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Abstract

This thesis dwells upon the synthesis of system-theoretical tools to under-
stand and control the behavior of nonlinear networked systems. This work is
at the crossroads of three topics: synchronization in coupled high-order os-
cillators, inverse optimal control and the application of inverter-based power
systems. The control and stability of power systems leverages the theoreti-
cal results obtained for synchronization in coupled high-order oscillators and
inverse optimal control.

First, we study the dynamics of coupled high-order nonlinear oscillators.
These are characterized by their rotational invariance, meaning that their
dynamics remain unchanged following a static shift of their angles. We pro-
vide sufficient conditions for local frequency synchronization based on both
direct, indirect Lyapunov methods and center manifold theory.

Second, we study inverse optimal control problems, embedded in net-
worked settings. In this framework, we depart from a given stabilizing con-
trol law, with an associated control Lyapunov function and reverse engineer
the cost functional to guarantee the optimality of the controller. In this way,
inverse optimal control generates a whole family of optimal controllers corre-
sponding to different cost functions. This provides analytically explicit and
numerically feasible solutions in closed-form. This approach circumvents the
complexity of solving partial differential equations descending from dynamic
programming and Bellman’s principle of optimality. We show this to be the
case also in the presence of disturbances in the dynamics and the cost. In
networks, the controller obtained from inverse optimal control has a topolog-
ical structure (e.g., it is distributed) and thus feasible for implementation.
The tuning is analogous to that of linear quadratic regulators.

Third, motivated by the pressing changes witnessed by the electrical grid
toward renewable energy generation, we consider power system stability and
control as the main application of this thesis. In particular, we apply our
theoretical findings to study a network of power electronic inverters. We first
propose a controller we term the matching controller, a control strategy that,
based on DC voltage measurements, endows the inverters with an oscillatory
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behavior at a common desired frequency. In closed-loop with the matching
control, inverters can be considered as nonlinear oscillators. Our study of
the dynamics of nonlinear oscillator network provides feasible physical con-
ditions that ask for damping on DC- and AC-side of each converter, that are
sufficient for system-wide frequency synchronization. Furthermore, we show-
case the usefulness of inverse optimal control for inverter-based generation at
two different settings to synthesize robust angle controllers with respect to
common disturbances in the grid and provable stability guarantees. All the
controllers proposed in this thesis, provide the electrical grid with important
services, namely power support whenever needed, as well as power sharing
among all inverters.
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Sammanfattning

Denna avhandling handlar om att ta fram systemteoretiska verktyg för att
förstå och styra beteendet i olinjära system med nätverksstruktur. Arbetet
görs i ett område som gränsar till tre olika ämnen: synkronisering av kopplade
högre ordningens oscillatorer, inversoptimal reglering och kraftsystemtillämp-
ningar med frekvensomriktare. Reglering och stabilisering av kraftsystem
görs med hjälp av teoretiska resultat för oscillatorsynkronisering och inver-
soptimal reglering.

För det första studerar vi dynamiken i kopplade högre ordningens os-
cillatorer med rotatationsinvarians. Invariansen betyder att dynamiken inte
påverkas av ett gemensamt fasskifte i alla noder. Vi ger tillräckliga villkor för
frekvenssynkronisering baserat på indirekta och direkta Lyapunovmetoder,
liksom på centrala mångfaldssatsen.

För det andra studerar vi inversoptimala styrproblem med nätverksstruk-
tur. I detta ramverk utgår vi från en given stabiliserande styrlag med till-
hörande Lyapunovfunktion och härleder en målfunktion för vilken regula-
torn är optimal. Från den givna regulatorn genererar inversoptimal styrteori
sedan en hel familj av regulatorer som alla är optimala med avseende på
tillhörande målfunktioner. Detta ger analytiskt explicita och numeriskt lös-
bara villkor i sluten form. Tillvägagångssättet undviker svårigheten med att
lösa de partiella differentialekvationer som normalt uppstår i samband med
dynamisk programmering och Bellmans optimalitetsprincip. Idén utvidgas
även till fallet med störningar i dynamik och målfunktion. För problem med
nätverksstruktur leder metoden till distribuerade styrlagar, vilket förenklar
deras implementering i nätverket. Metoden har tydliga analogier med klassisk
linjärkvadratisk reglering.

För det tredje, motiverade av behovet att hantera förnyelsebar elpro-
duktion, studerar vi dynamik och reglering av kraftsystem som huvudtil-
lämpning i denna avhandling. Särskilt tar vi hjälp av våra nya teoretiska
resultat för att studera nätverkskopplade frekvensomriktare. Först inför vi
en reglerstrategi som ger omriktarna baserat på DC-spänningsmätningar ett
oscillatorbeteende med ett gemensamt referensvärde på frekvensen. Detta gör
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att omriktarna beter sig som olinjära oscillatorer och vår teori ger tillräckliga
villkor på AC- och DC-sidorna i omriktarna för att garantera frekvenssynkro-
nisering. Dessutom visar vi hur inversoptimal reglering kan användas för att
ställa in omriktarvinkelregulatorer med garantier för stabilitet och robus-
thet i nätverket. Alla de föreslagna regulatorerna förser nätet med de viktiga
tjänsterna att styra och fördela effekt i elnätet.
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Deutsche Kurzfassung

In dieser Arbeit werden systemtheoretische Werkzeuge zur Regleranalyse und
-synthese von nichtlinearen vernetzten Systemen behandelt. Das liegt an der
Schnittstelle von drei verschiedenen Themen: Synchronisierung von gekop-
pelten hoch-dimensionalen Oszillatoren, inverse optimale Regelung und En-
ergiesysteme mit hohem Anteil wechselrichterbasierter Anlagen. Die Stabil-
itätsbetrachtung von Energiesystemen hat die theoretischen Ergebnisse der
Synchronisierung gekoppelter hoch-dimensionaler Oszillatoren sowie die in-
verse optimale Regelung genutzt.

Zuerst untersuchen wir die Dynamik von gekoppelten nichtlinearen hoch-
dimensionalen Oszillatoren, die durch ihre Rotationsinvarianz gekennzeich-
net sind. Dass heisst, dass die Systemdynamik nach statischer Verschiebung
ihrer Winkel unverändert bleibt. Wir liefern hinreichende Stabilitätsbedin-
gungen basierend sowohl auf direkten sowie indirekten Lyapunov Methoden
und dem Zentrumsmannigfaltigkeits-Theorem, damit die Osczillatoren auf
eine gemeinsame Frequenz synchronisieren.

Zweitens untersuchen wir die inverse optimale Regelung, eingebettet in
Netzwerken. In diesem Rahmen gehen wir von einem gegebenen stabilisieren-
den Regler mit einer zugehörigen Lyapunov Funktion aus, und entwickeln das
Kostenfunktional zurück, um die Optimalität des Reglers zu gewährleisten.
Auf diese Weise erzeugt die inverse optimale Regelung, eine ganze Familie
von optimalen Reglern, die Kostenfunktionen entsprechen. Dies liefert an-
alytisch explizite und numerisch zulässige Lösungen in geschlossener Form.
Dieser Ansatz umgeht die Komplexität der Lösung partieller Differentialgle-
ichungen, die von der dynamischen Programmierung und dem Optimalität-
sprinzip von Bellman abstammen. Das gilt auch, wenn die Dynamik und
die Kosten unter dem Einfluss von Störungen sind, d.h. im Rahmen der
robusten optimalen Regelung. Der Regler, der durch die inverse optimale
Regelung in Netzwerken erhalten wird, hat eine topologische Struktur, (er
ist z. B. verteilt) und ist damit praktisch anwendbar. Das Tuning von inverse
optimalen Reglern ist analog zu linear quadratischen Reglern.
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Drittens betrachten wir, motiviert von dringenden Veränderungen des
Stromnetzes zu erneuerbaren Energieerzeugung, die Stabilität und Regelung
von Energiesystemen als die Hauptanwendung dieser Arbeit. Insbesondere
wenden wir unsere theoretischen Ergebnisse an, um ein Netzwerk von Wech-
selrichtern zu untersuchen. Wir schlagen den Matching Regler vor. Das ist
eine Regelstrategie, die, basierend auf die gemessene DC spannungen, den
Wechselrichtern ein oszillierendes Verhalten bei einer gewünschten Frequenz
verleiht. Sobald die Wechselrichter im geschlossenen Regelkreis sind, können
sie als nichtlineare Oszillatoren betrachtet werden. Unsere Untersuchung der
Dynamik nichtlinearer Oszillatornetzwerke liefert hinreichende, praktisch an-
wendbare und physikalisch interpretierbare Bedingungen, die Dämpfung auf
der DC- sowie AC-Seite von jedem Wechselrichter, verlangen um die Frequen-
zsynchronizierung zu gewährleisten. Andererseits demonstrieren wir die Nüt-
zlichkeit der inversen optimalen Regelung für die wechselrichterbasierte En-
ergieerzeugung unter verschiedenen hinreichenden Bedingungen, um robuste
Winkelregler in Bezug auf übliche Störungen im Netz mit nachweisbaren Sta-
bilitätsgarantien, zu entwerfen. Alle in dieser Arbeit vorgeschlagenen Regler
stellen dem Stromnetz wichtige Dienste zur Verfügung, nämlich Leistungsun-
terstützung und Leistungsaufteilung zwischen allen Wechselrichtern.
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1
Introduction

The omnipresence of networked systems in a multitude of fields ranging
from economic, social to biological applications is striking. Real life examples
abound of network interactions: the ebb and flow of generating units in power
systems steadily responding to changes in the electrical grid, transportation
systems, in which traffic jam and bottleneck situations are ubiquitous, or
gene regulators, which decide upon gene expression and hence the future
of cell types. The local interaction between several units or subsystems via
virtual (e.g., communication) or physical (e.g., transmission lines) links, de-
scribed by a certain network topology, dictates a global behavior for the
whole group [Zampieri, 2008].

Networked systems are modeled as graphs. A graph is a collection of nodes
or vertices, and edges. Formally, we consider networks as weighted directed
(i.e., oriented) graphs represented by a triplet G = (V, E , {ae}{e∈E}). The
pair (V, E) is the set of nodes V = {v1, . . . vn}, the edge set E given by an
unordered pairs of vertices (i, j) with i, j ∈ V and {ae}{e∈E} is a collection
of strictly positive weights for the edges. The neighborhood of a vertex is
defined by the set of nodes directly connected to it. A directed graph is
defined by a unidirectional orientation of the connections between the nodes.
An undirected graph is given by a bidirectionally oriented edges [Godsil and
Royle, 2001].

Our setup hinges on the modeling of the individual dynamical subsys-
tems or agents (e.g., power generators, cities) as vertices and the links inter-
connecting them as edges (e.g., transmission lines, traffic routes) associated
with edge weights (line admittances, traveling times). The edges can be di-
rected or bidirectionally oriented. Fig. 1.1 depicts an important example of
networked systems consisting of a simplified version of the power network
of Western System Coordinating Council (WSCC), which promotes the bulk
electric system reliability for the entire western interconnection system in the
USA [Delavari et al., 2018]. It is comprised of three generators, all represented
by synchronous machines, and connected to three load buses via transmission
lines. Another example of networked systems, is given by a traffic system in
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Chapter 1. Introduction

Figure 1.1 A simplified diagram of WSCC 9-bus test case that represents
a simple approximation of the Western System Coordinating Council. It is
equivalent to a power system with nine buses comprising three synchronous
machines represented by the circular gray nodes and three load buses rep-
resented by arrows pointing downwards [Delavari et al., 2018].

Fig. 1.2. It illustrates the flow on a highway network in Los Angeles. The dif-
ferent cities represent graph nodes and the directed arrows depict inter-city
traffic flow connections [Como and Fagnani, 2021]. Throughout this thesis,
we consider weighted undirected (i.e., all edges are bidirectionally oriented)
graphs and power networks as the main application of this thesis, in the
example of the network depicted in Fig. 1.1.

Next, we introduce three topics that are central to the thesis and which are
summarized in Fig. 1.3. First, synchronization in coupled oscillators is intro-
duced, where we discuss Kuramoto oscillator dynamics and different notions
of synchronization. Second, we study optimal feedback control with special
emphasis dedicated to the importance of cost design in optimal control. This
leads to the study of so-called inverse optimal control problems. Third and
last, stability and control in power systems are presented as the main appli-
cation under consideration, where the control requirements for transitioning
to inverter-based generation in today’s electrical grid are underlined.

The link between these three topics can be established as follows: The
understanding of coupled oscillator dynamics provides the theoretical foun-
dation to study power systems’ trajectories, where each generator is consid-
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1.1 Synchronization in coupled oscillators

Figure 1.2 An example of a traffic flow as a networked system from [Como
and Fagnani, 2021]. The real highway network in Los Angeles is depicted
in A). The traffic flow on some possible paths from Santa Monica (given by
node 1 ) to Santa Ana (given by node 17 ) is shown in B). The links are
represented by directed arrows.

ered as an oscillator and the transmission lines play the role of the coupling
between all generators in the network. In inverse optimal control, stabiliz-
ing controllers are designed and shown to be optimal with respect to an
a posteriori defined cost. This leads, in the context of power systems and
coupled oscillator dynamics, to system-wide frequency synchronization with
optimality guarantees.

1.1 Synchronization in coupled oscillators

Our main focus is in characterizing synchronization in a network of coupled
oscillators. Intuitively, oscillations are defined by a behavior that does not
approach any definite constant value as time goes on and keeps changing.
The simplest kind of example is harmonic oscillations, where their sinusoidal
motion changes periodically. Their dynamics are given by,

θ(t) = A sin(ω t + φ), (1.1)

where A > 0 is the amplitude of the harmonic oscillation, ω ∈ R is the
frequency and φ ∈ S

1 is the initial phase angle.
Moreover, the term synchronization itself derives from Latin referring to

individuals sharing a common notion of time and achieving temporal coinci-
dence of some events. Hence, self-organized dynamics emerge [Wieland, 2010].
Historically speaking, the problem of synchronization was first addressed by
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Chapter 1. Introduction

Figure 1.3 Summary of the four papers included in this thesis. Papers I
and II lie at the intersection of coupled oscillator synchronization and
inverter-based power generation, whereas Papers III and IV extend inverse
optimal control theory while dealing with oscillator synchronization in the
context of the control of power networks.

Huygens. Huygens had invented the pendulum clock in 1657. He, subse-
quently, had demonstrated mathematically that a pendulum would follow an
isochronous path, i.e., a path such that a point mass traveling along it with-
out friction, has a periodic motion and the period of which is independent of
the initial position [Bennett et al., 2002].

Given a vector θ = [θ1, . . . , θn]� ∈ T
n, the angle θi ∈ S

1 refers to the
i−th component of θ and θ̇i is its time derivative. We differentiate between
three notions of synchronization in the following definitions [Bullo, 2021].

• Frequency synchrony: A phase angle vector θ : R≥0 → T
n is frequency

synchronized if θ̇i(t) = θ̇j(t) for all times t, for all i �= j with i, j ∈ V.

• Phase synchrony: A phase angle vector θ : R≥0 → T
n is phase synchro-
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1.1 Synchronization in coupled oscillators

ω2

ω1

ω3
ω3

ω2

ω1

α ∈ R
1

Figure 1.4 Left side: Representation of three Kuramoto oscillators (1.2)
with angles θi ∈ S

1, i = 1, 2, 3, rotating on the unit circle according to their
natural frequencies ωi ∈ R

1, i = 1, 2, 3. The edge weights are identical and
correspond to identical red springs. They couple every two neighboring os-
cillators with a uniform (across all oscillators) strength k/n, see e.g., [Dörfler
et al., 2013; Bullo, 2021]. Right side: A shift of the phase angles of the Ku-
ramoto model (1.2) by the same value α ∈ R

1 results in no change in their
dynamics. The new angular positions are colored in green. This is referred
to as rotational invariance.

nized if θi(t) = θj(t) for all times t and for all i �= j with i, j ∈ V.

• Asymptotic synchronization: We define phase angle vectors that asymp-
totically achieve synchronization properties. A vector θ(t) achieves for
example frequency synchronization if limt→∞ |θ̇i(t) − θ̇j(t)| = 0, for all
i �= j with i, j ∈ V.

Example 1.1—Kuramoto oscillator [Kuramoto, 1975]

Given a graph G = (V, E , {ae}e∈E). One of the most celebrated oscillators
in physics and control is the Kuramoto coupled oscillator model [Kuramoto,
1975] described by the following equation,

θ̇i = ωi − k

n

n∑
j=1

sin(θi − θj), i ∈ V, (1.2)

where θi ∈ S
1 is the i−th oscillator phase angle, ωi ∈ R is the natural rota-

tional frequency, k > 0 is the coupling strength and the weights associated to
an edge (i, j) ∈ E are identical and set to the value aij = k/n. In fact, each
oscillator’s angle is represented in Fig. 1.4 by a phase angle θi ∈ S

1 on the cir-
cle, that is rotating with a natural frequency ωi ∈ R, i = 1, . . . , n and linked
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t ≥ 0

Figure 1.5 Phase synchronization of a system of three coupled pendula is
analogous to frequency synchronization of coupled oscillators. The coupling
is setup through the common spring. Phase synchronization is achieved if
there is sufficiently strong coupling between the pendula [Witthaut et al.,
2017].

to neighboring oscillators’ angles via a uniform (among all neighboring oscil-
lators) coupling k/n. Similar to the pendulum system shown in Fig. 1.5, if
the coupling (represented by a string) between oscillators (represented by the
pendula) is weak, then the motion of the oscillators is incoherent. A strong
coupling induces frequency synchronization: all oscillators move at the same
velocity.

Once each Kuramoto oscillator is represented by a phase angle evolving
on the circle, it is known that their angle dynamics given by (1.2) are in-
variant under an arbitrary shift of all angles. This is referred to as rotational
invariance explained in Fig. 1.4. In this thesis, we will study the stability of
high-order oscillator models, where each oscillator is represented, not only
by their phase angles, but also by other internal state dynamics, such as the
ones arising in the study of inverter-based generation. These converter sys-
tems are also characterized by their rotational invariance, following a static
shift of their angles. �

Next, we introduce the second topic that is encountered in this thesis.
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1.2 Inverse optimal control

Oscillator synchronization deals mainly with stability in coupled oscillator
networks. Stability comes in many settings as a byproduct of solving opti-
mization problems by finding optimal solutions that are shown later to be
stabilizing for the system dynamics. What if we flip the order and start in-
stead from a stabilizing controller to later recover optimality? How should
optimality be understood in this case? i.e., with respect to which cost? The
next section aims to give the preliminaries for this important research direc-
tion.

1.2 Inverse optimal control

Optimality is a universal principle, where many physical and chemical pro-
cesses in nature are governed by solutions to optimization problems. Given
a cost functional representing a measure of performance, optimal control
amounts to choosing the best path among all paths feasible to a given dy-
namical system that minimizes the cost.

1.2.1 Direct optimal control
Chronologically speaking, optimal control stems from the calculus of vari-
ation, a branch of mathematics dealing with path optimization in a static,
i.e., non-dynamic setting [Kot, 2014]. The modern treatment of optimal con-
trol started from the late 1950s, when two mathematical breakthroughs were
made [Boltyanskiy et al., 1962; Vinter, 2010; Liberzon, 2011]. On the one
hand, the maximum principle provided a set of necessary conditions for a
control function to be optimal [Liberzon, 2011]. On the other hand, dynamic
programming provided necessary and sufficient conditions for optimality by
solving the Hamilton-Jacobi-Bellman (HJB) equation [Vinter, 2010]. From
an engineering point of view, many examples of optimal control problems
arise spontaneously, every time a new quantity (e.g., product, accuracy of
information) is synthesized while a performance index is taken into account:
information theory, sales and marketing, production of goods etc. For ex-
ample, in the moon lander problem proposed by [Miele, 1962], the aim is
to answer the following question: how should we land safely a spacecraft on
the moon’s surface with the least possible amount of fuel consumption? The
moon lander problem was subsequently solved by [Meditch, 1964] and [Gaz-
zola and Marchini, 2021] based on optimal control theory.

1.2.2 Cost design in optimal control: the LQR problem
In many optimal control problems, the cost functional can be regarded as a
tuning knob that trades off control effort with error decay rate. We illustrate
this simple yet useful idea through the linear quadratic regulator (LQR)
problem. LQR aims to design a linear controller, so as to minimize the integral
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of a quadratic function along trajectories of the system. It has gained broad
and unfaded research interest since the rigorous mathematical exposition of
the paper [Kalman, 1960].

In the following, we consider the optimal control of a linear time-invariant
system with respect to quadratic performance criteria over an infinite time
interval formulated as follows.

I(x0, u(·)) := minimize
u

∫ ∞

0

(
x�(τ)Qx(τ) + u�(τ)Ru(τ)

)
dτ (1.3a)

subject to ẋ = Ax + Bu, (1.3b)
x(0) = x0 .

The value of the performance index I(·, ·) is determined on one side by
the initial condition x(0) = x0 and on the other side by choice of the input
u ∈ R

m. The state x ∈ R
n is uniquely given by the linear dynamics (1.3b)

starting at x0. In the formulation (1.3a), there is a compromise between decay
transients (via the term x�Q x) and input energy (via the term u�R u). For
this, we assume the following,

Q = Q� ≥ 0 ,

R = R� > 0.
(1.4)

Given a symmetric and positive semi-definite matrix Q = M�M , a sym-
metric positive definite matrix R, and if the pair (A, B) is controllable and
(A, M) is observable, then, the optimal feedback law is given by

u∗(x) = −R−1B�Px, (1.5)

where P is the unique, positive definite solution of the algebraic Riccati
equation,

PA + A�P + Q − PBR−1B�P = 0. (1.6)

The closed-loop system (i.e., (1.3b) together with (1.5)) is asymptotically sta-
ble for any admissible (i.e., satisfying (1.4)) Q and R matrices; see [Kalman,
1960; Willems, 1971]. We make the following observations in regards of the
LQR problem (1.3).

• The optimal control law (1.5) can be tuned as a function of the input
matrix R.

• The cost of (1.3) is quadratic in the state x and in the input u. It
has degrees of freedom in both performance and control design via
the matrices Q and R in (1.4), penalizing deviation from the origin
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1.2 Inverse optimal control

Figure 1.6 Optimal control solution to Example 1.2. Three different choices
of the input weighting matrices R1, R2, R3, where closed-loop trajectories,
in blue are resulting from R1 = 0.1 · I2, in red from R2 = I2, and in yellow
from R3 = 10 · I2, where I2 is the identity matrix in R

2. With a decreasing
control effort (corresponding to higher penalty on the diagonal entries of
the matrix R), the system trajectories take a longer time to settle to the
desired amplitude value.

and the permissible control effort, respectively. The choice of matrices
Q and R is not unique and depends on the engineering application
at hand, while preserving closed-loop stability [Murray, 2009]. This
freedom can be exploited to improve the controller implementation.
See later Example 1.2.

• Recall also that, for a diagonal input matrix R, the LQR controller (1.5)
comes with natural robustness margins as a result of its optimality
(namely 60◦ phase margin and infinite gain margin) [Zhang and Fu,
1996].

Example 1.2—LQR tuning: a trade-off

The ducted fan is an indoor flying, tethered representation of the longi-
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Figure 1.7 An example of a ducted fan from [Murray, 2009].

tudinal dynamics of an aircraft. Fig. 1.7 shows an example of the ducted
fan. The experiment has been designed in Caltech to study rapid transition
between hover, forward flight and reverse flight, as well as other aggressive
flight maneuvers [Murray, 2009]. Upon system linearization, we derive an
LQR controller to regulate the amplitude of the linearized dynamics to a
reference value. We plot the resulting closed-loop step responses while look-
ing at different input weightings depicted in Fig. 1.6. Note how a decreasing
control effort (corresponding to higher penalty on the diagonal entries of the
matrix R), implies a slower error decay rate of the system amplitude and
vice versa. �

It is important to keep these ideas in mind, as we move towards cost
design in optimal control problems subject to general nonlinear dynamics
that will be investigated later in this thesis. In particular, the non-unique
choice of the quadratic cost in (1.3), leads naturally to the study of different
choices of the cost functional, embedded in the framework of so-called inverse
optimal control. This is the key for understanding future developments in this
thesis.

1.3 Inverter-based power generation

In this section, we introduce the third topic of this thesis. We now study
the main application of our work: the control and stability of inverter-based
power systems. The system-theoretic understanding of power networks infers
results obtained from canonical coupled oscillator models (e.g., the Kuramoto
oscillator) due to the similarity between their respective dynamics. Inverse
optimal control relies on starting from an existing stabilizing controller (e.g.,
suggested by power system experts) to design a performance metric that
makes the suggested controller optimal. In summary, we leverage the link to
these topics for the control and stability of power networks.
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1.3 Inverter-based power generation

1.3.1 Societal context of a transforming power system
Electricity is the most important form of energy used in industrially devel-
oped societies [Kundur et al., 1994]. Due to the exceedingly complex nature
of power systems, they present various challenges to engineers. From plan-
ning and construction to operation, every day power system theorists and
practitioners are faced with a new problem that might impede a successful
power delivery. An example of a power system is the Swedish grid depicted
in Fig. 1.8. The Swedish transmission grid for electricity consists of about
17,000 km power lines, over 200 transformer and switching substations as well
as AC and HVDC interconnectors. The electricity generation is dominated
by hydro power plants (squares) interconnected via high voltage transmission
lines (in red).

Today’s electrical grid is imperatively transforming as the global energy
demand grows explosively, and the environmental concerns about climate
change resulting from greenhouse gas emission, carbon footprint etc., are
increasingly emphasized. Additionally, social, technological and behavioral
changes will have a significant impact on energy systems. Old infrastructure
and equipment also affect the grid operation. For example, Sweden has one of
the world’s oldest national grids. Many of the transmission lines and stations
are approaching the end of their technical lifetime and must soon be renewed.
According to Svenska Kraftnät (the Swedish transmission system operator),
the line connecting Storfinnforsen and Midskog is the world’s oldest 400 kV
line. It entered service in 1952 and now needs to be replaced with a modern
line to be able to receive new wind power planned in the same area.

Moving forward, the European Union is committed to reducing green-
house gas emissions to 80–95% below 1990 levels by 2050 in the context of
necessary reductions by developed countries [European Commission, 2012].
The analysis of the ramifications of decarbonization shows that energy tran-
sition is possible and will be less costly in the long run than current policies.
All scenarios show that electricity will have to play a much greater role than
now (almost doubling its share in final energy demand to 36–39% in 2050).
The EU energy transition scenarios are depicted in Fig. 1.9. A particularly
strong focus is put on renewable resources (wind, solar, photovoltaics) and
is expected to take the lion’s share in the final energy consumption (75%
in 2050) accompanied by a low nuclear providing only 32% of total power
generation. To achieve this, the power system would have to undergo funda-
mental changes and achieve a significant level of decarbonisation already in
2030 (57–65% in 2030 and 96–99% in 2050).

In the United States, wind energy grew at a record pace in 2020, repre-
senting the largest source of new additions to the USA electric-generating
capacity. The USA installed a record 17 GW of new wind capacity in 2020
bringing the total cumulative to 122 GW, with a significant expansion of the
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The Swedish transmission grid for electricity consists of about 17,000 km 
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Figure 1.8 Transmission system of the Swedish national grid in 2020 [Sven-
ska Kraftnät, 2020].
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1.3 Inverter-based power generation

Figure 1.9 Evolution of the share of fuel and renewable energy resources
in primary energy consumption from 2030 to 2050 according to EU de-
carbonization scenarios [European Commission, 2012]. Renewable Energy
Sources (RES) will dominate the share by 2050 by more than 50%, accom-
panied by a strong decline in fuels (oil, nuclear, solid fuels) to less than
20%.

Figure 1.10 Chart data compiled from the wind technologies market report
2010-2020. China, USA and Germany have the greatest total of installed
wind power capacity. Source: [“Land-Based Wind Market Report: 2021 Edi-
tion” 2021].

pipeline for offshore wind projects. The cost of wind energy generation con-
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tinued to decline – laying the groundwork for significant future gains and a
rapid acceleration of renewable energy deployment in a 100% clean electricity
by 2035 [“Land-Based Wind Market Report: 2021 Edition” 2021]. Fig. 1.10
depicts the evolution of international wind power capacity (in megawatts)
among leading countries. China, USA and Germany have the greatest total
of installed wind power capacity with China leading the charts with around
300 000 MW as of 2020.

For the energy transition to succeed, reliable electrical power service must
be put into place. This means, ideally, that loads are fed at constant frequency
and voltage at all times. This implies that both frequency and voltage are
kept within close tolerances to their desired values. One of the first require-
ments for reliable service, in the presence of renewable energy resources, is
to keep the generation units running in parallel with adequate capacity to
respond to the load demand. A loss of synchronism among generators leads
to significant voltage and frequency fluctuations that may activate the pro-
tection schemes in power system by automatically tripping the transmission
lines [Anderson and Fouad, 2008]. Power system stability is thus concerned
with the evolution of their dynamics following a perturbation. If the pertur-
bation does not involve any net change in the power, the generation units
will return to their original state. If power imbalance occurs, a new operating
state is necessary. In any of these states, all interconnected units should re-
main synchronized in frequency, i.e., the power system is stable. That being
said, all units are operating in parallel and at the same speed. Formally, we
define the stability, transient and small-signal stability of a power system
from [Kundur et al., 1994; Kundur et al., 2004] as follows,

Definition 1.1—Power system and transient stability

If the oscillatory response of a power system during the transient period
following a disturbance is damped and the system settles in a finite time to
a new steady operating condition, we say that the power system is stable. If
the power system is not stable, it is considered unstable.

Moreover, transient stability is particularly concerned with frequency sta-
bility, that is the ability to maintain synchronism in frequency during the
first swing with a period of study of up to 10s under large disturbances. If
the disturbances are small, we refer to the frequency stability as small-signal
stability. �

Transient and small-signal stability given in Definition 1.1 will be treated
throughout this thesis.

1.3.2 Transitioning from synchronous machines to power converters
In this section, we illustrate the properties of two control devices that
interface the grid. We start with synchronous machines, whose dynamics
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θ ∈ S
1

Figure 1.11 Simplified scheme of a synchronous machine. 1 represents the
rotor, the rotating (mechanical) element of the machine at a rotor phase
angle θ ∈ S

1, 2 depicts the armature windings wrapped around the rotor
and belong to the electrical part of the machine and put together in a sta-
tor case given by 3 . The armature windings carry current across the field
and generate an electromotive force (EMF). Finally, 4 depicts a coupling
element. A synchronous machine is coupled, on one side, to a prime mover,
e.g., a steam turbine, and on the other side, to a load bus or power trans-
mission system [Gülen, 2019]. See also Fig. 1.1 for a network of synchronous
machines.

have dominated the power system operation for decades and then introduce
DC/AC power converters or inverters that play a central role in the integra-
tion of renewable energy to achieve 100% clean electricity. We illustrate their
differences to understand how a transition to converter-based generation is
possible.

An example of a synchronous machine with its mechanical (rotor) and
electrical components (stator) is represented in Fig. 1.11. Traditionally, syn-
chronous machines rarely loose frequency synchronism or fall out of step, due
to their large rotational masses that maintain them in synchronism. In fact,
the acceleration or deceleration of the machine is governed by,

θ̇(t) = ω(t) (1.7)
M ω̇(t) = −D(ω(t) − ω∗) + P ∗

e − Pe(t),

where θ(t) is the rotor angle, ω(t) is the frequency and ω∗ is the desired
frequency, M > 0 is inertia mass, D > 0 is the damping coefficient, Pe(t) is
the active power injected into/extracted from the grid and P ∗

e is its nomi-
nal or reference value. By investigating the electrical power expression Pe(t)
which depends on diffusive coupling between phase angles of neighboring ma-
chines, it becomes apparent that Eq. (1.7), or the so-called swing equation
encapsulates coupled second-order oscillator dynamics. Note that the oscil-

37



Chapter 1. Introduction

−

+

Figure 1.12 Representation of two-level three-phase inverter with an RLC
output filter [Yazdani and Iravani, 2010]. The inverter topology was orig-
inally proposed by Nabae et al. in 1981 [Nabae et al., 1981]. An inverter
draws active power from a DC source (e.g., battery), that is transformed
into AC power, through the switching behavior and interface the electrical
grid to respond to load demand. The output voltage is at desired frequency
and amplitude. This is achieved via appropriate design of controllers for the
switching positions.

latory behavior arises naturally in power systems as a consequence of the
dynamics (1.7).

On the other hand, DC/AC converters or inverters are power electronics
designed from simple circuitry. Their importance stems from being at the
interface between power generation (primary energy source), on one side and
the electrical grid, on the other side, where they convert DC into AC power.
An efficient power transfer relies eminently on the control of these electrical
circuits. A typical circuit of a two-level three-phase inverter with an RLC out-
put filter is represented in Fig. 1.12. The switching block consists of bipolar
transistors (IGBTs) and anti-parallel diodes. The DC circuit consists of a cur-
rent source, set in parallel with DC capacitor and DC conductance accounting
for losses on the DC-side. On the AC-side lies an output filter consisting of
a resistor, placed in series with an inductance and connected to a shunt ca-
pacitance and a constant impedance load. Power conversion follows from the
high switching behavior of the converters through a modulation signal, rep-
resenting the main control input to the converter. Commonly, the system is
assumed to be averaged, i.e., all AC quantities are averaged over a switching
period and balanced and all phases sum up to zero. In this thesis, the models
will not account for the losses due to the switching behavior [Yazdani and
Iravani, 2010].

All in all, converters are known for their nonlinear switching dynamics,
simple circuitry, fast control capabilities, their small size and light weight,
which makes them amenable for transportation and deployment for large
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t ≥ 0

Figure 1.13 Summary of time scale separation for frequency control in the
presence of synchronous machines following a disturbance at time t = 0.
Primary control keeps the frequency within acceptable tolerance intervals
and acts in a matter of seconds. The secondary control restores the fre-
quency to nominal and the tertiary control updates within hours the power
set points of the generations units in the network.

scale penetration. Due to the absence of large rotational inertia in converters,
power systems are commonly referred to as low-inertia, as opposed to classical
high-inertia power systems based on the dominant presence of synchronous
machines. One ramification of their inherently different design and operation
is that, converter control presents numerous challenges and bonus features.

Time-scale separation refers to three different time scales, within which
each control layer intervenes to regulate the frequency, following a distur-
bance. The classical control hierarchy strictly delimits primary frequency con-
trol, keeping the system frequency within acceptable ranges and taking place
in a matter of seconds, secondary control, aiming to restore the frequency to
nominal and based on automatic generation control [Simpson-Porco, 2020]
from tens of seconds to minutes, and tertiary control that dispatches updated
power references based on optimization routines and operates in every 5-15
min [Kundur et al., 2004]. Primary and secondary control remain as our main
focus in this thesis. A summary of the time scale separation is presented in
Fig. 1.13. In this sense, time scale separation, that is commonly assumed
in control of machines due to the slow dynamics of governor control (e.g.,
steam turbines), may not hold, since the synchronous machines will be re-
tired from the grid and thus their dynamics and controls (1.7) do not hold
anymore. The instantaneous response of converters suggests that this time-
line might be broken and a rethinking of the different time scales for control
is mandatory. In fact, a too fast response of converter control can excite os-
cillations in the transmission grid that destabilize the entire system [Jouini
et al., 2018]. Also, measurement and communication delays can destabilize a
power converter network.

Moreover, the control of converters remains fragile given their small size
with no inertia, compared to the resilient control of machines that relies pri-
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Figure 1.14 Control structure of three-phase DC/AC converter [Lin et al.,
2020]. Based on DC and AC grid measurements, the control algorithm is
implemented digitally on an embedded micro-controller and acts on the
converter power stage by adjusting its modulation input according to the
changes in the grid.

marily on their physics but also on the accumulated knowledge of decades of
their control and operation. In fact, there is no established body of experience
for operating hybrid or power systems with significant amounts of inverter-
based resources [Lin et al., 2020]. Another difference between the control of
machines and converters, lies in the intermittent generation of renewable en-
ergy resources (solar, wind) in converter-based generation, compared to dis-
patchable and thus well-known power generation based on synchronous ma-
chines. Finally, the centralized bulk generation is gradually being replaced by
more distributed and fully decentralized converter controllers, which makes
the overall network less prone to computational errors and communication
delays.

Even though many of the classical power system stability notions de-
scribed in [Kundur et al., 1994] (e.g., frequency stability) include definitions
that are rather coherent with the electro-mechanical nature of synchronous
machines, the structural similarities between a machine’s rotor angle and a
converter’s digital angle implemented via a control algorithm, suggest that
the definition of power systems and transient stability (see Definition 1.1)
can be applied to power networks dominated by converters [Lin et al., 2020].
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Figure 1.15 Modeling of the converter in Fig. 1.12 as a controllable ideal
voltage source (VSC) connected to the electrical grid through an impedance.

1.3.3 Control requirements for inverter-based power generation
The general structure of a DC/AC converter with closed-loop control scheme
is shown in Fig. 1.14. The control requirements for the massive integration
of power converters can be summarized as follows.

The ability of synchronous machines to respond to the grid frequency
change through an adjustment in its power output by enforcing a given ampli-
tude and voltage to be formed at the point of common coupling is referred to
as grid-forming [Rocabert et al., 2012]. A behavior that emulates the electro-
mechanical interaction of synchronous machines with the grid and provides
functionalities that are traditionally provided by synchronous machines is
thus required, when designing future converter controls [Denis, 2017]. Grid-
forming control algorithms endow the grid with autonomous primary control
and therefore the capability of counteracting common grid disturbances by
keeping the frequency within acceptable ranges. As shown in Fig. 1.15, the
converter is regarded as an ideal voltage source with an output impedance
and can co-exist with other grid-forming inverters, synchronous machines
and grid devices on the same system.

Key requirements are plug and play properties. These are decentralized
stability and robustness certificates that are independent of the number and
type of the devices connected to the grid and are thus important in both
high- and low-inertia systems [Jouini et al., 2016]. This term encapsulates
system-wide frequency synchronization, thus transient stability as well as
other important services namely load supply and power sharing among mul-
tiple inverters guaranteed by droop behavior [Dörfler et al., 2015] trading
off active and reactive power injections with the voltage amplitude and fre-
quency. Moreover, it is desired to induce a droop behavior as depicted in
Fig. 1.16 at steady state, exhibiting a linear trade-off between frequency ver-
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ωs

P s
e

ω∗

P ∗
e

Figure 1.16 A typical nose curve for power to frequency droop: a variation
in active power at steady state P s

e := limt→∞ Pe(t) results in a frequency
deviation at steady state ωs := limt→∞ ω(t). Upon a linearization around
nominal values, droop behavior is characterized by a linear trade off (via a
droop slope) between the steady state of active power and frequency.

sus active power, as well as power sharing, where each unit provides power in
proportion to its capacity (or its programmable droop slope) [Dörfler et al.,
2015]. It is also important to endow grid-forming converters with black-start
capabilities. This means that a converter can start the power network follow-
ing a complete blackout and the system operation can be restored as well as
virtual inertia to reduce to rate of change of frequency (RoCoF), after a sud-
den loss of load or generation. Finally, it is necessary that all grid resources
including controlled inverters showcase interoperability, i.e., compatibility in
their operation and interactions with the remainder of the electrical compo-
nents, encompassing the hybrid operation with synchronous machines [Lin
et al., 2020].

1.4 Research questions

In the following discussion, we provide a brief account of the open research
questions that underpin the topics of this thesis.

1 From a system-theoretic perspective, how can we understand and pre-
dict frequency synchronization in a network of coupled oscillators,
where each oscillator is represented by high-order dynamics, and pro-
vide control strategies with provable stability guarantees that achieve
desired waveforms? We address this first question in Papers I and II.

2 How can we exploit cost design for the setting, where the cost, in ad-
dition to the system dynamics, is affected by bounded disturbances,
to circumvent numerical and computational complexity, resulting from
solving partial differential equations? In networks, how can we derive
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optimal control laws that inherit topological structure, i.e., that are fea-
sible for implementation, in an explicit and closed-form? We investigate
this second question in Papers III and IV.

3 Bearing the two previous questions in mind and given a power system
network dominated by inverter-based generation interconnected via
transmission lines, how can we derive primary (and possibly secondary)
frequency controllers with a feasible structure, i.e., whose implementa-
tion is possible, while also guaranteeing transient or small-signal stabil-
ity? Under which mild physical conditions can this be achieved? Can
we also guarantee plug and play properties and improve upon existing
control schemes? We answer this third question in all papers.
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2
Systems and control
preliminaries

In this chapter, we introduce the reader to important system-theoretical and
control notions, revolving around passivity, Lyapunov stability, center mani-
fold theory and optimal control. These will be necessary for the understand-
ing of many concepts treated in the remainder of this thesis.

2.1 Passivity

Consider the following nonlinear system Σ with input u ∈ R
m and output

y ∈ R
m,

Σ :
{

ẋ = f(x, u),
y = h(x, u), (2.1)

with x ∈ R
n. Assume that f : R

n × R
m �→ R

n is continuous and locally
Lipschitz and h : Rn × R

m �→ R
m is continuous. Let the equilibrium be at

the origin, that is,
f(0, 0) = 0, h(0, 0) = 0.

The passivity of Σ can be defined, according to [Sepulchre et al., 2012, Ch.2],
as follows.

Definition 2.1—Passivity

The system Σ is said to be passive relative to (u, y) if there exists a function
S : Rn → R with S(0) = 0, such that for all x ∈ R

n,

S(x) ≥ 0 , (2.2)

S(x(T )) − S(x(0)) ≤
∫ T

0
u�(t) y(t) dt ,
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2.1 Passivity

Σ1Σ1

Σ2Σ2

−
uu yy

u1 u1

u2u2

y1 y1

y2y2

Figure 2.1 Representation of two systems Σ1 and Σ2 under parallel (left)
and feedback (right) interconnections.

for all u ∈ R
m and T ≥ 0. The function S is called a storage function. If the

storage function S(x) is differentiable, we can write (2.2) as,

Ṡ(x) ≤ u�y. �

Intuitively, the system Σ is passive relative to (u, y) if the increase in its
energy during the interval [0, T ] is not bigger, than the energy supplied to
the system during the same interval [Sepulchre et al., 2012, Ch.2].

Interconnection of passive systems Given that two nonlinear systems Σ1
and Σ2, both in the form (2.1), are passive relative to (u1, y1) and (u2, y2),
respectively, our goal is to ensure the interconnection is also passive and of
the form (2.1) and is thus well-posed. The interconnections considered thus
far, are either in parallel or in feedback as illustrated in Fig. 2.1. Follow-
ing [Sepulchre et al., 2012, Ch.2], we have the result below on interconnected
passive systems.

Theorem 1—Interconnections preserving passivity

Suppose that Σ1 and Σ2 are passive systems relative to (u1, y1) and
(u2, y2), respectively. Then the two systems, one obtained by the parallel
interconnection, and the other obtained by the feedback interconnection,
are both passive relative to (u, y).

Thus, the passivity property is preserved under parallel and feedback
interconnection of passive systems. This is illustrated using the following
example in power systems from [Schaft, 2000, Ch.4].

Example 2.1—Feedback interconnection in power systems

Consider a power system of synchronous machines, interconnected by a net-
work described by a graph G = (V, E , {γe}{e∈E}) of purely inductive trans-
mission lines modeling the synchronous machines by swing equations. Let
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|V| = n and |E| = m. Assuming that all voltage and current signals are
sinusoidal of the same frequency and all voltages have constant amplitude,
we arrive at the following model. Associated to the n−vertices, each i−th
synchronous machine is described by the passive system

ṗi = −Di M−1
i pi + ui,

yi = M−1
i pi,

where i = 1, . . . , n, pi = Mi ωi is the momentum deviation and ωi ∈ R is the
frequency deviation from nominal frequency ω∗ (e.g., 50 Hz) with Mi > 0
the inertia and Di > 0 the damping constant of the synchronous machine,
and ui is the incoming power. Let B denote the n×m incidence matrix of the
associated graph G. Since qj denotes the phase differences across the j−th
line, the dynamics of the j−th line, associated to the j−th edge of the graph,
is given by the passive system,

q̇j = vj ,

zj = γj sin(qj),

where j = 1, . . . , m. The constant γj > 0 is determined by the susceptance
of the line and the voltage amplitude at the adjacent vertices. Here zj equals
the active power through the j−th line. Denoting p = (p1, . . . , pn)T , ω =
(ω1, . . . , ωn)T , and q = (q1, . . . , qm)T , the final system resulting from the
interconnection

u = −B z, v = B�y,

is given as, [
q̇
ṗ

]
=
[

0 B�

−B −D

] [
γ sin(q)
M−1p

]
+
[

0
u

]
, (2.3)

y = M−1p ,

with p = Mω. Let D and M denote, respectively, the diagonal matrices
with elements Di, Mi > 0, i = 1, . . . , n and γ the diagonal matrix with
elements γj , j = 1, . . . , m. Furthermore sin : Rm → R

m denotes the element-
wise sine function, i.e., sin(q) = (sin(q1), . . . , sin(qm))�. Finally, the input
u denotes the vector of generated/consumed power and the output y the
vector of frequency deviations, both associated to the vertices. The resulting
system (2.3) is passive relative to (u, y) and the storage function

S(q, p) =
1
2

p�M−1p −
m∑

j=1
γj cos(qj) . �
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2.1 Passivity

Incremental passivity We study passivity properties of nonlinear systems
described in error coordinates with respect to a desired non-zero steady state.
In these settings, it becomes crucial to extend passivity from Definition 2.1 to
accommodate the shifted system dynamics (with respect to a non-zero steady
state). For this purpose, we state the definition of incremental passivity,
adapted from [Schaft, 2000, Ch.4].

Definition 2.2—Incremental passivity

Consider a nonlinear system Σ as given in (2.1), with input and output spaces
R

m and state space R
n, respectively. The system (2.1) is called incrementally

passive if there exists a function, called the incremental storage function,

S : Rn × R
n → R+,

such that,

S(x1(T ), x2(T )) ≤ S(x1(0), x2(0)) +
∫ T

0
(u1(t) − u2(t))�(y1(t) − y2(t)) dt ,

(2.4)

for all T ≥ 0, and for all pairs of input functions u1, u2 : [0, T ] → R
m and

all pairs of initial conditions (x1(0), x2(0)) with resulting pairs of state and
output trajectories x1, x2 : [0, T ] → R

n and y1, y2 : [0, T ] → R
m. �

The differential version of the incremental passivity inequality (2.4) takes
the form

dS

dx1
f(x1, u1) +

dS

dx2
f(x2, u2) ≤ (u1 − u2)�(y1 − y2).

Port-Hamiltonian systems Port-Hamiltonian systems are defined in terms
of a Hamiltonian function together with two geometric structures correspond-
ing, respectively, to power-conserving interconnection and energy dissipation.
The Hamiltonian is equal to the total stored energy of the system that is
shaped via the system’s geometric structures. The Hamiltonian function au-
tomatically satisfies the passivity inequality (2.2). The following definition is
taken from [Schaft, 2000, Ch.6].

Definition 2.3—Input-state-output port-Hamiltonian system

An input-state-output port-Hamiltonian system with n−dimensional state
space R

n, input and output spaces R
m, and Hamiltonian H : Rn → R, is

given by

ẋ = [J(x) − R(x)]
dH

dx
(x) + G(x) u

y = G�(x)
dH

dx
(x) ,
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where G(x) is the m × n input matrix and the n × n matrices J(x) and R(x)
satisfy J(x) = −J�(x) and R(x) = R�(x) ≥ 0. �

Note that the internal interconnection structure is described by the matrix
J(x), which by skew-symmetry is power-conserving, and a resistive structure
given by the matrix R(x), which by its non-negativity is responsible for the
internal dissipation of energy [Schaft, 2000, Ch.6].

2.2 Lyapunov method

Stability theory is a cornerstone in systems theory and control engineering.
Lyapunov theorems give sufficient conditions for system stability. In the re-
mainder, we consider the autonomous system

ẋ = f(x), x(0) = x0. (2.5)

Given a set D ⊆ R
n, we assume that f : D → R

n is continuous and locally
Lipschitz.

2.2.1 Point stability
In this section, we are concerned with stability of equilibrium points. Assume
that D contains the origin and f(0) = 0. That is, the origin is an equilibrium
of (2.5).

Direct Lyapunov method We define point stability following [Khalil, 2002,
Ch.4].

Definition 2.4—Point stability

The equilibrium point x = 0 of (2.5) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that,

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, t ≥ 0, (2.6)

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen that,

‖x(0)‖ < δ ⇒ lim
t→∞‖x(t)‖ = 0. (2.7)

�

Next, we state Lyapunov’s stability theorem, also known as direct Lya-
punov method.
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2.2 Lyapunov method

Theorem 2—Direct Lyapunov method

Let x = 0 be an equilibrium point for (2.5) and D ⊆ R
n be a domain

containing x = 0. Let V : D → R be a continuously differentiable function
such that, V (0) = 0 and

V (x) > 0, x ∈ D \ {0}. (2.8a)

If V̇ (x) ≤ 0 in D, then x = 0 is stable. Moreover, if

V̇ (x) < 0 , (2.9a)

in D \ {0}, then x = 0 is asymptotically stable.

A function V that satisfies the conditions of Theorem 2 is called a Lya-
punov function for the nonlinear system (2.5). If it additionally holds that,

‖x‖ → ∞ ⇒ V (x) → ∞,

then V is called a radially unbounded Lyapunov function. If D = R
n and

V is a radially unbounded Lyapunov function, then the origin is globally
asymptotically stable

If a Lyapunov candidate fails to satisfy the asymptotic stability condition
because V̇ (x) is only negative semidefinite (i.e., V̇ ≤ 0), we can use LaSalle’s
theorem to study the stability of the equilibrium.

Theorem 3—LaSalle’s theorem

Let Ω ⊂ D be a compact set that is positively invariant with respect
to (2.5). Let V : D → R be a continuously differentiable function such
that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0.
Let N be the largest invariant set in E. Then every solution starting in
Ω approaches N as t → ∞.

Indirect Lyapunov method The next theorem gives conditions, under which
we can draw conclusions about the stability of the origin for the nonlinear
system (2.5) by investigating the stability of a linear system. This is known
as Lyapunov’s indirect method. Further assumptions are taken in regards of
the vector field f in the following theorem from [Khalil, 2002, Ch.4].

Theorem 4—Lyapunov’s indirect method

Let x = 0 be an equilibrium point for the nonlinear system (2.5), where
f is continuously differentiable and D is a neighborhood of the origin. Let

A =
df

dx
(x)

∣∣∣∣
x=0

. (2.10)

Then,
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1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues
of A.

2. The origin is unstable if Re(λi) > 0 for one or more of the eigenval-
ues of A.

Note that Theorem 4 does not say anything about the case when
Re(λi) ≤ 0, for all i, with Re(λi) = 0 for some i. In this case the linearization
fails to determine the stability of the equilibrium point.

2.2.2 Set stability
Here, we are concerned with stability of a given closed and invariant set
M ⊆ R

n for the system (2.5) following [Lin et al., 1996; Angeli, 2004]. Let

‖x‖M = inf
a∈M

‖x − a‖,

denote the distance from a point x to the set M. Stability and asymptotic
stability with respect to M are defined as follows.

Definition 2.5—Set stability

If

∀ε > 0 , ∃ δ > 0 : ‖x(0)‖M < δ ⇒ ‖x(t)‖M < ε , t ≥ 0, (2.11)

then, M is stable. Additionally, let D ⊆ R
n be a set in the neighborhood of

M with
M ⊆ D ⊆ R

n.

If ∀x(0) ∈ D ⊆ R
n,

lim
t→∞‖x(t)‖M → 0, (2.12)

then, M is asymptotically stable. If D = R
n, then M is globally asymptoti-

cally stable. �

Let D = R
n. In the following, we extend the definition of a Lyapunov

function for the system (2.5) to study the stability of M with respect to
trajectories of (2.5).

Definition 2.6—Lyapunov function with respect to a set

A Lyapunov function for the system (2.5) with respect to a non-empty,
closed, invariant set M ⊆ R

n is a function V : R
n → R such that V is

smooth (i.e., infinitely differentiable) on R
n \ M and satisfies,
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1. there exist two K∞1 functions α1 and α2 such that for any x ∈ R
n,

α1(‖x‖M) ≤ V (x) ≤ α2(‖x‖M),

2. there exists a continuous, positive definite function α3 such that for
any x ∈ R

n \ M,

∇�
x V (x) f(x) ≤ −α3(‖x‖M).

To formally characterize set stability using the direct Lyapunov method, we
use the following result from [Lin et al., 1996].

Theorem 5—Lyapunov stability with respect to a set

Let M ⊆ R
n be a nonempty, closed, invariant subset for the nonlinear

system (2.5). Then, (2.5) is globally asymptotically stable with respect to
M if and only if there exists a smooth Lyapunov function V (in the sense
of Definition 2.6) with respect to M.

2.3 Center manifold theory

This section is about center manifolds with respect to stability of the equilib-
ria of autonomous vector fields following [Wiggins, 1990, Ch.18] and [Khalil,
2002, Ch.8]. Based on Definition 2.5, center manifold theory can be extended
to study set stability, see e.g., [Krick et al., 2009].

We start with the following system dynamics,

ẋ = Ax + g1(x, w), (2.13)
ẇ = Bw + g2(x, w),

where the matrices A ∈ R
c×c and B ∈ R

s×s have the following properties:

1. A is a matrix of real numbers having eigenvalues with zero real parts.

2. B is a matrix of real numbers having eigenvalues with negative real
parts,

and g1, g2 are nonlinear twice continuously differentiable functions with the
following properties:

gi(0, 0) = 0,
dgi

dx
(0, 0) = 0,

dgi

dw
(0, 0) = 0, i = 1, 2. (2.14)

1 A continuous function α : [0, a) → [0, ∞) is said to belong to class K if it is strictly
increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) → ∞ as
r → ∞, [Khalil, 2002, Ch.4].
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In this setup (x, w) = (0, 0) is an equilibrium point for (2.13) and we
are interested in studying its stability properties. The linearization of (2.13)
about the equilibrium is given by:

ẋ = Ax ,

ẇ = Bw.

The origin point is non-hyperbolic (due to the zero real-part of the eigenvalues
of the matrix A). It has a c−dimensional invariant center subspace and an
s−dimensional invariant stable subspace given by:

Ec = {(x, w) ∈ R
c×s| w = 0}, (2.15)

Es = {(x, w) ∈ R
c×s| x = 0}. (2.16)

There is a c−dimensional, local center manifold that passes through the origin
and is tangent to Ec at the origin. The existence of the center manifold is
given by the following theorem in [Khalil, 2002, Ch.8].

Theorem 6—Existence of the center manifold

If g1 and g2 are twice continuously differentiable and satisfy (2.14), all
eigenvalues of A have zero real parts, and all eigenvalues of B have neg-
ative real parts, then there exists a constant δ > 0 and a continuously
differentiable function h, defined for all ‖x‖ < δ, such that w = h(x) is a
center manifold for (2.13).

In particular, if w = h(x) is an invariant manifold for (2.13) and h is
smooth, i.e., infinitely differentiable, then it is called a center manifold and
it can be written as,

W c(0) = {(x, w) ∈ R
c × R

s | w = h(x), h(0) = 0,
dh

dx
(0) = 0}, (2.17)

which is valid in a neighborhood of the origin, i.e., for ‖x‖ sufficiently small.
The application of the center manifold theory for analyzing the behavior of
the trajectories of (2.13) near the origin is based on two theorems describing:

• the dynamics restricted to the center manifold,

• the stability of the origin restricted to the center manifold and its re-
lation to the stability of the origin of the full system (2.13).

Theorem 7—Dynamics on the center manifold

The dynamics of (2.13) restricted to the center manifold is given by:

ξ̇ = A ξ + g1(ξ, h(ξ)), ξ ∈ R
c, (2.18)

for ‖ξ‖ sufficiently small.
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2.4 Optimal control

We refer to (2.18) as the reduced system. We use the variable ξ instead of
x to avoid confusing a point ξ on the center manifold with a point x on the
coordinate axis and this, in view of the comparison between the trajectories
of the full system (2.13) and the reduced system (2.18). See later Theorem 8.

The next theorem says that the stability properties of the origin of the
reduced system imply the same stability properties of the origin of the full
system (2.13). Additionally, it gives precise results for the case that the origin
is (asymptotically) stable. It says that trajectories starting at initial condi-
tions sufficiently close to the origin asymptotically approach a trajectory in
the center manifold. This is the main result of center manifold theory called
the reduction principle, see [Wiggins, 1990, Ch.18].

Theorem 8—Reduction principle

• Suppose that the origin of (2.18) is stable (asymptotically stable)
(unstable), then the origin of (2.13) is also stable (asymptotically
stable) (unstable).

• Suppose that the origin of (2.18) is stable. Then if (x(t), w(t)) is a
solution of (2.13) with (x(0), w(0)) sufficiently small, then there is
a solution ξ(t) of (2.18) such that as t → ∞,

x(t) = ξ(t) + r1(t),
w(t) = h(ξ(t)) + r2(t),

where γi, ci > 0 is a constant and ‖ri(t)‖ < cie
−γit, i = 1, 2.

2.4 Optimal control

In this section, we will consider cost functionals of the form,

J(u) =
∫ tf

t0

L(t, x(t), u(t)) dt. (2.19)

and aim to solve the following optimization problem,

minimize
u ∈ R

m
J(u) (2.20)

subject to ẋ(t) = f(t, x(t), u(t)), (2.21)
x(t0) = x0,

Here L : R × R
n × R

m → R is the running cost (or Lagrangian). Since
the cost depends on the initial data, as well as on the control, it would be
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more accurate to write J(t0, x0, u), but we write J(u) for simplicity and to
reflect the fact that the cost is being minimized over the space of control
functions [Liberzon, 2011, Ch.5].

Dynamic programming Dynamic programming leads to necessary as
well as sufficient conditions for optimality expressed as a function of the
Hamilton-Jacobi-Bellman (HJB) partial differential equation for the opti-
mal cost [Liberzon, 2011, Ch.5]. The basic idea of dynamic programming is
to consider, instead of the problem of minimizing J(t0, x0, u) in (2.19) for
given t0 and x0, the family of minimization problems associated with this
cost functionals. This relies on the principle of optimality defined below.
See [Liberzon, 2011, Ch.5] .

Definition 2.7—Principle of optimality

For every (t, x) ∈ [t0, tf ) × R
n and every δt ∈ (0, tf − t], the value function

V defined by
V (t, x) := inf

u[t,tf ]
J(u)

where u[t,tf ] is the control restricted to the interval [t, tf ] satisfies the relation

V (t, x) = inf
u[t,t+δt]

∫ t+δt

t

L(t, x(s), u(s)) ds + V (t + δt, x(t + δt)), (2.22)

where x(t) on the right-hand side is the state trajectory corresponding to the
control u[t, t + δt] and satisfying x(t) = x. �

We have the following remarks.

• Note that the existence of an optimal controller and hence of the op-
timal cost is not actually assumed. This is why V (t, x) is defined with
an infinimum and not with a minimum. When an optimal control u∗

exists, then it is replaced by the minimum, achieved when u = u∗.

• The optimality principle conveys that we can search over a small time
interval for a control that minimizes the cost over this interval plus the
subsequent optimal cost-to-go, V (t + δt, x(t + δt)). Thus the minimiza-
tion problem on the interval [t, tf ] is split into two intervals, one on
[t, t + δt] and the other on [t + δt, tf ].

• Eq. (2.22) describes a dynamic relationship among the optimal values
of the cost for different t and x.

We define the equation,

−dV (t, x)
dt

= inf
u∈Rm

{
L(t, x, u) +

(
dV (t, x)

dx

)�
f(t, x, u)

}
. (2.23)
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Eq. (2.23) must hold for all t ∈ [t0, tf ) and all x ∈ R
n. This equation for the

value function V is called the Hamilton-Jacobi-Bellman (HJB) equation. It
is a PDE since it contains partial derivatives of V with respect to t and x.
The boundary condition that accompanies Eq. (2.23) is V (tf , x) = 0.

For infinite horizon problems, the cost functional (2.19) becomes

J(u) =
∫ ∞

0
L(x(t), u(t)) dt , (2.24)

and the HJB equation in (2.23) becomes

0 = inf
u∈Rm

{
L(x, u) + (∇xV (x))�

f(x, u)
}

.

Robust optimal control Let us now assume that the system dynamics are
affected by disturbances and given by,

ẋ = f(x, u, w), (2.25)

where, for all t ≥ 0, w(t) ∈ W is the disturbance input taking values in a
bounded disturbance set W ⊆ R

n, e.g., w(t) ∈ L2[0, ∞). A generalization of
the HJB partial differential equation is given by [Ba sar and Bernhard, 2008,
Ch.2],

−dV (t, x)
dt

= inf
u∈Rm

sup
w∈W

[
L(t, x, u) +

(
dV (t, x)

dx

)�
f(t, x, u, w)

]
. (2.26)

The counterpart of (2.23) is now the continuous-time Isaacs (or, Hamilton-
Jacobi-Isaacs) (HJI) equation given in (2.26), which is a generalization of the
HJB partial differential equation. In the infinite horizons case, i.e., with the
cost functional defined in (2.24), the HJI equation becomes

0 = inf
u∈Rm

sup
w∈W

[
L(x, u) + (∇xV (x))�

f(x, u, w)
]

.
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3
Literature synopsis

This thesis work lies at the intersection of three main topics: synchroniza-
tion in coupled oscillators, inverse optimal control in networked settings, and
the application to inverter-based power systems. This chapter conveys an
overview picture of the state-of-the-art literature. It covers each topic in-
dividually and highlights the different gaps and limitations that this thesis
aims to fill.

3.1 Oscillator synchronization problems

3.1.1 Synchronization in scientific research
Consider a system of finite number of oscillators with a given interaction
topology, where the dynamics at the i−th oscillator are described using the
phase angle θi ∈ S

1. One of the widely used models is the Kuramoto coupled
oscillator model (1.2) that represents a canonical model and a prototype that
is naturally encountered in different applications [Dörfler and Bullo, 2014].
For instance, many biological and neural systems can be seen as networks
of interacting periodic processes. In this context, the study of oscillations is
pervasive, due to their presence e.g., across brain regions, where the under-
standing of neural oscillations is a starting key element towards understand-
ing of the brain activity and its malfunction [Bick et al., 2020]. Another
example is deep brain stimulation, known to be an effective treatment for
a variety of neurological disorders, including Parkinson’s disease, using cou-
pled oscillator dynamics to describe how the brain oscillations should change,
when stimulation is applied at a particular state of the system [Weerasinghe
et al., 2019]. Moreover, oscillating chemical reactions in living systems are
vital for regulating circadian rhythms, metabolic processes, the transcrip-
tion of DNA and other crucial biological functions [Shklyaev et al., 2020].
Kuramoto’s model has been also generalized to other large systems of bio-
logical oscillators, such as chorusing frogs, and even human concert audiences
clapping in unison [O’Keeffe et al., 2017]. Other applications include planar
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3.1 Oscillator synchronization problems

collective motion of particles [Sepulchre et al., 2007]. Finally, the study of fre-
quency synchronization in power systems [Dörfler and Bullo, 2012b; Dörfler
and Bullo, 2014] is the main application considered in this thesis.

Conditions for frequency synchronization Control theorists have shown an
increasing interest in complex networks of coupled oscillators and have re-
cently contributed to many novel approaches and results, where a finite num-
ber of oscillators has been taken under the loupe.

A vast body of literature deals with frequency synchronization of Ku-
ramoto models, mostly for unweighted graphs (i.e., if the weight has the value
one, then the corresponding edge is called unweighted) with special topolo-
gies. The works of [Aeyels and Rogge, 2004; Mirollo and Strogatz, 2005]
consider all-to-all connection between Kuramoto oscillators and rigorously
characterize the spectrum and the associated eigenvectors of the linearized
system model, for a finite number of oscillators. This allows to derive bounds
on the critical coupling, i.e., the smallest coupling coefficient, for which a
global phase-locked state can exist, and is characterized via the bisection
algorithm [Verwoerd and Mason, 2008].

A graph, whose vertices can be divided into two disjoint sets U and V
with the property that every edge connects a vertex in U to one in V , is
called a bipartite graph. A complete bipartite graph is a bipartite graph in
which every vertex of U is connected with every vertex of V . A cycle is a
directed path that starts and ends at the same vertex. A graph with no cycle
is called acyclic.

Complete bipartite graphs have been considered in [Verwoerd and Mason,
2009], where the critical coupling coefficient can be found using an efficient
algorithm. For acyclic graphs, [Jadbabaie et al., 2004] and [Dörfler et al.,
2013] derive necessary and sufficient conditions in closed-form as a function
of the network topology and parameters, or equivalently in terms of an intu-
itive, linear, and static auxiliary system. Even though necessary conditions
can be derived for some special topologies [Chopra and Spong, 2009; Dörfler
et al., 2013], only sufficient conditions are prevalent in the analysis of oscilla-
tor synchronization with arbitrary topologies [Jadbabaie et al., 2004; Dörfler
and Bullo, 2012b]. It is known that a strongly coupled and sufficiently homo-
geneous network synchronizes but the characterization of the threshold from
incoherence to synchrony is the ultimate goal of many of these works [Dörfler
et al., 2013]. Intuitively, these conditions read as follows: if the dissimilar-
ities between natural frequencies in some metric norm (e.g., Euclidean or
2-norm [Jadbabaie et al., 2004], worst-case or ∞-norm [Dörfler et al., 2013])
are dominated by the coupling strength, then Kuramoto oscillators will syn-
chronize in frequency.

To arrive at these synchronization conditions, numerous system-
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theoretical and control tools are deployed to grasp the phenomena governing
coupled oscillators. In this context, Lyapunov methods are widely used to
study the stability of synchronized solutions such as linear quadratic [Chopra
and Spong, 2009] or sinusoidal quadratic functions of neighboring angle dif-
ferences [Franci et al., 2010]. Additionally, contraction analysis allows the
study of nonlinear trajectories by looking at their virtual displacement dy-
namics and measuring well-defined distances between these via integration.
Lyapunov functions founded on contraction analysis have led to an improved
understanding of systems with symmetry (e.g., possessing a rotational in-
variance) and the generalization of synchronization results confined to an
arc [Dörfler and Bullo, 2012b] into the full circle based on an almost global
stability analysis [Forni and Sepulchre, 2013]. Another Lyapunov candidate,
given by the maximum angle difference between any two oscillators, is contin-
uous but non-differentiable, generally appearing also in the study of positive
systems (a class of systems with the property that its state variables are
never negative, given a positive initial state), as in [Rantzer and Valcher,
2018].

Common control-theoretic tools for the stability analysis of nonlinear
systems include passivity [Willems, 2007] and port-Hamiltonian formula-
tions [Schaft and Jeltsema, 2014], input-to-state and set stability. These have
been the subject of many theoretical investigations [Dörfler and Bullo, 2014].
Finally, algebraic graph theory relying on the properties of the Laplacian
matrix and its pseudo-inverse and the Brouwer-Fixed Point theorem (stating
that, a continuous function that maps a non-empty compact, convex set into
itself has at least one fixed point) have led to concrete and elegant synchro-
nization conditions [Jadbabaie et al., 2004; Jafarpour and Bullo, 2018] that
are ingeniously improved upon existing literature.

Beyond Kuramoto oscillator Extensions of the Kuramoto oscillator model
include the study of higher-order oscillatory behaviors. The first-order model
in (1.2) can be replaced by the dynamics of the second order following the
swing dynamics presented in (1.7), naturally appearing e.g., in the study of
physical systems such as power systems [Acebrón et al., 2005]. Furthermore,
other extended studies include heterogeneously delayed systems embedded in
a directed graph with fixed topology [Schmidt et al., 2012], switched topol-
ogy [Papachristodoulou et al., 2010], generalized coupling with interaction
dynamics [Izhikevich, Kuramoto, et al., 2006] and the analysis of random
graphs based on numerical computations and analytical estimates on the
synchronization capability of the network [Nishikawa et al., 2003; Moreno
and Pacheco, 2004] .

58



3.2 Inverse optimal control

3.1.2 Limitations and remedies
• The studies listed above give intuitive insights into the sensitivities

affecting frequency synchronization in first-order Kuramoto (1.2) or
second-order oscillator models (1.7) such as network topology and criti-
cal coupling, but fail to explain stability behavior for high-order systems
with rotational invariance. These arise, e.g., in power system dynamics
after a static shift in all generators’ angles. This motivates the exten-
sion of many existing results to the study of frequency synchronization
on high-order manifolds for systems with this property. High-order cou-
pled oscillator dynamics are treated in Paper II of this thesis.

• Many of the frequency synchronization conditions derived from the
literature are implicit, i.e., involve solving a program to certify stability,
see e.g., [Vu and Turitsyn, 2015; Schiffer et al., 2019]. In many cases,
these programs might not have a solution and thus can be infeasible.
Even if feasible, the conditions are not explicitly given in a closed-
form, which makes it hard to find a valid mapping from the space
of oscillators and network parameters to the stability condition and
hence develop an intuition on how to satisfy them. This motivates the
search for explicit, closed-form conditions for frequency synchronization
in coupled oscillators. This will be shown in Paper II of this thesis.

We also refer the reader to Sections 4.2 stating our contributions of Pa-
per II.

3.2 Inverse optimal control

3.2.1 Cost design in optimal control
In optimal control, it is ubiquitous to start from an a priori defined cost
functional subject to (possibly) nonlinear system dynamics with the goal
to find an unknown optimal control law that represents a solution to an
optimization problem. Consider for example the following continuous-time
infinite-horizon optimal control problem given by,

minimize
u ∈ R

m

∫ ∞

0
[q(x(s)) + κ(u(s))] ds (3.1)

subject to ẋ(t) = f(x(t), u(t)),
x(0) = x0,

where x ∈ R
n denotes the state vector, x(0) = x0 is the initial state. The

input is represented by the vector u ∈ R
m. The mapping f : Rn ×R

m → R
n

is a nonlinear vector field assumed to be continuous and locally Lipschitz

59



Chapter 3. Literature synopsis

with f(0, 0) = 0. Thus, without loss of generality, the zero state or the origin
is a steady state, when no inputs are applied. Additionally, the mappings κ :
R

m → R>0 is given by κ(u) = u�R u, where R = R� > 0 and q : Rn → R>0
with q(0) = 0 is assumed to be continuous.

Most often the ingredients of the optimal control problem (3.1) are set up
as follows: the vector field f is a model built from first-order principles, while
q and κ represent together the running cost and play the role of tuning knobs
to shape the dynamics of the closed-loop trajectories. Concretely, to make
the input signal u less aggressive, one increases the penalty on u via tuning
of the input matrix R. Similarly, to improve the disturbance attenuation, we
increase the penalty on u in the input matrix R. The resulting closed loop is
always stable, irrespective of the cost integrands, q(x) and κ(u). This follows
from the observation that every value function defined by,

V (x0) := inf
u∈Rm

∫ ∞

0
[q(x(s)) + κ(u(s))] ds, (3.2)

is a Lyapunov function candidate.

Limitations of direct optimal control The optimization problem (3.1) is gen-
erally very hard to solve and non-feasible in most settings either analytically
or numerically, except in simplified linear settings such as LQR problems. An-
alytically, finding a concise, closed-form controller is generally hard because
it involves solving a partial differential equations. Numerically, this approach
suffers from the curse of dimensionality, so named by Bellman. As the di-
mension of the system grows larger and larger, the number of samples needed
to discretize the partial differential equations equation often grows exponen-
tially. For systems with dimensions higher than two, there are no practical
ways to solve this partial differential equation. Even the mere existence of
a solution in this case cannot be guaranteed a priori. Most approximate
methods yield only results valid in a region, whose size must be estimated
by numerical computations [Lincoln and Rantzer, 2006]. These difficulties
are more pronounced in the study of solutions to (3.1) subject to bounded
disturbances that involves solving the Hamilton-Jacobi-Isaacs partial differ-
ential equations [Ba sar and Bernhard, 2008].

Furthermore, how to choose a cost function which accurately reflects the
functional objectives of the system and at the same time yields an optimal
control law that is simple, concise and in closed-form is a cumbersome task.
It mainly requires a trade off between complexity of the physical structures
to implement and minimal (e.g., monetary) budget and input effort. All the
above have motivated a change of perspective in the formulation of optimal
control by asking the following question:

Given a particular feedback control law, what is the family of criterion
functions, for which this law is optimal? [Kalman, 1964]

60



3.2 Inverse optimal control

The inverse optimal control problem aims to find an answer to this ques-
tion.

3.2.2 Inverse optimal control: main idea and properties
In the sequel, consider the input-affine nonlinear system dynamics that is
subject to disturbances,

ẋ(t) = f(x(t)) + G�u(x(t)) + G�
ww(t), t > 0 (3.3)

x(0) = x0,

where G ∈ R
m×n, Gw ∈ R

w×n are input matrices, w ∈ R
w is the system

disturbance that lies in L2[0, ∞), i.e., satisfying,∫ ∞

0
w�(t) w(t) dt < ∞.

Instead of asking for a control law u(x) corresponding to a given performance
criterion, we seek to determine all performance criteria (if any) for which a
given control law is optimal [Kalman, 1964]. In particular, we start from a
known and stabilizing control law u∗(x), associated with a (robust) control
Lyapunov function V , i.e., a continuously differentiable function that satisfies

∇�
x V (f(x) + G�u∗(x) + G�

ww) < 0. (3.4)

Then, we can retrieve the running cost functional q(x) a posteriori. In other
words, we reverse engineer the cost for which the given controller is optimal.
In this sense, the problem is called inverse because q(x) is determined after a
feedback controller has been designed [Haddad and Chellaboina, 2011; Sepul-
chre et al., 2012]. This motivates the following definition from [Sepulchre et
al., 2012].

Definition 3.1—Inverse optimal robust stabilizing control

Let w = 0. A control law u∗(x) is inverse optimal stabilizing for the sys-
tem (3.3) if

• it achieves asymptotic stability of the origin of (3.3).

• it is of the following form,

u∗(x) = −1
2

R−1G ∇xV, (3.5)

where R = R� > 0 and V : Rn → R>0 is a control Lyapunov function
of (3.3).

For w �= 0, a control law u∗(x) is inverse optimal robust stabilizing for
the system (3.3), if it is inverse optimal stabilizing for all disturbances
w ∈ L2[0, ∞]. �
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Evolving the idea of inverse optimal control The first inverse optimal con-
trol problem has been posed and solved by R.E. Kalman in 1964 for linear
systems with quadratic cost [Kalman, 1964]. Later, [Moylan and Anderson,
1973; Casti, 1974] and others studied more general forms of the cost func-
tional for which the variational problem has nontrivial solution, e.g., involv-
ing a strictly convex integrand in the state or input and subject to general
nonlinear systems. For the disturbance-free setting, it has been shown that,
if the control law is of the form (3.5), then there exists an a posteriori de-
fined cost functional, so that the proposed controller is optimal, i.e., that
the control Lyapunov function V satisfies the HJB equation. For the control
problem (3.1), the cost functional is given by,

q(x) = ∇�
x V (f(x) + G�u∗(x)) − κ(u∗).

This result has been later generalized by Freeman [Freeman and Koko-
tovic, 1996] and also by [Haddad and Chellaboina, 2011] to disturbance at-
tenuation problems, where the disturbance is explicitly incorporated into the
system dynamics, e.g., as given in (3.3), leading to the study of HJI partial
differential equation.

The converse link established by inverse optimal control, namely that,
every Lyapunov function is a meaningful value function, has a handful of
implications on the study of nonlinear control synthesis. First, compared to
other control approaches such as feedback linearization that have no stability
margin (that is, with a slightly perturbed feedback, the closed-loop system
trajectories tend to infinity), inverse optimal stabilizing controllers are robust
against disturbances and use the nonlinearity to enhance the rate of decrease
of the Lyapunov function [Sepulchre et al., 2012]. Furthermore, by restricting
the class of cost functionals to include a real penalty on both the state via q(x)
and the input via κ(u), the optimal closed-loop system inherits the nonlinear
analog of desirable phase and gain margins, similar to multivariable LQR
controllers known to possess (for a diagonal input matrix R, see [Lehtomaki
et al., 1981]) an infinite gain margin and 60◦ phase margin. In the example of
nonlinear control problems, the optimal controller (3.5) is robust against an
infinite increase in gain, also called high-gain control [Glad, 1987; Sepulchre
et al., 2012]. A summarizing overview of direct and inverse optimal control
approaches is given in Fig. 3.1.

Properties of inverse optimal control One can interpret the control law (3.5)
as a damping control for unforced asymptotically stable systems, follow-
ing [Sepulchre et al., 2012], where the derivative of V can be made more
negative. This can be inferred from the control gain matrix K = 1

2 R−1

in (3.5) that plays the role of an additional damping for energy dissipation
of V . This establishes a link to the powerful theory of dissipativity [Willems,
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Figure 3.1 A summary of the direct optimal control approach (left) and
inverse optimal control (right).

1972a; Willems, 1972b] and motivates the study of inverse optimal control
for passive systems, where (3.5) amounts to choosing,

u = −K y, K =
1
2

R−1 > 0,

with the output y = ∇�
x V G. This is the so-called damping injection with the

matrix K being the so-called damping injection gain [Ortega et al., 2002] and
agrees with the idea of damping control for stable systems. In this way, we
extract or dissipate energy from the system and therefore increase the rate of
convergence of the energy function towards an equilibrium. Finally, the link
between the powerful theory of dissipativity and inverse optimality [Sepulchre
et al., 2012] makes the latter an indirect approach to derive a controller that
renders the closed-loop system passive without explicitly requiring, a priori, a
certain passivity structure e.g., that the dynamics follow a port-Hamiltonian
system, which might be restrictive.

3.2.3 Engineering applications and beyond
Thanks to the structural properties encoded by the control law (3.5), in-
verse optimal control has led to the synthesis of useful optimal controllers in
numerous engineering applications, from the stabilization of a rigid [Krstic
and Tsiotras, 1999] and under-actuated spacecraft [Geng et al., 2016] in
aerospace engineering, output voltage regulation of DC/DC power converter
circuits [Vega and Alzate, 2014], neutral networks in stochastic nonlinear sys-
tems [Cao et al., 2019] to flexible joint robot manipulator [Ha et al., 2007],
output trajectory tracking [Ornelas et al., 2010], non-cooperative differential
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games [Molloy et al., 2019] and even glycemic control in patients [Sanchez
and Ornelas-Tellez, 2017] and neuroscience [Berret and Jean, 2016].

More recent applications of inverse optimal problems have been more
pronounced at the interface of data-driven control and reinforcement learn-
ing [Self et al., 2020; Ab Azar et al., 2020] via so-called cost learning [Finn
et al., 2016] e.g., to establish a model of human overall locomotion path gen-
eration to given target positions and orientations, based on newly collected
motion data [Mombaur et al., 2010], or in application to multi-agent sys-
tems [Jin and Mou, 2021]. The aim in these works is to determine, for a
given dynamical process and an observed solution of the optimal trajecto-
ries, the optimization criterion that has produced the solution, and this, for
example, by inferring the parameters that define the cost function [Zhang
et al., 2019; Zhang, 2019]. Recent research involves not only the learning of
the cost but also the identification of the state and input constraints that are
part of the optimal control problem [Menner et al., 2021].

3.2.4 Limitations and remedies
• The generalization to disturbance attenuation problems in [Freeman

and Kokotovic, 1996], although considering general non-linear dynam-
ics, does not take the disturbance into account in the integrand of the
cost to minimize. Oftentimes, the explicit expression of the cost hard to
guess, where the dependence on system parameters and control gains
is not visible. This can be remedied by compromising the generality of
both system dynamics and cost functionals, e.g., by opting for input-
affine dynamics with a cost that is quadratic in input and disturbance.
This leads to an explicit expression for the cost, in the disturbed case,
that can be interpreted and implemented directly. This will be discussed
in Paper III.

• In networked settings, inverse optimal control makes optimal feedback
solutions more intuitive and accessible, i.e., without computational bur-
den, and endows control synthesis with topological structure. The struc-
ture of the controller descends from the gradient of the control Lya-
punov function, that results, in many cases, in a distributed control
law. This allows for a feasible control implementation. Despite this im-
portant aspect of inverse optimal control, it has not been highlighted
in the literature. Our work in Papers III and IV aims to bridge this
gap.

We also refer the reader to Sections 4.3 and 4.4 of this thesis stating our
contributions of Papers III and IV.
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3.3 Stability and control in power systems

3.3.1 Modeling and control of multi-machine systems
Multi-machine models are obtained after a series of restrictive assumptions
on the system at hand. As in [Kundur et al., 1994; Sauer et al., 2017], preva-
lent modeling assumptions relate to the operation in quasi-stationary mode,
i.e., around a given steady state. The transmission lines are modeled as
impedances and the loads are either modeled as impedances or constant
current and power sources. After Kron reduction [Dörfler and Bullo, 2012a],
the electrical network is represented only by generators interconnected via
transmission lines with negligible conductances. In most of the cases, the
mathematical model obtained from these procedures, can be cast as first-
or second-order coupled oscillator dynamics. It is fundamentally instructive
to understand the transient stability of multi-machines by inferring results
from the accumulated knowledge of synchronization of coupled oscillators in
physics and control engineering. This seems to give satisfactory and intuitive
answers for multi-machines systems, e.g., under the assumption of highly
damped generators [Dörfler and Bullo, 2012b] and purely inductive (lossless)
lines [Pai, 1981; Kundur et al., 1994].

As soon as we stray away from these special assumptions in cases, where,
e.g., due to common disturbances in the grid, power systems are operated far
from steady state conditions and the transmission lines are lossy (with non
trivial conductance), a myriad of challenges start to surface in the stability
analysis of multi-machines. In real world scenarios, large swings are common.
Due to a burst of winter weather, Texas suffered an outage of two weeks and
three days, in the period between February 10–27 of 2021, likely to be the
worst on record in US history. More than 10 million people were without
power for days [Busby et al., 2021; Najmabadi and Martinez, 2021]. Another
example is when the large frequency swings became a principal means by
which a blackout on 14th of August 2003 spread across a wide region in
Canada and the Northeast of the United States [Kamel and Glotfelty, 2003].
This massive power outage affected approximately 50 million people in the
Midwest and Northeast United States and Ontario, Canada.

Transient stability in multi-machine systems The power system models, in-
cluding linearized power system models, are only valid when the generator
velocities are very close to the synchronous velocity, or in quasi-stationary
mode [Schiffer et al., 2016]. Neglecting the transmission line conductances
stems from the finding in [Chiang, 1989] concluding that there is no general
energy function for multi-machine power systems with losses. Furthermore, it
has been shown in [Ortega et al., 2005] that the obtained asymptotic stabil-
ity conditions and hence the region of attraction cannot be generalized from
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lossless to lossy links (with non-trivial conductance), since a different (than
that of the lossless case) Lyapunov candidate needs to be designed. This
emphasizes that the invalidity of certain model assumptions has significant
ramifications on the study of power system stability. Despite considerable
efforts made to find Lyapunov functions for power systems with lossy trans-
mission lines [Pai and Murthy, 1973; Skar, 1980; Tsolas et al., 1985; Caliskan
and Tabuada, 2014], this has remained an open problem within the power
system community for decades.

It is noteworthy that numerous studies on the investigated transient sta-
bility, rely on a setup composed of a single machine connected to an infinite
bus [Kundur et al., 1994; Leonov, 2006; Barabanov et al., 2016], where the
angle of the infinite bus is embedded in the model representation. Extending
the corresponding Lyapunov analysis to general multi-machine power systems
is non-trivial. This is largely due to the inherent difference in the topology
between the state space of one-dimensional angle dynamics or angle dynam-
ics higher than two [Skar, 1980]. Considerable efforts have been invested in
this generalization [Shaik et al., 2012; Caliskan and Tabuada, 2014], where
the main difficulty remains in constructing error coordinates compatible with
the topological space of the n−dimensional torus.

Depending on the initial conditions, it is possible to show almost global
stability results, i.e., up to initial conditions of a measure zero set, all tra-
jectories converge to a desired steady state [Barabanov et al., 2016; Schiffer
et al., 2019; Colombino et al., 2019]. Finally, the accuracy of the Lyapunov-
based methods is evaluated based on comparison of the provided region of
attraction to that of other existing methods, like the closest unstable equi-
librium method [Chang et al., 1995]. It can be estimated by borrowing ideas
from optimization-based algorithms, as in gradient-like methods [De Persis
and Monshizadeh, 2017], while also considering additional operational and
reserve constraints [Vu and Turitsyn, 2015].

Example 3.1—Role of system parameters in global stabil-

ity [Leonov, 2006]

To illustrate the role of the system parametric choice in inducing and sus-
taining globally stable oscillations, let us consider the following simple yet
insightful example modeling a synchronous electrical motor. Consider

θ̇ = η (3.6)
η̇ = −αη − sin(θ) + γ,

where α, γ > 0. The stability of (3.6) can be readily studied using the direct
method of Lyapunov.

Note that for 0 < γ < 1, there exists a steady state θs (modulo 2π)
to (3.6) that is asymptotically stable, where cos(θs) > 0 and another one
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α > αcri

α = αcri

α < αcri

Figure 3.2 Three different arrangements of the trajectories in the phase
space of system dynamics (3.6) depending on the parameter α > 0.

θu (modulo 2π) that is a (unstable) saddle with cos(θu) < 0. Depending
on the operating range of the damping α, three operating regimes that are
illustrated in Fig. 3.2 may appear. First, for a sufficiently damped system
α > αcri, global stability is assured in A), where the separatrices tend to
the saddle equilibria of system θu and are the boundaries of the attraction
domains of the asymptotically stable states θs. The entire phase space is
decomposed into such attraction domains. Second, for a critically damped
system α = αcri, the attraction domains of the stable equilibrium states are
also bounded by such separatrices in B). However, these domains do not fill
the entire phase space anymore. Third, for α < αcri, C) depicts instability
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corridors appear between the separatrices and the space is decomposed into
such corridors and the region of attraction of asymptotically stable steady
states. �

Similar to the physical world, where the laws governing interactions in a
set of particles are invariant with respect to static translations and rotations
of the whole rigid body [Sarlette, 2009], the dynamics of the power system
trajectories are invariant under a static shift in their angles, or said to possess
a rotational invariance. The symmetry of the vector field describing the power
system dynamics, indicates the existence of a continuum of steady states
for the multi-machine dynamics. In particular, the rotational invariance is
the topological consequence of the absence of a reference frame or absolute
angle in power systems and regarded thus far as an obstacle for defining
suitable error coordinates for the stability analysis. If the steady state set is
a linear subspace [Schiffer et al., 2019], a common approach, to alleviate this,
is to perform transformations into the quotient space either resulting from
projecting into the orthogonal complement, or grounding a node [Tegling et
al., 2015], where classical tools of proving stability with respect to a point
can be deployed.

3.3.2 Nonlinear control of multi-converter systems
In the remainder, we go through the most important control strategies de-
veloped for frequency regulation of DC/AC converters-based generation.

Droop control Inspired by the dynamics governing synchronous machines
and the analogy drawn to synchronization in coupled oscillator dynamics,
droop control is the most well-established grid-forming method, first pro-
posed by [Chandorkar et al., 1993]. It has since been extensively studied in
the literature both in control theory and in practice. Droop control presumes
that the inverter represented in Fig. 1.12 can be cast as controllable voltage
source and thus acts on phasor quantities, i.e., a representation of each in-
verter by a (fixed) amplitude and a controllable phase angle on the circle.
This presumes an operation that is close to a nominal operating point. In a
network of inverters with inductive lines, the voltage magnitude is set to a
constant (one per unit) and the electrical phase angle is chosen to follow the
swing dynamics of synchronous machines (1.7). This translates to,

θ̇i = ωi (3.7)

Miω̇i = −Di ωi +
∑

j∈Ni

(sin(θij) − sin(θ∗
ij)),

where ωi ∈ R is the frequency (with respect to a nominal value ω∗ at the i−th
inverter). If the set Ni denotes the neighborhood of the i−th inverter, then
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θij = θi − θj and θ∗
ij = θ∗

i − θ∗
j are the angle difference between neighboring

inverters’ angles and at the prescribed steady state. The coefficients Mi > 0
and Di > 0 denote the inertia mass and damping, which are the parametric
tuning gains of the i − thdroop control. At steady state, droop control (3.7)
exhibits droop behavior as the (P −ω) law shown in Fig. 1.16. Droop control
ensures system-wide synchronization and power sharing among converters as
delineated in [Dörfler and Bullo, 2012b; Simpson-Porco et al., 2013].

In comparison to the conventional bulk power plants, in which the syn-
chronous machines dominate, the generator units have either very small
or no rotating mass and damping property. In this sense, the parameters
Mi, Di > 0 are understood as virtual quantities (to emphasize the fact that
droop control is digitally implemented) representing inertia and damping, re-
spectively. The question of proper tuning of these parameters has attracted
attention with considerable efforts to find an optimal value for control gains
e.g., by solving optimization problems that minimize important metrics of
performance, for example H2 system norm measuring the coherency in a lin-
ear network-reduced power system model [Poolla et al., 2017]. The plug and
play properties of the droop control, resulting from power to frequency droop,
depicted by the nose curve in Fig. 1.16, allow, e.g., power sharing among
converters [Dörfler et al., 2015] and accommodate scenarios, where the exact
steady state value of the power generation is uncertain or unknown. All these
advantageous properties make the control via emulation of synchronous ma-
chine amenable for large scale control of converter-based power systems and
compatible with existing components of the electrical system, and thereby
an attractive solution for distributed renewable energy generation.

The dynamics of synchronous machines remain a source of inspiration
for a multitude of other converter control strategies that mimic their be-
havior, such as virtual synchronous machines [Bevrani et al., 2014] and syn-
chroverters [Zhong and Weiss, 2010]. One particular controller that relies
on exact model matching of high-order dynamics of three-phase synchronous
machines with three-phase balanced and averaged DC/AC converters derived
from first-order principles (with dynamics following the diagram depicted in
Fig. 1.12) is the matching control introduced in [Jouini et al., 2016; Jouini,
2016]. The particularity of this controller relies on easily measured DC-side
voltage, and representing an indicator of power imbalance in the grid with-
out prior assumptions on quasi-stationary steady state and the operation on
phasor quantities. A study of the properties of the matching control will be
discussed in this thesis.

Virtual oscillator control A control strategy that attempts to overcome the
restrictive assumptions of droop control (quasi-stationary steady state, oper-
ation with phasor quantities), is the virtual oscillator control (VOC) which is
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an electrical realization of Van der Pol Oscillator [Khalil, 2002]. The virtual
oscillator controller emulates the dynamics of nonlinear oscillators and glob-
ally stabilizes arbitrary initial conditions to a sinusoidal steady state. It can
be implemented on a digital micro-controller, while acting on the converter’s
input. The Van der Pol oscillator is composed of a parallel RLC circuit and
a nonlinear voltage-dependent current source. Leveraging Kirchoff’s circuit
equations, the dynamics of the oscillator can be written as,

L
diL

dt
= v, (3.8)

C
dv

dt
= σv − kv3 − v

Rvoc
− iL + ε u(t),

where v denotes the converter terminal voltage, u(t) is the current input
to the Van der Pol oscillator and k, σ, ε are positive constants. The resistor
Rvoc > 0, is set in parallel with the inductance L > 0 and the capacitor
C > 0, where iL is the current flowing through the inductance. Even though
virtual oscillator control has provable droop properties [Sinha et al., 2015],
the control gains are hard to tune due to a lack of physical intuition on how
to choose their values. It was also not possible to track active and reactive
power reference in the original formulation of VOC, see [Johnson et al., 2013].

These limitations have motivated a variant of VOC suggested in [Colom-
bino et al., 2019] that allows active and reactive power to be dispatched,
hence the name dispatchable Virtual Oscillator Control (d-VOC). The d-
VOC is a combination of a synchronizing feedback term, together with a
decentralized magnitude control law and allows for global stabilization of
the angles and voltage magnitudes at their desired values, corresponding to
a pre-specified solution of the AC power-flow equations. The controller ex-
hibits a droop behavior around the standard operating point, which makes
it backward compatible with the existing power system operation.

Passivity-based control Other converter control strategies rely on energy-
based modeling and control [Schaft, 2000; Schaft and Jeltsema, 2014] de-
scending from the theory of passivity and the observation that a typical power
network dynamics can be formulated as a port-Hamiltonian system [Shaik
et al., 2012; Schiffer et al., 2016] and is thus a passive system. Namely, the
main idea is that passive interconnections preserve and passive damping dis-
sipates energy and thus shapes the total system energy. This has led to the
development of the theory of interconnection and damping assignment [Or-
tega et al., 2002] and passivity-based control [Zonetti, 2016; Zonetti et al.,
2021], applied to the control of converters in power systems.

Inverse optimal control for power systems Even though direct optimal con-
trol and dynamic programming have been widely used for optimization in
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power networks [Lu et al., 2008; Sanchez-Sanchez et al., 2019], inverse opti-
mal control formulations have gained only limited attention in the DC/AC
converter control literature. The applications of inverse optimal control in
converter control are mainly concerned with the voltage regulation of DC/DC
boost power converters [Vega and Alzate, 2014; Liu et al., 2014; Zhang et
al., 2013; Ornelas-Tellez et al., 2012; Pahlevaninezhad et al., 2012] and other
electrical components such as an induction wind generator [Ruiz-Cruz et al.,
2018].

3.3.3 Limitations and remedies
• The frequency/angle controllers proposed in the literature, rely mainly

only AC measurements to achieve synchronization in converter-based
generation, assuming full control of the DC side [Bevrani et al., 2014],
which is often an unrealistic assumption. Therefore, DC-side modeling
is often neglected and many of the proposed controllers miss out on
the utility of DC capacitor voltage for converter control. On the other
hand, DC-side circuitry reflects the power imbalance in the grid through
the DC-side capacitor voltage. This motivates the matching control, a
novel controller that uses DC-side measurements to achieve frequency
synchronization in converter-based generation that will be discussed in
Papers I and II.

• Droop control assumes quasi-stationarity, which is a strong assumption,
given the fluctuating nature of the electrical grid, where the operation
is commonly far away from a desired steady state. Moreover, virtual
oscillator control is hard to tune with many parameters affecting the
control performance and its droop behavior, and is not straightforward
how to assign dispatched active and reactive power set-points. This
motivates the design of DC/AC converter controls that overcome the
limitations of being at the vicinity of some steady states and that are
easy to tune. This is achieved by the matching control that will be
discussed in Papers I and II.

• As conveyed by the literature review, inverse optimal control has not
been applied to control of DC/AC converters. Given the numerous
advantages of inverse optimal control, this motivates the novelty of our
work discussed in Papers III and IV.

We also refer the reader to Chapter 4 of this thesis stating our contribu-
tions of all Papers.
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4
Contributions

In this chapter, we review the content of this thesis work by highlighting the
contributions and novelty of each of the selected four papers.

4.1 Paper I: Grid-forming control for power converters based on
matching of synchronous machines

Summary With preliminary results in [Jouini et al., 2016; Jouini, 2016], we
consider in [Arghir et al., 2018] the problem of grid-forming control of power
converters in low-inertia systems. We start from an averaged and balanced
DC/AC power converter in Fig. 1.12 and a synchronous machine model that
retain basic first-order model principles and derive a grid-forming controller
that we term the matching controller. This is achieved by coupling the DC
and AC circuits that measure the DC bus voltage, which is viewed as an
indicator of frequency imbalance. We transform the dynamics into the rotat-
ing coordinates to decouple the dynamics of the augmented state from the
DC/AC converter variables, analyze the system stability by means of the
Lyapunov method and find sufficient conditions for strict passivity with re-
spect to incremented DC and AC ports, global asymptotic stability as well as
droop behavior in steady-state. Furthermore, we establish cross-links to re-
cently adopted control approaches (virtual oscillator control, passivity-based
control). We analyze and implement outer control loops fulfilling AC fre-
quency regulation via PID control. We ensure AC voltage amplitude tracking
by means of asymptotic disturbance decoupling via feed-forward and passive
PI control under the assumption relying on available measurements of the
load current. To alleviate this realizable yet impeding assumption, we also
implement a droop controller that trades off between power output and am-
plitude of the AC filter capacitor. Stability analysis is then conducted for
each control approach using Lyapunov theory. Our simulations are presented
for demonstration in a single converter as well as a two-converter case study.
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Figure 4.1 Structural similarities between a three-phase high-order a
DC/AC converter (top) and synchronous machine (bottom) model. The
colors red, blue and green highlight the analogies between different com-
ponents of the machine and converter; DC circuit and the machine’s rotor,
the switching block and back electromotive force voltage as well as the
machine’s and converter’s output AC filters.

Contribution 1: matching control design Our fully decentralized control ap-
proach is inspired by identifying the structural similarities between the two
models depicted in Fig. 4.1 and matching these via state feedback control.
In other words, through a proper choice of the input, we explicitly match
the two models, so that they become structurally equivalent. This is the
motivation behind the name, matching control. Our control strategy can be
allied to a multitude of ideas rooted in nonlinear control, e.g., the matching
of general nonlinear systems via state feedback [Di Benedetto and Isidori,
1986]. The controller is a nonlinear function representing an integrator that
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Figure 4.2 A diagram illustrating the basic idea of the matching control.
The matching control acts on the modulation signal considered as the main
input to the converter’s switching block.

uses the measurement of the DC-side voltage. It can be understood as an
embedding of a virtual angle in R

2, whose dynamics are linearly dependent
on the DC voltage and fed as input to the DC/AC converter. The key idea
of the matching control is summarized in Fig. 4.2.

Contribution 2: closed-loop stability Our stability analysis relies eminently
on the analogy drawn between DC/AC converter model and synchronous ma-
chines. The Lyapunov method adopted in [Caliskan and Tabuada, 2014] for a
single machine infinite bus scenario is applied to our closed-loop system and
extended to incremental passivity as a key requirement for stability under
interconnection. This allows to derive a sufficient condition for incremental
passivity and global stability upon transformation into a rotating coordinate
frame. Our stability condition depends on the steady-state under considera-
tion and converter parameters and can be satisfied upon appropriate tuning
of the control gains. It asks for sufficient damping on the DC and AC sides
of the converter.
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Contribution 3: outer loops for frequency and voltage regulation Addition-
ally, we extend the matching control with outer loops that strengthen the
coupling between DC and AC components, while preserving passivity. We
deploy a passivity-based control approach, which lends itself useful for fre-
quency and voltage regulation inspired by ideas from [Khalil, 2002; Zonetti
et al., 2014]. For frequency regulation, we increment the matching control
with a PID controller by considering the DC current source as an input.
We later prove that the proposed control scheme achieves exact regulation
of the frequency to a given prescribed value with zero error at steady-state.
Additionally, we exploit the degree of freedom in the modulation (i.e., the
main input to the converter) amplitude to propose three control schemes that
stabilize the output voltage amplitude to a constant value.

Under the assumption on load current measurement, a feed-forward con-
troller is first proposed for amplitude regulation and proven to converge to
the desired value at steady-state, if the admissible load current is below a
certain bound. Second, PI-passivity based control is proposed which designs
a passive output to ensure a strict decrease of the storage function to a well-
defined steady-state value. The incremented converter model is proven to
guarantee exact tracking of the desired reference. The two previously dis-
cussed controllers achieve exact tracking but under the assumption of exact
knowledge of the disturbance and the admission of integral action. Even
though, we consider a single converter setup, integral action can be detri-
mental in a network setting due to conflicting objectives between the con-
trollers. This motivates our third approach based on droop control. Similar
to voltage droop in resistive power networks, we introduce a droop behavior
between converter output power and the modulation magnitude. This results
in a proportional action that does not necessarily achieve the desired steady-
state but allows for better coordination between the converters in view of
a network setup. The proposed control strategies for frequency and voltage
regulation are summarized in Fig. 4.3.

4.2 Paper II: Frequency synchronization of a high-order
multi-converter system

Summary This work generalizes the transient stability results of a single
converter in closed-loop with the matching control in Paper I into a more
fundamental analysis of a network consisting of DC/AC converters. The dy-
namics of each converter are defined on a high-order manifold. Based on the
rotational invariance of the resulting vector field, we first identify the steady-
state set, whose feasibility defines a mapping from the steady-state angles
into DC power input as a function of the network topology and converter
parameters. Second, we study local asymptotic stability with respect to the
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Figure 4.3 Outer loops for frequency and voltage regulation. The control
strategy 1 relies on feed-forward control, assuming full knowledge of the
disturbance, 2 is derived from passivity-based control using DC voltage and
AC current measurements and 3 is based on droop control by measuring
the power output.

steady-state set by deploying the center manifold theorem. This is devised
under the premise that the Jacobian of the linearized dynamics of the multi-
converter system has only one eigenvalue at zero and the real-parts of all
remaining eigenvalues are in the open-left half-plane. We provide an example
approach on how to find a sufficient condition that satisfies this assumption
and contextualize our finding by providing intuitive physical interpretations.
We validate our results in simulations on a three-converter system.

Contribution 1: steady-state characterization By considering high-order
system dynamics, we characterize the steady-state set of the multi-sourced
converter system. The vector field has a rotational invariance, under a static
shift of all angles by the same value and the rotation of AC signals. This
rotational invariance is preserved at steady-state and as a consequence the
steady-state set defines a continuum of equilibria. Its feasibility is deter-
mined by a mapping from the nominal steady-state angles, network topology
and converter parameters into the DC power inputs to the converters. The
steady-state set is distinguished by a synchronous frequency at steady-state
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z∗

Figure 4.4 Evolution of the linearized trajectories of the multi-converter
system on the tangent space at z∗ represented in Fig. 4.5 under the Jacobian
eigenvalue condition, namely that only one eigenvalue is at zero (associated
with a zero eigenspace direction) and the real-parts of all other eigenvalues
are in the open-left half-plane.

corresponding to a nominal value, stationary angles and stationary AC quan-
tities (inductor current, capacitor voltage, line current). This is shown after
transformation into dq−frame with an angle rotating at nominal frequency.

Contribution 2: local synchronization using center manifold theory We
study local asymptotic stability of the characterized steady-state set by ap-
plying the center manifold theory. In other words, in a neighborhood of the
steady-state set, we seek to find (mild) assumptions, under which asymp-
totic stability of the nominal steady-state can be guaranteed. For this, we
depart from the following eigenvalue condition. Given a matrix with one zero
eigenvalue, the goal is to guarantee that the remainder of the modes are
confined to the open-left half-plane. As a consequence, the one-dimensional
zero eigenspace is asymptotically stable. A summary of the eigenvalue condi-
tion is depicted in Fig. 4.4. We provide one approach on how to satisfy this
condition.

Under the assumption of the system Jacobian’s eigenvalues, we decom-
pose the nonlinear dynamics into two subsystems, whose dynamics are zero
and Hurwitz respectively, we can apply the center manifold theory, where
the reduction principle revolves around the following idea [Wiggins, 1990,
Ch.18]. By bringing the multi-converter system into the decomposed dynam-
ical form, we prove local asymptotic stability of the steady-state. Physically,
our sufficient stability conditions specify an upper bound on the power factor
at each converter that can be satisfied with sufficient AC damping as well
as a lower bound on the DC damping gain, which makes them explicit and
feasible to verify individually at each converter. An overall summary of the
contributions is found in Fig. 4.5.
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z∗

S(z∗)

N α ∈ R
1

Figure 4.5 A summary of local synchronization of the multi-converter sys-
tem. The blue circle represents the steady-state set S(z∗), resulting from
a static shift α ∈ R of all converters’ angles, and the green area depicts a
neighborhood N thereof. Trajectories initialized on N , converge to a point
on the steady-state set S(z∗).

4.3 Paper III: On cost design in applications of optimal control

Summary In this work, we extend inverse optimal control to a setting, where
the nonlinear cost functionals together with the system dynamics are subject
to bounded disturbances. We illustrate the usefulness of inverse optimal con-
trol in networked settings for designing controllers with topological structure,
through diverse examples in linear and nonlinear systems. We demonstrate
the utility of control synthesis via inverse optimal control to find a distributed
and thus feasible optimal controller for coupled oscillator dynamics. We val-
idate our results in simulations on a three-oscillator system. A summary of
the ideas presented in this paper is depicted in Fig. 4.6.

Contribution 1: cost functional with a disturbance term Our min-max
problem formulation is an extension of the min-max formulation presented
in [Freeman and Kokotovic, 1996] to a class of cost functional, where the dis-
turbance enters through a quadratic term in the cost subject to input-affine
system dynamics. This allows for the explicit calculation of the worst-case
disturbance and thus the explicit derivation of a cost functional a posterior.

Contribution 2: tuning aspect in inverse optimal control Our work puts em-
phasis on the tuning aspect of inverse optimal stabilizing controllers along
the lines of other works [Haddad and Chellaboina, 2011; Sepulchre et al.,
2012]. We illustrate through different remarks, examples, and also numeri-
cally, that the input gain matrix represents a tuning knob that can be used to
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Figure 4.6 Summary of the content of Paper III

improve the error decay rate or minimize the control effort, while keeping the
same value function. This analogously applies for the robust setting, where
the disturbance input gain matrix is an tuned to penalize the disturbance
deviations.

Contribution 3: robust inverse angle stabilization in coupled oscillators We
apply inverse optimal control in networked systems to design a controller with
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topological structure, e.g., a distributed controller. The resulting network
structure of the controller descends from the gradient of the chosen control
Lyapunov function and is useful for feasible implementations.

Our main application of inverse optimal control is intended for angle
stabilization in coupled oscillators. The goal is to improve the error decay
rate of the angle transients, while converging to an induced steady-state in
second-order coupled oscillators, that can represent, e.g., droop-controlled
inverters, and this, by using direct angle control as in [Zhang and Xie, 2015;
Zhang and Xie, 2016; Arghir and Dörfler, 2019; Tayyebi et al., 2020]. We
take into account the generation and the grid-side volatility represented by
a disturbance that acts on the frequency dynamics. Under mild assumptions
on the neighboring steady-state angle differences, we arrive at a distributed
control law, that stabilizes the angles at an induced steady-state. A decrease
in the input gain matrix improves the error decay rate in angle transients
significantly, and the convergence to the induced steady-state is faster, which
corroborates our results.

4.4 Paper IV: Inverse optimal control for angle stabilization in
converter-based generation

Summary We demonstrate the usefulness of inverse optimal control for
power networks. We suggest an optimal control law that stabilizes the phase
angles of voltage source controllers converters to an induced steady-state,
characterized by a zero frequency error. The control law is inverse optimal
stabilizing for the converter dynamics, i.e., it is the unique solution of an
optimal control problem, where the cost is defined a posteriori. We show
that the implementation of the angular droop control is feasible. In fact, it
is possible to be implemented in a decentralized manner using only power
measurements. We showcase our results on simulations of a network of high-
order DC/AC converters, each represented by the model from Paper I. A
summary of the ideas presented in this paper are depicted in Fig. 4.7.

Contribution 1: inverse optimal control for power networks To the best of
our knowledge, there has not been research linking inverse optimal control
to the control of inverters in power systems and thus there is room for con-
tributions in this direction. The objective is to design an inverse optimally
stabilizing controller design (in the sense of Definition 3.1), that utilizes the
grid measurement, while minimizing a performance metric that meets the
requirements of a desired power system operation.

Contribution 2: angle stabilization with zero frequency error The angular
droop control linearly trades active power with angle deviation at steady-
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Figure 4.7 Summary of the content of Paper IV

state and thus achieves exact frequency regulation with no stringent separa-
tion between primary and secondary frequency control. This implies that the

81



Chapter 4. Contributions

controller compresses the time scale separation, commonly assumed in con-
ventional, machine-dominated power systems. Therefore, we substitute two
control layers with a single one that achieves the same objective of restoring
the system frequency to nominal. Thereby, the converter phase angles are
stabilized to an induced steady-state, where the convergence rate is traded
with the allowed control effort.

Contribution 3: bridge a gap between control and power system community
We reversely engineer the angular droop control suggested in [Zhang and
Xie, 2015; Zhang and Xie, 2016] and show that this idea can be backed up
by inverse optimal control theory. In an attempt to bridge a gap between
theory and practice, our work explains the benefits of angular droop control
from a system-theoretic point of view by stabilizing the converter dynamics,
while guaranteeing optimality, and demonstrates its effectiveness on realistic
simulation scenarios.

4.5 Statement of contributions

This thesis was drafted and written by Taouba Jouini at the Department
of Automatic Control, LTH - Lund University, during the time period from
August 2019 to January 2022 as a partial fulfillment of the requirements for
obtaining a PhD degree. The first part of the results presented in this thesis
were conducted during the stay of Taouba Jouini as a research assistant at
the Laboratory of Automatic Control (IfA), ETH - Zürich from December
2016 to January 2019 under the supervision of Prof. Florian Dörfler. The
second part of the results were obtained under the supervision of Prof. Anders
Rantzer and Dr. Emma Tegling at the Department of Automatic Control at
LTH, Lund University. The thesis includes the following four main papers.
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Paper I

Arghir, C., T. Jouini, and F. Dörfler (2018). “Grid-forming control for power
converters based on matching of synchronous machines”. Automatica 95,
pp. 273–282. doi: 10.1016/j.automatica.2018.05.037.

The first two authors contributed equally. This paper entails partial re-
sults from the second author’s master’s thesis. The matching control had
been suggested by the co-supervisor Catalin Arghir. Almost all ideas are
contributions resulting from discussions between the first and second author
and have been derived under the supervision of the third author.

Paper II

Jouini, T. and Z. Sun (2021). “Frequency synchronization of a high-order
multi-converter system”. ArXiv:2007.14064, to appear in IEEE Transac-
tions on Control of Network Systems. doi: 10.1109/TCNS.2021.3128493.

The ideas of this work build on the results obtained in the following paper:

Jouini, T. and F. Dörfler (2019). “Local synchronization of two DC/AC con-
verters via matching control”. In: 2019 18th European Control Conference
(ECC). IEEE, pp. 2996–3001. doi: 10.23919/ECC.2019.8795908.

The first author came up with most of the extensions and discussed these
with the second author. Prof. Anders Rantzer suggested the center manifold
theorem to prove local asymptotic stability. The rest is entirely the first
author’s contribution. The paper was written by the first and revised by the
second author.

Paper III

Jouini, T. and A. Rantzer (2021). “On cost design in applications of optimal
control”. IEEE Control Systems Letters, pp. 1–1. doi: 10.1109/LCSYS.2021.
3079642.

The first author came up with the idea of cost design in inverse optimal
control. The second author pointed out the powerful potential of this idea.
The first author provided (numerical) examples and discussed these with the
second author. The paper was first written by the first and then revised by
the second author.
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Paper IV

Jouini, T., A. Rantzer, and E. Tegling (2021). “Inverse optimal control for an-
gle stabilization in converter-based generation”. ArXiv:2101.11141, sub-
mitted to American Control Conference (ACC).

The third author drew the attention of the first author to existing angular
droop control law in the power system literature. The first author suggested
to find a connection to optimal control and discussed these with the second
and third authors. The paper was written by the first and then revised by
the second and third authors.

Other publications In addition to the publications included in this thesis,
the author has been part of the following publications that are not included.

Jouini, T. and F. Dörfler (2019). “Local synchronization of two DC/AC con-
verters via matching control”. In: 2019 18th European Control Conference
(ECC). IEEE, pp. 2996–3001. doi: 10.23919/ECC.2019.8795908.

Jouini, T. and Z. Sun (2020). “Fully decentralized conditions for local con-
vergence of DC/AC converter network based on matching control”. In:
2020 59th IEEE Conference on Decision and Control (CDC), pp. 836–
841. doi: 10.1109/CDC42340.2020.9304344.

Jouini, T. and Z. Sun (2020). “Performance analysis and optimization of
power systems with spatially correlated noise”. IEEE Control Systems
Letters 5:1, pp. 361–366. doi: 10.1109/LCSYS.2020.3002219.

Jouini, T. and Z. Sun (2021). “Distributed learning for optimal allocation
of synchronous and converter-based generation”. In: 2021 29th Mediter-
ranean Conference on Control and Automation (MED). IEEE, pp. 386–
391.

Jouini, T., U. Markovic, and D. Gross (2018). “WP3-Control and Opera-
tion of a Grid with 100% converter-based devices”. Final deliverables of
Migrate project. url: https://www.h2020-migrate.eu.
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Paper I

Grid-forming control for power converters
based on matching of synchronous machines

Catalin Arghir Taouba Jouini Florian Dörfler

Abstract

We consider the problem of grid-forming control of power converters
in low-inertia power systems. Starting from an average-switch three-
phase power converter model, we draw parallels to a synchronous ma-
chine (SM) model and propose a novel converter control strategy which
dwells upon the main characteristic of a SM: the presence of an inter-
nal rotating magnetic field. In particular, we augment the converter
system with a virtual oscillator whose frequency is driven by the DC-
side voltage measurement and which sets the converter pulse-width-
modulation signal, thereby achieving exact matching between the con-
verter in closed-loop and the SM dynamics. We then provide a sufficient
condition asserting existence, uniqueness, and global asymptotic stabil-
ity of a shifted equilibrium, all in a rotating coordinate frame attached
to the virtual oscillator angle. By actuating the DC-side input of the
converter we are able to enforce this condition and provide additional
inertia and damping. In this framework, we illustrate strict incremen-
tal passivity, droop, and power-sharing properties which are compati-
ble with conventional power system operation requirements.We subse-
quently adopt disturbance-decoupling and droop techniques to design
additional control loops that regulate the DC-side voltage, as well as
AC-side frequency and amplitude, while in the end evaluating them
with numerical experiments.

Originally published in Automatica 2018. Reprinted with permission.
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Paper I. Grid-forming control for . . . synchronous machines

1. Introduction

The electrical power system is currently undergoing significant changes in its
structure and mode of operation due to a major shift in generation technol-
ogy from synchronous machines (SMs) to power electronics-based DC/AC
converters, or simply inverters. As opposed to SMs, which store kinetic en-
ergy in their rotor moment of inertia, these devices are on the one hand
designed with little or no built-in energy storage capacity, while on the other
hand actuated at much faster time scales. SMs with their large rotational
inertia, self-synchronizing physics, and associated controls, act as safeguards
against faults and disturbances – all of which are absent in low-inertia sys-
tems with a dominant share of distributed and variable renewable sources
interfaced through inverters. Hence, the proper control of inverters is re-
garded as one of the key challenges when massively integrating renewable
energy sources [Denis et al., 2015; Kroposki et al., 2017; Taylor et al., 2016].

Converter control strategies are classified into two groups. While there is
no universally accepted definition, inverters are usually termed grid-following
if their controls are designed for a stiff grid, and they deliver power at the
stiff AC grid frequency usually measured through a phase-locked loop (PLL).
Otherwise, these converters are termed grid-forming when they are assigned
to interact with a non-stiff grid similarly as SMs do by balancing kinetic and
electrical energy in such a way that a frequency consensus is achieved. A
low-inertia system cannot be operated with only grid-following units. With
this in mind, we review the literature on grid-forming control.

The inherent self-synchronizing property of SMs has inspired controllers
such as droop and virtual synchronous machines (VSMs) [Chen et al., 2011;
D’Arco and Suul, 2013; Karapanos et al., 2011; Torres and Lopes, 2013; Van
Wesenbeeck et al., 2009; Zhong and Weiss, 2010]. These controllers are de-
signed to emulate the behavior of SM models of various degrees of fidelity
and are based on measurements of AC quantities such as injected power, fre-
quency, and amplitude. For example, inverse droop and related VSM control
strategies measure the AC frequency through a PLL and accordingly adapt
the converter power injection based on a simple SM swing equation model.
The latter is encoded in a micro-controller whose outputs are tracked by the
converter modulation signal typically through a cascaded control architec-
ture. For these, and other VSM implementations, the time delays resulting
from measuring and processing of AC quantities render control often ineffec-
tive [Bevrani et al., 2014; Denis et al., 2015; ENTSO-E, 2016].

Droop control can also be implemented by measuring the injected power
and by adapting accordingly the converter frequency [Guerrero et al., 2012],
but its applicability is limited to inductive grids and with a possibly narrow
region of attraction [De Persis and Monshizadeh, 2017; Dörfler et al., 2015;
Sinha et al., 2015b]. Additionally, the inverter’s DC-side storage element is
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often not included in the model, nor in the control design, which, in our
view, misses a key insight: namely, the DC bus voltage can reflect the power
imbalance and serve as valuable feedback signal. Finally, alternative control
strategies employ nonlinear virtual oscillators fed by AC current measure-
ments [Colombino et al., 2017; Johnson et al., 2014; Sinha et al., 2015a]. For
these strategies global stability certificates are known, but their design and
analysis is quite involved (as a result, no controllers for regulation of ampli-
tudes and frequency are known thus far) and their compatibility with SMs is
unclear to this date. Another set of literature relevant to our methodology is
passivity-based control (PBC) [Schaft, 2000] and interconnection and damp-
ing assignment (IDA) [Ortega and Garcia-Canseco, 2004]. Their application
to DC/DC converters [Escobar et al., 1999; Zonetti et al., 2014], AC/DC
converters [Perez et al., 2004], and power systems in general [Caliskan and
Tabuada, 2014; Fiaz et al., 2013] suggests a physically insightful analysis
based on shaping the energy and dissipation functions. As we will further
see, our analysis relies also on a characterization of the power system steady-
state specification [Groß et al., 2016; Groß and Dörfler, 2017] which restricts
the class of admissible controllers.

Our main contributions are three-fold. First, we propose a novel grid-
forming control strategy that matches the electromechanical energy exchange
pattern in SMs. This is achieved by augmenting the converter dynamics with
an internal model of a harmonic oscillator whose frequency tracks the value
of the DC-side voltage measurement. This voltage-driven oscillator is then
assigned to drive the converter’s pulse-width-modulation cycle, thereby as-
suring that the closed-loop converter dynamics exactly match the SM dynam-
ics, whereas the DC voltage serves as the key control and imbalance signal
akin to the SM’s angular velocity [Jouini et al., 2016]. Based on a Lyapunov
approach we provide a sufficient condition certifying existence, uniqueness,
and global asymptotic stability of driven equilibria, in a coordinate frame
attached to the virtual oscillator angle. By actuating the DC-side input cur-
rent we are able to satisfy this condition. We also preserve strict incremental
passivity, droop, and power-sharing properties of the closed-loop system. Our
approach is grounded in foundational control methods, while being systemat-
ically extensible to PBC and IDA designs. Additionally, the key DC voltage
signal is readily available while all other approaches rely on extensive pro-
cessing of the AC measurements. Second, building on the proposed matching
controller, we further design overarching control loops that regulate the DC
voltage, AC frequency, and AC amplitude. This is done by pursuing an ap-
proach based on disturbance decoupling, which performs asymptotic output
voltage amplitude tracking, while rejecting the load current seen as a mea-
surable disturbance. We then suggest extensions based on employing PBC
and voltage-power droop control strategies, which have been previously in-
vestigated in various settings. Third and finally, we evaluate the performance
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and robustness of our designs by comparing them in numerical experiments
of single and multi-converter scenarios.

The remainder of the paper is organized as follows. Section 2 introduces
the models and the control objectives. Section 3 proposes the matching
controller and derives its properties. Section 4 designs the regulation and
disturbance-decoupling controllers. Section 5 presents a numerical case study,
and Section 6 concludes the paper.

2. The three-phase converter model, synchronous machine model, &
their analogies

2.1 Preliminaries and coordinate transformations
In this paper

I =
[
1 0
0 1

]
,

denotes the identity and

J =
[
0 −1
1 0

]
,

denotes the rotation by π/2 in R
2, while

e2 =
[
0
1

]
,

is a natural basis vector in R
2. We denote by ‖·‖ the standard Euclidean

norm for vectors or the induced norm for matrices.
The three-phase AC system is assumed to be symmetrical namely all pas-

sive elements have equal values for each phase element. Due to this symmetry,
any three-phase quantity zabc ∈ R

3 is assumed to satisfy[
1 1 1

]
zabc = 0;

see Remark 1. We consider a coordinate transformation to distinguish be-
tween the component along the span of the vector[

1 1 1
]� ∈ R

3,

which we denote by zγ ∈ R and the other two components zαβ ∈ R
2 lying

on the associated orthogonal complement called the αβ−frame:

[
zαβ

zγ

]
=
√

2/3

⎡⎢⎢⎣
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2

⎤⎥⎥⎦ zabc. (1)
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Figure 1. Circuit diagram of a 3−phase DC/AC converter.

Given a reduced three-phase quantity zαβ and an angle θ ∈ S
1, we define the

dq−coordinate transformation (zαβ , θ) �→ zdq ∈ R
2, via

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

as,

zdq = R�
θ zαβ . (2)

Consequently, we have that a sinusoidal steady state solution of the form
ż�

αβ = ω∗Iz�
αβ , with associated frequency ω∗, is mapped to an equilibrium

ż∗
dq = 0 in the dq−frame whose transformation angle satisfies θ̇� = ω∗.

Throughout this article, a variable denoted z∗
dq or z�

αβ is used to represent a
steady state solution induced by exogenous inputs, e.g., load parameters or
set-points.

2.2 Three-Phase DC/AC Converter Model
We start by reviewing the standard average-switch1 model of a three-phase,
two level, voltage source inverter in αβ−coordinates. See [Tabesh and Iravani,
2008] for a comprehensive study. The model is described by a continuous-time
system whose main feature is the nonlinearity captured by the modulation
(switching) block, as depicted in Fig. 1.

The DC circuit consists of a controllable current source idc ∈ R in parallel
with a capacitance Cdc > 0 and a conductance Gdc > 0. The DC-side switch-
ing current is denoted by ix ∈ R, while vdc ∈ R represents the voltage across
the DC capacitance. The AC circuit contains at each phase an inductance

1 For the time scales of interest, we assume a sufficiently high switching frequency that
allows us to discard the PWM carrier harmonics and use continuous-time dynamics.
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L > 0 in series with a resistance R > 0 connected to a shunt capacitance
C > 0 and shunt conductance G > 0. Here vαβ ∈ R

2 denotes the AC voltage
across the output capacitor.

The dissipative elements Gdc, G and R model the parasitic losses in the
converter. Furthermore, iαβ ∈ R

2 denotes the AC current in the inductors
and vx ∈ R

2 the average AC voltage at the switching node. The inverter
model is terminated at its AC-ports with a load current il drawn by a weak
AC grid, which will be made more specific in Assumption 1.

The switching block is defined as the average-switch model of a 6-switch
2-level inverter with an associated complementary pulse-width-modulation
(PWM) carrier and a modulation signal mαβ ∈ {x ∈ R

2 : ‖x‖ ≤ 1}. To
preserve energy conservation, the switching block is assumed to be lossless,
i.e., it satisfies the identities,

ix =
1
2

m�
αβiαβ , vx =

1
2

mαβvdc.

By putting it all together, the inverter model can be written as the following
bilinear system:

Cdcv̇dc = −Gdcvdc + idc − 1
2

i�
αβmαβ (3a)

Li̇αβ = −Riαβ − vαβ +
1
2

vdcmαβ (3b)

Cv̇αβ = −Gvαβ + iαβ − il . (3c)

Remark 1—Zero sequence

We will construct the three-phase modulation signal mabc = 0 in such a way
that mγ = 0 which implies that vx,γ = 0. For a balanced load, it also holds
that il,γ = 0. We are left with the following dynamics for the γ−subsystem:

Li̇γ = −Riγ − vγ (4a)
Cv̇γ = −Gvγ + iγ . (4b)

Since (4) is an asymptotically stable linear system, the omission of the
γ−component is well justified. �

2.3 Control objectives
In this section, we map out the control objectives to be achieved via the two
main actuation inputs, the modulation signal mαβ and the DC-side current
injection idc. Broadly speaking we require the following:

(i) Grid-forming: The objective of grid-forming control is best defined by
mimicking the electromechanical interaction of a SM with the grid rather
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than prescribing the converter’s frequency to track the grid frequency, e.g.,
via a PLL. The synchronization properties of SMs rely on a particular kinetic
to electrical energy exchange pattern. This can be induced in the DC/AC
converter by exactly matching the SM’s dynamics.

(ii) Voltage and amplitude regulation: We intend to exactly regulate vdc

and vαβ to prescribed references, possibly requiring knowledge of system
parameters and full state measurements. If the load current measurements are
uncertain or unknown, we aim instead to achieve a linear droop characteristic
between the converter modulation frequency and its power output. Such a
local droop behavior is known to guarantee power sharing and compatibility
with other droop-like controllers in a power system [Dörfler et al., 2015; Sinha
et al., 2015a].

(iii) Strict incremental passivity: We aim to preserve strict incremental
passivity [Schaft, 2000] with respect to the AC and DC ports, u = (idc, −il)
and y = (vdc, vdq), and relative to a desired steady-state solution x∗ =
(v∗

dc, i∗
dq, v∗

dq). More precisely, we seek a positive definite storage function that
is decreasing along system trajectories, where the system remains strictly in-
crementally passive after implementing the controller.

In the sequel, we further specify these objectives, in more suitable coor-
dinates, and also consider alternative objectives such as voltage amplitude
droop control.

2.4 The synchronous machine model
In what follows, we consider a SM model which lends itself useful in designing
the matching controller. We consider a single-pole-pair, non-salient rotor SM
under constant excitation, defined in αβ−frame as in [Caliskan and Tabuada,
2014], together with a capacitor at its AC terminal, and described by the
state-space model

θ̇ = ω (5a)

Mω̇ = −Dω + τm + Lmif

[− sin(θ)
cos(θ)

]�
iαβ (5b)

Lsi̇αβ = −Rsiαβ − vαβ − Lmif

[− sin(θ)
cos(θ)

]
ω (5c)

Cv̇αβ = −Gvαβ + iαβ − il . (5d)

Here, M > 0 and D > 0 are the rotor inertia and damping coefficients,
τm is the driving mechanical torque, Lm > 0 is the stator-to-rotor mutual
inductance, Ls > 0 the stator inductance. We denote the rotor angle by
θ ∈ S

1, its angular velocity by ω ∈ R, the current in the stator winding by
iαβ ∈ R

2, and the stator resistance by Rs > 0. At its terminals the SM is
interfaced to the grid through a shunt capacitor with capacitance C > 0 and
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capacitor voltage vαβ ∈ R
2, a constant load conductance G > 0, and the load

current extraction denoted by il ∈ R
2. The strength of the rotating magnetic

field inside the SM (5) is given by the rotor current if which is assumed to
be regulated to a constant value (here, negative), as in [Aghir et al., 2016]
and [Caliskan and Tabuada, 2014].

Observe the similarities between the inverter model (3) and the SM
model (5). The DC capacitor is analogous to the rotor moment of inertia,
while the electrical torque and the electromotive force (EMF) (the rightern-
most terms in (5b) and (5c)) play the same role as ix and vx. The self-
synchronizing properties of a multi-machine power system are attributed to
the exchange of kinetic and electrical energy through electrical torque and
the EMF pair. In the following section, we will assign this very mechanism
for the inverter dynamics (3).

3. Grid-forming SM matching control

From [Groß and Dörfler, 2017], we know that every converter modulation
controller inducing a synchronous, balanced, and sinusoidal steady state
must necessarily include an internal model of an oscillator of the form
ṁ�

αβ = ω∗Jm�
αβ . Thus, the first step in our design is to assign a sinusoidal

modulation scheme parameterized in polar coordinates as in [Jouini et al.,
2016]

mαβ = μ

[− sin(θ)
cos(θ)

]
, (6a)

where θ ∈ S
1 and μ ∈ [0, 1] are the modulation’s signal magnitude and

angle, as controls to be specified. In the next step, we design a grid-forming
modulation controller by matching the converter dynamics (3), augmented
with the internal model (6a), to the SM dynamics (5). Upon visual inspection
we observe that this is achieved by dynamic feedback

θ̇ = η · vdc, (6b)

where the constant η = ω0/vdc,ref > 0 encodes the ratio between the nom-
inal AC frequency ω0 and the DC voltage reference vdc,ref . All subsequent
developments will be based on the matching control (6).

Remark 2—Equivalent SM interpretation

By defining the equivalent angular velocity as ω = ηvdc and by picking the
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modulation amplitude as μ = −2ηLmif , we can rewrite ix and vx as

ix = −ηLmif

[− sin(θ)
cos(θ)

]�
iαβ , (7)

vx = −Lmif

[− sin(θ)
cos(θ)

]
ω. (8)

We identify the AC-side switch voltage vx with the equivalent EMF voltage
and the DC-side current ix/η with the equivalent electrical torque in the
machine. Finally, we rewrite the closed loop (3), (6) as the equivalent SM,

θ̇ = ω , (9a)
Cdc

η2 ω̇ = −Gdc

η2 ω +
idc

η
− 1

η
mαβ(θ)�iαβ , (9b)

Li̇αβ = −Riαβ − vαβ +
1
2η

ωmαβ(θ)ω , (9c)

Cv̇αβ = −Gvαβ + iαβ − il , (9d)

where we identify Cdc/η2, Gdc/η2, and idc/η with the equivalent mechanical
inertia, damping, and mechanical driving torque, respectively. �

3.1 Closed-loop incremental passivity
In this section, we show how the matching controller (6) can achieve de-
sirable stability and passivity properties in an appropriate dq−frame, while
formulating them with respect to an induced operating point. Consider the
closed-loop inverter dynamics (3), (6). By applying the dq−coordinate trans-
formation with angle θ to iαβ and vαβ , we arrive at the following subsystem,
which is independent of the angle state variable

Cdcv̇dc = −Gdcvdc + idc − μ

2
e�

2 idq , (10a)

Li̇dq = −Ridq + vdcηLJidq +
μ

2
e2vdc − vdq , (10b)

Cv̇dq = −Gvdq + vdcηCJvdq − il,dq + idq . (10c)

The following result characterizes the strict incremental passivity of the
dq−frame inverter system (10), with respect to a steady state solution, as
per Definition 1 in [Trip et al., 2018].

Theorem 1—Strict passivity in dq−frame

Consider the model-matched system (10) and assume that, for a given con-
stant input u∗ = (i∗

dc, i∗
l,dq), there exists an equilibrium x∗ = (v∗

dc, i∗
dq, v∗

dq)
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that satisfies
C2‖v∗

dq‖2

4G
+

L2‖i∗
dq‖2

4R
<

Gdc

η2 . (11)

Then, system (10) with input u = (idc, −il,dq) and output y = (vdc, vdq)
is strictly passive relative to the pair (x∗, u∗).

Proof. Our proof is inspired by [Caliskan and Tabuada, 2014]. Starting from
the assumptions of the theorem, we define the error coordinates ṽdc = vdc −
v∗

dc, ĩdq = idq − i∗
dq, ṽdq = vdq − v∗

dq, ĩl,dq = il,dq − i∗
l,dq, ĩdc = idc − i∗

dc as well
as ω∗ = ηv∗

dc, such that the associated transient dynamics are expressed as

Cdc ˙̃vdc = −Gdcṽdc + ĩdc − μ

2
e�

2 ĩdq

L˙̃idq = − (RI + v∗
dcηLJ + ṽdcηLJ) ĩdq

+
μ

2
e2ṽdc − ṽdcηLJi∗

dq − ṽdq

C ˙̃vdq = −(GI + v∗
dcηCJ + ṽdcηCJ)ṽdq − ĩl,dq − ṽdcηCJv∗

dq + ĩdq .

(12)

By considering the physical storage of the circuit elements, we define the
incremental positive definite and differentiable storage function V1 : R5 →
R>0 as

V1 =
1
2

Cdcṽ2
dc +

1
2

ĩ�
dqLĩdq +

1
2

ṽ�
dqCṽdq . (13)

Due to the skew symmetry of J , the derivative of V1 along the trajectories
of the error system (12) reads as

V̇1 = − [
ṽdc ĩ�

dq ṽ�
dq

]Q [
ṽdc ĩ�

dq ṽ�
dq

]� − ṽ�
dq ĩl,dq + ĩdcṽdc ,

where the symmetric matrix Q ∈ R
5×5 is given by

Q =

⎡⎢⎢⎣
Gdc

1
2 (ηLJi∗

dq)� 1
2 (ηCJv∗

dq)�

1
2 (ηLJi∗

dq) RI 0
1
2 (ηCJv∗

dq) 0 GI

⎤⎥⎥⎦ (14)

By evaluating all leading principal minors of Q we see that under condi-
tion (11), Q is positive definite. Hence, system (12) is strictly passive with
input (̃idc, −ĩl,dq) and output (ṽdc, ṽdq). �

The importance of this result is that, when the load current il,dq and the
source current idc are constant, the origin of (12) is rendered asymptotically
stable via Lyapunov’s direct method. Since V1 is radially unbounded, we
obtain global asymptotic stability as well as the abscence of any other type
of equilibrium. We shall further pursue this analysis after closing the passive
ports of the inverter via a suitable DC actuation and an AC load current.
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3.2 Closed-loop incremental stability
The strict passivity condition (11) requires sufficiently large damping in the
AC and DC components of the converter. However, the parasitic resistances
R and Gdc can be arbitrarily small in practice. To alleviate this shortage of
stabilizing dissipation, we implement a DC-side actuation akin to governor
speed droop control for generators to enforce condition (11). We propose the
current source idc to implement the proportional (P) controller

idc = idc,ref − Kp(vdc − vdc,ref ) , (15)

with gain Kp > 0 and set-points idc,ref > 0 and vdc,ref > 0 for the DC-side
current injection and the DC-side voltage, respectively.

We are now ready to introduce the load model which we find best rep-
resentative for the grid-forming application. Assume that the load consists
of a constant shunt impedance Yl = GlI + BlJ accounting for passive de-
vices (e.g., RLC circuits) connected to the converter. In parallel with this
impedance, consider a sinusoidal current source with state sl having, for all
time, the same frequency ω as the converter and otherwise constant am-
plitude. The latter can model a weak grid without grid-forming units, i.e.,
without any generator or inverter that regulates frequency and voltage, but
possibly containing grid-following units equipped with PLLs which (instan-
taneously) synchronize to the frequency ω.

Assumption 1

The load current il is given by the following system driven by the input
(ω, vαβ),

ṡl = ωJsl

il = (GlI + BlJ)vαβ + sl,
(16)

where Gl, Bl > 0 are constant parameters, and sl ∈ R
2 is the state of an

internal oscillator.

Notice that the internal state sl of this load model, when represented
in the converter-angle dq−coordinates, becomes a constant. All devices in
the network can now be studied with respect to a single dq−frame angle,
namely that the virtual oscillator. In this scenario, we arrive at the following
corollary.

Corollary 2—Closed-loop stability with DC-side P-control

Consider the inverter in system (10) together with P-controller (15) on
the DC-side and load (16) on the AC-side. Assume there exists a steady
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state x∗ = (v∗
dc, i∗

dq, v∗
dq, i∗

dc, i∗
l,dq) satisfying

C2‖v∗
dq‖2

4G
+

L2‖i∗
dq‖2

4R
<

Gdc + Kp

η2 . (17)

Then, for stationary loads sdq = s∗
l,dq, the steady state x∗ is unique and

globally asymptotically stable.

Observe that condition (17) can be met by suitable choice of gain Kp and
that the condition is worst at no load, i.e., when Gl = 0. Furthermore, at this
point, we cannot necessarily guarantee exact regulation of vdc to a particular
vdc,ref without having access to the load measurement. This discussion will
be addressed later, in Section 4.

Finally, the incremental passivity property highlighted in Theorem 1 and
Corollary 2 is regarded as a key requirement for stability under interconnec-
tion, see [Caliskan and Tabuada, 2014; Fiaz et al., 2013], however this requires
a single coordinate frame analysis for the networked scenario. Since in our
work we use a dq−coordinate frame attached to a particular converter angle,
the analysis does not pertain to a setup containing multiple (grid-forming)
inverters. Nevertheless, this property is preserved in all our subsequent de-
velopments. In what follows, we investigate the steady-state droop behavior
of the closed loop (10), (15).

3.3 Droop properties of matching control
An important aspect of plug-and-play operation in power systems is steady-
state power sharing amongst multiple inverters by means of a droop char-
acteristic. This is typically achieved via a trade-off between power injection
and voltage amplitude or frequency [Dörfler et al., 2015]. We now investi-
gate these steady state properties which arise naturally in the closed-loop
system (3), (6), (15).

Let r∗
x = 1

2 μv∗
dc and ωx = ηv∗

dc denote the switching node voltage am-
plitude and frequecy at steady state. Let Px = v��

x i�
αβ and Qx = v��

x J�i�
αβ

denote the active and reactive powers flowing from the switching node, at
steady state, as per the convention in [Akagi et al., 1983], and assume that
they are constant.

Two converters indexed by i, j are said to achieve proportional power
sharing at a pre-defined ratio ρ > 0 if P ∗

x,i/P ∗
x,j = ρ. Furthermore, the linear

sensitivity factors relating steady state active power injection Px to voltage
amplitude rx and frequency ωx, are defined here as the droop coefficients dr =
∂Px/∂rx and dω = ∂Px/∂ωx. Their relationship is given in the proposition
that follows.
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Proposition 3—Droop slopes

Consider system (3), together with matching controller (6) and the DC-
side controller (15). Denote ωx = ω∗, and define the constant i0 = idc,ref +
Kpvdc,ref . The following statements hold at equilibrium:

1. Nose curves: the switching voltage amplitude rx has the following
expression as a function of i0 and Px

r∗
x =

μ

4(Gdc + Kp)

(
i0±

√
i0

2 − 4(Gdc + Kp)Px

)
,

with a similar expression for the virtual frequency ωx = 2η
μ rx. More-

over, the reactive power Qx and the quantities rx, ωx are not related.

2. Droop behavior: around the operating point ωx, the expression for
the frequency droop is given by:

dω = −2(Gdc + Kp)
η2 ω∗

x +
i0
η

. (18a)

with an analogous expression for the switching node voltage am-
plitude droop dr, since rx = μ

2/eta ωx.

3. Power sharing: Consider a pair of converters i and j, {i, j} ⊂ N

with identical values of DC conductance Gdc = 0, identical DC-side
voltage references vdc,ref > 0 and control gain η > 0. The converters
achieve proportional power sharing at ratio ρ = P ∗

x,i/P ∗
x,j if

Kp,i = ρKp,j , idc,ref,i = ρ idc,ref,j , (19)

or equivalently if dω,i = ρ dω,j with Pdc = vdc,ref · idc,ref .

Proof. To prove statement (1), consider the DC-side dynamics (3a) at steady
state

0 = −(Gdc + Kp)v∗
dc + i0 − i∗

x . (20)
We multiply (20) by v∗

dc to obtain quadratic expression relating Px = i∗�
x v∗

dc

and v∗
dc, at steady state:

v∗
dc =

i0±
√

i0
2 − 4(Gdc + Kp)P ∗

x

2(Gdc + Kp)
. (21)

The claimed nose curves follow directly. Consider now

P ∗
x =

−4(Gdc + Kp)
μ2 r∗2

x +
2i0r∗

x

μ
=

−(Gdc + Kp)
η2 ω∗2

x +
i0
η

ω∗
x . (22)
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Figure 2. Steady state profiles (rx, Px) and (ωx, Px) for the set of converter
parameters described in Section 5.

By linearizing the above equations around the steady state operating point
ωx, we find the droop slopes in (18). Finally, the proportional power sharing
ratio ρ > 0 between two converters i and j is given by setting Gdc = 0 in (22)

ρ =
P ∗

x,i

P ∗
x,j

=

Kp,i

η2 ω∗
x − i0,i

η
Kp,j

η2 ω∗
x − i0,j

η

. (23)

The latter equality is satisfied if (19) holds. �

The following remarks can now be drawn: Statement (1) gives two solu-
tions2 for the voltage amplitude rx. Among these two, the so-called high-
voltage solution (with the plus sign) is the practically relevant operating
point as depicted in Fig.3.3. From statement (1), we can also deduce that
the maximal active power which can be delivered at the switching node,
Pmax = i2

0/ (4(Gdc + Kp)), is marked by the right tip of the nose curve. No
stationary solutions exist beyond this bifurcation point. To the best of our
knowledge, a typical inverter design will have, by design, its operating region
away from the tip of the nose curve, where the linear sensitivity factors are
a good approximation and parametric bifurcations of no practical concern.

Regarding statement (3), the power sharing conditions (19) are perfectly
analogous to the ones in conventional droop control [Dörfler et al., 2015]:
the droop slopes and the power set-points must be related by same ratio ρ.
Finally, we remark that similar expressions as in (19) can be obtained for a
non-zero DC-side damping and heterogeneous converter parameters.

2 For the rest of this paper, our system is not subject to constant power loads and admits
a unique induced equilibrium.
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3.4 Relation to other converter control strategies
Our matching control can be understood from the viewpoint of PBC by
writing the inverter (3) as the port-Hamiltonian system [Schaft, 2000]

ż = [J (m) − D] ∇H(z) + Gu ,

where z = (Cdcvdc, Liαβ , Cvαβ)� is the state, m is the modula-
tion, u = (idc, −il)� is an exogenous input, H(z) = 1

2 C−1
dc v2

dc +
1
2 i�

αβL−1iαβ + 1
2 v�

αβC−1vαβ is the physical energy, as in (13), and J (m)
is a skew-symmetric interconnection matrix, depending on the modulation
signal m, D and G are positive definite damping and input matrices. The
port-Hamiltonian structure is preserved upon augmenting the inverter with
the internal model (6a). On this ground, we can link our approach to that of
PBC and IDA-based matching control [Ortega and Garcia-Canseco, 2004].
In particular, matching controller (6) together with P-controller (15) can be
understood as IDA reshaping the J and D matrices.

Our control strategy can also be associated with oscillator-based con-
troller methods. By defining m ∈ R

2 as the controller state, we can rewrite (6)
as

ṁ = ωJm ,

i.e., the matching control (6) is an oscillator with constant amplitude
‖m(0)‖ = μ and state-dependent frequency ω = ηvdc as feedback for the
converter dynamics (3). This control strategy resembles the classic propor-
tional resonant control [Teodorescu et al., 2006] with the difference that the
frequency of the oscillator (3.4) adapts to the DC voltage which again reflects
the grid state. Another related control strategy is virtual oscillator control
encoding the inverter terminal dynamics as a nonlinear limit cycle oscillator
adapting to the grid state [Johnson et al., 2014; Sinha et al., 2015a].

4. Voltage and frequency regulation

Starting from the model-matching controller (6), we now look to design outer
control loops for the current source idc as well as the modulation amplitude
μ with the aim of tracking a given constant reference initially for the DC
capacitor voltage and then also for the AC capacitor voltage amplitude.

4.1 Exact frequency regulation via integral control
In some scenarios, e.g., in islanded microgrids, it is desirable that inverters
also contribute to frequency regulation (usually called secondary control)
rather than mere droop control. Inspired by frequency regulation of SMs
via governor control, i.e., controlling the torque in (5) as a function of the
frequency, we propose a frequency regulation strategy by pairing the passive
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inputs and outputs, ĩdc = idc − idc,ref and ṽdc = vdc − vdc,ref , respectively,
in the inverter model (10), in aim of tracking a reference frequency ωref =
ηvdc,ref . We propose the PID controller

idc = idc,ref − Kpṽdc − Ki

∫ t

0
ṽdc(τ) dτ − Kd ˙̃vdc , (24)

where idc,ref > 0 is a user-defined parameter, and Kp, Ki, Kd are positive
control gains.

Before proceeding to the stability result, we put together system (10),
controller (24), and load model (16), and express the closed-loop in error
coordinates formulated relative to an induced equilibrium. To account for
the newly introduced integral term, we define the state variable ξ ∈ R and
denote its steady state value by ξ∗ such that ξ̃ = ξ − ξ∗.

˙̃ξ = ṽdc

(Cdc + Kp) ˙̃vdc = −(Gdc + Kp)ṽdc − Kiξ̃ − μ

2
e�

2 ĩdq

L˙̃idq = − (Z + ω̃ LJ) ĩdq − ω̃LJi∗
dq

+
μ

2

[
0
1

]
ṽdc − ṽdq

C ˙̃vdq = − (Y + ω̃ CJ) ṽdq − ω̃CJv∗
dq + ĩdq .

(25)

where Z = RI + ω∗LJ and Y = GI + ω∗CJ are the impedance of the
AC-side inductor and the admittance of the AC-side capacitor, respectively.
Since PID control of the DC-voltage (24) is common practice in DC/AC
converters, we will see that pairing it with the matching control (6) yields
exact AC frequency regulation.

The following result addresses existence, uniqueness, and stability of a
desired steady state of the closed-loop system (25) satisfying v∗

dc = vdc,ref

and ω∗ = ω0. Typically, in such systems, ω0 can be seen as the grid nomi-
nal frequency, while vdc,ref the reference voltage of the converter’s DC-link
capacitor. By appropriately choosing the gain η = ω0/vdc,ref , we are able to
achieve both specifications.

Theorem 4—Exact frequency regulation

Consider the closed-loop system (25) and a given set-point ω0 > 0. The
following two statements hold:

1. There exists a unique steady state at the origin with ω∗ = ω0 as
system frequency.

2. Assuming condition (17) is satisfied, the zero-equilibrium of (25) is
globally asymptotically stable.
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4 Voltage and frequency regulation

Proof. A steady-state of the closed loop (25) is characterized by ṽdc = 0 and
a linear set of equations A

[
ξ̃ ĩ�

dq ṽ�
dq

]� = 0, where A ∈ R
5×5 is given by

A =

⎡⎢⎢⎣
−Ki − μ

2 e�
2 0

0 −Z I

0 −I −(Y + Yl)

⎤⎥⎥⎦ ∈ R
5×5. (26)

It follows that

det(A) = −Ki‖Z(Y + Yl) + I‖2,

such that the positivity of the converter and load parameters assures invert-
ibility of A, and hence [

ξ̃ ĩ�
dq ṽ�

dq

]� = 0.

Thus, there is a unique zero steady-state for this error subsystem. The sta-
bility proof of this steady state is analogous to the proof of Corollary 2 after
replacing the original storage function V1 with V2 = V1 + 1

2 Kiξ̃
2 + 1

2 Kdṽ2
dc,

to account for ξ̃ and the gain Kd. With these modifications the derivative of
the storage function V2 becomes

V̇2 = − [
ṽdc ĩ�

dq ṽ�
dq

]Q [
ṽdc ĩ�

dq ṽ�
dq

]� ≤ 0 ,

where Q is as in (14) with Gdc and G replaced by Gdc+Kp and G+Gl respec-
tively. Finally a LaSalle-type argument accounting for the state ξ̃ together
with radial unboundedness of V2 guarantees global asymptotic stability. �

Notice that the P-control on the DC voltage enhances the overall system sta-
bility, as discussed before. Furthermore, by comparing systems (10) and (25),
we observe that the effect of the PID gains is to provide additional inertia
and damping to the DC circuit. Lastly, from a conventional power system
perspective, it is instructive to write the frequency error dynamics, whereby
ω̃ = ηṽdc

(Cdc + Kd)
η2

˙̃ω = − (Gdc + Kp)
η2 ω̃ − Ki

η

∫
ω̃ − 1

η
ix ,

which for Ki = 0 resemble the standard classic swing equations with synthetic
droop and inertia induced by Kp and Kd.

We conclude that for secondary frequency regulation – independently
of the particular modulation strategy – a sufficiently large equivalent DC
energy storage is required to cope with a given power imbalance. If the task
of frequency regulation is to be shouldered by multiple inverters, then the
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decentralized integral control in (24) can be easily adapted to broadcast
AGC-like or consensus-based distributed integral control schemes [De Persis
and Monshizadeh, 2017; Dörfler and Grammatico, 2017; Dörfler et al., 2015],
which assure robust power sharing.

4.2 Amplitude regulation by disturbance feedback
This section investigates a series of controllers designed to regulate the AC-
side voltage amplitude ‖vαβ‖ to a desired set-pint rref > 0−Throughout this
section, we assume that the load in Assumption 1 has zero shunt impedance,
namely that Yl = 0, i.e., the load is purely of constant- (in dq−frame) cur-
rent nature, so that il,dq = sl,dq. This modeling choice is not merely done
for simplicitly of exposition (the load impedance can always be absorbed in
the filter conductance G) but mainly due to the fact that all amplitude con-
trollers (most importantly, droop control) explicitly or implicitly rely on a
measurement of the load current which is considered to be exogenous signal.

4.2.1 Feasibility and feedforward control. We now consider as actuation
input, the modulation amplitude μ, analogously to standard practice in SM
excitation current. Formally, our control objective is the achieve ‖vdq‖ = rref ,
at steady state. Let us first characterize the feasibility of this task in terms
of the system parameters.

Theorem 5—Existence of load induced equilibria

Consider the closed-loop inverter model (25) with Yl = 0. For given set-
points rref > 0, vdc,ref > 0 and constant load current sl,dq ∈ R

2, define
the quantity

ψ = r2
ref ‖ZY + I‖2 − ‖Zsl,dq‖2. (27)

Then, the following statements are equivalent:

1. There exists a unique steady state (ξ∗, v∗
dc, i∗�

dq , v∗�
dq )� that satisfies

‖v∗
dq‖ = rref and μ > 0; and

2. ψ > 0.

Proof. We formulate the equilibria of system (25), together with the require-
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4 Voltage and frequency regulation

ment that ‖v∗
dq‖ = rref , as

0 = v∗
dc − vdc,ref (28a)

0 = −(Gdc + Kp)v∗
dc − Kiξ

∗ − μ

2
e�

2 i∗
dq (28b)

0 = −(RI + v∗
dcηLJ)i∗

dq +
μ

2
e2v∗

dc − v∗
dq (28c)

0 = −(GI + v∗
dcηCJ)v∗

dq − il,dq + i∗
dq (28d)

0 = v∗�
dq v∗

dq − r2
ref , (28e)

By subsequent elimination of variables, we can solve Eqs.(28) for μ in terms
of input sl,dq and set-point vdc,ref . We arrive at the quadratic equation

0 = μ2 − b μ +
4

v2
dc,ref

p ,

where b = 4
vdc,ref

e�
2 Z�sl,dq is the sum of the two solutions μ± of the

quadratic equation. These solutions

μ± =
b

2
±
√(

b

2

)2
+

4ψ

vdc,ref
(30)

are real valued and have opposite signs μ+ > 0, μ− < 0 if and only if ψ > 0. In
what follows, we restrict ourselves to the unique positive solution μ+ > 0. No-
tice from (28a) that v∗

dc = vdc,ref . After replacing μ± into (28b), (28c), (28d),
the remaining equations are linear A

[
ξ̃ ĩ�

dq ṽ�
dq

]� = 0 with A is nonsin-
gular, as in the proof of Theorem 4. These equations can be solved uniquely
for (ξ∗, i∗�

dq , v∗�
dq )� which is consistent with (28e) by choice of μ > 0. �

The condition ψ > 0 can be interpreted as an upper bound for the admissible
constant load current sl,dq as a function of the given set-point rref , since
otherwise there would be no real-valued solution for μ. Observe that the
constraint μ± ≤ 1 can be enforced by adjusting the converter parameters
and by further limiting the maximum allowable load.

4.2.2 Disturbance decoupling control. Starting from the insights given by
Theorem 5, we are able to construct a disturbance-feedback, asymptotic out-
put tracking controller which relies on measurement of the load current sl,dq

to produce the modulation input μ according to (30). This approach can be
regarded as a system inversion of the transfer path from il,dq to the regu-
lated voltage output ‖vdq‖, a standard procedure in measurable disturbance
decoupling. In the next subsection, we will discuss two extensions to this
control strategy following PBC and droop control specifications.
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Corollary 6—Disturbance Decoupling Control

Consider system (25) with Y = 0. Assume that the load disturbance
il,dq = sl,dq is a constant and measurable signal and that ψ defined in (27)
is positive. Given a reference AC voltage rref > 0, assign the modulation
amplitude

μ = μ+(sl,dq),

where μ+ is as in (30). Further assume that the passivity condition (17)
holds. Then, the unique equilibrium is characterized by v∗

dc = vdc,ref and
‖v∗

dq‖ = rref , and is globally asymptotically stable for the closed loop.

Proof. For any constant μ > 0 the desired closed-loop equilibrium is de-
scribed in (28). The existence of such equilibrium is guaranteed under the
condition ψ > 0 and for μ± as in (30). By assigning the positive solution
in (30), the amplitude μ = μ+(sl,dq) is constant for a given constant load
sl,dq. The stability claim now follows from the same reasoning as in the proof
of Theorem 4. �

4.2.3 Compatibility with existing control techniques. While very effective
in achieving the prescribed steady-state specification, notice that the distur-
bance feedback control in Corollary (6) requires exact knowledge of the plant
as well as load measurement. To assess the robustness of this framework, we
investigate two additional extensions which could provide some insight into
the practicality of the implementation.

PI-PBC Inspired by [Zonetti et al., 2014], we now derive a PI-PBC feedback
by identifying the passive output corresponding to the new considered input.
In this regard, with pick input μ = μ̃ + μ∗, with μ∗ = μ+ from (30) and μ̃
yet to be designed. We rewrite (25) with Yl = 0 as

˙̃ξ = ṽdc

(Cdc+Kp) ˙̃vdc = −(Gdc + Kp)ṽdc − Kiξ̃ − μ̃ + μ+
2

e�
2 ĩdq − μ̃

2
e�

2 i∗
dq

L˙̃idq = − (Z + ṽdcηLJ) ĩdq − ṽdcηLJi∗
dq

+
μ̃ + μ+

2
e�

2 ṽdc +
μ̃

2
e2v∗

dc − ṽdq

C ˙̃vdq = − (Y + ṽdcη CJ) ṽdq − ṽdcη CJv∗
dq + ĩdq.

(31)

For the computation of μ+ in (30) we also assume a constant measurable
load current il,dq, such that the prescribed equilibrium of (31) satisfies (28),
or equivalently ψ > 0. Observe that system (31) is passive with respect to
input μ̃, output y = ĩqv∗

dc − i∗
q ṽdc, and storage function V2 from before, since

V̇2 = − [
ṽdc ĩ�

dq ṽ�
dq

]Q [
ṽdc ĩ�

dq ṽ�
dq

]� + μ̃�y .
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4 Voltage and frequency regulation

This last observation motivates the PI-PBC feedback
˙̃ν = y (32a)
μ̃ = −κpy − κiν̃ , ˙̃ν = y , (32b)

where y = ĩqv∗
dc − i∗

q ṽdc and κp, κi > 0. Finally, the resulting error feedback
becomes

y = iqvdc,ref − i∗
qvdc,

with i∗
q = e�

2 (Z + Y−1)−1( μ
2 e2vdc,ref + Y−1)−1sl,dq. This is the same type of

output to be regulated to zero as identified in [Zonetti et al., 2014] indicating
a power imbalance across the inverter.

Proposition 7—PI-PBC

Consider system (31) with the PI-PBC feedback (32b). Assume that the
load disturbance sl,dq is a constant measurable signal and that ψ defined
in (27) is positive. Further assume that the passivity condition (11) holds.
Then the unique equilibrium is characterized by v∗

dc = vdc,ref and ‖v∗
dq‖ =

rref , and is globally asymptotically stable for the closed loop.

Proof. Consider the radially unbounded Lyapunov function V3 = V2 + κi

2 ν̃2

and its derivative along trajectories of (31), (32b)

V̇3 = − [
ṽdc ĩ�

dq ṽ�
dq

]Q [
ṽdc ĩ�

dq ṽ�
dq

]� − κpy2 ≤ 0 ,

where Q is as in (14) with Gdc replaced by Gdc+Kp. Assuming condition (17)
is met, a LaSalle argument accounting for the evolution of ξ̃ and ν̃ guarantees
global asymptotic stability. �

Observe that the PI-PBC law (32b) requires that the load current il,dq = sl,dq

is measurable, as it is used in the computation of the steady-state inducing
terms μ+ and i∗

q is the feedback law. In this way, the feed forward control (30),
as well as PI-PBC (32b), endow the closed-loop with the ability of rejecting
the disturbance il,dq as long as it is constant or, due to global asymptotic
stability, provided it eventually settles to a value which is state-independent.

Voltage droop control We have seen that, without an integral term, the
matching control has the inherent droop properties of the SM. However, by
introducing controller (24) for exact frequency regulation, this droop effect
has been removed in both the amplitude and the frequency of the AC-side
voltage. In the remainder of this subsection, we propose a control strategy
that implements, instead, a voltage-power droop behavior. The droop depen-
dency will be based on active power measurement. Nevertheless, the same
reasoning applies to the case of reactive power. We start by choosing

μ = μref + d (Pl − Pref ), (33)
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where μref = 2rref

vdc,ref . Here rref and Pref are set-points for the modulation
amplitude and load power, respectively, dv > 0 is the droop coefficient, and
Pl = i�

l,dqvdq denotes the entire load power measurement. The droop factor
dv represents a linear trade-off between the modulation amplitude μ and
the active power Pl, and induces a steady-state amplitude ‖v∗

dq‖ that is not
necessarily equal to the prescribed reference rref . The aim of the following
result is to show that this particular droop strategy is also compatible with
our framework.

Proposition 8—Voltage droop control

Consider system (25) with input μ given by (33) and Yl = 0. Fur-
ther assume that the closed loop (25), (33) admits a steady state
(ξ̃, ṽdc, ĩ�

dq, ṽ�
dq)� = 0. Assuming that condition (11) holds, then for a

sufficiently small droop coefficient dv > 0, this steady state is globally
asymptotically stable for the closed loop.

Proof. We rewrite the closed-loop DC/AC converter in error coordinates
with μ = μref + dv (Pl − Pref ) as

˙̃ξ = ṽdc

(Cdc + Kp) ˙̃vdc = −(Gdc + Kp)ṽdc − Kiξ̃ − μref

2
e�

2 ĩdq

− dv(Pl − Pref )
2

e�
2 ĩdq − dvP̃l

2
e�

2 i∗
dq

L˙̃idq = − (Z + ṽdcηLJ) ĩdq − ṽdcηLJi∗
dq

+
μref + d(Pl − Pref )

2
e2ṽdc +

dP̃l

2
e2v∗

dc − ṽdq

C ˙̃vdq = − (Y + ṽdcηCJ) ṽdq − ṽdcηCJv∗
dq + ĩdq,

with P̃l = Pl − P ∗
l and P ∗

l as the value of the load power at steady-state.
The derivative of V2 can be obtained analogously to the proof of Theorem 4,
as V̇2 = − [

ṽdc ĩ�
dq ṽ�

dq

]
(Q + dvM)

[
ṽdc ĩ�

dq ṽ�
dq

]� ≤ 0, where Q is as
in (14) and M is a constant matrix, i.e., its entries do not depend on the droop
coefficient dv. Since Q is positive definite under condition (17), there exists
dv > 0 sufficiently small such that P + dvM is positive definite. A LaSalle
argument accounting for the evolution of ξ̃ then asserts global asymptotic
stability of the load-induced equilibrium. �

5. Numerical case study

We validate and test the proposed controllers in a numerical case study. We
consider for this purpose an inverter designed for 104W power output with the
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5 Numerical case study

following parameters 3: Gdc = 0.1, Cdc = 0.001, R = 0.1, L = 5 · 10−4, C =
10−5, and nominal DC voltage of vdc,ref = vdc(0) = 1000. In order to obtain
the desired open-circuit (no load) values rx,ref = rref = 165 and ω∗ = ω0 =
2π50, we choose the constant gains η = ω0

vdc,ref
= 0.3142, μ = 2rref

vdc,ref
= 0.33.

5.1 Voltage and frequency regulation – single inverter
To validate our results for frequency and amplitude regulation, we present
three scenarios implementing the matching control (6) and the frequency
regulation (24), together with the three different amplitude controllers. We
consider a load step of 55% at t = 0.5s. The resulting amplitudes and power
waveforms are shown in Fig. 3, whereas Fig. 5 shows a time-domain electro-
magnetic transient (EMT) simulation of the output capacitor voltage.

The parameters of the frequency controller (24) were selected as idc,ref =
100, Kp = 1, Ki = 10, Kd = 0 and ξ(0) = 0. For voltage control we consider
the feedforward control (30), PI-PBC (32b) with (in S.I. κp = 0.1, κi =
10, ν(0) = 0), as well as droop control (33) (in S.I. μref = 0.33, dv = 10−5

and Pref = 104) plotted as red, green and blue signals, respectively. For all
considered controllers, the DC voltage exactly tracks the reference voltage
vdc,ref = 1000V . The feedforward and PI-PBC designs indeed also track
the desired amplitude rref = 165V . Observe that the constant amplitude
objective of these controllers requires higher steady-state current amplitudes
after the load step. The droop controller on the other hand ensures a trade-
off between the power load and AC voltage amplitude. We observe that all
controllers yield well-behaved transient response to the step in disturbance.

5.2 Multi-Converter Case Study
Next, we consider a network of two inverters connected in parallel to a con-
ductance load via a Π−transmission line model; see Fig.6. The Π−line pa-
rameters are Rnet = 0.5, Lnet = 2.5 · 10−5 and Cnet = 2 · 10−7, where the
capacitors account for the filter and line charge capacitance. The intercon-
nection dynamics are considered for k ∈ {1, 2}:

Cv̇αβ,k = −Gvαβ,k + iαβ,k − inet,k

Lneti̇net,k = −Rnetinet,k + vαβ,i − vl

Cnetv̇net = −Gnetvnet + inet,1 + inet,2 .

We implemented the matching control (6) with gains according to (19) to
demonstrate the proportional power sharing with ratio ρ = 3. We chose
the current control parameters for the inverters as idc,ref,1 = 100, Kp1 = 2
in (S.I.), neglected internal losses Gdc,1 = Gdc,2 = 0, fixed the modulation

3 All units are in S.I.
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Figure 3. The response id the system under the three controller from Sec-
tion 4 after a step in load conductance at t = 0.5
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Figure 5. Magnified plot of the three-phase AC bus voltage.

Figure 6. Two inverters connected in parallel to a conductance load Gl > 0
via a Π−line model.

amplitude at μ1 = μ2 = 0.33, removed the integral action Ki,1 = Ki,2 = 0,
and set all other parameters as before. Our simulation in Fig. 4 displays
a prescribed power sharing ratio of 3:1 under resistive load steps at times
t = 0.3 and t = 0.7.

6. Conclusions

This paper addresses the problem of designing grid-forming inverter control
strategies for weak-grid scenarios, those in which no other unit is able to reg-
ulate the AC grid frequency. Based on the idea of matching the dynamics of
a SM, we enable by feedback the crucial coupling between the inverter DC-
side voltage and its AC-side frequency. As a result, the AC grid frequency
measurement is replaced by that of the DC-link voltage, further obviating
the conventional time-scale separation approach. The seamless compatibility
with synchronous machines, set up by the matching control, yields droop and
proportional power sharing characteristics, while preserving passivity proper-
ties for the inverter. Moreover, the addition of synthetic damping and inertia
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is straightforward. By pairing the proposed controller with additional outer
loops, we also study output voltage regulation in the presence of measurable
disturbances. These outer controllers are designed based on passivity-based
and disturbance decoupling methods and achieve exact tracking for two quan-
tities if interest: output voltage frequency and its amplitude. In the light of
our analysis, a natural counterpart is to investigate the compatibility of net-
worked objectives and to design suitable controllers that encompass multiple
converters.
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Paper II

Frequency synchronization of a high-order
multi-converter system

Taouba Jouini Zhiyong Sun

Abstract

We investigate the frequency stability of a high-order multi-converter
system. For this, we identify its symmetry (i.e., rotational invariance)
generated by a static angle shift and rotation of AC signals. We char-
acterize the synchronous steady state set, primarily determined by the
steady state angles and DC power input. Based on eigenvalue con-
ditions of its Jacobian matrix, we show asymptotic stability of the
multi-converter system in a neighborhood of the frequency synchronous
steady state set by applying the center manifold theory. We guaran-
tee the Jacobian’s eigenvalue condition via an explicit approach that
requires sufficient damping on DC- and AC-side. Finally, we demon-
strate our results based on a numerical example involving a network
of DC/AC converters.

Originally accepted for publication in IEEE Transactions on Control of Net-
work Systems © 2021 IEEE. Reprinted, with permission.
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1. Introduction

Electricity production is one of the largest sources of greenhouse gas emissions
in the world. Carbon-free electricity will be critical for keeping the average
global temperature within the United Nation’s target and avoiding the worst
effects of climate change [Prachi, 2019]. Prompted by these environmental
concerns, the electrical grid has witnessed a major shift in power genera-
tion from conventional (coal, oil) into renewable (wind, solar) resources. The
massive deployment of distributed, renewable generation had an elementary
effect on its operation via power electronics converters interfacing the grid,
deemed as game changers of the conventional analysis methods of power
system stability and control.

Literature review: Modeling and stability analysis in power system net-
works is conducted as a matter of perspective from two different angles. First,
network perspective suggests an up to bottom approach, where DC/AC con-
verter dynamics are regarded as controllable voltage sources and voltage
control is directly accessible. The most prominent example is droop control
that leads to the study of second-order pendulum dynamics, emulating the
swing equation of synchronous machines [Kundur et al., 1994], which re-
sembles the celebrated Kuramoto-oscillator [Dörfler and Bullo, 2012]. The
analogy drawn between the two models has motivated a vast body of lit-
erature that harness the results available for synchronization via Kuramoto
oscillators to analyze frequency stability in power systems. Second, a bottom
to up approach derives DC/AC converter models from first-order principles,
where their governing dynamics are inferred from the circuitry of DC- and
AC-side and the intermediate switching block, which can structurally match
that of synchronous machines. Recently, the matching control has been pro-
posed in [Arghir et al., 2018] as a promising control strategy, which achieves
a structural equivalence of the two models and endows the closed-loop sys-
tem with advantageous features (droop properties, power sharing, etc.). By
augmenting the system dynamics with a virtual angle, the frequency is set to
be proportional to DC capacitor voltage deviations, constituting a measure
of power imbalance in the grid. This leads to the derivation of higher-order
models that describe a network of coupled DC/AC converters on high-order
nonlinear manifolds.

Similar to the physical world, where the laws governing interactions in
a set of particles are invariant with respect to static translations and rota-
tions of the whole rigid body [Sarlette, 2009], power system trajectories are
invariant under a static shift in their angles, or said to possess a rotational
invariance. The symmetry of the vector field describing the power system
dynamics, indicates the existence of a continuum of steady states for the
multi-converter (with suitable control that induces/preserves angle symme-
try) or multi-machine dynamics. In particular, the rotational invariance is
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the topological consequence of the absence of a reference frame or absolute
angle in power systems and regarded thus far as a fundamental obstacle
for defining suitable error coordinates for the stability analysis. To allevi-
ate this, a common approach is to perform transformations either resulting
from projecting into the orthogonal complement, if the steady state set is
a linear subspace [Schiffer et al., 2019], or grounding a node [Tegling et al.,
2015], where classical stability tools such as Lyapunov direct method can be
deployed.

To analyze power system stability, different conditions have been pro-
posed. In [Arghir et al., 2018] and [Caliskan and Tabuada, 2014], sufficient
stability conditions are obtained for a single-machine/converter connected to
a load. In [Dörfler and Bullo, 2012], a sufficient algebraic stability condition
connects the synchronization of power systems with network connectivity
and power system parameters. Although these conditions give qualitative in-
sights into the sensitivities influencing stability, they usually require strong
and often unrealistic assumptions. For example, the underlying models are
of reduced order (mostly first or second order) [Johnson et al., 2013; Dörfler
and Bullo, 2012]. Reduced-order systems, where one infers stability of the
whole system from looking at only a subset of variables, are not a truth-
ful representation of the full-order dynamics if important assumptions are
not met [Khalil, 2002]. Some stability conditions are valid only in radial
networks [Schiffer et al., 2019]. Moreover, implicit conditions e.g., based on
semi-definite programming are not very insightful [Vu and Turitsyn, 2015].

Contributions: In this work, we ask in essence two fundamental questions:
i) Under mild assumptions on input feasibility, how can we describe the
behavior of the steady state trajectories of the nonlinear power system in
closed-loop with a suitable control that induces/preserves the symmetry, e.g.,
the matching control [Arghir et al., 2018; Jouini and Sun, 2020]? ii) Based
on the properties of the steady state manifold, can we ensure local stability,
i.e., local synchronization?

To answer the first question, we study the behavior of the steady state
set. For this, we derive a steady state map, which embeds known steady
state angles into the DC power inputs to the converters as a function of the
network topology and converter parameters. We show that the steady state
angles fully describe the steady state behavior and determine all the other
states. The steady state map depends on network topology, which is known
to play a crucial role in the synchronization of power systems [Sarlette, 2009;
Schiffer et al., 2019]. Since the vector field exhibits symmetry with respect to
translation and rotation actions, i.e., under a shift in all angles and a rotation
in all AC signals, the steady state manifold inherits the same property and
every steady state trajectory is invariant under the same actions. This allows
us to define a frequency synchronous steady state set generated under these
actions.
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We address the second question by showing asymptotic stability of the
nonlinear trajectories confined to a neighborhood of the frequency syn-
chronous steady state set. For this, we study the stability of the nonlinear
dynamics as a direct application of the center manifold theory to the multi-
converter power system. We assume that the eigenvalues of the Jacobian
evaluated at a frequency synchronous steady state can be split into one mode
at zero and the rest in the open-left half-plane. Then, we can decompose the
nonlinear system into two interconnected subsystems, whose dynamics are
dictated by zero and Hurwitz matrices, respectively. This allows to define a
center manifold upon modal transformation, where we use the reduction prin-
ciple [Wiggins, 1990, p.195] to deduce the stability of the trajectories of the
multi-converter system from the dynamics evolving on the center manifold.
The point-wise application of the center manifold theory allows to construct
a neighborhood of the frequency synchronous steady state set and thereby
shows its local asymptotic stability.

To satisfy the Jacobian eigenvalue condition in an explicit way, we study
the linearized system trajectories and pursue a parametric linear stability
analysis approach at a frequency synchronous steady state. Towards this, we
develop a novel stability analysis for a class of partitioned linear systems
characterized by a stable subsystem and one-dimensional invariant subspace.
We propose a new class of Lyapunov functions characterized by an oblique
projection onto the complement of the Jacobian zero eigenspace, where the
inner product is taken with respect to a matrix to be chosen as solution to
Lyapunov and H∞−algebraic Riccati equations (ARE). For the multi-source
power system model, we arrive at explicit stability conditions that depend
only on the converter’s parameters and steady-state values. In accordance
with other works, our conditions require sufficient DC- and AC-side damping.

Paper organization The paper unfurls as follows: Section 2 presents the
model setup based on a high-order power system model. Section 3 character-
izes the frequency synchronous steady state set and feasible inputs. Section 4
studies local asymptotic stability of the nonlinear power system using center
manifold theory. Section 5 proposes one approach to satisfy the Jacobian’s
eigenvalue condition. Finally, Section 6 exemplifies our theory via simulations
in two test cases and Section 7 concludes the paper.

Notation: Define an undirected graph G = (V, E), where V is the set of
nodes with |V| = n and E ⊆ V × V is the set of interconnected edges with
|E| = m. We assume that the topology specified by E is arbitrary and define
the map E → V, which associates each oriented edge eij = (i, j) ∈ E to an
element from the subset I = {−1, 0, 1}|V| resulting in the incidence matrix
B ∈ R

n×m. We denote the identity matrix by

I =
[
1 0
0 1

]
,
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Figure 1. Circuit diagram of a balanced and averaged three-phase DC/AC
converter with ix,k = μ

2 r�(γk) ik and vx,k = μ
2 r(γk) vdc,k, see, e.g., [Wittig

et al., 2009]. Note that DC conductance is not represented in this diagram.

and I the identity matrix of suitable dimension p ∈ N and J = I ⊗ J2 with

J2 =
[
0 −1
1 0

]
.

We define the rotation matrix

R(γ) =
[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
,

and R(γ) = I ⊗ R(γ). Let diag(v) denote a diagonal matrix, whose diagonals
are elements of the vector v and Rot(γ) = diag(r(γk)), k = 1 . . . n, with
r(γk) =

[− sin(γk) cos(γk)
]�. Let 1n be the n−dimensional vector with all

entries being one and T
n = S

1 ×· · ·×S
1 the n−dimensional torus. We denote

by d(·, ·) a distance metric. Given a set A ⊆ R
n, then d(z, A) = inf

x∈A
d(z, x)

and Tz A is the tangent space of A at z. Given a vector v ∈ R
n, we denote by

v⊥ its orthogonal complement, vk its k−th entry. For a matrix A, let ‖A‖2 =
σ(A) denote its induced 2-norm and σ(A) denote its maximum singular value.
Given dynamical system ẋ = f(x), x(0) = x0, let Jf (x∗) = ∂f(x)

∂x

∣∣
x=x∗ be

the system Jacobian evaluated at some point x = x∗.

2. Modeling and setup

2.1 Multi-source power system dynamics
We start from the following high-order model describing the evolution of the
dynamics of n−identical three-phase balanced and averaged DC/AC con-
verters interconnected through m−identical resistive and inductive lines. An
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example of converter circuit diagram is depicted in Figure 1. Each converter
is assumed to be in closed-loop with the matching control, a control strat-
egy that renders its dynamics structurally equivalent to a synchronous ma-
chine [Arghir et al., 2018]. At the k−th converter input uk, we assign a
sinusoid with constant magnitude μ ∈]0, 1[ and frequency γ̇k ∈ R given by,

γ̇k = η(vdc,k − v∗
dc) , (1a)

uk = μ

[− sin(γk)
cos(γk)

]
, k = 1, . . . , n . (1b)

Here γk ∈ S
1 is the virtual converter angle in dq−frame, after Park trans-

formation, see, e.g., [Kundur et al., 1994], whose angle θdq(t) =
∫ t

0 ω∗ dτ is
chosen to rotate at the nominal steady state frequency ω∗ > 0. Moreover,
η > 0 is a control gain defining the slope of the linear map from DC voltage
deviation to the oscillator frequency.

The closed-loop converter dynamics are given by the following set of first-
order differential equations in dq−frame. For simplicity of notation, we will
drop the subscript dq−from all AC signals.⎡⎢⎢⎢⎢⎢⎣

γ̇k

Cdcv̇dc,k

Li̇k

Cv̇k

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
η(vdc,k − v∗

dc)

−Kp(vdc,k − v∗
dc) − μ

2 r(γk)�ik

−(R I + L ω∗ J) ik + μ
2 r(γk)vdc,k − vk

−(G I + C ω∗ J) vk + ik − inet,k

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0

i∗
dc,k

0

0

⎤⎥⎥⎥⎥⎥⎦ . (2)

Let vdc,k ∈ R denote the voltage across the DC capacitor Cdc > 0 with
nominal value v∗

dc. The conductance Gdc > 0, together with the proportional
control gain K̂p > 0 are described by Kp = Gdc + K̂p > 0. This results from
designing the controllable current source idc,k = −K̂p(vdc,k − v∗

dc) + i∗
dc,k,

where we denote by i∗
dc,k ∈ R a constant representing DC-side input to

the converter. The modulation amplitude μ, feed-forward current i∗
dc,k and

the control gain K̂p are regarded as constants usually determined offline or
in outer control loops. See [Arghir et al., 2018] for more details. On the
AC-side, let ik ∈ R

2 be the inductance current and vk ∈ R
2 the output

voltage. The filter resistance and inductance are specified by R > 0 and
L > 0, respectively. The capacitor C > 0 is set in parallel with the load
conductance G > 0 to ground and connected to the network via the output
current inet,k ∈ R

2.
Observe that the closed-loop DC/AC converter dynamics (2) match one-

to-one those of a synchronous machine with single-pole pair, non-salient rotor
under constant excitation [Arghir et al., 2018]. Thus, all the results derived
ahead can conceptually also be applied to synchronous machines.
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By lumping the states of n−converters and m−transmission lines and
defining the shunt impedance matrices ZR = R I+L ω∗ J, Z� = R� I+L�ω

∗ J
and shunt admittance matrix YC = G I + C ω∗ J, we obtain the following
power system model,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̇

v̇dc

i̇

v̇

i̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= K−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(vdc − v∗
dc1n)

−Kp(vdc − v∗
dc1n) − 1

2 μRot(γ)� i

−ZR i + 1
2 μRot(γ) vdc − v

−YC v + i − B i�

−Z� i� + B� v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ K−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

u

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where we define the angle vector γ =
[
γ1, . . . , γn

]� ∈ T
n, with DC volt-

age vector vdc =
[
vdc,1, . . . , vdc,n

]� ∈ R
n, the inductance current i =[

i�
1 , . . . , i�

n

]� ∈ R
2n and AC capacitor voltage v =

[
v�

1 , . . . , v�
n

]� ∈ R
2n.

The last equation in (3) describes the line dynamics and in particular, the
evolution of the line current i� :=

[
i�
�1

, . . . , i�
�m

]� ∈ R
2m, where R� > 0 is the

line resistance, L� > 0 is the line inductance and inet = B i�. Here B = B ⊗ I
denotes the extended incidence matrix and K = diag (I, Cdc I, L I, C I, L� I).
The multi-converter inputs are collected in u =

[
i∗
dc,1, . . . , i∗

dc,n

]� ∈ R
n.

Let N be the dimension of the state vector z =
[
γ� ṽ�

dc x�
ac

]�, whereby
we define the vectors of relative DC voltage ṽdc = vdc − v∗

dc1n, AC quantities
xac =

[
i� v� i�

�

]� and the input u =
[
0�, u�, . . . , 0�]�. By putting it

all together, we arrive at the nonlinear power system dynamics compactly
described by,

ż = f(z, u) , z(0) = z0 . (4)

Here z, z0 ∈ R
N and f(z, u) denotes the vector field given by (3).

Remark 1

Without loss of generality, we assume that all DC/AC converters are identical
and connected via identical RL lines, that is a common assumption in the
analysis of power system stability, see e.g., [Johnson et al., 2013; Simpson-
Porco et al., 2013]. Nonetheless, our analysis carries over to more general
heterogeneous settings, where converters and lines differ in their parameter
values. �

3. Characterization of the steady state set

In this section, we characterize the steady state set resulting from the rota-
tional invariance of the vector field (4) and feasible DC inputs to the con-
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verters as a mapping from known steady state angles.

3.1 Steady state set
Let M ⊂ R

N be a non-empty steady-state manifold resulting from setting (4)
to zero and given by,

M = {z∗ ∈ R
N | f(z∗, u) = 0}. (5)

We are particularly interested in a synchronous steady-state in rotating
dq−frame with the following properties:

• The converters’ frequencies are synchronized at the nominal value ω∗

mapped into a nominal DC voltage v∗
dc ≥ 1,

[ω] = {ω ∈ R
n
≥0| ω = ω∗1n} ,

[vdc] = {vdc ∈ R
n
≥0| vdc = v∗

dc1n} .

• The converters’ angles are stationary,

[γ] = {γ ∈ Tn| γ̇∗ = 0} .

• The AC quantities, namely the inductor currents, capacitor voltages
and line currents are constant at steady state,

[xac] =
{

xac ∈ R
4n+2m| ẋ∗

ac = 0
}

.

3.2 Symmetry of the vector field
Consider the nonlinear power system model (4). For all θ ∈ S

1, it holds that,

f(θ s0 + S(θ) z, u) = S(θ) f(z, u) , (6)

where we define the translation vector s0 =
[
1�

n 0� 0�]�, the matrix

S(θ) =

⎡⎣I 0 0
0 I 0
0 0 R(θ)

⎤⎦ ,

and the set,

S(z) =
{[

(γ + θ1n)� ṽ�
dc (R(θ) x)�]�

, θ ∈ S
1
}

. (7)

The symmetry (6) follows from observing that the rotation matrix R(θ) com-
mutes with the impedance and admittance matrices ZR, Z�, YC , the skew-
symmetric matrix J and the incidence matrix B. The symmetry (6) arises
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from knowing that the nonlinear power system model (4) has no absolute
angle. In fact, the vector field remains invariant with respect to a shift in all
angles γ ∈ Tn, corresponding to a translation by s0 and a rotation in the
angles of AC signals by R(θ) (up to re-defining the dq−transformation angle
to θ′

dq(t) = θdq(t) + θ). Notice that for θ = 0, we deduce that S(z) = {z} and
hence z ∈ S(z).

Consider the steady state manifold M described by (5). Observe that
z∗ ∈ M pertains to a continuum of steady states, as a consequence of the
rotational symmetry (6). Thus, the steady state set is given by,

S(z∗) =
{[

(γ∗ + θ1n)� 0� (R(θ) x∗
ac)�]�

, θ ∈ S
1
}

, (8)

that is for all z∗ ∈ M, it holds that S(z∗) ⊂ M.

3.3 Steady state map
Lemma 1—Steady state map

Consider the nonlinear power system model (4). Given the steady state
angle vector γ∗ satisfying γ̇∗ = 0. Then, a feasible input u is given by,

u = ν Rot(γ∗)�Y Rot(γ∗) 1n, (9)

where ν = 1
4 μ2v∗

dc > 0 and Y = (ZR +(YC +B Z−1
� B�)−1)−1 ∈ R

2n×2n.

Proof. We solve for the frequency synchronous steady state z∗ by setting (4)
to zero. Note that YC + B Z−1

� B� and ZR + (YC + B Z−1
� B�)−1 are non-

singular matrices due to the presence of the load conductance G > 0 and
the resistance R > 0, where B Z−1

� B� is a weighted Laplacian matrix. The
lines’ current vector is described by i∗

� = Z−1
� B�v∗, from which follows that

v∗ = (YC + BZ−1
� B�)−1i∗ for the AC capacitor voltage. The inductance

current reads as i∗ = 1
2 v∗

dc μ Y Rot(γ∗)1n. Finally from 1
2 μRot�(γ∗)i∗ = u,

we deduce (9). �

Notice that the matrix Y in (9) has an admittance-like structure which is
customary in the analysis of power system models and encodes in particular
the parameters of the transmission lines and the network topology given by
the weighted Laplacian B Z−1

� B�, as well as the converters’ parameters
(their AC filters, namely given by the impedance and admittance matrices
ZR and YC). Once γ∗ ∈ T

n is given, we recover the full vector z∗ ∈ M
associated with a frequency synchronous steady state set S(z∗) as described
in (8).

Equation (9) can be comprehended as a map (in the sense of [Isidori and
Byrnes, 1990]),

P : Tn → R
n, γ∗ �→ ν Rot(γ∗)�Y Rot(γ∗)1n,
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that takes as argument γ∗ and returns a feasible input u. The angles
γ∗ can be obtained, e.g., from solving an AC optimal power flow prob-
lem. Equation (9) indicates a power balance between the electrical power
P ∗

e = ν v∗
dc Rot�(γ∗) i∗ and the DC power given by P ∗

dc = v∗
dcu at steady

state.

4. Local synchronization of multi-converter power system

In this section, we study local asymptotic stability of the steady state set
S(z∗) in (8), as an application of center manifold theory [Wiggins, 1990;
Carr, 2012, p.195].

4.1 Preliminaries
We provide some background and review key concepts from center manifold
theory [Carr, 2012] that serve as our main tool for proving local asymptotic
stability. For this, consider a dynamical system given in normal form,

ẏ = Ayy + f1(y, ρ), (10a)
ρ̇ = Bρρ + f2(y, ρ), (10b)

where Ay ∈ R
c×c has eigenvalues with zero real part and Bρ ∈ R

(n−c)×(n−c)

has eigenvalues with negative real part (or Hurwitz), and f1 and f2 are
nonlinear functions with the following properties,

f1(0, 0) = 0, Jf1(0, 0) = 0, (11)
f2(0, 0) = 0, Jf2(0, 0) = 0. (12)

An invariant manifold Wc is a center manifold of (10), if it can be locally
expressed as,

Wc = {(y, ρ) ∈ W0| ρ = h(y)}, (13)

where W0 is a sufficiently small neighbourhood of the origin, h(0) = 0 and,

Jh(0) =
d h

dy

∣∣∣∣
y=0

= 0 .

It has been shown in [Khalil, 2002, Thm. 8.1] that a center manifold
always exists and the dynamics of (10) restricted to the center manifold are
described by,

ξ̇ = Ay ξ + f1(ξ, h(ξ)), (14)
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4 Local synchronization of multi-converter power system

for a sufficiently small ξ ∈ R
c. Note that ξ is a parametric representation of

the dynamics along points on the center manifold Wc in (13).
The stability of the system dynamics (10) is analyzed from the dynamics

on the center manifold (13) using the reduction principle described in the
following theorem.

Theorem 2—[Wiggins, 1990], p.195

If the origin is stable under (14), then the origin of (10) is also stable.
Moreover there exists a neighborhood W0 of the origin, such that for
every (y(0), ρ(0)) ∈ W0, there exists a solution ξ(t) of (14) and constants
c1, c2 > 0 and γ1, γ2 > 0 such that,

y(t) = ξ(t) + r1(t),
ρ(t) = h(ξ(t)) + r2(t),

where ‖ri(t)‖ < ci e−γi t, i = 1, 2.

Next, we provide background on set stability in the following definition.

Definition 1—Set stability [Angeli, 2004]

A set K is called stable with respect to the dynamical system (4), if for all
ε > 0, there exists δ > 0, so that,

d(z0, K) ≤ δ =⇒ d(z(t, z0), K) < ε, ∀t ≥ 0 (15)
�

A set K is called asymptotically stable with respect to a dynamical system (4),
if (15) holds and,

lim
t→∞ d(z(t, z0), K) = 0.

4.2 Local asymptotic stability
Next, we present our main result concerning local asymptotic stability of
the set S(z∗) with respect to the power system dynamics (4). The following
assumption on the eigenvalues of the Jacobian of (4) is crucial for our result.

Assumption 1

Consider the multi-converter system (4) linearized at z∗ ∈ M and given by,

δż = Jf (z∗) δz, (16)

with δz = z − z∗ ∈ Tz∗M, Jf (z∗) = df
dz | z=z∗ its Jacobian matrix. Assume

that Jf (z∗) has only one eigenvalue at zero and all other eigenvalues are in
the open-left half-plane.
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Remark 2

In Section 5, we suggest one possible approach to satisfy the Jacobian eigen-
values’ condition in Assumption 1 that leads to sufficient and explicit stability
conditions. �

We now present our main result in the following theorem.

Theorem 3—Local asymptotic stability

Consider the power system dynamics in (4) under Assumption 1 with a
feasible input u as in (9). Then, S(z∗) is locally asymptotically stable.
Moreover, there exists a neighborhood N of S(z∗) such that for every
z(0) ∈ N , there exists a point s ∈ S(z∗), where

lim
t→∞ z(t, z0) = s.

Proof. To prove that S(z∗) is stable, we consider the system dynamics (4)
under Assumption 1. Without loss of generality, assume z∗ = 0. From As-
sumption 1, we know there exists a transformation T ∈ R

N×N , such that
T Jf (0) T −1 is block diagonal, where Jf (0) is given in (16), with zero for the
first vector component and a block diagonal matrix B that is Hurwitz. We
rewrite the dynamics of (4) as,

ż = Jf (0) z + (f(z, u) − Jf (0) z),

where z is near the origin. Next, by defining (y, ρ) = T z, we arrive at the
following system dynamics in normal form,

ẏ = f1(y, ρ), (17a)
ρ̇ = B ρ + f2(y, ρ), (17b)

where f1(0, 0) = 0, f2(0, 0) = 0 and Jf1(0, 0) = Jf2(0, 0) = 0. Now, we show
that,

Wc :=
{

(y, ρ)|(∃ z ∈ S(0)) × ((y, ρ) = T z)
}

,

is a center manifold for the system dynamics (17). First, Wc is invariant
because it consists of steady states of (17). Second, Wc is tangent to the
y−axis at y = 0. To see this, define

f̃(y, ρ) := f

(
T −1

[
y
ρ

])
= f(z).

Then Wc = {(y, ρ)|f̃(y, ρ) = 0}. The row vectors of the Jacobian given by

Jf̃ (0, 0) =

⎡⎢⎢⎢⎢⎣
∂f̃1(0,0)

∂y
∂f̃1(0,0)

∂ρ

...
...

∂f̃N (0,0)
∂y

∂f̃N (0,0)
∂ρ

⎤⎥⎥⎥⎥⎦ =
df

dz

∣∣∣∣
z=0

T −1 = Jf (0) T −1,
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span the normal space of Wc at 0. Since the columns of T −1 = (v(0), . . . ) con-
sist of the right eigenvectors of Jf (0), by means of Jf (0) v(0) = 0, Jf (0) T −1

has a zero first column. This shows that Jf̃ (0, 0) has its first entry (corre-
sponding to y−component) equal to zero. As a consequence, there exists a
function h(y) such that h(0) = 0 and dh

dy |y=0 = 0 in a neighborhood W0 of 0,
where Wc ∩ W0 = {(y, ρ)| ρ = h(y)}. It follows that the dynamics restricted
to W0 are given by ξ̇ = 0 because Wc is a steady state manifold to (17) and
thus f1(ξ, h(ξ)) = 0. This shows that ξ(t) = ξ(0). By applying Theorem 2,
the solutions for (y, ρ) starting in W0 are described by,

y(t) = ξ(t) + r1(t),
ρ(t) = h(ξ(t)) + r2(t),

where ‖ri(t)‖ < cie
−γit, i = 1, 2, for some constants ci, γi > 0. This implies

that,
lim

t→∞
(
y(t), ρ(t)

)
=
(
ξ(0), h(ξ(0))

)
,

and thus,
lim

t→∞ z(t) = T −1(ξ(0), h(ξ(0))
) ∈ S(0).

This argument can be repeated for each point on S(0) to obtain a cover
{Wk} of S(0). Since S(0) is compact, we can construct a finite sub-cover to
form a neighborhood N =

⋃
k Wk of S(0). Local asymptotic stability of S(0)

follows directly. �

Note that our results conceptually apply to prove local asymptotic stability
of a synchronous steady state set with respect to trajectories of high-order
dynamics of synchronous machines and find an estimate of their region of
attraction. Even though our analysis dwells upon a local statement, it can
pave the way for a global analysis of the stability of high-order multi-machine
or multi-converter system connected through non-trivial lines’ conductance,
which has been an open problem within the power system community for a
long time [Willems, 1976; Chiang, 1989].

5. Sufficient conditions for stability of the linearized system

This section suggests one possible approach to satisfy the eigenvalue condi-
tion imposed by Assumption 1 in a sufficient and explicit way for a class
of linear systems, that applies later to the stability of the linearized multi-
converter system.
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5.1 Lyapunov stability of vector fields with symmetries
We develop a stability theory for a general class of linear systems enjoying
some of the structural properties featured by the Jacobian matrix (16). For
this, we consider a class of partitioned linear systems of the form,

ẋ =
[

A11 A12
A21 A22

]
︸ ︷︷ ︸

A

x, (18)

where x = [x�
1 x�

2 ]� denotes the partitioned state vector and the block
matrices A11, A12, A21, A22 are of appropriate dimensions.

In the following, we assume stability of the subsystem characterized by
A11 and the existence of a symmetry, i.e., an invariant zero eigenspace of A.

Assumption 2

The block diagonal matrix A11 given in (18) is Hurwitz.

Assumption 3

There exists a vector p = [p�
1 p�

2 ]�, so that

A · span{p} = 0.

We are interested in asymptotic stability of the zero subspace span{p}.
This is equivalent to showing that, all eigenvalues of A have their real part
in the open-left half-plane, except for only one at zero, whose eigenspace
is span{p}. In this manner, we later satisfy Assumption 1. Recall that the
standard stability definitions and Lyapunov methods extend from stability
of the origin to stability of closed and invariant sets when using the point-
to-set-distance rather than merely the norm in the comparison functions; see
e.g., [Lin et al., 1996, Theorem 2.8]. In our case, we seek a quadratic Lyapunov
function that vanishes on span{p}, is positive elsewhere and whose derivative
is decreasing everywhere outside span{v}. We start by defining a Lyapunov
function candidate,

V (x) = x�
(

P − Ppp�P

p�Pp

)
x , (19)

where P is a positive definite matrix. The Lyapunov function candidate con-
structed in (19) is based on two key observations:

• First, the function V (x) is defined via an oblique projection of the
vector x ∈ R

n parallel to span{p} onto {x ∈ R
n| p�P x = 0}. If P =

I, then V is the orthogonal projection onto span{p}⊥. Hence, V (x)
vanishes on span{p} and is strictly positive definite elsewhere.
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5 Sufficient conditions for stability of the linearized system

• Second, the positive definite matrix P is a degree of freedom that can
be specified later to provide sufficient and explicit stability conditions.

In standard Lyapunov analysis, one seeks a pair of matrices (P, Q) with
suitable positive (semi-) definiteness properties so that the Lyapunov equa-
tion P A + A�P = −Q is met. In the following, we apply a helpful twist and
parameterize the Q matrix as a quadratic function Q(P ) of P , which ren-
ders the Lyapunov equation, in part, an H∞−ARE. We choose the following
structure for the matrix Q(P ),

Q(P ) =

[ Q1 H�(P )

H(P ) H(P )Q−1
1 H(P )� + Q2

]
, (20)

where Q1 is a positive definite matrix, Q2 is a positive semi-definite matrix
with respect to span{p2}, P is block-diagonal,

P =
[
P1 0
0 P2

]
, (21)

with P1 = P �
1 > 0 and P2 = P �

2 > 0, i.e., the Lyapunov function is separable,
and finally H(P ) = A�

12 P1 + P2 A21 is a shorthand.
We need to introduce a third and final assumption.

Assumption 4

Consider the matrix F = A22 + A21Q−1
1 P1A12 and the transfer function,

G = C (s I − F )−1 B,

with B = A21Q−1/2
1 , C = (A�

12P1Q−1
1 P1A12 + Q2)1/2. Assume that F is

Hurwitz and ‖G‖∞ < 1.

Assumption 4 will guarantee suitable definiteness and decay properties of
the Lyapunov function (21) under sufficient and explicit stability conditions
discussed in Section 5.3. Assumptions 2, 3 and 4 recover our requirement
for positive definiteness of the matrix P in (21) and semi-definitness (with
respect to span{p}) of Q(P ) in (20) as shown in the following.

Corollary 4

Under Assumptions 2, 3 and 4, the matrix P in (21) exists, is unique and
positive definite.

Proof. By calculating P A+A�P = −Q(P ), where A, Q(P ) and P are given
respectively by (18), (20) and (21), we obtain[

P1 A11 + A�
11P1 H(P )�

H(P ) P2 A22 + A�
22P2

]
= −

[ Q1 H(P )�

H(P ) H(P )Q−1
1 H(P )� + Q2

]
,
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the block-diagonal terms of which are

1 P1 A11 + A�
11P1 = −Q1,

2 P2 A22 + A�
22P2 = −H(P )Q−1

1 H(P )� − Q2,

where H(P ) = A�
12 P1 + P2 A21.

Since A11 is Hurwitz, there is a unique and positive definite matrix
P1 solving 1 . Moreover, 2 is equivalent to solving for P2 the following
H∞−ARE:

P2 A21Q−1
1 A�

21P2 + P2F + F �P2 + A�
12P1Q−1

1 P1A12 + Q2 = 0,

where F = A22 + A21Q−1
1 P1A12. Under Assumption 4, the pair (F, B) is

stabilizable with B = A21Q−1/2
1 and for ‖G‖∞ < 1, Theorem 7.4 in [Scherer,

2001] implies that no eigenvalues of the Hamiltonian matrix

H =

[
F B B�

−C� C −F �

]
,

are on the imaginary axis with,

C = (A�
12P1Q−1

1 P1A12 + Q2)1/2.

By Theorem 7.2 in [Scherer, 2001], there exists a unique stabilizing solution
P2 to 2 . Define E = A�

12P1Q−1
1 P1A12 + Q2 + P2 A21Q−1

1 A�
21P2 ≥ 0. From

Ap = 0, follows that A12p2 = −A11p1 �= 0 (by Hurwitzness of A11 under
Assumption 2) and since Q2p2 = 0, this implies that ker Q2 ∩ ker A12 =
{0}. Therefore, E is a non-singular and positive definite matrix. Since F is
Hurwitz, by standard Lyapunov theory [Khalil, 2002], the Lyapunov equation
P2 F + F �P2 + E = 0 admits a positive definite solution P2. �

Corollary 5

Under Assumptions 2, 3 and 4, the matrix Q(P ) in (20) is positive semi-
definite. Additionally, ker(A) = ker(Q(P )) = span{p}.

Proof. First, note that by Proposition 4, the matrix P = P � > 0 and ob-
serve that the matrix Q(P ) in (20) is symmetric and the upper left block
Q1 > 0 is positive definite. By using the Schur complement and positive semi-
definiteness of Q2, we obtain that Q(P ) is positive semi-definite. Second, by
virtue of p�Q(P )p = p�(P A + A�P )p = 0 due to Assumption 3, it follows
that span{p}⊆ ker(Q(P )). Third, consider a general vector s =

[
s�

1 s�
2
]�, so

that Q(P )s = 0. Given H(P ) = A�
12 P1 + P2 A21, we obtain the algebraic

equations Q1s1 + H(P )�s2 = 0, H(P )s1 +
(
H(P )Q−1

1 H(P )� + Q2
)

s2 = 0.
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One deduces that Q2s2 = 0 and thus s2 ∈ span{p2}. The latter im-
plies s1 ∈ −Q−1

1 H(P )�span{p2} ∈ span{p1} because Q(P )span{p} = 0.
Thus, it follows that s ∈ span{[s�

1 s�
2
]�} = span{p} and we deduce that

ker(Q(P )) = span{p}. Fourth and finally, for the sake of contradiction, take
a vector ṽ /∈ span{p} , so that ṽ ∈ ker(A) ⇒ ṽ� (A�P + P A

)
ṽ = 0 ⇒

ṽ�Q(P )ṽ = 0 ⇒ ṽ ∈ ker(Q(P )). This is a contradiction to ker(Q(P )) =
span{p}. Hence, we conclude that ker(A) = ker(Q(P )) = span{p}. �

The main result of this section is given by the following lemma.

Lemma 6

Consider the linear system (18). Under Assumptions 2, 3 and 4, span{p}
is an asymptotically stable subspace of A.

Proof. Consider the function V (x) in (19). The matrix P in (21) is positive
definite by Proposition 4. By taking y = P 1/2x and w = P 1/2p, the function
V (x) can be rewritten as V (y) = y�

(
I − ww�

w�w

)
y = y�Πwy. The matrix

Πw = I − ww�
w�w

is a projection matrix onto the orthogonal complement of
span(w) and is hence positive semi-definite with one-dimensional nullspace
corresponding to P 1/2span{p}. It follows that the function V (x) is positive
definite for all x ∈ span{p}⊥. By means of Ap = Q(P )p = 0, it holds
that p�P A = p�(Q(P ) − A�P ) = 0 and we obtain V̇ (x) = −x� Q(P ) x.
By Lemma 5, V̇ (x) is negative definite for all x ∈ span{p}⊥. We apply
Lyapunov’s method and Theorem 2.8 in [Lin et al., 1996] to conclude that
span{p} is asymptotically stable. �

5.2 Stability of the linearized multi-DC/AC converter
Our next analysis seeks to find sufficient and explicit conditions, so that the
Jacobian of the multi-converter system given in (16) satisfies Assumption 1.
For this, consider the linearized system (16) given by the following equations,

δż = K−1

⎡⎢⎢⎢⎢⎣
0 ηI 0 0 0

−∇2U(γ∗) −KpI −Λ(γ∗)� 0 0
Ξ(γ∗) Λ(γ∗) −ZR −I 0

0 0 I −YC −B
0 0 0 B� −Z�

⎤⎥⎥⎥⎥⎦ δz

=
[

A11 A12
A21 A22

]
δz. (22)

In (22), the system matrix is the Jacobian Jf (z∗) = df
dz | z=z∗ , δz =[

δz�
1 δz�

2
]� ∈ Tz∗M, corresponding to the partition δz1 =

[
δγ� δv�

dc

]� ∈
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R
2n, δz2 ∈ R

6n. Moreover, the matrices are given by,

∇2U(γ∗) =
1
4

μ2v∗
dcdiag(Rot�(γ∗) J�Y Rot(γ∗) 1n),

=
1
2

μdiag((JRot(γ∗))�i∗),

Ξ(γ∗) =
1
2

μJ Rot(γ∗),

Λ(γ∗) =
1
2

μv∗
dc Rot(γ∗),

where we consider the smooth potential function,

U : Tn → R, γ �→ −ξ 1�
n Rot�(γ) J�Y Rot(γ∗) 1n.

Note that the Jacobian Jf (z∗) has one-dimensional zero eigenspace de-
noted by,

span{v(z∗)} = span{[ 1n
� 0� (J x∗)� ]�} ⊂ Tz∗M,

with J x∗ =
[
(J i∗)� (Jv∗)� (J i∗

� )�]�. In fact, we can establish a formal
link between the linear subspace span{v(z∗)} and the steady state set S(z∗)
in (8) as follows. For all θ ∈ S

1,

S(z∗) = z∗ +
∫ θ

0
v(z∗) ds, = z∗ +

∫ θ

0

⎡⎣ 1n

0
J R(s) x∗

⎤⎦ ds .

In fact, v(z∗) is the tangent vector of S(z∗) in the θ−direction and lies on the
tangent space Tz∗M and S(z∗) is the angle integral curve of span{v(z∗)}.

Remark 3

We can retrieve the relationship span{v(z∗)} ⊆ ker(Jf (z∗)) from (6) as fol-
lows. We set z = z∗ ∈ M and expand the first-order Taylor polynomial
around θ′ ∈ S

1 of the left hand-side in (6). The right hand-side amounts to
zero since f(z∗, u) = 0 and we obtain,

df

dz

∣∣∣∣
z=z∗

(
s0 +

dS(θ)
dθ

∣∣∣∣
θ=θ′

z∗
)

(θ − θ′) = 0, �

where df
dz |z=z∗ = Jf (z∗), s0 + dS

dθ |θ=θ′ z∗ = v(z∗). Thus, we recover,

Jf (z∗) v(z∗) = 0 .
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Next, we consider the linearized model (22) and identify the matrices,

A11 =

[
0 ηI

−C−1
dc ∇2U(γ∗) −C−1

dc KpI

]
, A12 =

[
0 0 0

−C−1
dc Λ(γ∗)� 0 0

]
,

A21 =

⎡⎢⎢⎣
L−1Ξ(γ∗) L−1Λ(γ∗)

0 0

0 0

⎤⎥⎥⎦ , A22 =

⎡⎢⎢⎣
−L−1ZR −L−1I 0

C−1I −C−1ZV −C−1B

0 L−1
� B� −L−1

� Z�

⎤⎥⎥⎦ .

Define the Lyapunov function V (z) as in (19) with v(z∗) := p and v(z∗) =
[v∗�

1 , v∗�
2 ]�. Hence, V (z) is positive semi-definite with respect to span{v(z∗)}.

Next, we select the matrix Q(P ) given by (20), set Q1 = I, Q2 = I −
v∗

2v∗�
2 /v∗�

2 v∗
2 and search for the positive definite matrix P so that,

P Jf (z∗) + Jf (z∗)�P = −Q(P ).

Similar to (21), we choose the block diagonal matrix as,

P =

⎡⎢⎢⎣
P11 P12 0

P12 P22 0

0 0 P33

⎤⎥⎥⎦ =

[
P1 0

0 P2

]
. (23)

Here, P11, P12 and P22 are matrices of appropriate dimensions. Notice that
the chosen structure of P1 and the zeros in the off-diagonals in P originate
from the physical intuition of the tight coupling between the angle of the con-
verter and its corresponding DC voltage (proportional to the AC frequency),
as enabled by the matching control (1). The same type of coupling comes
into play in synchronous machines between the rotor angle and its frequency,
due to the presence of the electrical power in the swing equation [Kundur et
al., 1994]. The matrix P2 is dense with off-diagonals coupling at each phase,
the inductance current of one converter with the others. In the sequel, we
show that this structure allows to derive sufficient and explicit conditions
that satisfy Assumption 1.

Condition 7—Parametric synchronization conditions

Consider Px,k = 1
2 v∗

dcμr�(γ∗
k)i∗

k > 0, Qx,k = 1
2 v∗

dcμr�(γ∗
k)J�i∗

k > 0 and
the matrix F in Assumption 4. Assume the following condition is satisfied,

cos(φk) <

√
1 − α2

P 2
x,k + α2 , k = 1, . . . , n, (24)
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where,
cos(φk) =

Px,k√
Q2

x,k + P 2
x,k

∈ [0, 1[,

is the power factor of k−th converter, α = max
{

μ2v∗2
dc

16 R ,
μ v∗2

dc

4
√

Y −2−1

}
, Y =

1
2 μv∗

dcL−1 sup
ζ

‖(jζI − F )−1‖2, where Y < 1. Additionally, assume that,

μ
2 (1 + η Cdcv∗

dcQ−1
x,k)√

4
v∗2

dc

(Y −2 − 1) − 1
4 μ2v∗2

dc Q−2
x,k

< Kp, k = 1, . . . , n. (25)

Next, we provide the main result of this section.

Lemma 8

Consider the linearized closed-loop multi-converter model (22). Under
Condition 7, the subspace span{v(z∗)} is asymptotically stable.

Proof. Since v(z∗) ∈ ker(Jf (z∗)), Assumption 3 is satisfied. If (24) is true,
then r�(γ∗

k)J�i∗
k > 0, for all k = 1, . . . n, the sub-matrix A11 is Hurwitz and

hence Assumption 2 is also valid.
Next, we verify Assumption 4. First, the matrix P1 can be identified from

specification 1 with Q1 = I by the following expressions,

P11 =
1
η

[
1
2

Kp(∇2U(γ∗))−1 +
∇2U(γ∗)

2Kp
(I + ηCdc(∇2U(γ∗))−1 )

]
,

P12 = P �
12 =

1
2

(∇2U(γ∗))−1Cdc,

P22 =
Cdc

2Kp

(
I + ηCdc (∇2U(γ∗))−1) .

The feasibility of specification 2 with the positive semi-definite matrix
Q2 = I − v∗

2 v∗�
2

v∗�
2 v∗

2
is given by

P2 A21A21
�P2 + P2F + F �P2 + NN� + Q2 = 0 , (27)

where F = A22+A21P1A12 and N = A�
12P1. If Assumption 4 is satisfied, then

there exists a positive definite matrix P2 that satisfies H∞−ARE in (27).
Next, we find sufficient conditions, for which F satisfies the Lyapunov

equation PF F + F �PF = −QF . We choose PF and QF to be block-diagonal
matrices

PF =

⎡⎣L 0 0
0 C 0
0 0 L�

⎤⎦ , QF =

⎡⎣Γ 0 0
0 2G I 0
0 0 2R�I

⎤⎦ ,
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with,

Γ = 2R I + C−1
dc

(
Ξ(γ∗)P12Λ(γ∗)� + Λ(γ∗)P12Ξ(γ∗)�)

+ 2C−1
dc

(
Λ(γ∗)P22Λ(γ∗)�) ,

being itself block-diagonal. Aside from Γ, all diagonal blocks of PF and QF

are positive definite. We evaluate the block-diagonal matrix Γ for positive
definiteness by exploring its two-by-two block diagonals, where trace and
determinant of each block are positive under,

Q∗
x,k =

1
2

v∗
dcμ(r(γ∗

k))�J�i∗
k >

μ2v∗2
dc

16 R
.

Furthermore, we impose ‖G‖∞ < 1, by equivalently setting sup
ζ∈R

‖C (jζI −
F )−1B‖2 < 1, where

C =
(

A�
12P �

1 P1A12 + I − (Jx∗)(Jx∗)�

(Jx∗)�(Jx∗)

)1/2

, B = A21.

It is sufficient to consider ‖C‖2
2 < (sup

ζ∈R

‖(jζI − F )−1‖2‖B‖2)−2. Using

the triangle inequality for the induced 2-norm, we arrive at ‖C‖2
2 ≤

‖A�
12P �

1 P1A12‖2 + ‖Q2‖2. Since ‖Q2‖2 = 1, we consider instead,

‖A�
12P �

1 P1A12‖2 ≤ (sup
ζ

‖(jζI − F )−1‖2‖B‖2)−2 − 1.

Additionally, it holds that,

‖B‖2
2 = ‖A21‖2

2 = L−2‖
[
Ξ�Ξ Ξ�Λ
Λ�Ξ Λ�Λ

]
‖2

= L−2‖
[
Ξ�Ξ 0

0 Λ�Λ

]
‖2 = (

1
2

μv∗
dc)2L−2,

where the last equality follows from v∗
dc ≥ 1. Define Y = 1

2 μv∗
dc sup

ζ
‖(j ζI −

F )−1‖2L−1. For Y < 1, straightforward calculations show that,

‖A�
12P �

1 P1A12‖2 = σ(C−2
dc Λ(γ∗)(P 2

12 + P 2
22)Λ(γ∗)�) =

max
k=1,...,n

dk σ(r(γ∗
k)r�(γ∗

k))) <
4

v∗2
dc

(Y −2 − 1),

with,

dk = (r�
k (γ∗

k)J�i∗
k)−2 +

1
4K2

p

(
1 + ηCdc(

1
2

μr�(γ∗
k)J�i∗

k)−1
)2

.
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Under
4/v∗2

dc (Y −2 − 1) − max
k=1,...,n

(r�
k (γ∗

k)J�i∗
k)−2 > 0,

we solve for the gain Kp with σ(r(γ∗
k)r�(γ∗

k)) = 1, k = 1, . . . , n, to find,√√√√√ max
k=1,...,n

μ2

4 (1 + ηCdc( 1
2 μ r�(γ∗

k) J�i∗
k)−1)2

4
v∗2

dc

(Y −2 − 1) − max
k=1,...,n

(r�(γ∗
k) J�i∗

k)−2 < Kp.

This can be simplified into (25). The condition

4/v∗2
dc (Y −2 − 1) − max

k=1,...,n
(r�

k (γ∗
k)J�i∗

k)−2 > 0

can be written as Q2
x,k >

μ2v∗4
dc

16(Y −2−1) under the assumption that Y < 1 and
we deduce that,

max
{

μ2v∗2
dc

16 R
,

μ v∗2
dc

4
√

Y −2 − 1

}
< Qx,k.

From the definition of the power factor cos(φk) = Px,k√
Q2

x,k
+P 2

x,k

, we arrive

at (24). In summary, we arrive at (25) and (24). By applying Theorem 3,
we deduce that span{v(x∗)} is asymptotically stable for the linearized sys-
tem (22). �

5.3 Results contextualization
Generally speaking, (24) and (25) can be regarded as a requirements on the
AC- and DC-side, respectively. Both of them are explicit and sufficient for
asymptotic stability.

Condition (24) connects the efficiency of the converter given by the power
factor that defines the amount of current producing useful work to the lower
bound α > 0. From (24), the power factor approaches 1, as α → 0.

If
max

{
μ2v∗2

dc

16 R
,

μv∗2
dc

4
√

Y −2 − 1

}
=

μ2v∗2
dc

16 R
,

then (24) depends on the converter’s resistance R, modulation amplitude μ,
nominal DC voltage v∗

dc, and the steady state current i∗. This is a known
practical stability condition [Wang et al., 2014]. In fact from (24), sufficient
resistive damping is often enforced by virtual impedance control which makes
α → 0.

If
max

{
μ2v∗2

dc

16 R
,

μv∗2
dc

4
√

Y −2 − 1

}
=

μv∗2
dc

4
√

Y −2 − 1
,
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then we can again deploy H∞ control to make ‖Gac‖∞ arbitrarily small and
thus α → 0. We note that, the AC-side feedback control is crucial to achieve
desired steady states for our power system model (4). This can be imple-
mented e.g., via outer loops that take AC measurements and use the classical
vector control architecture for the regulation of the inductance current and
the output capacitor voltage; see e.g., [D’Arco et al., 2015].

That Y < 1 translates into the requirement,

‖Gac‖∞ < β, β =
2 L

μv∗
dc

,

where Gac(jζ) = (jζI − F )−1 asks for L2 gain from the disturbances on
the AC-side to AC signals to be less than β. This can be achieved via H∞
control; see [Zhou et al., 1996].

Condition (25) depends on the steady state angles γ∗ and the converter
and network parameters and asks for damping as for other stability conditions
obtained in the literature on the study of synchronous machines [Arghir et al.,
2018; Dörfler and Bullo, 2012]. Note that the smaller is the synchronization
gain η > 0, the larger is the operating range of the DC damping gain K̂p.

For more general settings with heterogeneous converters and transmission
lines parameters, our stability analysis can be applied and analogous sufficient
and explicit conditions to (24) and (25) can be derived.

6. Simulations

The goal of this section is to assess the asymptotic stability of the tra-
jectories of the nonlinear power system (4) in Theorem 3 locally, i.e., by
numerically finding an estimate of the region of attraction N for a given
z∗ = [γ∗�, 0�, v∗�

c , i∗�
� ]�. Let us consider three identical DC/AC converters

in closed-loop with the matching control depicted in Figure 2 and connected
via three identical resistive and inductive lines, as in (4) and connected to
an inductive and resistive load to ground. Table 1 summaries the converter
parameters and their controls (in S.I.).

First, we start by verifying the parametric conditions established in Con-
dition 7 via (24) and (25). We tune the filter resistance R > 0 (e.g., using
virtual impedance control) and choose the DC-side gain Kp > 0 so that (24)
and (25) are satisfied, respectively.

Second, we numerically estimate of the region of attraction N in γ−space
by initializing sample trajectories of the angles depicted in Figure 2 at var-
ious locations and illustrate the evolution of the angle trajectories of (4) to
estimate a projection of N into the angle space. As predicted by Theorem 3,
we observe that the set S(z∗) restricted to the angles (relative to their steady
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Figure 2. Three-converter setup with dynamics described by (4), consist-
ing of identical three-phase converters C1, C2 and C3 in closed-loop with
the matching control and connected via identical RL lines. The internal
dynamics of each converter are modeled as in Figure 1.

state) space, and represented by span{13} is asymptotically stable for the
sampled angle trajectories of (4).

Figure 3 depicts a projection onto (γ1, γ2, γ3)−space of the estimate of N
(in rad and relative to their respective steady state values). The convergence
of angle trajectories to the subspace 13 is guaranteed for initial conditions
at distance d(γ(0), span{13}) = ‖

(
I − 131

�
3

1�
3 13

)
γ(0)‖2 = 3.1 (in rad) resulting

from varying the initial angles γ(0), while keeping the remaining initial states
fixed. In particular, DC voltages and AC currents are also initialized close to
their steady state values, as shown in Figure 4. Our simulations show that
the DC capacitor voltage vdc in Figure 4 and the AC output capacitor voltage
vc in abc−frame (resulting from transforming v into abc−frame using inverse
Park transformation followed by inverse Clarke transformation) converge to
their respective steady state values. This validates our theoretical results
from Section 4.

For completeness, we also illustrate a projection of the level sets of the
Lyapunov function (19) of an example network consisting of two DC/AC
converters connected via one RL line (for more details see [Jouini and Dörfler,
2019]) with system dynamics (4) into (γ1, γ2)−space (in rad and relative to
their respective steady state values) in Figure 5. The parameter values can be
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Figure 3. A representation of the region of attraction N and the frequency
synchronous steady state set S(z∗) restricted to (γ1 − γ∗

1 , γ2 − γ∗
2 , γ3 −

γ∗
3 )−space of the three DC/AC converter angles and convergence of the

sample angle trajectories of (4) to the subspace 13. The depicted region is
obtained from varying the initial angles, while keeping the remaining initial
states fixed. A sample of angles deviations initialized within the green area
and denoted by stars converge towards the stable set, while some angle
trajectories initialized outside the estimated region are divergent. The green
area is defined by d(γ(0), span{13}) = ‖

(
I − 131

�
3

1�
3 13

)
γ(0)‖2 = 3.1 (in rad),

where γ(0) is the angle vector initialized on the boundary of N . All the
angles are represented in rad.

taken from Table 1. The vector v(z∗) =
[
v�

1 (z∗) v�
2 (z∗)

]� ∈ ker(Jf (z∗)), is
given by,

v1(z∗) =
[
0.043, 0.043, 0, 0

]�
,

and,

v2(z∗) = [−0.0033 −0.0023 −0.0033 −0.0023
−0.7034 −0.0108 −0.7034 −0.0108 0 0] .

For a positive definite matrix P given by (23), the function V (x) takes pos-
itive values everywhere and is zero on the subspace spanned by v(z∗) and
given by Figure 5.
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0 1 · 10−1 2 · 10−1 3 · 10−1 4 · 10−1 5 · 10−1
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−200
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200
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,2
,3
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)

Figure 4. Synchronization of DC capacitor voltages corresponds to fre-
quency synchronization at the desired value. Hereby the angles are initial-
ized at (−6, −2, −13.15) (in rad) and belong to the region estimated in
Figure 3. The AC capacitor voltage vc (resulting from transforming v into
abc−frame using inverse Park followed by inverse Clarke transformation)
converges to a sinusoidal steady state v∗

c .

7. Conclusions

We investigated the characteristics of a high-order steady state manifold of
a multi-converter power system by exploiting the symmetry of the vector
field. We studied local asymptotic stability of the steady state set as a direct
application of the center manifold theory and provided an operating range
for the control gains and converter parameters. Future directions include
finding better estimates of the region of attraction using advanced numerical
methods and large-scale simulations of the power system dynamics.
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7 Conclusions

Table 1. Parameter values of the converters and the RL lines (in S.I).

Ci, i = {1, 2, 3} Lines

i∗
dc 16.5 –

v∗
dc 1000 –

Cdc 10−3 –
Gdc 10−5 –
KP 0.099 –
η 0.0003142 –
μ 0.33 –
L 5 · 10−4 –
C 10−5 –
G 0.1 –
R 0.2 –
R� – 0.2
L� – 5 · 10−5

Figure 5. 3D−representation of the Lyapunov function V (x) in (19) for two
DC/AC converters in closed-loop with the matching control and connected
via an RL line in (3) after a projection into (γ1 − γ∗

1 , γ2 − γ∗
2 ) space for

P > 0 as in (23) and the subspace spanning v(x∗). The parameter values
can be found in Table 1.
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Paper III

On cost design in applications of optimal
control

Taouba Jouini Anders Rantzer

Abstract

A new approach to feedback control design based on optimal control is
proposed. Instead of expensive computations of the value function for
different penalties on the states and inputs, we use a control Lyapunov
function that amounts to be a value function of an optimal control
problem with suitable cost design and then study combinations of input
and state penalty that are compatible with this value function. This
drastically simplifies the role of the Hamilton-Jacobi-Bellman equation,
since it is no longer a partial differential equation to be solved, but an
algebraic relationship between different terms of the cost. This letter
illustrates this idea in different examples, including H∞ control and
optimal control of coupled oscillators.

Originally published in IEEE Control Systems Letters ©2021 IEEE.
Reprinted, with permission, from [Jouini and Rantzer, 2021].
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1. Introduction

The objective in optimal control problems is to transfer the state of a dy-
namical system with minimum cost from one point to another. The advent of
modern control theory, particularly the formulation of the famous Maximum
Principle of Pontryagin [Sassano and Astolfi, 2020] has had a considerable
impact on the treatment of optimization theory. Dynamic programming gives
necessary and sufficient conditions for optimality and optimal control laws
in feedback form, which are very satisfactory but suffer from several draw-
backs [Bertsekas, 2011; Liberzon, 2011]. First, analytic solutions can only
be obtained in few cases (in particular linear quadratic problems). Second,
the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is
in general very hard to solve numerically. The main problem is that the full
state space must be discretized and a huge number of samples are needed to
get reasonable solutions. This is the curse of dimensionality. For this, many
efforts have been dedicated to find solutions of value function for HJB-PDE,
either numerically [Lukes, 1969] or by relaxing the equality to inequality
using approximate dynamic programming [Powell, 2007].

The traditional way to use optimal control is to view the cost function
as a set of tuning knobs that can be used to influence the trade-off between
control effort and error decay rates. This works well in idealized settings
such as linear quadratic control, but for nonlinear problems the map from
cost function to the optimal controller could be overwhelmingly complicated.
The purpose of this paper is to show that by carefully restricting the choice
of the cost function, a simple map from parameters in the cost function to
an explicit expression for the optimal controller can be obtained also for
nonlinear systems. In fact, our analysis provides a novel perspective for the
application of optimal control in engineering systems and makes a significant
twist compared to the classical approach. The idea is that, once a stabiliz-
ing feedback controller with a (control) Lyapunov function is found, then
by appropriate choice of the cost function, involving state and input penal-
ties, the control Lyapunov function satisfies the HJB equation and is a value
function of the optimal control problem. As a consequence, a whole family
of other cost functions will fit as well for different penalties on the states
and inputs. This makes it possible to design stabilizing controllers that are
uniquely optimal for nonlinear systems in a manner comparable to linear
quadratic control for linear systems. Our approach keeps a simple structure
of the cost for nonlinear systems, while adding suitable parametrization and
thus circumvents the computational complexity related to solving for a value
function by suggesting a fixed (control) Lyapunov function a priori. For this,
we showcase the role the cost design plays in two typical settings of opti-
mal control problems: first for nominal or disturbance-free and second for
disturbance attenuation or robust H∞ optimal control [Scherer, 2001; Zhou
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and Doyle, 1998; Ba sar and Bernhard, 2008]. Finally, we clarify our results
with examples related to classical equations in linear and nonlinear control
theory. As a continuation of ideas from [Jouini et al., 2021], we opt for an
application to coupled oscillators that can represent e.g., controlled inverters
in power systems.

The paper unfurls as follows: Section 2 motivates and provides the main
result on cost design for the nominal and disturbance attenuation case. Sec-
tion 3 applies our theory to coupled oscillators with numerical simulations.

Notation: Let 1n denote the column vector of all ones and In the n−th
dimensional identity matrix. We denote by P > 0 a symmetric and positive
definite matrix and R>0 be the set of positive real numbers. Let ‖·‖P =√

(·)�P (·). Given a vector v, let ‖v‖∞ = supi=1...n |vi|, sin(v) and cos(v) be
the vector-valued sine and cosine functions. Given a differentiable function
V (x), let ∇xV = ∂V

∂x be the gradient of V at x and ∇2
xV is the Hessian

of V at x. Given a matrix A, let Im(A) denote its image space. Consider
a connected undirected graph G = (V, E) consisting of |V| = n nodes and
|E| = m edges. By assigning an arbitrary orientation to the m edges, the
incidence matrix B ∈ R

n×m is defined element-wise as Bil = 1, if node i is
the sink of the l−th edge, Bil = −1 if i is the source of the l−th edge, and
Bil = 0 otherwise. We denote by Ni the neighbor set of node i ∈ V.

2. Main result

We start our analysis with the following motivating example.

Example 1

Example 1: For the matrices R = R� > 0, consider the following nonlinear
optimal control problem

V (x0) : = minimize
u

∫ ∞

0

(
q(x(s)) + ‖u(s)‖2

R

)
ds,

subject to ẋ = −sin(x) + u, x(0) = x0,

x ∈ X = {x ∈ R
n : {‖x‖∞ < π/2 : 1�cos(x) ≥ c},

for some 0 < c < n, for two different cases,

Case 1: q(x) = ‖x‖2,

Case 2: q(x) = ‖sin(x)‖2
In+R−1/4.

The first case may look simpler on the surface, since the cost function is
quadratic in x. However, a closer look at Case 1 leads to a HJB partial
differential equation, that is difficult to solve. At the same time, as we will
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see in the remainder, Case 2 is a special case of a rich class of problems that
have a simple explicit solution. In fact, the optimal control law is given by

u∗(x) = −1
2

R−1sin(x),

and the value function amounts to

V (x) = −1�
n cos(x) + n,

To see that V is positive definite, note that V (0) = 0 and V (x) is strictly
convex and thus positive definite (∇2

xV (x) > 0 for all x ∈ X ). Notice that
the matrix R appears in the expression for q, but not in the value function
V . Hence, when the penalty on the input is increased, the penalty on the
corresponding state is decreased. This makes it convenient to use R for tuning
with appropriate trade-offs between control effort and error decay. �

Motivated by the previous example, we consider the following nonlinear
optimal control problem

minimize
u

maximize
w

∫ ∞

0
q(x, R, S) + ‖u‖2

R − ξ‖w‖2
S ds, (1a)

subject to ẋ = f(x) + G�(x) u + G
�(x) w, (1b)

x(0) = x0.

Here, x ∈ R
n denotes the state vector, x(0) = x0 is the initial state and

f(x) is a nonlinear vector field representing a mapping from R
n to R

n. We
assume that f(x) is continuous and locally Lipschitz with f(0) = 0, that is
the zero state is a steady state when no inputs are applied. The input matrix
G(x) = [g�

1 (x), . . . , g�
m(x)]� ∈ R

m×n is given by the nonlinear functions
gi(x), i = 1, . . . m that are mappings from R

n to R
n and continuous over

R
n. The disturbance input matrix G(x) = [g�

1 (x), . . . , g�
nw

(x)]� ∈ R
nw×n

and given by the nonlinear functions gi(x), i = 1, . . . nw, that are mappings
from R

n to R
n and continuous over R

n. We denote by w ∈ R
nw an unknown

disturbance, ξ is a positive constant, R = R� > 0, S = S� > 0 are design
matrices. Moreover, the mapping q : Rn → R>0 vanishes only at the origin,
that is q(0) = 0 and will be determined in the remainder.

Our goal is to find a state feedback controller u∗(x) ∈ R
m that solves the

following Hamiltonian-Jacobi-Isaacs-Equation (HJIE) to optimality.

min
u

max
w

{
L(x, u, w, R, S) + ∇�

x V
(
f(x) + G�(x) u

)}
= 0, (2)

where L(x, u, w, R, S) = q(x, R, S) + ‖u‖2
R − ξ‖w‖2

S , and V : R
n �→ R>0

is the value function of the optimal control problem, defined as [Ba sar and
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Bernhard, 2008, Ch.2],

V (x0) := inf
u

sup
w

∫ ∞

0

(
q(x, R, S) + ‖u‖2

R − ξ‖w‖2
S

)
ds.

Throughout this work, we illustrate feedback control synthesis via cost
design and using a control Lyapunov function [Sontag, 1999], i.e., a Lyapunov
function for the closed-loop system associated with some choice of the control
law.

2.1 Cost design for optimal control
We start our analysis with the nominal optimal control problem (1) and set
w = 0. In the subsequent analysis, we propose an approach to solve the
nonlinear control problem (1) to optimality with an appropriate choice of
the function q(x, R) in the following theorem.

Theorem 1

Consider the nominal optimal control problem (1), i.e., when w = 0. Let
V : Rn �→ R>0 be a continuously differentiable function associated with
a stabilizing feedback control law

u∗(x, R) = −1
2

R−1G(x) ∇xV, (3)

where,

∇xV � (f(x)+G�(x) u∗(x, R)
)

< −‖u∗(x, R)‖2
R. (4)

Define

q(x, R) = −∇xV � (f(x)+G�(x)u∗(x, R)
)− ‖u∗(x, R)‖2

R. (5)

Then, the following statements hold:

1. The unique optimal control is given by u∗ in (3).

2. The optimal control problem (1) has the optimal value V (x0).

Proof. Consider the Hamiltonian function

H(x, u, λ) = L(x, u) + λ�(f(x) + G�(x) u),

where λ ∈ R
n is the vector of co-state variables. We minimize H(x, λ) by

calculating,

∂H(x, u, λ)
∂u

= 2 R u∗(x) + G(x) λ.
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The optimal controller reads as,

u∗(x) = −1
2

R−1G(x) λ = −1
2

R−1G(x)∇xV,

where we set λ = ∇xV , following [Vinter, 2010, Ch.1.4]. This coincides with
the stabilizing controller (3).

For the sufficiency for optimality of (3), we plug-in the controller (3)
into (2) and obtain,

q(x, R) − ‖G(x)∇xV ‖2
R−1 + ∇�

x V f(x) = 0. �

By choice of the function q(x, R) in (5), the HJBE is satisfied. The positive
definiteness of q(x, R) follows from the inequality (4). We conclude that V
is a value function and the control law (3) is sufficient for optimality. The
optimal value is given by V (x0) and the proof is standard. See e.g., [Liberzon,
2011, Ch 5.]

Remark 1

We make the following observations:

• The inequality (4) is equivalent to,

V̇ (x) < −‖u∗(x)‖2
R.

This implies by Lyapunov’s second method that the origin is asymp-
totically stable for all system trajectories in closed-loop with (3).

• Our approach relies on feedback design via a control Lyapunov function
V (x) to find a stabilizing controller u∗(x) of the form (3). By cost
design of q(x, R) as defined in (5), V (x) is a value function of (1) and
we recover the optimal controller (3).

• Given a control Lyapunov function V , the matrix R > 0 represents a
tuning knob that can be used to improve the error decay or minimize
the control effort. Note that V is a value function of the optimal control
problem (1) with any positive definite matrix R′, where R′ ≤ R and
associated with the cost function L(·, R′) given in (1).

• The cost design in (5) exploits the intrinsic properties of the origin of
the open-loop or unforced system (1b) (i.e., when u = 0) to achieve
optimality. In particular, if ∇�

x V f(x) < 0, then the inequality (4) is al-
ways satisfied (for any positive definite R) and the origin of the unforced
system is asymptotically stable with the Lyapunov function V (x). In
this case, the matrix R > 0 can be tuned arbitrarily with the same
fixed V (x). �
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Example 2 (Linear systems) Consider the following LTI system together
with q(x, R) = x�Q(R) x, where Q(R) ∈ R

n×n is a matrix to be determined
with R = R� > 0.

ẋ = A x + B u, x(0) = x0, (6)

where A ∈ R
n×n, B ∈ R

n×m, u ∈ R
m and x0 ∈ R

n. Given the Lyapunov
function defined by

V (x) =
1
2

x�P x, P = P � > 0,

we apply Theorem 1 and the optimal controller is given by,

u∗(x, R) = −1
2

R−1B�P x. (7)

We demonstrate in the sequel, that the application of optimal control theory
is simplified, if we keep P fixed and only tune the matrices R and conse-
quently Q(R) given as in (5) by,

Q(R) =
1
4

P B R−1B�P − A� P − P A. (8)

Given a positive definite Q defined in (8), the matrix R can be tuned by
choice of any positive definite matrices R′ ≤ R with Q(R′) in (8). Thus, we
do not need to resolve the algebraic Riccati equation (8) for every value of
the input matrix R, while fixing the positive definite matrix P .

Special case: Under the assumption that A is asymptotically stable, let
P > 0 satisfy,

P A + A�P = −Q∗, Q∗ = Q∗� > 0. (9)

Then, the matrix Q(R′) in (8) is a positive definite matrix for any other
positive definite matrix R′ > 0. The resulting control law (7) is optimal
using the matrix P in (9).

The following illustrative example is taken from [Jouini et al., 2021].
Example 3 (no dynamics): Consider the optimal control problem de-

scribed by,

minimize
u

∫ ∞

0
q(x(s)) + ‖u(s)‖2

R ds, R = R� > 0,

subject to ẋ = u, x(0) = x0,

where x ∈ R
n is the state vector, u ∈ R

n is the control input and the mapping
q(x, R) is to be determined. Given a continuously differentiable function
V (x) > 0 with V (0) = 0, we arrive at the optimal feedback controller,

u∗(x, R) = −1
2

R−1 ∇xV, (10)
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associated with the cost function given by Theorem 1 as

q(x, R) =
1
4

‖∇xV ‖2
R−1 .

Observe that, due to the trivial system dynamics, i.e., f(x) = 0, we can
select any other control input matrix R′ > 0 with L(x, R′), while assuring
optimality of u∗(x, R′) in (10).

2.2 Cost design for H∞−control
We now turn our attention to the disturbed/robust optimal control prob-
lem (1) by setting w �= 0. We arrive to the following result.

Proposition 2

Consider the robust optimal control problem (1) together with continu-
ously differentiable function V : Rn �→ R>0 associated with a controller
u∗ in (3). Let w∗(x) = 1

2 ξ S−1G(x)∇xV . Assume that,

∇xV �
(

f(x) + G�(x) u∗(x) + G
�(x) w∗(x)

)
< −‖u∗(x)‖2

R + ξ ‖w∗(x)‖2
S ,

(11)

and define

q(x, R, S) = − ∇xV �
(

f(x) + G�(x) u∗(x) + G
�(x) w∗(x)

)
− ‖u∗(x)‖2

R + ξ ‖w∗(x)‖2
S . (12)

Then,

1. The optimal control u∗ is given by (3).

2. The robust optimal control problem (1) has the optimal value V (x0).

Proof. For w = 0, the optimal controller is given by (3). For u = 0, we de-
termine the worst case disturbance w = w∗, i.e., that maximizes the Hamil-
tonian function,

H(x, u, ∇xV ) = max
w

{L(x, u, w) + ∇�
x V (f(x) + G�

w(x) w)}.

This is achieved at w = w∗, where

−2 ξ Sw∗ + G(x)∇xV = 0,

which in turn implies that,

w∗(x) =
1

2 ξ
S−1G(x)∇xV. (13)
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Next, we plug in (3) into HJIE (2) and obtain,

q(x, R, S) + ∇�
x V

(
f(x) − 1

4
G�(x)R−1G(x)∇xV

)
+ ∇�

x V G
�(x) w∗(x) − ξ‖w∗(x)‖2

S = 0. �

By letting w∗(x) as in (13), we arrive at the function q(x, R, S) in (12)
and the HJIE in (2) is satisfied. The positive definiteness of q(x, R, S) is
guaranteed by (11). This shows that V is a value function of the robust
optimal control problem (1). The optimal value is given by V (x0) and the
proof is standard. See e.g., [Ba sar and Bernhard, 2008, Thm 4.15].

Remark 2

We have the following observations:

• The system in closed-loop with (3) is finite-gain L2− stable with L2
gain less than or equal to 2

√
ξ.

• For a given value function V (x), the design matrices R > 0 and S > 0
are tuning knobs that can be exploited to penalize the control input
and disturbance deviations with the same V and any positive definite
matrices R′ and S′ with R′ ≤ R, S′ ≥ S and L(·, R′, S′) in (1).

• If it holds that,

∇�
x V (f(x)+ G

�(x) w∗(x)) < 0,

then, the origin is asymptotically stable for the worst case disturbance
w∗(x) and V (x) is a Lyapunov function of the unforced system. Thus,
condition (11) is always satisfied and q(x, R′, S′) in (16) is positive
definite independently of the choice of R′ and S′ and we can tune these
design matrices arbitrarily using the same fixed V . �

We illustrate our approach using the following example.
Example 4 (Linear systems) Given the LTI system,

ẋ = A x + B u + B w, x(0) = x0 (14)

where B ∈ R
n×nw is disturbance input matrix and w ∈ R

nw is unknown
additive disturbance. We define the cost function,

L(x, u, w, R, S) = ‖x‖2
Q + ‖u‖2

R − ξ ‖w‖2
S , ξ > 0. (15)
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Following Proposition 2, we select

Q(R, S) =
1
4

PBR−1B�P − 1
4ξ

PBS−1B
�

P − P A − A�P. (16)

Given a positive definite matrix P , so that Q > 0, where Q is given in (16).
Then we can tune the design matrices S and R by choice of positive definite
matrices R′ and S′ with R′≤R and S′≥S using the same matrix P with
L(·, R′, S′) in (15).

Special case: Under the assumption that A is asymptotically stable, given
a positive definite solution P = K−1 where,

A K + K A� +
1

4 ξ
B

�
S−1 B < 0,

then Q(R′, S′) > 0 as given in (16) and for any other positive definite matrices
R′ and S′, the control law (7) is optimal using the same matrix P with
L(·, R′, S′) in (15).

3. Application

3.1 Optimal control of coupled oscillators
Consider a network of n−coupled oscillators whose i−th oscillator dynamics
are described by the following differential equations.

θ̇i = ωi, i = 1 . . . n, (17)

Miω̇i = −Di ωi −
∑

j∈Ni

bij

(
sin(θij) − sin(θ∗

ij)
)

,

with Mi > 0 and Di > 0 and bij > 0 denotes the coupling strength between
the oscillators i and j. Each oscillator is represented by its phase angle θi ∈ R

and frequency ωi ∈ R. Let ω = [ω1, . . . , ωn]�, θ = [θ1, . . . , θn]� and θ∗ =
[θ∗

1 , . . . , θ∗
n]� be the vector of the relative (to a nominal) oscillator frequencies,

oscillator angles and nominal steady state angles respectively. Define θij =
θi − θj and θ∗

ij = θ∗
i − θ∗

j . Let B be the incidence matrix of the underlying
graph G.

Given a trajectory [θ(t)�, ω(t)�]� of (17), then [(θ(t) + α1n)�, ω(t)�]�,
α ∈ R is also a trajectory of the system (17). To eliminate this rotational
invariance, we consider the following coordinate transformation,

δ(t) = B�θ(t) ∈ R
m. (18)

Let θs be an induced steady state angle of (19) with steady state frequency
ω∗ = 0, δs = B�θs and δ∗ = B�θ∗ ∈ R

m be the nominal angle differences.
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Observe that local asymptotic stability of [δs�, 0�]� is equivalent to local
asymptotic convergence of the solutions of (17) to [θs�, 0�]�. See e.g., [Mon-
shizadeh et al., 2017]. Next, we make the following assumption.

Assumption 1—[Monshizadeh et al., 2017]

Assume that the steady state vector δs ∈ R
m satisfies,

B Ξ sin(δs) = B Ξ sin(δ∗),

for all δs ∈ Im(B�) ∩ (− π
2 , π

2 )m.

Next, consider the following optimization problem,

minimize
u

∫ ∞

0
q(δ(s), ω(s)) + ‖u(s)‖2

R − ξ ‖w(s)‖2
S ds

subject to δ̇ = B�ω + u,

Mω̇ = −D ω − B Ξ (sin(δ) − sin(δ∗)) + w, (19)
(δ(0), ω(0)) = (δ0, ω0),

where M > 0 and D > 0 are diagonal matrices of inertia and damping
coefficients and the coupling strengths bij > 0 are collected in the diagonal
matrix Ξ = diag(bij). Let ξ be a positive constant and R = R� and S = S�

be positive definite matrices, u = [u1, . . . , um]� ∈ R
m be the input and

w = [w1, . . . , wn]� ∈ R
n the disturbance vector. Furthermore, consider the

following function (see e.g., [Monshizadeh et al., 2017; Dörfler and Bullo,
2012]) given by,

V (δ−δs, ω) =
1
2

‖ω‖2
M − 1�

n Ξ (cos(δ) − cos(δs))

− (δ − δs)� Ξ sin(δs). (20)

It is noteworthy that under Assumption 1, V (δ −δs, ω) in (20) is locally (i.e.,
in a neighborhood Ω of (δs, 0)) positive definite.

Next, we have the following corollary.

Corollary 3

Consider the optimal control problem (19) under Assumption 1. The value
function V (δ−δs, ω) given by (20) satisfies the HJBE (2) together with
the following formulas for the cost functions.

1. For w = 0, then

q(δ, ω, R) =
1
4

‖sin(δ) − sin(δs)‖2
Ξ R−1 Ξ + ‖ω‖2

D. (21)
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2. For w �= 0, if D − 1
4 ξ S−1 > 0, then

q(δ, ω, R, S) =
1
4

‖sin(δ) − sin(δs)‖2
Ξ R−1 Ξ + ‖ω‖2

D− 1
4ξ S−1 . (22)

Moreover, the optimal controller is uniquely given by

u∗(δ, R) = −1
2

R−1 Ξ (sin(δ) − sin(δs)). (23)

Proof. The two statements follow directly from Theorem 1 and Proposition 2
with the Lyapunov function (20). To see this, Lie derivative of V is given by

V̇ (δ−δs, ω) = −‖ω‖2
D ≤ 0.

Under Assumption 1, the sub-level sets of V are bounded in a neighborhood
Ω of [δs�, 0�]�. By applying Lasalle’s invariance principle [Khalil, 2002], the
trajectories of the dynamical system (19) starting at Ω converge to the set
where ω = 0, which in turn implies that δ = δs, where δs − δ∗ is a constant
angle vector. This establishes that [δs�, 0�]� is locally asymptotically stable
and V in (20) is a Lyapunov function for the system dynamics (19), for all
x ∈ Ω. For the second statement, the condition D > 1

4ξ S−1 ensures that
q(·, R, S) > 0 as in Proposition 2. �

Note that the controller u∗(δ, R) in (23) is locally optimal, i.e., valid in
a neighborhood Ω of [δs�, 0�]� and distributed, i.e., depends on the angle
differences of the neighboring oscillator angles and the functions q(·, R′) and
q(·, R′, S′) remain positive for any other positive definite matrices R′, S′ > 0.

3.2 Simulations
We adopt the same setup as in [Jouini et al., 2021] and consider a network
of three inverters with system dynamics (17). The parameters Mi and Di

represent inertia and damping coefficients. The inverters are connected by
purely inductive transmission lines with line susceptance bij > 0 as shown in
Figure 1. We test numerically the derived optimal controller (23) for nomi-
nal (w = 0) and disturbance attenuation (w �= 0) settings. The disturbance
w = [w1, . . . , wn]� ∈ R

n models e.g., DC-side generation and AC side fluc-
tuations [Kundur et al., 2004]. For simplicity, we set all line susceptances
bij to one per unit (p.u.). The parameters in (17) are chosen uniformly with
M1 = M2 = M3 = 0.01[s2/rad] and D1 = D2 = D3 = 0.1[s/rad].

Time-domain simulations of the open-loop angle differences and fre-
quencies with the unforced inverter system (i.e., u = 0) in (17) and the
desired steady state angle differences δ∗ = [0, 0, 0]�, starting at δ(0) =
[0.02, 0.015, 0]� show that δs = [0.0113, 0.0113, −0.0113]� and thus satisfy
Assumption 1. Moreover, the inverters’ frequencies synchronize at ω∗ = 0.
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Figure 1. Three inverter system with dynamics given in (17), where Pi =∑
j∈Ni

bij sin(θij) and P ∗
i =

∑
j∈Ni

bij sin(θ∗
ij) for i = 1, 2, 3.

Next, we consider the optimal control problem (19) and implement the
control law (23) both for nominal (w = 0) and disturbance attenuation (w �=
0). We additionally verify the optimal controller for two examples of the
design matrix R1 and R2. Once in closed-loop with the optimal controller
(23), all frequencies synchronize at the nominal value with a decay towards
zero and improved transient behavior both for R1 = 0.1 ·I3 and R2 = 0.01 ·I3
in Figures 2 and 3 respectively. Compared to the input matrix R1, the matrix
R2 penalizes less the input variations and thus allows for more control input
effort leading to faster error decay rate. In the presence of non-zero, additive
and randomly generated disturbances w = [w3, w2, w1]�, Figure 4 shows
that the frequencies remain bounded, albeit non-synchronized, which is in
accordance with our theory. The nominal and disturbed cost functions are
decreasing towards a value that is nearby zero.

4. Conclusion

We studied the role of cost design for optimal feedback control in satisfying
HJBE or HJIE in theory and via examples and an application to control of
oscillatory systems. The optimal control problem reduces to a decision on
how to tune the control gains, while the value function remains unchanged.
The optimal controller is thus comparable to a linear quadratic regulator. It is
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Figure 2. Simulations for w = 0 of angle differences, frequencies, inputs
and the cost function of the three inverter system described in Figure 1 for
w = 0 after closing the loop with the optimal control (23) with R1 = 0.1 ·I3.
The angles are stabilized at the specified steady state and the frequencies
synchronize and decay towards zero. The cost function L(δ, ω, R1) strictly
decreases towards a nearby zero value.

in our future interest to investigate the ramifications of the proposed design
method on the study of passive systems and constrained optimal control
problems.
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Addendum to Paper III,
post print

We have the following observations and errata in regards of Paper III.

1. At the time of submission, the authors were not aware of the literature
on inverse optimal control theory, which already exploits the power-
ful idea of cost design to derive optimal controllers. The results were
derived independently.

2. The aspect of showcasing the application of inverse optimal control
in networked systems by deriving controllers with structure (i.e., dis-
tributed) is a novelty in our work. This can be spotted through the
derivation of an inverse optimal robust stabilizing control for the an-
gles of the network of second-order coupled oscillators. In the context
of power systems, these can be droop-controlled inverters.

3. In Example 1, the sub-level c, where 0 < c < n, describes the set
X = {x ∈ R

n| : ‖x‖∞ < π/2, 1�
n cos(x) ≥ c} and must be chosen

sufficiently close to n to guarantee forward invariance of X .

4. Under many operational conditions, the induced steady state angles δs

given in Assumption 1, might not be given or accessible. This impedes
the implementation of the control law (23) along with the functions (21)
and (22). We propose a solution for radial or acyclic graphs, i.e., when
the graph with associated incidence matrix B ∈ R

n×m contains no
cycles and hence ker(B) = 0. The steady state of (19) results from
setting the frequency error ω̇ = ω = 0 and we obtain,

sin(δs) = sin(δ∗) . (A.1)

In this case, the gradient of V an be written as,

∇δV (δ) =
1
2

Ξ (sin(δ) − sin(δs)) =
1
2

Ξ (sin(δ) − sin(δ∗)),
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Figure A.1. Simulations of the three oscillators’ angles, frequencies, inputs
and the integrand of the disturbed cost functional as a correction to Figure 4
with ξ = 2.501.

where we had recourse to (A.1). In this way, the controller (23) and the
cost functions (21) and (22) depend on the nominal steady state angle
δ∗, readily obtained from dispatched values resulting from solving the
optimal power flow at steady state.

5. We note that θs is the induced steady state of the transformed system
angle (17), instead of the power system in original coordinates (19) and
δ(0) = [0.02, 0.015, 0] ∈ R

3.

6. Note that the disturbance w(t) in (1) is assumed to have a finite
L2−norm, i.e., it holds that

√∫∞
0 w(s)�w(s)ds < ∞.

7. In Figure 2, the cost function L(δ, ω, R1) strictly decreases towards a
zero value, instead of a nearby zero value.

8. In Figure A.1, we provide , new simulations for the inverse optimal
robust control problem depicted in Figure 4, where the cost function
is seen to be strictly decreasing towards −0.01873. We simulate the
closed-loop behavior in the disturbed case. For non-zero disturbance
w ∈ R

3, the oscillator frequencies synchronize at an induced steady
state frequency 0.3 [rad/s].
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Paper IV

Inverse optimal control for angle
stabilization in converter-based generation

Taouba Jouini Anders Rantzer Emma Tegling

Abstract

In inverse optimal control, an optimal controller is synthesized with re-
spect to a meaningful, a posteriori defined, cost functional. Our work
illustrates the usefulness of this approach in the control of converter-
based power systems and networked systems in general, and thereby
in finding controllers with topological structure and known optimal-
ity properties. In particular, we design an inverse optimal feedback
controller that stabilizes the phase angles of voltage source-controlled
DC/AC converters at an induced steady state with zero frequency er-
ror. The distributed angular droop controller yields active power to
angle droop behavior at steady state. Moreover, we suggest a practical
implementation of the controller and corroborate our results through
simulations on a three-converter system and a numerical comparison
with standard frequency droop control.

Submitted to American Control Conference (ACC), 2022. Reprinted with
permission.
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1. INTRODUCTION

A diagnosis of the event of September 28, 2016 in Australia shows anomalous
power systems dynamics caused by a series of voltage dips [Australian En-
ergy Market Operator (AEMO), 2017]. This was originated by the growing
angle difference between the respective voltage phase angles, resulting in a
loss of synchronism between South Australia and the remainder of the Aus-
tralian grid. Following separation, sudden phase angle changes accompanied
by a rapid change in the load have resulted in inaccuracies in short-term fre-
quency measurements [Paolone et al., 2020]. A lesson that can be drawn from
the event in Australia is the importance of phase angles in monitoring the
stability of converter-based generation and, in particular, in providing useful
information that can be exploited for a better design of control schemes for
converters [Paolone et al., 2020]. Recently, different DC/AC converter control
strategies have been proposed to stabilize the output voltage angles at a de-
sired steady state, for example, based on gradient systems and Kuramoto-like
oscillator dynamics [Arghir and Dörfler, 2019; Tayyebi et al., 2020]. Similarly,
our work aims to control the angles of DC/AC converters.

Optimal control theory remains an important theoretical tool for stabil-
ity and control in power systems [Molzahn et al., 2017] and is the backbone
of a plethora of strategies for an improved operation of the electrical grid.
In [Hauswirth et al., 2016], dynamic online feedback optimization is used
to synthesize controllers, while accounting for input and output constraints
and allowing for non-smooth feasible sets based on projected gradient de-
scent algorithms. Furthermore, the online feedback optimization discussed
in [Colombino et al., 2019] enables the study of time-varying convex optimiza-
tion problems, while allowing for disturbance rejection and exact tracking,
and is showcased for power transmission systems to compress the time scales
between secondary and tertiary control. Feedback optimization based on dy-
namic programming is deployed in [Guo et al., 2018] for power scheduling
of converters and the associated operational cost in a data-driven stochastic
framework.

In optimal control, it is well-known that every meaningful value function
is a Lyapunov function. This constitutes an important link between stability
and optimality and allows for the systematic analysis of optimal feedback con-
trollers. In inverse optimal control, the converse link is established. Namely,
it is shown that every Lyapunov function is a meaningful value function.
This allows for a systematic design of feedback controllers associated with
control Lyapunov functions, that are optimal with respect to an a posteri-
ori specified cost functional, satisfying the Hamilton-Jacobi-Bellman (HJB)
equation. This was first spotted by R.E. Kalman [Kalman, 1964] for linear
systems with quadratic cost and later extended to nonlinear systems by Moy-
lan and Anderson in [Moylan and Anderson, 1973], Casti et al. [Casti, 1980]
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for a class of cost functionals that are, e.g., strictly convex in the input for a
fixed state, subject to general nonlinear systems. Afterwards, Freeman and
Kokotovic incremented the system dynamics with a disturbance in [Freeman
and Kokotovic, 1996] and studied the inverse robust stabilization problem
leading to the analysis of the Hamilton-Jacobi-Isaacs (HJI) equation. Our
previous work in [Jouini and Rantzer, 2021] exploits the same theory to de-
sign a distributed controller in coupled second-order oscillators.

In this work, we consider a network of voltage-source controlled convert-
ers, each of which is equipped with the capability of actuating the voltage
phase angle, using synchrophasors. Synchrophasors are time-synchronized
electrical measurements that represent both the magnitude and phase angle
of the electrical sinusoids, measured by fast time-stamped devices, or phasor
measurement units (PMUs), and constitute the basis of real-time monitoring
and control actions in the electric grid [Usman and Faruque, 2019]. In par-
ticular, we formulate an inverse optimal control problem, where a distributed
solution to the HJB equation can be tuned without expensive computations.
From a theoretical point of view, the proposed controller demonstrates the
usefulness of inverse optimal control theory in networked settings via synthe-
sis of an optimal and stabilizing controller, namely the angular droop control
with topological structure, a feat that is otherwise challenging.

The angular droop controller, designed for the multi-converter system,
coincides with that proposed in [Zhang and Xie, 2015; Zhang and Xie, 2016].
In these works, only a linear stability analysis is conducted and optimality
is not established. Here, we prove local asymptotic stability of the induced
steady state angle with respect to nonlinear system dynamics. The angular
droop controller turns out to be the inverse optimal locally stabilizing control
law for the multi-converter system with respect to a meaningful cost func-
tional. As such, our control design bridges a gap between control theorists
and power system experts , by demonstrating optimality for the intuitively
appealing controller of power converters. The optimal controller has desired
gradient descent form and possesses grid-forming capabilities contributing
to angle stabilization and thus achieves both primary and secondary fre-
quency control, i.e., zero frequency error. Finally, we validate our results on
a high-order model of three DC/AC converter system in closed-loop with the
angular droop control, give nuts and bolts on how a practical implementation
can be achieved and provide a numerical comparison to standard frequency
droop control analyzed in [Jouini et al., 2021] demonstrating, in particular,
improved scalability properties to large networks.

Notation: For a matrix P ∈ R
n×n, P = P � > 0 and a vector v ∈ R

n,
let ‖v‖P =

√
v�P v. Let diag(v) be the diagonal matrix with elements vi,

‖v‖∞ = supi=1...n |vi| be the maximum norm of v, and sin(v) and cos(v) be
the vector-valued sine and cosine functions. Given a continuously differen-
tiable function V (x), let ∇xV = ∂V

∂x be the the gradient of V with respect
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to x and ∇2
xV = ∂2V

∂2x its Hessian matrix. For p ∈ N, let Ip be the p × p
identity matrix and 1p be the p×1 vector of all ones. Given a dynamical sys-
tem, ẋ(t) = f(x(t)), x(0) = x0, we consider the system to be time-invariant
throughout and mostly drop the time-dependence of the state variables in
the notation.

Furthermore, consider a network described by a connected graph G =
(V, E , Ξ), consisting of |V| = n nodes representing DC/AC converter buses
and |E| = m edges modeling purely inductive transmission lines (i.e., with
zero conductances) with susceptance bkj > 0, (k, j) ∈ E collected in the
diagonal matrix Ξ = diag(bkj), (k, j) ∈ E . The topology of the graph G is
described by the incidence matrix B ∈ R

n×m. Let Nk be the neighbor set
of converter k. We denote by L = B Ξ B� the bus admittance matrix of G,
which is a weighted Laplacian with eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn.

2. Problem formulation

In this section, we start by presenting the multi-converter model follow-
ing [Kundur et al., 1994; Dörfler et al., 2016] and then formulate the corre-
sponding optimal control problem. This underlies the analysis of the angular
feedback control that is at the core of our main result.

2.1 Modeling and setup
Consider a network of DC/AC power converters (e.g., islanded microgrid),
each represented by a voltage phasor and interconnected via inductive trans-
mission lines. We make the common assumption that the system is in quasi-
stationary state, i.e., around a nominal steady state frequency ω∗, see [Kun-
dur et al., 1994; Dörfler et al., 2016], meaning that all phasors are modeled
with constant magnitude (1 per unit), and assume that the angle dynamics
are controllable. For this, the converter dynamics are reduced to the following
integrator dynamics,

θ̇ = u (θ) + ω∗1n, θ(0) = θ0. (1)

Here, u(θ) = [u1(θ), . . . , un(θ)]� ∈ R
n is the control input, θ =

[θ1, . . . , θn]� ∈ R
n is the vector of phase angles of the DC/AC convert-

ers and θ0 ∈ R
n is the initial angle vector. While the modeling choice in

this section ignores the internal dynamics of the converter, it enables the
design of the optimal controller in a concise, closed-form due to its simplic-
ity and mathematical tractability. Later, Section 4 considers a network of
detailed internal converter dynamics, descendent from first-order principles
as in [Jouini and Sun, 2021], and discusses a practical implementation of the
control scheme.
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2 Problem formulation

For the control design (1), we consider a scenario where synchrophasor
measurements, with respect to a global frame of reference, are available to
each converter. This is a reasonable scenario for a future power grid, as
PMU installation is becoming increasingly widespread [Usman and Faruque,
2019]. We define the set of nominal phase angles, rotating at a synchronous
frequency ω∗, as θ∗(t) = ω∗1nt + θ∗

0 ∈ R
n, where θ∗

0 = [θ∗
01, . . . , θ∗

0n]� ∈ R
n

is the nominal initial angle vector. Let θ∗
kj = θ∗

k − θ∗
j define the nominal

phase angle difference between neighboring converters (k, j) ∈ E . Assuming
inductive (i.e. lossless) transmission lines, the active power deviation from
the nominal is given by,

Pe,k(θ) − P ∗
e,k =

∑
j∈Nk

bkj

(
sin(θkj) − sin(θ∗

kj)
)

,

where Pe,k(θ) is the electrical power injected into the network at the k−th
converter and P ∗

e,k is the nominal power drawn from a DC source behind the
k−th converter.

Remark 1

Recall that the control law,

uk(θ) = −1/dk

(
Pe,k(θ) − P ∗

e,k

)
, dk > 0, k = 1, . . . , n, (2)

results in the first-order frequency-droop control, that represents a prevalent
approach for primary control in islanded microgrids. This, however, results in
stationary frequency errors, which requires (2) to be augmented with a sec-
ondary control architecture, namely the automated generation control [Dör-
fler et al., 2016]. �

Following Remark 1, our goal in this work is to use measurements ob-
tained from PMUs to synthesize a feedback controller with optimality guar-
antees. This will be shown to coincide with the angular droop control proposed
in [Zhang and Xie, 2015; Zhang and Xie, 2016]. This controller stabilizes the
phase angle error (with respect to a nominal steady state angle) and is char-
acterized by zero frequency deviation at stationarity.

2.2 Optimal control problem formulation
Consider the following optimization problem,

min
u∈Rn

∫ ∞

0

n∑
k=1

(
αku2

k(θ)+ (3)

1
4αk

(
γk(θk − θ∗

k) + Pe,k(θ) − P ∗
e,k

)2
)

dt,

s.t. θ̇ = u(θ) + ω∗1n, θ(0) = θ0.
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In (3), the first term in the running cost (the integrand) penalizes the control
effort through the positive gains αk > 0, k = 1, . . . , n by minimizing the
scaled total power generation. The second term is designed to accommodate
a desired steady state behavior: power to angle droop, or P − θ droop, where
γk > 0, k = 1, . . . , n, is a droop gain. This droop behavior leads to zero
stationary frequency error and can be seen as follows: under the optimal
control u∗(θ) that solves (3), the running cost goes asymptotically to zero
and it holds that,

lim
t→∞

(
γk(θk(t) − θ∗

k(t)) + Pe,k(θ) − P ∗
e,k

)
= 0.

More precisely, let θs
k := limt→∞ θk(t) be an induced steady state angle

at the k−th converter. Then,

γk(θs
k − θ∗

k) = P ∗
e,k − Pe,k(θs), k = 1, . . . , n. (4)

Equation (4) describes the steady state as a power balance between the active
power and angle deviation from the nominal value, where θs = {θs

k}n
k=1 given

by (4) is the induced steady state angle vector. By taking the time derivative
of (4), we arrive at θ̇s

k = ω∗. It is evident that the steady state frequency
error is zero. Intuitively, (4) is able to guarantee primary and secondary
frequency control at once, i.e., resulting in a power system steady state with
zero frequency error. In what follows, we synthesize an angle feedback control
law u∗(θ) that uniquely solves (3).

3. Inverse optimal control design

An innovative approach to optimal control synthesis was introduced
in [Kalman, 1964; Freeman and Kokotovic, 1996; Haddad and Chellaboina,
2011; Sepulchre et al., 2012; Jouini and Rantzer, 2021] and relies on the
following idea: a stabilizing feedback control law associated with a control
Lyapunov function for a dynamical system is first determined and then a
suitably chosen cost functional is found that satisfies the HJB equation. This
constitutes the so-called inverse optimal control problem, where the running
cost and the control parameters, representing a tuning knob, are determined
a posteriori. This circumvents the need for an extensive search for a good
cost functional and gives a value function from a suggested control Lyapunov
function for free (without analytically and computationally expensive calcu-
lations). It also allows an easy control tuning with stability guarantees and
is applicable to a wide range of optimal control problems.

For our power network application, inverse optimal control allows us to
design a distributed controller with feasible implementation. In this section,
we show that the optimization problem (3) obeys the systematic optimal
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control synthesis presented in [Freeman and Kokotovic, 1996; Haddad and
Chellaboina, 2011; Sepulchre et al., 2012; Jouini and Rantzer, 2021]. For con-
venience, we cite the following Theorem from our previous work [Jouini and
Rantzer, 2021]. The same results are also found in [Freeman and Kokotovic,
1996, Theorem 8.1], [Sepulchre et al., 2012, Section 3.5].

Theorem 1

Consider the optimal control problem,

min
u∈Rn

∫ ∞

0
‖u(s)‖2

R
+ q(x(s)) ds, (5a)

s.t. ẋ = H�(x) u, x(0) = x0, (5b)

where x, x0 ∈ R
n, u ∈ R

n, R = R
�

> 0, q(x) is a function satis-
fying q(x) > 0, q(0) = 0 and H(x) ∈ R

m×n is the input matrix. Fur-
thermore, let V : Rn �→ R>0, be a continuously differentiable function
associated with a stabilizing feedback control law,

u∗(x) = −1
2

R
−1

H(x) ∇xV, (6)

where, ∇xV �H�(x) u∗(x) < −‖u∗(x)‖2
R

. Define

q(x) = −∇xV �H�(x)u∗(x) − ‖u∗(x)‖2
R

. (7)

Then, the following statements hold:

1. The unique optimal control is given by u∗(x) in (6).

2. The optimal control problem (5) has the optimal value V (x0) :=
inf

u∈Rn

∫∞
0 ‖u(s)‖2

R
+ q(x(s)) ds with q(x) in (7).

We make the following assumption.

Assumption 1

The induced steady state angle vector θs = {θs
k}n

k=1 satisfies, B�θs ∈(− π
2 , π

2
)m, where B ∈ R

n×m is the incidence matrix of the underlying graph
G.

Assumption 1 states that the difference in steady state voltage angles be-
tween neighboring nodes is not larger than π/2. This is commonly referred
to as a security constraint, see e.g., [Monshizadeh et al., 2017]. For ease of
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presentation, we introduce,

R = diag{α1, . . . , αn}, Γ = diag{γ1, . . . , γn}.

Let the induced steady state angle θs be given by (4) and define the following
function, that is used in deriving our main result,

V (θ) =
1
2

‖θ − θs‖2
Γ (8)

+
n∑

k=1

∑
j∈Nk

bkj

(
cos(θkj) − cos(θs

kj) − (θkj − θs
kj) sin(θs

kj)
)

.

Our main result is summarized in the following proposition.

Proposition 2

Consider the optimal control problem (3) under Assumption 1. Then, the
following statements hold:

i) The optimal solution of (3) at the k−th converter in a neighborhood
of θs = {θs

k}n
k=1 is the angular droop control defined as,

u∗
k(θ) = − 1

2αk

(
γk(θk − θ∗

k) + Pe,k(θ) − P ∗
e,k

)
. (9)

ii) The steady state angle θs = {θs
k}n

k=1 is locally asymptotically stable
for the closed-loop system (i.e., (1) together with (9)).

Proof. The proof relies on the observation that the optimal control prob-
lem (3) satisfies the conditions of Theorem 1 locally, i.e., in the vicinity of
the induced steady state angle θs.

First, we establish the positive definiteness of the function V around θs.
That is, we establish that V (θs) = 0 and V (θ) > 0 for θ �= θs with θ being in
a neighborhood of θs. For this, we follow a similar approach to [Monshizadeh
et al., 2017] and define V1(θ) = 1

2 ‖θ − θs‖2
Γ and V2(θ) = W2(θ) − W2(θs) −

(θ − θs)�∇θW2(θs) with,

W2(θ) = −1�
n Ξ cos(B�θ),

to rewrite the function V (θ) in (8) as, V (θ) = V1(θ) + V2(θ).
Note that V1 is clearly positive definite around θs. V2 is positive def-

inite around θs if W2 is strictly convex around θs. To show that W2 is
strictly convex around θs, we introduce the coordinate change η := B�θ
and calculate ∇2

ηW2(η) = Ξ cos(η). Under Assumption 1, it holds that
ηs := B�θs ∈ (− π

2 , π
2 )m and hence ∇2

ηW2(η) > 0, for η in the neighbor-
hood of ηs. This shows that W2(η) is strictly convex around ηs. Since strict
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convexity is invariant under affine maps, W2(θ) is strictly convex around θs.
From the argumentation above, we deduce that V2 and therefore V is positive
definite around θs.

Second, we seek to apply Theorem 1. The gradient of V (θ) can be equiv-
alently expressed as,

∇θV = Γ(θ − θs) + Pe(θ) − Pe(θs), (10)

= Γ(θ − θ∗) + Pe(θ) − P ∗
e +

=0︷ ︸︸ ︷
Γ(θ∗ − θs) + P ∗

e − Pe(θs),
= Γ(θ − θ∗) + Pe(θ) − P ∗

e ,

where Pe(θ) = [Pe,1(θ), . . . , Pe,n(θ)]�, P ∗
e = [P ∗

e,1, . . . , P ∗
e,n]� and the last

term in the second step is zero by the induced steady state equation (4).
This means that the control law (9) takes the form, u∗(θ) = − 1

2 R−1∇θV. By
left-multiplying with the gradient of V , it can be deduced that,

V̇ (θ) = ∇�
θ V u∗(θ) = −1

2
∇�

θ V R−1 ∇θV.

Denote by Ω a neighborhood of θs. Note that V is positive definite on Ω and
V̇ (θ) ≤ 0 for all θ ∈ Ω. Let S = {θ ∈ Ω, V̇ (θ) = 0}. The only trajectory that
can stay in S is where the gradient of V given in (10) vanishes, that is, only
at θ = θs. By the Barbashin-Krasovskii theorem [Khalil, 2002, Corollary 4.1],
the steady state angle θs is locally asymptotically stable. Now, we write,

‖u∗(θ)‖2
R =

1
4

∇�
θ V R−1 ∇θV.

Hence, for all θ ∈ Ω, ∇�
θ V u∗(θ) < −‖u∗(θ)‖2

R. The cost functional (3) can
be compactly expressed as,

∫∞
0 ‖u(θ)‖2

R + q(θ) ds, with

q(θ) = −∇θV �u∗(θ) − ‖u∗(θ)‖2
R =

1
4

∇θV �R−1∇θV,

as given in (7) and explicitly written in (3).
All in all, the control problem (3) satisfies the conditions of Theorem 1

locally, in a neighborhood of θs. It follows that (9) is an inverse optimal locally
stabilizing control law for the system dynamics in (3) and V (θ0) in (8) is the
value function of (3). �

The angular droop control (9) is distributed, i.e., it requires only knowledge of
the neighboring angles θj , j ∈ Nk, k ∈ V. Nonetheless, it can be implemented
in a fully decentralized fashion by measuring the active power Pe,k using
PMUs. It is grid-forming according to definitions in [Denis, 2017] and its
tuning is easily understood: If the control gain αk is larger, more control
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effort is allowed at the k−th converter, and the rate of convergence towards
an induced steady state angle θs is faster. In this sense, the input matrix
R > 0 is a tuning knob that allows us to study combinations of the input
penalty, while keeping the same value function.

Remark 2—LQR control

By linearizing around θ = θ∗, the cost functional in (3) can be written as,∫ ∞

0
u(s)�R u(s) + (θ(s) − θ∗)� Q (θ(s) − θ∗) ds, (11)

where Γ = diag{γ1, . . . , γn}, R = diag{α1, . . . , αn}, Q = 1
4 (Γ + L)�R−1(Γ +

L) and L = B Ξ B�. Hence, the optimal control problem (3) becomes an
LQR problem [Khalil, 2002]. As delineated in [Jouini and Rantzer, 2021],
after linearization around θ = θ∗, the control law (9) becomes,

u∗
LQR(θ) = −1

2
R−1(Γ + L) (θ − θ∗), (12)

and represents the H2−optimal controller of (11). �

4. Implementation and numerical simulations

Even though the converter dynamics are not taken into consideration in our
optimal control synthesis, we propose a practical design of the angular droop
control (9) for a network of high-order DC/AC converters. We also remark
that, even though our previous analysis neglects the internal dynamics of
each converter, we numerically demonstrate in the next section that high-
order converter models can be accounted for.

4.1 Test case 1: Angular droop control
For this, we consider the following three-phase averaged and balanced
DC/AC converter dynamics after transformation into αβ−frame, adapted
from [Jouini and Sun, 2021],

Cdcv̇dc = −Kp (vdc − v∗
dc1n) − 1

2
U�i + i∗

dc,

L i̇ = −R i +
1
2

U vdc − v,

C v̇ = −G v + i − B i�,

L�i̇� = −R� i� + B�v,

(13)

where the system parameters are summarized in Table 1. Note that the mod-
ulation signal uk ∈ R

2, collected in the matrix U , represents the main input
to the k−th DC/AC converter.
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4 Implementation and numerical simulations

Figure 1. Three high-order DC/AC converter system described by the dy-
namics (13) in closed-loop with angular droop (14).

Table 1. Parameters of the multi converter system in Fig. 1 and 2.

Symbol Definition Range Numerical
value

uk modulation signal R
2 –

A modulation amplitude [0, 1] 0.33
U = diag(u1, . . . , un) matrix of input signals R

2n×n –
v∗

dc nominal DC voltage R>0 1000
i∗
dc nominal DC current source R

n 500 · 13
Cdc DC capacitance R>0 10−3

Kp DC side control gain R>0 0.5
R AC filter resistance R>0 0.2
L AC filter inductance R>0 5 · 10−4

C AC filter capacitance R>0 10−5

G AC filter conductance R>0 0.1
L� line inductance R>0 5 · 10−5

αk = α, k = 1 . . . n control gain R>0 0.5
γk = γ, k = 1 . . . n droop gain R>0 106

B = I2 ⊗ B extended incidence matrix R
2n×2m –

vdc = [vdc,1, . . . , vdc,n]� DC capacitor voltage R
n –

v = [v�
1 , . . . , v�

n ]� AC capacitor voltage R
2n –

i = [i�
1 , . . . , i�

n ]� AC inductance current R
2n –

i� = [i�
�,1, . . . , i�

�,m]� AC line current R
2m –

After introducing inet = Bi� and defining the active power P̂e,k =
v�

k inet,k, as well as the nominal steady state active power P̂ ∗
e,k = v∗�

k i∗
net,k at

the k−th converter, we propose to implement the angular droop controller
as follows,

θ̇k = − 1
2αk

(
γk(θk − θ∗

k) + (P̂e,k − P̂ ∗
e,k)

)
+ ω∗, (14)

uk = A

[
cos(θk)
sin(θk)

]
,

where 0 < A < 1 is the amplitude of the control input. In Figure 2, we
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depict a summarizing block diagram of a single DC/AC converter whose sys-
tem dynamics are given by (13), set in closed loop with the angular droop
control (14). Note that in this setup, the angular droop control (14) incre-
ments the converter internal dynamics with a virtual angle dynamics θ̇k that
represents the phase angle of the modulation signal uk.

Next, we consider three DC/AC converters with open-loop dynamics de-
scribed in (13) in closed-loop with the angular droop control (14) as de-
picted in Figure 1. The desired steady state angles are given (in rad) by
θ∗

1(0) = 0.951, θ∗
2(0) = 0.92, θ∗

3(0) = 0.967, and thus satisfy Assumption 1.
We select the control gains uniformly for all three converters with parameter
values in Table 1.

−++

−+

+ − 1

2αk

θk θ̇k
P̂e,k

P̂ ∗
e,k

θ∗k

γk

1

s

A

[
cos(θk)
sin(θk)

]
Tαβ→abc

C

i∗dc,k

LR

1

2
vdc,k

1

2
vdc,k G

ik

vk

−

+

ω∗
uabc,k

uk

Figure 2. Block diagram of the interconnection of a single three-phase
balanced and averaged DC/AC converter with (13) and (14). The green
arrows represent PMUs measurements. Tαβ→abc is the inverse of the Clark
transformation, see [Kundur et al., 1994].

We demonstrate the effectiveness of the proposed optimal controller both
for angle stability and frequency synchonization via time-domain simulations
before (under nominal conditions) and after an event corresponding to an
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Figure 3. Time evolution of the converters’ angle errors (in rad) with re-
spect to the steady state θ∗ initialized at θ1(0) = 0.92, θ2(0) = 0.90, θ3(0) =
0.93 and frequency synchronization at ω∗ = 2π50 rad/s, for the setup in
Fig. 1.

increase in the load consumption at one of the converters. Fig. 3 illustrates
the angle stability for the control gains in Table 1 of the angular droop
control for the initial angle values θ1(0) = 0.92, θ2(0) = 0.90, θ3(0) = 0.93.
We observe in simulations that a decrease in the gain α improves the angle
transients, i.e., it results in faster convergence of the angles towards the
induced steady state angle. We also note that the gain γ defines the droop
behavior between a sudden power change and the angle deviation at steady
state. Notice the first-order behavior of the phase angle trajectories dictated
by (14), while converging to their respective steady state values depicted in
Fig. 3. Similarly, the frequencies synchronize at the nominal steady value
ω∗ = 2 π 50 rad/s. Fig. 4 illustrates the droop behavior in the phase angle
after a sudden change in the load consumption and the corresponding effect
on the frequency at the affected converter (C1). The angle drops correspond
to peaks in the frequency time evolution, while the frequency error remains
zero, also during the event.

Finally, we note that angular droop (9) has been numerically tested
in [Zhang and Xie, 2015; Zhang and Xie, 2016] on different setups involv-
ing radial and loopy distribution systems.

175



Paper IV. Inverse optimal control . . . generation

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
−4

−2

0

2
×10−2

Time[s]

θ 1
−
θ∗ 1

(r
ad

)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
314

314.5

315

315.5

316

Time[s]

ω
1
−
ω
∗
(r
ad

/s
)

Figure 4. P − θ droop illustrated at the converter 1 (C1) angle and fre-
quency after a sudden increase in the load consumption from t = 0.3s to
t = 0.7s. The converter angle converges to the induced steady state angle
θs

1 during the load disturbance.

4.2 Test case 2: Comparison with frequency droop control
For the second test case, we compare qualitatively the transient performance
tr(see Definition 1 in [Jouini et al., 2021]) of angular and frequency droop
after linearization, in a scalability analysis that is analogous to [Andreasson
et al., 2017]. For this, consider the angular control (12) and frequency droop
given by [Andreasson et al., 2017] with the same droop coefficients. We model
two example path graph networks, first with 10 nodes and later with 100
nodes interconnected via inductive lines of unit susceptance (in p.u). We then
subject the closed-loop dynamics to arbitrary initial angular perturbations.
The deviation of the angle error trajectories θ − θ∗ is depicted in Figure 5.
We observe that the convergence to a steady state is faster with the angular
droop for both networks, i.e., a better transient performance (compare a) to
c) and b) to d)). More importantly, however, we note that, as the network
size grows from 10 to 100 nodes, the frequency droop shows a significantly
degraded transient performance (compare d) to c)), while the angular droop
shows similar transient performance for the larger network (in b)) as for the
smaller one (in a)), and thus a better scalability.
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Figure 5. A comparison of the transient performance between the lin-
earized angular droop (12) displayed in a) and b) and the frequency
droop [Andreasson et al., 2017] in c) and d) for a path network, where
the network size increases from n = 10 in a) and c) to n = 100 nodes in b)
and d).

5. Conclusion

In this work, we proposed novel insights into the design of the angular droop
control, that establishes its optimality, while accounting for phase angle sta-
bility with zero stationary frequency error. The angular droop control is
distributed and thus showcases the utility of inverse optimal control theory
in networked settings, and is numerically tested on power system simulations.
It is of our future interest to study the stability of the angular droop control,
while including internal DC/AC converter dynamics.
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5
Conclusions

In this thesis, we studied frequency synchronization of coupled high-order
oscillators and synthesized inverse optimal (robust) stabilizing controllers in
networked settings, exemplified through the study of inverter-based power
generation.

5.1 Concluding discussion

In the following, we summarize four takeaways presented in each paper of
this thesis and then answer the research questions posed in Chapter 1. A
summary of all the papers presented in this thesis is given in Fig. IV.1.

5.1.1 Takeaways
Next, we discuss the implications of our work for control designers and power
engineers. We summarize how we should think of our results and use them.

The matching control draws the attention to the DC circuit The matching
control demonstrates the relevance of DC-side measurements, namely the
DC capacitor’s voltage, to achieve transient stability with global frequency
synchronization with the remainder of the grid. This draws the attention to
the key role that DC circuit plays in control of converters. We corroborated
the intuition that AC power must come from somewhere, namely the DC-
side of the converter. Bringing the attention to the DC-side control in the
example of the matching control, is provably crucial to provide resilience to
the power grid through different services (stable operation, droop behavior
at steady state, power support, power sharing).

A high-order converter-system achieves local frequency synchronization,
provided sufficient damping For a network of high-order DC/AC converter
system, characterized by their symmetry that results from a static shift in
all angles, we have seen how local asymptotic (or small-signal) stability of
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Figure IV.1 A summary of all papers presented in this thesis.

their steady state set can be deduced from center manifold theory. This
is achieved under the eigenvalue conditions on the system Jacobian (upon
linearization of the converter system dynamics around a steady state) that
leads to physically meaningful and explicit conditions. The damping on the
DC-side, achieved via proportional control, and a high resistance of the out-
put filter or H∞ control on AC-side, are sufficient for the local frequency
synchronization among the DC/AC converters.

This (re-)affirms that damping in converter control is sufficient for local
frequency stability in power systems.

The choice of the cost to minimize is key to design optimal stabilizing con-
trollers Starting from a given stabilizing controller, we have seen how the
cost functional can be used as a design tool for the controller be optimal. This
is achieved at a zero analytical and computational effort. We illustrated this
important observation through the study of inverse optimal robust control
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problems, where the disturbance affects both the cost and system dynamics.
For power networks, inverse optimal control improves the error decay rate of
the angle transients in droop-controlled inverters.

From a practical point of view, associating optimality with an existing sta-
bilizing controller provides engineers and practitioners with an intuition, on
when and how to deploy a given controller and make an appropriate selection
of its parameters. This is measured by a performance index represented by
the cost to minimize. Additionally, optimality endows the closed-loop system
with inherent robustness guarantees of the controller against uncertainties,
analogous in the linear case, to an LQR controller known (for a diagonal
input matrix R) to have an infinite gain and 60◦ phase margin.

Angular droop is an inverse optimal stabilizing controller This work exam-
ines, theoretically and numerically, inverse optimal control, when embedded
in a networked system, in the example of inverter-based power systems. We
highlight the possibility of deploying inverse optimal control to specifically
design nonlinear controllers with topological structure. Indeed, the angular
droop controller is a distributed solution of the optimization problem, as a
function of neighboring converters’ angles, and thus admits a feasible imple-
mentation.

The angular droop controller exploits the idea of power-to-angle droop
in achieving exact frequency synchronization and thus merging primary with
secondary frequency control. This suggests to rethink the classical scheme of
time-scale separation, associated with the presence of synchronous machines
in the grid. The angular droop control was suggested in the literature of power
systems. From a methodological point of view and given the large number of
controllers already suggested for DC/AC converter-based generation, reverse
engineering optimality for an existing controller, in our case, the angular
droop control, sheds light into the role optimization theory can play in making
a decision between possibly different controllers and which one to deploy in
a given setup and for a well-defined purpose.

5.1.2 Revisiting the research questions
In the following, we revisit the research questions posed in Chapter 1.

Question 1 From a system-theoretical perspective, how can we understand
and predict frequency synchronization in a network of coupled oscillators,
where each oscillator is represented by high-order dynamics, and provide
control strategies with provable stability guarantees that achieve desired wave-
forms?

In Papers I and II, we have investigated the dynamical behavior of a
(network of) nonlinear oscillator(s), (each) described by a sixth-order model,
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whose frequency follows the matching control, an adaptive feedback control
law. The power system has a rotational invariance resulting from a static
shift of all angles and thus possesses a continuum of equilibria. To study net-
work stability, we have employed the center manifold theorem to predict the
behavior of nonlinear trajectories in the vicinity of the steady state set and
arrived at sufficient conditions for local frequency synchronization. Moreover,
we have deployed a set of theoretical tools based on passivity theory, direct
and indirect Lyapunov methods and the center manifold theorem.

Question 2 How can we exploit cost design for the setting, where the cost,
in addition to the system dynamics, is affected by bounded disturbances, to
circumvent numerical and computational complexity, resulting from solving
partial differential equations? In networks, how can we derive optimal control
laws that inherit topological structure, i.e., that are feasible for implementa-
tion, in an explicit and closed-form?

In Papers III and IV, we have developed a systematic approach to design
(robust) feedback stabilizing controllers that are optimal with respect to an
a posteriori chosen cost functional following inverse optimal control theory.
Their tuning is comparable, intuitively, to that of linear quadratic regula-
tors. We provided extensions to existing robust settings by including a term
accounting for the disturbance in the cost functional, and also in the sys-
tem dynamics. We have demonstrated the benefits of inverse optimal control
through different examples to derive optimal (robust) stabilizing distributed
controllers for networked systems.

Question 3 Bearing the two previous questions in mind and given a power
system network dominated by inverter-based generation interconnected via
transmission lines, how can we derive primary (and possibly secondary) fre-
quency controllers with a feasible structure, i.e., whose implementation is
possible, while also guaranteeing transient or small-signal stability? Under
which mild physical conditions can this be achieved? Can we also guarantee
plug and play properties and improve upon existing control schemes?

In the light of our analysis of the matching control in Paper I, we have
investigated the behavior of a single converter in closed-loop with the match-
ing control connected to a resistive load. We proposed different approaches
to increment the matching control with frequency and amplitude regulation
schemes based on passivity-based and energy shaping techniques, as well as
droop and feedforward control methods. We studied the steady state prop-
erties of this control scheme leading to linear mapping between power and
frequency and to power sharing among converters. Moreover, we extended
our setup in Paper II to a power network consisting of identical inverters, in
closed-loop with matching control, interconnected via identical inductive and
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resistive lines. We guarantee frequency synchronization (global for a single
converter connected to a load, local in a high-dimensional multi-converter
system) under mild conditions, asking for sufficient damping on the DC- and
AC-side of (each) inverter.

In Papers III and IV, we have demonstrated the usefulness of inverse
optimal control in networked settings to design controllers with network
topological structure, i.e., distributed controllers at different occasions. For
frequency droop-controlled inverters, we have shown how we can increment
these with a distributed controller that improves the error decay rate of
the angle transients despite recurrent, yet unpredictable load or generation
fluctuations. This leads to an overall better response of the multi-converter
system with respect to common disturbances and to avoid stress situations
during transients, where many devices can saturate. For voltage-source con-
trolled inverters, the angular droop control has been shown to be inverse
optimal stabilizing and guarantees zero frequency error at steady state. The
tuning of these inverse optimal controllers is intuitive. Droop behavior and
therefore, power sharing among inverters are guaranteed.

5.2 Future research directions

This thesis work leaves the door open for many research directions that are
inspired by our findings. We indicate future research directions.

5.2.1 Conservativeness of local synchronization analysis
We conjecture that local asymptotic stability results presented in this thesis
are conservative and can be extended to an almost-global stability result,
where global convergence to a steady state set is guaranteed, up to a set of
initial conditions of zero Lebesgue measure. For second-order oscillators in
the example of droop-controlled inverters, an almost global analysis has been
conducted in [Schiffer et al., 2019]. Similarly, first-order nonlinear oscillators
in the light of virtual oscillator controlled inverters are known to be globally
synchronizing [Colombino et al., 2019]. We leverage the interpretation of the
matching control as a nonlinear oscillator established in [Jouini et al., 2016]
and the multiple numerical studies that tested the matching control [Jouini
et al., 2018]. It has been observed, at many occasions, that this controller
is stabilizing for a network of high-order converter model, even under large
disturbances, e.g., line faults and resilient to abrupt load changes. These
numerical and intuitive interpretations guide and motivate the consideration
of almost global frequency synchronization analysis of a network of high-order
oscillators.
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5.2.2 Constrained inverse optimal control
The important limitation that, for long, has challenged control theorists in
dealing with direct optimal control using dynamic programming, is the an-
alytical and numerical difficulty associated with solving partial differential
equations for optimal solutions. Incorporating input and state constraints
makes the problem even harder to solve. Inverse optimal control flips the or-
der of optimal control synthesis. It starts with a stabilizing controller, whose
optimality is a byproduct of reverse engineering the cost functional. This mo-
tivates the exploration of the potential of inverse optimal control in the study
of optimization problems with input, state and output constraints. Despite
recent efforts in the direction of incorporating input [Nakamura et al., 2007]
and state [Deniz et al., 2020] constraints, inverse optimal control problems
with general set constraints that account for input, state and output states,
simultaneously, have not been studied in the literature. Additionally, we aim
to integrate our approach into the big picture with other important classical
methods that are known to handle constraints well, such as Model Predictive
Control (MPC) [Morari and Lee, 1999] and emerging new approaches, such
as online feedback optimization [Colombino et al., 2020; Hauswirth et al.,
2020]. For the ease of comparison, it is more convenient to embed our con-
trol law in a discrete-time formulation (as in [Haddad and Chellaboina, 2011;
Sanchez and Ornelas-Tellez, 2017]) and suggest suitable implementations un-
der input and state constraints. Power systems remain a direct application of
this future work, where input limitations represent, for example, lower and
upper limits on power generation set-points or modulation amplitude lim-
its in converter-based generation and the output/state constraints consist in
upper and lower bounds on line congestion [Menta et al., 2018].

5.2.3 Study of inverter-interfaced generation
Despite the large and growing number of papers on inverter-based control,
the power system community is still facing a myriad of theoretical and prac-
tical challenges hindering a full integration of inverter-based generation. In
this thesis, we have put our primary emphasis on frequency synchronization
and control, since system frequency is a global quantity, quintessential for pri-
mary control. Voltage regulation came into the picture only as ad-hoc to the
matching control in Paper I through outer layers via the control of the mod-
ulation amplitude. It is known that the modulation signal, is constrained to
the interval [−1, 1], which makes the controllability margin limited and some
control solutions might not be practically implementable. This suggests to
think of an alternative, more systematic approach for voltage control. Mo-
tivated by the interpretation of the matching control as a nonlinear virtual
oscillator as delineated in [Jouini et al., 2016], we can increment the match-
ing controller with an adaptive amplitude function, similar to the dynamics
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of (λ − ω) oscillations in biological systems [Murray, 2007]. The adaptive
voltage and frequency functions suggested in these oscillations serve as de-
grees of freedom to regulate important DC and AC voltages and currents.
This constitutes a future research direction that we aim to investigate in our
future work.
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Sweden’s transmission grid is a part
of the Nordic power system.

Unless you have been hibernating in
a remote cave, you have heard of the
clean energy transition that will radi-
cally transform the generation and dis-
tribution of today’s electricity around
the world and in particular in Sweden.
Swedish energy decision-makers and op-
erators (e.g., Svenska Kraftnät) target
carbon neutrality by the year 2040 1.
In reality, the large rotating machines
responsible for regulating the response
of power generators to consumers’ de-
mand, will soon be replaced by, much
smaller in size, fast-actuated, power
electronics devices or inverters. They
function by drawing power from a re-
newable energy source; e.g., solar, to
provide consumers with electricity, and
will be thereby responsible for main-
taining waveforms at desired 50 Hz fre-
quency and 230 V magnitude. This the-
sis is concerned with deriving methods
to achieve the successful integration of
inverters into power generation.

Now, imagine that on an extremely windy morning in southern Sweden,
you have just finished your shower, picked up your hairdryer, and introduced
it into the wall socket. You press the ’on’ button, but the device does not seem
to work. Don’t wonder for a long time about the cause because the answer
is in front of your eyes. It is the storm that pressures the electrical system at
that moment, which in turn failed to provide power. This scenario is inspired
by real-life events of the blackout that spread over southern Sweden and

1 [https://www.svk.se/siteassets/om-oss/rapporter/2018]

1



Denmark in September 2003, in the aftermath of a storm that hit a power
line 2. This shows how disturbances such as weather conditions can disrupt
or even shut down the operation of power systems. In this thesis, we aim
to develop tools to understand and counteract the effect of disturbances in
power systems largely dominated by inverters.

The inverters left alone, will fail to provide any service, unless they are
equipped with a suitable controller. Control theory is a field concerned with
the mathematical explanation of dynamical systems and the adequate inter-
vention to change their behavior to a desirable one. Our research aims to
exactly find such control solutions that help accelerate the energy transition
in Sweden and build resilience against disturbances such as unpredictable
weather conditions. In short, the goal of our work can be summarized as
follows:

Find control algorithms for inverters that are robust with respect to per-
turbations in power systems. They should also be responsible for maintaining
frequency synchronization, i.e., all inverters’ output voltages oscillate at a
common frequency around nominal (50 Hz) with provable guarantees, while
providing reliable power supply.

From renewables to consumers: the
power supply goes primarily through
inverter control.

Our work lies at the intersection of
topics in control theory, the backbone of
our results. To reach our goal, we first
propose the matching control, a con-
troller that is inspired by the classical
operation of power systems with rotat-
ing machines. Second, we use optimiza-
tion tools, a branch of mathematics that
deals with finding the best solutions
that minimize a given cost, to derive an-
gle controllers. All the above-mentioned
controllers allow for synchronization at
desired frequency and respond quickly
to changes, e.g., when power demand
fluctuates. We show the usefulness of
these controllers in theory and simula-
tions to help experts gain insights into
control strategies for tomorrow’s Nordic power system.

2 [http://news.bbc.co.uk/2/hi/europe/3132332.stm]
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