], to facilitate physiological responses

and regulate plant development. Specification of xylem

and phloem cell type identity and function has been

summarised in recent reviews [15–22]. Here, we review

signalling mechanisms that regulate the homeostasis of

the cambium, the meristematic tissue from which the

xylem and phloem are derived.

Hormone harmonies
Most plant hormones play a role in the regulation of

cambial activity [10,23–25], but the most prominent

and well-studied are auxin and cytokinin. Auxin is

involved in numerous developmental processes, operat-

ing through a signalling pathway that includes auxin/

indole-3-acetic acid inducible Aux/IAA proteins,

TRANSPORT INHIBITOR RESPONSE 1 (TIR1)

receptor, and the AUXIN RESPONSE FACTOR

(ARF) family of genes [26–31]. ARFs act as transcrip-

tional regulators [30,31]. Of these, ARF5/MONO-

PTEROS (MP) regulates proliferation in the vascular

stem cell niche, as well as performing distinct roles in

early and late stages of vascular development. During

embryogenesis, mp mutants fail to establish a central axis

in the provascular cylinder [32�,33]. Weak mp alleles also

demonstrate disrupted auxin transport [32�,34,35] due to

MP directly activating transcription of several PIN-

FORMED (PIN) auxin efflux transporters [36,37]. Thus,

in early development, MP promotes vascular prolifera-

tion. Late in development, during secondary growth, mp
mutants demonstrate increased cambial divisions, sug-

gesting that in this context MP suppresses vascular

expansion [38��,39]. Conversely, other auxin response

factors, ARF3 and ARF4, have been shown to operate

in concert to upregulate cambium activity [39].

Cytokinin also contributes to cambium development, with

loss of cytokinin-synthesizing genes deterring cambium

formation and thus radial vascular expansion [40,41]. Cyto-

kininsignallingoccursviaaphosphorelay,whichbeginswith

cytokinin perception by its family of receptors CYTOKI-

NIN RESPONSE 1 (CRE1)/WOODEN LEG (WOL)/

Arabidopsis HISTIDINE KINASE4 (AHK4), AHK2 and

AHK3 [41–45]. Following perception, ARABIDOPSIS
PHOSPHOTRANSFER PROTEINS (AHPs) AHP1-

AHP6 are activated [46–48], with AHP1-AHP5 promoting

cytokinin signalling, andAHP6,actingas apseudo-AHPand

thus as a negative regulator of the signal [46–49]. In the final

steps of the signalling cascade, AHPs 1–5 phosphorylate

type-B ARABIDOPSIS THALIANA RESPONSEREGULA-
TORS (ARRs), transcription factors that promote cytokinin

responses including vascular proliferation.AHPs also trigger

the transcription of type-A ARRs, which in turn suppress

cytokinin responses, thus buffering the system [50–55].

Auxin and cytokinin ratios influence the balance between

cell division and differentiation during plant develop-

ment [56–61]. Their concentration gradients span the

vascular tissue with a cytokinin maxima in the phloem,
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and an auxin maxima on the xylem side of the cambium

(Figure 1) [38��,39,62��]. Cross-talk between these hor-

mones is likely important in establishing the auxin/cyto-

kinin ratios. Auxin stimulates the expression of cytokinin

oxidase (CKX), a major cytokinin deactivating enzyme

[63], and suppresses the transcription of isopentenyl trans-
ferase (IPT) genes that encode cytokinin-promoting

enzymes [64,65]. Auxin also increases expression of

AHP6 which as described above dampens cytokinin sig-

nalling [5,47,49]. In the root xylem axis, MP/ARF5 pro-

motes the transcription of TARGET OF MONO-

PTEROS 5 (TMO5), a bHLH transcription factor that

forms a heterodimer with LONESOME HIGHWAY

(LHW). In turn, the TMO5–LHW heterodimer upregu-

lates cytokinin biosynthesis genes LONELY GUY3/4
(LOG3/4) [66,67]. Cytokinin notoriously acts on auxin

by controlling distribution and levels of auxin transport’s

main conductors, the PIN-FORMED (PIN) proteins

[5,58,60,68,69]. Cytokinin application strongly affects

PIN transcription levels, downregulating PIN1–PIN4

and upregulating PIN7 [60]. In developing roots and

shoots, transcription levels of auxin biosynthesis genes

were stimulated by cytokinin, thus promoting auxin

production [70]. Cytokinin also induces expression of

group of related DOF-family transcription factors,

DOF2.1, DOF6, TMO6, PHLOEM EARLY DOF 1

(PEAR1), PEAR2, OBF BINDING PROTEIN 2

(OBP2) and HIGH CAMBIAL ACTIVITY 2 (HCA2)

which promote procambial cell divisions [71–73].

Peptides and proliferation
Peptide ligands and their cognate receptors contribute

substantially to secondary growth and patterning. The

cambium-expressed leucine-rich repeat receptor-like

protein kinase (LRR–RLK) PHLOEM INTERCA-

LATED WITH XYLEM (PXY), also known as TDIF-

RECEPTOR (TDR) [74,75�] and its phloem-expressed

ligand TRACHEARY ELEMENT DIFFERENTIA-

TION INHIBITORY FACTOR (TDIF) are essential

for cell proliferation and division plane specification

(Figures 1 and 2a) [75�,76–79]. TDIF, encoded by CLA-
VATA3/ENDOSPERM SURROUNDING REGION 41
(CLE41), CLE42 and CLE44, was identified as a repressor

of xylem differentiation and is structurally similar to

CLAVATA3 (CLV3) [76], a peptide ligand that regulates

meristem maintenance in shoots and signals to receptor

CLV1 [80,81]. pxymutants were first described as lacking

separation between cambium-derived phloem and xylem

tissues and as having disrupted orientation of cambial cell

divisions [74]. Hirakawa et al. independently identified

PXY by testing loss-of-function mutants in relatives of

CLV1, for TDIF insensitivity [75�].

Since CLV signalling acts to repress expression of home-

odomain transcription factor WUSCHEL (WUS) [82,83],

potential transcript targets of TDIF/PXY signalling were

hypothesised to be members of the WUSCHEL-

RELATED HOMEOBOX (WOX) family [84,85].

WOX4 exhibited a rise in expression levels following

TDIF treatment, and WOX14 was identified as being

down-regulated in pxymutants. Both WOX4 and WOX14

were seen to stimulate cambial cell proliferation [78,79],

with WOX14 cooperatively controlling expression of

LOB DOMAIN-CONTAINING PROTEIN (LBD4)

transcription factor with a DOF transcription factor,

TMO6 (Figures 1 and 2a) [86�].

The PXY/TDIF signalling module influences outputs of

auxin signalling. For instance, PXY acts to represses one

glycogen synthasekinase-3 (GSK3), BIN2-LIKE1 (BIL1).

In the absence of PXY, BIL1 phosphorylates MP

(Figure 2a), which is thought to loosen MP’s interaction

with an IAA suppressor, thus releasing it to control gene

expression [38��]. Recently, Smetana et al. have reported a

positive influence of auxin/MP on PXY expression in the

initial stagesof cambiumformation in roots [87��]. Since the
PXY–BIL1–MP negative interactions were shown to func-

tion in the stem [38��], an interesting question is whether a
negative feedback loopmight exist betweenMP and PXY,

wherein MP attenuates its own activity by boosting PXY

expression — or whether the regulation is organ-specific.

While PXY represses BIL1, it activates other GSK3s and

most notably, BRASSINOSTEROID INSENSITIVE 2

(BIN2) in the presence of TDIF. Active BIN2, in

turn, phosphorylates a transcription factor BRI1 EMS

SUPPRESSOR 1 (BES1), marking it for degradation.

BES1 promotes xylem differentiation (Figures 1 and 2a),

Signalling in the Cambium Bagdassarian et al. 97

Figure 1

Phloem Cambium Xylem

hormone
receptor

ligand
TF

Current Opinion in Plant Biology

Stylised depiction of protein distribution and auxin and cytokinin

accumulation across the vascular cambium in wild type plants.

Cytokinin has a concentration maxima in the phloem; auxin on xylem–

adjacent cambium. RLK’s MOL1 and PXY are expressed on phloem

facing and xylem facing cambium, respectively; ERf receptor

expression spans the cambium. TDIF ligand is expressed in the

phloem and perceived by PXY. Transcription factors WOX4, WOX14,

and XVP exhibit maxima in the cambium. BES1 is present in the

xylem; TMO6 and LBD4 expression as at the edge of the cambium on

the phloem side.

www.sciencedirect.com Current Opinion in Plant Biology 2020, 57:96–103



thus its removal protects the cambium from differentiation

[88��].

A ring of receptors
LRR–RLKs of the SOMATIC EMBRYOGENESIS

RECEPTOR-LIKE KINASE (SERK) family, including

BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1),

are thought to form complexes with PXY at the plasma

membrane in thepresenceofTDIF (Figure2a) [89].BAK1

also functions as a co-receptor for brassinolide with BRAS-

SINOSTEROID INSENSITIVE 1 (BRI1), and as a co-

receptor for bacterial flagellin peptide (flg22) with FLA-

GELLIN SENSING 2 (FLS2), and in these interactions

the ligands act as molecular glue for the BAK1–BRI1 and

BAK1–FLS2 interaction [90–92]. The PXY–SERK inter-

actions likely differ from those described for other

receptors. PXY LRR domains are shorter, and the receptor

domain lacks thecurvature ofBRI1 andFLS2.TDIFbinds

PXY further from the membrane, clear of the BAK1–PXY

interaction site and is thus its function in this respect is

distinct in that it is unlikely to mediate a SERK–RLK

interaction [93].

In pursuit of other vascular regulators, Yang et al. analysed
gain-of-function activation-tagging lines, one of which,

xvp-d, demonstrated pxy-like morphology [94] (Figure 2).

XVP encodes a cambium-expressed transcription factor of

the NAC family which surprisingly localised to the plasma

membrane. Bimolecular fluorescence complementation

(BiFC), a split ubiquitinyeast-two-hybrid system(mbSUS)

and a Fluorescence Resonance Energy Transfer (FRET)

assay support the notion that XVPbinds to the PXY–BAK1
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Signals that regulate cambium activity in Arabidopsis. (a) Schematic representation of phloem, cambium and xylem with signal components shown

in the plasma membrane (PM), cytoplasm, and nucleus. RLK’s are shown in the PM, PXY ligand components are blue, transcription factors are

yellow, and GSK3’s are grey. ‘??’ on blue dashed arrows indicates limited understanding (signals promoting XCP translocation to the nucleus are

not known; partial evidence for a physical interaction between PXY and ER family receptors has been reported). ‘P’ indicates phosphorylation. (b-

c) Hypocotyl transverse sections, with wild type (WT; (b)) showing distinct phloem (ph), xylem (xy) and cambial (ca) domains. (c) Loss of both PXY

and ER family of genes results in loss of distinct tissue domains. Plants also fail to make the transition to true secondary growth. (d–e) Stem

sections stained for lignin, adapted from Yang et al. [94], with the permission from the publisher. (d) WT shows lignin deposition and thus xylem

differentiation in a single arc (d). xvp-d/+ lines demonstrate premature xylem differentiation in the regions marked by arrowheads.

Current Opinion in Plant Biology 2020, 57:96–103 www.sciencedirect.com



complex (Figures 1 and2a, d, e).Removal ofXVPenhanced

TDIF activity, suggesting that XVP represses vascular

proliferation by allowing xylem differentiation to occur.

xvp-d gain-of-function lines demonstrated increased

CLE44 expression, while CLE41 and CLE44 overexpres-

sion lines demonstrated reduced XVP expression. Thus,

XVP promotes the expression of TDIF-encoding genes,

but suppresses the TDIF signal and is itself repressed by

TDIF (Figure 2a) [94].

In the hypocotyl, ERECTA (ER) and its paralogues

ERECTA-LIKE (ERL1) and ERECTA-LIKE (ERL2)
have been reported to promote auxin biosynthesis [95].

Of these, ER and ERL1, have been shown to prevent

premature xylem fibre formation, as er erl1 lines exhibited
precocious fibre differentiation [96]. er enhances the loss-
of-function phenotype for another LRR–RLK, SUP-

PRESSOR OF BIR-1 (SOBIR1)/EVERSHED (EVR)

[97], which is also responsible for preventing early xylem

fibre formation in Arabidopsis hypocotyls. ER and

SOBIR1 physically interact at the plasma membrane to

perform this function. ER family members regulate not

only the xylem, but also the cambium. ER and ERL1 are

thought to restrict radial expansion of hypocotyls as er erl1
lines exhibit increases in xylem area (Figures 1 and 2a)

[96]. By contrast, the er erl1 erl2 triple mutants demon-

strate a reduction in secondary growth [98], thus interplay

between these three receptors in the context of cambium

regulation requires further investigation.

ER family regulation of vascular development occurs via a

genetic interaction withmembers of the PXY gene family.

In the absence of the PXY gene family (PXY, PXY-LIKE 1
(PXL1) and PXL2), vascular cells are larger, however this

increase is dependent uponER andERL2, as pxy pxl1 pxl2
er erl2 lines have cell sizes similar to those of wild type.

Removing all members of both families prevented the

transition to true secondary growth, as cell division was

vastly reduced and phloem was present in poles rather

than a continuous ring as is the case in wild type. Thus,

interacting PXY and ER families regulate cell division,

cell size, and organisation in the vascular tissue

(Figures 1 and 2b, c) [98].

Like ER and ERL1, a LRR–RLK, MORE LATERAL

GROWTH (MOL1), also suppresses cambial activity as

mol1 mutants demonstrated larger cambium-derived

domains compared to wild type [99,100]. MOL1 was

identified in a set of experiments where Arabidopsis
inflorescence stem explants were subjected to auxin

(NAA) treatments. These treatments initiated cambium

formation in the explants which were then subjected to

transcriptome analysis. REDUCED IN LATERAL

GROWTH (RUL1), a receptor with a positive effect

on cambium activity was additionally identified in these

experiments [99]. While ER’s signal peptides have been

determined to belong to the EPIDERMAL

PATTERNING FACTOR LIKE (EPFL) family [101–

108], exactly which of them control cell division in the

cambium is yet to be determined. Ligands for MOL1,

RUL1 and SOBIR1 are also to be discovered.

Ontogeny of the organiser
The cambium represents a group of mostly periclinally

dividing cells with the ability to generate xylem and

phloem, on its two opposite sides [87�� [131_TD$DIFF],109,110]. A

vascular organizer in xylem cells adjacent to the initi-

ating cambium that is characterized by high auxin

levels, imposes stem-cell function on its neighbour to

initiate cambial divisions [87��]. Since at the secondary

growth stage xylem cells have already undergone pro-

grammed cell death thus stripping them from signalling

ability, Smetana et al. proposed that cell identity infor-

mation must be passed on earlier, during xylem forma-

tion [87��]. Auxin, acting through MP, ARF7 and

ARF19, promotes the expression of HD-ZIP III genes,

which have been previously reported as regulators of

xylem identity [111–114] downstream of auxin

[115,116]. Here, they were linked to the correct estab-

lishment of the vascular organizer [87��]. WOX4 and

PXY, which are required for auxin responses in the

cambium [117], were also required in the stem-cell

organizer [87��].

While Smetana et al. characterised the ability of the xylem
to specify the position of the initiating cambium in

adjacent cells in the Arabidopsis root [87��], Shi

et al. aimed to explore pattern in the established hypo-

cotyl vasculature [109]. The cambium was found to be

separated into three distinct sub-domains in each cell file

along the radial axis — proximal, central, and distal.

Independently, both Smetana et al. and Shi

et al. defined PXY and WOX4 as part of the xylem-facing

side of the cambium, that is the organizer side of the

cambium, verifying the importance of these components

for the cambium activity [87��,109]. They also confirmed

a long-standing hypothesis in which the cambium stem

cells (central) are flanked by mother cells of the xylem

(proximal) and phloem (distal) within each vascular cell

file [118].

Sapling similarities
A significant proportion of the molecular mechanisms

controlling cambium growth and development comes

from studies of Arabidopsis, but evidence suggests that

much is conserved in forest trees. One such example is

ethylene, which promotes cell division in the cambium of

both Arabidopsis and poplar [23,119]. In poplar, ethylene-

induced ETHYLENE RESPONSE FACTORS (ERFs)
that were overexpressed altered wood formation and stem

diameter [120]. Our understanding of the distribution of

auxin and cytokinin in the dividing cambia and phloem

arose from experiments in poplar. These patterns are

supported by transcript profiling showing that cytokinin
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and auxin responses coincide with tissue-specific hor-

monal gradients. Transgenic Populus with elevated cyto-

kinin biosynthesis displayed increases in cambial auxin

concentration and a dramatic increase in secondary

growth, confirming the auxin–cytokinin connection

[62��,121].

Alongside the TDIF-PXY-WOX4 signalling module

[122,123], further members of the CLE family also regu-

late the cambium in poplar. PttCLE47 positively regulates
cell division in the vascular cambium, as its repression led

to reduced secondary xylem formation. PttCLE47

appears to act in a cell-autonomous fashion in the vascular

cambium [124]. By contrast, PtrCLE20, expressed specif-

ically in developing xylem, was found to reduce cambial

divisions in part by reducing PtrWOX4 expression [125].

Thus, CLE peptides influence the cambium from oppos-

ing sides; PttCLE41 (from which TDIF is derived) acting

from phloem, PtrCLE20 from the xylem, and PttCLE47
operating from within the cambium [122–125].

Conclusions
Interactions between LRR–RLKs, their ligands, cyto-

plasmic signalling intermediates, and their targets are

increasingly well-defined in our understanding of cam-

bium regulation [126,127]. A recent study has proposed a

transcriptional network that may explain many of the

relationships between these components [86�]. Identifi-
cation of further signalling elements, such as ligands for

MOL1 and RUL1will help refine this picture. Remaining

challenges surround hormones such as gibberellic acid

and jasmonic acid, known to contribute to radial growth

[24,128], but whose role in the existing networks is largely

unexplored. Much of what we know has also been char-

acterised in a single tissue type, but differences in cam-

bium regulation occur along the apical–basal axis of the

plant [98] and how those differences underpin variations

in morphology remains unclear. Finally, this review has

focussed mostly on Arabidopsis, and entirely on dicot

species. A recent analysis of cambium-regulating genes

identified a small number of genes that were absent in the

monocot clade [129]. Thus, an important question con-

cerns how these networks may have beenmodified to give

rise to the significantly different scattered vascular mor-

phology of grass species.
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Standard Operating Procedure for Extracting 
Cell Morphology Using MATLAB 
 
 
The guideline below outlines the steps for extracting the intrinsic properties of plant vascular cells 
using microscope images and MATLAB tools. The example is provided for wild type plants and 
involves a manual selection step. In the case of simpler or more colour-defined objects, the process 
of selection could be automated.  
 

I. Cell Selection 
 
In this section, we outline the manual selection process used to prepare the data for analysis.  
 

1. Obtain image of 
known 
size/calibration 

2. Load it in GIMP or 
another similar 
software 

3. Identify the ‘Fuzzy 
Select Tool’ or an 
equivalent from the 
programme Toolbox 
(Fig. 1). 

 
 
 
 
 
 

4.  Identify the object (in this case cell) of interest, adjusting the Fuzzy Select Tool threshold as 
required (Fig. 3).  

 
 
 
 
  

Fig. 1 

Fig. 2 



5. Next, assign your object a colour, with a simple RGB code that can be tracked using MATLAB 
tools (e.g. ‘red’ (255,0,0)) (Fig. 3).  

6. Use Paintbrush or Bucket Fill to colour object (Fig. 3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Assign objects of the same type the same colour (Fig. 3).  
8. Double-check for defects in colouring/missing areas and correct for those. Note that errors 

depend on image quality, bias in two-dimensional imaging and accuracy of software should 
be accounted for. Consistency in choice and method of selection/colouring is imperative for 
optimal results. 

 
Note: Object colour code can be checked in MATLAB by reading an image X and applying the command 
‘impixel(X)’ which allows the user to directly select a pixel and receive as an output its RGB code. 
 

II. MATLAB Procedure 
 
In this section, the MATLAB procedure used to analyse the image data prepared as per the section 
above is described. The code can be optimised depending on the user requirements. In the section 
“Main function”, we discuss the part of the programme that is run to obtain results, while the ‘Other 
functions’ section contains the subfunctions that are responsible for performing operations within 
the programme. 
 

Main function 
 
The function breaks up a coloured image into binary images corresponding to the different cell types 
/ object types that had been colour-coded. There are different ways to organise and export the data, 
depending on the analysis requirements. Here, we describe one possible way of organisation. 
 

1. Once you have colour-coded your images, deposit them in a folder (in this case, the folder is 
called ‘WT’ and the variable ‘sourceWT’ is assigned this folder’s address.) 

2. The main function uses the function ‘extractCellProperties’ which acquires the properties of 
the objects. The function will be described later in this document, in the ‘Other functions’ 
section. 

 

Fig. 3 



sourceWT = 'C:\Users\NBuser\Documents\MATLAB\Images Paper\Coloured Images\WT'; 
[propertiesXylem_WT,propertiesFiber_WT,propertiesPhloem_WT,propertiesParynchema_W
T]=extractCellProperties(sourceWT); 
 
 

3. The next part of the main function organises your output. It creates a vector of column 
names, then use the function ‘AssignSpecies’ to add ‘WT’ as the corresponding name to all 
rows that contain data for cells from ‘WT’ images. Use the function ‘assignCellType’ to give 
cell type names to the corresponding data from those cell types (assign row name ‘xylem’ 
for a data row with data for an object of type ‘xylem’). 

 
 
CellProperties={'Species' 'CellType' 'CellArea' 'Ratio' 'Perimeter'}; 
 
%name species for each matrix 
SpeciesWT='WT'; 
[Species_WT_Xy,Species_WT_Fi,Species_WT_Ph,Species_WT_Pa]=assignSpecies(proper
tiesXylem_WT,propertiesFiber_WT,propertiesPhloem_WT,propertiesParynchema_WT,Speci
esWT); 
 
%assign names to the cell types in WT 
[cellType_WT_Xy,cellType_WT_Fi,cellType_WT_Ph,cellType_WT_Pa]=assignCellTypes(pr
opertiesXylem_WT,propertiesFiber_WT,propertiesPhloem_WT,propertiesParynchema_WT); 
 

4. Next, the main function creates a table with the extracted properties. 
 
%create tables with the properties 
%add variable names for each 
%For WT 
WT_Table_Xy = table(Species_WT_Xy, cellType_WT_Xy, 
propertiesXylem_WT(:,2),propertiesXylem_WT(:,3),propertiesXylem_WT(:,4)); %the name of 
the rows come after 'RowNames' 
WT_Table_Xy.Properties.VariableNames = CellProperties; 
 
WT_Table_Fi = table(Species_WT_Fi, cellType_WT_Fi, 
propertiesFiber_WT(:,2),propertiesFiber_WT(:,3),propertiesFiber_WT(:,4)); %the name of 
the rows come after 'RowNames' 
WT_Table_Fi.Properties.VariableNames = CellProperties; 
 
WT_Table_Ph = table(Species_WT_Ph, cellType_WT_Ph, 
propertiesPhloem_WT(:,2),propertiesPhloem_WT(:,3),propertiesPhloem_WT(:,4)); %the 
name of the rows come after 'RowNames' 
WT_Table_Ph.Properties.VariableNames = CellProperties; 
 
WT_Table_Pa = table(Species_WT_Pa, cellType_WT_Pa, 
propertiesParynchema_WT(:,2),propertiesParynchema_WT(:,3),propertiesParynchema_WT(
:,4)); %the name of the rows come after 'RowNames' 
WT_Table_Pa.Properties.VariableNames = CellProperties; 
 

5. Finally, spreadsheets with data for each cell type are created. 
 
filename_WT_Xy='WT_Table_Xy_tidy.xlsx'; 
writetable(WT_Table_Xy, filename_WT_Xy); 
 



filename_WT_Fi='WT_Table_Fi_tidy.xlsx'; 
writetable(WT_Table_Fi, filename_WT_Fi); 
 
filename_WT_Ph='WT_Table_Ph_tidy.xlsx'; 
writetable(WT_Table_Ph, filename_WT_Ph); 
 
filename_WT_Pa='WT_Table_Pa_tidy.xlsx'; 
writetable(WT_Table_Pa, filename_WT_Pa); 
 
 
 

Other functions 
 

1. The function ‘extractCellProperties’ take the address of the source folder, loops over the 
images and outputs the properties of each object type (here, cell types). The sub-functions 
are described below.  

 
function[propertiesXylem,propertiesFiber,propertiesPhloem,propertiesParynchema]=extract
CellProperties(sourceFolder) 
images =dir(fullfile(sourceFolder,'*.png')); 
numFiles = length(images); %how many images in the folder 
 
%start with a row of zeros to build tables 
[propertiesXylem, propertiesFiber, propertiesPhloem, propertiesParynchema] = 
deal(zeros(4,1)'); 
 
%loop over images 
%splitExport splits the images into binary images - white objects on black background 
%these can be viewed as connected components of pixels whose properties can 
%be extracted (area, perimeter, ellipticity) 
%splitExport returns, one image at a time, all the properties for all the 
%different cell types for that image. 
%the below loops over the images and stacks in a table the properties for 
%all images for a specific genotype 
for k = length(images):-1:1 
[Xylem_Table_Num, Fiber_Table_Num,Phloem_Table_Num, 
Parynchema_Table_Num]=splitExport(images(k).name,sourceFolder); 
    propertiesXylem=vertcat(propertiesXylem, Xylem_Table_Num); 
    propertiesFiber=vertcat(propertiesFiber, Fiber_Table_Num); 
    propertiesPhloem=vertcat(propertiesPhloem, Phloem_Table_Num); 
    propertiesParynchema=vertcat(propertiesParynchema, Parynchema_Table_Num); 
end 
 
%remove zeros and convert pixels to microns 
[propertiesXylem, propertiesFiber, propertiesPhloem, 
propertiesParynchema]=convert2Microns(propertiesXylem, propertiesFiber, 
propertiesPhloem, propertiesParynchema); 
 

2. ‘splitExport’ uses functions ‘imagesNew’, ‘ConnectedComponents’ and ‘NumberProperties’. 
It takes the images in the source file and outputs the properties of the cells.  

 
function[Xylem_Table_Num_WT, Fiber_Table_Num_WT,Phloem_Table_Num_WT, 
Parynchema_Table_Num_WT]=splitExport(baseFileName,source) 



%this function takes the 'name' for a source and the base name for an image 
%reads the image and returns table of properties for that image 
    fullFileName = fullfile(source, baseFileName); %combine for every filename 
    imageRead= imread(fullFileName); %read each image 
    [Ix,Ip,Iph,Ipa]=imagesNew(imageRead); %separate the cell images for each 
    %for the table of properties 
    [Ix_cc,Ip_cc,Iph_cc,Ipa_cc]=ConnectedComponents(Ix,Ip,Iph,Ipa); %connected 
components for each cell type 
    Xylem_Table_Num_WT=NumberProperties(Ix_cc); 
    Fiber_Table_Num_WT=NumberProperties(Ip_cc); 
    Phloem_Table_Num_WT=NumberProperties(Iph_cc); 
    Parynchema_Table_Num_WT=NumberProperties(Ipa_cc); 
    

3. The function ‘imagesNew’ takes an image and splits it into binary images according to the 
specified colour-scheme. Note that in ‘imagesNew’, the RGB codes used must be specific to 
the data, i.e. the colours chosen in the “Cell Selection” section. The command ‘bwareaopen’, 
known as ‘area opening’, is used to clear noise and removes all connected components with 
fewer than the specified number of pixels, thus producing another binary image. The 
specified number of pixels depends on the objects under investigation, and will likely be 
experiment-specific. 

 
function [Ix,Ip,Iph,Ipa]=imagesNew(I) 
 
clc; 
[x,y,numberofcolours]=size(I); 
 
%create black images corresponding to each cell type 
[Ix,Ip,Iph,Ipa] = deal(0*I); 
 
for i=1:x 
    for j=1:y 
        if ((I(i,j,1)==254)&&(I(i,j,2)==0)&&(I(i,j,3)==0)) %image for xylem 
            Ix(i,j,1)=255; 
            Ix(i,j,2)=255; 
            Ix(i,j,3)=255; 
        elseif ((I(i,j,1)==0)&&(I(i,j,2)==0)&&(I(i,j,3)==254)) %image for fibers 
            Ip(i,j,1)=255; 
            Ip(i,j,2)=255; 
            Ip(i,j,3)=255; 
        elseif ((I(i,j,1)==0)&&(I(i,j,2)==255)&&(I(i,j,3)==3))%image for phloem 
            Iph(i,j,1)=255; 
            Iph(i,j,2)=255; 
            Iph(i,j,3)=255; 
        elseif ((I(i,j,1)==255)&&(I(i,j,2)==255)&&(I(i,j,3)==0)) %image for parynchema 
            Ipa(i,j,1)=255; 
            Ipa(i,j,2)=255; 
            Ipa(i,j,3)=255; 
        end 
    end 
end 
 
 



Ix=im2bw(Ix); %transform into binary image 
Ix=bwareaopen(Ix,50);%clear noise 
 
 
Ip=im2bw(Ip); 
Ip=bwareaopen(Ip,20); 
 
Iph=im2bw(Iph); 
Iph=bwareaopen(Iph,10); 
 
Ipa=im2bw(Ipa); 
Ipa=bwareaopen(Ipa,50); 
 

4. The function ‘NumerProperties’ extracts the area ellipticity and perimeter of the objects. 
 
function [NumberPropertiesTable]=NumberProperties(cc) %input connected components, 
receive their properties 
 
celldata = regionprops(cc, 'Area','MajorAxisLength','MinorAxisLength', 'Eccentricity', 
'Perimeter'); %properties of connected components 
cell_number=cc.NumObjects; 
cell_areas=[celldata.Area]; %each element is a scalar=actual number of pixels in the region 
 
lambda1=[celldata.MajorAxisLength]; 
lambda2=[celldata.MinorAxisLength]; 
ratio=lambda2./lambda1; %create ratio column 
cell_perimeter=[celldata.Perimeter]; 
 
typeofcellarray = zeros(cell_number, 1); 
     
NumberPropertiesTable(:, 1)= typeofcellarray'; 
NumberPropertiesTable(:, 2) = cell_areas'; 
NumberPropertiesTable(:, 3) = ratio'; 
NumberPropertiesTable(:, 4) = cell_perimeter'; 
NumberPropertiesTable; 
 

5. The function ‘ConnectedComponents’ extracts the connected components of white pixels in 
the images. This is done by the command ‘bwconncomp’ which takes an image and a user-
specified connectivity parameter. The connectivity parameter (i.e. how many pixel 
neighbours of the same colour are required to consider that pixel part of the connected 
component) are again specified for the particular objects (i.e. the specific cell types). 
Connectivity can be adjusted according to the requirements of the problem to be solved. 

 
function [Ix_cc,Ip_cc,Iph_cc,Ipa_cc]=ConnectedComponents(Ix,Ip,Iph,Ipa) 
 
Ix_cc = bwconncomp(Ix, 8); 
Ip_cc = bwconncomp(Ip, 4); 
Iph_cc = bwconncomp(Iph, 8); 
Ipa_cc = bwconncomp(Ipa, 8); 
 
 



6. The function ‘convert2Microns’, used in ‘extractCellProperties’ converts the data from 
pixels to microns using a calibration ratio which was measured interactively using a 
graticule image and the command ‘imtool’ in MATLAB. 

 
function[propertiesXylem, propertiesFiber, propertiesPhloem, 
propertiesParynchema]=convert2Microns(propertiesXylem, propertiesFiber, 
propertiesPhloem, propertiesParynchema) 
%the function takes the table of properties of different cell types 
%removes first row of zeros 
%then uses callibration factors for area and length to convert pixels to 
%microns 
 
%calculate spatial and length factors for conversion from pixels to microns 
SpatialFactor_Area=[10/33]*[10/33]; 
SpatialFactor_Length=[10/33]; 
 
%remove first row of zeros 
propertiesXylem(1,:)=[]; 
propertiesFiber(1,:)=[]; 
propertiesPhloem(1,:)=[]; 
propertiesParynchema(1,:)=[]; 
%callibrate pixels to microns 
propertiesXylem(:,2)=propertiesXylem(:,2)*SpatialFactor_Area; 
propertiesXylem(:,4)=propertiesXylem(:,4)*SpatialFactor_Length; 
 
propertiesFiber(:,2)=propertiesFiber(:,2)*SpatialFactor_Area; 
propertiesFiber(:,4)=propertiesFiber(:,4)*SpatialFactor_Length; 
 
propertiesPhloem(:,2)=propertiesPhloem(:,2)*SpatialFactor_Area; 
propertiesPhloem(:,4)=propertiesPhloem(:,4)*SpatialFactor_Length; 
 
propertiesParynchema(:,2)=propertiesParynchema(:,2)*SpatialFactor_Area; 
propertiesParynchema(:,4)=propertiesParynchema(:,4)*SpatialFactor_Length; 
 

7. The functions ‘assignSpecies’ and ‘assignCellTypes’ are responsible for organising the data in 
such a way so as to have each row of data with corresponding genotype (e.g. wild type) and 
cell type (e.g. xylem, phloem, etc.) information. 

 
function[Species_Xy,Species_Fi,Species_Ph,Species_Pa]=assignSpecies(propertiesXylem,
propertiesFiber,propertiesPhloem,propertiesParynchema,speciesName) 
 
Species_Xy=repmat(speciesName,size(propertiesXylem(:,1)),1); 
Species_Fi=repmat(speciesName,size(propertiesFiber(:,1)),1); 
Species_Ph=repmat(speciesName,size(propertiesPhloem(:,1)),1); 
Species_Pa=repmat(speciesName,size(propertiesParynchema(:,1)),1); 
 
function[cellType_Xy,cellType_Fi,cellType_Ph,cellType_Pa]=assignCellTypes(propertiesXyl
em,propertiesFiber,propertiesPhloem,propertiesParynchema) 
cellTypes={'Xylem' 'Fiber' 'Phloem' 'Parynchema'}; 
cellType_Xy=repmat(cellTypes(1),size(propertiesXylem(:,1)),1); 
cellType_Fi=repmat(cellTypes(2),size(propertiesFiber(:,1)),1); 
cellType_Ph=repmat(cellTypes(3),size(propertiesPhloem(:,1)),1); 
cellType_Pa=repmat(cellTypes(4),size(propertiesParynchema(:,1)),1); 
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ADDENDUM

Versatile method for quantifying and analyzing morphological differences in
experimentally obtained images
Kristine S. Bagdassarian a, Katherine A. Connor a, Ian H Jermyn b, and J.Peter Etchells a

aDepartment of Biosciences, Durham University, Durham, UK; bDepartment of Mathematical Sciences, Durham University, Durham, UK

ABSTRACT
Analyzing high-resolution images to gain insight into anatomical properties is an essential tool for investigation
in many scientific fields. In plant biology, studying plant phenotypes from micrographs is often used to build
hypotheses on gene function. In this report, we discuss a bespokemethod for inspecting the significance in the
differences between the morphologies of several plant mutants at cellular level. By examining a specific
example in the literature, we will detail the approach previously used to quantify the effects of two gene
families on the vascular development of hypocotyls in Arabidopsis thaliana. The method incorporates
a MATLAB algorithm and statistical tools which can be modified and enhanced to tailor to different research
questions in future studies.
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In many branches of science, an important step in investigating
a mechanism or structure involves obtaining high-resolution
images of the observed behaviors and/or morphology. In biology,
the incorporation of image analysis tools has been increasing in
popularity.1,2,3 Several methods to analyze histology of roots and
root architecture were introduced over the past decade4–6 and
more recently, machine-learning-based tools have begun to
emerge.7,8 Additionally, open-source platforms such as
LithoGraphX, developed from MorphoGraphX9 have also been
established.

In the study of plant vascular tissue, onemeans of investigating
genetic interactions includes the use of microscopy to image
transverse or longitudinal cross-sections of plants and plant
mutants. By studying the phenotypes generated through genome
editing, it is possible to characterize the contribution of a specific
gene to the plant growth and development. However, while an
intuitive understanding of the differences between genotypes is
crucial for formulating hypotheses and prompting further tests, it
is oftentimes difficult to quantify how significant certain variabil-
ities are, especially between mutants with grossly irregular anat-
omy. Here, we describe a bespoke method for quantifying the
vascular mutations between a range of genotypes using
a MATLAB algorithm and appropriate statistical tools. This
method can be applied for a range of similar research questions
in various disciplines but was specifically employed in Wang
et al.,10to quantify phenotypic variation in Arabidopsis stems
and hypocotyls. The discussion below may be viewed as an
addendum to the Wang et al.,10 publication, and as an illustrative
example to provide clarity of the described approach.

In Wang et al.,10 we aimed to address the question of how
two gene families, the PHLOEM INTERCALATED WITH
XYLEM (PXY) family of genes (PXf)11 and the ERECTA
(ER) family of genes (ERf)12 function in concert to coordinate

cell division and organization. Here, we will detail the proce-
dure we employed to quantify the morphological discrepancy
we observed across different pxf and erf genotypes.

The desired Arabidopsis mutant lines, including those with
sextuple mutations across the gene families, were generated
through the crossing of previously described lines. A total of six
mutant lines were analyzed. The mutant lines were grown using
standard protocols, and tissue was prepared for light microscopy
imaging following fixationwith FAA, embedding in JB4 resin, and
sectioning.10

To study the morphological differences, six images obtained
through brightfieldmicroscopy from each genotype were selected.
The focus of our study was four of the main vascular cell types:
xylem vessels, xylem fibers, phloem cells, and parenchyma. From
each image, a minimum of 10 cell representatives from each cell
type were selected from a wedge of a pre-defined size (60°). In
order to account for the naturally occurring size variation from
the center to border, all the cells along the length of the radius
were included. The four cell types were assigned a unique color
and using the software GIMP, the cell interiors were manually
colored as appropriate (see: Supplemental Data S1).

Next, a MATLAB code was generated to study the proper-
ties of the individual cell types across the genotypes. The
MATLAB Image Processing Toolbox was used, with the over-
all logic of the algorithm described below.

The manually manipulated images were separated into folders
according to genotype. The programme then looped over the
images in that folder. For each image in the folder, four entirely
black images of the same size were generated. The original images
were scanned, and the pre-defined cell colors were recognized.
The entirely black images were then manipulated as follows:
whenever a pixel of a ‘known’ color was identified in a position
(i,j), the pixel in position (i,j) in the new black image was colored
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white. This was performed for each individual color, isolating the
different cell types for analysis, with one original cross-section
image yielding four (new) binary images corresponding to the
four cell types of interest (Figure 1; Figure 2).

The new images were read as binary images in the program.
The previously selected cells were now represented as white

objects on a black background and their properties (area, peri-
meter, major andminor axis) could be quantified as follows. Each
white object represents a connected component of pixels.
Specifically, the binary images are scanned by the program as
a matrix of pixels, where each region of adjacent pixels with the
same value (here, the color white) is assigned a number identity by
the program. The various properties of that region can then be
measured in pixels (Figure 1(b)).

The correspondence between pixel size and the actual size can
be determined using an image of known size and calculating the
micrometer per pixel ratio. Using this method, the data were
transformed from pixels to microns/microns squared to calculate
the correct perimeter and area of the sampled cells. The ellipticity
of the objects (arguably, their level of deformity) weremeasured as
the ratio of major to the minor axis, which is a dimensionless
parameter not requiring conversion.

In Wang et al.,10 the converted measurements were then
saved into an excel spreadsheet where each row corresponded
to measurements taken from a different plant. This was done
in order to implement a nested ANOVA analysis using
R (packages multicomp, ggplot2, graphics).

The data from MATLAB was rearranged in an R-readable
format of one column of measurements matched to a column
of corresponding plant ID’s and a column of corresponding
plant genotypes. A nested ANOVA analysis and a post hoc
Tukey HSD test were performed to identify which genotypes
were pairwise significantly different.

The method described above was employed due to its
relative ease of design compared to other tools and the ability
to be readily adjusted and tailored to a specific research
question. For instance, the method can be used to investigate
the influence of different factors on organisms through
changes in cell deformation and cell size using images of
longitudinal and transverse sections. Other questions that

Figure 1. Example of transforming micrograph (a), into binary images (b) with each
image corresponding to four cell types: xylem vessels (xy), xylem parenchyma (pa),
fibers (fi) and phloem cells (ph). Scale is 100μM in the first image (a). Each white object
on the binary images (b) can be investigated as a connected component of white
pixels and its properties such as area, perimeter and axis, measured.

Figure 2. Block diagram illustrating the main parts of the algorithm. The first row of blocks show the key stages of obtaining the data, with the steps comprising the
extraction phase in the bubble below.
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can be addressed include extracting measurements of bubbles
or polyhype structures in physics, engineering, and chemistry
as well as topological research (especially regarding objects of
similar color scheme) and applying statistical analysis.

The first step of the method represents its largest source of
limitations. While in certain instances, where the objects of inter-
est can be defined by a particular color or color range this step can
be automated, in cases where the objects are not easily distin-
guished, the samples must be chosen manually which can be
rather time-consuming. Notably, using digital tablets which are
supplied with a pen, such as Wacom Drawing Tablets, could
speed up the process and improve accuracy. In future studies,
one might seek to refine the method for more speedy and auto-
mated results. The code used in Wang et al.,10 can be obtained
from Github (https://bit.ly/2Kht0BI).13 A standard operating pro-
cedure is available as Supplemental Data S1.
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RESEARCH ARTICLE

Organ-specific genetic interactions between paralogues of the
PXY and ER receptor kinases enforce radial patterning in
Arabidopsis vascular tissue
Ning Wang1,2,*,¶, Kristine S. Bagdassarian1,¶, Rebecca E. Doherty1,‡,¶, Johannes T. Kroon1,
Katherine A. Connor1, Xiao Y. Wang3,§, Wei Wang2, Ian H. Jermyn4, Simon R. Turner3 and J. Peter Etchells1,**

ABSTRACT
In plants, cells do not migrate. Tissues are frequently arranged in
concentric rings; thus, expansion of inner layers is coordinated with
cell division and/or expansion of cells in outer layers. In Arabidopsis
stems, receptor kinases, PXY and ER, genetically interact to
coordinate vascular proliferation and organisation via inter-tissue
signalling. The contribution of PXY and ER paralogues to stem
patterning is not known, nor is their function understood in hypocotyls,
which undergo considerable radial expansion. Here, we show that
removal of all PXY and ER gene-family members results in profound
cell division and organisation defects. In hypocotyls, these plants
failed to transition to true radial growth. Gene expression analysis
suggested that PXY and ER cross- and inter-family transcriptional
regulation occurs, but it differs between stem and hypocotyl. Thus,
PXYandER signalling interact to coordinate development in a distinct
manner in different organs. We anticipate that such specialised local
regulatory relationships, where tissue growth is controlled via signals
moving across tissue layers, may coordinate tissue layer expansion
throughout the plant body.

KEY WORDS: Arabidopsis, Cambium, Phloem, Procambium,
Signalling, Xylem

INTRODUCTION
Cell migration is fundamental to the development of animal body
plans. By contrast, plant cell walls do not allow cells to migrate, and
consequently plant growth and development is entirely a result of
differential growth. As such, initiation and elaboration of plant organs
occurs via coordinated changes to the orientation and occurrence of
cell divisions, and by cell expansion. InArabidopsis embryos, pattern
is established early in development. Twenty-eight-cell embryos have
already specified the provascular tissue that consists of four cells the
centre of the embryo. A layer of endodermal tissue surrounds the

provasculature, and an outer layer of epidermal cells has also been
specified (ten Hove et al., 2015). Extra tissue types, cortex
and pericycle, are subsequently derived from specific rounds of
asymmetric cell division (Kajala et al., 2014). In the hypocotyl, the
vascular tissue undergoes a transition from diarch to radial symmetry
6-10 days post-germination. Here, cells adjacent to the xylem divide
to generate the vascular cambium (Smetana et al., 2019), such that
the tissue pattern along the radial axis becomes epidermis-cortex-
endodermis-pericycle-phloem-cambium-xylem. As the hypocotyl
further expands, the epidermis and cortex are lost in a process
that corresponds with periderm specification and proliferation at
around 3 weeks post-germination (Wunderling et al., 2018). Thus,
a morphology periderm-phloem-cambium-xylem is generated
and maintained through the remainder of life of the plant (Chaffey
et al., 2002).

Coordination of tissue expansion must occur as the hypocotyl
transitions from diarch to radial symmetry, and as organs increase in
size. This coordination must incorporate cell division, because cell
numbers increase from tens to hundreds to thousands of cells. It
must also incorporate cell size, which differs according to cellular
function in differentiated cells. Consequently, the Arabidopsis
hypocotyl represents an interesting model for studying how patterns
are maintained through very large increases in plant size, a
mechanism that is poorly understood. This organisation contrasts
with that of the Arabidopsis inflorescence stem, where radial growth
is much more limited. Here, radial pattern is defined in the rib zone
below the shoot apex, rather than built upon a pre-existing
embryonic pattern. The tissue types along the radial axis of the
stem also differ. Epidermis, cortex and endodermis are present
outside the phloem, procambium and xylem (Fig. 1A). Pith
constitutes the cell type at the centre of the stem.

Evidence points to the presence of mechanisms that coordinate
the order of tissue layers. In the Arabidopsis root, removal of the
root tip results in a reorganisation of the organ to enable the
formation of a new meristem. Strikingly, stable patterning of tissue
layers is established in the reorganised tissue separately from the
activity of the stem cell niche. This suggests that tissue layer
organisation is independent of stem cell growth (Efroni et al., 2016).
Non-cell autonomous signalling represents one mechanism through
which tissue layer organisation could be coordinated. A ligand
secreted by one tissue could provide positional information to a
receptor located in an adjacent cell type. Ligand-receptor pairs that
signal between tissue layers and are required for tissue layer
organisation have been described. TRACHEARY ELEMENT
DIFFERENTIATION INHIBITORY FACTOR (TDIF) is a ligand
that is encoded for by three genes, CLAVATA3-LIKE/ESR-
RELATED 41 (CLE41), CLE42 and CLE44. TDIF is excreted
from the phloem and perceived by a receptor kinase, PHLOEMReceived 19 February 2019; Accepted 23 April 2019
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INTERCALATED WITH XYLEM (PXY), which is expressed in
the cambium. Loss of TDIF-PXY results in a failure to correctly
organise tissue layers in the vascular tissue. pxy mutants are
characterised by disruption to the spatial separation of xylem,
cambium and phloem. Reductions in cell division in the cambium
and premature xylem differentiation are also a consequence of loss
of PXY (Etchells and Turner, 2010; Fisher and Turner, 2007; Han
et al., 2018; Hirakawa et al., 2010; Hirakawa et al., 2008; Ito et al.,
2006; Kondo et al., 2014; Suer et al., 2011). TDIF-PXY signalling
thus represents a mechanism through which differential growth in
vascular tissue could be coordinated, regulating as it does, tissue
organisation, cell division and differentiation.
TDIF-PXY genetically interacts with a second ligand-receptor

pair to maintain the spatial separation of vascular tissues. In stems,
the ERECTA (ER) receptor is expressed in the phloem, and its
cognate ligands, CHALLAH-LIKE 2/EPIDERMAL PATTERNING
FACTOR-LIKE 4 (CLL2/EPFL4) and CHALLAH (CHAL/EPFL6)
are expressed in the endodermis (Abrash et al., 2011; Uchida et al.,
2012). pxy er mutant stems show organisation defects greater than

those of pxy single mutants (Etchells et al., 2013). Thus, in
stems, the genetic interaction between EPFL-ER and TDIF-PXY
represents a non-cell autonomous signalling system that organises
tissue layers between endodermis, phloem, cambium and xylem. In
hypocotyls, changes to the organisation of vascular tissues in er pxy
hypocotyls are also apparent (Etchells et al., 2013). However, ER
expression is reported to be much broader, being present in phloem,
cambium and xylem parenchyma (Ikematsu et al., 2017). The
spatial expression domains of CHAL and CLL genes have not been
described in hypocotyls.

In the Arabidopsis genome, paralogues of both PXY and ER are
present. The PXY family, hereafter referred to as PXf, comprises
PXY,PXY-LIKE1 (PXL1) and PXY-LIKE2 (PXL2). TDIF is reported
to bind the ligand binding pocket of PXL1 and PXL2 (Zhang et al.,
2016), and pxl1 and pxl2 enhance the vascular organisation defects
that are characteristic of pxy mutants (Etchells et al., 2013; Fisher
and Turner, 2007). The ER paralogues are ER-LIKE1 (ERL1) and
ERL2 (Shpak et al., 2004). The ERECTA family (ERf ) have
wide-ranging roles in regulation of plant growth and development.

Fig. 1. Analysis of CLL2, CHAL, PXL1 and PXL2 expression.
(A) Tissue types in the Arabidopsis stem and hypocotyl.
(B,C) Spatial expression of CLL2 (B) and CHAL (C) in hypocotyl
transverse sections determined using GUS transcriptional
fusions. (D) Graph showing qRT-PCR results for expression of
PXL1 and PXL2 normalised to ACT2 in wild-type and er mutant
inflorescence stems from 5-week-old plants. (E,F) Wild-type (E)
and er (F) stem vascular bundles. (G) Graph showing qRT-PCR
results for expression of PXY, PXL1 and PXL2 normalised to
ACT2 in wild-type and er mutant hypocotyls at 5 weeks of age.
(H,I) Transverse sections of wild-type (H) and er (I) hypocotyls.
In qRT-PCRs (D,G), P values were calculated using Student’s
t-test. Scale bars: 50 µm in B,C (upper), E,F,H,I; 20 µm in B,C
(lower). xy, xylem; c, cambium; ph, phloem; p, xylem
parenchyma; xv, xylem vessels.
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Redundantly, these three genes function in cell elongation, cell
division, inflorescence architecture (Shpak et al., 2004; Torii et al.,
1996), floral patterning (Bemis et al., 2013), shoot apical meristem
fate (Kimura et al., 2018; Uchida et al., 2013) and stomatal spacing
(Shpak et al., 2005). In the context of plant vascular development,
they promote vascular expansion in the stem (Uchida and Tasaka,
2013). By contrast, in hypocotyls they repress radial expansion and
also control the timing of xylem fibre formation (Ikematsu et al.,
2017; Ragni et al., 2011). A hallmark of loss of ERf genes is an
increase in cell size, particularly with respect to the radial axis
(Shpak et al., 2004; Shpak et al., 2003).
In this article, we have investigated the genetic relationships

between PXf and ERf receptors. We generated pxy pxl1 pxl2 er erl1
erl2 sextuple mutants using a combination of classical genetics and
genome editing. In hypocotyls, the sextuplemutant failed tomake the
transition to secondary growth. Further analysis of these lines
demonstrated that PXf and ERf genetically interact to coordinate
tissue integrity at the levels of both cell size and cell division. Gene
expression analysis in stems and hypocotyls suggested that members
of PXY and ER gene families regulated expression of paralogues both
within and between these families. However, this regulation was
distinct in hypocotyls and stems. In stems, PXf and ER also
influenced the expression of non-vascular-expressed EPFL4 and
EPFL6. This suggests that coordination of growth regulators occurs
between vascular and non-vascular tissue layers. Our results
demonstrate that although interactions between members of both
families are crucial in both stem and hypocotyl, the paralogues have
specialised functions within vascular tissue of differing ontogenies.

RESULTS
PXL1 and PXL2 expression is elevated in er stems.
In Arabidopsis stems and hypocotyls, tissue is arranged in concentric
rings with the vasculature at the centre (Fig. 1A). PXY and ER
genetically interact to control vascular development. In stems, ER
ligands, CHAL and CLL2 (Abrash et al., 2011), are expressed in the
endodermis whereas ER is expressed in the phloem (Uchida et al.,
2012). TDIF-encoding genes are expressed in the phloem, and TDIF
signals to PXY, which is expressed in the procambium (Etchells and
Turner, 2010; Fisher and Turner, 2007; Hirakawa et al., 2008). In
mature hypocotyls, endodermis is not present and the CLL2 and
CHAL domains of expression are not known. To better understand the
spatial relationships between the PXY and ER receptors and ER
ligands in hypocotyls, we determined theCHAL andCLL2 expression
pattern in 5-week-old plants using transcriptional reporters (Abrash
et al., 2011). Both CHAL::GUS and CLL2::GUS lines demonstrated
clear expression maxima both in xylem parenchyma and in the
differentiating xylem adjacent to the cambium (Fig. 1B,C).
Expression in the cambium itself was minimal. Thus, active ER
ligand-receptor complexes occur in different locations in stems
compared with hypocotyls. In stem tissue, active ER ligand-receptor
complexes would be in the phloem, whereas in hypocotyls they must
predominate in differentiating xylem.
To better understand the influence that ERmight have upon PXY

signalling, we tested whether expression levels of genes involved
in PXY signalling differed in er mutants. We have previously
shown that TDIF-encoding CLE41, CLE42 and CLE44 levels are
unchanged in er (Etchells et al., 2013), so we analysed expression of
the PXf family of receptors. qRT-PCR was used to test levels of PXf
gene expression in stems and hypocotyls of 5-week-old wild-type
and er plants (Fig. 1D-I). In hypocotyls, the level of PXf gene
expression was unchanged in er mutants compared with wild type
(Fig. 1G). By contrast, PXL1 and PXL2 expression, but not that of

PXY was found to be elevated in er mutant stems (Fig. 1D). These
observations suggest that ER signalling may regulate vascular
development by setting PXL1 and PXL2 levels in the stem. They
also underline that there are differences in regulatory relationships
between patterning genes in stem and hypocotyl.

Genetic interactions between ER and PXf in stems and
hypocotyls
We sought to further investigate the role of PXL1 and PXL in
vascular development. In transverse sections, pxl1 pxl2 double
mutants were indistinguishable from wild type (Fig. S1); however,
we have previously shown that pxl1 and pxl2 enhance the pxy
phenotype (Etchells et al., 2013; Fisher and Turner, 2007)
(Figs 2A,B and 3D). Thus, as PXL gene expression was observed
to be elevated in er stems, but neither er (Fig. 1E-F) nor pxl1 pxl2
(Fig. S1) lines had vascular stem phenotypes except in a pxy
mutant background, we addressed the function of PXL1 and PXL2
regulation by ER in the absence of pxy. er pxf quadruple mutants
(er pxy pxl1 pxl2) were generated and compared with wild-type, pxy,
er, er pxy and pxf lines. In inflorescence stems, er pxf lines had
considerably fewer cells per vascular bundle than either pxf, er or
pxy er counterparts (Fig. 2A; Tables S1 and S2). Therefore PXL1
and PXL2 do function redundantly with ER to regulate vascular
proliferation in the stem, at least in the absence of PXY. In
hypocotyls, a reduction in radial growth was observed in pxf er lines
relative to pxf and er; however, pxf er and pxy er lines were
indistinguishable (Fig. 3; Tables S1 and S3). Thus, pxl1 and pxl2
do not enhance pxy er hypocotyl phenotypes, a result consistent
with our observation that PXL1 and PXL2 expression was
unchanged in er mutant hypocotyls (Fig. 1G).

Although changes to vascular proliferation were apparent in er
pxf inflorescence stems, by far the most dramatic defect was
observed when the vascular bundle shape was assessed (Fig. 2B-F).
In wild-type Arabidopsis stems, the distribution of vascular bundles
is such that there is a greater distribution of vascular tissue along
radial axis of the stem than along the tangential (Fig. 2C). We found
the tangential:radial length ratio of wild-type vascular bundles to be
0.61. In pxf and pxy er lines, this ratio was 0.91 and 1.36,
respectively. In er pxf stems, a dramatic redistribution of vascular
cell types had occurred along the tangential axis (Fig. 2F), such that
the ratio of tangential:radial length of vascular tissue was 2.30
(Fig. 2B; Table S1). In some plant stems, this led to an almost
complete ring of vascular tissue, with phloem cells scattered around
the circumference of the vascular cylinder (arrows in Fig. 2F), rather
than present in discrete vascular bundles (Fig. 2C,D). Thus, PXL1
and PXL2 are crucial for regulating radial pattern in the stem,
particularly in the absence of ER and PXY, and these data support
the idea that ER and PXf constitute a mechanism for organising
vascular cell layers.

Stem ERf expression is subject to the presence of ER
and PXf.
Having observed that PXf genes were differentially expressed in er
mutants (Fig. 1D), and that PXL1 and PXL2 contribute to the control
of stem radial pattern (Fig. 2), we also sought to determine whether
expression of members of the ER gene family were changed in
response to perturbation of PXf or ER genes. In stems and
hypocotyls of pxf lines, ER expression did not differ from wild-type
levels, as determined by qRT-PCR. Expression levels of ERL1
and ERL2were also indistinguishable in wild-type, er and pxf stems
(Fig. 4A-C). By contrast, ERL1 expression was significantly
reduced when er pxf lines were compared with er single mutants.
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Thus ERL1 expression in er mutants is maintained by the PXf
in stems (Fig. 4A). Expression levels of the ER ligands that
function in the stem, CHAL and CLL2, were also tested in this
experiment, as was that of CLL1, which genetically interacts
CHAL and CLL2 (Abrash et al., 2011; Uchida et al., 2012;
Uchida and Tasaka, 2013). Inflorescence stem expression of CHAL
andCLL2, but not that ofCLL1, demonstrated significant reductions
in expression in er pxf lines when compared with er (Fig. 4D-F).
Thus, PXf and ER genetically interact to maintain EPFL ligand
expression in stems in addition to that of their cognate receptor,
ERL1 (Fig. 4A).

Co-regulation of ERf expression by ER and PXf in hypocotyls
In hypocotyls, ERL1 acts redundantly with ER to repress hypocotyl
growth and control the timing of xylem fibre differentiation
(Ikematsu et al., 2017). ERL2 has not been assigned a function in
hypocotyl development as its expression has been reported as absent

from hypocotyls in 9-day-old seedlings and 3-week-old plants
(Ikematsu et al., 2017; Uchida et al., 2013). To understand how PXY
and ER might influence ERf expression, ERf:GUS reporter
constructs (Shpak et al., 2004) were crossed into pxy and er
mutants. To our surprise, in 5-week-old plants, we did detect
ERL2::GUS reporter expression in the hypocotyls of wild type,
which, at this growth stage, demonstrated a very similar pattern to
that observed for ERL1 and ER (Fig. 5A,D,G). Thus, ERL2
expression is a feature of late hypocotyl development. ER,ERL1 and
ERL2 expression was present in most hypocotyl cell types, with two
maxima; the first in the cambium and xylem initials, and the second
in the periderm (Fig. 5A,D,G; arrowheads). No change in the pattern
of ERL1 or ERL2::GUS expression was observed in er mutants
(Fig. 5C,F). However, the clearly defined expression maxima that
were observed in ER::GUS, ERL1::GUS and ERL2::GUS lines in
both wild type and er mutants, lacked definition in the absence of
PXY (Fig. 5B,E,H). Here, for all three reporters, expression was

Fig. 3. Vascular tissue in hypocotyls of pxf er lines and controls. (A-C) Transverse sections through Arabidopsis hypocotyls. (A) Wild type. (B) pxf. (C) pxf er.
(D) Violin plot showing reductions in hypocotyl diameter in er pxf lines compared with controls. Statistical significancewas calculated using ANOVA plus Tukey. xy,
xylem; ph, phloem. Red arrowhead in A marks dividing cambium. Scale bars: 50 µm.

Fig. 2. Comparison of vascular tissue
in stems of pxf er lines and controls.
(A) Violin plot showing mean cells per
vascular bundle. (B) Violin plot showing
representation of vascular bundle
arrangement (bundle tangential/radial axes
ratio). (C-F) Transverse sections through
wild-type (C), er (D), pxf (E) and pxf er (G)
stems. Arrows in F indicate phloem
distributed around the stem, rather than in
discrete bundles, as seen in other genotypes
(C-E). P values were calculated using
ANOVA with an LSD post-hoc test (A).
Scales bars: 50 µm. xy, xylem; ph, phloem.
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observed to be more even across the hypocotyl, thus PXY signalling
is either required to define ERf expression maxima, or cell types in
which ERf are expressed are found throughout the hypocotyl in pxy
mutants. The latter seems unlikely as there are fewer vascular cells
in pxy mutants.

Having defined the pattern of ERf expression in a subset of
genotypes, we sought to address changes to levels of ERf expression
using qRT-PCR (Fig. 5I-K). In common with our observation in the
stem (Fig. 4), hypocotyl ERL1 and ERL2 expression levels did not
differ between wild-type, er and pxf lines (Fig. 5J-K). By contrast, a
striking increase in ERL1 and ERL2 gene expression was observed

Fig. 4. qRT-PCRs showing ERf and EPFL expression in stems. (A-C) Stem
expression of ERL1 (A), ERL2 (B) and ER (C) in wild type, er, pxf and pxf er
mutants in stems. Expression was normalised to 18S rRNA. (D-F) Expression
of CLL2 (D), CHAL (E) and CLL1 (F) in hypocotyls (normalised to 18S rRNA).
P values were calculated using ANOVA with an LSD post-hoc test. Significant
differences are marked with brackets.

Fig. 5. ERf expression in hypocotyls of pxy and er lines. (A-C) ERL1::GUS
in wild type (A), pxy (B) and er (C). (D-F) ERL2::GUS in wild type (D), pxy
(E) and er (F). (G,H) ER::GUS in wild type (G) and pxy (H). Black arrowheads
indicate expression maxima. x, xylem; c, cambium. Scale bars: 50 µm.
(I-K) Expression of ER (I), ERL1 (J) and ERL2 (K) in wild-type, er, pxf and
pxf er hypocotyls (normalised to 18S rRNA). P values were calculated using
ANOVA and an LSD post-hoc test.
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in pxf er hypocotyls relative to all other genotypes tested (Fig. 5J,K).
As such, opposite regulation of ERL1 and ERL2 by ER and PXf
genes occurred in the hypocotyls (Fig. 4J-K) and stem (Fig. 2A-B).
This highlights a difference in the nature of the PXf-ER genetic
interactions in stems and hypocotyls. In hypocotyls, no changes
were observed in levels ofCHAL,CLL1 andCLL2 expression levels
in er, pxf or er pxf lines (Fig. S2).

Hypocotyl size and organisation in PXf ERf mutants
The PXf promotes radial growth in hypocotyls (Etchells et al.,
2013; Fisher and Turner, 2007; Hirakawa et al., 2008) (Fig. 3D;
Tables S1 and S3), whereas ER and ERL1 signalling represses
it (Ikematsu et al., 2017). Thus, our gene expression data
demonstrating that PXf plays a part in repression of ERL gene
expression in hypocotyls (Fig. 5J,K) are consistent with existing
phenotypic data because the PXf might be expected to repress
expression of negative regulators of hypocotyl radial growth.
In addition to repressing radial growth, ER and ERL1 have also
been described as preventing premature fibre formation, as er erl1
hypocotyls develop fibre cells in the location where parenchyma are
present in wild type. ERL2 was thought not to function in the
hypocotyl given its very low expression levels in the early stages of
development (Ikematsu et al., 2017). Because we found ERL2 to be
expressed in hypocotyls at 5 weeks (Fig. 5D,K), we tested whether
ERL2 functioned similarly to ERL1 by analysing er erl2 lines.
Neither change to fibre formation, nor to hypocotyl radial growth
were observed (Fig. S3); thus, in contrast to ERL1 (Ikematsu et al.,
2017), a function for ERL2 in hypocotyl development is not
apparent in a double mutant background with er.
To address the function of the elevated ERL gene expression that

we observed in pxf er hypocotyls (Fig. 5J,K), we removed ERL
gene function from this genotype by generating pxf er erl1, pxf er
erl2 and pxf erf quintuple and sextuple mutants. PXY and ERL1 are
tightly linked on chromosome 5, separated by just 270 kb, so to
overcome this linkage we employed a CRISPR/cas9 construct that
contained two guide RNAs against ERL1 (Fig. S4). Thus, pxf er erl1
and pxf erf plants were generated by genome editing. Secondary
growth in these lines and controls was determined by measuring the
hypocotyl radius in 6-week-old plants (Fig. 6A, Fig. S5C). Radii of
pxf er and pxf er erl1 lines did not show a significant difference. By
contrast, radii of pxf er erl2 and pxf erf hypocotyls were
significantly smaller than those of pxf er erl1 plants (Fig. 6A).
Thus, ERL1 and ERL2 expression is required in pxf er hypocotyls to
maintain hypocotyl growth rates; however, pairwise comparisons
suggested that ERL2 played a greater role than ERL1 in this respect,
as pxf er erl1 hypocotyls were larger than those of pxf er erl2 lines.
During vascular cylinder development in the embryo, the

hypocotyl forms in a diarch pattern with a row of xylem cells that
are flanked by two phloem poles (Dolan et al., 1993). As secondary
growth proceeds, this organisation develops radial symmetry with
phloem present around the circumference of the vascular cylinder
(Chaffey et al., 2002). We analysed hypocotyl morphology in
5-week-old plants. Strikingly, development was perturbed to such a
degree in pxf erf mutants that the position of the original phloem
poles remained apparent (arrows in Fig. 6F; see Fig. S5 for higher
magnification). This demonstrates that vascular development was
retarded to such a degree that these plants could not make the
transformation to true radial growth. Such phenotypes were not
observed in pxf, erf or pxf er erl2 lines (Fig. 6B-E).
Next, we looked to identify recent cell divisions in our mutant

hypocotyls by analysing thin sections. In wild-type and erf lines,
cell divisions were always oriented perpendicular to the hypocotyl

Fig. 6. Transverse sections of hypocotyls from pxf erf lines. (A) Boxplot
showing hypocotyl radii of pxf lines with differing numbers of erf mutations.
(B) Wild-type, (C) erf, (D) pxf, (E) pxf er erl2 and (F) pxf erf vascular tissue.
Sites of phloem poles in pxf erf are marked with red arrows in the left-hand panel
of F (see Fig. S5 for higher magnification). Red arrowheads in B-F align with
cell divisions. Scale bars: 100 µm (left); 50 µm (right); xv, xylem vessel.
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radial axis (Fig. 6B,C, arrowheads). This aspect of normal vascular
development known to perturbed in lines that lack pxy and its
paralogues (Fig. 6D) (Fisher and Turner, 2007). Recent cell
divisions were clearly identifiable in the absence of the PXf, ER
and ERL2, and they remained present, albeit lacking orientation
and at a much reduced frequency in pxf erf lines (Fig. 6E-F).
Thus, although not an absolute necessity for formation of either
phloem or xylem vessels, these receptor-kinase families are
absolutely essential in specifying their positioning and in
coordinating cell division in a manner that allows organised radial
expansion and pattern maintenance (Fig. 6).

Cell size in hypocotyls is balanced by PXf and ERf
One common characteristic of mutants with reduced cell division is
an increase in cell size, relative to wild-type plants. This
compensates for fewer cells, such that final organ size is often
similar to that of wild-type plants (Horiguchi and Tsukaya, 2011). In
the course of our hypocotyl analysis, cell sizes and shapes appeared
to differ among our mutant lines, and, in particular, cells in pxf lines
appeared larger than those of other lines (Fig. 3A,B). Consequently,
cell morphology was calculated from images of anatomical sections
by selecting cell representatives from the different genotypes
and using a MATLAB code to analyse the cells as connected
components with measurable features (Fig. S6A,B). Cell area and
perimeter were investigated for xylem vessels, fibres, xylem
parenchyma and phloem cells in wild-type, pxf, pxf er erl1, pxf er
erl2, and pxf erf lines (Fig. 7) with one exception. Fibre morphology
could not be assessed in pxf erf, as insufficient fibre cells were
present (Fig. 6F). In hypocotyls, all pxf cell types tested
demonstrated increases in cell perimeter relative to wild type
(Fig. 7; Table S4). pxf er and pxf cells demonstrated no statistically
significant differences in vessel, fibre and phloem cell perimeters,
but pxf er xylem parenchyma perimeters were smaller than those of
pxf lines. Strikingly, removal of further members of the ERf restored
vessel, parenchyma and phloem cell perimeters to wild-type sizes
(Fig. 7A,B,D; Table S4). Thus members of the ERf are required to
promote increases in cell size in the absence of PXf.

The one cell type that was the exception to this cell size regulation
was xylem fibres. Here, the increase in fibre perimeter that was
characteristic of pxf mutant hypocotyl cells was not rescued by erf
mutants (Fig. 7C; Table S4). These observations were supported by
cell area measurements. For the four cell types tested, pxf cell areas
were larger than those of wild-type plants but, with the exception of
fibres, removal of er erl1 or er erl2 from pxf restored cell areas to
those observed in wild type (Fig. 7; Table S5).

Xylem cells are characterised by rigid secondary cell walls, so we
hypothesised that parenchyma may be subject to changes in cell
shape to accommodate the increased xylem cell size. To test this
hypothesis, we calculated the ellipticity of the parenchyma and
other hypocotyl cell types by determining their major to minor axis
ratios in wild-type, pxF and pxF er erl2 lines. However, this
parameter varied little between genotypes (Fig. S6C-F).

Phenotypes of pxf erf sextuple mutant stems
To complete our analysis of pxf erf sextuple mutant morphology, we
examined vascular tissue in inflorescence stems. Inflorescence stem
vascular morphology was similar in pxf erf lines and pxf er erl2
counterparts (Fig. 8). Both were characterised by very large
reductions in vascular bundle size. Characteristic xylem and
phloem cell types were present, but only very small xylem vessels
were observed, relative to those found in wild-type, erf and pxf lines
(Figs 8D,E and 9A; Tables S6 and S7). Furthermore, tissue layer

Fig. 7. Comparisons of hypocotyl cell morphology. (A-D) Boxplots on
left showmeancell perimeter for xylemvessels (A), xylemparenchyma (B), fibres
(C) and phloem cells (D). Boxes represent the 25th to 75th percentile, the
horizontal line marks the median. Whiskers’ endpoints are the min/max
points within the interval spanning Q1-1.5*IQR (lower) and Q3-1.5*IQR (upper).
IQR = Q3-Q1 (the length of the box). Asterisks mark significant differences
(ANOVA plus Tukey; ***P<0.001, **P<0.01; see Table S4 for pairwise
comparisons of P values). Ridgeline plots on the right show the distributions
of cell areasdivided intoquartiles.Areasofpxf linesweregreater than thoseofpxf
er erl2 lines in xylem vessels, phloem and parenchyma (P≤0.001) but not fibres.
Differences were calculated with ANOVA and a Tukey post-hoc test;
see Tables S4 and S5 for pairwise comparisons of P values.
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organisation defects were apparent beyond those previously
observed. In particular, the clearly defined organisation of
endodermal and adjacent phloem cap cells were lacking, with the
phloem cap appearing to extend into the cortex (Fig. 8D) or be
absent altogether (Fig. 8E). Thus, tissue layer defects occurred
outwith vascular cell types. These similarities in vascular
morphology were independent of plant size because gross
morphology of pxf erf sextuple lines was considerably smaller
than pxf er erl2 counterparts (Fig. S7).
Having observed large reductions in xylem vessel size in stems

(Fig. 9A), we tested whether PXf and ERf genes genetically
interacted to control cellular morphology of other vascular cell types
in the stem (Fig. 9B,C). In stems, xylem vessels and cells in the
phloem were smaller in pxf lines than in wild type, as determined by
measuring both cell perimeter and cell area, and in contrast to
measurements in the hypocotyl. Removing ER from pxf lines
resulted in no change to the size of these cells, but loss of ERL2 from
pxf er plants caused a further reduction in cell size (Fig. 9A,C;
Tables S6 and S7). Thus, in phloem and xylem vessels, pxf and erf
families interact to maintain cell size. Xylem fibre sizes differed
from this trend. Here, pxf er cells were significantly larger than wild
type, but this phenotype was suppressed in pxf er erl2 plants as fibre
perimeter and area was unchanged from wild type (Fig. 9B;
Tables S6 and S7). We were unable to assess fibre morphology in
pxf erf vascular bundles, as too few were identifiable in these lines
(Fig. 8E). Taken together, our results demonstrate that a genetic
interaction between PXf and ERf signalling coordinates organ size
at the level of cell size, in addition to coordination of proliferation
and pattern maintenance in both stems and hypocotyls.

DISCUSSION
Coordination of growth between cell layers
Plant growth and development require coordination between
expanding tissue layers, particularly where tissue types are
organised in concentric rings. Clearly, expansion of inner layers
must be coordinated with expansion of outer layers. How does
coordination between tissue layers occur? It was proposed some
time ago that the ERf could perform this function (Shpak et al.,
2004), and this initial suggestion has subsequently been supported
by observations that, in the inflorescence stem, endodermis derived
EPFL ligands signal to ER in the phloem to regulate cell division
in the adjacent procambium (Uchida et al., 2012; Uchida and
Tasaka, 2013) (Fig. 10A). Our observation that PXL expression is
higher in the stem of er mutants (Fig. 1D) suggests that these

endodermis-derived signals could act through ER to attenuate
PXf-regulated vascular expansion (Fig. 10A). The alternative
conclusion would be that PXL expression is higher in er mutants
due to a change in stem morphology, but we regard this as unlikely
for two reasons. First, there are negligible differences in vascular
proliferation and organisation in er stem vascular tissue compared
with wild type that could account for such changes in gene
expression (Figs. 1E,F and 2A,B). Second, there is clear evidence
that pxl1 and pxl2 genetically interact with er. This interaction is
apparent in a pxy mutant background, as pxf er lines demonstrated
fewer cells in stem vascular bundles than either pxy er or pxf lines
(Fig. 2; Table S2).

Our experimentation with pxf er lines led to observations that
PXf receptors, redundantly with ER, are required for normal
expression levels of ERL receptors and their EPFL ligands in the
stem (Fig. 3). As CLL2 and CHAL are endodermis expressed,
changes in the expression levels of these genes could be due to
coordination of vascular tissue expansion in stems across multiple
tissue layers via a series of feedback loops (Fig. 10). As the
endodermal stem layer remains clearly defined in er pxf lines, it is
unlikely that the reduction in CHAL/ and CLL2 expression in these
lines is due to the disruption of endodermal cell fate (Fig. 2F).
However, owing to severe disruptions to vascular morphology
adjacent to the endodermis, we cannot rule out that such changes are
a consequence of the disruption to xylem, phloem and procambium
organisation. Disruption to pxf er quadruple mutants was severe to
such a degree that in stems, vascular tissue was no longer found in
discrete bundles, but scattered around the stem adjacent to the
endodermis (Fig. 2).

Oriented cell divisions and the development of organ boundaries
in the rib zone of the shoot apical meristem, from which stem
vascular tissue is derived, have been reported to be regulated by a
homeodomain transcription factor, REPLUMLESS (RPL). Pertinent
to the results obtained here, RPL was found to occupy the promoters
of PXY, CLE41, CLE42, ER, ERL1, ERL2 and CHAL in ChIP-Seq
experiments (Bencivenga et al., 2016). RPL is localised to the
cytoplasm unless present in a heterodimer with class I KNOX
protein, such as BREVIPEDICELLUS (Bhatt et al., 2004). rpl bp
double mutants, particularly those in the Ler background that lacks a
functional copy of ER, demonstrate considerable defects in vascular
development (Etchells et al., 2012; Smith and Hake, 2003). Thus,
events in the rib zone that are controlled by RPL could set up the
initial pattern in the stem. Our genetic analysis demonstrates that
however the pattern is initiated, it is maintained by interacting

Fig. 8. Stem tissue from pxf erf lines. (A) Wild-type, (B) erf, (C) pxf, (D) pxf er erl2, (E) pxf erf vascular bundles. Phloem arrangement is marked with red arrows.
Cells with phloem cap-like morphology are marked with asterisks. Scale bars: 50 µm; xv, xylem vessel; pc, procambium; ph, phloem; ph-c, phloem cap;
en, endodermis.
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signalling pathways characterised by members of the ERECTA and
PXY families.

ERL genes are prominent in regulating cell size
Evidence that mechanisms exist to adjust cell morphology in order to
maintain tissue size and organisation include the observation that cell
expansion differs according to the rate of cell division. Here, overall
organ size in mutants with fewer cells is often comparable to or only
subtly different from those of wild-type plants due to an increase in
cell size (De Veylder et al., 2002; Hemerly et al., 1999; Shpak et al.,
2004; Ullah et al., 2001). Furthermore, suchmechanisms can act non-

cell autonomously. Expression of KRP1 reduces cell division
(Hemerly et al., 1995). When it is specifically expressed in the
epidermal cell layer, concomitant changes to palisade cell size and
density also occur (Lehmeier et al., 2017). Thus, where the cell cycle
has been manipulated in one cell layer, influence on cell size and
organisation occurs in adjacent tissues, contributing to tissue
integrity. We found that the interaction between PXf and ERf was
crucial to regulation of cell size in multiple cell types. The ability to
adjust cell size to compensate for the profound reductions in
cell division in pxf er lines was particularly dependent on ERL2
(Figs 7 and 9). This is in contrast to the consequences of losing the
ERECTA family alone, as cell size adjustments are a feature of erf
mutants (Shpak et al., 2004). However, the influence of ERL2, ER
and ERL1 differed by cell type and organ. In hypocotyls, vascular
cells were larger in either pxf or pxf er lines compared with wild type.
In hypocotyl xylem vessels, parenchyma and phloem cells, this
increase in size was dependent on ERL gene expression as increases
in cell size were lost in pxf er erl1 and pxf er erl2 lines (Fig. 7A,B,D).
In stem vascular bundles, the only cell type with an increase in
size in response to fewer to cell divisions were the fibres. This
phenotype was also suppressed by removal of ERL genes. These
observations support the idea that one function of the genetic
interaction between ERf and PXf is coordination of tissue expansion.
We propose that with these signalling mechanisms removed, the
positional information that must be interpreted for cell morphology
adjustments to occur is missing.

Genetic interactions may underpin physical interactions
In stems, the receptor kinases that are the focus of this study are
expressed in discrete domains. By contrast, in hypocotyls,
expression patterns of ER and PXY overlap on the xylem side of
the cambium (Hirakawa et al., 2008; Ikematsu et al., 2017; Shi
et al., 2019; Smetana et al., 2019). As the domain of ERL gene
expression is expanded in pxy mutants (Fig. 5B,E,H), the presence

Fig. 9. Comparisons of morphology of cells in stem vascular bundles.
(A-C) Boxplots on left show mean cell perimeter for xylem vessels (A), xylem
fibres (B) and phloem cells (C). Boxes represent the 25th to 75th percentile,
the horizontal line marks the median. Whiskers’ endpoints are the min/max
points within the interval spanning Q1-1.5*IQR (lower) and Q3-1.5*IQR
(upper). Asterisks mark significant differences (ANOVA plus Tukey;
***P<0.001, **P<0.01; see Table S6 for pairwise comparisons of P values).
Ridgeline plots on the right show the distributions of cell areas divided into
quartiles. Areas of pxf er lines were greater than those of pxf er erl2 lines in all
three cell types (P≤0.05). Differences were calculated with ANOVA and a Tukey
post-hoc test; see Table S7 for pairwise comparisons of P values.

Fig. 10. Hypothesis of gene expression regulation in stems and
hypocotyls. (A) In the stem, ER represses PXL gene expression. PXf and
ER act as activators of ERL and EPFL gene expression. (B) In hypocotyls,
negative regulation of PXf and ER targets predominate. Green arrows indicate
a positive influence on gene expression; red blunt-ended lines indicate
repression. Grey arrows indicate ligand-receptor interactions.
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of PXL receptors in cells that also express ERf proteins is
increasingly likely. A direct interaction between members of these
receptor families is therefore possible. A recent in vitro global
analysis of receptor kinase interactions did not include direct
interactions between ERf and PXf family members because
putative interactions did not pass cut-offs for inclusion in the
high confidence bidirectional dataset (Smakowska-Luzan et al.,
2018). Nevertheless strong in vitro interactions between ER and
PXY, and ER and PXL1 proteins were observed in one orientation,
and between PXL2 and ERL2 in both directions [Youssef
Belkhadir, personal communication; data available in BAR
ePlant (Waese et al., 2017)]. The determination of whether these
interactions are genuine and, if so, the circumstances under which
they occur in vivo will be an important focus for future research.
ERf activity in the epidermis has previously been reported to be
buffered by a second receptor, TOO MANY MOUTHS (TMM).
Loss of this buffering in tmm mutants leads to opposite stomatal
spacing phenotypes in spatially separate cotyledon, where stomata
cluster, compared with hypocotyls where stomata are absent.
Differing ligand availability in cotyledon and hypocotyl is thought
to account for this difference (Abrash et al., 2011). CHAL and
CLL2 have been demonstrated to act as ERf ligands in the inner
tissues of stems (Uchida et al., 2012). We have shown that these
ligands are expressed in developing xylem in hypocotyls
(Fig. 1B,C). Thus, in stem vascular tissue, active ligand-ER
complexes most likely reside in the phloem, whereas in hypocotyls
they would be predominant in xylem initials. It remains to be
determined whether the difference in ERL gene regulation by ER and
PXf in stem and hypocotyl could be due to differing complements of
co-receptors and ligands in these differing locations.
Our observation that ERL gene expression is de-repressed in

the absence of PXf and ER in hypocotyls (Fig. 5J-K) supports the
idea that these components genetically interact. Perhaps the
most striking of our findings was the observation that ER and PXf
regulation of ERL gene expression in the hypocotyl occurred in a
manner opposite to that observed in the stem (compare Figs 4A,B
and 5J,K), where ER and PXf combine to repress ERL gene
expression. Thus, while PXf and ERf are required non-cell
autonomously for tissue organisation and expansion in both
stems and hypocotyls, the regulatory networks through which
development is controlled in these two organs differs (Fig. 10).
One explanation for differences in regulation is that tissue
layer organisation varies by location. In hypocotyls, cambium
division must occur concomitantly with factors that control periderm
division. By contrast, in stems there is no such continually expanding
tissue outside the vascular tissue, so vascular proliferation in stems
must be under much tighter regulation.

PXf and ERf are an absolute requirement for hypocotyl
secondary growth
Factors controlling the transition to secondary growth in
Arabidopsis hypocotyls have recently been described. It first
arises in cells adjacent to xylem, and central to this transition was
an accumulation of auxin and expression of HD-ZipIII transcription
factors. These factors, in turn, activate expression of PXY signalling
(Smetana et al., 2019). Nevertheless, pxy mutants, and indeed pxf
triple mutants, do ultimately make the transition to secondary
growth (Figs 3 and 6). Thus, other factors must act with PXY to
regulate the transition secondary growth and radial pattern in
hypocotyls. pxy er double mutants, erf triple mutants, pxf er quads,
and both pxf er erl1 and pxf er erl2 quintuple lines all made the
transition to full secondary growth (Figs 4 and 6). By contrast, pxf

erf sextuple mutants did not. As such, these lines demonstrated a
phenotype that, as far as we are aware, has never previously been
described. The observation of this novel phenotype further supports
the idea that these receptor families coordinate development through
a genetic interaction, and that the phenotypes cannot be explained
simply by a correlative loss of cell division-promoting factors. Thus,
PXf and ERf signalling act redundantly to regulate radial growth
transition; consequently, complete removal of PXf and ERf families
results not only in prominent proliferation defects, but also in
dramatic defects to patterning (Fig. 6).

Concluding remarks
In Arabidopsis, stem and hypocotyl differ in that the hypocotyl
undergoes radial growth, but the vast majority of the stem does
not. Radial hypocotyl growth is largely the consequence of
expansion of a pattern that is laid down in the embryo, but in
stems, de novo patterning must occur below the shoot apical
meristem. Nevertheless, in both stem and hypocotyl, the xylem,
(pro)cambium and phloem must be specified in adjacent tissue
layers in a coordinated manner. Our mutant analysis demonstrates
that interactions between PXf and ERf are central to maintaining
this organisation by regulating cell division (Figs 6 and 8) and
coordinating cell size (Figs 7 and 9) in these different contexts.

MATERIALS AND METHODS
Accession numbers
AGI accession numbers for the genes studies in this manuscript are as
follows: At3g24770 (CLE41), At5g61480 (PXY), At1g08590 (PXL1),
At4g28650 (PXL2), At2g26330 (ER), At5g62230 (ERL1), At5g07180
(ERL2), At4g14723 (CLL2/EPFL4), At3g22820 (CLL1/EPFL5) and
At2g30370 (CHAL/EPFL6).

Gene expression
For qRT-PCR, RNA was isolated using Trizol reagent (Life Technologies)
prior to DNAse treatment with RQ1 (Promega). cDNA synthesis was
performed using Tetro reverse transcriptase (Bioline). All samples were
measured in technical triplicates on biological triplicates. qPCR reactions
were performed using qPCRBIO SyGreen Mix (PCR Biosystems) using a
CFX connect real-time system (Bio-Rad) with the standard sybr green
detection programme. A melting curve was produced at the end of every
experiment to ensure that only single products were formed. Gene
expression was determined using a version of the comparative threshold
cycle (Ct) method using average amplification efficiencies of each target, as
determined using LinReg PCR software (Ramakers et al., 2003). Samples
were normalised to 18S rRNA or ACT2. Primers for qRT-PCR are described
in Table S1. Significant differences in gene expression were identified with
ANOVA and an LSD post-hoc test for four-way comparisons or using
Student’s t-test for two-way comparisons.

Plant lines
Previously described parental lines pxy-3 pxl1-1 pxl2-1 (referred to hereafter
as pxf ) and pxy-5 er-124 (Etchells et al., 2013) were crossed to generate
pxy-3 pxl1-1 pxl2-1 er-124 (er pxf ). The quadruple mutants were selected in
F3 by PCR using primers listed in Table S8. To generate pxf er erl2
quintuple mutants, parental lines er-105 erl1-2/+ erl2-1 (erf ) (Shpak et al.,
2004) and pxy-3 pxl1-1 pxl2-1 (Etchells et al., 2013) were crossed. Plants
homozygous for er were selected by visual phenotype in the F2, which was
also sprayed with glufosinate to select for plants carrying an erl2-1 allele.
Families homozygous for glufosinate resistance in the F3 were screened for
pxy-3, pxl1-1 and pxl2-1 to generate pxf er erl2. er and erl2 mutants were
subsequently confirmed by PCR.

erl1 genome edited lines were generated using an egg cell-specific
CRISPR/Cas9 construct (Wang et al., 2015; Xing et al., 2014). Briefly,
target sequences TCCAATTGCAGAGACTTGCAAGG and TCTTGCT-
GGCAATCATCTAACGG were identified using the CRISPR-PLANT
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website (Xie et al., 2014) and tested for off-targets (Bae et al., 2014).
Primers incorporating the target sequences (Table S8) were used in a PCR
reaction with plasmid pCBC-DT1T2 as a template to generate a PCR
product incorporating a guide RNA against ERL1. A golden gate reaction
was used to incorporate the purified PCR product into pHEE2E-TRI.
The resultant ERL1 CRISPR/cas9 clone was transferred to Arabidopsis by
floral dip (Clough and Bent, 1998). erl1GE mutants were selected in the T1
generation by sequencing PCR products generated from primers specific to
ERL1 genomic DNA that flanked the guide RNA target sites.

For spatial expression of ERf genes in pxy or er, previously described
ER::GUS, ERL1::GUS and ERL2::GUS reporters were used (Shpak et al.,
2004). These were crossed to pxy-3 or er-124. pxy mutants were selected in
the F2 using primers described Table S8. Reporter lines were picked that
also demonstrated GUS expression as judged by GUS histochemical
staining, and the presence of GUS reporter construct was subsequently
confirmed by PCR using primers (Table S8). For determination of
ER-ligand expression, previously described CHAL::GUS and CLL2::GUS
lines were used (Abrash et al., 2011).

Analysis of vascular tissue anatomy
Vascular morphology was assessed using tissue embedded in JB4 resin. For
vascular bundles, inflorescence stem tissue from 0.5 cm above the rosette
was assessed. Tissue was fixed in FAA, dehydrated in ethanol and infiltrated
with JB4 infiltration medium, prior to embedding. Sections (4 µm) taken
using a Thermo Fisher Scientific FinesseME 240microtomewere stained in
0.02% aqueous Toluidine Blue and mounted with histomount.

GUS-stained tissue was harvested to ice-cold phosphate buffer. Samples
were treated with ice-cold acetone for 5 min and then returned to phosphate
buffer. GUS staining buffer (50 mM phosphate buffer, 0.2% triton, 2 mM
potassium ferrocyanide, 2 mM potassium ferricyanide and 2 mM X-Gluc)
was added and samples were infiltrated using a vacuum, before incubation
overnight at 37⁰C. Samples were progressively incubated in: FAA, then
70%, 85% and 95% ethanol for 30 min each prior to embedding in
Technovit 7100 according to the manufacturer’s instructions. Embedded
samples were allowed to polymerize at room temperature for 2 h and at 37°C
overnight. The inhibition layer was removed by wiping with a lint-free cloth.
Samples were sectioned, counterstained with 0.1% Neutral Red and
mounted using histomount.

Quantitative morphology calculations
To capture measurements for the cell perimeters and areas, images from six
different individuals were selected for each genotype tested. A minimum of
10 cells of each cell type (xylem vessels, xylem fibres, phloem and
parenchyma) were selected from a wedge with a 60° central angle from each
image (Fig. S6A). Cells of each type were selected along the full length of
the radial axis to ensure that cells of all sizes and phenotypic variation were
represented. A MATLAB code (available on request) was generated to
extract the intrinsic properties of each cell type. To that end, the code was
designed to split each image into binary sub-images, wherein the interior of
the cell type of interest was represented as white objects on black
background (Fig. S6B). The cells (the white objects) from each image were
then analysed as connected components of the image and their area and
perimeter extracted. To remove noise, i.e. data obtained from objects that
were wrongly classified as connected components within the algorithm (e.g.
stray pixels), the codewas devised to discard data that yielded unrealistically
small values for perimeter and area (perimeter value of 0 µm, area smaller
than 1 µm2). The data were converted from pixels to μm using a calibration
factor, in order to yield results consistent with laboratory observations. For
each cell type, an equal number of cells was selected on a random basis from
each plant within each genotype to avoid small variations between the
number of representatives obtained from each individual plant.

To test the significance of the variation between the cell areas and
perimeters between the different genotypes, a nested ANOVAwas performed
in R at 5% significance level. To perform the nested ANOVA, the data were
classified according to genotype (treatment) and plant ID (plants within that
treatment), with the response variable either the area or perimeter. A post-hoc
Tukey HSD test was performed to determine the significance of the pairwise
differences between the means of the areas/perimeters between the different

genotypes. To determine the reliability of the results, the residuals from the
data were tested for normality. Histograms and quantile-quantile plots for the
residuals of each cell type were used to judge the distribution, followed by a
Shapiro-Wilk normality test. The residuals for the data for all cell types
withstood the Shapiro-Wilk normality test at 5% significance level,
confirming that the results of the ANOVA analysis were reliable.

Mean hypocotyl diameters were measured using callipers. The radius was
calculated from hypocotyl images of six plants from each genotype. A
MATLAB code was used to measure the length of the shorter radius. The
length of the radii in pixels was subsequently converted to μm.ALilliefors test
at 5% significance level was used to confirm that the radii for each genotype
were normally distributed. A one-way ANOVA followed by a post-hoc Tukey
HSD test was used to determine pairwise variation between the means.

Acknowledgements
We thank Miguel de Lucas, Keith Lindsey and Jen Topping for critical reading of
the manuscript, and Youssef Belkhadir for comments on the preprint. The authors
are grateful to Keiko Torii for sharing er and erlmutants, and ERf reporter lines, and
to the Nottingham Arabidopsis Stock Centre for providing other genetic resources.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: J.P.E.; Software: K.S.B., I.H.J.; Formal analysis: J.P.E.;
Investigation: N.W., K.S.B., R.E.D., X.Y.W., J.T.K., K.A.C., J.P.E.; Writing - original
draft: J.P.E.; Writing - review & editing: K.S.B., R.E.D., I.H.J., S.R.T.; Supervision:
W.W., I.H.J., S.R.T., J.P.E.; Project administration: J.P.E.; Funding acquisition:
S.R.T., J.P.E.

Funding
This work was funded by the European Union (329978, a Marie Skladowska Curie
Fellowship to J.P.E.), by the Biotechnology and Biological Sciences Research
Council (BB/H019928 to J.P.E. and S.R.T., and a NLD-DTP studentship to K.S.B.,
J.P.E. and I.H.J.), and by an N8 AgriFood programme grant to J.P.E. and S.R.T.
The authors gratefully acknowledge a travel grant from Henan Agricultural
University to N.W.

Supplementary information
Supplementary information available online at
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental

References
Abrash, E. B., Davies, K. A. and Bergmann, D. C. (2011). Generation of signaling

specificity in arabidopsis by spatially restricted buffering of ligand–receptor
interactions. Plant Cell 23, 2864-2879. doi:10.1105/tpc.111.086637

Bae, S., Park, J. and Kim, J.-S. (2014). Cas-OFFinder: a fast and versatile algorithm
that searches for potential off-target sites of Cas9 RNA-guided endonucleases.
Bioinformatics 30, 1473-1475. doi:10.1093/bioinformatics/btu048

Bemis, S. M., Lee, J. S., Shpak, E. D. and Torii, K. U. (2013). Regulation of floral
patterning and organ identity by Arabidopsis ERECTA-family receptor kinase
genes. J. Exp. Bot. 64, 5323-5333. doi:10.1093/jxb/ert270

Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S. andSablowski, R. (2016).
Control of oriented tissue growth through repression of organ boundary genes
promotes stem morphogenesis. Dev. Cell 39, 198-208. doi:10.1016/j.devcel.
2016.08.013

Bhatt, A. M., Etchells, J. P., Canales, C., Lagodienko, A. and Dickinson, H.
(2004). VAAMANA–a BEL1-like homeodomain protein, interacts with KNOX
proteins BP and STM and regulates inflorescence stem growth in Arabidopsis.
Gene 328, 103-111. doi:10.1016/j.gene.2003.12.033

Chaffey, N., Cholewa, E., Regan, S. and Sundberg, B. (2002). Secondary xylem
development in Arabidopsis: a model for wood formation. Physiol. Plant 114,
594-600. doi:10.1034/j.1399-3054.2002.1140413.x

Clough, S. J. and Bent, A. F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,
735-743. doi:10.1046/j.1365-313x.1998.00343.x

De Veylder, L., Beeckman, T., Beemster, G. T. S., Engler, J. D., Ormenese, S.,
Maes, S., Naudts, M., Van der Schueren, E., Jacqmard, A., Engler, G. et al.
(2002). Control of proliferation, endoreduplication and differentiation by the
Arabidopsis E2Fa-DPa transcription factor. EMBO J. 21, 1360-1368. doi:10.1093/
emboj/21.6.1360

Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and
Scheres, B. (1993). Cellular-organization of the arabidopsis-thaliana root.
Development 119, 71-84.

11

RESEARCH ARTICLE Development (2019) 146, dev177105. doi:10.1242/dev.177105

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.177105.supplemental
https://doi.org/10.1105/tpc.111.086637
https://doi.org/10.1105/tpc.111.086637
https://doi.org/10.1105/tpc.111.086637
https://doi.org/10.1093/bioinformatics/btu048
https://doi.org/10.1093/bioinformatics/btu048
https://doi.org/10.1093/bioinformatics/btu048
https://doi.org/10.1093/jxb/ert270
https://doi.org/10.1093/jxb/ert270
https://doi.org/10.1093/jxb/ert270
https://doi.org/10.1016/j.devcel.2016.08.013
https://doi.org/10.1016/j.devcel.2016.08.013
https://doi.org/10.1016/j.devcel.2016.08.013
https://doi.org/10.1016/j.devcel.2016.08.013
https://doi.org/10.1016/j.gene.2003.12.033
https://doi.org/10.1016/j.gene.2003.12.033
https://doi.org/10.1016/j.gene.2003.12.033
https://doi.org/10.1016/j.gene.2003.12.033
https://doi.org/10.1034/j.1399-3054.2002.1140413.x
https://doi.org/10.1034/j.1399-3054.2002.1140413.x
https://doi.org/10.1034/j.1399-3054.2002.1140413.x
https://doi.org/10.1046/j.1365-313x.1998.00343.x
https://doi.org/10.1046/j.1365-313x.1998.00343.x
https://doi.org/10.1046/j.1365-313x.1998.00343.x
https://doi.org/10.1093/emboj/21.6.1360
https://doi.org/10.1093/emboj/21.6.1360
https://doi.org/10.1093/emboj/21.6.1360
https://doi.org/10.1093/emboj/21.6.1360
https://doi.org/10.1093/emboj/21.6.1360


Efroni, I., Mello, A., Nawy, T., Ip, P.-L., Rahni, R., DelRose, N., Powers, A., Satija,
R. and Birnbaum, K. D. (2016). Root regeneration triggers an embryo-like
sequence guided by hormonal interactions. Cell 165, 1721-1733. doi:10.1016/j.
cell.2016.04.046

Etchells, J. P. and Turner, S. R. (2010). The PXY-CLE41 receptor ligand pair
defines a multifunctional pathway that controls the rate and orientation of vascular
cell division. Development 137, 767-774. doi:10.1242/dev.044941

Etchells, J. P., Moore, L., Jiang, W. Z., Prescott, H., Capper, R., Saunders, N. J.,
Bhatt, A. M. and Dickinson, H. G. (2012). A role for BELLRINGER in cell wall
development is supported by loss-of-function phenotypes. BMC Plant Biol. 12,
212. doi:10.1186/1471-2229-12-212

Etchells, J. P., Provost, C. M., Mishra, L. and Turner, S. R. (2013). WOX4 and
WOX14 act downstream of the PXY receptor kinase to regulate plant vascular
proliferation independently of any role in vascular organisation.Development 140,
2224-2234. doi:10.1242/dev.091314

Fisher, K. and Turner, S. (2007). PXY, a receptor-like kinase essential for
maintaining polarity during plant vascular-tissue development. Curr. Biol. 17,
1061-1066. doi:10.1016/j.cub.2007.05.049

Han, S., Cho, H., Noh, J., Qi, J., Jung, H.-J., Nam, H., Lee, S., Hwang, D., Greb, T.
and Hwang, I. (2018). BIL1-mediated MP phosphorylation integrates PXY and
cytokinin signalling in secondary growth. Nat. Plants 4, 605-614. doi:10.1038/
s41477-018-0180-3

Hemerly, A., Engler, J. D. A., Bergounioux, C., Van Montagu, M., Engler, G.,
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Figure S1. pxl1 pxl2 vascular �ssue is indis�nguishable from wild type. Inflorescence stem vascular 1 
bundles from wild type plants (A) and pxl1 pxl2 lines (B). Hypocotyl transverse sec�ons from wild type 2 
(C) and pxl1 pxl2 plants (D). Scales are 50 µM. 3 

Figure S2. EPFL expression in hypocotyls. (A-C) Hypocotyl expression of CLL2 (A), CHAL (B) and CLL1 
(C) in wild type, er, and pxf mutants (expression normalised to 18S rRNA). No significant differences in 
expression were observed, using ANOVA and LSD post-hoc test. 
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Figure S3. er and erl2 mutant hypocotyl phenotypes. (A-D) Hypocotyl transverse sec�ons of wild type 1 
(A), erl2 (B), er (C), and er erl2 (D) lines. (E) Graph showing hypocotyl diameter or er erl2 lines and 2 
controls at 5 weeks old. Xylem fibres are marked ‘f’; black arrows (v) mark vessels; ‘p’ marks 3 
parenchyma. Scales are 100 µM. p values were calculated with ANOVA and LSD post-hoc test. 4 

Figure S4. Diagram showing CRISPR/Cas9 generated erl1 alleles. (A) Diagram showing intron-exon 1 
structure of ERL1 with posi�on of commonly used erl1-2 allele marked with a blue triangle. (B) Close 2 
up of exons 5-8 showing posi�ons of guide RNA (grey-green boxes), and the alleles iden�fies in the 3 
family analysed. Grey represents alignment with wild type sequence; red shows no alignment. (C) 4 
Transla�on of wild type and mutant erl1 alleles. All but one has premature stop codons; the remaining 5 
allele has a large dele�on of the LRR domain. 6 
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Figure S5. pxf erf hypocotyls. Close-up of wild type (A) and pxf erf (B) hypocotyls. Scales are 50 µM. 1 
(C) Violin plot showing comparison of pxf and pxf erf hypocotyl radii. p values were calculated with 2 
ANOVA and LSD post-hoc test.   3 
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Figure S6. Example of extracted connected components. (A-B) Wild type hypocotyl with cell types 1 
segmented (xylem parenchyma are yellow; xylem fibres are blue; xylem vessels are red; phloem are 2 
green; A). Scale is 100 µM. (B) extracted connected components. (C-F) Notched box plot showing 3 
comparison of elip�city from extracted connected components for phloem (C), xylem vessels (D), 4 
parenchyma (E), and fibres (F) from wild type, pxf, and pxf er erl2 lines. 5 

Figure S7. Gross morphology of a subset of mutant lines. (A) er erl2. (B) pxf er erl2. (C) erf. (D) pxf 1 
erf at 6 weeks old. Images were taken at the same magnifica�on. 2 
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Table S1. Vascular proliferation and morphology characteristics of pxf er mutant combinations. 

Genotype Vascular bundle size and shape Hypocotyl diameter 
(mm) cells per bundle ratio tangential:radial  

Wild type 438.2 ± 15.74 0.61 ± 0.02 1.34 ± 0.04 
pxy 347.6 ± 21.79 0.56 ± 0.02 1.24 ± 0.04 
er 463.1 ± 23.05 0.67 ± 0.03 1.27 ± 0.05 
pxy er 338.2 ± 30.13 1.36 ± 0.18 1.01 ± 0.06 
er erl1 erl2 182.3 ± 20.60 0.65 ± 0.06 0.85 ± 0.04 
pxy pxl1 pxl2 305.3 ± 38.35 0.91 ± 0.18 1.14 ± 0.04 
pxy pxl1 pxl2 er 202.5 ± 28.84 2.30 ± 0.23 0.97 ± 0.06 
values are ± S.E.M.   
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Table S2. p values from comparisons of cells per vascular bundle for each genotype tested (ANOVA + 

LSD). 

compared genotypes p value 
WT er 0.507 

er pxf <0.001 

pxy 0.018 

pxy er 0.009 

pxf 0.001 

er WT 0.507 

er pxf <0.001 

pxy 0.003 

pxy er 0.001 

pxf <0.001 

pxf er WT <0.001 

er <0.001 

pxy <0.001 

pxy er 0.001 

pxf 0.008 

pxy WT 0.018 

er 0.003 

er pxf <0.001 

pxy er 0.802 

pxf 0.262 

pxy er WT 0.009 

er 0.001 

er pxf 0.001 

pxy 0.802 

pxf 0.382 

pxf WT 0.001 

er <0.001 

er pxf 0.008 

pxy 0.262 

pxy er 0.382 
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Table S3. p values from comparisons of hypocotyl diameter for each genotype tested (ANOVA + LSD). 

compared genotypes p value 
WT er 0.048 

er pxf <0.001 

pxy 0.028 

pxy er <0.001 

pxf 0.001 

er WT 0.048 

er pxf 0.001 

pxy 0.816 

pxy er <0.001 

pxf 0.142 

pxf er WT <0.001 

er 0.001 

pxy 0.002 

pxy er 0.240 

pxf 0.062 

pxy WT 0.028 

er 0.816 

er pxf 0.002 

pxy er <0.001 

pxf 0.214 

pxy er WT <0.001 

er <0.001 

er pxf 0.002 

pxy <0.001 

pxf 0.214 

pxf WT 0.001 

er 0.142 

er pxf 0.062 

pxy 0.214 

pxy er 0.003 
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Table S4. p values from comparisons of cell perimeters measured from the vascular cells of each 

genotype tested (ANOVA + Tukey). Values in grey boxes were not significantly different at the 95% 

confidence level. 

 

 

 

 

 

 

 

 

 

 

 

  

Statistical differences between hypocotyl cell perimeters 

Compared genotypes 
xylem 

phloem 
vessel fibres parenchyma 

WT - pxf 0.001 0.007 < 0.0001 < 0.0001 

WT - pxf er 0.001 < 0.0001 0.014 < 0.0001 

WT - pxf er erl1 0.515 < 0.0001 1.000 0.374 

WT - pxf er erl2 0.232 < 0.0001 0.826 0.388 

WT - pxf erf 0.031 n.d. 0.567 < 0.0001 

pxf - pxf er 1.000 0.132 < 0.0001 1.000 

pxf - pxf er erl1  0.192 0.652 < 0.0001 0.001 

pxf - pxf er erl2  < 0.0001 0.036 < 0.0001 0.001 

pxf - pxf erf < 0.0001 n.d. < 0.0001 0.204 

pxf er - pxf er erl1  0.193 0.863 0.037 0.001 

pxf er - pxf er erl2 < 0.0001 0.987 < 0.0001 0.001 

pxf er - pxf erf  < 0.0001 n.d. 0.579 0.188 

pxf er erl1 - pxf er erl2  0.001 0.570 0.639 1.000 

pxf er erl1 - pxf erf  < 0.0001 n.d. 0.769 < 0.0001 

pxf er erl2 - pxf erf 0.967 n.d. 0.048 < 0.0001 
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Table S5. p values from pairwise comparisons of cell areas calculated from vascular cell types in the 

hypocotyl  (ANOVA + Tukey). Values in grey boxes were not significantly different at the 95% 

confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Compared genotypes 
xylem 

phloem 
vessel fiber parenchyma 

WT - pxf 0.001 < 0.0001 < 0.0001 < 0.0001 

WT - pxf er 0.001 < 0.0001 0.051 < 0.0001 

WT - pxf er erl1 0.068 < 0.0001 0.908 0.632 

WT - pxf er erl2 0.787 < 0.0001 1.000 0.732 

WT - pxf erf 0.231 n.d. 0.333 < 0.0001 

pxf - pxf er 1.000 0.973 < 0.0001 0.922 

pxf - pxf er erl1  0.819 0.995 < 0.0001 0.001 

pxf - pxf er erl2  < 0.0001 0.798 < 0.0001 0.001 

pxf - pxf erf < 0.0001 n.d. < 0.0001 0.036 

pxf er - pxf er erl1  0.833 1.000 0.456 0.033 

pxf er - pxf er erl2 < 0.0001 0.987 0.034 0.020 

pxf er - pxf erf  < 0.0001 n.d. 0.963 0.001 

pxf er erl1 - pxf er erl2  0.001 0.953 0.848 1.000 

pxf er erl1 - pxf erf  < 0.0001 n.d. 0.922 < 0.0001 

pxf er erl2 - pxf erf 0.941 n.d. 0.255 < 0.0001 

Development: doi:10.1242/dev.177105: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Table S6. Pairwise comparisons of cell perimeters from vascular cells in the inflorescence stem. p 

values were calculated using ANOVA + Tukey. Values in grey boxes were not significantly different at 

the 95% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Genotypes compared 
Xylem 

phloem 
vessel fibres 

WT - pxf 0.001 0.136 < 0.0001 

WT - pxf er 0.004 < 0.0001 0.012 

WT - pxf er erl1 0.002 < 0.0001 < 0.0001 

WT - pxf er erl2 < 0.0001 0.996 < 0.0001 

WT - pxf erf < 0.0001 n.d. < 0.0001 

pxf - pxf er 0.999 < 0.0001 0.773 

pxf - pxf er erl1  1.000 < 0.0001 0.227 

pxf - pxf er erl2  0.008 0.055 0.009 

pxf - pxf erf < 0.0001 n.d. < 0.0001 

pxf er - pxf er erl1  1.000 0.528 0.006 

pxf er - pxf er erl2 0.002 < 0.0001 < 0.0001 

pxf er - pxf erf  < 0.0001 n.d. < 0.0001 

pxf er erl1 - pxf er erl2  0.004 < 0.0001 0.843 

pxf er erl1 - pxf erf  < 0.0001 n.d. 0.001 

pxf er erl2 - pxf erf < 0.0001 n.d. 0.058 
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Table S7. p values from pairwise comparisons of vascular cell area from inflorescence stems (ANOVA 

+ Tukey). Values in grey boxes were not significantly different at the 95% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Genotypes compared 
Xylem 

phloem 
vessel fibres 

WT - pxf 0.0004 0.420 <0.0001 

WT - pxf er 0.0003 <0.0001 <0.0001 

WT - pxf er erl1 <0.0001 0.001 0.632 
WT - pxf er erl2 <0.0001 0.855 0.732 
WT - pxf erf <0.0001 n.d. <0.0001 

pxf - pxf er 0.999 <0.0001 0.922 
pxf - pxf er erl1  0.993 <0.0001 0.001 
pxf - pxf er erl2  0.015 0.052 0.0005 
pxf - pxf erf <0.0001 n.d. 0.036 

pxf er - pxf er erl1  0.995 0.021 0.033 
pxf er - pxf er erl2 0.016 <0.0001 0.020 
pxf er - pxf erf  <0.0001 n.d. 0.001 

pxf er erl1 - pxf er erl2  0.076 0.040 0.999 
pxf er erl1 - pxf erf  <0.0001 n.d. <0.0001 

pxf er erl2 - pxf erf 0.001 0.855 <0.0001 
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Table S8. Primers used in this manuscript 

Name sequence function 

ERL2_F TGTGGATAACGAGGCCAACT qRT-PCR 

ERL2_R ATGTGTCCTGAGTCCATGCA qRT-PCR 

ER_F CACGGCTCACTGAGAAATCC qRT-PCR 

ER_R TCACTTCATTGTTCCCCGTC qRT-PCR 

ERL1_F ACTGGGAAGAAAGCAGTGGA qRT-PCR 

ERL1_R CCTCTGGATCAACTGCTTCC qRT-PCR 

EPFL4_F CTTCTCCGCCTCCTCCATAG qRT-PCR 

EPFL4_R ACTCCTTATGAACCCACCCG qRT-PCR 

EPFL5_F GTCCTCCCAACTCTCATCGT qRT-PCR 

EPFL5_R ACCCGACCTAGCTATCTCCT qRT-PCR 

EPFL6_F AGAAATTCTCAGCCGTCGGA qRT-PCR 

EPFL6_R ACGGTACTCTTGCCTTCCTC qRT-PCR 

PXY_F AGCATGGGTAGGTCGTGTAG qRT-PCR 

PXY_R CAACACATCTCTCATCGGCG qRT-PCR 

PXL1_F GACGTGGTTGAGTGGATTCG qRT-PCR 

PXL1_R GGTGCAGAGAAGAGCGATTC qRT-PCR 

PXL2_F AACGGAAACCTTGGTGATGC qRT-PCR 

PXL2_R TCATGGTGGAGGTAAGCGAG qRT-PCR 

qRT_18s_rRNAf CATCAGCTCGCGTTGACTAC qRT-PCR 

qRT_18s rRNAr GATCCTTCCGCAGGTTCAC qRT-PCR 

qACT2f GCCATCCAAGCTGTTCTCTC qRT-PCR 

qACT2r ACCCTCGTAGATTGGCACAG qRT-PCR 

JL202 LB CATTTTATAATAACGCTGCGGACATCTAC genotyping 

ERL1_LP TTCATGTGCAGCCTTGAATC genotyping 

ERL1_RP GCAATTGGCCAAGTTCAGTT genotyping 

ERL2_LP TTCCCATGAACATTGCTGAA genotyping 

ERL2_RP CCGGAAGTGATTGGTCTGAT genotyping 

ER-1 tttgtttttgtgcgtgtgtg genotyping 

ER-2 ATCATTCGGCTGTCTTTTGG genotyping 

GABI-LB ATATTGACCATCATACTCATTGC genotyping 

pxl2-1(salk)F ACCTCTATGCCACACACCAAG genotyping 

pxl2-1(salk)R CAAGCTCTGACGGAATCTCAC genotyping 

salk_LBa1 TGGTTCACGTAGTGGGCCATCG genotyping 

pxl1-1(salk)F AATCGATGGTCTATCCTTCGG genotyping 

pxl1-1(salk)R TATGCGGTGGAGTTCTACCAC genotyping 

ER-GUSF accactgtaaatttccgccag genotyping 

ER-GUSR aagacttcgcgctgatacca genotyping 

ERL1-GUSF acgccgttacttatctccgt genotyping 

ERL1-GUSR atccagactgaatgcccaca genotyping 

ERL2-GUSF tagaaccgtcgccgtcaaat genotyping 

ERL2-GUSR ttcacgggttggggtttcta genotyping 

ERL1 DT1-BsF ATATATGGTCTCGATTGCCAATTGCAGAGACTTGCAGTT erl1-GE clone 
ERL1 DT1-F0 TGCCAATTGCAGAGACTTGCAGTTTTAGAGCTAGAAATAGC erl1-GE clone 

ERL1 DT2-R0 AACTTAGATGATTGCCAGCAAGCAATCTCTTAGTCGACTCTAC erl1-GE clone 
ERL1 DT2-BsR ATTATTGGTCTCGAAACTTAGATGATTGCCAGCAAGCAA erl1-GE clone 

VErl1_F GAATTTGTCCAGTCTGAATCTTGG erl1-GE genotyping 

VErl1_R CAAGTACCACAAACCGGTTAGC erl1-GE genotyping 
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Appendix E 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix E1: Morris method rankings 

Appendix E1.1: Morris method individual ranking for the network 

with the PXY-MP loop 
 

 

 

 

 

Figure 1S:  Individual parameter sensitivity values for Morris levels for p=11 (A), p=21 (B), p=41 (C) and all 

three levels combined (D). ranking for the network with the PXY-MP feedback loop. Rank numbers are set 

above the bars, parameter names are below the bars. Rank 1 corresponds to the parameter that the 

network is most sensitive to, highest rank corresponds to parameter the network is least sensitive to. Bars 

of the same colours belong to the same parameter group, such that PXY-related parameters are blue, auxin-

related parameters are orange, MP-related parameters are yellow, PIN related parameters are purple, and 

CK-related parameters are green.  



Appendix E1.2: Morris method individual ranking for the network 

without the PXY-MP loop 

 

 

 

 

 

Figure 2S: Individual parameter sensitivity values for Morris levels for p=11 (A), p=21 (B), p=41 (C) and all 
three levels combined (D). ranking for the network without the PXY-MP feedback loop. Rank numbers are 
set above the bars, parameter names are below the bars. Rank 1 corresponds to the parameter that the 
network is most sensitive to, highest rank corresponds to parameter the network is least sensitive to. Bars 
of the same colours belong to the same parameter group, such that auxin-related parameters are orange, 
MP-related parameters are yellow, PIN related parameters are purple, and CK-related parameters are 
green. 

 



Appendix E2: Probability density functions of the 

distribution of values of parameters that satisfy both 

networks vs only the network with the loop 
 

 

 

 

 

(graph continued on the next page…) 

 

 

 

A B 

C D 



 

 

 

 

(graph continued on the next page…) 
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Figure 3S: Probability density functions of the distribution of 𝐴𝑢𝑥𝑝, 𝐹𝑎 , 𝑑𝐴𝑢𝑥 , 𝑑𝑃𝐼𝑁 , 𝑑𝐶𝐾 , 𝑟1, 𝑟5, 𝑟7, 𝑟8 in 

the successful parameter set that do not require the PXY-MP negative feedback loop (left) and in those 

that require a PXY-MP negative feedback loop (right). Bin count = 20. Each bin contains 2 possible 

choices of values, except the last one which contains 3. Darker blue is lower probability, lighter is higher. 
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Note that for the parameters of the PXY-MP negative feedback loop and the final steady state 

concentration [𝑃𝑋𝑌𝑎] (Figure 31 A) only the distribution for the parameter sets which require 

the PXY-MP negative feedback loop were considered. This is the case as any values can be 

sampled for 𝑟2,  𝑟3,  𝑟4,  𝑇𝐷𝐼𝐹,  𝑑𝑃𝑋𝑌𝑎
,  𝑑𝑃𝑋𝑌𝑖𝑛

 parameters and any [𝑃𝑋𝑌𝑎], yet the parameter 

set as a whole would not fail to pattern.  

 



 

Figure 4S: Probability density functions of the distribution of 𝑟2 (A),  𝑟4 (B), 𝑑𝑃𝑋𝑌𝑖𝑛
 (C),  𝑑𝑃𝑋𝑌𝑎

 (D) and 

 [𝑇𝐷𝐼𝐹𝑝] (E) in the successful parameter set that do require the PXY-MP negative feedback loop. Bin 

count = 20. Each bin contains 2 possible choices of values, except the last one which contains 3. Darker 

blue is lower probability, lighter is higher. 
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Appendix E3: Closed form analysis 

 

The full system of equations is given by 

 d[𝐴𝑢𝑥𝑐]

 d𝑡
= 𝐹𝑎[𝐴𝑢𝑥𝑝] − 𝑟8[𝑃𝐼𝑁𝑐][𝐴𝑢𝑥𝑐] +

1

2
𝑟8[𝑃𝐼𝑁𝑥][𝐴𝑢𝑥𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑐]      (1) 

 d[𝐴𝑢𝑥𝑥]

 d𝑡
=

1

2
𝑟8[𝑃𝐼𝑁𝑐][𝐴𝑢𝑥𝑐] − 𝑟8[𝑃𝐼𝑁𝑥][𝐴𝑢𝑥𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑥] (2) 

 d[𝑃𝐼𝑁𝑐]

 d𝑡
= 𝑟6[𝑀𝑃𝑐] − 𝑟7[𝐶𝐾𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑐] (3) 

 d[𝑃𝐼𝑁𝑥]

 d𝑡
= 𝑟6[𝑀𝑃𝑥] − 𝑟7[𝐶𝐾𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑥] (4) 

 d[𝑀𝑃𝑐]

 d𝑡
= 𝑟5[𝐴𝑢𝑥𝑐] − 𝑟3[𝑃𝑋𝑌𝑎][𝑀𝑃𝑐] − 𝑑𝑀𝑃[𝑀𝑃𝑐] (5) 

 d[𝑀𝑃𝑥]

 d𝑡
= 𝑟5[𝐴𝑢𝑥𝑥] − 𝑑𝑀𝑃[𝑀𝑃𝑥] (6) 

 d[𝑃𝑋𝑌𝑖𝑛]

 d𝑡
= 𝑟4[𝑀𝑃𝑐] − 𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹𝑝] − 𝑑𝑃𝑋𝑌𝑖𝑛

[𝑃𝑋𝑌𝑖𝑛] (7) 

 d[𝑃𝑋𝑌𝑎]

 d𝑡
= 𝑟2[𝑃𝑋𝑌𝑖𝑛][𝑇𝐷𝐼𝐹𝑝] − 𝑑𝑃𝑋𝑌𝑎

[𝑃𝑋𝑌𝑎] (8) 

 d[𝐶𝐾𝑐]

 d𝑡
= 𝐷𝑐𝑘

𝜕2[𝐶𝐾]

𝜕𝑥2 − 𝑟1[𝐴𝑢𝑥𝑐][𝐶𝐾𝑐] − 𝑑𝐶𝐾[𝐶𝐾𝑐] (9) 

 d[𝐶𝐾𝑥]

 d𝑡
= 𝐷𝑐𝑘

𝜕2[𝐶𝐾]

𝜕𝑥2 − 𝑟1[𝐴𝑢𝑥𝑥][𝐶𝐾𝑥] − 𝑑𝐶𝐾[𝐶𝐾𝑥]. (10) 

For the correct hormone pattern to be obtained, the following inequalities must be 

satisfied: 

[𝐶𝐾𝑝] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥]         (11) 

[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝]          (12) 

[𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥]          (13) 

Inequality (11) was shown to always hold in Chapter 4, section 4.4.1. Here, successful 

patterning conditions will be derived for which inequalities (11) and (12) are satisfied. This 

will be done for both cases: without the PXY-MP negative feedback loop (𝑟2, 𝑟3, 𝑟4, [𝑇𝐷𝐼𝐹𝑝], 

𝑑𝑃𝑋𝑌𝑎
, , 𝑑𝑃𝑋𝑌𝑖𝑛

 are equal to zero) and and with it. The aim was to derive conditions which, if 



satisfied, would ensure successful patterning. The successful patterning conditions would be 

derived in such way as to minimise their dependence on final steady state concentrations. 

 

Appendix E3.1: Network with no PXY-MP feedback loop 

 

Consider the system without the PXY-MP negative feedback loop. In this case the 

equations governing the active and inactive PXY concentrations are omitted. In addition, no 

change in concentration occurs over time at steady state, thus diffusion terms are equal to 

zero, and [𝐶𝐾𝑃] > [𝐶𝐾𝑐] > [𝐶𝐾𝑥] is always true (see Chapter 4, section 4.4.1). The full system 

of equations is reduced to 

𝐹𝑎[𝐴𝑢𝑥𝑝] − 𝑟8[𝑃𝐼𝑁𝑐][𝐴𝑢𝑥𝑐] +
1

2
𝑟8[𝑃𝐼𝑁𝑥][𝐴𝑢𝑥𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑐] = 0 

1

2
𝑟8[𝑃𝐼𝑁𝑐][𝐴𝑢𝑥𝑐] − 𝑟8[𝑃𝐼𝑁𝑥][𝐴𝑢𝑥𝑥] − 𝑑𝐴𝑢𝑥[𝐴𝑢𝑥𝑥] = 0 

𝑟6[𝑀𝑃𝑐] − 𝑟7[𝐶𝐾𝑐][𝑃𝐼𝑁𝑐] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑐] = 0 

𝑟6[𝑀𝑃𝑥] − 𝑟7[𝐶𝐾𝑥][𝑃𝐼𝑁𝑥] − 𝑑𝑃𝐼𝑁[𝑃𝐼𝑁𝑥] = 0 

𝑟5[𝐴𝑢𝑥𝑐] − 𝑑𝑀𝑃[𝑀𝑃𝑐] = 0 

𝑟5[𝐴𝑢𝑥𝑥] − 𝑑𝑀𝑃[𝑀𝑃𝑥] = 0. 

For ease of writing, the brackets that denote component concentration are dropped.  

With these alterations, the above system of equations becomes 

𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

1

2
𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 − 𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (15) 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0 (17) 

𝑟5𝐴𝑢𝑥𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0 (18) 

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0 (19) 



In the following discussion, the system (14)-(19) will be examined to obtain conditions for 

which (12) and (13) hold. 

 

Inequality 𝑨𝒖𝒙𝒄 > 𝑨𝒖𝒙𝒙 

 

Here, inequality 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 is proven to always hold at steady state. To do this, 

proof by contradiciton is used. The inequality 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 is assumed to be broken, i.e. 

𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 is assumed to hold. It will be shown that for non-negative components and 

parameters, 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 can never hold. Two sub-cases are considered: the case where 

𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 and the simpler special case 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥. The case 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 is solved 

similarly to 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, showing that in this case no auxin is supported throughout the 

entire system and thus no pattern is observed. 

The approach in both cases is similar. First, equations (18) and (19) are examined to 

show that 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 leads to the condition 𝑀𝑃𝑐 ≤ 𝑀𝑃𝑥. Next, 𝑀𝑃𝑐 ≤ 𝑀𝑃𝑥  is used in 

combination with 𝐶𝐾𝑐 > 𝐶𝐾𝑥 and equations (16) and (17) to produce an inequality 𝑃𝐼𝑁𝑐 <

𝑃𝐼𝑁𝑥. Finally, it is observed that equations (14) and (15), together with 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 

contradict 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥, thus disproving the initial assumption that 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 and 

showing that 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 must always hold. 

𝑨𝒖𝒙𝒄 < 𝑨𝒖𝒙𝒙 assumption for the network without the PXY-MP negative feedback 

loop 

Consider equations (18) and (19). Rearrange for 𝐴𝑢𝑥𝑐  and 𝐴𝑢𝑥𝑥 as follows 

𝑟5𝐴𝑢𝑥𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0  (18) 

𝐴𝑢𝑥𝑐 =
𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
.  (20) 

For (19), the following representation can be achieved 

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0  (19) 

𝐴𝑢𝑥𝑥 =
𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
  (21) 



Since 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 was assumed, combine (20) and (21) 

𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
= 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 =

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
. 

Thus 

𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
<

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
. 

Or, 

𝑀𝑃𝑐 < 𝑀𝑃𝑥 .  (22) 

Next, combine (22) with equation (17), which re-arrange as follows 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0                                     (17) 

𝑟6𝑀𝑃𝑥 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0 

𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 < 𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁), 

for 𝑀𝑃𝑐, 𝑀𝑃𝑥 ≥ 0. 

𝑟6𝑀𝑃𝑐 < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 0  (23) 

Notice that 𝐶𝐾𝑐 > 𝐶𝐾𝑥 always holds. Thus, 

𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > −𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

From (23) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 0  (23) 

resulting in, 

0 > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁). 

Thus, 



𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0.  (24) 

Now, from (16), 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0  (16) 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐.  (25) 

Substitute (25) into (24) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  (24) 

(𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐) − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) + 𝑃𝐼𝑁𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 

(𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥)(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  (26) 

In (26), 𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁 ≥ 0 for all parameters and components non-negative. Thus, for 

(26) to be true, it must be that the following inequality holds 

𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥 < 0 

𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥  (27) 

Now, return to equations (14) and (15) armed with 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥. Consider (14), 

𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

Since 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, according to the assumption, then 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 > 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0, 

thus, from (14), obtain 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

> 𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 

So, 

𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 < 0. (28) 

Consider equation (15) 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0  (15) 



𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥  (29) 

Substitute (29) into (28) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 < 0 (28) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 + 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 < 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0  (30) 

Since from the assumption, 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, and 
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 > 0, it is clear that 

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 >

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 > 0. Substitute into (30) as follows 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0  (30) 

0 > 𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐

> 𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐(𝑃𝐼𝑁𝑥 − 𝑃𝐼𝑁𝑐) < 0  (31) 

Now, 𝐹𝑎𝐴𝑢𝑥𝑝 ≥ 0, 𝑟8𝐴𝑢𝑥𝑐 ≥ 0 and since (27) showed 𝑃𝐼𝑁𝑥 > 𝑃𝐼𝑁𝑐, then 𝑃𝐼𝑁𝑥 −

𝑃𝐼𝑁𝑐 > 0. It then follows that the left-hand side of (31) must always be non-negative. This is 

a contradiction. Thus, the original assumption that 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 must have been false. It 

remains to show that furthermore 𝐴𝑢𝑥𝑐 ≠ 𝐴𝑢𝑥𝑥 and 𝐴𝑢𝑥𝑥 < 𝐴𝑢𝑥𝑐 will have been shown to 

always hold. 

 

𝑨𝒖𝒙𝒄 = 𝑨𝒖𝒙𝒙 assumption for the network without the PXY-MP negative feedback 

loop 

 

Thus far it has been shown that 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 cannot hold in the network without the 

PXY-MP negative feedback loop. The above analysis is reworked for the special case when 



𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 to show that this can never hold, either. The approach is similar to the previous 

case, with the exception of some inequalities being replaced with equalities. Identical 

notation is used when the equations are the same, and (∗ 𝑎) notation (where ∗ is an equation 

number) where the only difference is the sign (= rather than > or <) in the equation. As 

before, equations (18) and (19) are used first to show that 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 implies 𝑀𝑃𝑐 = 𝑀𝑃𝑥. 

Next, equations (16) and (17) show that 𝑃𝐼𝑁𝑥 > 𝑃𝐼𝑁𝑐. Finally, (14) and (15) are used to 

confirm that together, these conclusions require no auxin presence in any of the cells, thus 

removing the existence of a pattern altogether and making the system uninformative. 

Consider equations (18) and (19). Rearrange for 𝐴𝑢𝑥𝑐  and 𝐴𝑢𝑥𝑥 as follows 

𝑟5𝐴𝑢𝑥𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0  (18) 

𝐴𝑢𝑥𝑐 =
𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
  (20) 

For (19), 

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0  (19) 

𝐴𝑢𝑥𝑥 =
𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
  (21) 

Since 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 was assumed, combine (20) and (21) 

𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
= 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 =

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
 

Thus 

𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
=

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
, 

or, 

𝑀𝑃𝑐 = 𝑀𝑃𝑥  (22a) 

Next, combine (22a) with equation (17), which re-arranges as follows 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0 (17) 

𝑟6𝑀𝑃𝑥 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0 

𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 



𝑟6𝑀𝑃𝑐 = 𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

 for 𝑀𝑃𝑐, 𝑀𝑃𝑥 ≥ 0. 

𝑟6𝑀𝑃𝑐 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0 (23) 

 

Note that 𝐶𝐾𝑐 > 𝐶𝐾𝑥 holds. Thus, 

𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > −𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

From (23) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0  (23a) 

This results in 

0 ≥ 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁)  

Thus, 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  (24) 

Now, from (16), 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 (25) 

Substitute (25) into (24) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 (24) 

𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) + 𝑃𝐼𝑁𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 

(𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥)(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 (26) 



In (26), 𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁 ≥ 0 for all parameters and components non-negative. Thus, for (26) to 

be true, it must be that the following inequality holds 

𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥 < 0 

𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥  (27) 

Now, return to equations (14) and (15) armed with 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥. Consider (14), 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

Since 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥, according to the assumption, then 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 𝑑𝐴𝑢𝑥, 𝐴𝑢𝑥𝑐 ≥ 0, thus, 

from (14), it follows that 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

= 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 . 

So,  

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (28a) 

Consider equation (15)  

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (15) 

𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 (29) 

Substitute (29) into (28a) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (28a) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 + 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 = 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 0 (30a) 

Since from the assumption, 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥, and 
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 ≥ 0,it’s clear that 

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 =

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 ≥ 0, thus the following still holds. Substitute into (40a) as 

follows 



𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 0 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 = 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐(𝑃𝐼𝑁𝑥 − 𝑃𝐼𝑁𝑐) = 0 

Now, 𝐹𝑎𝐴𝑢𝑥𝑝 ≥ 0, 𝑟8𝐴𝑢𝑥𝑐 ≥ 0 and since (27) showed 𝑃𝐼𝑁𝑥 > 𝑃𝐼𝑁𝑐, then 𝑃𝐼𝑁𝑥 − 𝑃𝐼𝑁𝑐 > 0. 

Thus, both 𝐹𝑎𝐴𝑢𝑥𝑝 = 0 and 𝑟8𝐴𝑢𝑥𝑐 = 0 are needed, suggesting that there is no input of auxin 

into the system and no active transport of auxin from the cambium or the xylem (since 

𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥, it follows that if 𝑟8𝐴𝑢𝑥𝑐 = 0 , then 𝑟8𝐴𝑢𝑥𝑥 = 0). As there is no other source 

of auxin into the system other than the phloem, this leads to an uninformative system where 

no auxin enters and no pattern can be observed altogether. This is a contradiction. Thus, the 

original assumption that 𝐴𝑢𝑥𝑥 = 𝐴𝑢𝑥𝑐 must have been false. 

Together with the previous analysis, showing that 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 cannot be true, it 

follows that and 𝐴𝑢𝑥𝑥 < 𝐴𝑢𝑥𝑐 holds always. ◻ 

 

Inequality 𝑨𝒖𝒙𝒄 > 𝑨𝒖𝒙𝒑: 

 

In the previous section, it was shown that 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 is always true, using proof by 

contradiction. In this section, successful patterning conditions for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 are derived. 

First, 𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 is shown to hold. Using this together with equation (14) 

an inequality for 𝐹𝑎 is found which is irrespective of 𝐴𝑢𝑥𝑐  and 𝐴𝑢𝑥𝑥 and depends only on one 

other final steady state concentration, 𝑃𝐼𝑁𝑐. The inequalities (11) and (12) are then used 

(𝐶𝐾𝑝 > 𝐶𝐾𝑐 > 𝐶𝐾𝑥 and 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 ) to remove the dependence on 𝑃𝐼𝑁𝑐. 

Consider equation (15), 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0.  (15) 

For 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 > 0, 



0 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 <

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 > 0 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 2𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 . 

Thus, 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 2𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥  (32) 

Consider equation (14)  

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

Using (32), 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

< 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

𝐹𝑎𝐴𝑢𝑥𝑝 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

Since the case when 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 and 𝐹𝑎 > 0 is examined here, it follows that 

𝐹𝑎𝐴𝑢𝑥𝑐 > 𝐹𝑎𝐴𝑢𝑥𝑝  

𝐹𝑎𝐴𝑢𝑥𝑝 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

𝐹𝑎𝐴𝑢𝑥𝑐 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 𝐹𝐴𝐴𝑢𝑥𝑝 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

𝐹𝑎𝐴𝑢𝑥𝑐 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 



Dividing throughout by 𝐴𝑢𝑥𝑐 > 0  

𝐹𝑎 −
1

2
𝑟8𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥 > 0  (33) 

Next, rearrange equation (16) to get 𝑃𝐼𝑁𝑐, 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 

𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 𝑟6𝑀𝑃𝑐 

𝑃𝐼𝑁𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) = 𝑟6𝑀𝑃𝑐 

obtaining, 

𝑃𝐼𝑁𝑐 =
𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
  (34) 

Substituting (34) into (33), 

𝐹𝑎 −
1

2
𝑟8𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥 > 0 (33) 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0 (35) 

Note that 𝐶𝐾𝑝 > 𝐶𝐾𝑐, thus 
𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
<

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
 and so from (35), it follows that 

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
<

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

−
𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
> −

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

−
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
> −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 𝐹𝑎 −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 𝐹𝑎 −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
> 0 

Or, 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0.  (36) 



Notice that an expression for 𝑀𝑃𝑐 can be obtained from (18) 

𝑟5𝐴𝑢𝑥𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0 

𝑀𝑃𝑐 =
𝑟5𝐴𝑢𝑥𝑐

𝑑𝑀𝑃
 

Substitute that into (36) 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0 

𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑐

𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0 

 finally obtaining  

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0.  (37) 

Notice that all parameters and components in 
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
 are positive, thus 

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
> 0. Here, the case where 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 needs to be satisfied is 

discussed. Thus,  
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
>

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
> 0 holds. This inequality is 

combined with (37) in order to find a successful patterning condition that does not depend 

on 𝐴𝑢𝑥𝑐  as follows 

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
>

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
> 0 

−
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
< −

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
< 0 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 < 𝐹𝑎 −

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 < 𝐹𝑎 − 𝑑𝐴𝑢𝑥 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 < 𝐹𝑎 −

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 < 𝐹𝑎 − 𝑑𝐴𝑢𝑥 

Thus, this results in 



𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 𝐹𝑎 −

1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑐

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0 (38) 

𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0 

𝐹𝑎 >
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
+ 𝑑𝐴𝑢𝑥  (39) 

The above equation (39) is a condition dependent on parameters only, as required. A 

summary table for the successful patterning conditions for the network without the PXY-MP 

negative feedback loop are shown in Table 1S ◻. 

 Table 1S: A summary table for the successful patterning conditions the network without the 
PXY-MP negative feedback loop. Column 1 shows headings. Column 2 shows the conditions for 
auxin accumulation in the cambium over the phloem. Column 3 shows the auxin concentration 
in the cambium in both system exceeds the auxin concentration in the xylem 

 

In the next section, successful patterning conditions are derived for the network with 

the PXY-MP negative feedback loop. 

 

Appendix E3.2: Network with PXY-MP feedback loop 

 

Consider now the system of equations which involve the PXY-MP negative feedback 

loop. Just as before, for ease of writing, the brackets that denote the components’ 

 

Network with no PXY-MP negative feedback loop 

 

 

Conditions for cambial auxin 

maxima 

 

 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 

 

 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥  

  

𝐹𝑎 >
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑝(𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁)
+ 𝑑𝐴𝑢𝑥 

 

 

Always true 



concentration will be dropped. Successful parameter conditions for satisfying inequalities (12) 

and (13) ([𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑥] and [𝐴𝑢𝑥𝑐] > [𝐴𝑢𝑥𝑝]) will be derived. As before, the aim is to 

obtain such conditions independently of final steady state concentrations of any of the 

components. At steady state, the system of equations to be solved is given by 

𝐹𝑎𝐴𝑢𝑥𝑝 − 𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 +
1

2
𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

1

2
𝑟8𝑃𝐼𝑁𝑐𝐴𝑢𝑥𝑐 − 𝑟8𝑃𝐼𝑁𝑥𝐴𝑢𝑥𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (15) 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0 (17) 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0 (40) 

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0 (19) 

𝑟4𝑀𝑃𝑐 − 𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹 − 𝑑𝑃𝑋𝑌𝑖𝑛
𝑃𝑋𝑌𝑖𝑛 = 0 (41) 

𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹 − 𝑑𝑃𝑋𝑌𝑎
𝑃𝑋𝑌𝑎 = 0 (42) 

 

Notice that for both cases, with and without the PXY-MP negative feedback loop, 

equations (14)-(17) and (19) are present. In the following discussion successful patterning 

conditions will be derived for which the above system (14)-(17), (19), (40)-(42), obeys 

conditions 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 and 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝. As will be seen in the case for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝, the 

successful patterning condition will depend on the final steady state 𝑃𝑋𝑌𝑎 as, due to the 

additional 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐  term, 𝑀𝑃𝑐 could not be rewritten in terms of auxin alone and subected 

to 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝. Thus, a purely parameter-based condition could not be found. Other 

strategies for solving the system to obtain a parameter based successful patterning condition 

resulted in a larger number of final steady state dependencies. Thus, at the day of writing, the 

analysis presented in this section is the best effort made. 

 

Inequality 𝑨𝒖𝒙𝒄 > 𝑨𝒖𝒙𝒙: 

 



Here, it is shown that for the system (14)-(17), (19), (40)-(42) the inequality 𝐴𝑢𝑥𝑐 >

𝐴𝑢𝑥𝑥 always holds at steady state. To do this, proof by contradition is used and the equality 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 is assumed to be broken, i.e. 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 is assumed to hold. It is shown that 

for non-negative components and parameters, 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 can never hold. Two sub-cases 

are considered: the case where 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 and the special case 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥. The case 

𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 is solved similarly to 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, showing that in such case no auxin is 

supported throughout the entire system and thus no pattern is observed. 

Equations (19) and (40) are examined first to show that 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 leads to the 

condition 𝑀𝑃𝑐 ≤ 𝑀𝑃𝑥. Next, 𝑀𝑃𝑐 ≤ 𝑀𝑃𝑥 is used in combination with 𝐶𝐾𝑐 > 𝐶𝐾𝑥 and 

equations (16) and (17) to produce an inequality 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥. Finally, equations (14) and 

(15), together with 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 are shown to contradict 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥, thus disproving the 

initial assumption that 𝐴𝑢𝑥𝑐 ≤ 𝐴𝑢𝑥𝑥 holds and showing that 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 must always hold.  

Consider the assumption 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 first. 

 

𝑨𝒖𝒙𝒄 < 𝑨𝒖𝒙𝒙 assumption for the network with the PXY-MP 

 

Assume 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥.  

First, consider equations (19) and (40).  

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0  (19) 

Equation (21) is obtained again 

𝐴𝑢𝑥𝑥 =
𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
  (21) 

From (40), an expression for 𝐴𝑢𝑥𝑐, for 𝑟5 ≠ 0 can be obtained as follows 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0  (40) 

𝑟5𝐴𝑢𝑥𝑐 = 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 + 𝑑𝑀𝑃𝑀𝑃𝑐 

𝐴𝑢𝑥𝑐 =
𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐+𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
=

(𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
  (43) 

Using (21) and (43) and the assumption 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 



𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
= 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 =

(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
. 

Thus, 

𝑑𝑀𝑃𝑀𝑃𝑥 > (𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐 . 

Set 𝑑𝑀𝑃 ≠ 0 

𝑑𝑀𝑃𝑀𝑃𝑥 > (𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐 . 

𝑀𝑃𝑥 > (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐   (44) 

Since 𝑟3, 𝑑𝑀𝑃 > 0 (here, 𝑟3 ≠ 0 while above 𝑑𝑀𝑃 ≠ 0) and 𝑃𝑋𝑌𝑎 ≥ 0, notice that 

𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
≥ 0 so (

𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) ≥ 1, so 

𝑀𝑃𝑥 > (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐  (45) 

𝑀𝑃𝑥 > (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐 ≥ 𝑀𝑃𝑐 

Thus, inequality (22) is obtained again 

𝑀𝑃𝑥 > 𝑀𝑃𝑐  (22) 

Next, consider equations (16) and (17). Recall equation (17) 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0  (17) 

 which can be rewritten as follows  

𝑟6𝑀𝑃𝑥 − 𝑃𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0 

𝑟6𝑀𝑃𝑥 = 𝑃𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

Since 𝑀𝑃𝑥 > 𝑀𝑃𝑐  from equation (22), it follows that 𝑟6𝑀𝑃𝑐 < 𝑟6𝑀𝑃𝑥  for non-negative 

𝑟6, 

𝑟6𝑀𝑃𝑐 < 𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

for 𝑀𝑃𝑐 , 𝑀𝑃𝑥 ≥ 0. So, 

𝑟6𝑀𝑃𝑐 < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁), 

which once again gives (23). 



𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 0  (23) 

Note that 𝐶𝐾𝑐 > 𝐶𝐾𝑥 holds. Thus, 

𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > −𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁). 

From (23)  

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 0. 

Thus, 

0 > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

It follows that the same inequality (24) is obtained, as before 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  (23) 

Now, from (16) 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐. (25) 

Substituting (25) into (24) then gives 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 (24) 

𝑃𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0, 

which yields inequality (26)  

(𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥)(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0.  (26) 

Clearly, (𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) > 0, suggesting 𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥 < 0 must hold. In particular, 

𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥  (27) 

must be true. In what follows, (27) is shown to lead to a contradiction with the initial 

assumption that 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥 holds.  



Consider equation (14)  

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0. (14) 

Since the initial assumption states that 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, then 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 > 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐, 

thus, from (14), (28) is obtained 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

> 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 < 0 (28) 

Consider equation (15), the substitution (29) is used as follows 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (15) 

𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 (29) 

Substituting (29) into (28) gives 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 < 0 (28) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − (

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥) < 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 + 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 < 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0 (30) 

Since, 𝐴𝑢𝑥𝑐 < 𝐴𝑢𝑥𝑥, and 
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 ≥ 0,it follows that  

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 >

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥, thus 

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 >

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 <

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 <

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 



𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0 

Thus, 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0 (30) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 < 0, 

which yields (31)  

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐(𝑃𝐼𝑁𝑥 − 𝑃𝐼𝑁𝑐) < 0  (31) 

Now, 𝐹𝑎𝐴𝑢𝑥𝑝 ≥ 0, 𝑟8𝐴𝑢𝑥𝑐 ≥ 0 and since (27) showed 𝑃𝐼𝑁𝑥 > 𝑃𝐼𝑁𝑐, then 𝑃𝐼𝑁𝑥 −

𝑃𝐼𝑁𝑐 > 0. It then follows that the left-hand side of (31) must always be non-negative. This is 

a contradiction. Thus, the original assumption that 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 must have been false. It 

remains to show that furthermore 𝐴𝑢𝑥𝑐 ≠ 𝐴𝑢𝑥𝑥  to prove that 𝐴𝑢𝑥𝑥 < 𝐴𝑢𝑥𝑐 always holds. 

 

𝑨𝒖𝒙𝒄 = 𝑨𝒖𝒙𝒙 assumption for the network with the PXY-MP negative feedback 

loop 

Thus far it has been hown that 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 cannot hold in the network without the 

PXY-MP negative feedback loop. The above analysis is reworked for the special case when 

𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥 to show that this can never hold, either. The approach is similar to the previous 

case, with the exception of some inequalities being replaced with equalities. Identical 

notation is used when the equations are the same, and (∗ 𝑎) notation (where ∗ is an equation 

number) where the only difference is the sign (= rather than > or <) in the equation. As  

 First, consider equations (19) and (40). From (19), an expression for 𝐴𝑢𝑥𝑥 is obtained, 

for 𝑟5 ≠ 0 

𝑟5𝐴𝑢𝑥𝑥 − 𝑑𝑀𝑃𝑀𝑃𝑥 = 0  (19) 

Equation (21) is obtained again 

𝐴𝑢𝑥𝑥 =
𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
  (21) 



For (21) and for 𝑟5 ≠ 0, an expression for 𝐴𝑢𝑥𝑐  is derived 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0 (40) 

𝑟5𝐴𝑢𝑥𝑐 = 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 + 𝑑𝑀𝑃𝑀𝑃𝑐  

𝐴𝑢𝑥𝑐 =
𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐+𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
=

(𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
 (43) 

Using (21) and (43) and the assumption 𝐴𝑢𝑥𝑥 = 𝐴𝑢𝑥𝑐 

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
= 𝐴𝑢𝑥𝑥 = 𝐴𝑢𝑥𝑐 =

(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
 

𝑑𝑀𝑃𝑀𝑃𝑥

𝑟5
=

(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
 

𝑑𝑀𝑃𝑀𝑃𝑥 = (𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐 

Set 𝑑𝑀𝑃 ≠ 0  

𝑑𝑀𝑃𝑀𝑃𝑥 = (𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐 

𝑀𝑃𝑥 = (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐 (44a) 

Since 𝑟3, 𝑑𝑀𝑃 > 0 (𝑟3 ≠ 0 in the network with the PXY-MP negative feedback loop, 

and above 𝑑𝑀𝑃 ≠ 0 was set) and 𝑃𝑋𝑌𝑎 ≥ 0, it follows that  
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
≥ 0 so (

𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐 ≥

1 , so from (44a) 

𝑀𝑃𝑥 = (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐 (44a) 

𝑀𝑃𝑥 = (
𝑟3𝑃𝑋𝑌𝑎

𝑑𝑀𝑃
+ 1) 𝑀𝑃𝑐 ≥ 𝑀𝑃𝑐 

Thus, obtain relationship (22a) 

𝑀𝑃𝑥 ≥ 𝑀𝑃𝑐  (22a) 

Next, consider equations (16) and (17). 

𝑟6𝑀𝑃𝑥 − 𝑟7𝐶𝐾𝑥𝑃𝐼𝑁𝑥 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑥 = 0 (17) 

𝑟6𝑀𝑃𝑥 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) = 0 



𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

Since 𝑀𝑃𝑥 ≥ 𝑀𝑃𝑐, it follows that 𝑟6𝑀𝑃𝑐 ≥ 𝑟6𝑀𝑃𝑥 for non-negative 𝑟6 

𝑟6𝑀𝑃𝑐 ≤ 𝑟6𝑀𝑃𝑥 = 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

for 𝑀𝑃𝑐 , 𝑀𝑃𝑥 ≥ 0. 

𝑟6𝑀𝑃𝑐 ≤ 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) ≤ 0 (23a) 

Note that 𝐶𝐾𝑐 > 𝐶𝐾𝑥. Thus, for non-negative 𝑃𝐼𝑁𝑥, 𝑟7, 𝐶𝐾𝑥, 𝐶𝐾𝑝 and 𝑑𝑃𝐼𝑁, the 

following holds 

𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) < 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

−𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > −𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) 

From (23)  

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) ≤ 0  (23) 

it follows that 

0 ≥ 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑥 + 𝑑𝑃𝐼𝑁) > 𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁). 

Thus, the same inequality (24) is obtained as before 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0  (24) 

Now, from (16),  

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 

𝑟6𝑀𝑃𝑐 = 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 (25) 

Substituting (25) into (24) then gives 

𝑟6𝑀𝑃𝑐 − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 (24) 

𝑃𝐼𝑁𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) − 𝑃𝐼𝑁𝑥(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0 



Which yields inequality (26) for the system with a PXY-MP negative feedback loop 

(𝑃𝐼𝑁𝑐 − 𝑃𝐼𝑁𝑥)(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) < 0.  (26) 

For non-negative components and parameters (𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) > 0, suggesting 𝑃𝐼𝑁𝑐 −

𝑃𝐼𝑁𝑥 < 0 must hold. In particular, 

𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥  (27) 

must be true. In what follows, (27) will be shown to lead to a contradiction. 

Consider equation (14) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 (14) 

Since, according to the assumption in this case 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥, then 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐, 

thus, from (14), (28a) is obtained  

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

≥ 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (28a) 

Consider equation (15) and once again, use the substitution (29) 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (15) 

𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 (29) 

Substituting (29) into (28) gives 

𝐹𝑎𝐴𝑢𝑥𝑝 + 1
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0 (28a) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 − (

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝑥) = 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 + 𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 = 0 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝑐 = 0 (30a) 



Since, 𝐴𝑢𝑥𝑐 = 𝐴𝑢𝑥𝑥, and 
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 = 0 ,it follows that  

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 =

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥, thus 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
2𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 

Thus,  

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 0  (30a) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 𝐹𝑎𝐴𝑢𝑥𝑝 +

3

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 −

3

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 = 0, 

which yields (31a)  

𝐹𝑎𝐴𝑢𝑥𝑝 +
3

2
𝑟8𝐴𝑢𝑥𝑐(𝑃𝐼𝑁𝑥 − 𝑃𝐼𝑁𝑐) = 0  (31a) 

Now, 𝐹𝑎𝐴𝑢𝑥𝑝 ≥ 0, 𝑟8𝐴𝑢𝑥𝑐 ≥ 0. Recall (27), i.e. 𝑃𝐼𝑁𝑐 < 𝑃𝐼𝑁𝑥. Therefore, for (31a) to 

hold both 𝐹𝑎𝐴𝑢𝑥𝑝 = 0 and 𝑟8𝐴𝑢𝑥𝑐 = 0 must hold, i.e. no auxin enters into the system and 

no active transport out of the cambium or xylem occurs (since 𝑟8𝐴𝑢𝑥𝑐 = 0 and 𝐴𝑢𝑥𝑥 = 𝐴𝑢𝑥𝑐, 

it follows that 𝑟8𝐴𝑢𝑥𝑥 = 0). Thus, the original assumption that 𝐴𝑢𝑥𝑥 = 𝐴𝑢𝑥𝑐 must have been 

false. 

Combining both of the above discussions,it follows that 𝐴𝑢𝑥𝑥 > 𝐴𝑢𝑥𝑐 and 𝐴𝑢𝑥𝑥 =

𝐴𝑢𝑥𝑐  can never be true, thus 𝐴𝑢𝑥𝑥 < 𝐴𝑢𝑥𝑐 is true always ◻.  

f 

Inequality 𝑨𝒖𝒙𝒄 > 𝑨𝒖𝒙𝒑: 

 

In the previous section, it was shown that 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 is always true, using proof by 

contradiction. In this section, successful patterning conditions for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 are derived. 

The first two equations in this system with the PXY-MP negative feedback loop are the 

same as in the case where there is no PXY-MP negative feedback loop. Thus, similar approach 

is used. From (15),  𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 is shown t hold. 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 = 0  (15) 

For 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 > 0, 



0 =
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑥 <

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 > 0 

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 2𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

Thus, 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 2𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 

Thus, the same relationship as in inequality (32) was derived, i.e. 

𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 > 𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥  (32) 

Next, consider equation (14) 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0. (14) 

Using (32), the following is obtained 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 = 0 

0 = 𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑥𝑃𝐼𝑁𝑥 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐

< 𝐹𝐴𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 

𝐹𝑎𝐴𝑢𝑥𝑝 +
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

𝐹𝑎𝐴𝑢𝑥𝑝 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

Since this is the case for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 and furthermore 𝐹𝑎 > 0, it follows that 

𝐹𝑎𝐴𝑢𝑥𝑐 > 𝐹𝑎𝐴𝑢𝑥𝑝  

𝐹𝑎𝐴𝑢𝑥𝑝 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

𝐹𝑎𝐴𝑢𝑥𝑐 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 𝐹𝐴𝐴𝑢𝑥𝑝 −

1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 



𝐹𝑎𝐴𝑢𝑥𝑐 −
1

2
𝑟8𝐴𝑢𝑥𝑐𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥𝐴𝑢𝑥𝑐 > 0 

Dividing throughout by 𝐴𝑢𝑥𝑐  obtain an equivalent to the previous inequality (33) for 

𝐴𝑢𝑥𝑐 > 0, 

𝐹𝑎 −
1

2
𝑟8𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥 > 0  (33) 

Next, rearrange equation (16) to obtain 𝑃𝐼𝑁𝑐, 

𝑟6𝑀𝑃𝑐 − 𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 − 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 0 (16) 

𝑟7𝐶𝐾𝑐𝑃𝐼𝑁𝑐 + 𝑑𝑃𝐼𝑁𝑃𝐼𝑁𝑐 = 𝑟6𝑀𝑃𝑐 

𝑃𝐼𝑁𝑐(𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁) = 𝑟6𝑀𝑃𝑐 

Thus,  

𝑃𝐼𝑁𝑐 =
𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
  (34) 

Substituting (34) into (33)  

𝐹𝑎 −
1

2
𝑟8𝑃𝐼𝑁𝑐 − 𝑑𝐴𝑢𝑥 > 0 (33) 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0 (35) 

Note that 𝐶𝐾𝑝 > 𝐶𝐾𝑐, thus 
𝑟6𝑟8𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
<

𝑟6𝑟8𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐+𝑑𝑃𝐼𝑁
 and so from (35), the following is 

obtained 

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
<

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

−
𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
> −

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

−
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
> −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
) − 𝑑𝐴𝑢𝑥 > 𝐹𝑎 −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
) − 𝑑𝐴𝑢𝑥 > 𝐹𝑎 −

1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑐 + 𝑑𝑃𝐼𝑁
> 0 



𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0 (36) 

Now, for the system (14)-(17),(19), (40)-(42), a different equation for 𝑀𝑃𝑐  is given,i.e. 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0  (40) 

And, indeed 

𝐴𝑢𝑥𝑐 =
𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐+𝑑𝑀𝑃𝑀𝑃𝑐

𝑟5
  (46) 

𝐴𝑢𝑥𝑐 =
(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃)𝑀𝑃𝑐

𝑟5
 

𝑀𝑃𝑐 =
𝑟5𝐴𝑢𝑥𝑐

𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃
  (47) 

 

Substituting (47) into (36) 

𝐹𝑎 −
1

2
𝑟8

𝑟6𝑀𝑃𝑐

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
− 𝑑𝐴𝑢𝑥 > 0  (36) 

𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑐

𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0. 

Since this is the case for 𝐴𝑢𝑥𝑝 < 𝐴𝑢𝑥𝑐 

𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑝

𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥

> 𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝 + 𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑐

𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0 

𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑝

𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0.  (48) 

Thus, the successful patterning condition for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 to be satisfied for the network 

with the PXY-MP negative feedback loop is given by (48). The successful patterning 

condition (48) is not independent of final steady state concentrations of components and 

depends on 𝑃𝑋𝑌𝑎.Thus, an additional relatioship for 𝑃𝑋𝑌𝑎 was identified such that it 

depends only parameters. This derivation is given below.  



First, 𝑃𝑋𝑌𝑎 will be written in terms of 𝑃𝑋𝑌𝑖𝑛 using equation (42). Next, (41) will be 

rearranged to find 𝑃𝑋𝑌𝑖𝑛 in terms of 𝑀𝑃𝑐. Finally, 𝑀𝑃𝑐 will be written in terms of 𝐴𝑢𝑥𝑐  and 

subjected to the requirement 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 in order to find a condition for 𝑃𝑋𝑌𝑎.  

A detailed approach is discussed below: 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0 (40) 

𝑟4𝑀𝑃𝑐 − 𝑑𝑃𝑋𝑌𝑖𝑛
𝑃𝑋𝑌𝑖𝑛 − 𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 = 0 (41) 

𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 − 𝑑𝑃𝑋𝑌𝑎
𝑃𝑋𝑌𝑎 = 0 (42) 

From (42),  

𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 − 𝑑𝑃𝑋𝑌𝑎
𝑃𝑋𝑌𝑎 = 0 (41) 

𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 = 𝑑𝑃𝑋𝑌𝑎
𝑃𝑋𝑌𝑎 

𝑑𝑃𝑋𝑌𝑎
𝑃𝑋𝑌𝑎 = 𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 

Set 𝑑𝐴𝑢𝑥 ≠ 0 

𝑃𝑋𝑌𝑎 =
𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

  (49) 

Next, use (41) for an equation for 𝑃𝑋𝑌𝑖𝑛 

𝑟4𝑀𝑃𝑐 − 𝑑𝑃𝑋𝑌𝑖𝑛
𝑃𝑋𝑌𝑖𝑛 − 𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝 = 0 

𝑟4𝑀𝑃𝑐 − 𝑃𝑋𝑌𝑖𝑛(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝) = 0 

𝑃𝑋𝑌𝑖𝑛(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝) = 𝑟4𝑀𝑃𝑐 

Set 𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝 ≠ 0. Thus, 

𝑃𝑋𝑌𝑖𝑛 =
𝑟4𝑀𝑃𝑐

𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹

  (50) 

Substitute (50) into (49) to find an equation for 𝑃𝑋𝑌𝑎 in terms of 𝑀𝑃𝑐 

𝑃𝑋𝑌𝑎 =
𝑟2𝑃𝑋𝑌𝑖𝑛𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

 

𝑃𝑋𝑌𝑎 =
𝑟2𝑇𝐷𝐼𝐹

𝑑𝑃𝑋𝑌𝑎

𝑟4𝑀𝑃𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

  (51) 



To find 𝑀𝑃𝑐, use (40) 

𝑟5𝐴𝑢𝑥𝑐 − 𝑟3𝑃𝑋𝑌𝑎𝑀𝑃𝑐 − 𝑑𝑀𝑃𝑀𝑃𝑐 = 0  (40) 

𝑟5𝐴𝑢𝑥𝑐 − 𝑀𝑃𝑐(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃) = 0 

𝑀𝑃𝑐(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃) = 𝑟5𝐴𝑢𝑥𝑐 

Set 𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃 ≠ 0 

𝑀𝑃𝑐 =
𝑟5𝐴𝑢𝑥𝑐

𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃
  (52) 

Now, (52) is substitutred into into (51) to get a quadratic for 𝑃𝑋𝑌𝑎 

𝑃𝑋𝑌𝑎 =
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

𝑟4𝑀𝑃𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

  (51) 

𝑃𝑋𝑌𝑎 =
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

𝑟4

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

𝑟5𝐴𝑢𝑥𝑐

𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃
 

𝑃𝑋𝑌𝑎(𝑟3𝑃𝑋𝑌𝑎 + 𝑑𝑀𝑃) =
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

𝑟3𝑃𝑋𝑌𝑎
2 + 𝑑𝑀𝑃𝑃𝑋𝑌𝑎 =

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 =

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

Thus,  

𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹)

= 0  (53) 

Here, the case for 𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 to be satisfied is discussed. Thus, since all are 

parameters and component are non-negative 

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

>
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

−
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

< −
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 



0 = 𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑐

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

< 𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

0 < 𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

Thus, 

𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

> 0  (54) 

The above inequality can be solved for 𝑃𝑋𝑌𝑎. Consider the roots of the equation 

𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

= 0  (55) 

Equation (55) can be factorized using the discriminant 𝐷 

𝐷 = (
𝑑𝑀𝑃

𝑟3
)

2

− (−4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

)

= (
𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

) 

The roots of (55) 𝑃𝑋𝑌𝑎1
,𝑃𝑋𝑌𝑎2

 then become 

𝑃𝑋𝑌𝑎1
, 𝑃𝑋𝑌𝑎2

=
1

2
(−

𝑑𝑀𝑃

𝑟3
± √𝐷)

=
1

2
(−

𝑑𝑀𝑃

𝑟3
± √(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

)) 

Thus, factorise (55) as follows: 

𝑃𝑋𝑌𝑎
2 +

𝑑𝑀𝑃

𝑟3
𝑃𝑋𝑌𝑎 −

𝑟2𝑇𝐷𝐼𝐹𝑝

𝑟3𝑑𝑃𝑋𝑌𝑎

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

= 0 

(𝑃𝑋𝑌𝑎 +
1

2

𝑑𝑀𝑃

𝑟3
−

1

2
√(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

)) ×

(𝑃𝑋𝑌𝑎 +
1

2

𝑑𝑀𝑃

𝑟3
+

1

2
√(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

)) > 0

 



If 𝑃𝑋𝑌𝑎1
= −

1

2

𝑑𝑀𝑃

𝑟3
−

1

2
√(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

) and 𝑃𝑋𝑌𝑎2
=

−
1

2

𝑑𝑀𝑃

𝑟3
+

1

2
√(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

), then the solution to the inequality is 

given by 

 

𝑃𝑋𝑌𝑎 ∈ (−∞; 𝑃𝑋𝑌𝑎1
) ∪ (𝑃𝑋𝑌𝑎2

; +∞).  (56) 

 

Notice, however, that 𝑃𝑋𝑌𝑎 is non-negative. Thus, 𝑃𝑋𝑌𝑎 ∈ [0, +∞). The intersection 

of 𝑃𝑋𝑌𝑎 ∈ [0, +∞) with (56) give the final solution 

𝑃𝑋𝑌𝑎 > −
1

2

𝑑𝑀𝑃

𝑟3
+

1

2
√(

𝑑𝑀𝑃

𝑟3
)

2

+ (4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+𝑟2𝑇𝐷𝐼𝐹𝑝)

). (57) 

The summary of the successful patterning conditions for the network with the PXY-

MP negative feedback loop given in Table 2. 

 

 

Network with PXY-MP negative feedback loop 

 

 

Conditions for cambial 

auxin maxima 

 

 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 

 

 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑥 

 𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑝

𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0 with  

𝑃𝑋𝑌𝑎 > −
𝑑𝑀𝑃

2𝑟3
+

1

2
√(

𝑑𝑀𝑝 

𝑟3
)

2

+ 4
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹𝑝)

 

 

Always true 

Table 2S: A summary table for the successful patterning conditions the network with the PXY-
MP negative feedback loop. Column 1 shows headings. Column 2 shows the conditions for 



auxin accumulation in the cambium over the phloem. Column 3 shows the auxin concentration 
in the cambium in both system exceeds the auxin concentration in the xylem 

 

Together,  

Table 3S: This table matches Table 3 from Chapter 4. A summary table for the successful 
patterning conditions the network without the PXY-MP negative feedback loop. Column 1 
shows headings. Column 2 shows the conditions for auxin accumulation in the cambium over 
the phloem. Column 3 shows the auxin concentration in the cambium in both system exceeds 
the auxin concentration in the xylem 

 

 

Conditions for auxin pattern in both networks 

 

 

Conditions for cambial 

auxin maxima 

 

 

𝐴𝑢𝑥𝑐 > 𝐴𝑢𝑥𝑝 

 

𝐴𝑢𝑥𝑐

> 𝐴𝑢𝑥𝑥  

No PXY-MP loop 𝐹𝑎 −
1

2
𝑟8

𝑟5𝑟6𝐴𝑢𝑥𝑝

𝑑𝑀𝑃(𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁)
− 𝑑𝐴𝑢𝑥 > 0  Always 

true 

With PXY-MP loop 𝐹𝑎 −
1

2
𝑟8

𝑟6

𝑟7𝐶𝐾𝑝+𝑑𝑃𝐼𝑁
(

𝑟5𝐴𝑢𝑥𝑝

𝑟3𝑃𝑋𝑌𝑎+𝑑𝑀𝑃
) − 𝑑𝐴𝑢𝑥 > 0  

with 

𝑃𝑋𝑌𝑎 > −
𝑑𝑀𝑃

2𝑟3
+

1

2
√(

𝑑𝑀𝑃 

𝑟3
)

2

+
𝑟2𝑇𝐷𝐼𝐹𝑝

𝑑𝑃𝑋𝑌𝑎
𝑟3

𝑟4𝑟5𝐴𝑢𝑥𝑝

(𝑑𝑃𝑋𝑌𝑖𝑛
+ 𝑟2𝑇𝐷𝐼𝐹)

 

Always 

true 


