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Abstract

This thesis dwells upon the synthesis of system-theoretical tools to under-
stand and control the behavior of nonlinear networked systems. This work is
at the crossroads of three topics: synchronization in coupled high-order os-
cillators, inverse optimal control and the application of inverter-based power
systems. The control and stability of power systems leverages the theoreti-
cal results obtained for synchronization in coupled high-order oscillators and
inverse optimal control.

First, we study the dynamics of coupled high-order nonlinear oscillators.
These are characterized by their rotational invariance, meaning that their
dynamics remain unchanged following a static shift of their angles. We pro-
vide sufficient conditions for local frequency synchronization based on both
direct, indirect Lyapunov methods and center manifold theory.

Second, we study inverse optimal control problems, embedded in net-
worked settings. In this framework, we depart from a given stabilizing con-
trol law, with an associated control Lyapunov function and reverse engineer
the cost functional to guarantee the optimality of the controller. In this way,
inverse optimal control generates a whole family of optimal controllers corre-
sponding to different cost functions. This provides analytically explicit and
numerically feasible solutions in closed-form. This approach circumvents the
complexity of solving partial differential equations descending from dynamic
programming and Bellman’s principle of optimality. We show this to be the
case also in the presence of disturbances in the dynamics and the cost. In
networks, the controller obtained from inverse optimal control has a topolog-
ical structure (e.g., it is distributed) and thus feasible for implementation.
The tuning is analogous to that of linear quadratic regulators.

Third, motivated by the pressing changes witnessed by the electrical grid
toward renewable energy generation, we consider power system stability and
control as the main application of this thesis. In particular, we apply our
theoretical findings to study a network of power electronic inverters. We first
propose a controller we term the matching controller, a control strategy that,
based on DC voltage measurements, endows the inverters with an oscillatory
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behavior at a common desired frequency. In closed-loop with the matching
control, inverters can be considered as nonlinear oscillators. Our study of
the dynamics of nonlinear oscillator network provides feasible physical con-
ditions that ask for damping on DC- and AC-side of each converter, that are
sufficient for system-wide frequency synchronization. Furthermore, we show-
case the usefulness of inverse optimal control for inverter-based generation at
two different settings to synthesize robust angle controllers with respect to
common disturbances in the grid and provable stability guarantees. All the
controllers proposed in this thesis, provide the electrical grid with important
services, namely power support whenever needed, as well as power sharing
among all inverters.

12



Sammanfattning

Denna avhandling handlar om att ta fram systemteoretiska verktyg for att
forsta och styra beteendet i olinjira system med nétverksstruktur. Arbetet
gors i ett omrade som gransar till tre olika &mnen: synkronisering av kopplade
hogre ordningens oscillatorer, inversoptimal reglering och kraftsystemtillamp-
ningar med frekvensomriktare. Reglering och stabilisering av kraftsystem
gors med hjalp av teoretiska resultat for oscillatorsynkronisering och inver-
soptimal reglering.

For det forsta studerar vi dynamiken i kopplade hogre ordningens os-
cillatorer med rotatationsinvarians. Invariansen betyder att dynamiken inte
paverkas av ett gemensamt fasskifte i alla noder. Vi ger tillrackliga villkor for
frekvenssynkronisering baserat pa indirekta och direkta Lyapunovmetoder,
liksom péa centrala mangfaldssatsen.

For det andra studerar vi inversoptimala styrproblem med natverksstruk-
tur. I detta ramverk utgar vi fran en given stabiliserande styrlag med till-
horande Lyapunovfunktion och hérleder en malfunktion for vilken regula-
torn dr optimal. Fran den givna regulatorn genererar inversoptimal styrteori
sedan en hel familj av regulatorer som alla dr optimala med avseende pa
tillhérande malfunktioner. Detta ger analytiskt explicita och numeriskt 16s-
bara villkor i sluten form. Tillvigagangsséttet undviker svarigheten med att
16sa de partiella differentialekvationer som normalt uppstar i samband med
dynamisk programmering och Bellmans optimalitetsprincip. Idén utvidgas
dven till fallet med storningar i dynamik och malfunktion. For problem med
nétverksstruktur leder metoden till distribuerade styrlagar, vilket forenklar
deras implementering i natverket. Metoden har tydliga analogier med klassisk
linjarkvadratisk reglering.

For det tredje, motiverade av behovet att hantera fornyelsebar elpro-
duktion, studerar vi dynamik och reglering av kraftsystem som huvudtil-
lampning i denna avhandling. Sérskilt tar vi hjalp av vara nya teoretiska
resultat for att studera nétverkskopplade frekvensomriktare. Forst infor vi
en reglerstrategi som ger omriktarna baserat pa DC-spanningsmétningar ett
oscillatorbeteende med ett gemensamt referensvéirde pa frekvensen. Detta gor

13



att omriktarna beter sig som olinjéra oscillatorer och var teori ger tillréckliga
villkor pa AC- och DC-sidorna i omriktarna for att garantera frekvenssynkro-
nisering. Dessutom visar vi hur inversoptimal reglering kan anvéndas for att
stalla in omriktarvinkelregulatorer med garantier for stabilitet och robus-
thet i natverket. Alla de foreslagna regulatorerna forser niatet med de viktiga
tjansterna att styra och fordela effekt i elnétet.
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Deutsche Kurzfassung

In dieser Arbeit werden systemtheoretische Werkzeuge zur Regleranalyse und
-synthese von nichtlinearen vernetzten Systemen behandelt. Das liegt an der
Schnittstelle von drei verschiedenen Themen: Synchronisierung von gekop-
pelten hoch-dimensionalen Ostzillatoren, inverse optimale Regelung und En-
ergiesysteme mit hohem Anteil wechselrichterbasierter Anlagen. Die Stabil-
itdtsbetrachtung von Energiesystemen hat die theoretischen Ergebnisse der
Synchronisierung gekoppelter hoch-dimensionaler Oszillatoren sowie die in-
verse optimale Regelung genutzt.

Zuerst untersuchen wir die Dynamik von gekoppelten nichtlinearen hoch-
dimensionalen Oszillatoren, die durch ihre Rotationsinvarianz gekennzeich-
net sind. Dass heisst, dass die Systemdynamik nach statischer Verschiebung
ihrer Winkel unveréndert bleibt. Wir liefern hinreichende Stabilitédtsbedin-
gungen basierend sowohl auf direkten sowie indirekten Lyapunov Methoden
und dem Zentrumsmannigfaltigkeits-Theorem, damit die Osczillatoren auf
eine gemeinsame Frequenz synchronisieren.

Zweitens untersuchen wir die inverse optimale Regelung, eingebettet in
Netzwerken. In diesem Rahmen gehen wir von einem gegebenen stabilisieren-
den Regler mit einer zugehorigen Lyapunov Funktion aus, und entwickeln das
Kostenfunktional zuriick, um die Optimalitdt des Reglers zu gewéhrleisten.
Auf diese Weise erzeugt die inverse optimale Regelung, eine ganze Familie
von optimalen Reglern, die Kostenfunktionen entsprechen. Dies liefert an-
alytisch explizite und numerisch zuléssige Losungen in geschlossener Form.
Dieser Ansatz umgeht die Komplexitat der Losung partieller Differentialgle-
ichungen, die von der dynamischen Programmierung und dem Optimalitét-
sprinzip von Bellman abstammen. Das gilt auch, wenn die Dynamik und
die Kosten unter dem Einfluss von Stérungen sind, d.h. im Rahmen der
robusten optimalen Regelung. Der Regler, der durch die inverse optimale
Regelung in Netzwerken erhalten wird, hat eine topologische Struktur, (er
ist z. B. verteilt) und ist damit praktisch anwendbar. Das Tuning von inverse
optimalen Reglern ist analog zu linear quadratischen Reglern.
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Drittens betrachten wir, motiviert von dringenden Verdnderungen des
Stromnetzes zu erneuerbaren Energieerzeugung, die Stabilitdt und Regelung
von Energiesystemen als die Hauptanwendung dieser Arbeit. Insbesondere
wenden wir unsere theoretischen Ergebnisse an, um ein Netzwerk von Wech-
selrichtern zu untersuchen. Wir schlagen den Matching Regler vor. Das ist
eine Regelstrategie, die, basierend auf die gemessene DC spannungen, den
Wechselrichtern ein oszillierendes Verhalten bei einer gewiinschten Frequenz
verleiht. Sobald die Wechselrichter im geschlossenen Regelkreis sind, kénnen
sie als nichtlineare Ostzillatoren betrachtet werden. Unsere Untersuchung der
Dynamik nichtlinearer Oszillatornetzwerke liefert hinreichende, praktisch an-
wendbare und physikalisch interpretierbare Bedingungen, die Dadmpfung auf
der DC- sowie AC-Seite von jedem Wechselrichter, verlangen um die Frequen-
zsynchronizierung zu gewéhrleisten. Andererseits demonstrieren wir die Niit-
zlichkeit der inversen optimalen Regelung fiir die wechselrichterbasierte En-
ergieerzeugung unter verschiedenen hinreichenden Bedingungen, um robuste
Winkelregler in Bezug auf iibliche Stérungen im Netz mit nachweisbaren Sta-
bilitdtsgarantien, zu entwerfen. Alle in dieser Arbeit vorgeschlagenen Regler
stellen dem Stromnetz wichtige Dienste zur Verfiigung, namlich Leistungsun-
terstiitzung und Leistungsaufteilung zwischen allen Wechselrichtern.

16



List of Acronyms

AC
CLF
DC
EU
HIB
HJI
IDA
LQR
MIGRATE
MPC
PBC
PI
PID
PH
PLL
RES
RL
SM
USA
voc
VSC
VSM

Alternating Current

Control Lyapunov Function

Direct Current

European Union
Hamilton-Jacobi-Bellman
Hamilton-Jacobi-Isaacs
Interconnection and Damping Assignment
Linear Quadratic Regulator

Massive InteGRATion of power Electronic devices
Model Predictive Control
Passivity-Based Control
Proportional and Integral
Proportional, Integral and Derivative
Port-Hamiltonian
Phase-Locked-Loop

Renewable Energy Sources

Resistive and Inductive

Synchronous Machines

United States of America

Virtual Oscillator Control

Voltage Source Converter

Virtual Synchronous Machine

17






19



List of symbols

20

Rsq

Sl

n—times
—_—~
T =8'x... xSt
EQ [0, OO)

space of real numbers

space of non-negative real numbers
space of complex numbers

space of non-negative integers

unit circle

n—dimensional unit torus

space of L5 bounded functions

[0, 00) — Rn, i
\/ IS (s ds < oo
x(t) 42 time-derivative of x(t)
V.V (x) d‘; gradient (a column vector) of a
function V : R™ — R with respect to z
V={vy,...v,} set of nodes
E=A{e1,...em} set of edges
{ac}fecey set of edge weights
G = (V,€,{ac}iecey) network graph
t time
W Watts (active power unit)
KW Kilowatts
MW Megawatts
var or VAR VARS (reactive power unit)
Kvar or KVAR Kilovars
Mvar or MVAR Megavars

Re(N) real part of a complex number \ € C
[|v]] 2—norm of a vector v € R"

1.0
I,,neN n—dimensional identity matrix:

0..1




Contents

1. Introduction

1.1
1.2
1.3
1.4

Synchronization in coupled oscillators . . . . . . .. ... ..
Inverse optimal control . . . . . . . ... ... ... .. ...
Inverter-based power generation . . . . . . . ... ... ...
Research questions . . . . . .. .. ... L o L.

2. Systems and control preliminaries

2.1
2.2
2.3
2.4

Passivity . . . . . .
Lyapunov method . . . . . . .. .. ... .. ... ... ...
Center manifold theory . . . . . .. ... ... ... .....
Optimal control . . . . . . ... .. ... ...

3. Literature synopsis

3.1
3.2
3.3

Oscillator synchronization problems . . . . . . .. ... ...
Inverse optimal control . . . . . . .. ... ... L.
Stability and control in power systems . . . . ... .. ...

4. Contributions

4.1

4.2

4.3
4.4

4.5

Paper I: Grid-forming control for power converters based on
matching of synchronous machines . . . . .. ... .. ...
Paper II: Frequency synchronization of a high-order multi-
converter system . . . . . ... L0000 Lo oL
Paper III: On cost design in applications of optimal control .
Paper IV: Inverse optimal control for angle stabilization in
converter-based generation . . . . . . ... ... ...
Statement of contributions . . . . .. ...

Paper I. Grid-forming control for power converters based on

1
2

matching of synchronous machines
Introduction . . . . . ... oo
The three-phase converter model, synchronous machine
model, & their analogies . . . . . .. ... ... ... ....
Grid-forming SM matching control . . . . . ... ... ...
Voltage and frequency regulation . . . . ... .. ... ...

23
25
29
32
42

44
44
48
o1
53

56
o6
99
65

72

72

75
78

80
82

85
86

88
92
99

21



Contents

5 Numerical case study . . . . ... .. ... ... ..
6 Conclusions . . . . . . . . . . . e
References . . . . . . . . . .

Paper II. Frequency synchronization of a high-order multi-converter
system

Introduction . . . . . . ... ... L o
Modeling and setup . . . . . . ... oo
Characterization of the steady stateset . . . . . .. ... ..
Local synchronization of multi-converter power system

Sufficient conditions for stability of the linearized system . .
Simulations . . . . ... oL
Conclusions . . . . . . . . . .. . . e
References . . . . . . . . . . . e

N O U W=

Paper III. On cost design in applications of optimal control
1 Introduction . . . . . . .. ..o
2 Main result . . . . ... ...
3 Application . . . . ... o
4 Conclusion . . . . . . . . ... e
References . . . . . . . . . . ..

Addendum to Paper III, post print

Paper IV. Inverse optimal control for angle stabilization in
converter-based generation

INTRODUCTION . . ... .. .. .
Problem formulation . . . ... ... ... ... .......
Inverse optimal control design . . . . . ... ... ... ...
Implementation and numerical simulations . . . . . . . ...
Conclusion . . . . . . . ..
References . . . . . . . .. L

T W N -

5. Conclusions
5.1 Concluding discussion . . . . . . . . .. ...
5.2 Future research directions . . . . . . . .. .. ... ... ..

Bibliography

22

115
116
119
121
124
127
137
140
142

145
146
147
154
157
158

161

163
164
166
168
172
177
177

180
180
184

187



1

Introduction

The omnipresence of networked systems in a multitude of fields ranging
from economic, social to biological applications is striking. Real life examples
abound of network interactions: the ebb and flow of generating units in power
systems steadily responding to changes in the electrical grid, transportation
systems, in which traffic jam and bottleneck situations are ubiquitous, or
gene regulators, which decide upon gene expression and hence the future
of cell types. The local interaction between several units or subsystems via
virtual (e.g., communication) or physical (e.g., transmission lines) links, de-
scribed by a certain network topology, dictates a global behavior for the
whole group [Zampieri, 2008].

Networked systems are modeled as graphs. A graph is a collection of nodes
or vertices, and edges. Formally, we consider networks as weighted directed
(i.e., oriented) graphs represented by a triplet G = (V,&, {ac}{ccey). The
pair (V,€) is the set of nodes V = {vy,...v,}, the edge set £ given by an
unordered pairs of vertices (7,7) with 4,7 € V and {a.}{cee} is a collection
of strictly positive weights for the edges. The neighborhood of a vertex is
defined by the set of nodes directly connected to it. A directed graph is
defined by a unidirectional orientation of the connections between the nodes.
An undirected graph is given by a bidirectionally oriented edges [Godsil and
Royle, 2001].

Our setup hinges on the modeling of the individual dynamical subsys-
tems or agents (e.g., power generators, cities) as vertices and the links inter-
connecting them as edges (e.g., transmission lines, traffic routes) associated
with edge weights (line admittances, traveling times). The edges can be di-
rected or bidirectionally oriented. Fig. 1.1 depicts an important example of
networked systems consisting of a simplified version of the power network
of Western System Coordinating Council (WSCC), which promotes the bulk
electric system reliability for the entire western interconnection system in the
USA [Delavari et al., 2018]. Tt is comprised of three generators, all represented
by synchronous machines, and connected to three load buses via transmission
lines. Another example of networked systems, is given by a traffic system in

23



Chapter 1. Introduction

163 MW 1 |: 85 MW
227 Mvar

384 Mvar

100 MW
35 Mvar

T_ _
\ |
166 MW \L \L
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5 Mvar 28 Mvar

—
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M
*

334 MW
909 Mvar

Figure 1.1 A simplified diagram of WSCC 9-bus test case that represents
a simple approximation of the Western System Coordinating Council. It is
equivalent to a power system with nine buses comprising three synchronous
machines represented by the circular gray nodes and three load buses rep-
resented by arrows pointing downwards [Delavari et al., 2018].

Fig. 1.2. It illustrates the flow on a highway network in Los Angeles. The dif-
ferent cities represent graph nodes and the directed arrows depict inter-city
traffic flow connections [Como and Fagnani, 2021]. Throughout this thesis,
we consider weighted undirected (i.e., all edges are bidirectionally oriented)
graphs and power networks as the main application of this thesis, in the
example of the network depicted in Fig. 1.1.

Next, we introduce three topics that are central to the thesis and which are
summarized in Fig. 1.3. First, synchronization in coupled oscillators is intro-
duced, where we discuss Kuramoto oscillator dynamics and different notions
of synchronization. Second, we study optimal feedback control with special
emphasis dedicated to the importance of cost design in optimal control. This
leads to the study of so-called inverse optimal control problems. Third and
last, stability and control in power systems are presented as the main appli-
cation under consideration, where the control requirements for transitioning
to inverter-based generation in today’s electrical grid are underlined.

The link between these three topics can be established as follows: The
understanding of coupled oscillator dynamics provides the theoretical foun-
dation to study power systems’ trajectories, where each generator is consid-
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1.1 Synchronization in coupled oscillators

5 tom

D ey L G .~ Santa Monica Los Angeles

3 Los/hngeles~") @\

OGN @ e y 2%y

SantaMofica ~ ] P £
e @7
« =
g Inglewood| /
g Downey { @
ElSequndo. (o) T Brea
Manhattan W \
\ w N
Besch e
\ D s g Fullerton | | “
Ceritos™- = J U0
Torance | ofson ! ‘Anaflelm 4’
~— 1 \CEHH T

7 N Orangel 3

[ 8 Lk Beach N e— 4 | o

Rancho. Termial N \ i

PaosVedes [0 siandl Sanaay ()

SUS \ ORI |

Santa Ana

® R Invine.

Figure 1.2 An example of a traffic flow as a networked system from [Como
and Fagnani, 2021]. The real highway network in Los Angeles is depicted
in A). The traffic flow on some possible paths from Santa Monica (given by
node (1) to Santa Ana (given by node (17)) is shown in B). The links are
represented by directed arrows.

ered as an oscillator and the transmission lines play the role of the coupling
between all generators in the network. In inverse optimal control, stabiliz-
ing controllers are designed and shown to be optimal with respect to an
a posteriori defined cost. This leads, in the context of power systems and
coupled oscillator dynamics, to system-wide frequency synchronization with
optimality guarantees.

1.1 Synchronization in coupled oscillators

Our main focus is in characterizing synchronization in a network of coupled
oscillators. Intuitively, oscillations are defined by a behavior that does not
approach any definite constant value as time goes on and keeps changing.
The simplest kind of example is harmonic oscillations, where their sinusoidal
motion changes periodically. Their dynamics are given by,

0(t) = Asin(wt + ¢), (1.1)

where A > 0 is the amplitude of the harmonic oscillation, w € R is the
frequency and ¢ € S is the initial phase angle.

Moreover, the term synchronization itself derives from Latin referring to
individuals sharing a common notion of time and achieving temporal coinci-
dence of some events. Hence, self-organized dynamics emerge [Wieland, 2010].
Historically speaking, the problem of synchronization was first addressed by
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Chapter 1. Introduction

Synchronization in Inverse
coupled oscillators optimal control
Papers

1 1
o

Inverter-based
power generation

Figure 1.3 Summary of the four papers included in this thesis. Papers I
and II lie at the intersection of coupled oscillator synchronization and
inverter-based power generation, whereas Papers III and IV extend inverse
optimal control theory while dealing with oscillator synchronization in the
context of the control of power networks.

Huygens. Huygens had invented the pendulum clock in 1657. He, subse-
quently, had demonstrated mathematically that a pendulum would follow an
isochronous path, i.e., a path such that a point mass traveling along it with-
out friction, has a periodic motion and the period of which is independent of
the initial position [Bennett et al., 2002].

Given a vector @ = [0y,...,0,]" € T", the angle §; € S' refers to the
i—th component of 0 and 6; is its time derivative. We differentiate between
three notions of synchronization in the following definitions [Bullo, 2021].

e Frequency synchrony: A phase angle vector 6 : R>o — T" is frequency
synchronized if 0;(t) = 0;(t) for all times ¢, for all ¢ # j with ¢, j € V.

o Phase synchrony: A phase angle vector 6 : R>o — T" is phase synchro-
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1.1 Synchronization in coupled oscillators

w1 w
—a 1
—

R AR

-

w2

Figure 1.4 Left side: Representation of three Kuramoto oscillators (1.2)
with angles 6; € S',i = 1,2, 3, rotating on the unit circle according to their
natural frequencies w; € R',i = 1,2, 3. The edge weights are identical and
correspond to identical red springs. They couple every two neighboring os-
cillators with a uniform (across all oscillators) strength k/n, see e.g., [Dorfler
et al., 2013; Bullo, 2021]. Right side: A shift of the phase angles of the Ku-
ramoto model (1.2) by the same value o € R* results in no change in their
dynamics. The new angular positions are colored in green. This is referred
to as rotational invariance.

nized if 6;(t) = 0;(t) for all times ¢t and for all i # j with ¢, j € V.

o Asymptotic synchronization: We define phase angle vectors that asymp-
totically achieve synchronization properties. A vector 6(t) achieves for
example frequency synchronization if lim; o, [;(t) — 6;(t)| = 0, for all
1 # 7 with i, j € V.

ExAMPLE 1.1—KURAMOTO OSCILLATOR [KURAMOTO, 1975]

Given a graph G = (V,&,{ac}ecs). One of the most celebrated oscillators
in physics and control is the Kuramoto coupled oscillator model [Kuramoto,
1975] described by the following equation,

: k —
b, = wi — ~ S sin(6; — 0,), i€V, 1.2
w n;sm( i), 1€ (1.2)

where 0; € S! is the i—th oscillator phase angle, w; € R is the natural rota-
tional frequency, k > 0 is the coupling strength and the weights associated to
an edge (i,7) € € are identical and set to the value a;; = k/n. In fact, each
oscillator’s angle is represented in Fig. 1.4 by a phase angle §; € S! on the cir-
cle, that is rotating with a natural frequency w; € R,;i =1,...,n and linked
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Chapter 1. Introduction

Figure 1.5 Phase synchronization of a system of three coupled pendula is
analogous to frequency synchronization of coupled oscillators. The coupling
is setup through the common spring. Phase synchronization is achieved if
there is sufficiently strong coupling between the pendula [Witthaut et al.,
2017].

to neighboring oscillators’ angles via a uniform (among all neighboring oscil-
lators) coupling k/n. Similar to the pendulum system shown in Fig. 1.5, if
the coupling (represented by a string) between oscillators (represented by the
pendula) is weak, then the motion of the oscillators is incoherent. A strong
coupling induces frequency synchronization: all oscillators move at the same
velocity.

Once each Kuramoto oscillator is represented by a phase angle evolving
on the circle, it is known that their angle dynamics given by (1.2) are in-
variant under an arbitrary shift of all angles. This is referred to as rotational
invariance explained in Fig. 1.4. In this thesis, we will study the stability of
high-order oscillator models, where each oscillator is represented, not only
by their phase angles, but also by other internal state dynamics, such as the
ones arising in the study of inverter-based generation. These converter sys-
tems are also characterized by their rotational invariance, following a static
shift of their angles. |

Next, we introduce the second topic that is encountered in this thesis.
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1.2 Inverse optimal control

Oscillator synchronization deals mainly with stability in coupled oscillator
networks. Stability comes in many settings as a byproduct of solving opti-
mization problems by finding optimal solutions that are shown later to be
stabilizing for the system dynamics. What if we flip the order and start in-
stead from a stabilizing controller to later recover optimality? How should
optimality be understood in this case? i.e., with respect to which cost? The
next section aims to give the preliminaries for this important research direc-
tion.

1.2 Inverse optimal control

Optimality is a universal principle, where many physical and chemical pro-
cesses in nature are governed by solutions to optimization problems. Given
a cost functional representing a measure of performance, optimal control
amounts to choosing the best path among all paths feasible to a given dy-
namical system that minimizes the cost.

1.2.1 Direct optimal control

Chronologically speaking, optimal control stems from the calculus of vari-
ation, a branch of mathematics dealing with path optimization in a static,
i.e., non-dynamic setting [Kot, 2014]. The modern treatment of optimal con-
trol started from the late 1950s, when two mathematical breakthroughs were
made [Boltyanskiy et al., 1962; Vinter, 2010; Liberzon, 2011]. On the one
hand, the maximum principle provided a set of necessary conditions for a
control function to be optimal [Liberzon, 2011]. On the other hand, dynamic
programming provided necessary and sufficient conditions for optimality by
solving the Hamilton-Jacobi-Bellman (HJB) equation [Vinter, 2010]. From
an engineering point of view, many examples of optimal control problems
arise spontaneously, every time a new quantity (e.g., product, accuracy of
information) is synthesized while a performance index is taken into account:
information theory, sales and marketing, production of goods etc. For ex-
ample, in the moon lander problem proposed by [Miele, 1962], the aim is
to answer the following question: how should we land safely a spacecraft on
the moon’s surface with the least possible amount of fuel consumption? The
moon lander problem was subsequently solved by [Meditch, 1964] and [Gaz-
zola and Marchini, 2021] based on optimal control theory.

1.2.2 Cost design in optimal control: the LQR problem

In many optimal control problems, the cost functional can be regarded as a
tuning knob that trades off control effort with error decay rate. We illustrate
this simple yet useful idea through the linear quadratic regulator (LQR)
problem. LQR aims to design a linear controller, so as to minimize the integral
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Chapter 1. Introduction

of a quadratic function along trajectories of the system. It has gained broad
and unfaded research interest since the rigorous mathematical exposition of
the paper [Kalman, 1960].

In the following, we consider the optimal control of a linear time-invariant
system with respect to quadratic performance criteria over an infinite time
interval formulated as follows.

I(zo,u(’)) := mingnize /000 (2" (1)Qz(r) +u' (r)Ru(r)) dr  (1.3a)

subject to 4 = Az + Bu, (1.3b)
z(0) = zo.

The value of the performance index I(-,-) is determined on one side by
the initial condition #(0) = xo and on the other side by choice of the input
u € R™. The state z € R™ is uniquely given by the linear dynamics (1.3b)
starting at z¢. In the formulation (1.3a), there is a compromise between decay
transients (via the term 2" Q ) and input energy (via the term u" Ru). For
this, we assume the following,

=Q" >0,
@ QT - (1.4)
R=R'" >0.
Given a symmetric and positive semi-definite matrix Q = M " M, a sym-
metric positive definite matrix R, and if the pair (A, B) is controllable and
(A, M) is observable, then, the optimal feedback law is given by

u*(z) = —R™'BT Pz, (1.5)

where P is the unique, positive definite solution of the algebraic Riccati
equation,

PA+A"P+Q—-PBR 'B"P=0. (1.6)

The closed-loop system (i.e., (1.3b) together with (1.5)) is asymptotically sta-
ble for any admissible (i.e., satisfying (1.4)) @ and R matrices; see [Kalman,
1960; Willems, 1971]. We make the following observations in regards of the
LQR problem (1.3).

o The optimal control law (1.5) can be tuned as a function of the input
matrix R.

o The cost of (1.3) is quadratic in the state x and in the input w. It
has degrees of freedom in both performance and control design via
the matrices @ and R in (1.4), penalizing deviation from the origin
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1.2 Inverse optimal control
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Figure 1.6 Optimal control solution to Example 1.2. Three different choices
of the input weighting matrices Ri, Rz, R3, where closed-loop trajectories,
in blue are resulting from R; = 0.1 - I, in red from Re = I3, and in yellow
from Rs = 10 - Iz, where I> is the identity matrix in R2. With a decreasing
control effort (corresponding to higher penalty on the diagonal entries of
the matrix R), the system trajectories take a longer time to settle to the
desired amplitude value.

and the permissible control effort, respectively. The choice of matrices
@ and R is not unique and depends on the engineering application
at hand, while preserving closed-loop stability [Murray, 2009]. This
freedom can be exploited to improve the controller implementation.
See later Example 1.2.

e Recall also that, for a diagonal input matrix R, the LQR controller (1.5)
comes with natural robustness margins as a result of its optimality
(namely 60° phase margin and infinite gain margin) [Zhang and Fu,
1996).

ExaMPLE 1.2—LQR TUNING: A TRADE-OFF
The ducted fan is an indoor flying, tethered representation of the longi-
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Figure 1.7 An example of a ducted fan from [Murray, 2009].

tudinal dynamics of an aircraft. Fig. 1.7 shows an example of the ducted
fan. The experiment has been designed in Caltech to study rapid transition
between hover, forward flight and reverse flight, as well as other aggressive
flight maneuvers [Murray, 2009]. Upon system linearization, we derive an
LQR controller to regulate the amplitude of the linearized dynamics to a
reference value. We plot the resulting closed-loop step responses while look-
ing at different input weightings depicted in Fig. 1.6. Note how a decreasing
control effort (corresponding to higher penalty on the diagonal entries of the
matrix R), implies a slower error decay rate of the system amplitude and
vice versa. |

It is important to keep these ideas in mind, as we move towards cost
design in optimal control problems subject to general nonlinear dynamics
that will be investigated later in this thesis. In particular, the non-unique
choice of the quadratic cost in (1.3), leads naturally to the study of different
choices of the cost functional, embedded in the framework of so-called inverse
optimal control. This is the key for understanding future developments in this
thesis.

1.3 Inverter-based power generation

In this section, we introduce the third topic of this thesis. We now study
the main application of our work: the control and stability of inverter-based
power systems. The system-theoretic understanding of power networks infers
results obtained from canonical coupled oscillator models (e.g., the Kuramoto
oscillator) due to the similarity between their respective dynamics. Inverse
optimal control relies on starting from an existing stabilizing controller (e.g.,
suggested by power system experts) to design a performance metric that
makes the suggested controller optimal. In summary, we leverage the link to
these topics for the control and stability of power networks.
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1.3 Inverter-based power generation

1.3.1 Societal context of a transforming power system

Electricity is the most important form of energy used in industrially devel-
oped societies [Kundur et al., 1994]. Due to the exceedingly complex nature
of power systems, they present various challenges to engineers. From plan-
ning and construction to operation, every day power system theorists and
practitioners are faced with a new problem that might impede a successful
power delivery. An example of a power system is the Swedish grid depicted
in Fig. 1.8. The Swedish transmission grid for electricity consists of about
17,000 km power lines, over 200 transformer and switching substations as well
as AC and HVDC interconnectors. The electricity generation is dominated
by hydro power plants (squares) interconnected via high voltage transmission
lines (in red).

Today’s electrical grid is imperatively transforming as the global energy
demand grows explosively, and the environmental concerns about climate
change resulting from greenhouse gas emission, carbon footprint etc., are
increasingly emphasized. Additionally, social, technological and behavioral
changes will have a significant impact on energy systems. Old infrastructure
and equipment also affect the grid operation. For example, Sweden has one of
the world’s oldest national grids. Many of the transmission lines and stations
are approaching the end of their technical lifetime and must soon be renewed.
According to Svenska Kraftnit (the Swedish transmission system operator),
the line connecting Storfinnforsen and Midskog is the world’s oldest 400 kV
line. It entered service in 1952 and now needs to be replaced with a modern
line to be able to receive new wind power planned in the same area.

Moving forward, the European Union is committed to reducing green-
house gas emissions to 80-95% below 1990 levels by 2050 in the context of
necessary reductions by developed countries [European Commission, 2012].
The analysis of the ramifications of decarbonization shows that energy tran-
sition is possible and will be less costly in the long run than current policies.
All scenarios show that electricity will have to play a much greater role than
now (almost doubling its share in final energy demand to 36-39% in 2050).
The EU energy transition scenarios are depicted in Fig. 1.9. A particularly
strong focus is put on renewable resources (wind, solar, photovoltaics) and
is expected to take the lion’s share in the final energy consumption (75%
in 2050) accompanied by a low nuclear providing only 32% of total power
generation. To achieve this, the power system would have to undergo funda-
mental changes and achieve a significant level of decarbonisation already in
2030 (57-65% in 2030 and 96-99% in 2050).

In the United States, wind energy grew at a record pace in 2020, repre-
senting the largest source of new additions to the USA electric-generating
capacity. The USA installed a record 17 GW of new wind capacity in 2020
bringing the total cumulative to 122 GW, with a significant expansion of the
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Figure 1.8 Transmission system of the Swedish national grid in 2020 [Sven-
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Figure 1.9 Evolution of the share of fuel and renewable energy resources
in primary energy consumption from 2030 to 2050 according to EU de-
carbonization scenarios [European Commission, 2012]. Renewable Energy
Sources (RES) will dominate the share by 2050 by more than 50%, accom-
panied by a strong decline in fuels (oil, nuclear, solid fuels) to less than
20%.
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Figure 1.10 Chart data compiled from the wind technologies market report
2010-2020. China, USA and Germany have the greatest total of installed
wind power capacity. Source: [“Land-Based Wind Market Report: 2021 Edi-
tion” 2021].

pipeline for offshore wind projects. The cost of wind energy generation con-
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tinued to decline — laying the groundwork for significant future gains and a
rapid acceleration of renewable energy deployment in a 100% clean electricity
by 2035 [“Land-Based Wind Market Report: 2021 Edition” 2021]. Fig. 1.10
depicts the evolution of international wind power capacity (in megawatts)
among leading countries. China, USA and Germany have the greatest total
of installed wind power capacity with China leading the charts with around
300 000 MW as of 2020.

For the energy transition to succeed, reliable electrical power service must
be put into place. This means, ideally, that loads are fed at constant frequency
and voltage at all times. This implies that both frequency and voltage are
kept within close tolerances to their desired values. One of the first require-
ments for reliable service, in the presence of renewable energy resources, is
to keep the generation units running in parallel with adequate capacity to
respond to the load demand. A loss of synchronism among generators leads
to significant voltage and frequency fluctuations that may activate the pro-
tection schemes in power system by automatically tripping the transmission
lines [Anderson and Fouad, 2008]. Power system stability is thus concerned
with the evolution of their dynamics following a perturbation. If the pertur-
bation does not involve any net change in the power, the generation units
will return to their original state. If power imbalance occurs, a new operating
state is necessary. In any of these states, all interconnected units should re-
main synchronized in frequency, i.e., the power system is stable. That being
said, all units are operating in parallel and at the same speed. Formally, we
define the stability, transient and small-signal stability of a power system
from [Kundur et al., 1994; Kundur et al., 2004] as follows,

DEFINITION 1.1 —POWER SYSTEM AND TRANSIENT STABILITY

If the oscillatory response of a power system during the transient period
following a disturbance is damped and the system settles in a finite time to
a new steady operating condition, we say that the power system is stable. If
the power system is not stable, it is considered unstable.

Moreover, transient stability is particularly concerned with frequency sta-
bility, that is the ability to maintain synchronism in frequency during the
first swing with a period of study of up to 10s under large disturbances. If
the disturbances are small, we refer to the frequency stability as small-signal
stability. |

Transient and small-signal stability given in Definition 1.1 will be treated
throughout this thesis.

1.3.2 Transitioning from synchronous machines to power converters

In this section, we illustrate the properties of two control devices that
interface the grid. We start with synchronous machines, whose dynamics
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1.3 Inverter-based power generation

Figure 1.11  Simplified scheme of a synchronous machine. (I) represents the
rotor, the rotating (mechanical) element of the machine at a rotor phase
angle 6 € S', (2) depicts the armature windings wrapped around the rotor
and belong to the electrical part of the machine and put together in a sta-
tor case given by (3). The armature windings carry current across the field
and generate an electromotive force (EMF). Finally, (@ depicts a coupling
element. A synchronous machine is coupled, on one side, to a prime mover,
e.g., a steam turbine, and on the other side, to a load bus or power trans-
mission system [Giilen, 2019]. See also Fig. 1.1 for a network of synchronous
machines.

have dominated the power system operation for decades and then introduce
DC/AC power converters or inverters that play a central role in the integra-
tion of renewable energy to achieve 100% clean electricity. We illustrate their
differences to understand how a transition to converter-based generation is
possible.

An example of a synchronous machine with its mechanical (rotor) and
electrical components (stator) is represented in Fig. 1.11. Traditionally, syn-
chronous machines rarely loose frequency synchronism or fall out of step, due
to their large rotational masses that maintain them in synchronism. In fact,
the acceleration or deceleration of the machine is governed by,

0(t) = w(t) (1.7)
Mis(t) = —D(w(t) — w*) + P — Pu(t),

where () is the rotor angle, w(t) is the frequency and w* is the desired
frequency, M > 0 is inertia mass, D > 0 is the damping coefficient, P.(t) is
the active power injected into/extracted from the grid and P is its nomi-
nal or reference value. By investigating the electrical power expression P, (t)
which depends on diffusive coupling between phase angles of neighboring ma-
chines, it becomes apparent that Eq. (1.7), or the so-called swing equation

encapsulates coupled second-order oscillator dynamics. Note that the oscil-
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Figure 1.12 Representation of two-level three-phase inverter with an RLC
output filter [Yazdani and Iravani, 2010]. The inverter topology was orig-
inally proposed by Nabae et al. in 1981 [Nabae et al., 1981]. An inverter
draws active power from a DC source (e.g., battery), that is transformed
into AC power, through the switching behavior and interface the electrical
grid to respond to load demand. The output voltage is at desired frequency
and amplitude. This is achieved via appropriate design of controllers for the
switching positions.

latory behavior arises naturally in power systems as a consequence of the
dynamics (1.7).

On the other hand, DC/AC converters or inverters are power electronics
designed from simple circuitry. Their importance stems from being at the
interface between power generation (primary energy source), on one side and
the electrical grid, on the other side, where they convert DC into AC power.
An efficient power transfer relies eminently on the control of these electrical
circuits. A typical circuit of a two-level three-phase inverter with an RLC out-
put filter is represented in Fig. 1.12. The switching block consists of bipolar
transistors (IGBTs) and anti-parallel diodes. The DC circuit consists of a cur-
rent source, set in parallel with DC capacitor and DC conductance accounting
for losses on the DC-side. On the AC-side lies an output filter consisting of
a resistor, placed in series with an inductance and connected to a shunt ca-
pacitance and a constant impedance load. Power conversion follows from the
high switching behavior of the converters through a modulation signal, rep-
resenting the main control input to the converter. Commonly, the system is
assumed to be averaged, i.e., all AC quantities are averaged over a switching
period and balanced and all phases sum up to zero. In this thesis, the models
will not account for the losses due to the switching behavior [Yazdani and
Iravani, 2010].

All in all, converters are known for their nonlinear switching dynamics,
simple circuitry, fast control capabilities, their small size and light weight,
which makes them amenable for transportation and deployment for large
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Figure 1.13 Summary of time scale separation for frequency control in the
presence of synchronous machines following a disturbance at time ¢ = 0.
Primary control keeps the frequency within acceptable tolerance intervals
and acts in a matter of seconds. The secondary control restores the fre-
quency to nominal and the tertiary control updates within hours the power
set points of the generations units in the network.

scale penetration. Due to the absence of large rotational inertia in converters,
power systems are commonly referred to as low-inertia, as opposed to classical
high-inertia power systems based on the dominant presence of synchronous
machines. One ramification of their inherently different design and operation
is that, converter control presents numerous challenges and bonus features.

Time-scale separation refers to three different time scales, within which
each control layer intervenes to regulate the frequency, following a distur-
bance. The classical control hierarchy strictly delimits primary frequency con-
trol, keeping the system frequency within acceptable ranges and taking place
in a matter of seconds, secondary control, aiming to restore the frequency to
nominal and based on automatic generation control [Simpson-Porco, 2020]
from tens of seconds to minutes, and tertiary control that dispatches updated
power references based on optimization routines and operates in every 5-15
min [Kundur et al., 2004]. Primary and secondary control remain as our main
focus in this thesis. A summary of the time scale separation is presented in
Fig. 1.13. In this sense, time scale separation, that is commonly assumed
in control of machines due to the slow dynamics of governor control (e.g.,
steam turbines), may not hold, since the synchronous machines will be re-
tired from the grid and thus their dynamics and controls (1.7) do not hold
anymore. The instantaneous response of converters suggests that this time-
line might be broken and a rethinking of the different time scales for control
is mandatory. In fact, a too fast response of converter control can excite os-
cillations in the transmission grid that destabilize the entire system [Jouini
et al., 2018]. Also, measurement and communication delays can destabilize a
power converter network.

Moreover, the control of converters remains fragile given their small size
with no inertia, compared to the resilient control of machines that relies pri-
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Figure 1.14 Control structure of three-phase DC/AC converter [Lin et al.,
2020]. Based on DC and AC grid measurements, the control algorithm is
implemented digitally on an embedded micro-controller and acts on the
converter power stage by adjusting its modulation input according to the
changes in the grid.

marily on their physics but also on the accumulated knowledge of decades of
their control and operation. In fact, there is no established body of experience
for operating hybrid or power systems with significant amounts of inverter-
based resources [Lin et al., 2020]. Another difference between the control of
machines and converters, lies in the intermittent generation of renewable en-
ergy resources (solar, wind) in converter-based generation, compared to dis-
patchable and thus well-known power generation based on synchronous ma-
chines. Finally, the centralized bulk generation is gradually being replaced by
more distributed and fully decentralized converter controllers, which makes
the overall network less prone to computational errors and communication
delays.

Even though many of the classical power system stability notions de-
scribed in [Kundur et al., 1994] (e.g., frequency stability) include definitions
that are rather coherent with the electro-mechanical nature of synchronous
machines, the structural similarities between a machine’s rotor angle and a
converter’s digital angle implemented via a control algorithm, suggest that
the definition of power systems and transient stability (see Definition 1.1)
can be applied to power networks dominated by converters [Lin et al., 2020].
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Figure 1.15 Modeling of the converter in Fig. 1.12 as a controllable ideal
voltage source (VSC) connected to the electrical grid through an impedance.

1.3.3 Control requirements for inverter-based power generation

The general structure of a DC/AC converter with closed-loop control scheme
is shown in Fig. 1.14. The control requirements for the massive integration
of power converters can be summarized as follows.

The ability of synchronous machines to respond to the grid frequency
change through an adjustment in its power output by enforcing a given ampli-
tude and voltage to be formed at the point of common coupling is referred to
as grid-forming [Rocabert et al., 2012]. A behavior that emulates the electro-
mechanical interaction of synchronous machines with the grid and provides
functionalities that are traditionally provided by synchronous machines is
thus required, when designing future converter controls [Denis, 2017]. Grid-
forming control algorithms endow the grid with autonomous primary control
and therefore the capability of counteracting common grid disturbances by
keeping the frequency within acceptable ranges. As shown in Fig. 1.15, the
converter is regarded as an ideal voltage source with an output impedance
and can co-exist with other grid-forming inverters, synchronous machines
and grid devices on the same system.

Key requirements are plug and play properties. These are decentralized
stability and robustness certificates that are independent of the number and
type of the devices connected to the grid and are thus important in both
high- and low-inertia systems [Jouini et al., 2016]. This term encapsulates
system-wide frequency synchronization, thus transient stability as well as
other important services namely load supply and power sharing among mul-
tiple inverters guaranteed by droop behavior [Dorfler et al., 2015] trading
off active and reactive power injections with the voltage amplitude and fre-
quency. Moreover, it is desired to induce a droop behavior as depicted in
Fig. 1.16 at steady state, exhibiting a linear trade-off between frequency ver-
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Figure 1.16 A typical nose curve for power to frequency droop: a variation
in active power at steady state P; := lim;—, oo P.(t) results in a frequency
deviation at steady state w® := lim¢— o w(t). Upon a linearization around
nominal values, droop behavior is characterized by a linear trade off (via a
droop slope) between the steady state of active power and frequency.

sus active power, as well as power sharing, where each unit provides power in
proportion to its capacity (or its programmable droop slope) [Dorfler et al.,
2015]. It is also important to endow grid-forming converters with black-start
capabilities. This means that a converter can start the power network follow-
ing a complete blackout and the system operation can be restored as well as
virtual inertia to reduce to rate of change of frequency (RoCoF), after a sud-
den loss of load or generation. Finally, it is necessary that all grid resources
including controlled inverters showcase interoperability, i.e., compatibility in
their operation and interactions with the remainder of the electrical compo-
nents, encompassing the hybrid operation with synchronous machines [Lin
et al., 2020].

1.4 Research questions

In the following discussion, we provide a brief account of the open research
questions that underpin the topics of this thesis.

(D From a system-theoretic perspective, how can we understand and pre-
dict frequency synchronization in a network of coupled oscillators,
where each oscillator is represented by high-order dynamics, and pro-
vide control strategies with provable stability guarantees that achieve
desired waveforms? We address this first question in Papers I and II.

(@ How can we exploit cost design for the setting, where the cost, in ad-
dition to the system dynamics, is affected by bounded disturbances,
to circumvent numerical and computational complexity, resulting from
solving partial differential equations? In networks, how can we derive
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optimal control laws that inherit topological structure, i.e., that are fea-
sible for implementation, in an explicit and closed-form? We investigate
this second question in Papers IIT and IV.

(3 Bearing the two previous questions in mind and given a power system
network dominated by inverter-based generation interconnected via
transmission lines, how can we derive primary (and possibly secondary)
frequency controllers with a feasible structure, i.e., whose implementa-
tion is possible, while also guaranteeing transient or small-signal stabil-
ity? Under which mild physical conditions can this be achieved? Can
we also guarantee plug and play properties and improve upon existing
control schemes? We answer this third question in all papers.
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Systems and control
preliminaries

In this chapter, we introduce the reader to important system-theoretical and
control notions, revolving around passivity, Lyapunov stability, center mani-
fold theory and optimal control. These will be necessary for the understand-
ing of many concepts treated in the remainder of this thesis.

2.1 Passivity

Consider the following nonlinear system Y with input v € R™ and output
y € R™,

. (E = f($7 ’LL),
DI {y — h(z,u), (2.1)
with z € R™. Assume that f : R™ x R™ +— R™ is continuous and locally
Lipschitz and h : R™ x R™ — R™ is continuous. Let the equilibrium be at
the origin, that is,

f£(0,0) =0, h(0,0) = 0.

The passivity of ¥ can be defined, according to [Sepulchre et al., 2012, Ch.2],
as follows.

DEFINITION 2.1-—PASSIVITY
The system X is said to be passive relative to (u,y) if there exists a function
S :R™ — R with S(0) = 0, such that for all x € R",

Y

(2.2)

S(z)
S(a(T)) = 5(2(0))

IN

0,
T

/ uT () y(t) dt,
0
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2.1 Passivity

U1 Y1 U1 Y1

Z:1 21

(5] 22 22

Y2 Y2 Uo

Figure 2.1 Representation of two systems 31 and 32 under parallel (left)
and feedback (right) interconnections.

for all w € R™ and T > 0. The function S is called a storage function. If the
storage function S(x) is differentiable, we can write (2.2) as,

S(x) <u'y. |

Intuitively, the system ¥ is passive relative to (u,y) if the increase in its
energy during the interval [0,77] is not bigger, than the energy supplied to
the system during the same interval [Sepulchre et al., 2012, Ch.2].

Interconnection of passive systems Given that two nonlinear systems ¥
and Yo, both in the form (2.1), are passive relative to (u1,y;) and (us,y2),
respectively, our goal is to ensure the interconnection is also passive and of
the form (2.1) and is thus well-posed. The interconnections considered thus
far, are either in parallel or in feedback as illustrated in Fig. 2.1. Follow-
ing [Sepulchre et al., 2012, Ch.2], we have the result below on interconnected
passive systems.

THEOREM 1—INTERCONNECTIONS PRESERVING PASSIVITY

Suppose that ¥; and Yo are passive systems relative to (u1,y;) and
(u2,y2), respectively. Then the two systems, one obtained by the parallel
interconnection, and the other obtained by the feedback interconnection,
are both passive relative to (u,y).

Thus, the passivity property is preserved under parallel and feedback
interconnection of passive systems. This is illustrated using the following
example in power systems from [Schaft, 2000, Ch.4].

EXAMPLE 2.1—FEEDBACK INTERCONNECTION IN POWER SYSTEMS

Consider a power system of synchronous machines, interconnected by a net-
work described by a graph G' = (V, &, {7e}{eceey) of purely inductive trans-
mission lines modeling the synchronous machines by swing equations. Let
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[V| = n and [€] = m. Assuming that all voltage and current signals are
sinusoidal of the same frequency and all voltages have constant amplitude,
we arrive at the following model. Associated to the n—vertices, each i—th
synchronous machine is described by the passive system

pi = —Di M 'p; + us,

7
yi = M ' pi,
where i = 1,...,n, p; = M; w; is the momentum deviation and w; € R is the
frequency deviation from nominal frequency w* (e.g., 50 Hz) with M; > 0
the inertia and D; > 0 the damping constant of the synchronous machine,
and wu; is the incoming power. Let B denote the n x m incidence matrix of the
associated graph G. Since ¢; denotes the phase differences across the j—th
line, the dynamics of the j—th line, associated to the j—th edge of the graph,
is given by the passive system,

q] =vj,
z; = 75 sin(gy),

where j = 1,...,m. The constant v; > 0 is determined by the susceptance
of the line and the voltage amplitude at the adjacent vertices. Here z; equals
the active power through the j—th line. Denoting p = (p1,...,pn)"
(wWi,...,w,)T, and ¢ = (q1,...,qm)", the final system resulting from the
interconnection

7w:

w=—-Bz wv=B"y,

Lﬂ - [—OB f’;] [vz\%]q))} + m (2.3)

y=M"p,

is given as,

with p = Mw. Let D and M denote, respectively, the diagonal matrices
with elements D;,M; > 0,7 = 1,...,n and 7 the diagonal matrix with
elements v;, j = 1,...,m. Furthermore sin : R — R™ denotes the element-
wise sine function, i.e., sin(¢) = (sin(q1),...,sin(¢y,))". Finally, the input
u denotes the vector of generated/consumed power and the output y the
vector of frequency deviations, both associated to the vertices. The resulting
system (2.3) is passive relative to (u,y) and the storage function

1 B m
S(a:p) = 5p"M7'p =) 7 cos(q;). u

Jj=1
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2.1 Passivity

Incremental passivity We study passivity properties of nonlinear systems
described in error coordinates with respect to a desired non-zero steady state.
In these settings, it becomes crucial to extend passivity from Definition 2.1 to
accommodate the shifted system dynamics (with respect to a non-zero steady
state). For this purpose, we state the definition of incremental passivity,
adapted from [Schaft, 2000, Ch.4].

DEFINITION 2.2—INCREMENTAL PASSIVITY

Consider a nonlinear system X as given in (2.1), with input and output spaces
R™ and state space R™, respectively. The system (2.1) is called incrementally
passive if there exists a function, called the incremental storage function,

S R" xR" — Ry,
such that,

S(@1(T), 22(T)) < S(21(0), 22(0)) +/0 (ur(t) —ua(t) T (y1(t) — ya(t)) dt,
(2.4)

for all T > 0, and for all pairs of input functions uy,us : [0,7] — R™ and
all pairs of initial conditions (z1(0),x2(0)) with resulting pairs of state and
output trajectories x1, 22 : [0,7] — R™ and y1,y9 : [0,T] — R™. |

The differential version of the incremental passivity inequality (2.4) takes
the form
ds

2 farn) + f—iﬂxz,uz) < (ur — u2) (g1 — 92)-

Port-Hamiltonian systems Port-Hamiltonian systems are defined in terms
of a Hamiltonian function together with two geometric structures correspond-
ing, respectively, to power-conserving interconnection and energy dissipation.
The Hamiltonian is equal to the total stored energy of the system that is
shaped via the system’s geometric structures. The Hamiltonian function au-
tomatically satisfies the passivity inequality (2.2). The following definition is
taken from [Schaft, 2000, Ch.6].

DEFINITION 2.3—INPUT-STATE-OUTPUT PORT-HAMILTONIAN SYSTEM

An input-state-output port-Hamiltonian system with n—dimensional state
space R™, input and output spaces R™, and Hamiltonian H : R — R, is
given by

i = [7() ~ R()) S () + C(a)u
y=G"0) 5 @),
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where G(x) is the m x n input matrix and the n x n matrices J(x) and R(x)
satisfy J(z) = —J " (z) and R(z) = R"(z) > 0. [ ]

Note that the internal interconnection structure is described by the matrix
J(x), which by skew-symmetry is power-conserving, and a resistive structure
given by the matrix R(z), which by its non-negativity is responsible for the
internal dissipation of energy [Schaft, 2000, Ch.6].

2.2 Lyapunov method

Stability theory is a cornerstone in systems theory and control engineering.
Lyapunov theorems give sufficient conditions for system stability. In the re-
mainder, we consider the autonomous system

&= f(z), x(0)=xp. (2.5)

Given a set D C R", we assume that f : D — R"™ is continuous and locally
Lipschitz.

2.2.1 Point stability

In this section, we are concerned with stability of equilibrium points. Assume
that D contains the origin and f(0) = 0. That is, the origin is an equilibrium
of (2.5).

Direct Lyapunov method We define point stability following [Khalil, 2002,
Ch.4].

DEFINITION 2.4—POINT STABILITY
The equilibrium point 2 = 0 of (2.5) is

o stable if, for each € > 0, there is § = 6(e) > 0 such that,

[z(0)]| <& = [lz(®)] <€, t=0, (2.6)
o unstable if it is not stable,
o asymptotically stable if it is stable and ¢ can be chosen that,

2(0)| < 6 = Jim [lz(t)]| = 0. (2.7)
|

Next, we state Lyapunov’s stability theorem, also known as direct Lya-
punov method.
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2.2 Lyapunov method

THEOREM 2—DIRECT LYAPUNOV METHOD

Let z = 0 be an equilibrium point for (2.5) and D C R" be a domain
containing x = 0. Let V' : D — R be a continuously differentiable function
such that, V(0) = 0 and

V(z) >0, xe€D)\{0}. (2.8a)

If V(m) < 0in D, then = = 0 is stable. Moreover, if

V(z) <0, (2.9a)
in D\ {0}, then z = 0 is asymptotically stable.

A function V that satisfies the conditions of Theorem 2 is called a Lya-
punov function for the nonlinear system (2.5). If it additionally holds that,

lz|| = 00 = V(x) — oo,

then V is called a radially unbounded Lyapunov function. If D = R™ and
V is a radially unbounded Lyapunov function, then the origin is globally
asymptotically stable

If a Lyapunov candidate fails to satisfy the asymptotic stability condition
because V (z) is only negative semidefinite (i.e., V < 0), we can use LaSalle’s
theorem to study the stability of the equilibrium.

THEOREM 3—LASALLE’S THEOREM

Let Q C D be a compact set that is positively invariant with respect
to (2.5). Let V : D — R be a continuously differentiable function such
that V(z) <0 in Q. Let E be the set of all points in Q where V(z) = 0.
Let N be the largest invariant set in E. Then every solution starting in
Q approaches N as t — oo.

Indirect Lyapunov method The next theorem gives conditions, under which
we can draw conclusions about the stability of the origin for the nonlinear
system (2.5) by investigating the stability of a linear system. This is known
as Lyapunov’s indirect method. Further assumptions are taken in regards of
the vector field f in the following theorem from [Khalil, 2002, Ch.4].

THEOREM 4—LYAPUNOV’S INDIRECT METHOD
Let = 0 be an equilibrium point for the nonlinear system (2.5), where
f is continuously differentiable and D is a neighborhood of the origin. Let

df
A=) (2.10)

Then,
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1. The origin is asymptotically stable if Re();) < 0 for all eigenvalues
of A.

2. The origin is unstable if Re();) > 0 for one or more of the eigenval-
ues of A.

Note that Theorem 4 does not say anything about the case when
Re()\;) < 0, for all i, with Re(A;) = 0 for some 4. In this case the linearization
fails to determine the stability of the equilibrium point.

2.2.2 Set stability

Here, we are concerned with stability of a given closed and invariant set
M C R" for the system (2.5) following [Lin et al., 1996; Angeli, 2004]. Let

— inf ||z —
lzllae = inf flz —all,

denote the distance from a point x to the set M. Stability and asymptotic
stability with respect to M are defined as follows.

DEFINITION 2.5—SET STABILITY
If

Ve>0,36>0: JJz0)lm<d = Jz{)m<e, t>0, (2.11)

then, M is stable. Additionally, let D C R"™ be a set in the neighborhood of
M with

M CDCR™

If V2(0) € D C R,
Jim [z (t)]m = 0, (2.12)

then, M is asymptotically stable. If D = R", then M is globally asymptoti-
cally stable. [ |

Let D = R". In the following, we extend the definition of a Lyapunov
function for the system (2.5) to study the stability of M with respect to
trajectories of (2.5).

DEFINITION 2.6—LYAPUNOV FUNCTION WITH RESPECT TO A SET

A Lyapunov function for the system (2.5) with respect to a non-empty,
closed, invariant set M C R” is a function V : R™ — R such that V is
smooth (i.e., infinitely differentiable) on R™ \ M and satisfies,
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2.8 Center manifold theory

1. there exist two Koo' functions a; and s such that for any z € R”,
a1 ([lzflm) < Vi(z) < ax(([z]m),

2. there exists a continuous, positive definite function ag such that for
any x € R"\ M,

Vo V() f(a) < —as([l2]am)-

To formally characterize set stability using the direct Lyapunov method, we
use the following result from [Lin et al., 1996].

THEOREM 5—LYAPUNOV STABILITY WITH RESPECT TO A SET

Let M C R"™ be a nonempty, closed, invariant subset for the nonlinear
system (2.5). Then, (2.5) is globally asymptotically stable with respect to
M if and only if there exists a smooth Lyapunov function V' (in the sense
of Definition 2.6) with respect to M.

2.3 Center manifold theory

This section is about center manifolds with respect to stability of the equilib-
ria of autonomous vector fields following [Wiggins, 1990, Ch.18] and [Khalil,
2002, Ch.8]. Based on Definition 2.5, center manifold theory can be extended
to study set stability, see e.g., [Krick et al., 2009].
We start with the following system dynamics,
&= Az + ¢1(z,w), (2.13)
W = Bw + ga2(z, w),

where the matrices A € R°*¢ and B € R***® have the following properties:
1. A is a matrix of real numbers having eigenvalues with zero real parts.

2. B is a matrix of real numbers having eigenvalues with negative real
parts,

and g1, g2 are nonlinear twice continuously differentiable functions with the
following properties:

dg;
dw

dg;
:(0,0) =0, —(0,0)=0,
9:(0.0) =0, 2(0,0)

0,0)=0, i=1,2. (2.14)

LA continuous function « : [0,a) — [0,00) is said to belong to class KC if it is strictly
increasing and «(0) = 0. It is said to belong to class Ko if @ = oo and a(r) — oo as
r — oo, [Khalil, 2002, Ch.4].
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In this setup (z,w) = (0,0) is an equilibrium point for (2.13) and we
are interested in studying its stability properties. The linearization of (2.13)
about the equilibrium is given by:

T = Ax,

w = Bw.

The origin point is non-hyperbolic (due to the zero real-part of the eigenvalues
of the matrix A). It has a c—dimensional invariant center subspace and an
s—dimensional invariant stable subspace given by:

E¢ = {(z,w) € R*|w = 0}, (2.15)
E* = {(z,w) € R"®|x = 0}. (2.16)

There is a c—dimensional, local center manifold that passes through the origin
and is tangent to E° at the origin. The existence of the center manifold is
given by the following theorem in [Khalil, 2002, Ch.8].

THEOREM 6—EXISTENCE OF THE CENTER MANIFOLD

If g1 and g are twice continuously differentiable and satisfy (2.14), all
eigenvalues of A have zero real parts, and all eigenvalues of B have neg-
ative real parts, then there exists a constant § > 0 and a continuously
differentiable function h, defined for all ||z|| < ¢, such that w = h(z) is a
center manifold for (2.13).

In particular, if w = h(z) is an invariant manifold for (2.13) and h is
smooth, i.e., infinitely differentiable, then it is called a center manifold and

it can be written as,
dh
We0) = {(z,w) € R® x R* | w = h(x), h(0) =0, 5(0) =0}, (2.17)

which is valid in a neighborhood of the origin, i.e., for ||z|| sufficiently small.
The application of the center manifold theory for analyzing the behavior of
the trajectories of (2.13) near the origin is based on two theorems describing:

e the dynamics restricted to the center manifold,

o the stability of the origin restricted to the center manifold and its re-
lation to the stability of the origin of the full system (2.13).

THEOREM 7—DYNAMICS ON THE CENTER MANIFOLD
The dynamics of (2.13) restricted to the center manifold is given by:

§=AL+q(EN(), EER (2.18)
for ||€]| sufficiently small.
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We refer to (2.18) as the reduced system. We use the variable ¢ instead of
2 to avoid confusing a point £ on the center manifold with a point x on the
coordinate axis and this, in view of the comparison between the trajectories
of the full system (2.13) and the reduced system (2.18). See later Theorem 8.

The next theorem says that the stability properties of the origin of the
reduced system imply the same stability properties of the origin of the full
system (2.13). Additionally, it gives precise results for the case that the origin
is (asymptotically) stable. It says that trajectories starting at initial condi-
tions sufficiently close to the origin asymptotically approach a trajectory in
the center manifold. This is the main result of center manifold theory called
the reduction principle, see [Wiggins, 1990, Ch.18].

THEOREM 8—REDUCTION PRINCIPLE

e Suppose that the origin of (2.18) is stable (asymptotically stable)
(unstable), then the origin of (2.13) is also stable (asymptotically
stable) (unstable).

o Suppose that the origin of (2.18) is stable. Then if (z(t),w(t)) is a
solution of (2.13) with (2(0),w(0)) sufficiently small, then there is
a solution &(t) of (2.18) such that as ¢t — oo,

w(t) = &(t) +ri(t),
w(t) = h(E(t) + ra(t),

where ~;, ¢; > 0 is a constant and ||r;(¢)]| < c;e™it, i =1,2.

2.4 Optimal control

In this section, we will consider cost functionals of the form,

() = / "Lt 2(t), u(®)) dt. (2.19)

to

and aim to solve the following optimization problem,

minimize J(u) (2.20)
ueR™
subject to  @(t) = f(t, z(t),u(t)), (2.21)
IL'(to) = 2o,

Here L : R x R” x R™ — R is the running cost (or Lagrangian). Since
the cost depends on the initial data, as well as on the control, it would be
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more accurate to write J(to, zg,u), but we write J(u) for simplicity and to
reflect the fact that the cost is being minimized over the space of control
functions [Liberzon, 2011, Ch.5].

Dynamic programming Dynamic programming leads to necessary as
well as sufficient conditions for optimality expressed as a function of the
Hamilton-Jacobi-Bellman (HJB) partial differential equation for the opti-
mal cost [Liberzon, 2011, Ch.5]. The basic idea of dynamic programming is
to consider, instead of the problem of minimizing J(to, zo, ) in (2.19) for
given to and z¢, the family of minimization problems associated with this
cost functionals. This relies on the principle of optimality defined below.
See [Liberzon, 2011, Ch.5] .

DEFINITION 2.7—PRINCIPLE OF OPTIMALITY
For every (t,z) € [to,ty) x R™ and every ot € (0,t; — t], the value function
V' defined by

V(t,z) .= inf J(u)

Ult,ty]

where uj; ;) is the control restricted to the interval [t,ts] satisfies the relation

t+5t

V(t,x) = inf / L(t,z(s),u(s))ds + V(t + dt,z(t + 0t)), (2.22)
Ult,t+6t] J¢

where x(t) on the right-hand side is the state trajectory corresponding to the

control ult,t + 0t] and satisfying z(t) = x. |

We have the following remarks.

o Note that the existence of an optimal controller and hence of the op-
timal cost is not actually assumed. This is why V (¢, z) is defined with
an infinimum and not with a minimum. When an optimal control u*
exists, then it is replaced by the minimum, achieved when u = u*.

e The optimality principle conveys that we can search over a small time
interval for a control that minimizes the cost over this interval plus the
subsequent optimal cost-to-go, V' (t + dt, z(t + 6t)). Thus the minimiza-
tion problem on the interval [¢,t/] is split into two intervals, one on
[t,t + 0t] and the other on [t + dt,t].

o Eq. (2.22) describes a dynamic relationship among the optimal values
of the cost for different ¢ and .

We define the equation,

_AVED) {L(t,a:,u)+ <W>Tf(t7x,u)}- (2:23)

dt ueR™ dx
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Eq. (2.23) must hold for all ¢ € [ty,ty) and all x € R™. This equation for the
value function V is called the Hamilton-Jacobi-Bellman (HIJB) equation. It
is a PDE since it contains partial derivatives of V' with respect to ¢ and z.
The boundary condition that accompanies Eq. (2.23) is V (tf,z) = 0.

For infinite horizon problems, the cost functional (2.19) becomes

J(u) = / L(z(t),u(t))dt, (2.24)
0
and the HIB equation in (2.23) becomes

0= inf {L(x,u)—i—(VwV(x))T f(x,u)}.

u€ER™

Robust optimal control Let us now assume that the system dynamics are
affected by disturbances and given by,

&= f(z,u,w), (2.25)

where, for all ¢ > 0, w(t) € W is the disturbance input taking values in a
bounded disturbance set W C R", e.g., w(t) € L2[0,00). A generalization of
the HJB partial differential equation is given by [Basar and Bernhard, 2008,
Ch.2],

.
_W: inf sup [L(tw,u)-i- (W) f(t,gc,u,w)]. (2.26)

weR™ 4wy

The counterpart of (2.23) is now the continuous-time Isaacs (or, Hamilton-
Jacobi-Isaacs) (HJI) equation given in (2.26), which is a generalization of the
HJB partial differential equation. In the infinite horizons case, i.e., with the
cost functional defined in (2.24), the HJI equation becomes

0= uiergm ng)\/ [L(x, w) + (Vo V() f(z,u, w)] .
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3

Literature synopsis

This thesis work lies at the intersection of three main topics: synchroniza-
tion in coupled oscillators, inverse optimal control in networked settings, and
the application to inverter-based power systems. This chapter conveys an
overview picture of the state-of-the-art literature. It covers each topic in-
dividually and highlights the different gaps and limitations that this thesis
aims to fill.

3.1 Oscillator synchronization problems

3.1.1 Synchronization in scientific research

Consider a system of finite number of oscillators with a given interaction
topology, where the dynamics at the i—th oscillator are described using the
phase angle 0; € S'. One of the widely used models is the Kuramoto coupled
oscillator model (1.2) that represents a canonical model and a prototype that
is naturally encountered in different applications [Dérfler and Bullo, 2014].
For instance, many biological and neural systems can be seen as networks
of interacting periodic processes. In this context, the study of oscillations is
pervasive, due to their presence e.g., across brain regions, where the under-
standing of neural oscillations is a starting key element towards understand-
ing of the brain activity and its malfunction [Bick et al., 2020]. Another
example is deep brain stimulation, known to be an effective treatment for
a variety of neurological disorders, including Parkinson’s disease, using cou-
pled oscillator dynamics to describe how the brain oscillations should change,
when stimulation is applied at a particular state of the system [Weerasinghe
et al., 2019]. Moreover, oscillating chemical reactions in living systems are
vital for regulating circadian rhythms, metabolic processes, the transcrip-
tion of DNA and other crucial biological functions [Shklyaev et al., 2020].
Kuramoto’s model has been also generalized to other large systems of bio-
logical oscillators, such as chorusing frogs, and even human concert audiences
clapping in unison [O’Keeffe et al., 2017]. Other applications include planar
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collective motion of particles [Sepulchre et al., 2007]. Finally, the study of fre-
quency synchronization in power systems [Dorfler and Bullo, 2012b; Dérfler
and Bullo, 2014] is the main application considered in this thesis.

Conditions for frequency synchronization Control theorists have shown an
increasing interest in complex networks of coupled oscillators and have re-
cently contributed to many novel approaches and results, where a finite num-
ber of oscillators has been taken under the loupe.

A vast body of literature deals with frequency synchronization of Ku-
ramoto models, mostly for unweighted graphs (i.e., if the weight has the value
one, then the corresponding edge is called unweighted) with special topolo-
gies. The works of [Aeyels and Rogge, 2004; Mirollo and Strogatz, 2005]
consider all-to-all connection between Kuramoto oscillators and rigorously
characterize the spectrum and the associated eigenvectors of the linearized
system model, for a finite number of oscillators. This allows to derive bounds
on the critical coupling, i.e., the smallest coupling coefficient, for which a
global phase-locked state can exist, and is characterized via the bisection
algorithm [Verwoerd and Mason, 2008].

A graph, whose vertices can be divided into two disjoint sets U and V'
with the property that every edge connects a vertex in U to one in V, is
called a bipartite graph. A complete bipartite graph is a bipartite graph in
which every vertex of U is connected with every vertex of V. A cycle is a
directed path that starts and ends at the same vertex. A graph with no cycle
is called acyclic.

Complete bipartite graphs have been considered in [Verwoerd and Mason,
2009], where the critical coupling coefficient can be found using an efficient
algorithm. For acyclic graphs, [Jadbabaie et al., 2004] and [Dorfler et al.,
2013] derive necessary and sufficient conditions in closed-form as a function
of the network topology and parameters, or equivalently in terms of an intu-
itive, linear, and static auxiliary system. Even though necessary conditions
can be derived for some special topologies [Chopra and Spong, 2009; Dorfler
et al., 2013], only sufficient conditions are prevalent in the analysis of oscilla-
tor synchronization with arbitrary topologies [Jadbabaie et al., 2004; Dorfler
and Bullo, 2012b]. It is known that a strongly coupled and sufficiently homo-
geneous network synchronizes but the characterization of the threshold from
incoherence to synchrony is the ultimate goal of many of these works [Dorfler
et al., 2013]. Intuitively, these conditions read as follows: if the dissimilar-
ities between natural frequencies in some metric norm (e.g., Euclidean or
2-norm [Jadbabaie et al., 2004], worst-case or oo-norm [Doérfler et al., 2013])
are dominated by the coupling strength, then Kuramoto oscillators will syn-
chronize in frequency.

To arrive at these synchronization conditions, numerous system-
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Chapter 3. Literature synopsis

theoretical and control tools are deployed to grasp the phenomena governing
coupled oscillators. In this context, Lyapunov methods are widely used to
study the stability of synchronized solutions such as linear quadratic [Chopra
and Spong, 2009] or sinusoidal quadratic functions of neighboring angle dif-
ferences [Franci et al., 2010]. Additionally, contraction analysis allows the
study of nonlinear trajectories by looking at their virtual displacement dy-
namics and measuring well-defined distances between these via integration.
Lyapunov functions founded on contraction analysis have led to an improved
understanding of systems with symmetry (e.g., possessing a rotational in-
variance) and the generalization of synchronization results confined to an
arc [Doérfler and Bullo, 2012b] into the full circle based on an almost global
stability analysis [Forni and Sepulchre, 2013]. Another Lyapunov candidate,
given by the maximum angle difference between any two oscillators, is contin-
uous but non-differentiable, generally appearing also in the study of positive
systems (a class of systems with the property that its state variables are
never negative, given a positive initial state), as in [Rantzer and Valcher,
2018].

Common control-theoretic tools for the stability analysis of nonlinear
systems include passivity [Willems, 2007] and port-Hamiltonian formula-
tions [Schaft and Jeltsema, 2014], input-to-state and set stability. These have
been the subject of many theoretical investigations [Dorfler and Bullo, 2014].
Finally, algebraic graph theory relying on the properties of the Laplacian
matrix and its pseudo-inverse and the Brouwer-Fixed Point theorem (stating
that, a continuous function that maps a non-empty compact, convex set into
itself has at least one fixed point) have led to concrete and elegant synchro-
nization conditions [Jadbabaie et al., 2004; Jafarpour and Bullo, 2018] that
are ingeniously improved upon existing literature.

Beyond Kuramoto oscillator Extensions of the Kuramoto oscillator model
include the study of higher-order oscillatory behaviors. The first-order model
in (1.2) can be replaced by the dynamics of the second order following the
swing dynamics presented in (1.7), naturally appearing e.g., in the study of
physical systems such as power systems [Acebrén et al., 2005]. Furthermore,
other extended studies include heterogeneously delayed systems embedded in
a directed graph with fixed topology [Schmidt et al., 2012], switched topol-
ogy [Papachristodoulou et al., 2010], generalized coupling with interaction
dynamics [Izhikevich, Kuramoto, et al., 2006] and the analysis of random
graphs based on numerical computations and analytical estimates on the
synchronization capability of the network [Nishikawa et al., 2003; Moreno
and Pacheco, 2004] .
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3.1.2 Limitations and remedies

e The studies listed above give intuitive insights into the sensitivities
affecting frequency synchronization in first-order Kuramoto (1.2) or
second-order oscillator models (1.7) such as network topology and criti-
cal coupling, but fail to explain stability behavior for high-order systems
with rotational invariance. These arise, e.g., in power system dynamics
after a static shift in all generators’ angles. This motivates the exten-
sion of many existing results to the study of frequency synchronization
on high-order manifolds for systems with this property. High-order cou-
pled oscillator dynamics are treated in Paper II of this thesis.

e Many of the frequency synchronization conditions derived from the
literature are implicit, i.e., involve solving a program to certify stability,
see e.g., [Vu and Turitsyn, 2015; Schiffer et al., 2019]. In many cases,
these programs might not have a solution and thus can be infeasible.
Even if feasible, the conditions are not explicitly given in a closed-
form, which makes it hard to find a valid mapping from the space
of oscillators and network parameters to the stability condition and
hence develop an intuition on how to satisfy them. This motivates the
search for explicit, closed-form conditions for frequency synchronization
in coupled oscillators. This will be shown in Paper II of this thesis.

We also refer the reader to Sections 4.2 stating our contributions of Pa-
per IL

3.2 Inverse optimal control

3.2.1 Cost design in optimal control

In optimal control, it is ubiquitous to start from an a priori defined cost
functional subject to (possibly) nonlinear system dynamics with the goal
to find an unknown optimal control law that represents a solution to an
optimization problem. Consider for example the following continuous-time
infinite-horizon optimal control problem given by,

minimize /0 la(z(s) + r(u(s))] ds (3.1)
subject to  @(t) = f(x(t), u(t)),
x(0) = xo,

where z € R™ denotes the state vector, 2:(0) = z is the initial state. The
input is represented by the vector © € R™. The mapping f : R™ x R™ — R"
is a nonlinear vector field assumed to be continuous and locally Lipschitz
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with f(0,0) = 0. Thus, without loss of generality, the zero state or the origin
is a steady state, when no inputs are applied. Additionally, the mappings « :
R™ — R is given by #(u) = u" Ru, where R = R" >0 and ¢: R" — Ryg
with ¢(0) = 0 is assumed to be continuous.

Most often the ingredients of the optimal control problem (3.1) are set up
as follows: the vector field f is a model built from first-order principles, while
q and k represent together the running cost and play the role of tuning knobs
to shape the dynamics of the closed-loop trajectories. Concretely, to make
the input signal u less aggressive, one increases the penalty on u via tuning
of the input matrix R. Similarly, to improve the disturbance attenuation, we
increase the penalty on u in the input matrix R. The resulting closed loop is
always stable, irrespective of the cost integrands, ¢(z) and x(u). This follows
from the observation that every value function defined by,

oo

V(o) = inf [ fa(a(s) + (u(s)] as, (3.2)

is a Lyapunov function candidate.

Limitations of direct optimal control The optimization problem (3.1) is gen-
erally very hard to solve and non-feasible in most settings either analytically
or numerically, except in simplified linear settings such as LQR problems. An-
alytically, finding a concise, closed-form controller is generally hard because
it involves solving a partial differential equations. Numerically, this approach
suffers from the curse of dimensionality, so named by Bellman. As the di-
mension of the system grows larger and larger, the number of samples needed
to discretize the partial differential equations equation often grows exponen-
tially. For systems with dimensions higher than two, there are no practical
ways to solve this partial differential equation. Even the mere existence of
a solution in this case cannot be guaranteed a priori. Most approximate
methods yield only results valid in a region, whose size must be estimated
by numerical computations [Lincoln and Rantzer, 2006]. These difficulties
are more pronounced in the study of solutions to (3.1) subject to bounded
disturbances that involves solving the Hamilton-Jacobi-Isaacs partial differ-
ential equations [Basar and Bernhard, 2008].

Furthermore, how to choose a cost function which accurately reflects the
functional objectives of the system and at the same time yields an optimal
control law that is simple, concise and in closed-form is a cumbersome task.
It mainly requires a trade off between complexity of the physical structures
to implement and minimal (e.g., monetary) budget and input effort. All the
above have motivated a change of perspective in the formulation of optimal
control by asking the following question:

Given a particular feedback control law, what is the family of criterion
functions, for which this law is optimal? [Kalman, 1964]
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The inverse optimal control problem aims to find an answer to this ques-
tion.

3.2.2 Inverse optimal control: main idea and properties

In the sequel, consider the input-affine nonlinear system dynamics that is
subject to disturbances,

i(t) = f(z®t) + GTu(zt) + Glw(t), t>0 (3.3)
x(0) = xp,

where G € R™*" G, € RY*™ are input matrices, w € R" is the system
disturbance that lies in £5]0, 00), i.e., satisfying,

/OO w (8) w(t) dt < oo.
0

Instead of asking for a control law u(x) corresponding to a given performance
criterion, we seek to determine all performance criteria (if any) for which a
given control law is optimal [Kalman, 1964]. In particular, we start from a
known and stabilizing control law u*(z), associated with a (robust) control
Lyapunov function V, i.e., a continuously differentiable function that satisfies

VI V(f(z)+ G u(z) + GLw) <0. (3.4)

Then, we can retrieve the running cost functional ¢(z) a posteriori. In other
words, we reverse engineer the cost for which the given controller is optimal.
In this sense, the problem is called inverse because ¢(z) is determined after a
feedback controller has been designed [Haddad and Chellaboina, 2011; Sepul-
chre et al., 2012]. This motivates the following definition from [Sepulchre et
al., 2012].

DEFINITION 3.1-—INVERSE OPTIMAL ROBUST STABILIZING CONTROL
Let w = 0. A control law u*(z) is inverse optimal stabilizing for the sys-
tem (3.3) if

o it achieves asymptotic stability of the origin of (3.3).

o it is of the following form,
1
u*(x) = —inlG V.V, (3.5)

where R = R" > 0 and V : R® — Ry is a control Lyapunov function
of (3.3).

For w # 0, a control law u*(x) is inverse optimal robust stabilizing for
the system (3.3), if it is inverse optimal stabilizing for all disturbances
w € L]0, 00]. [ ]
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Evolving the idea of inverse optimal control The first inverse optimal con-
trol problem has been posed and solved by R.E. Kalman in 1964 for linear
systems with quadratic cost [Kalman, 1964]. Later, [Moylan and Anderson,
1973; Casti, 1974] and others studied more general forms of the cost func-
tional for which the variational problem has nontrivial solution, e.g., involv-
ing a strictly convex integrand in the state or input and subject to general
nonlinear systems. For the disturbance-free setting, it has been shown that,
if the control law is of the form (3.5), then there exists an a posteriori de-
fined cost functional, so that the proposed controller is optimal, i.e., that
the control Lyapunov function V satisfies the HJB equation. For the control
problem (3.1), the cost functional is given by,

q(w) = VoV (f(2) + G’ (2)) = K(u”).

This result has been later generalized by Freeman [Freeman and Koko-
tovie, 1996] and also by [Haddad and Chellaboina, 2011] to disturbance at-
tenuation problems, where the disturbance is explicitly incorporated into the
system dynamics, e.g., as given in (3.3), leading to the study of HJI partial
differential equation.

The converse link established by inverse optimal control, namely that,
every Lyapunov function is a meaningful value function, has a handful of
implications on the study of nonlinear control synthesis. First, compared to
other control approaches such as feedback linearization that have no stability
margin (that is, with a slightly perturbed feedback, the closed-loop system
trajectories tend to infinity), inverse optimal stabilizing controllers are robust
against disturbances and use the nonlinearity to enhance the rate of decrease
of the Lyapunov function [Sepulchre et al., 2012]. Furthermore, by restricting
the class of cost functionals to include a real penalty on both the state via ¢(x)
and the input via x(u), the optimal closed-loop system inherits the nonlinear
analog of desirable phase and gain margins, similar to multivariable LQR
controllers known to possess (for a diagonal input matrix R, see [Lehtomaki
et al., 1981]) an infinite gain margin and 60° phase margin. In the example of
nonlinear control problems, the optimal controller (3.5) is robust against an
infinite increase in gain, also called high-gain control [Glad, 1987; Sepulchre
et al., 2012]. A summarizing overview of direct and inverse optimal control
approaches is given in Fig. 3.1.

Properties of inverse optimal control One can interpret the control law (3.5)
as a damping control for unforced asymptotically stable systems, follow-
ing [Sepulchre et al., 2012], where the derivative of V' can be made more
negative. This can be inferred from the control gain matrix K = %R_l
in (3.5) that plays the role of an additional damping for energy dissipation
of V. This establishes a link to the powerful theory of dissipativity [Willems,
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Figure 3.1 A summary of the direct optimal control approach (left) and
inverse optimal control (right).

1972a; Willems, 1972b] and motivates the study of inverse optimal control
for passive systems, where (3.5) amounts to choosing,

1
u=—-Ky, K:§R‘1 > 0,

with the output y = V] VG. This is the so-called damping injection with the
matrix K being the so-called damping injection gain [Ortega et al., 2002] and
agrees with the idea of damping control for stable systems. In this way, we
extract or dissipate energy from the system and therefore increase the rate of
convergence of the energy function towards an equilibrium. Finally, the link
between the powerful theory of dissipativity and inverse optimality [Sepulchre
et al., 2012] makes the latter an indirect approach to derive a controller that
renders the closed-loop system passive without explicitly requiring, a priori, a
certain passivity structure e.g., that the dynamics follow a port-Hamiltonian
system, which might be restrictive.

3.2.3 Engineering applications and beyond

Thanks to the structural properties encoded by the control law (3.5), in-
verse optimal control has led to the synthesis of useful optimal controllers in
numerous engineering applications, from the stabilization of a rigid [Krstic
and Tsiotras, 1999] and under-actuated spacecraft [Geng et al., 2016] in
aerospace engineering, output voltage regulation of DC/DC power converter
circuits [Vega and Alzate, 2014], neutral networks in stochastic nonlinear sys-
tems [Cao et al., 2019] to flexible joint robot manipulator [Ha et al., 2007],
output trajectory tracking [Ornelas et al., 2010], non-cooperative differential
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games [Molloy et al., 2019] and even glycemic control in patients [Sanchez
and Ornelas-Tellez, 2017] and neuroscience [Berret and Jean, 2016].

More recent applications of inverse optimal problems have been more
pronounced at the interface of data-driven control and reinforcement learn-
ing [Self et al., 2020; Ab Azar et al., 2020] via so-called cost learning [Finn
et al., 2016] e.g., to establish a model of human overall locomotion path gen-
eration to given target positions and orientations, based on newly collected
motion data [Mombaur et al., 2010], or in application to multi-agent sys-
tems [Jin and Mou, 2021]. The aim in these works is to determine, for a
given dynamical process and an observed solution of the optimal trajecto-
ries, the optimization criterion that has produced the solution, and this, for
example, by inferring the parameters that define the cost function [Zhang
et al., 2019; Zhang, 2019]. Recent research involves not only the learning of
the cost but also the identification of the state and input constraints that are
part of the optimal control problem [Menner et al., 2021].

3.2.4 Limitations and remedies

o The generalization to disturbance attenuation problems in [Freeman
and Kokotovic, 1996], although considering general non-linear dynam-
ics, does not take the disturbance into account in the integrand of the
cost to minimize. Oftentimes, the explicit expression of the cost hard to
guess, where the dependence on system parameters and control gains
is not visible. This can be remedied by compromising the generality of
both system dynamics and cost functionals, e.g., by opting for input-
affine dynamics with a cost that is quadratic in input and disturbance.
This leads to an explicit expression for the cost, in the disturbed case,
that can be interpreted and implemented directly. This will be discussed
in Paper III.

e In networked settings, inverse optimal control makes optimal feedback
solutions more intuitive and accessible, i.e., without computational bur-
den, and endows control synthesis with topological structure. The struc-
ture of the controller descends from the gradient of the control Lya-
punov function, that results, in many cases, in a distributed control
law. This allows for a feasible control implementation. Despite this im-
portant aspect of inverse optimal control, it has not been highlighted
in the literature. Our work in Papers III and IV aims to bridge this

gap.

We also refer the reader to Sections 4.3 and 4.4 of this thesis stating our
contributions of Papers III and IV.
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3.3 Stability and control in power systems

3.3.1 Modeling and control of multi-machine systems

Multi-machine models are obtained after a series of restrictive assumptions
on the system at hand. As in [Kundur et al., 1994; Sauer et al., 2017], preva-
lent modeling assumptions relate to the operation in quasi-stationary mode,
i.e., around a given steady state. The transmission lines are modeled as
impedances and the loads are either modeled as impedances or constant
current and power sources. After Kron reduction [Dérfler and Bullo, 2012a],
the electrical network is represented only by generators interconnected via
transmission lines with negligible conductances. In most of the cases, the
mathematical model obtained from these procedures, can be cast as first-
or second-order coupled oscillator dynamics. It is fundamentally instructive
to understand the transient stability of multi-machines by inferring results
from the accumulated knowledge of synchronization of coupled oscillators in
physics and control engineering. This seems to give satisfactory and intuitive
answers for multi-machines systems, e.g., under the assumption of highly
damped generators [Dorfler and Bullo, 2012b] and purely inductive (lossless)
lines [Pai, 1981; Kundur et al., 1994].

As soon as we stray away from these special assumptions in cases, where,
e.g., due to common disturbances in the grid, power systems are operated far
from steady state conditions and the transmission lines are lossy (with non
trivial conductance), a myriad of challenges start to surface in the stability
analysis of multi-machines. In real world scenarios, large swings are common.
Due to a burst of winter weather, Texas suffered an outage of two weeks and
three days, in the period between February 10-27 of 2021, likely to be the
worst on record in US history. More than 10 million people were without
power for days [Busby et al., 2021; Najmabadi and Martinez, 2021]. Another
example is when the large frequency swings became a principal means by
which a blackout on 14th of August 2003 spread across a wide region in
Canada and the Northeast of the United States [Kamel and Glotfelty, 2003].
This massive power outage affected approximately 50 million people in the
Midwest and Northeast United States and Ontario, Canada.

Transient stability in multi-machine systems The power system models, in-
cluding linearized power system models, are only valid when the generator
velocities are very close to the synchronous velocity, or in quasi-stationary
mode [Schiffer et al., 2016]. Neglecting the transmission line conductances
stems from the finding in [Chiang, 1989] concluding that there is no general
energy function for multi-machine power systems with losses. Furthermore, it
has been shown in [Ortega et al., 2005] that the obtained asymptotic stabil-
ity conditions and hence the region of attraction cannot be generalized from

65



Chapter 3. Literature synopsis

lossless to lossy links (with non-trivial conductance), since a different (than
that of the lossless case) Lyapunov candidate needs to be designed. This
emphasizes that the invalidity of certain model assumptions has significant
ramifications on the study of power system stability. Despite considerable
efforts made to find Lyapunov functions for power systems with lossy trans-
mission lines [Pai and Murthy, 1973; Skar, 1980; Tsolas et al., 1985; Caliskan
and Tabuada, 2014], this has remained an open problem within the power
system community for decades.

It is noteworthy that numerous studies on the investigated transient sta-
bility, rely on a setup composed of a single machine connected to an infinite
bus [Kundur et al., 1994; Leonov, 2006; Barabanov et al., 2016], where the
angle of the infinite bus is embedded in the model representation. Extending
the corresponding Lyapunov analysis to general multi-machine power systems
is non-trivial. This is largely due to the inherent difference in the topology
between the state space of one-dimensional angle dynamics or angle dynam-
ics higher than two [Skar, 1980]. Considerable efforts have been invested in
this generalization [Shaik et al., 2012; Caliskan and Tabuada, 2014], where
the main difficulty remains in constructing error coordinates compatible with
the topological space of the n—dimensional torus.

Depending on the initial conditions, it is possible to show almost global
stability results, i.e., up to initial conditions of a measure zero set, all tra-
jectories converge to a desired steady state [Barabanov et al., 2016; Schiffer
et al., 2019; Colombino et al., 2019]. Finally, the accuracy of the Lyapunov-
based methods is evaluated based on comparison of the provided region of
attraction to that of other existing methods, like the closest unstable equi-
librium method [Chang et al., 1995]. It can be estimated by borrowing ideas
from optimization-based algorithms, as in gradient-like methods [De Persis
and Monshizadeh, 2017], while also considering additional operational and
reserve constraints [Vu and Turitsyn, 2015].

EXAMPLE 3.1—ROLE OF SYSTEM PARAMETERS IN GLOBAL STABIL-
ITY [LEONOV, 2006]

To illustrate the role of the system parametric choice in inducing and sus-
taining globally stable oscillations, let us consider the following simple yet
insightful example modeling a synchronous electrical motor. Consider

6=n (3.6)
1 = —an —sin(f) + 7,

where o,y > 0. The stability of (3.6) can be readily studied using the direct
method of Lyapunov.

Note that for 0 < v < 1, there exists a steady state 0° (modulo 27)
to (3.6) that is asymptotically stable, where cos(6®) > 0 and another one
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Figure 3.2 Three different arrangements of the trajectories in the phase
space of system dynamics (3.6) depending on the parameter a > 0.

0* (modulo 27) that is a (unstable) saddle with cos(#*) < 0. Depending
on the operating range of the damping «, three operating regimes that are
illustrated in Fig. 3.2 may appear. First, for a sufficiently damped system
a > i, global stability is assured in A), where the separatrices tend to
the saddle equilibria of system 6" and are the boundaries of the attraction
domains of the asymptotically stable states 6#°. The entire phase space is
decomposed into such attraction domains. Second, for a critically damped
system a = a4, the attraction domains of the stable equilibrium states are
also bounded by such separatrices in B). However, these domains do not fill
the entire phase space anymore. Third, for o < ¢, C) depicts instability
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corridors appear between the separatrices and the space is decomposed into
such corridors and the region of attraction of asymptotically stable steady
states. |

Similar to the physical world, where the laws governing interactions in a
set of particles are invariant with respect to static translations and rotations
of the whole rigid body [Sarlette, 2009], the dynamics of the power system
trajectories are invariant under a static shift in their angles, or said to possess
a rotational invariance. The symmetry of the vector field describing the power
system dynamics, indicates the existence of a continuum of steady states
for the multi-machine dynamics. In particular, the rotational invariance is
the topological consequence of the absence of a reference frame or absolute
angle in power systems and regarded thus far as an obstacle for defining
suitable error coordinates for the stability analysis. If the steady state set is
a linear subspace [Schiffer et al., 2019], a common approach, to alleviate this,
is to perform transformations into the quotient space either resulting from
projecting into the orthogonal complement, or grounding a node [Tegling et
al., 2015], where classical tools of proving stability with respect to a point
can be deployed.

3.3.2 Nonlinear control of multi-converter systems

In the remainder, we go through the most important control strategies de-
veloped for frequency regulation of DC/AC converters-based generation.

Droop control Inspired by the dynamics governing synchronous machines
and the analogy drawn to synchronization in coupled oscillator dynamics,
droop control is the most well-established grid-forming method, first pro-
posed by [Chandorkar et al., 1993]. It has since been extensively studied in
the literature both in control theory and in practice. Droop control presumes
that the inverter represented in Fig. 1.12 can be cast as controllable voltage
source and thus acts on phasor quantities, i.e., a representation of each in-
verter by a (fixed) amplitude and a controllable phase angle on the circle.
This presumes an operation that is close to a nominal operating point. In a
network of inverters with inductive lines, the voltage magnitude is set to a
constant (one per unit) and the electrical phase angle is chosen to follow the
swing dynamics of synchronous machines (1.7). This translates to,

Mit; = —=Diw; + »_ (sin(85) — sin(65))),
JEN;

where w; € R is the frequency (with respect to a nominal value w* at the i—th
inverter). If the set A; denotes the neighborhood of the i—th inverter, then
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bij = 0; — 0; and 07; = 07 — 0 are the angle difference between neighboring
inverters’ angles and at the prescribed steady state. The coefficients M; > 0
and D; > 0 denote the inertia mass and damping, which are the parametric
tuning gains of the ¢ — thdroop control. At steady state, droop control (3.7)
exhibits droop behavior as the (P —w) law shown in Fig. 1.16. Droop control
ensures system-wide synchronization and power sharing among converters as
delineated in [Dorfler and Bullo, 2012b; Simpson-Porco et al., 2013].

In comparison to the conventional bulk power plants, in which the syn-
chronous machines dominate, the generator units have either very small
or no rotating mass and damping property. In this sense, the parameters
M;, D; > 0 are understood as virtual quantities (to emphasize the fact that
droop control is digitally implemented) representing inertia and damping, re-
spectively. The question of proper tuning of these parameters has attracted
attention with considerable efforts to find an optimal value for control gains
e.g., by solving optimization problems that minimize important metrics of
performance, for example Ho system norm measuring the coherency in a lin-
ear network-reduced power system model [Poolla et al., 2017]. The plug and
play properties of the droop control, resulting from power to frequency droop,
depicted by the nose curve in Fig. 1.16, allow, e.g., power sharing among
converters [Dorfler et al., 2015] and accommodate scenarios, where the exact
steady state value of the power generation is uncertain or unknown. All these
advantageous properties make the control via emulation of synchronous ma-
chine amenable for large scale control of converter-based power systems and
compatible with existing components of the electrical system, and thereby
an attractive solution for distributed renewable energy generation.

The dynamics of synchronous machines remain a source of inspiration
for a multitude of other converter control strategies that mimic their be-
havior, such as virtual synchronous machines [Bevrani et al., 2014] and syn-
chroverters [Zhong and Weiss, 2010]. One particular controller that relies
on ezact model matching of high-order dynamics of three-phase synchronous
machines with three-phase balanced and averaged DC/AC converters derived
from first-order principles (with dynamics following the diagram depicted in
Fig. 1.12) is the matching control introduced in [Jouini et al., 2016; Jouini,
2016]. The particularity of this controller relies on easily measured DC-side
voltage, and representing an indicator of power imbalance in the grid with-
out prior assumptions on quasi-stationary steady state and the operation on
phasor quantities. A study of the properties of the matching control will be
discussed in this thesis.

Virtual oscillator control A control strategy that attempts to overcome the
restrictive assumptions of droop control (quasi-stationary steady state, oper-
ation with phasor quantities), is the virtual oscillator control (VOC) which is
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an electrical realization of Van der Pol Oscillator [Khalil, 2002]. The virtual
oscillator controller emulates the dynamics of nonlinear oscillators and glob-
ally stabilizes arbitrary initial conditions to a sinusoidal steady state. It can
be implemented on a digital micro-controller, while acting on the converter’s
input. The Van der Pol oscillator is composed of a parallel RLC circuit and
a nonlinear voltage-dependent current source. Leveraging Kirchoff’s circuit
equations, the dynamics of the oscillator can be written as,

L=t =y, (3.8)

Cd—;}:av—kv?’— — i + eu(t),

v
R’UOC
where v denotes the converter terminal voltage, u(t) is the current input
to the Van der Pol oscillator and k, o, € are positive constants. The resistor
Ryoc > 0, is set in parallel with the inductance L > 0 and the capacitor
C > 0, where iy, is the current flowing through the inductance. Even though
virtual oscillator control has provable droop properties [Sinha et al., 2015],
the control gains are hard to tune due to a lack of physical intuition on how
to choose their values. It was also not possible to track active and reactive
power reference in the original formulation of VOC, see [Johnson et al., 2013].

These limitations have motivated a variant of VOC suggested in [Colom-
bino et al., 2019] that allows active and reactive power to be dispatched,
hence the name dispatchable Virtual Oscillator Control (d-VOC). The d-
VOC is a combination of a synchronizing feedback term, together with a
decentralized magnitude control law and allows for global stabilization of
the angles and voltage magnitudes at their desired values, corresponding to
a pre-specified solution of the AC power-flow equations. The controller ex-
hibits a droop behavior around the standard operating point, which makes
it backward compatible with the existing power system operation.

Passivity-based control Other converter control strategies rely on energy-
based modeling and control [Schaft, 2000; Schaft and Jeltsema, 2014] de-
scending from the theory of passivity and the observation that a typical power
network dynamics can be formulated as a port-Hamiltonian system [Shaik
et al., 2012; Schiffer et al., 2016] and is thus a passive system. Namely, the
main idea is that passive interconnections preserve and passive damping dis-
sipates energy and thus shapes the total system energy. This has led to the
development of the theory of interconnection and damping assignment [Or-
tega et al., 2002] and passivity-based control [Zonetti, 2016; Zonetti et al.,
2021], applied to the control of converters in power systems.

Inverse optimal control for power systems FEven though direct optimal con-
trol and dynamic programming have been widely used for optimization in
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power networks [Lu et al., 2008; Sanchez-Sanchez et al., 2019], inverse opti-
mal control formulations have gained only limited attention in the DC/AC
converter control literature. The applications of inverse optimal control in
converter control are mainly concerned with the voltage regulation of DC/DC
boost power converters [Vega and Alzate, 2014; Liu et al., 2014; Zhang et
al., 2013; Ornelas-Tellez et al., 2012; Pahlevaninezhad et al., 2012] and other
electrical components such as an induction wind generator [Ruiz-Cruz et al.,
2018].

3.3.3 Limitations and remedies

o The frequency/angle controllers proposed in the literature, rely mainly
only AC measurements to achieve synchronization in converter-based
generation, assuming full control of the DC side [Bevrani et al., 2014],
which is often an unrealistic assumption. Therefore, DC-side modeling
is often neglected and many of the proposed controllers miss out on
the utility of DC capacitor voltage for converter control. On the other
hand, DC-side circuitry reflects the power imbalance in the grid through
the DC-side capacitor voltage. This motivates the matching control, a
novel controller that uses DC-side measurements to achieve frequency
synchronization in converter-based generation that will be discussed in
Papers I and II.

e Droop control assumes quasi-stationarity, which is a strong assumption,
given the fluctuating nature of the electrical grid, where the operation
is commonly far away from a desired steady state. Moreover, virtual
oscillator control is hard to tune with many parameters affecting the
control performance and its droop behavior, and is not straightforward
how to assign dispatched active and reactive power set-points. This
motivates the design of DC/AC converter controls that overcome the
limitations of being at the vicinity of some steady states and that are
easy to tune. This is achieved by the matching control that will be
discussed in Papers I and II.

e As conveyed by the literature review, inverse optimal control has not
been applied to control of DC/AC converters. Given the numerous
advantages of inverse optimal control, this motivates the novelty of our
work discussed in Papers III and IV.

We also refer the reader to Chapter 4 of this thesis stating our contribu-
tions of all Papers.
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Contributions

In this chapter, we review the content of this thesis work by highlighting the
contributions and novelty of each of the selected four papers.

4.1 Paper I: Grid-forming control for power converters based on
matching of synchronous machines

Summary With preliminary results in [Jouini et al., 2016; Jouini, 2016], we
consider in [Arghir et al., 2018] the problem of grid-forming control of power
converters in low-inertia systems. We start from an averaged and balanced
DC/AC power converter in Fig. 1.12 and a synchronous machine model that
retain basic first-order model principles and derive a grid-forming controller
that we term the matching controller. This is achieved by coupling the DC
and AC circuits that measure the DC bus voltage, which is viewed as an
indicator of frequency imbalance. We transform the dynamics into the rotat-
ing coordinates to decouple the dynamics of the augmented state from the
DC/AC converter variables, analyze the system stability by means of the
Lyapunov method and find sufficient conditions for strict passivity with re-
spect to incremented DC and AC ports, global asymptotic stability as well as
droop behavior in steady-state. Furthermore, we establish cross-links to re-
cently adopted control approaches (virtual oscillator control, passivity-based
control). We analyze and implement outer control loops fulfilling AC fre-
quency regulation via PID control. We ensure AC voltage amplitude tracking
by means of asymptotic disturbance decoupling via feed-forward and passive
PI control under the assumption relying on available measurements of the
load current. To alleviate this realizable yet impeding assumption, we also
implement a droop controller that trades off between power output and am-
plitude of the AC filter capacitor. Stability analysis is then conducted for
each control approach using Lyapunov theory. Our simulations are presented
for demonstration in a single converter as well as a two-converter case study.
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Figure 4.1 Structural similarities between a three-phase high-order a
DC/AC converter (top) and synchronous machine (bottom) model. The
colors red, blue and green highlight the analogies between different com-
ponents of the machine and converter; DC circuit and the machine’s rotor,
the switching block and back electromotive force voltage as well as the
machine’s and converter’s output AC filters.

Contribution 1: matching control design Our fully decentralized control ap-
proach is inspired by identifying the structural similarities between the two
models depicted in Fig. 4.1 and matching these via state feedback control.
In other words, through a proper choice of the input, we explicitly match
the two models, so that they become structurally equivalent. This is the
motivation behind the name, matching control. Our control strategy can be
allied to a multitude of ideas rooted in nonlinear control, e.g., the matching
of general nonlinear systems via state feedback [Di Benedetto and Isidori,
1986]. The controller is a nonlinear function representing an integrator that
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Figure 4.2 A diagram illustrating the basic idea of the matching control.
The matching control acts on the modulation signal considered as the main
input to the converter’s switching block.

uses the measurement of the DC-side voltage. It can be understood as an
embedding of a virtual angle in R?, whose dynamics are linearly dependent
on the DC voltage and fed as input to the DC/AC converter. The key idea
of the matching control is summarized in Fig. 4.2.

Contribution 2: closed-loop stability Our stability analysis relies eminently
on the analogy drawn between DC/AC converter model and synchronous ma-
chines. The Lyapunov method adopted in [Caliskan and Tabuada, 2014] for a
single machine infinite bus scenario is applied to our closed-loop system and
extended to incremental passivity as a key requirement for stability under
interconnection. This allows to derive a sufficient condition for incremental
passivity and global stability upon transformation into a rotating coordinate
frame. Our stability condition depends on the steady-state under considera-
tion and converter parameters and can be satisfied upon appropriate tuning
of the control gains. It asks for sufficient damping on the DC and AC sides
of the converter.
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Contribution 3: outer loops for frequency and voltage regulation Addition-
ally, we extend the matching control with outer loops that strengthen the
coupling between DC and AC components, while preserving passivity. We
deploy a passivity-based control approach, which lends itself useful for fre-
quency and voltage regulation inspired by ideas from [Khalil, 2002; Zonetti
et al., 2014]. For frequency regulation, we increment the matching control
with a PID controller by considering the DC current source as an input.
We later prove that the proposed control scheme achieves exact regulation
of the frequency to a given prescribed value with zero error at steady-state.
Additionally, we exploit the degree of freedom in the modulation (i.e., the
main input to the converter) amplitude to propose three control schemes that
stabilize the output voltage amplitude to a constant value.

Under the assumption on load current measurement, a feed-forward con-
troller is first proposed for amplitude regulation and proven to converge to
the desired value at steady-state, if the admissible load current is below a
certain bound. Second, PI-passivity based control is proposed which designs
a passive output to ensure a strict decrease of the storage function to a well-
defined steady-state value. The incremented converter model is proven to
guarantee exact tracking of the desired reference. The two previously dis-
cussed controllers achieve exact tracking but under the assumption of exact
knowledge of the disturbance and the admission of integral action. Even
though, we consider a single converter setup, integral action can be detri-
mental in a network setting due to conflicting objectives between the con-
trollers. This motivates our third approach based on droop control. Similar
to voltage droop in resistive power networks, we introduce a droop behavior
between converter output power and the modulation magnitude. This results
in a proportional action that does not necessarily achieve the desired steady-
state but allows for better coordination between the converters in view of
a network setup. The proposed control strategies for frequency and voltage
regulation are summarized in Fig. 4.3.

4.2 Paper lI: Frequency synchronization of a high-order
multi-converter system

Summary This work generalizes the transient stability results of a single
converter in closed-loop with the matching control in Paper I into a more
fundamental analysis of a network consisting of DC/AC converters. The dy-
namics of each converter are defined on a high-order manifold. Based on the
rotational invariance of the resulting vector field, we first identify the steady-
state set, whose feasibility defines a mapping from the steady-state angles
into DC power input as a function of the network topology and converter
parameters. Second, we study local asymptotic stability with respect to the
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Figure 4.3 Outer loops for frequency and voltage regulation. The control
strategy (1) relies on feed-forward control, assuming full knowledge of the
disturbance, (2) is derived from passivity-based control using DC voltage and
AC current measurements and (@) is based on droop control by measuring
the power output.

steady-state set by deploying the center manifold theorem. This is devised
under the premise that the Jacobian of the linearized dynamics of the multi-
converter system has only one eigenvalue at zero and the real-parts of all
remaining eigenvalues are in the open-left half-plane. We provide an example
approach on how to find a sufficient condition that satisfies this assumption
and contextualize our finding by providing intuitive physical interpretations.
We validate our results in simulations on a three-converter system.

Contribution 1: steady-state characterization By considering high-order
system dynamics, we characterize the steady-state set of the multi-sourced
converter system. The vector field has a rotational invariance, under a static
shift of all angles by the same value and the rotation of AC signals. This
rotational invariance is preserved at steady-state and as a consequence the
steady-state set defines a continuum of equilibria. Its feasibility is deter-
mined by a mapping from the nominal steady-state angles, network topology
and converter parameters into the DC power inputs to the converters. The
steady-state set is distinguished by a synchronous frequency at steady-state
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Figure 4.4 Evolution of the linearized trajectories of the multi-converter
system on the tangent space at z* represented in Fig. 4.5 under the Jacobian
eigenvalue condition, namely that only one eigenvalue is at zero (associated
with a zero eigenspace direction) and the real-parts of all other eigenvalues
are in the open-left half-plane.

corresponding to a nominal value, stationary angles and stationary AC quan-
tities (inductor current, capacitor voltage, line current). This is shown after
transformation into dg—frame with an angle rotating at nominal frequency.

Contribution 2: local synchronization using center manifold theory We
study local asymptotic stability of the characterized steady-state set by ap-
plying the center manifold theory. In other words, in a neighborhood of the
steady-state set, we seek to find (mild) assumptions, under which asymp-
totic stability of the nominal steady-state can be guaranteed. For this, we
depart from the following eigenvalue condition. Given a matrix with one zero
eigenvalue, the goal is to guarantee that the remainder of the modes are
confined to the open-left half-plane. As a consequence, the one-dimensional
zero eigenspace is asymptotically stable. A summary of the eigenvalue condi-
tion is depicted in Fig. 4.4. We provide one approach on how to satisfy this
condition.

Under the assumption of the system Jacobian’s eigenvalues, we decom-
pose the nonlinear dynamics into two subsystems, whose dynamics are zero
and Hurwitz respectively, we can apply the center manifold theory, where
the reduction principle revolves around the following idea [Wiggins, 1990,
Ch.18]. By bringing the multi-converter system into the decomposed dynam-
ical form, we prove local asymptotic stability of the steady-state. Physically,
our sufficient stability conditions specify an upper bound on the power factor
at each converter that can be satisfied with sufficient AC damping as well
as a lower bound on the DC damping gain, which makes them explicit and
feasible to verify individually at each converter. An overall summary of the
contributions is found in Fig. 4.5.
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Figure 4.5 A summary of local synchronization of the multi-converter sys-
tem. The blue circle represents the steady-state set S(z*), resulting from
a static shift & € R of all converters’ angles, and the green area depicts a
neighborhood A thereof. Trajectories initialized on A, converge to a point
on the steady-state set S(z*).

4.3 Paper lll: On cost design in applications of optimal control

Summary In this work, we extend inverse optimal control to a setting, where
the nonlinear cost functionals together with the system dynamics are subject
to bounded disturbances. We illustrate the usefulness of inverse optimal con-
trol in networked settings for designing controllers with topological structure,
through diverse examples in linear and nonlinear systems. We demonstrate
the utility of control synthesis via inverse optimal control to find a distributed
and thus feasible optimal controller for coupled oscillator dynamics. We val-
idate our results in simulations on a three-oscillator system. A summary of
the ideas presented in this paper is depicted in Fig. 4.6.

Contribution 1: cost functional with a disturbance term Our min-max
problem formulation is an extension of the min-max formulation presented
in [Freeman and Kokotovic, 1996] to a class of cost functional, where the dis-
turbance enters through a quadratic term in the cost subject to input-affine
system dynamics. This allows for the explicit calculation of the worst-case
disturbance and thus the explicit derivation of a cost functional a posterior.

Contribution 2: tuning aspect in inverse optimal control Our work puts em-
phasis on the tuning aspect of inverse optimal stabilizing controllers along
the lines of other works [Haddad and Chellaboina, 2011; Sepulchre et al.,
2012]. We illustrate through different remarks, examples, and also numeri-
cally, that the input gain matrix represents a tuning knob that can be used to
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Figure 4.6 Summary of the content of Paper III

improve the error decay rate or minimize the control effort, while keeping the
same value function. This analogously applies for the robust setting, where
the disturbance input gain matrix is an tuned to penalize the disturbance
deviations.

Contribution 3: robust inverse angle stabilization in coupled oscillators We
apply inverse optimal control in networked systems to design a controller with
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topological structure, e.g., a distributed controller. The resulting network
structure of the controller descends from the gradient of the chosen control
Lyapunov function and is useful for feasible implementations.

Our main application of inverse optimal control is intended for angle
stabilization in coupled oscillators. The goal is to improve the error decay
rate of the angle transients, while converging to an induced steady-state in
second-order coupled oscillators, that can represent, e.g., droop-controlled
inverters, and this, by using direct angle control as in [Zhang and Xie, 2015;
Zhang and Xie, 2016; Arghir and Dorfler, 2019; Tayyebi et al., 2020]. We
take into account the generation and the grid-side volatility represented by
a disturbance that acts on the frequency dynamics. Under mild assumptions
on the neighboring steady-state angle differences, we arrive at a distributed
control law, that stabilizes the angles at an induced steady-state. A decrease
in the input gain matrix improves the error decay rate in angle transients
significantly, and the convergence to the induced steady-state is faster, which
corroborates our results.

4.4 Paper IV: Inverse optimal control for angle stabilization in
converter-based generation

Summary We demonstrate the usefulness of inverse optimal control for
power networks. We suggest an optimal control law that stabilizes the phase
angles of voltage source controllers converters to an induced steady-state,
characterized by a zero frequency error. The control law is inverse optimal
stabilizing for the converter dynamics, i.e., it is the unique solution of an
optimal control problem, where the cost is defined a posteriori. We show
that the implementation of the angular droop control is feasible. In fact, it
is possible to be implemented in a decentralized manner using only power
measurements. We showcase our results on simulations of a network of high-
order DC/AC converters, each represented by the model from Paper 1. A
summary of the ideas presented in this paper are depicted in Fig. 4.7.

Contribution 1: inverse optimal control for power networks To the best of
our knowledge, there has not been research linking inverse optimal control
to the control of inverters in power systems and thus there is room for con-
tributions in this direction. The objective is to design an inverse optimally
stabilizing controller design (in the sense of Definition 3.1), that utilizes the
grid measurement, while minimizing a performance metric that meets the
requirements of a desired power system operation.

Contribution 2: angle stabilization with zero frequency error The angular
droop control linearly trades active power with angle deviation at steady-
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Figure 4.7 Summary of the content of Paper IV

state and thus achieves exact frequency regulation with no stringent separa-
tion between primary and secondary frequency control. This implies that the
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controller compresses the time scale separation, commonly assumed in con-
ventional, machine-dominated power systems. Therefore, we substitute two
control layers with a single one that achieves the same objective of restoring
the system frequency to nominal. Thereby, the converter phase angles are
stabilized to an induced steady-state, where the convergence rate is traded
with the allowed control effort.

Contribution 3: bridge a gap between control and power system community
We reversely engineer the angular droop control suggested in [Zhang and
Xie, 2015; Zhang and Xie, 2016] and show that this idea can be backed up
by inverse optimal control theory. In an attempt to bridge a gap between
theory and practice, our work explains the benefits of angular droop control
from a system-theoretic point of view by stabilizing the converter dynamics,
while guaranteeing optimality, and demonstrates its effectiveness on realistic
simulation scenarios.

4.5 Statement of contributions

This thesis was drafted and written by Taouba Jouini at the Department
of Automatic Control, LTH - Lund University, during the time period from
August 2019 to January 2022 as a partial fulfillment of the requirements for
obtaining a PhD degree. The first part of the results presented in this thesis
were conducted during the stay of Taouba Jouini as a research assistant at
the Laboratory of Automatic Control (IfA), ETH - Ziirich from December
2016 to January 2019 under the supervision of Prof. Florian Dorfler. The
second part of the results were obtained under the supervision of Prof. Anders
Rantzer and Dr. Emma Tegling at the Department of Automatic Control at
LTH, Lund University. The thesis includes the following four main papers.
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4.5 Statement of contributions
Paper 1

Arghir, C., T. Jouini, and F. Dérfler (2018). “Grid-forming control for power
converters based on matching of synchronous machines”. Automatica 95,
pp. 273-282. DOI: 10.1016/j.automatica.2018.05.037.

The first two authors contributed equally. This paper entails partial re-
sults from the second author’s master’s thesis. The matching control had
been suggested by the co-supervisor Catalin Arghir. Almost all ideas are
contributions resulting from discussions between the first and second author
and have been derived under the supervision of the third author.

Paper I1

Jouini, T. and Z. Sun (2021). “Frequency synchronization of a high-order
multi-converter system”. ArXiv:2007.14064, to appear in IEEE Transac-
tions on Control of Network Systems. DOI: 10.1109/TCNS.2021.3128493.

The ideas of this work build on the results obtained in the following paper:

Jouini, T. and F. Dérfler (2019). “Local synchronization of two DC/AC con-
verters via matching control”. In: 2019 18th European Control Conference
(ECC). IEEE, pp. 2996-3001. DOI: 10.23919/ECC. 2019.8795908.

The first author came up with most of the extensions and discussed these
with the second author. Prof. Anders Rantzer suggested the center manifold
theorem to prove local asymptotic stability. The rest is entirely the first
author’s contribution. The paper was written by the first and revised by the
second author.

Paper II1

Jouini, T. and A. Rantzer (2021). “On cost design in applications of optimal
control”. IEEE Control Systems Letters, pp. 1-1. DOI: 10.1109/LCSYS.2021.
3079642.

The first author came up with the idea of cost design in inverse optimal
control. The second author pointed out the powerful potential of this idea.
The first author provided (numerical) examples and discussed these with the
second author. The paper was first written by the first and then revised by
the second author.
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Paper IV

Jouini, T., A. Rantzer, and E. Tegling (2021). “Inverse optimal control for an-
gle stabilization in converter-based generation”. ArXiw:2101.1111, sub-
mitted to American Control Conference (ACC).

The third author drew the attention of the first author to existing angular
droop control law in the power system literature. The first author suggested
to find a connection to optimal control and discussed these with the second
and third authors. The paper was written by the first and then revised by
the second and third authors.

Other publications In addition to the publications included in this thesis,
the author has been part of the following publications that are not included.

Jouini, T. and F. Dérfler (2019). “Local synchronization of two DC/AC con-
verters via matching control”. In: 2019 18th European Control Conference
(ECC). IEEE, pp. 2996-3001. DOI: 10.23919/ECC.2019.8795908.

Jouini, T. and Z. Sun (2020). “Fully decentralized conditions for local con-
vergence of DC/AC converter network based on matching control”. In:
2020 59th IEEE Conference on Decision and Control (CDC), pp. 836—
841. DOI: 10.1109/CDC42340.2020.9304344.

Jouini, T. and Z. Sun (2020). “Performance analysis and optimization of
power systems with spatially correlated noise”. IEEE Control Systems
Letters 5:1, pp. 361-366. DOT: 10.1109/LCSYS.2020.3002219.

Jouini, T. and Z. Sun (2021). “Distributed learning for optimal allocation
of synchronous and converter-based generation”. In: 2021 29th Mediter-
ranean Conference on Control and Automation (MED). IEEE, pp. 386
391.

Jouini, T., U. Markovic, and D. Gross (2018). “WP3-Control and Opera-
tion of a Grid with 100% converter-based devices”. Final deliverables of
Migrate project. URL: https://www.h2020-migrate.eu.
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Paper I

Grid-forming control for power converters
based on matching of synchronous machines

Catalin Arghir Taouba Jouini Florian Dorfler

Abstract

We consider the problem of grid-forming control of power converters
in low-inertia power systems. Starting from an average-switch three-
phase power converter model, we draw parallels to a synchronous ma-
chine (SM) model and propose a novel converter control strategy which
dwells upon the main characteristic of a SM: the presence of an inter-
nal rotating magnetic field. In particular, we augment the converter
system with a virtual oscillator whose frequency is driven by the DC-
side voltage measurement and which sets the converter pulse-width-
modulation signal, thereby achieving exact matching between the con-
verter in closed-loop and the SM dynamics. We then provide a sufficient
condition asserting existence, uniqueness, and global asymptotic stabil-
ity of a shifted equilibrium, all in a rotating coordinate frame attached
to the virtual oscillator angle. By actuating the DC-side input of the
converter we are able to enforce this condition and provide additional
inertia and damping. In this framework, we illustrate strict incremen-
tal passivity, droop, and power-sharing properties which are compati-
ble with conventional power system operation requirements.We subse-
quently adopt disturbance-decoupling and droop techniques to design
additional control loops that regulate the DC-side voltage, as well as
AC-side frequency and amplitude, while in the end evaluating them
with numerical experiments.

Originally published in Automatica 2018. Reprinted with permission.
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1. Introduction

The electrical power system is currently undergoing significant changes in its
structure and mode of operation due to a major shift in generation technol-
ogy from synchronous machines (SMs) to power electronics-based DC/AC
converters, or simply inverters. As opposed to SMs, which store kinetic en-
ergy in their rotor moment of inertia, these devices are on the one hand
designed with little or no built-in energy storage capacity, while on the other
hand actuated at much faster time scales. SMs with their large rotational
inertia, self-synchronizing physics, and associated controls, act as safeguards
against faults and disturbances — all of which are absent in low-inertia sys-
tems with a dominant share of distributed and variable renewable sources
interfaced through inverters. Hence, the proper control of inverters is re-
garded as one of the key challenges when massively integrating renewable
energy sources [Denis et al., 2015; Kroposki et al., 2017; Taylor et al., 2016].

Converter control strategies are classified into two groups. While there is
no universally accepted definition, inverters are usually termed grid-following
if their controls are designed for a stiff grid, and they deliver power at the
stiff AC grid frequency usually measured through a phase-locked loop (PLL).
Otherwise, these converters are termed grid-forming when they are assigned
to interact with a non-stiff grid similarly as SMs do by balancing kinetic and
electrical energy in such a way that a frequency consensus is achieved. A
low-inertia system cannot be operated with only grid-following units. With
this in mind, we review the literature on grid-forming control.

The inherent self-synchronizing property of SMs has inspired controllers
such as droop and wvirtual synchronous machines (VSMs) [Chen et al., 2011;
D’Arco and Suul, 2013; Karapanos et al., 2011; Torres and Lopes, 2013; Van
Wesenbeeck et al., 2009; Zhong and Weiss, 2010]. These controllers are de-
signed to emulate the behavior of SM models of various degrees of fidelity
and are based on measurements of AC quantities such as injected power, fre-
quency, and amplitude. For example, inverse droop and related VSM control
strategies measure the AC frequency through a PLL and accordingly adapt
the converter power injection based on a simple SM swing equation model.
The latter is encoded in a micro-controller whose outputs are tracked by the
converter modulation signal typically through a cascaded control architec-
ture. For these, and other VSM implementations, the time delays resulting
from measuring and processing of AC quantities render control often ineffec-
tive [Bevrani et al., 2014; Denis et al., 2015; ENTSO-E, 2016].

Droop control can also be implemented by measuring the injected power
and by adapting accordingly the converter frequency [Guerrero et al., 2012],
but its applicability is limited to inductive grids and with a possibly narrow
region of attraction [De Persis and Monshizadeh, 2017; Dorfler et al., 2015;
Sinha et al., 2015b]. Additionally, the inverter’s DC-side storage element is
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often not included in the model, nor in the control design, which, in our
view, misses a key insight: namely, the DC bus voltage can reflect the power
imbalance and serve as valuable feedback signal. Finally, alternative control
strategies employ nonlinear virtual oscillators fed by AC current measure-
ments [Colombino et al., 2017; Johnson et al., 2014; Sinha et al., 2015a]. For
these strategies global stability certificates are known, but their design and
analysis is quite involved (as a result, no controllers for regulation of ampli-
tudes and frequency are known thus far) and their compatibility with SMs is
unclear to this date. Another set of literature relevant to our methodology is
passiwity-based control (PBC) [Schaft, 2000] and interconnection and damp-
ing assignment (IDA) [Ortega and Garcia-Canseco, 2004]. Their application
to DC/DC converters [Escobar et al., 1999; Zonetti et al., 2014], AC/DC
converters [Perez et al., 2004], and power systems in general [Caliskan and
Tabuada, 2014; Fiaz et al., 2013] suggests a physically insightful analysis
based on shaping the energy and dissipation functions. As we will further
see, our analysis relies also on a characterization of the power system steady-
state specification [Gro8 et al., 2016; Grofl and Dérfler, 2017] which restricts
the class of admissible controllers.

Our main contributions are three-fold. First, we propose a novel grid-
forming control strategy that matches the electromechanical energy exchange
pattern in SMs. This is achieved by augmenting the converter dynamics with
an internal model of a harmonic oscillator whose frequency tracks the value
of the DC-side voltage measurement. This voltage-driven oscillator is then
assigned to drive the converter’s pulse-width-modulation cycle, thereby as-
suring that the closed-loop converter dynamics exactly match the SM dynam-
ics, whereas the DC voltage serves as the key control and imbalance signal
akin to the SM’s angular velocity [Jouini et al., 2016]. Based on a Lyapunov
approach we provide a sufficient condition certifying existence, uniqueness,
and global asymptotic stability of driven equilibria, in a coordinate frame
attached to the virtual oscillator angle. By actuating the DC-side input cur-
rent we are able to satisfy this condition. We also preserve strict incremental
passivity, droop, and power-sharing properties of the closed-loop system. Our
approach is grounded in foundational control methods, while being systemat-
ically extensible to PBC and IDA designs. Additionally, the key DC voltage
signal is readily available while all other approaches rely on extensive pro-
cessing of the AC measurements. Second, building on the proposed matching
controller, we further design overarching control loops that regulate the DC
voltage, AC frequency, and AC amplitude. This is done by pursuing an ap-
proach based on disturbance decoupling, which performs asymptotic output
voltage amplitude tracking, while rejecting the load current seen as a mea-
surable disturbance. We then suggest extensions based on employing PBC
and voltage-power droop control strategies, which have been previously in-
vestigated in various settings. Third and finally, we evaluate the performance
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and robustness of our designs by comparing them in numerical experiments
of single and multi-converter scenarios.

The remainder of the paper is organized as follows. Section 2 introduces
the models and the control objectives. Section 3 proposes the matching
controller and derives its properties. Section 4 designs the regulation and
disturbance-decoupling controllers. Section 5 presents a numerical case study,
and Section 6 concludes the paper.

2. The three-phase converter model, synchronous machine model, &
their analogies

2.1 Preliminaries and coordinate transformations

10
=l

0 -1
7=

denotes the rotation by m/2 in R?, while

el

is a natural basis vector in R%2. We denote by ||-|| the standard Euclidean
norm for vectors or the induced norm for matrices.

The three-phase AC system is assumed to be symmetrical namely all pas-
sive elements have equal values for each phase element. Due to this symmetry,
any three-phase quantity z.5. € R3 is assumed to satisfy

11 1] zape = 0;

In this paper

denotes the identity and

see Remark 1. We consider a coordinate transformation to distinguish be-

tween the component along the span of the vector
11 1] eRr?,

which we denote by z, € R and the other two components z,g € R? lying

on the associated orthogonal complement called the aff—frame:

R
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Figure 1. Circuit diagram of a 3—phase DC/AC converter.

Given a reduced three-phase quantity 2,3 and an angle 6 € S, we define the
dg—coordinate transformation (244, 0) — 24, € R?, via

= [ o,

as,
Zdq = R;—Zaﬂ' (2)

Consequently, we have that a sinusoidal steady state solution of the form
Zhp = w'lzg 5, with associated frequency w*, is mapped to an equilibrium
Z3, = 0 in the dg—frame whose transformation angle satisfies 0 = w*.
Throughout this article, a variable denoted Ziq OF 2,5 1s used to represent a
steady state solution induced by exogenous inputs, e.g., load parameters or
set-points.

2.2 Three-Phase DC/AC Converter Model

We start by reviewing the standard average-switch! model of a three-phase,
two level, voltage source inverter in af—coordinates. See [Tabesh and Iravani,
2008] for a comprehensive study. The model is described by a continuous-time
system whose main feature is the nonlinearity captured by the modulation
(switching) block, as depicted in Fig. 1.

The DC circuit consists of a controllable current source ig. € R in parallel
with a capacitance Cy. > 0 and a conductance G 4. > 0. The DC-side switch-
ing current is denoted by i, € R, while vg. € R represents the voltage across
the DC capacitance. The AC circuit contains at each phase an inductance

1 For the time scales of interest, we assume a sufficiently high switching frequency that
allows us to discard the PWM carrier harmonics and use continuous-time dynamics.
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Paper 1. Grid-forming control for ... synchronous machines

L > 0 in series with a resistance R > 0 connected to a shunt capacitance
C > 0 and shunt conductance G > 0. Here v,5 € R? denotes the AC voltage
across the output capacitor.

The dissipative elements G 4., G and R model the parasitic losses in the
converter. Furthermore, i, € R? denotes the AC current in the inductors
and v, € R? the average AC voltage at the switching node. The inverter
model is terminated at its AC-ports with a load current i; drawn by a weak
AC grid, which will be made more specific in Assumption 1.

The switching block is defined as the average-switch model of a 6-switch
2-level inverter with an associated complementary pulse-width-modulation
(PWM) carrier and a modulation signal m,s € {x € R? : |jz|| < 1}. To
preserve energy conservation, the switching block is assumed to be lossless,
i.e., it satisfies the identities,

. 1 T . 1

1y = imaﬁlaﬁ , Uy = gmoégvdc.

By putting it all together, the inverter model can be written as the following
bilinear system:

1
Odc’[)dc - _Gdcvdc + idc - §il—6ma,@ (3&)
. 1
Liaﬁ = _Riaﬂ — Vag + gvdcmaﬁ (3b)
C@aﬁ = —G’Uag + ’L'ag — . (SC)

REMARK 1—ZERO SEQUENCE

We will construct the three-phase modulation signal mg,. = 0 in such a way
that m., = 0 which implies that v, , = 0. For a balanced load, it also holds
that i; , = 0. We are left with the following dynamics for the y—subsystem:

Liy, = —Ri, — v, (4a)
Ciy = —Guy + i . (4b)

Since (4) is an asymptotically stable linear system, the omission of the
~vy—component is well justified. |

2.3 Control objectives

In this section, we map out the control objectives to be achieved via the two
main actuation inputs, the modulation signal mqs and the DC-side current
injection i4.. Broadly speaking we require the following:

(i) Grid-forming: The objective of grid-forming control is best defined by
mimicking the electromechanical interaction of a SM with the grid rather
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2 The three-phase converter ... their analogies

than prescribing the converter’s frequency to track the grid frequency, e.g.,
via a PLL. The synchronization properties of SMs rely on a particular kinetic
to electrical energy exchange pattern. This can be induced in the DC/AC
converter by exactly matching the SM’s dynamics.

(ii) Voltage and amplitude regulation: We intend to exactly regulate vg.
and veg to prescribed references, possibly requiring knowledge of system
parameters and full state measurements. If the load current measurements are
uncertain or unknown, we aim instead to achieve a linear droop characteristic
between the converter modulation frequency and its power output. Such a
local droop behavior is known to guarantee power sharing and compatibility
with other droop-like controllers in a power system [Dorfler et al., 2015; Sinha
et al., 2015a].

(iii) Strict incremental passivity: We aim to preserve strict incremental
passivity [Schaft, 2000] with respect to the AC and DC ports, u = (igc, —i;)
and ¥ = (Vde,Vdq), and relative to a desired steady-state solution z* =
(v, i v;q). More precisely, we seek a positive definite storage function that
is decreasing along system trajectories, where the system remains strictly in-
crementally passive after implementing the controller.

In the sequel, we further specify these objectives, in more suitable coor-
dinates, and also consider alternative objectives such as voltage amplitude
droop control.

2.4 The synchronous machine model

In what follows, we consider a SM model which lends itself useful in designing
the matching controller. We consider a single-pole-pair, non-salient rotor SM
under constant excitation, defined in af—frame as in [Caliskan and Tabuada,
2014], together with a capacitor at its AC terminal, and described by the
state-space model

9’ = W (5&)
—sin(6)] "
Mw = —Dw + T + Lmlf |: COS(G) :| 2] (5b)
; . . |—sin(0
Lszaﬂ = _Rslaﬁ — Vap — Lme |: Cos(é)):| w (50)
CUop = —GUag + tap — 1 - (5d)

Here, M > 0 and D > 0 are the rotor inertia and damping coefficients,
Ty is the driving mechanical torque, L,, > 0 is the stator-to-rotor mutual
inductance, Ly > 0 the stator inductance. We denote the rotor angle by
§ € S, its angular velocity by w € R, the current in the stator winding by
lag € R?, and the stator resistance by R, > 0. At its terminals the SM is
interfaced to the grid through a shunt capacitor with capacitance C' > 0 and
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capacitor voltage v,5 € R?, a constant load conductance G > 0, and the load
current extraction denoted by i; € R2. The strength of the rotating magnetic
field inside the SM (5) is given by the rotor current iy which is assumed to
be regulated to a constant value (here, negative), as in [Aghir et al., 2016]
and [Caliskan and Tabuada, 2014].

Observe the similarities between the inverter model (3) and the SM
model (5). The DC capacitor is analogous to the rotor moment of inertia,
while the electrical torque and the electromotive force (EMF) (the rightern-
most terms in (5b) and (5c)) play the same role as i, and v,. The self-
synchronizing properties of a multi-machine power system are attributed to
the exchange of kinetic and electrical energy through electrical torque and
the EMF pair. In the following section, we will assign this very mechanism
for the inverter dynamics (3).

3. Grid-forming SM matching control

From [Grofi and Dorfler, 2017], we know that every converter modulation
controller inducing a synchronous, balanced, and sinusoidal steady state
must necessarily include an internal model of an oscillator of the form
mhs = w*ngB. Thus, the first step in our design is to assign a sinusoidal
modulation scheme parameterized in polar coordinates as in [Jouini et al.,
2016]

mos =0 sy | (&

where § € S! and p € [0,1] are the modulation’s signal magnitude and
angle, as controls to be specified. In the next step, we design a grid-forming
modulation controller by matching the converter dynamics (3), augmented
with the internal model (6a), to the SM dynamics (5). Upon visual inspection
we observe that this is achieved by dynamic feedback

0 = 7+ Ve, (6Db)

where the constant 7 = wo/vgcref > 0 encodes the ratio between the nom-
inal AC frequency wg and the DC voltage reference vge rer. All subsequent
developments will be based on the matching control (6).

REMARK 2—EQUIVALENT SM INTERPRETATION
By defining the equivalent angular velocity as w = nug4. and by picking the
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8 Grid-forming SM matching control

modulation amplitude as y = —2nL,,ir, we can rewrite i, and v, as
0
= _an if |: (é)):| Zaﬁa (7)
- —sin(6)
Ve = ~Lm { cos(0) } (8)

We identify the AC-side switch voltage v, with the equivalent EMF voltage
and the DC-side current i,/n with the equivalent electrical torque in the
machine. Finally, we rewrite the closed loop (3), (6) as the equivalent SM,

6 = w, (9a)
Odc . Gdc Z‘oic 1 T,
e = — 2 w + 7 — Emag(ﬂ) taB (9b)
. 1
Liog = —Ring — Vs + %wma/g(e)w, (9¢)
C’DQB = —Gvaﬂ + iaﬂ — 1, (Qd)

where we identify Cy./n%, Ga./n?, and ig./n with the equivalent mechanical
inertia, damping, and mechanical driving torque, respectively. |

3.1 Closed-loop incremental passivity

In this section, we sho