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Abstract. Assuring safety and thereby certifying is a key challenge of
many kinds of Machine Learning (ML) Models. ML is one of the most
widely used technological solutions to automate complex tasks such as
autonomous driving, traffic sign recognition, lane keep assist etc. The
application of ML is making a significant contributions in the automotive
industry, it introduces concerns related to the safety and security of these
systems. ML models should be robust and reliable throughout and prove
their trustworthiness in all use cases associated with vehicle operation.
Proving confidence in the safety and security of ML-based systems and
there by giving assurance to regulators, the certification authorities, and
other stakeholders is an important task. This paper proposes a framework
to handle uncertainties of ML model to improve the safety level and
thereby certify the ML Models in the automotive industry.
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1 Introduction

Every year there are around 1.35 million lives lost due to traffic crashes around
the world mentioned in waymo safety report [1]. There for safe and reliable
autonomous vehicles can help to save lives by reducing the accidents involved
by human driving. Many researchers have used Artificial Intelligence (AI) tech-
niques in these safety-critical systems [2]. AI in these systems helps to solve
complex problems and to improve the performance of the systems. However,
this comes with many challenges as well as opportunities. Automotive Elec-
tronic Control Units (ECU) are increasingly given decision-making power to
take actions with minimal human intervention. ML-based approaches, systems
continuously learn from their operation and dynamically reconfigure in response
to changes such as unexpected failures of components/subsystems. In practice,
ML technology raises various challenges that could prevent them from being
used in a system that requires formal certification.

The International Organisation of Standardization (ISO) introduced ISO
26262 to regulate the functional safety of automobiles E/E Components [3].
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It provides requirements and recommendations for the entire life cycle of vehicle
manufacturing. ISO 26262 defines the safety standard for Automotive Electri-
cal/Electronics components which defines vehicle safety. Hazard Analysis and
Risk Assessment(HARA) is required to determine hazard levels. These safety
requirements are then used to guide the system(software & hardware) develop-
ment process. ISO 26262 part-6 defines the V-model (see Fig. 1) for the software
development process. The objective of this model is to make sure the software
safety requirements are covered in design and verified completely.

Fig. 1. Comparison between V-Model in ISO 26262 and ISO/PAS 21448

The main aim of ISO 26262 is to help the automotive industry to address
functional safety issues in a more systematic approach. ISO did not consider ML
as part of the ISO 26262 standard until ML become an essential part of the auto-
motive industry. Therefore, conventional safety assurance methods suggested
by the ISO 26262 standard are insufficient or inapplicable for the assurance of
ML [4].

The are several interesting papers has published in this area of safety assur-
ance of ML systems. The papers in the first such group attempt to analyze
the possibility of adaption and extension of existing functional safety standards
such as ISO 26262. In [5], Salay et al. presented an analysis of ISO-26262 part-6
methods with respect to ML models safety. The authors found that 40% of soft-
ware safety methods do not apply to ML models. In these works, the authors
discussed five topics that should be addressed in development of ML-based com-
ponents such as the following: new types of hazards specific to ML, new types
of faults and failure modes, usage of incomplete training datasets, the level on
which ML algorithms should be used, and which software techniques should be
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required in these algorithms verification. However, their analysis does not cover
the effectiveness level of these software techniques in covering newly identified
failure modes and hazards. As a result, automotive manufacturers and suppliers
are faced with different challenges when incorporating ML/Deep Neural Network
(DNN) in autonomous cars. The contribution of the current paper is comple-
mentary to above research specifically we consider the impact in the areas of
hazard analysis during runtime.

ISO/PAS 21448 or Safety of the Intended Function (SOTIF) describes an
iterative process that includes design, development, V&V (verification & vali-
dation) phases. SOTIF standard recognizes the performance limitation of the
software and expects that the scenarios that belong to unsafe-unknown and
unsafe-known situations should be reduced so that residual risk is acceptable [6].
This approach allows but manages the performance limitations inherent to ML.
It explicitly allows unknown situations for which no learning data will be pro-
vided during the learning phase but provides a methodological framework to
handle them in a safe manner [6].

Since 1990, deep learning has improved the state-of-art in many ML tasks
such as image classification, object detection, speech recognition, vehicle con-
trol [7]. One of the most popular variations of deep learning architecture is
Convolutional Neural Networks (CNN) which is widely used in computer vision
applications such as object detection, image segmentation, recognition, motion
tracking, etc. DNN algorithms are currently being applied in safety and security-
critical applications such as self-driving cars [2], face detection, robotics, etc.
However, despite the power of deep learning-based models in precision classifi-
cation, we still face problem of making them more cautions by allowing them to
assign highly uncertain samples to set of classes. Hence its challenging to assure
safety when it is predicated on correct output of these algorithms. Traditional
safety measures against systematic software failures, like code review or white
box testing are not effective or applicable to ML models [8].

The Dempster-Shafer(DS) theory of belief functions, also refered as evidence
theory [9], can be harnessed to provide a solutions to this problem. DS theory
is a well-established formalism for reasoning and making decisions with uncer-
tainty. It is based on representing independent pieces of evidence by completely
monotone capacities and combining them using a generic operator called Demp-
ster’s rule. In Sensoy et al. [10] presented evidential theory used for uncertainty
estimation and high quality uncertainty modeling is critically important in pre-
dicting uncertainty. A model should not only take care of about the accuracy,
but also about how certain the prediction is. This is important factor in decision
making of safety critical algorithm.

In this paper we try to propose a method to improve the safety/certification
process of ML Models.

– The use of Evidential Deep Learning as an alternate mechanism to provide
the means of uncertainty of ML models and accounting for uncertainty in the
certification process.
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– Our framework also proposes recommended actions to applied to minimize the
severity of hazard during operation. The modified hazard analysis proposes
actions to be applied to minimise the severity of risk during the operation.

2 Safety Critical Systems: Background and Literature

ML do really well in solving the problems that are difficult to specify in the tradi-
tional way. However its challenging to assure safety and there by certify when it is
predicated on correct outputs of the model. So traditional safety measures against
failures like code review (white box testing) are applicable to ML models. Despite
highly sophisticated in learning and decision-making, ML systems are prone to
many attacks. These lead to harmful consequences in the field of safety-critical sys-
tems. ML models are fragile to the domain shift [11], data corruption, and natural
perturbations [12]. In the current scenario, there is a necessity for building a safe
and secure system. A model is said to be robust and reliable if it does not changes
its output or behaviour due to environmental conditions and deployment [13].

Automotive Safety Integrity level(ASIL)is a risk classification defined by ISO
26262 functional safety of road vehicles. The determination of ASIL is the result
of hazard analysis and risk assessment. Each hazard is assessed in terms of
severity of possible injuries within the context how much of the time a vehicle
is exposed to the possibility of the hazard happening as well as the relative
likelihood that a typical driver can act to prevent the injury. ASIL refers both
to risk and to risk-dependent requirements (standard minimal risk treatment for
a given risk). Whereas risk may be generally expressed as:

Risk = Severity ∗ (Exposure ∗ Likelihood) (1)

The systems or subsystems with in a vehicles can be classified as ‘A’,‘B’,‘C’
or ‘D’ gives view on how critical a subsystem is. ASIL D represents the highest
degree of safety in automotive (see Fig. 2). All safety critical application should
meet the ASIL D requirements. In ASIL D the probability of catastrophic event
of the automotive shall be lower than 10−8 per driving hour.

ASIL = Severity ∗ (Exposure ∗ Controllability) (2)

– Severity is the type of injuries to drivers/passengers
– Exposure is how often vehicle is exposed to hazard
– Controllability is how much driver can do to prevent the injury

Each of these parameters are broken down into different levels.

– Severity has four levels ranging from “no injuries” (S0) to “life-threatening/
fatal injuries” (S3).

– Exposure has five level covering the “incredibly unlikely” (E0) to the “highly
probable” (E4).

– Controllability has four levels ranging from “controllable in general” (C0) to
“uncontrollable” (C3).
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Fig. 2. Automotive safety integrity level

All variables and sub-classes are analyzed and combined to determine the
required ASIL. For example, a combination of the highest hazards (S3 + E4+
C3) would result in an ASIL D classification.

If the decision is taken in the absence of human driver means the controllabity
will always be C3.

Fig. 3. Known/Unknown and Safe/Unsafe scenarios

SOTIF plays a important role in ML modes as its based on the Intended
features. In SOTIF any hazardous event uses cases are classified in to four cat-
egories (see Fig. 3). The aim of SOTIF activities to evaluate Known/Unknown
of unsafe area (area 1 and area 2) and there by maximising the safe areas.
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3 Framework

The aim of the framework is to handle the uncertainty- related failures in these
safety critical application and reduce the severity due to ML failures is acceptably
low. Several classification have been proposed for the sources of uncertainty.
Aleatoric means uncertainty caused by the noise in the input and epistemic
refers to the uncertainty that is systematic that is not sufficiently addressed by
a given model [14]. The motivation behind this separation is that aleatoric part
of uncertainty has to be accepted, but the epistemic part should be reduced as
much as possible by collecting more data Fig. 4. There are several approaches for
estimating epistemic uncertainty, such as Bayesian Neural Network, Evidential
Deep learning etc. However Bayesian Neural Network face several limitations.
Evidential Neural Network are very fast and memory efficient and do not require
any sampling to estimate their uncertainty [15].

Fig. 4. Aleotoric vs epistemic uncertainty

The certification process involves two stage process. In the first stage, a
manufacturer needs to demonstrate to relevant authority that the designed end
product behaves as per high level requirements. The first level of certifying a
product is to certify the safety requirements (compliance with safety require-
ments) and the second level is compliance with the legal requirements. Here we
look in to the first scenario where we certify a model which gives confidence to
the authority. The proposed model is transferring the control to the human(or
fail safe) when the ML safety monitoring model is unable to take decision based
on the uncertainty and the confidence level Fig. 5.

The proposed ML safety model in comparison with the modified HARA of
ISO 26262 in Fig. 6. During the operation, safety critical systems react to dif-
ferent known and unknown event and monitoring system calculated the uncer-
tainty/confidence level. Depends on the impact of the confidence level and uncer-
tainty the safety model switch between driver control, system control and fail
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Fig. 5. ML safety monitoring model

safe control. In doing ML monitoring system determine variable in safety con-
straint more precisely and there by avoid worst case assumptions that affect
performance.

Fig. 6. Modified hazard analysis of ISO 26262

4 Certification: Illustrative Example

In 2018, 85% of the road accidents in United Kingdom are due to the human
error. So automated vehicle technologies can reduce the human error and there
by reduce the collisions. These technology also has the potential to improve driv-
ing experience. The automated technologies introduces new risk and challenges,
which places significant responsibility on the driver and which may require
changes to ensure the safety for this new technology. In this section, we use
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an Automated Lane Keep Assist System (ALKS) to demonstrate the proposed
approach. For instance level 3 of ALKS (restrictive) was already introduced in
June 2020 at UNECE [16].

An ALKS is designed to control the lateral and longitudinal movement of
vehicle for certain period with out further driver command. The system is in
primary control of the vehicle and perform the driving task instead of driver
The condition of use are still restrictive with the below regulations.

– ALKS available on the roads where pedestrian and cyclists are prohibited
– Operational speed of ALKS systems are limited to a maximum of 60km/hr

It is therefore not designed for situations of heavy, slow moving traffic on a motor
way. This new regulations makes a concrete need for dependable and robust ML
and certification process. ALKS feature uses video camera to detect the lane
marking ahead of the vehicle. If the vehicle is too close to the side of it lane then
system will take action by applying corresponding torque to the steering control
module.

In the Automotive domain SOTIF address the problem in another way.
SOTIF classifies the scenarios according to their impact of safety, i.e. the pro-
portion of operation scenario leading to a safe situation and minimise the unsafe
area.

In this section proposes a framework to find out the uncertainty estimates
and confidence level to improve the safety level and there by certify a ML model
Fig. 7.

A typical representation of ML model development based on the current
software development process is shown as part of offline training. An iterative
training and testing approach is required as part of ML software development,
which is required as part of certification process.

Mohseni et al. [6] in reviewed and categorized several techniques that can be
used to enhance the dependability and safety of ML algorithms. They analyzed
different error detection mechanisms such as uncertainty estimation methods,
in/out distribution error detector etc. Willers et al. [17] in defined safety con-
cerns are related to the following issues such as failure of data distributions
to adequately approximate real-world distributions, distributional shifts in data
over time, incomprehensible behavior, unknown behavior in rare & critical sit-
uations, unreliable confidence information, brittleness of deep neural networks
(DNNs), inadequate separation of test and training data, dependence on label-
ing quality. There are several other research works in these area. In this paper
we follow the V model and ISO 26262 standard as part of offline procedure. In
the run time evidential deep learning for uncertainty measurement and follow
ISO 21448 process. In addition to the existing framework there is an additional
parameter Td (transition time) which is the safe time given to the human driver
to take control.
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Fig. 7. ML safety

5 Conclusion

In this paper, we present a framework for addressing issue of safety/certification
in ML models. Autonomous driving and other applications such as image recog-
nition task requires ML models. One of the key challenge in this context is
handling the uncertainty of the prediction of ML models. In order to ensure the
safety certified of these ML models, we cannot completely rely on the output
of these models. If the ML safety model is able to determine the uncertainty of
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ML using evidential deep learning further enables and improve the safety of the
system.

The proposed approach for solving this challenge by determining the uncer-
tainty/confidence assessment during the operation and which used to improve
the safety of the system. This approach is always better than working with worst
case assumptions. Minimising the uncertainty and improving the confidence in
the design time will help to reduce the Known/Unsafe & Unknown/safe areas
which is part of SOTIF activity. This is application specific and always bet-
ter than working with worst case assumptions. We believe that our work will
contribute to future progress in applying safety certification of ML with in the
automotive industry.
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