bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465072; this version posted October 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Parameter Sensitivity and Experimental Validation
for Fractional-Order Dynamical Modeling of
Neurovascular Coupling

Fahd Alhazmi'*, Member, IEEE, Zehor Belkhatir®* , Member, IEEE, Mohamed A. Bahloul®, Member, IEEE, and
Taous-Meriem Laleg-Kirati >* , Senior Member, IEEE,

Abstract—Goal: Neurovascular coupling is a fundamental
mechanism linking neural activity to cerebral blood flow (CBF)
response. Modeling this coupling is very important to understand
brain functions, yet challenging due to the complexity of the
involved phenomena. One key feature that different studies have
reported is the time delay that is inherently present between
the neural activity and cerebral blood flow, which has been
described by adding a delay parameter in standard models. An
alternative approach was recently proposed where the frame-
work of fractional-order modeling is employed to characterize
the complex phenomena underlying the neurovascular. Thanks
to its nonlocal property, a fractional derivative is suitable for
modeling delayed and power-law phenomena. Methods: In this
study, we analyzed and validated an effective fractional-order for
the effective modeling and characterization of the neurovascular
coupling mechanism. To show the added value of the fractional
order parameters of the proposed model, we perform a pa-
rameter sensitivity analysis of the fractional model compared
to its integer counterpart. Moreover, the model was validated
using neural activity-CBF data related to both event and block
design experiments that were acquired using electrophysiology
and laser Doppler flowmetry recordings, respectively. Results:
The validation results show the aptitude and flexibility of the
fractional-order paradigm in fitting a more comprehensive range
of well-shaped CBF response behaviors while maintaining a low
model complexity. Comparison with the standard integer-order
models shows the added value of the fractional-order parameters
in capturing various key determinants of the cerebral hemo-
dynamic response, e.g., post-stimulus undershoot. Conclusions:
This investigation authenticates the ability and adaptability of
the fractional-order framework to characterize a wider range
of well-shaped cerebral blood flow responses while preserving
low model complexity through a series of unconstrained and
constrained optimizations.

Index Terms—Neurovascular coupling, differential equations,
sensitivity analysis, cerebral blood flow, neural activity, fractional
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differentiation orders.

Impact Statement- The present study proposes a novel
fractional-order framework for modeling neurovascular
coupling. A parameter sensitivity analysis demonstrates the
potential flexibility, and effectiveness of the fractional-order
paradigm in reconstructing the cerebral hemodynamics with
manageable complexity; and a real experimental validation
analysis demonstrates the ability of the model in modeling a
wider range of well-shaped CBF responses.

I. INTRODUCTION

HANGES in neural activity lead to changes in local

cerebral blood flow (CBF) and energy metabolism. The
complex relationship between neural activity and cerebral
blood flow, referred to as neurovascular coupling (NVC),
is a subject of intensive investigation. Understanding factors
and mechanisms that orchestrate this relationship will im-
prove our understanding of the physiological underpinnings of
measurements from Functional Magnetic Resonance Imaging
(fMRI) [1]. Investigating NVC in humans has become a
possibility with the development of neuroimaging techniques
that measure local hemodynamics, including CBF. Thus, quan-
titative models have been proposed to describe the different
mechanisms linking transient neural activity to the changes
in CBF [1]-[3]. NVC models can be arranged in a broad
spectrum ranging from simple models (with fewer details
and fewer parameters) to more complicated models involv-
ing many biophysical parameters and complex relationships
[4]. An example of such models includes the simple model
developed in Friston et al. [5], [6] and which takes a stimulus
waveform and outputs a CBF response shape. The initial goal
of developing this model was to fill in the neurovascular
compartment to the well-known Balloon Model to predict
Blood Oxygen Level Dependent (BOLD) (measured with
functional Magnetic Resonance Imaging (fMRI)) responses
given neural activity. A second order differential equation
is used to describe CBF changes given an input stimulus.
Another example is the model developed in Buxton et al.
[7] which consists of a simple neural adaptation model and
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a linear convolution of neural activity with a flow response
function.

While exploring biological processes underlying NVC us-
ing more complicated models is desired, their applicability is
limited due to several mathematical constraints. For example,
accurate and reliable estimation of model parameters is more
difficult in complex models due to the higher number of
parameters. Furthermore, parameters of those models are
harder to interpret because of the lower model identifiability
in complex models [4]. The difficulty of parameter estimation
combined with the low identifiability and interpretability may
encourage using simpler models with fewer parameters. Sim-
pler NVC models, however, remain limited in their flexibility
to fit the dynamics of CBF responses derived from specific
experimental conditions or pathological populations. Deneux
et al. [8], for example, showed that two of the dynamic
linear NVC models (namely Friston’s model and Buxton’s
model) along with their nonlinear variations were unable
to capture different dynamics of CBF responses at various
stimulation lengths. Linear variations appear to fail to fit
the amplitude variations of different responses. While they
underfit responses to short stimulations, they overfit responses
to longer stimulations. Nonlinear variations also fail to account
for temporal dynamics of the CBF responses especially those
for shorter stimulations [8]. Those results call for developing
more flexible models that can fit experimental data without
compromising model simplicity.

In the last decades, non-integer differentiation, the so-
called fractional-order differential calculus, became a popular
tool for characterizing real-world physical systems and com-
plex behaviors from various fields such as biology, control,
electronics, and economics [9]-[11]. The long-memory and
spatial dependence phenomena inherent to the fractional-order
systems present unique and attractive peculiarities that raise
exciting opportunities to represent complex phenomena that
represent power-law behavior accurately. For instance, the
power-law behavior has been demonstrated in describing hu-
man soft tissues visco-elasticity and characterizing the elastic
vascular arteries. In-vivo and in-vitro experimental studies
have pointed that fractional-order calculus-based approaches
are more decent to precisely represent the hemodynamic; the
viscoelasticity properties of soft collagenous tissues in the vas-
cular bed; the aortic blood rate [12], [13]; red blood cell (RBC)
membrane mechanical properties [14] and the heart valve
cusp [?], [15]-[17] Consistent with the ability of fractional-
order models to fit temporal dynamics, Belkhatir et al. in [18]
have shown that the fractional-order model can yield better
fit to Blood-Oxygenation-Level-Dependant (BOLD) signals
measured with fMRI when compared with the original integer-
order NVC model proposed by Friston et al. in [5]. Fractional
calculus has been used as a powerful tool to understand
better the dynamic processes that span spatiotemporal scales.
Essentially, the fractional-order model is a continuous-time
model with high flexibility to fit high-order dynamics and
complex nonlinear phenomena. Based on this study, fractional
calculus seems to be a suitable approach for NVC modeling.
In fact, one of the most important properties of fractional-

order derivatives is that they depend on the entire history of
a function, not only the value of the function at the evaluated
point. This property, called non-locality or memory effect, is
relevant for modeling systems that exhibit temporal dynamics
and delays such as CBF response since the model’s response
at any given time depends on the whole history of the CBF
response.

The presented work aims to extend the previous work [18]
by studying the parameter sensitivity analysis of the fractional-
order dynamical model of NVC and validated this model using
both synthetic and real CBF data. The contributions of this
paper can be summarised in two main parts:

o In the first part, the mathematical model is illustrated
through a series of numerical simulations, which demon-
strates the fractional-order model’s ability to fit a wider
range of well-shaped CBF responses that cannot be
captured with the standard models. In addition, using
an extensive parameter sensitivity analysis, we study
the effect of the fractional differentiation order and the
model’s parameter on the CBF response.

« In the second part, the proposed model has been applied
and validated using experimental CBF data obtained from
[19]. Moreover, we evaluated the performance of the
model and compared it to the integer-order model.

This paper is organized as follows. In Section II, we
will recall some basic concepts from the fractional-order
derivatives and the fractional-order neurovascular coupling
mode.In addition, this section presents the parameter sensitiv-
ity analysis of the NVC fractional-order model along with the
adopted method to fit the real CBF data. Section III discusses
the obtained results and provides some future directions on the
use of the model for analyzing the cerebral hemodynamic.

II. MATERIALS & METHOD
A. Background

1) Fractional-order Calculus: The concept of fractional
calculus is very old and goes back to the seventeenth century.
Fractional calculus is defined as a generalization of the
integer-order integration and differentiation operators to the
non-integer order. Because of its interesting properties of
non-locality and memory, the interest on FD has grown in
many fields of engineering and science. Examples of real-
life applications include but not restricted to: viscoelastic,
diffusive, biomedical and biological systems [20], [21], [22],
[23].

The continuous fractional integro-differential operator DY,
where o and ¢ are the limits of the operation, is defined as
follows

dOL
— a>0
dr®’ =
DF={ 1 a=o (M

[Hdv)*, a<0

For fractional derivative, several definitions exist in the
literature [24], [25]. In this work, we consider the generalized
Riemann-Liouville (RL) definition which is proposed in [26]
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and recalled in definition 1. This definition is more appropriate
for mathematical analysis.

Definition 1: [26] The initialized RL fractional derivative
of order o € (0,1) of a function g, denoted ¢D¥g(¢), is given
by:

0Dg(1) = odi*g (1) + ¥ (g, t>0, (2

where od%g(t) and ¥(g;, ., —a,0,¢) are the uninitialized of"
order RL derivative and the initialization function, respec-
tively. They are given as follows:

Q, —a,O,t),

w1 oad g
Odt g(t) = 1_,(1 —(X) E/O (t—’t)“ dT7
(3)
1 d Y gn)
Plgi0,—a,0,1) = I(1-a) EL (t—)* "

I'(.) is the gamma function and g;(z) is the initialization
(history) function defined for ¢ € [—a,0], a € R > 0. This
definition assumes that the history-function for ¢ € (—eo, —a)
is zero.

For numerical implementation the definition of Grunwald-
Letnikov (GL) given in definition 2 is used [24].

Definition 2: [24] The Grunwald-Letnikov derivative of
order o of a function g, denoted D*g(r), is given by:

Zc

where i > 0 is the time step, CEOL) (i=0,1,...) are the binomial

coefficients recursively computed using the following formula,
1+o

o =1, % = (1 + )cl@]. (5)

1

Dg(t) (t—ih), a>0, 4)

2) Fractional Neurovascular Coupling Model: The pro-
posed fractional neurovascular coupling can be formally writ-
ten as:

DI f(1) =s
s (=1 (©6)

DF0) = eult) = - =S
where f is the CBF, € is the neural efficacy, k; is signal decay
and ky is the feedback term, g; and g, are the fractional
differentiation orders which range between 0 and 1. Note that
when both fractional orders are set to 1, the model represents
the original model, which we refer to as integer-order model,
proposed by Friston et al. [5].

Fractional dynamics are only present when any fractional-
order is set to a value less than 1. We refer to it as fractional-
order model. This note is the reason why the integer-order
model is a special case of the fractional-order model where
both fractional parameters are set to a value of one. According
to the integer-order model (where q; = g» = 1 in (6)), an
increase in neural activity u(z) leads to an increase in the
flow-inducing signal s (which is assumed to control CBF,
f, at the arteriole level). The flow inducing signal s, then,
leads to an increase in CBF, f. This integer-order NVC model
is simple. However, and as have been pointed out in the
introduction, it fails to account for temporal dynamics that

arise from fractional relationships underlying CBF response
[8]. Hence, two new fractional differentiation order (namely,
g1 and ¢q») are introduced to fully model and account for the
fractional properties of the CBF responses.

B. Characterizing the unique contribution of the fractional
parameters

In the first analysis, we ask whether the fractional-order
model can generate unique well-shaped CBF responses
that cannot be produced with integer-order models, how
those contributions change the shape of the CBF response.
More formally, this analysis aims mainly to exclude any
equivalence that may exist between the integer-order model
and the fractional-order model. In other words, we ask
whether we can match any output of the fractional-order
model (that has two more parameters) by solely tuning
parameters of the integer-order model? If the two models are
equivalent, then there exists a set of values for k; and k;
in the integer-order model that can match any output of the
fractional-order model. We can directly investigate this claim
by running an optimization problem that minimizes signal
dissimilarity between the two models. The minimization only
optimizes the parameters ky and ks of both models, by fixing
q1 and ¢ to constant values lying between 0 and 1.

By fixing g; and ¢, of fractional differentiation order
model at some constant(s) ranging between 0 and 1, we can
compare the obtained optimization results (i.e. the value of
the function at optimal values) across the range of ¢; and
q>. If the two models are essentially equivalent, then signal
dissimilarity should not change across all values used for ¢
and ¢>. However, a change in signal dissimilarity across the
range of ¢g; and ¢, indicates non-equivalence.

The cost function we used to calculate signal dissimilarity is
the L;-norm of the difference between the two signals. It can
be formally described as follows:

M1n1mlzef|fql<1q2<1(kf7 )= Jai=1.0= lkf’ Hl’ 7

ky ks Kr ks

where f; <14,<1 denotes the CBF computed using the
fractional-order model and f; —14,=1 denotes the CBF
computed using the integer-order model. Each model has a
separate set of four parameters. The fractional-order model
has: q; (where g1 <1), g» (where g» <1), ky and k.

Similarly, the integer-order model has: g; (where g; = 1),
q>» (where ¢» = 1), kf and k. All kr, ks, kf and k; are free
to vary while g; and ¢, are fixed at some predetermined
values. For the integer-order model, g; and ¢, are always
fixed at a value of 1 as have been noted before. However, in
the fractional-order model, we use different combinations of
values to test for the contribution of fractional differentiation
parameters. The goal, then, is to find some combination of
the four parameters that best minimize their dissimilarity,
under some values for ¢ and g5 in the fractional-order model.

We carried out two series of optimizations. The first one
was assumption- and bounds-free where we set the lower
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Figure 1: CBF response while varying each parameter. Panel A shows CBF response as a function of g;. Panel B shows CBF
response as a funciton of g;. Panel C shows CBF response as a function of ky. Panel D shows CBF response as a function

of kg

Table I: Parameters values

Parameter | Reference Value | Range values
kr 0.65 0-2
kg 0.41 0-2
q1 1 0<q <1
92 1 0<g <1

bounds of the four parameters (i.e., k7, ks, k7 and ;) to zero
and the upper bound to infinity. The aim was to numerically
prove that the fractional-order model can fit CBF flow re-
sponse regardless the values (or the upper bound) of the four
parameters. As this leads to unrealistic CBF responses, we
defined permissible ranges for the four parameters and re-ran
a constrained optimization. The selection of this range (or
the upper bound) followed a visual inspection of the CBF
response shapes using different values for the upper bound
(e.g. 100, 50, 10 and 2). More importantly, it was also guided
by previous literature on the upper limits of kr and k; (i.e. the
range values in [8], [27]).

C. Parameters Sensitivity analysis of NVC fractional-order
model

After showing that the fractional-order model gives raise to
unique contributions to CBF response, we conduct a sensi-
tivity analysis to study how the parameters of the fractional-
order model affect or control the CBF response above and
beyond the key parameters in integer-order model. To this
end, we followed the sensitivity analysis approach conducted
in [28]. Using a CBF response with a reference signal of fixed
parameter values (shown in Table I), we slowly manipulate
each parameter (and pairs of parameters) to quantify the
deviation in output behavior by computing the L;-norm of the
difference between the reference CBF and the manipulated
CBF. Then we normalize the result by the norm of the
reference signal to give more interpretable values.

D. Fitting fractional-order model to experimental CBF data

In this section, we fit the proposed fractional-order model to
real CBF data obtained from another study [19]. The input-
output data used in this paper were acquired using electro-
physiology and laser Doppler flowmetry (LDF) recordings,

respectively. The data acquisition of the CSD data and CBF
data are described briefly in the following and for more details
we refer the reader to [19], [29], [30].

Hooded Lister rats with weight’s range 200 —300g were
used. The animals were prepared in a way to meet certain
predefined specifications. After locating the whisker barrel
cortex region, electrophysiology and LDF probes were placed
based on the alignment of optical imaging maps with im-
ages of the cortical surface. The inserted electrophysiology
electrodes were coupled to a data acquisition device (Medusa
Bioamp, TDT, FL) with a custom written Matlab interface.
Field potential recording was sampled at 6103.5 Hz with 16-
bit resolution. To avoid the intrinsic spatial ambiguity which is
inherent in the electrophysiology data, current source density
(CSD) is used [29], [31]. The CSD profiles were given to
us with a sampling time between each CSD point of 200ms.
To allow concurrent measurements of CBF, the LDF probe
was positioned over the active area, adjacent to the electrodes.
An LDF spectrometer including a low-pass filter was used to
analyze the signal from the LDF probe with minimized errors
due to the measurements noise. The CBF changes recorded
with LPF were normalized to the baseline CBF which is
collected for 8 s period before the onset of each trial. The CBF
data acquired each 33.33ms which correspond to an LDF with
sampling rate of 30Hz.

Regarding the experimental paradigm, it consists of con-
ditioning block of stimulation followed by a probing block
of stimulation per trial. For each trial, two blocks of stimuli
were used. The first conditioning block has three different
durations (2,8,16 s) which are followed by the probing block
of 1 s duration. These two blocks are separated by 7 different
time gaps (0.6,1,2,3,4,6,8s). Therefore, there were 21 types
of stimuli paradigms run for each animal. Last, the data were
animal averaged. The averaged CSD and CBF data recorded
for the 21 types of paradigms are shown in Figure 4 (blue
lines).

Using the CSD data as input to the model and the CBF
data as its output, we evaluate how the model will fit the
real-data over a certain range of parameters. To get those
fittings, we first resampled the CSD input time points to the
rate of CBF output data. Then, we used optimization function
‘patternsearch’ (in Matlab) to find the best set of parameters
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Figure 2: Results of the (A) unconstrained and (B) constrained optimization over ks and k; of the two models. Colors represent

the L1-norm of the difference between the two CBF outputs

at the optimal values. In the constrained optimization, we used

range from zero to 2. Signals of both models within the black rectangle are visualized in (C)

that can minimize the L; norm difference between the model
outputs and the real CBF data, given the same input. The
procedure was repeated for each subject, in each condition x
stimulation combination. We then visualized the average fit
for all subjects (while showing the standard deviation as a
grey area), in each stimulation x gap combination.

III. RESULTS

The effects of how parameter change the CBF response have
already been discussed elsewhere (see [5] for kg and kg,
[18] for fractional orders g; and ¢»]. Figure 1 recalls the
different shapes of CBF response in a range of values for
each parameter. As shown in Figure 1A and 1B, decreasing
q1 reduces signal width whereas decreasing ¢ increases the
signal width and hence slows down signal decay. In most
cases, decreasing g» also maintains a longer post-stimulus
undershoot (associated with the slower decay) as well as
delayed negative peak. On the other hand, g; only exhibits the
negative undershoot in the first few fractions (approximately
up to g1 = 0.8) after which CBF response returns to baseline
rapidly with no apparent negative undershoot. In general,
while ¢; has more control over the positive aspects of the
signal (i.e. overshoot width), g> has more control over the

negative aspects of the signal like signal decay and undershoot
duration. Positive signal amplitude is a common feature that
both g; and ¢, effectively can change. Figures 1C and 1D
shows the effect of k; and k¢, holding both fractional orders
g1 and ¢, at 1 (hence, it represents the integer-order model).
Decreasing k; increases signal oscillations while increasing k¢
eliminates the CBF undershoot.

A. Sensitivity analysis for the parameters of the fractional-
order model

B. Characterizing the unique contribution of fractional pa-
rameters

Figure 2 shows the results of the two series of optimizations
described in Methods section. More specifically, signal dis-
similarity increases as either ¢; and g, decreases. If the two
models are equivalent, then a perfect match would be obtained
resulting in an error of zero. However, increasing dissimilarity
as a function of g; and ¢, indicates the noticeable effect of the
new fractional parameters on the CBF response that cannot be
obtained by tuning ks and k; of the integer-order model.

More specifically, as we can see in Figure 2C, when varying
g1 while keeping ¢» at 1, we can see that CBF undershoots
still matched, but overshoot amplitude is increasing due to the
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Figure 3: Sensitivity analysis results showing the relative CBF norm error as a function of variations in (A) ks (B) kr (C) kg
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effect of the fractional parameter g;. We note that the actual
values of error (or dissimilarity between the two models) are
not of interest, but rather how they change as a function of
fractional parameters.

Each subplot of Figure 3 corresponds to the relative error
of the CBF signal when one (or two) of the parameters
takes values in a grid around the reference value within
a specific range (shown in Table I). A unique extreme in
the neighborhood of the reference value of the parameter
is observed for both k; (Figure 3A) and k; (Figure 3B).
Notably, the relative error is asymmetric around the observed
global minimum. This asymmetry indicates the CBF response
becomes less sensitive to changes in those parameters as the
value of either parameter increases above the reference value
(see Figure 3A and 3B). Hence, initial guesses should always
be taken less than the expected values of those two parameters
[28].

Similarly, Figure 3C - 3F shows the relative error in CBF
in the case of varying two parameters (again, while keeping
other parameters at their reference values). Although a global
minimum is shown around the reference values, those figures
show a correlation between k, and both fractional orders which
indicate that k; can, to some extent, “undo” the effects of
both fractional orders. Concerning estimating the fractional

parameters in light of those results, it can be argued that
estimation of both ks and ks should always start with values
less than their expected values as model dynamics are slower
(less sensitivity) to big variations in values greater than the
nominal values. For ¢; and ¢, initial guesses are best set to
1 as CBF is less sensitive to variations in fractional orders
when they approach zero.

C. Fitting fractional-order model to experimental data

Both integer-order and fractional-order model have been fitted
to real CBF experimental data. Paired t-test of errors for each
subject x condition combination show a significant difference
between the errors derived from the two models (t(230) = -
5.68, p-value < le-7; Mean tracrional = 60.706 < Mean;yeger =
62.913). Figures 4 illustrate the results of fitting the fractional
model to experimental CBF data. Each subplot contains a
combination of stimulation x gap parameters that were used
in the experiment. Model fits (in blue) show a very good fit
for short stimulation paradigm (2s) and a moderate fit for
the 8s stimulation paradigm. However, it clearly fail to fit
the long (16s) stimulation paradigm. Specifically, the model
is only able to fit the second peak while missing other
dynamics involved. Taken together, those results suggest that
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Figure 4: Average fit of the fractional-order model (shown in

stim:16s/gap:3

stim:16sigap:ds

stim:16s/gap:8s

stim:16s/gap6s

blue) to experimental CBF data (shown in red). The figures also

illustrate the standard deviation of model estimates across all subjects (shown in gray). The lower bars indicate the stimulation

time-courses. The figure shows a very good fit for the short

stimulation paradigm (2s), a moderate fit for the 8s stimulation

paradigm and a poorer fit for the long stimulation (16s) paradigm.

the fractional-order model has a moderately higher flexibility
in fitting experimental data when compared with integer-order
model due to the fact it generalizes the integer-order model.

IV. DISCUSSION

In this investigation, we have shown that the fractional-order
framework has a great potential in describing and charac-
terizing a wide range of cerebral hemodynamic responses
than the standard integer-order model. The fractional-order
model’s ability to cover different response shapes is due to its
flexibility and compliance offered by the two extra fractional
order parameters, namely the fractional differentiation orders.
Fractional parameters seem to characterize the CBF response
in distinct ways by controlling the overshoots and the un-
dershoots observed in the real CBF signal. Our sensitivity
analysis clearly shows that these two parameters have differ-
ent contributions in characterizing the cerebral hemodynamic
determinants. While the variation of the positive overshoot
of the CBF signal is sensitive to the value of the fractional
differentiation order g, the negative part of the CBF signal,
namely the signal decay and undershoot, are more sensitive
to the value of the second fractional differentiation order g5.
In this study, we noticed that the model fails to fit the
longer stimulation paradigm. When the framework involves
highly non-linear dynamics, this fact may limit the model’s
applicability to the long block design experiments of blocks
longer than 8 seconds.

It is worth mentioning the strong correlation between k; and
both g; and ¢, (see Fig. 3C and 3E). These correlations
indicate that, within a specific interval, k; parameter can
“undo” the effect of both fractional-order parameters. This
collinearity translates into a difficulty of accurately estimating
kg in the fractional-order model.

Physiological interpretations of the fractional-order parame-
ters g and g may be challenging. Similar to other NVC mod-
els, the model is meant to be descriptive to fit a wider range
of experimental data that previous models cannot account for
(see [4] for a discussion). Although these descriptive models
have less physiologically interpretable parameters, they are
extremely useful for comparison between different groups and
conditions.

V. CONCLUSION

Modeling the NVC mechanism is undertaking considerable
development. It is essential for a better assessment of BOLD
fMRI data and also a necessary step towards understanding
the physiology behind the complex phenomena involved and
finding biomarkers that represent the key features observed
in measured CBF profiles. Current NVC models still lack the
flexibility to fit a wider range of observed experimental data.
In this paper, the framework of fractional calculus is used
to model the CBF response to neural activity. A fractional-
order oscillator is proposed based on the well-accepted and
known minimal model proposed by Friston et al.. Through
an optimization scheme that compares the original integer-
order model and the proposed fractional one, we showed that
the added fractional parameters provide a unique contribution
in describing the CBF that can not be captured using the
integer-order model’s parameters. Moreover, we assessed how
sensitive CBF measure is to changes in the parameters of
the model. Furthermore, using real neural activity-CBF data,
the fractional model has proven capable of fitting wider CBF
responses to both event and block design input paradigms.
Although fractional model parameters are harder to interpret
physiologically, they offer a great opportunity to compare
groups or conditions.
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This paper does not deal with the estimation problem of the
model’s unknown parameters and fractional orders. This task
may be the subject of a forthcoming paper where model-based
estimation techniques for fractional systems will be proposed.
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