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Abstract: A fractional-order vascular model representation for emulating arterial hemody-
namics has been recently presented as an alternative to the well-known integer-order arterial
Windkessel. The model uses a fractional-order capacitor (FOC) to describe the complex and
frequency-dependent arterial compliance. This paper presents a two-stage algorithm based
on modulating functions for finite-time simultaneous estimation of the model’s input and
the fractional differentiation order. The proposed approach is validated using in-silico human
data. Results show the prominent potential of this method for calibrating arterial models and
enhancing cardiovascular mechanics research as well as clinical practice.
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1. INTRODUCTION

Generally, arterial models vary from being very simple
but physically less interpretable to very complex but ac-
curate. Arterial models can be divided into two main
categories. The macro-scale-based models’ class consists
of low-dimensional modeling approaches. Macro models in-
clude zero-dimensional models (0-D) or lumped parametric
models. They are very simple with small computational
cost; however, they are weak in terms of physical inter-
pretability, Bahloul and Laleg-Kirati (2020). Regarding
the cardiovascular characterization, these models are usu-
ally applied to represent the hemodynamic determinants
of the global arterial system. The most well-known lumped
arterial parameter model is the arterial Windkessel, Frank
(1899), which includes mono-compartment models and
multi-compartment models, Malatos et al. (2016); Shi
et al. (2011). Mathematically, macro models are usually
based on ordinary differential equations (ODEs), and they
represent the hemodynamic as a function of time only. The
second class is the micro-scale-based models that can yield
more accurate physical descriptions of the regional arterial
system determinants compared to macro-scale one. These
models are generally explored to represent the complex
hemodynamic phenomenon of a particular region in the
cardiovascular system. Typically, this category consists
of high-dimensional modeling frameworks that include
one-dimensional (1D), two-dimensional (2D), and three-
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dimensional (3D) models. To establish micro modeling
of the entire arterial tree, complex geometrical and me-
chanical knowledge must be produced, resulting in huge
computational complexity. Hence, it cannot be promptly
executed in practice. Mathematically, macro models are
based on partial differential equations (PDEs), and they
represent the hemodynamic as a function of time and
space, Ruan et al. (2018).

Commonly, the typical practical scenario is to have a
class of models with interpretable parameters and man-
ageable complexity. In the last three decades, fractional-
order (non-integer) derivative has played a notable role
in multiple fields, mainly modeling biological systems.
Fractional-order models extend the concepts of differen-
tiability and incorporate non-local and system memory
effects through fractional-order space and time deriva-
tives. These properties enable us to model aspects over
various time and space scales without breaking the prob-
lem into smaller and smaller compartments. The most
common modeling/simulation paradigm that can involve
the above features is the so-called mesoscale-based model.
The meso-scale-based model is more complicated than the
macro-based model, but its complexity is still manage-
able. They are based on mathematical description forms
with non-locality properties. Therefore, using fractional-
order derivative tools, the parameters of the mesoscale
based-model are usually physically interpretable. Meso-
scale models are considered as key elements in multi-
scale characterization. The versatility and flexibility of
fractional-order tools generated a belief that the future of
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computational modeling in bioengineering will undergo a
paradigm shift in favor of mesoscale-based-model, Bahloul
and Kirati (2021).

Regarding cardiovascular system modeling, the power-law
behavior has been proved in the viscoelasticity charac-
terization of an elastic aorta. The in-vivo and in-vitro
experiment have shown that fractional-order calculus tools
are more convenient to precisely represent the arterial
dynamics; the viscoelasticity properties of the collage-
nous tissues in the arterial bed; the arterial blood flow,
Perdikaris and Karniadakis (2014); Bahloul and Kirati
(2019); red blood cell membrane mechanics, Craiem and
Magin (2010) and the heart valve cusp, Doehring et al.
(2005). Recently, we extended fractional-order derivative
tools to the well-known arterial Windkessel paradigm by
substituting the ideal capacitor, which accounts for the
total arterial compliance, with a fractional-order capac-
itor. Our preliminary investigation confirmed that the
fractional-order impedance is the right candidate for the
accurate assessment of the aortic input impedance. More-
over, a strong correlation between the main hemodynamic
determinants and the fractional differentiation order («)
has been proved, Bahloul and Laleg-Kirati (2020, 2018).
The fractional order is used to describe the transition
between viscosity and elasticity more accurately.

In order to calibrate fractional-order models, several
estimation-based methods have been proposed in the lit-
erature. These methods can be classified into two cate-
gories: asymptotic such as observer-based methods, and
non-asymptotic such as algebraic methods Belkhatir et al.
(2018). Although asymptotic techniques are very reli-
able, they are computationally expensive and often de-
pend on the initialization condition. In addition, in some
cases, they are not robust against noise. However, non-
asymptotic methods are generally efficient with manage-
able computation’s complexity. Besides, they allow the
joint and finite estimation of parameters and unknown
input. In Bahloul and Kirati (2020), the authors pro-
posed a finite-time estimation algorithm based on the
so-called modulating functions (MFs) to jointly estimate
the blood flow in a specific site of the arterial network,
which regarded as the input of the model, and the two-
element Windkessel model’s parameters. In this paper, we
enlarge our approach to the fractional-order two-element
Windkessel model. The proposed algorithm consists of two
stages to simultaneously estimate the fractional differenti-
ation order and the input blood flow. The rest of the paper
is organized as follows. Section 2 presents some preliminary
results on the mathematical formulation of the fractional-
order arterial Windkessel representation and the modulat-
ing functions. The two-stage-based modulating functions
algorithm for the joint estimation of the input (arterial
blood flow) and parameters is proposed in Section 3.
Some numerical examples that illustrate the performance
of the proposed algorithm are provided in Section 4 and a
discussion of the results. Finally, the conclusion and future
work are given in section 5.

2. PRELIMINARIES
2.1 Fractional Derivative

Definition 1, Lorenzo and Hartley (2008):  The ini-
tialized Rimeann-Liouville (R-L) fractional derivative is
defined as:

DEft) = di f(t) +¥(fs, —p t>0, (1)

where a = n — p with n € R and p,a € R}. The terms
dY f(t) are the uninitialized a-th order Riemann-Liouville
derivative and ¢ is the initialization function given as
follows:

, —to, 0, t):
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where T'(.) is the gamma function and f;(¢) is the initial-
ization function defined for ¢ € [—tp,0],t9 € R4. This defi-
nition assumes that the history-function for ¢t € (—oo, —t¢)
is zero.

2.2 Fractional-order arterial Windkessel

The concept of Windkessel representation was borrowed
from electrical circuit analogy, where the electrical voltage
corresponds to the arterial blood pressure, and the cur-
rent corresponds to the blood flow through the arteries.
Besides, the electrical resistor and capacitor represent vas-
cular resistance and compliance, respectively. Fractional-
order arterial Windkessel is similar to the standard Wind-
kessel representation; however, instead of using an ideal
capacitor, we employed a fractional-order capacitor (FOC)
to represent the arterial compliance. FOC, which gener-
alizes capacitors and resistors, displays a fractional-order
behavior that can capture both elastic and viscous prop-
erties through a power-law formulation. The fractional
differentiation order is employed to describe the transition
between viscosity and elasticity more accurately. In the
following, we represent the formulation of the fractional
two-element Windkessel:

Based on the conservation mass, the arterial blood flow
pumped from the heart to the arterial vascular bed (g;y)
can be expressed as:

Qin (t) = QStored(t) + q0ut(t)7 (3)

where ¢sioreq is the blood stored in the arterial tree, and
Gout corresponds to the flow out of the arterial system,
which can be expressed as follows:

ot (1) = Zpat). @)
where, Rp represent the peripheral vascular resistance
and p, corresponds to the aortic pressure. Regarding
Qstored, typically using the conventional definition, it can
be determined as the rate of flow by taking the first
derivative of the volume equation for the time, whereas, in
consideration of the fractional properties of both RBC and
the collagenous tissues forming the arterial bed, we allow
the differentiation order of the blood volume for time to
be real (a € [0 1]) and hence applying the fractional-order
derivative to this differential equation.
4oV (t)
dt>

DYV (t) = (5)

qstored(t) =
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AoV (t) d®pa(t)
dopa(t)  dto
——

, (6)

QStored(t) =

Cq
where C\, is a fractional order proportionality constant
that can be defined as a fractional order compliance
expressed in the unit of [I/mmHg - sec'~?]. Substituting
(4) and (6) into (3) yield:

dpat) | 1 o). (1)

in(t) = C
%n() «@ dta Rp

Equation (7) can be written as:
y(t) + 7Dy (t) = u(t), (8)
Ryqin(t), y(t) = pa(t), and 7 = R,C,.

2.3 Modulating functions (MFs)

where u(t) =

Definition 2: Let ¢(t) be a function defined in the
interval [0,T]. ¢(t) is an MF of order n if it satisfies the
following properties:

(P1) ¢(t) € C™([0,T7]), where C™([0,T]) denotes the space
of n times differentiable functions over [0, T].

(P2) ¢19(0) = ¢™(T) = 0,i = 0,1,...
(P3) D o(t) exists,V 0 < a < n,
(P4) Dffé(t)][t=0 =0,V 0 < o < m.

n—1,

In the following, we recall an important property, an inte-
gration by parts-like formula for initialized RL fractional
derivative, that relates a MF with its fractional deriva-
tive of order v when integrated against a given function.
Lemma 2 , Belkhatir et al. (2018): Consider a function
f(t) and let ¢(t) be a MF of order n, with n € N*. Assume
that the a-th initialized RL fractional derivative of f(¢),
with a € R, exists. Let the initialization function be a
constant fo(t) = cg, defined for ¢t € [—tg, 0], %o € Ry. Then,
the following expression holds:

f D”‘f( )¢( —t)dt = [ f(T — )Dg(t)dt
— t)(t + to)~¥dt — coDX T B(T).

3. MATERIALS & METHOD
3.1 Two-stage based Modulating functions algorithm

MF based-estimation is a non-asymptotic method that
has been successfully used in parameters’ identification
for both integer order systems, Co and Ydstie (1990);
Balestrino et al. (2000); Guo et al. (2014) and fractional
order systems Liu et al. (2013); Wei et al. (2019). The
basic idea of this method is to transform the estimation
problem for an integer/fractional order differential equa-
tion into an algebraic problem of finding the solution of a
set of equations. Thanks to its properties, the MF-based
estimation approach is very fast and easy to implement.
In addition, by dint of the integration by part criteria
(Lemma 2) along with modulating function properties
(P2-P4) in the Definition 2, the MF based method is
considered robust against corrupting noises. In order to
estimate the fractional differentiation order simultaneously
with the input, a two-stages algorithm has been proposed
by Belkhatir et al. (2018). The proposed algorithm com-
bines the modulating functions method and the first-order

Newton methods. Functionally, the two-stage algorithm is
an iterative technique that consists of two steps. The first
step solves the estimation problem of the input based on
the MF technique at each iteration. The main logic of this
step is to project the input into an appropriate set of basis
functions. Considering the coefficient of the projection as
unknown parameters that will be will be simultaneous with
the vector of fractional differentiation orders. The second
step solves a nonlinear system of equations using Newton’s
method to estimate the fractional differentiation orders.

Considering the following linear continuous-time non-
commensurate fractional-order system:

N
D+ Y aDy(t) = u(t), t€[0,T), (10)
i=1

where y(t) € R is the output, u(t) € R is the input,
a; € R, for i = 1,2...,N, are the parameters and
a; € p = (ni—1,n;), with n; € N* and ¢ = 1,2,..., N
are the unknown fractional differentiation orders. They are
assumed to be as follows: 0 < a1 < ag < -+ < ay, i.e.,
n; < njyp fori =1,2,..., N — 1. We denote the vectors
0 and « as: 0 = (a1 az ...an)", @ = (a1 ag ...an)"
and its estimate as & = (41 &z ...an)". (-)' denotes
the transpose of the row vector. Considering the above
fractional-order system (10), the estimation problem can
be formulated as:

EP: Given the output signal y(t) fort € [0,T] and knowing

the value of the vector 0, jointly find estimates (u(t), &) for
the unknowns: input signal (u(t)) and vector of fractional
orders ().

As the main concept of the MF based method is to write
the fractional differential equation as a set of algebraic
integral equations. Accordingly, to estimate the (input-
parameters) simultaneously with the fractional differen-
tiation orders, we need to decompose the input signal wu(t)
in the space spanned by a set of known basis functions
{B:(t)})_,, as follow:

14
u(t) = &B;(0), (11)

Expression (10) is rewritten as:

N Vv
D+ aDiyt) =Y €81
=1 Jj=1

where {¢; }j 1, V € N*, will be considered the unknown
projection parameters that will be estimated jointly with
the parameters, 6. Based on this projection, the estimation
problem can be formulated as follows:

EP*: Given the output signal y(t) for t € [0,T] and
knowing the wvalue of the wvector 0, jointly find esti-
mates ({é]( t) y 1, &) for the unknown projection weights
(&;()}Y_,) and vector of fractional orders (o). In what fol-
lows, tfle different steps within each stage of the proposed
algorlthm are presented to solve FP*, and hence EP:

, t€[0,T], (12)

First stage: The main objective of this stage is to
estimate the input via its projection weights (12), for
a given fractional differentiation order of the output.
Let’s suppose that the fractional-order derivative of the
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output y(t) is initialized with a constant initialization
function fo(t) = co,t € [—to,0],¢p > 0. Multiply (12)
by {¢m(t)}M_, (a set of linearly independent MFs) and
integrate over a period [0, 7] :

T N T
/ ¢'m(T - t)y(t)dt + Z aj / ¢m(T - t)D?iy(t)dt
0 ; 0
= Z&; / i (T — )8 (t)dt.

By applying Lemma 2, to the second integral of (13), we

obtain:
1%
D €A = bm(a)
j=1

(13)

m:]-v"vM7 (14)

where

Am] - fOT ¢m(T
=[] ém(T

where Ami(a) is given by

)B;(t)dt
(15)
— t)y(t)dt + Zl L @i Ami(a)

T
Ami(a) = / DY (t)y(T — t)dt — coDFi ™ ¢(T)
0 . (16)
co oy
+m/0 (f’m(Tft)(tﬁ’tO) dt,
For a given fractional differentiation order (&*), the finite
estimate of the parameters and the projection weights of
the input, £ = (& & ... &)7 can be found by solving the
following linear system

A€ = b(a"®) (17)

Second stage: In order to estimate the fractional dif-
ferentiation order an iterative computation method based
on the Newton update law is adopted as follow:

An estimate o of the vector of fractional differentiation
orders is computed iteratively using the following Newton
update law:

Akt — gk

— L (@*)] 7t (a"), (18)

where v is a regularization parameter, v € (0,1]. J(&*) €

RY is given by

J(@*) = L(&*) - R =0, (19)
with L(&*) e RN, R€ RN and for j =1,...,N
Lj(@h)y =3 1£zf b1 (T — t)Bi(t)dt

—Z az(a Jl(a ) (20)

Rj=[' ¢M+]( — t)y(t)dt

The matrix L'(&*) € RV*N corresponds to the Jacobian
matrix of L(&F) given as follow:

L1 (aky OL1(ak Ly (A
) i(a") ) i((‘!k) E) ;(Oék)

(21)
OLN (aky OLn (aky  OL
aai] (6%) aJ; (@) - 3Lx:< ")

The system of equations (17) is solved in two stages using
M = M + N linearly independent MFs. While in the first
stage we use M > N MFs to estimate the the projection
weights of the input and their gradients with respect to
o, in the second stage we use the remaining N MFs to
estimate the fractional differentiation orders. At this stage

we consider the reset of M Fs{¢,(t) %iﬁﬂ.

(17) and the solution of stage 1 we have
L(a) := A¢(a) = b(e), (22)

The components of the vector L(a) are given as follows,
forj=1,2,...,N

Then, from

N
Li(e) =Y ai@)Azi(e) (23)
i=1
The iterative first-order Newton method is used to solve
(22), with a solution at iteration k& denoted &* . The
Newton update law is given in (18). At each iteration,
(19) and (20) follow directly from (22) and (23).

Characterization of the Jacobian matrix  Thanks to the
MFs, we can exactly characterize the entries of the Jaco-
bian matrix as given in the following lemma. Such explicit
characterization reduces significantly the computational
burden.

Lemma 3: The entries of the Jacobian matrix are

analytically characterized as follows; for ¢ = 1,...,N,j =
1,...,N,

oL, agz
L;g = aa_ / ¢M+]

O45(0)

DA ;
Bi(t)dt — az; —2
o

with

- BA(”éZ;ﬁ(a) is given by (25) and 78Daz¢r"(t)

is computed using Lemma 1. The terms 51 are estlmated

by solving the following linear system of equatlons
A = b () (26)
SNy i=1,...,Vim=1,..., M,

Ami is given by (15)

94 (c)
b = —a; da; (27)

(Ei)l _ 94(a)

daj

where, for j =1,...

where a%;ia) is given by (25) and (xfi)z denotes the ith

element of & Zt] .

3.2 Materials

The two-stage algorithm has been tested using in-silico
data set that has been generated from a validated one-
dimensional numerical model of the arterial network, by
Willemet et al. (2015). This database consists of hemo-
dynamic signals (e.g. pressure, flow and distension wave-
forms) at all arterial locations. It presents arterial hemo-
dynamic of virtual healthy adult subjects in which the
cardiac and arterial parameters vary within physiological
ranges. This in-silico data set is able to mimic the major
hemodynamic properties sensed in-vivo. For this study, we
selected 3 virtual subjects with different arterial charac-
teristics, as shown in table 1. The explored hemodynamic
signals are measured at the level of the ascending aorta.
To implement the fractional-order derivative of the output
blood pressure signal, we assume that the initialization
function fo(t) = 0 for all ¢ € (—inf,0] and we used the
following Grinwald-Letnikov (GL) formula:

[+]
Df'f (t) = lim h~ QZ( 1)7

3=0

)f(t—jh), (28)
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. T ape: a;—1 T T
Pmile) / D00y iy — e 22D e {%ma;) / G (T — O)(t + to) ™t — o / G (T —D)(t + o)~ ~idt| (25)
i 0 i @ @ 0 0
. . I'a+1 . .
where h > 0 is the time step, (t;) — F(j+1)(?(a—)j+1) and [] case. Overall, the presented algorithm showed satisfactory

means the integer part. For MF we have used the following
polynomial modulating function

G (t) = MFaFI=m (T pyarm, (29)
where m = 1,2,3,..., M, and M is the total number of
MFs, ¢ is an integer parameter. In this work, we choose
a set of sinusoidal basis to decompose the input signal
corresponding to the blood flow:

Bi(t) = sin i%t, (30)

where T is the upper limit of the interval where the
modulating function is defined. To evaluate the proposed
algorithm, we use relative error, R.FE, as metric:

[lu — 4|2

RE[) = TP X 100%. (31)

4. RESULTS & DISCUSSION

Table 2 presents the parameters and metrics used in the
proposed two-stage algorithm to simultaneously estimate
the aortic blood flow and fractional parameter (), which
corresponds to the input and differentiation order of FOS
(8), respectively. In addition, we present the relative error
evaluated between the exact input and the estimated one
and the estimate of the fractional differentiation order for
three different subjects. The studied subjects have different
stroke volumes (SV) ranging from 66.90 ml to 99.60 ml.
The proposed algorithm has been tested in both noise-free
and noisy cases. In the noise corrupted case, white Gaus-
sian random noise with zero mean has been added to the
input signal (10% of the original signal). Fig. 1 shows the
reconstruction results of the input aortic blood flow in the
absence of noise using a sinusoidal basis. It also presents
the absolute value of the error between the exact input
waveform and the estimated one. For all the subjects, only
10 projection weights were needed. For the Subject 1 and
Subject 2 12 modulating functions have been used and 100
iteration to jointly estimate the input and the fractional-
differentiation order. For Subject & 10 MFs and only 64
iterations were enough to achieve a minimum relative error
(R.E). Subject 8 presents the best performance based on
the evaluation of R.E, which is equal to 9.94% in the noise-
free case and around 11.31% in the noisy case. For the
other subjects, R.E is less than 13.5% in all cases. The R.E
is slightly bigger in the noisy cases than the noise-free ones.
Comparing to the results presented in Bahloul and Kirati
(2020), the two-stage algorithm applied to the fractional-
order Windkessel model enhanced the reconstruction per-
formance of the aortic blood flow, especially in the noisy

robustness against noise. The estimate of fractional dif-
ferentiation orders are 0.98, 0.96 and 1.01 for Subject 1,
Subject 2 and Subject 3 respectively. It is worth noting
that during the experiments, we noticed that the algorithm
depends on a good guess of the unknown fractional differ-
entiation order, which leads to numerical instabilities. To
avoid this issue, we included a regularization parameter
v, known as learning rate in Machine Learning context.
The ~ parameter belongs to the interval (0,1], and it is
used in the updating rule described by (18). Based on the
above results and the extensive numerical investigations
that we have conducted, it is worth noting the following
observations:1) The total number and type of modulating
functions influence the two-algorithm performance. In fact,
in the noise-free case, we noticed a minimal number of
MFs is required to get the best performance. Increasing
the number of MFs does not lead to better performance
and might increase the error. However, in the noisy case,
increasing MFs enhances the estimation results. 2) The
choice of the projection basis and the number of functions
affect the algorithm’s performance. We think this choice
depends on the prior knowledge of some properties of the
estimated input, such as smoothness and periodicity. In
this study, we observe the oscillatory behavior within the
blood flow waveform; hence we choose a set of sinusoidal
bases to decompose the input signal.3) Some numerical
issues have been encountered in solving the linear problem
using least square methods for a specific number of modu-
lating functions and projection weights. This observation
can be explained by the fact that the condition number of
the matrix inverse depends on the nature and number of
modulating functions and the real data, which may cause
scarcity and numerical issues.

5. CONCLUSION

The estimation of the aortic blood flow and the hemody-
namic determinants is of great importance in diagnosing
and treating the cardiovascular system. This paper inves-
tigated the use of a hybrid approach that combines the
modulating functions’ algebraic method and the first-order
iterative Newton’s technique to estimate the aortic blood
flow and jointly calibrating the fractional-order Wind-
kessel model. The validation result using in-silico dataset
for human adult shows a good reconstructing performance
of the aortic blood flow and provide an acceptable estimate

Table 2. Metrics used in the two-stage algo-
rithm to estimate the blood flow signal and
fractional differentiation order estimate, &.

Table 1. Hemodynamic determinants of 3 vir- [ [ Subject I | Subject2 [ Subject3 ]
tual subjects. T, denotes the cardiac period, Motrics
SV corresponds to the stroke volume, SP, DP Noise 0% [ 10% 0% | 10% 0% | 10%
are the systolic and diastolic blood pressure Tterations 100 101 64
and 7 is the time constant. M 12 12 10
Parameter v 10 10 10
T, [sec] | SV [ml] | SP [mmHg] | DP [mmHg) | 7 gl 0.3 0.2 0.1
Subject RE. (%] | 11.77 [ 1351 | 11.19 [ 12.69 [ 9.94 | 11.31
gﬂlﬁ fSE % 82833 23618 19085(647 %gg %gg Fractional differentiation order estimate
Subject 3 0.95 | 99.60 103.93 6925 | 138 & [ 098 [ 098 ] 096 [ 096 [1.01 [ 1.01
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Fig. 1. Estimated aortic blood flow in noise-free for three different subjects using sinusoidal basis.

of the fractional-differentiation order. The algorithm has
been tested in the noisy case and presented satisfying ro-
bustness against noise. The extensive conducted numerical
simulations showed the sensitivity of the proposed method
to the choice of the total number of modulating functions
and projection weights of the basis used to estimate the
input. In addition, the choice of the initial value of the
fractional differentiation order is very critical and affects
the convergence and accuracy of the estimation. In the
future further investigations should be conducted to re-
solve any numerical issues and refine the tuning of the
methods metrics. Additionally, we plan to validate the
proposed algorithm using real human hemodynamic data
with different physiological conditions. This phase should
be directed closely with specialists in the cardiology field
to explain and better analyze the obtained results.
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