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Abstract

The thesis studies the use of cloud native software and platforms to imple-
ment critical closed loop control. It considers technologies that provide low
latency and reliable wireless communication, in terms of edge clouds and
massive MIMO, but also approaches industrial IoT and the services of a
distributed cloud, as an extension of commercial-of-the-shelf software and
systems.

First, the thesis defines the cloud control challenge, as control over the
cloud and controller offloading. This is followed by a demonstration of closed
loop control, using MPC, running on a testbed representing the distributed
cloud. The testbed is implemented using an IoT device, clouds, next gen-
eration wireless technology, and a distributed execution platform. Platform
details are provided and feasibility of the approach is shown. Evaluation
includes relocating an on-line MPC to various locations in the distributed
cloud.

Offloaded control is examined next, through further evaluation of cloud
native software and frameworks. This is followed by three controller designs,
tailored for use with the cloud. The first controller solves MPC problems
in parallel, to implement a variable horizon controller. The second is a hi-
erarchical design, in which rate switching is used to implement constrained
control, with a local and a remote mode. The third design focuses on reli-
ability. Here, the MPC problem is extended to include recovery paths that
represent a fallback mode. This is used by a control client if it experiences
connectivity issues. An implementation is detailed and examined.

In the final part of the thesis, the focus is on latency and congestion. A
cloud control client can experience long and variable delays, from network
and computations, and used services can become overloaded. These problems
are approached by using predicted control inputs, dynamically adjusting the
control frequency, and using horizontal scaling of the cloud service. Several
examples are shown through simulation and on real clouds, including admit-
ting control clients into a cluster that becomes temporarily overloaded.
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1
Introduction

The internet and worldwide web initiated a
communications revolution which has changed the
world. [...] It is an educated guess that it will also
have a very strong impact on automatic control.

[Åström and Kumar, 2013]

In the 1960s, the advent of digital computers started a golden age for auto-
matic control. In the decades that followed, computing and communication
systems had a tremendous impact on advancing technology and automation,
and subsequently on the necessary control engineering [Åström and Kumar,
2013]. In the early information age, digital electronics, servo systems and
negative feedback were important parts in shaping industry and technology
to form the advanced systems on which we now largely depend.

The focus shifted at the turn of the century with the arrival of the World
Wide Web (WWW). The new form of interaction that the WWW brought
had a profound, and different, impact on society. Software companies became
the technology drivers as Internet services and the end user applications be-
come more important. This shift marks the second part of the information
age, driven by the subsequent revolution in digital communications. While
the Internet and the WWW are well established as drivers behind this part
of our history, in today’s retrospect, the parallel evolution of cellular com-
munications is perhaps as important. At present, these two technological
drivers, wireless communication and Internet technology, have evolved to a
state where they are again becoming disruptive as they enter into industrial
automation. The merger of these two paths of history are the reasons behind
this thesis, and we therefore start with a short perspective on the lineages of
the Internet and of cellular technology.
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Chapter 1. Introduction

A brief communication history

A few key events in the evolution of the Internet and cellular broadband are
shown in Figure 1.1. The first two events are the Advanced Research Projects
Agency Network (ARPANET) and the AXE. ARPANET, a precursor to
the Internet, was the worlds first decentralized, packet switched network,
developed by the Unities States military. It is often marked as the start
of the Internet. AXE was a circuit switched, modularized, digital telephone
exchange developed by Ericsson and the Swedish public enterprise Televerket
(now Telia AB). It was developed for landline communication but would
become a core component also in the early cellular systems. The ARPANET
and AXE are essential in this history because of their significance as starting
points for the two global communication networks, but the trajectories of the
Internet and telecommunication, as we know them today, really start in the
early 1980s.

In 1981, Nordic Mobile Telephony (NMT) was launched as the first inter-
national cellular network for mobile telephony. Shortly thereafter, the world-
wide packet-based communication standard of TCP/IP was deployed, a tech-
nology that is ubiquitous in today’s communication systems. The WWW
was released in 1991, the same year as the second generation of cellular net-
works, Global System for Mobile Communications (GSM). In this generation,
phones sent text messages and had some capacity for data traffic but did not
extensively communicate with the Internet. In the GSM era, the focus was
on quality voice calls and text messages, and in the later stage, limited access
to the WWW through the Wireless Application Protocol (WAP). In 2001,
3G, the third generation mobile telephony, shifted focus from the circuit
switched, quality of service voice calls, to shared high speed data channels.
The cellular systems now focused on transferring much more data and on
accessing digital services. Then, in 2006 cloud computing, which underlie the
work in this thesis, became an emerging technology [Zakon, 2018]. Around
the same time, the smartphone was introduced on the market. The telephone
in everyone’s pocket, now started to interact directly with the same Internet
infrastructure that was accessed by stationary computers.

Cloud technology, sprung from the Internet ecosystem, and the smart-
phones, from the cellular domain, began to shape what is sometimes referred
to as the app economy [Godfrey et al., 2016]. The Internet-of-things (IoT),
listed as a disruptive civil technology by the US National Intelligence Coun-
cil in 2008 [Atzori et al., 2010], also became a popular term. It would take
a few years, but in 2013 IoT really started trending globally [Google, 2021],
and the term has now made its way into industry through Industry 4.0 and
Industrial IoT. Meanwhile, cloud has evolved from delivering social networks
and web shops, to an ecosystem of developer tools, and an indispensable part
of society. Communication technology would come to be shaped by smart-
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Figure 1.1 Internet and communication technology evolution. [Zakon,
2018; McCarthy, 2001; Science and Media Museum, 2020; Internet Systems
Consortium, 2019; Ohlsson et al., 2015]
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Chapter 1. Introduction

Figure 1.2 The 5G system with two clouds integrated into the core net-
work. One cloud is integrated close to the access network, providing low
latency. Image courtesy of Ericsson. Source: [Ericsson, 2017]

phones and other equipment needing access to remote services through the
communication networks. Now, with the advent of the 5th generation of mo-
bile telephony, 5G, cellular networks are not only an access point to cloud
services, it is actively promoting, providing and using the technology, as il-
lustrated in Figure 1.2. In relation to these developments, there has also been
a new surge in machine learning, a field that is now providing powerful in-
put to the engineering toolbox. While this thesis does not deal with machine
learning directly, it is an important part of the perspective.

Autonomous systems

In combination, the maturity level of these breakthroughs, brings us to a
new age in the digital era. It marks the entry point of disruptive Internet
technologies and related commercial off-the-shelf (COTS) components in in-
dustry, and a revival of massive automation, using the new technologies.
In Figure 1.1, this is referred to as the age of autonomous systems. Smart
manufacturing and cloud robotics are part of this digital revolution, as are
autonomous transports, the digital assistant, health services and many other
developments driven by availability, devices, digitization, machine learning
and communication networks. This progress was identified by the Knut and
Alice Wallenberg Foundation which launched the Wallenberg Autonomous
Systems Program (WASP) in 2015. It was soon to become the Wallenberg
AI, Autonomous Systems and Software Program, making explicit two impor-
tant components (i.e. software and AI) in the automation of complex systems.
These systems are meant to observe, interact with, and adapt to the world.
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1.1 Motivation

When the graduate school of WASP was launched, automatic control had
ample presence, as had the cloud, promising to manage massive amounts
of information and fulfill every computational need. At this point in time,
cloud was no longer an emerging technology but the public cloud ecosystem
was still settling. Some researchers in automatic control had taken a specific
interest in using their tools and knowledge to improve these large dynamic
systems. Largely though, the goal in the next generation of clouds would be
to support applications that are time sensitive and business/safety critical,
and must respond to stimuli in the fraction of a second. Using the cloud for
such applications is the topic of this thesis.

1.1 Motivation

The motivation behind this work is the evolving ecosystem around cloud,
IoT, and wireless communication. Technology has reached a point where
these systems can achieve a performance and reliability that allows them to
co-exist with industrial grade equipment. With a bit error rate of 1× 10−5

in combination with sub-millisecond delay in the access network, the Fifth
Generation Wireless Specifications (5G) will provide mobile broadband with
ultra-reliable and low-latency communication. The 5G system will also pro-
vide flexible allocation of services within the network. This opens up for
wireless, latency sensitive, critical, closed-loop control systems to move into
and draw benefit from cloud technologies. 5G and cloud services are enablers
for new applications and industries that will evolve in what is known as the
fourth industrial revolution.

A programmable logic controller (PLC) that is implemented in the cloud,
is referred to as a virtual PLC. A virtual PLC, which forms a direct replace-
ment of its physical counterpart, can provide simplified development, lower
up-front cost, a faster time to market, can easily be replicated, replaced,
extended, and monitored, and is provided fast access to a huge database
of information. COTS, and IoT, allows fast and easy deployment of mas-
sive amounts of low-power devices. Complex systems such as autonomous
personal transports, cloud robotics, and drones are also connected to the in-
frastructure and will benefit from using it efficiently. Industry 4.0 envisions
smart factories and new industries empowered by the flexibility of this new
ecosystem and the synergies of devices, clouds and low latency communi-
cation. The next generation communication networks are built to provide
features that can make this vision a reality. Before setting the scope of the
thesis, the remainder of this chapter briefly introduces central topics on this
theme.

15



Chapter 1. Introduction

Cloud computing

The term cloud computing was popularized in the first decade of the 21st
century at the arrival of public pay-as-you-go large-scale data center service
offerings. This is often marked by the relaunch of Amazon Web Services in
2006. In this context, the term cloud soon became synonymous with the use
of Internet based web services to store data and access applications. The
e-commerce, social networks, and on-demand media providers that support
much of modern lifestyle, depend on technologies that emerged in the cloud.
The technologies support scalable applications executing in data centers.

Clouds provide utility computing, the meaning and importance of which
is best described by the quote introducing Chapter 2 of this thesis, a quote
from computer pioneer John McCarthy, in 1961. At the time of McCarthy’s
speech, architects at International Business Machines (IBM) were modifying
their designs to support time-sharing on main-frame computers used inside
large organizations. Today, this sharing happens on a massive scale, as a
large part of the computational needs are serviced through hyperscale data
centers with a shared infrastructure available publicly over the Internet. The
cloud has come to represent the availability of computing infrastructure and
services in resemblance with a public utility such as electricity. For many, it
is an ubiquitous everyday necessity, accessible at all times.

This ecosystem of web services, storage, and compute resources, that are
made available over remote networks and paid per usage, gained momentum
roughly one decade ago ([Armbrust et al., 2010]). Since then, cloud has rev-
olutionized the software industry and is increasingly becoming an intrinsic
part of our infrastructure. The environment created by cloud, and the mas-
sive amounts of data passing through them, has also paved the way for the
surge of interest in machine learning and artificial intelligence, cloud robotics,
extensive monitoring and fault detection etc. Another indicator of success, is
its presence in information and communication systems in general, marked
by how 5G mobile broadband systems are being implemented and perceived.
Consequently, clouds are developing to support new use cases.

Distributed Cloud

Recent advances in cloud technology include concepts such as edge, fog,
distributed clouds, osmotic computing, and the network compute fab-
ric ([Yousefpour et al., 2019; Boberg et al., 2018; Villari et al., 2016; Sefidcon
et al., 2021]). Edge computing brings computations and storage closer to
the data sources to provide data locality, low latency and high reliability.
The fog aims to bridge IoT and cloud in a continuum, including interme-
diate network services. Osmotic computing focus on the migration of micro
services across data centers to the network edge. With a combination of
rich sensor environments and the edge, cloud technology is gaining traction
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Figure 1.3 Distributed cloud. The edge node provides low latency, but
has limited capacity for computations and storage. The data center has
virtually infinite resources, but network access is slower and less reliable.

in traditional industries including logistics, transport, factory automation,
manufacturing, and even for critical closed loop control systems. To simplify
this process, the distributed cloud provides the necessary connectivity and
the flexibility of cloud computing, while it can hide the complexity of the
necessary infrastructure. An illustration of the distributed cloud is shown in
Figure 1.3. Various levels in the infrastructure can service applications with
different latency needs. Performing calculations close to the user can also of-
fload the communication paths in the network. The distributed cloud places
software components in optimal locations to utilize the characteristics of the
communication network and the serviced applications.

The fourth industrial revolution

Current technological advancement impacts the industrial taxonomy and al-
lows industries to modernize and evolve. Industry 4.0 [Rojko, 2017; Khan
et al., 2017; Jasperneite et al., 2020] is an originally German strategic ini-
tiative which has become synonymous with this revolution1. Industry 4.0 re-
volves around cyber-physical system (CPS) (physical systems integrated with
information and communication technology (ICT) components), industrial
Internet-of-things (IIoT), and the smart factory. The machines in Indus-
try 4.0 are autonomous systems, often mobile, capable of self-organization
and self-optimization. The manufacturing system in a smart factory is re-
configurable and processes should be adaptive, robust and user-friendly. In-
teroperability and wireless connectivity are important in Industry 4.0.

As the trend of connecting things continues, there is an understanding
that responsiveness and reliability are set to improve significantly, through
technologies such as distributed clouds, Time Sensitive Networks (TSN) and
5G connectivity. A complementary challenge to control theory and computer

1There are several related and similar ideas around the world, such as the Industrial
Internet and Industrie du futur
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engineering is to identify useful trade-offs between latency and reliability,
and the gains from using cloud technology. In the spirit of the fourth indus-
trial revolution and Industry 4.0, control applications should provide self-
organizing and self-optimizing systems, capable of making trade-offs online,
through an awareness about their deployment.

Commercial off-the-shelf components

To realize the cloud-based systems aimed for the Industry 4.0 era, at reason-
able costs and development effort, a design criterion is that they rely on tried
and trusted commercial off-the-shelf (COTS) components. The open refer-
ence architecture for fog computing specifically requires that nodes in a fog
network support COTS software [OpenFog Consortium, 2017]. This also re-
lates to the interoperability requirements of Industry 4.0. Today, cloud-native
is the culmination of COTS, cloud, and no-ops2 software development and de-
ployment. It is therefore reasonable to consider COTS components, services,
and platforms as referring to, for example, public and private cloud providers
(e.g. Amazon Web Services (AWS) and Microsoft Azure), open-source orches-
tration and service abstraction platforms (e.g. Kubernetes (K8S) [Bernstein,
2014], AWS Lambda [Fox et al., 2017], Fission [Mohanty et al., 2018], Robot
Operating System (ROS) [Quigley et al., 2009]) and network services, in ad-
dition to traditional software. The fact that COTS is expected in relation to
Industry 4.0, IoT, and cloud, is important, but the idea of COTS in control
systems is not new or controversial [Årzén, 1999; Sha, 2001; Cervin et al.,
2003; Kim et al., 2006].

1.2 Scope of the thesis

In the broader perspective, this thesis is about control engineering in the
context of distributed clouds. The focus is on investigating control offloading
through empirical evaluation of clouds and investigations into the use of
utility computing. The cyber-physical systems, smart factories, multi-agent
systems, and general smart systems that are the targets of this work will
be highly advanced and complex. The thesis nonetheless focuses on a single
control system using the cloud. There are good reasons for this, and four are
listed below.

1) The field of control engineering lacks work that takes a specific inter-
ested in basic achievable performance in relation to conventional clouds.

2Refers to the automation of the IT environment removing the need for an organization
to include an operations team to manage it.

18



1.3 Thesis outline and contributions

2) Starting from conventional control of a single plant will help in iden-
tifying primitives that set cloud control apart from traditional control
and networked control.

3) It is common to reject the use of cloud for critical control because of
uncertainty or, write off its properties to consider it as just another
networked control system. A use case that is well understood and easy
to implement and measure, is a good way to challenge the current view
on the cloud.

4) The use of elastic computing in complex critical systems will be easier
to adopt (by reducing risk) if the individual parts are created to be
resilient; tolerating variations and working at reduced performance if
necessary.

Access networks will become reliable, and developers may be provided
support for deterministic execution, but clouds are large and complex dy-
namic systems that are shared per definition, with resources acquired on de-
mand. It is reasonable to assume that determinism cannot always be granted.
It is also conceivable that determinism is not always preferred, if the alter-
native is an improved average performance. Therefore, the aim of the thesis
is to specifically examine clouds and utility computing. While experiments
are performed over networks, subjected to network reliability and delays, a
focus on traditional networked control is avoided. The aim is to keep tech-
niques complementary, rather than necessary. Similar arguments apply for
robust control and common practices in cloud, such as using redundant re-
quests to reduce average latency. The focus of the thesis is on strategies that
are generic and complementary to the control problem itself, and useful in a
cloud context.

1.3 Thesis outline and contributions

Part I

Part I serves as an introduction to the cloud control challenge. The first
chapter defines the cloud, develops the challenge and relates it to networked
control. This is followed by an introduction to Model Predictive Control
(MPC), which is used to implement control in the cloud. Finally, the plant
that is used throughout the thesis is introduced and motivated.

This part contributes with perspective, positioning the cloud control chal-
lenge as an intrinsic part of intelligent systems in the cloud. It proposes
controller offloading and elastic control as topics for control research.
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Part II

Part II examines cloud performance through the application of MPC. Chap-
ter 7 serves to validate concepts and assumptions. It shows the availability of
reliable, wireless, low latency communication, and that a distributed cloud is
a functional execution platform. The chapter also asserts the reference plant
as a reasonable tool for study, and uses a Platform-as-a-Service to demon-
strate relocating an executing controller, while it remains in control of the
plant. While individual parts (connectivity, software platform, IoT devices,
cloud) in Chapter 7 are built using COTS components, the platform as a
whole is custom-made. Chapter 8 follows with a closer look at offloading,
and the contemporary cloud, using only standard, accessible, tools. These
chapters provide insight on what to expect from the software and execution
platforms.

This part contributes a research testbed, with next-generation wireless
connectivity and a distributed cloud architecture. It provides results on cloud
performance, through benchmarks and prototypes. Insights are gained into
the use of cloud native software in the distributed cloud, as opposed to us-
ing lower level protocols and local networks. An important contribution is
the outlook on achievable performance, using novel software design, and the
differences between platforms. The section also proposes software migration
for control systems and develops this idea into the offloading architecture.

Part III

Part III develops strategies that use the special characteristics of clouds to
an advantage, while providing graceful degradation to handle failures. Chap-
ter 10 provides the implementation of a variable horizon MPC, showing the
use of utility computing, and parallelism, to relieve the controller from static
configurations. Based on an implementation with nominal closed loop sta-
bility and recursive feasibility, the controller is examined when switching
horizons and entering a local control mode, if conditions require. Chapter 11
introduces frequency switching, through a hierarchy in which a controller
is automatically augmented by a higher performing alternative. The final
chapter, Chapter 12, extends the control problem of the MPC with explicitly
evaluated recovery paths. The recovery paths are created from a recovery
mode, that provides graceful degradation in case of connectivity issues.

This part contributes three control designs that utilize the processing
capabilities of the cloud. The first design focuses on the illusion of infinite
compute resources. It is shown how this can be used to implement the vari-
able horizon MPC. Results of simulations are provided, after which a fur-
ther contribution is to contrast the results with the use of edge clouds. The
second design contributes a hierarchical control structure, using three con-
trollers. The first two implement the same MPC at different sampling rates,
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to provide rate switching. The third implements unconstrained control, used
to handle situations where neither of the two MPCs provide a control sig-
nal. Various ways of combining the modes are examined and the structure
is experimentally shown to be efficient and reliable. The final contribution,
is a design that wraps a client controller into a framework that can pro-
vide reliability guarantees. To keep concepts generic, and, as far as possible,
use independent components, the strategy wraps the extended controller in
a feed-forward framework. The thesis provides theory, implementation, and
simulations that study the effects of such a design.

Part IV

Part IV uses frequency control and a go-back-home mode, to create a resilient,
best-effort control system. This part studies the consequences of reduced
real-time requirements, cluster sharing, and the interaction between resilient
controllers and the cloud. Chapter 13 introduces the resilient design, and
examines it through simulations, using data from Part II. Details on the used
frequency controller are provided in Chapter 14. Chapter 14 then continues
to further evaluate the design, on real cloud services. Mitigating properties
and cloud scaling is shown, by admitting several clients into a shared cluster.

This part provides a resilient control design that contributes with sev-
eral results and perspectives for cloud control systems. One, is the removal
of execution time deadlines. Another, is delay mitigation in the offloading
structure, implemented using predictions and control frequency adaptation.
A third, is the demonstrated usefulness of combining the resilient control
system and the elastic cloud. The part also contributes simulations, with pa-
rameters based on real-world data. A final contribution in this part are the
details of the frequency adaptive controller.

Part V

Part V summarizes the thesis into a conclusion and provides suggestions for
future work.

1.4 Publications

The thesis is based on the following publications.

Part I

Abdelzaher, T., Y. Hao, K. Jayarajah, A. Misra, P. Skarin, S. Yao, D. Weer-
akoon, and K.-E. Årzén (2020). “Five challenges in cloud-enabled intel-
ligence and control”. ACM Transactions on Internet Technology (TOIT)
20:1. issn: 1533-5399.
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The paper discusses emerging cloud services for connected embedded de-
vices. It outlines five resulting new research directions towards enabling and
optimizing intelligent, cloud-assisted sensing and control in the age of the
Internet of Things. The problems are centered around empowering individu-
ally resource-limited devices to exhibit intelligent behavior, both in sensing
and control, thanks to a judicious utilization of cloud resources together with
recent advances in machine intelligence.

Tarek Abdelzaher suggested the five challenges in cloud-enabled intelli-
gence and control. Karl-Erik Årzén and Per Skarin wrote about offloading
and closed loop control.

Skarin, P., J. Eker, M. Kihl, and K.-E. Årzén (2019). “Cloud-assisted model
predictive control”. In: IEEE International Conference on Edge Comput-
ing (EDGE). Milano, Italy, pp. 110–112.

The paper studies seamless control assistance and design of flexible con-
trollers using the edge cloud. It introduces computational offloading with
graceful degradation for executing model predictive control using the cloud
and illustrates how a cyber-physical system can be improved while keeping
the computational cost down.

The paper is an extract of a longer technical report by Per Skarin, who
constructed the study. The contribution was compiled by Per Skarin, Karl-
Erik Årzén, Maria Kihl and Johan Eker. The four authors were jointly in-
volved in the thought processes initiating the offloading strategies.

Part II

Skarin, P., W. Tärneberg, K.-E. Årzén, and M. Kihl (2018). “Towards
mission-critical control at the edge and over 5G”. In: IEEE International
Conference on Edge Computing (EDGE). San Francisco, USA, pp. 50–57.
Best Paper Award.

The paper presents a research testbed built to study mission-critical control
over the distributed edge cloud. The developed cloud platform provides the
means to continuously operate a mission-critical application while seamlessly
relocating computations across geographically dispersed compute nodes. The
use of 5G wireless radio allows for mobility, and reliably provide compute
resources with low latency, at the edge. The primary contribution of this
paper is a state-of-the art, fully operational testbed showing the potential
for merged IoT, 5G, and cloud. The paper also provides an evaluation of the
system, while operating a mission-critical application, and an outlook on a
novel research direction.
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The 5G testbed project was proposed by Maria Kihl and William
Tärneberg. Karl-Erik Årzén proposed the process and MPC controller. Per
Skarin and William Tärneberg implemented the testbed, with William fo-
cusing on network integration, and Per on the controller and observability.
Problem definition, architecture, and evaluation efforts where shared equally.
The illustrations of the testbed were done by William Tärneberg. Maria Kihl
and Karl-Erik Årzén continuously assisted the implementation and writing
with ideas and directions.

Skarin, P., W. Tärneberg, K.-E. Årzén, and M. Kihl (2020). “Control-over-
the-cloud: a performance study for cloud-native, critical control systems”.
In: IEEE/ACM 13th International Conference on Utility and Cloud Com-
puting (UCC). Leicester, UK, pp. 57–66.

The paper evaluates a set of cloud platforms and infrastructures with the
intention of hosting feedback control systems. It shows potential and limita-
tions, by evaluation several protocols and levels of the cloud software stack.
It proceeds to evaluate an offloading control strategy, and shows how the
sensitive nature of control can cause a seemingly adequate cloud platform to
pose a high risk, while a seemingly inadequate platform can have a positive
affect on the performance of the controller.

The performance study was suggested, implemented, performed and eval-
uated by Per Skarin and William Tärneberg. Per, with a broad scope on the
software, measurements, and interfacing and William with a stronger focus
on protocols and Kubernetes. Maria Kihl and Karl-Erik Årzén assisted in
setting the scope for the study. The paper was written by Per Skarin and
William Tärneberg with support from Maria Kihl and Karl-Erik Årzén.

Part III

Skarin, P., J. Eker, and K.-E. Årzén (2020). “Cloud-based model predictive
control with variable horizon”. In: 21st International Federation of Auto-
matic Control (IFAC) World Congress. Berlin, Germany.

The paper presents a novel method using the cloud to implement a variable
horizon model predictive controller. This is based on the idea that robust,
best effort strategies allow industrial grade use of the powerful, efficient,
and quickly improving cloud ecosystems. In case of sudden long delays and
downtime, a graceful degradation is used. The variable horizon strategy finds
use in, for example, non-linear control problems, and the proposed method
can be generalized to implement robust and scalable controllers that benefit
from cloud technology.
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The method was suggested by Per Skarin and Karl-Erik Årzén. Measure-
ments and simulations were performed by Per Skarin. The writing was done
by Per Skarin with support from Karl-Erik Årzén and Johan Eker.

Skarin, P., J. Eker, and K.-E. Årzén (2020). “A cloud-enabled rate-switching
MPC architecture”. In: 59th IEEE Conference on Decision and Control
(CDC). Jeju, Korea (South).

The paper presents an architecture for cloud-based MPC, consisting of a high
rate MPC in the cloud and a low rate MPC on the local device. The system
uses the cloud MPC as the nominal controller but switches to local MPC in
case of an unresponsive network. The two MPCs are designed to be as similar
to each other as possible, except for the sampling rate. Different alternatives
for when to execute the local MPC and how to perform the switching are
presented. The approach is evaluated by simulation.

The method was suggested by Karl-Erik Årzén, and developed by Karl-
Erik Årzén and Per Skarin. The implementation and evaluation were done by
Per Skarin. The writing was done by Per Skarin with support from Karl-Erik
Årzén and Johan Eker.

Skarin, P. and K.-E. Årzén (2021). “Explicit MPC recovery for cloud control
systems”. In: 60th IEEE Conference on Decision and Control (CDC).
Austin, TX, USA.

The paper presents a strategy for failure-resilient cloud control using MPC
extended with explicit recovery. Based on an arbitrary and unmodified client
controller, the remotely operated MPC can safely manipulate the network
controlled plant through temporary adjustments of an error signal genera-
tor. The paper shows how to implement the reliable cloud controller, relate
it to robust MPC and discuss stability. Simulations illustrate the obtained
performance and resilience to failure.

The method was suggested by Per Skarin and developed jointly with Karl-
Erik Årzén. Theory, implementation and evaluation was done by Per Skarin.
The writing was done by Per Skarin with support from Karl-Erik Årzén.

Part IV

Skarin, P., W. Tärneberg, K.-E. Årzén, and M. Kihl (2021). “Factory au-
tomation meets the cloud: Realizing resilient cloud-based optimal control
for Industry 4.0”. Submitted to IEEE Transactions on Industrial Infor-
matics.
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The paper constructs a frequency-adaptive offloaded controller, which can
successfully and continuously take advantage of any of a set of cloud de-
ployments. The solution relies on continuously adapting the controller to
the prevailing conditions in the cloud. As results show, this allows a control
system to survive interruptions, load disturbances caused by other users,
and time-varying resource availability. Experiments show a system that can
seamlessly switch between clouds and that multiple controllers using shared
resources consequentially self-adapt so that no controller fails its objective.

The method was suggested by Per Skarin and developed jointly with
William Tärneberg. The cloud infrastructure was developed by William
Tärneberg and the control software by Per Skarin. The theory and meth-
ods were primarily authored by Per Skarin and the experiments were done
mainly by William Tärneberg.

Publications that are not in the thesis

Årzén, K.-E., P. Skarin, W. Tärneberg, and M. Kihl (2018). “Control over
the edge cloud - an MPC example”. In: 1st International Workshop on
Trustworthy and Real-time Edge Computing for Cyber-Physical Systems.
Nashville, USA.

Tärneberg, W., P. Skarin, C. Gehrmann, and M. Kihl (2021). “Prototyping
intrusion detection in an industrial cloud-native digital twin”. In: 22nd
IEEE International Conference on Industrial Technology (ICIT). Vol. 1.
IEEE. Valencia, Spain, pp. 749–755.

1.5 Notation

The symbol t ∈ R is reserved for denoting continuous time and we let k ∈ Z∗
denote discrete time indexes. With a recurrent sampling time given by Ts,
x(k) is the state at time t = kTs. The letters i and j are used as sequencing
variables. When necessary, time and sequence indexing uses subscript such
that xk = x(k). In all subscript notations, t, k, i, and j are indexes, while
other symbols are part of the variable name. For instance, the variable xe
may be time indexed as xe,k which should be interpreted as xe(k).

Sequences can be denoted in bold so that v = [v(0), v(1), . . . ]. When
unambiguous, this notation is not used. The dimension of variables is given in
their specification, such that x ∈ Rn is a real vector of length n andA ∈ Rn×m
is a real matrix of n rows and m columns. The plant state is denoted x and
the control signal u. The number of states are n and the number of inputs
m. The variable x̂ is used to denote the observed (or estimated) state of the
plant. x̃ is the error in the observation. x̂(t) is an estimate of the state using
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all information available up until time t. A model prediction of the plant
state is denoted xm.

v(k) denotes the value of v at time step k and v(k+ i|k) is the predicted
value of v at i time steps after time k. This can also be written as vk+i|k, or, if
v is a sequence of predictions, as vk(i), where k is the time of the prediction,
and i indexes a position in this sequence. A time sequence is denoted using
the vector notation and time index as v = [v(k|k), v(k+ 1|k), . . . , v(k+ i|k)].
Sets are denoted using curly braces as in v = {v(0|Ω0), v(1|Ω1), . . . , v(i|Ωi)}
where the index i is the position in the set and Ωi represent a configuration.
The configuration Ωi provide parameters to create the element v(i). The set
is not ordered in relation to the configurations Ωi unless specifically stated.

The notation M ≥ 0, M > 0 implies that the matrix M is positive semi-
definite and positive definite. In denotes the n× n identity matrix.

A sequence can also be represented using superscript such that κ0,N is a
sequence of N + 1 functions, indexed from zero. κj denotes the jth function
in the sequence, and κj(xk) evaluates this function with parameter xk. A
subscript is part of the variable name in this notation so that a sequence of
control inputs ur is denoted u0,N

r .
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Glossary

This glossary includes a small subset of domain specific terminology that is
used within the thesis. Its purpose is primarily to avoid confusion in some
specfic cases.

Cloud Control System (CCS) The term refers to a system where part
of the control loop is implemented in the cloud. In the thesis this generally
refers to a cyber-physical system where the plant is a physical device.
Control over the Cloud (CotC) Because the term Cloud Control System
may be confused with systems that control the cloud itself, the more specific
Control over the Cloud is introduced in the thesis to distinguish a separation
of the cloud and the system under control.
Cloud Control Refers to the combination of feedback control systems and
clouds in general. When unambiguous, this term may be used in place of the
more specific phrases control of the cloud and control over the cloud.
Cloud Region A geographical area where cloud services are hosted, such
as us-west on the United States west coast (California) and eu-north in
northern Europe (Stockholm, Sweden). A region can also provide availability
zones, representing isolated data center locations within the region.
Control of the Cloud Use of control techniques to implement dynamic
resource management in the cloud infrastructure (see for instance [Kihl et
al., 2008; Tärneberg et al., 2017b; Nylander et al., 2020]).
Execution Time In the presence of a real-time system, the execution time
is usually referring to the time a task uses CPU and memory. Wait states,
are not part of this time. To ensure that the execution time is not confused
with the wall clock time, the term processing time is used in the thesis .
Horizontal Scaling Adding or removing resources used by an application
or made available in a cluster, by adding or removing virtual machines (or
containers).
Hyperscale Data Center A hyperscale data center has an excess of re-
sources and the ability to scale quickly even in response to a very large in-
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crease in demand. To an ordinary user, there are seemingly limitless resources
available.
Microservice Microservices are part of the software engineering strategy
for cloud applications. A microservice is a small and independent service
that communicate over well defined APIs. Components in a microservice
architecture are owned by a team of developers who implement, maintain
and deployed them, without affecting the functioning of other services.
Processing Time To avoid confusion with execution time and other re-
sponse times, processing time specifically refers to the response time of a task
executing on a computer. That is, the wall clock time span from the instance
a task is scheduled to start executing until it has completed. The response
time does not include transferring input and output to and from the task.
Response Time Can be used for many different purposes. The response
time of the controller, the response time of a request sent over the network,
the response time of an application executing in a cloud cluster etc. The
response time is always measured in real-time, i.e., as the wall clock time of
the system.
Vertical Scaling Changing the configuration of a virtual machine by adding
or removing (scale up/down) compute resources, such as the available mem-
ory, CPU time, or number of CPU cores.
Wall Clock The real time in the system. Often, the wall clock time refers
to the theoretical global time but can, if specified, also be a measurement
from the real time clock of a single computer. The wall clock is in contrast to
for instance the CPU clock which measures the time spent using the CPU.
An application can briefly access the CPU, using very little CPU time, but
its run time from start to finish can be extensive in terms of the wall clock
due to interruptions or waiting for input-output operations.
Worker Node A machine in the cloud that hosts components of the appli-
cation workload.
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2-DoF 2-Degrees-of-Freedom . . . . . . . . . . . . . . . . . . . 169

5G Fifth Generation Wireless Specifications . . . . . . . . . 58

ADC Analog to Digital Converter . . . . . . . . . . . . . . . . 90

API Application Program Interface . . . . . . . . . . . . . . 39

ARPANET Advanced Research Projects Agency Network . . . . . . 12

AWS Amazon Web Services . . . . . . . . . . . . . . . . . . . 86

CCS Cloud Control System . . . . . . . . . . . . . . . . . . . 46

CFS Completely Fair Scheduler . . . . . . . . . . . . . . . . . 90

CGI Common Gateway Interface . . . . . . . . . . . . . . . . 79

CLRE Closed Loop Response Error . . . . . . . . . . . . . . . 204

CNCF Cloud Native Computing Foundation . . . . . . . . . . . 40

CotC Control over the Cloud . . . . . . . . . . . . . . . . . . 55

COTS Commercial Off-the-Shelf . . . . . . . . . . . . . . . . . 77

CPS Cyber-physical System . . . . . . . . . . . . . . . . . . . 56

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . 38

DAC Digital to Analog Converter . . . . . . . . . . . . . . . . 90

DC Data Center . . . . . . . . . . . . . . . . . . . . . . . . . 78

DNN Deep Neural Network . . . . . . . . . . . . . . . . . . . 47

DNR Distributed-NodeRED . . . . . . . . . . . . . . . . . . . 79

EMA Exponential Moving Average . . . . . . . . . . . . . . . 209

ERDC Ericsson Research Data Center . . . . . . . . . . . . . . 86

FaaS Function-as-a-Service . . . . . . . . . . . . . . . . . . . . 37

FPGA Field-Programmable Gate Array . . . . . . . . . . . . . 78
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GSM Global System for Mobile Communications . . . . . . . 12

HTTP Hypertext Transfer Protocol . . . . . . . . . . . . . . . 101

IaaS Infrastructure-as-a-Service . . . . . . . . . . . . . . . . . 36

IBM International Business Machines . . . . . . . . . . . . . 16

ICMP Internet Control Message Protocol . . . . . . . . . . . . 101

ICT Information and Communication Technology . . . . . . 79

IIoT Industrial Internet-of-Things . . . . . . . . . . . . . . . 190

IP Infrastructure Providers . . . . . . . . . . . . . . . . . . 106

ISP Internet Service Provider . . . . . . . . . . . . . . . . . 93

IT Information Technology . . . . . . . . . . . . . . . . . . 39

IoT Internet-of-Things . . . . . . . . . . . . . . . . . . . . . 35

K8S Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . 101

LAN Local Area Network . . . . . . . . . . . . . . . . . . . . 79

LQ Linear Quadratic . . . . . . . . . . . . . . . . . . . . . . 68

LQR Linear Quadratic Regulator . . . . . . . . . . . . . . . . 56

LTE Long Term Evolution . . . . . . . . . . . . . . . . . . . 84

LuMaMi Lund Massive MIMO . . . . . . . . . . . . . . . . . . . 85

MAC Medium Access Control . . . . . . . . . . . . . . . . . . 85

MIMO Multiple-Input-Multiple-Output . . . . . . . . . . . . . 85

MLE Maximum Likelihood Estimation . . . . . . . . . . . . . 193

mMTC Massive Machine Type Communication . . . . . . . . . 84

MPC Model Predictive Control . . . . . . . . . . . . . . . . . 48
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2
Intelligence in the Cloud

If computers of the kind I have advocated become the
computers of the future, then computing may someday
be organized as a public utility just as the telephone
system is a public utility... The computer utility could
become the basis of a new and important industry.

John McCarthy speaking at MIT in 1961
[Simson L. and Harold, 1999]

The broad availability of cloud services offers an opportunity to extend the ca-
pacity of connected devices through remote access. Collections of Internet-of-
things (IoT) devices often transfer their status to applications implemented
in clouds, for monitoring and analysis, to perform anomaly detection and
measure performance. The knowledge and actions that are deduced from the
collected information can be fed back over the network to implement feed-
back control - often referred to as closing the loop. This connectivity also
opens up a communication path for control client software to use services in
the elastic service infrastructure (Section 2.1). Because the underlying cloud
platform is scalable, it can be used to launch subsystems that coordinate a
group of devices, or deploy heavy computations as needed.

Figure 2.1 provides an example. The cameras in this figure can indepen-
dently and jointly monitor an area of interest, but they also send data to the
cloud for storage and advanced processing. This established connection to
the cloud can also extend the capabilities of the cameras. There are several
ways in which this can be used. A camera can request support to analyze a
stream of pictures, a remote supervisor can reconfigure the group to improve
their performance or handle an unusual situation, or the cloud can take direct
control of the system, directing the cameras as a single unit to obtain optimal
performance. The resource requirements in different situations varies, mak-
ing the scale with demand property of clouds very useful. When the sensing,

Parts of this chapter are based on [Abdelzaher et al., 2020] and [Skarin et al., 2019]
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Figure 2.1 Collaborative IoT (Camera) environment & Deep Inferencing
Pipelines.

decision making and learning processes of autonomous systems are moved to
the cloud, it is referred to as placing intelligence in the cloud. The following
chapter serves as an introduction to what the cloud is and how closed loop
control is implemented in the thesis.

2.1 Cloud Overview

The most commonly referred to definition of cloud computing is the one from
the United States National Institute of Standards and Technology (NIST):

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three
service models, and four deployment models. [Mell and Grance,
2011]

The definition mentions five essential characteristics, these are: on-
demand self-service, broad network access, resource pooling, rapid elasticity,
and measured service. The thesis’ relation to the essential characteristics is
presented in the next section. The definition also mentions three service mod-
els, they are: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS). The definition of these services will
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be returned to shortly, and the Function-as-a-Service (FaaS) will also be
introduced.

Elastic utility computing

Two characteristics that are of special interest to control theory and control
systems engineering is resource pooling and rapid elasticity. They are defined
as follows by NIST:

Resource pooling The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical
and virtual resources dynamically assigned and reassigned according to
consumer demand. There is a sense of location independence in that the
customer generally has no control or knowledge over the exact location
of the provided resources but may be able to specify location at a higher
level of abstraction (e.g., country, state, or data center). Examples of
resources include storage, processing, memory, and network bandwidth.

Rapid elasticity Capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward com-
mensurate with demand. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be appropriated in
any quantity at any time.

We will henceforth assume that resources are necessarily pooled and refer
to the flexible and rapid provisioning and reconfiguration of cloud resources
as elasticity and utility computing. The definition of rapid elasticity above
mentions outward or inward scaling. Scaling is often separated into scaling
in and out through horizontal scaling, or scaling up and down through ver-
tical scaling. The former adds more machines to a cluster, while the latter
re-configures machines with new capabilities. To implement these features,
clouds use two virtualization technologies: Virtual Machines (VMs) and con-
tainers. The two technologies are illustrated in Figure 2.2 and introduced
below.

Virtual Machines

Full virtualization, provided through VMs, use software to create isolated
environments that allow complete operating systems (OSs) to co-exists on
the same hardware. Network interfaces, graphics processing units, disks, and
so on, are replaced by software devices to create virtual computers. As seen
in Figure 2.2, on top of the hardware there is a host, which is the ordinary
OS. Next to the hosts there is a hypervisor. The VMs execute through the
hypervisor. A hypervisor emulates necessary instructions to ensure that the
guest OS kernel inside the VM works properly. This is necessary, because the
guests OS kernel assumes it has exclusive privileged access to the physical

37



Chapter 2. Intelligence in the Cloud

App App

q Kernel

Virtual
Machine

App App

± Kernel

Virtual
Machine

Hypervisor ± Host

Hardware

App App

± Container

App App

± Container

Container Engine

± Host

Hardware

Figure 2.2 Virtual machine and container stacks.

machine. In this setup with a hypervisor, several users can execute completely
different OSs in parallel on the same hardware.

Modern computers, even ordinary personal computers, implement sup-
port to accelerate the execution of virtual machines. This makes memory
and CPU intensive tasks virtually indistinguishable between the host and the
VM. A VM can be configured to access a sub-set of the physical machine’s
resources, CPU, memory, etc. If necessary, the VM can later be reconfigured
with a new set of resources. A VM can also be moved (migrated) to a different
physical machine while the guest OS remains on-line. Migration of VMs is a
slow, incremental process that can take many minutes to complete and can
cause quality of service (QoS) degradation and even downtime [Sapuntzakis
et al., 2002; Ahmad et al., 2015]. While the maximum number of Central
Processing Unit (CPU)s and the amount of memory available to a single ma-
chine is limited by what is available on a single mother board, the storage for
virtual machine disks can be served from a distributed storage pool (such as
Ceph [Weil et al., 2006]). This truly makes storage seem virtually infinite. In
future systems, Software Defined Hardware Infrastructure (SDHI)[Roozbeh
et al., 2018] aims to implement a single ’infinite’ pool also for memory and
CPU.

Containers

Containers implement operating system-level virtualization, often referred to
as light-weight virtualization. The concept was pioneered by Sun Microsys-
tems as Solaris Containers in 2005 but became popular many years later on
in the Linux OS. As seen in Figure 2.2, containers share the OS kernel of
the host and a hypervisor is therefore not needed. Containers package their
own files, libraries and utility software, i.e. the user space content of the OS,
but system calls (i.e. kernel code) execute directly in the host’s privileged
memory space.

The host kernel implements features that allow for a container engine
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to setup separate networking, file system structures, memory and CPU re-
strictions, etc., for the individual containers. Containers do not allow for
completely different OSs to co-exist but they support, for instance, different
distributions of Linux and a variety of user space components that are com-
patible with the host kernel. Containers provide are very practical platform
as they simplify version management and software deployment, and, while
not as isolating as a VM, they provide a large degree of isolation. Containers
are used to package microservices, and container engines are often deployed
inside virtual machines.

Services

The cloud provides networked services to simplify software development and
infrastructure maintenance. In the classic perspective, clouds provide three
categories of services: IaaS, PaaS, SaaS. A fourth category, FaaS, is intro-
duced with the contemporary cloud in Section 2.2.

At the lowest level, there is IaaS. This service provides access to provi-
sion and configure VMs, storage and networks through web browsers and
Application Program Interfaces (APIs). The user installs OSs, configures
servers, routers and so on, managing a virtual Information Technology (IT)
infrastructure inside the data center. PaaS provides a hosted application de-
velopment and execution platform in the cloud. The PaaS implements con-
venient ways of deploying and monitoring software, supporting continuous
integration and DevOps practices. The user of a PaaS is limited to the capa-
bilities of the platform, its method of scaling, logging etc, but does not have
to manage the IT infrastructure. SaaS is at the highest level and provides
applications such as email and word processing as a service accessed in a web
browser.

IaaS has been used extensively to implement the higher level services that
are used in the thesis, and a PaaS is also present. Overviews and some details
around these architectures will be reviled, but it is out of scope for the thesis
to go deep into the implementations.

Communication Protocols

TCP/IP networks and HTTP interfaces are important to cloud computing.
The convenience of using these two Internet technologies makes them ubiqui-
tous in the community. Internet services are provided over RESTful interfaces
implemented using HTTP, and the communication between containers and
VMs is implemented as TCP/IP networks. Message passing systems such as
Message Queue Telemetry Transport (MQTT) [Naik, 2017] are also common,
especially in relation to IoT. This provides a convenient level of abstraction
that makes IoT systems and clouds very accessible. The thesis use high level
interfaces and communication over public networks. This can be an inhos-

39



Chapter 2. Intelligence in the Cloud

pitable environment for sensitive systems but requirements such as interop-
erability (Section 1.1) and convenience (Section 2.1) make it reasonable that
this is our entry point into the cloud ecosystem.

Software Defined Networks

Software Defined Networks (SDNs) are not used per se in the thesis but are
worth a mention nonetheless. As made evident by the previously mentioned
SDHI (software defined hardware infrastructure), flexibility through software
is continuing to evolve in the cloud ecosystem. Not only does virtualization
provide software defined network interfaces for virtual machines and con-
tainers, the networks connecting the machines in the data center are also
programmable. A router is no longer only upgraded with official firmware,
it can also be supplied with new routing software from a local administra-
tor. This says something about the involved complexity and flexibility of the
considered technology. Even an application that uses a low level transmission
protocol, such as UDP, is subjected to SDN, overlay networks (for security
and to create virtual local networks), and network interfaces (i.e. network
cards) implemented in software. This can also be layered, i.e. a VPN imple-
mented inside a VM, and may or may not implement bypasses to improve
efficiency. In general, we have to expect that there are layers of configurable
elements for just about everything in a cloud.

2.2 Contemporary Cloud

The cloud ecosystem has grown into a large and complex landscape. There
are several public cloud providers with their own interfaces and services,
and organizations are also using private and hybrid (public and private) so-
lutions. The Cloud Native Computing Foundation (CNCF) collects a cloud
native landscape [CNCF, 2021b] with roughly 900 tools for application defini-
tion and development, orchestration and management, runtimes, platforms,
provisioning, observability and analysis. The charter of CNCF, started in
2015, presents a mission to make cloud native computing ubiquitous. CNCF,
a part of the Linux Foundation, now has more than 650 members, including
the most prominent cloud providers. The foundation fosters the use of open
source and vendor-neutral components, so its landscape does not include
all cloud solutions. Nonetheless, the foundation’s definition of cloud native
provides a useful amendment to the NIST definition (see Section 2.1).

Cloud native technologies empower organizations to build and
run scalable applications in modern, dynamic environments such
as public, private, and hybrid clouds. Containers, service meshes,
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microservices, immutable infrastructure, and declarative APIs ex-
emplify this approach.

These techniques enable loosely coupled systems that are re-
silient, manageable, and observable. Combined with robust au-
tomation, they allow engineers to make high-impact changes fre-
quently and predictably with minimal toil. [CNCF, 2021a]

Today, Kubernetes has become the dominant cloud native platform to
match the vision of CNCF. Kubernetes is a cluster management platform
that promotes the creation of micro services and applications built using
containers. A fourth service type, FaaS, has also emerged, in addition to
the three classic categories of the cloud stack (IaaS, PaaS, SaaS). As the
name suggests, in FaaS the user provides code and/or binaries for a single
function and stores it in the cloud. FaaS is event driven, with the function
executed in a stateless environment setup by the cloud provider, such as a
container providing Python support. A difference between PaaS and FaaS
is that the former generally includes an active server process that receives
external requests. The PaaS can be stateful and is scaled by booting up
more server processes. These servers are visible to the developer who is also
charged for their existence.

In FaaS, the function is idle and not charged until an event arrives,
requesting that the function processes some input data. The function is
launched, executes to completion and provides a response, then goes out of
existence, as far as the developer is concerned. The function can be triggered
at any time and can be launched as any number of parallel jobs. The devel-
oper can configure parameters that effect the execution of functions (such as
maximum execution time and maximum number of simultaneous instances)
but the cloud provider handles the service scaling. The user of the function
service is charged for the compute time consumed by the function. FaaS is
a way to achieve cost efficient scalability but comes at the cost of latency.
FaaS is sometimes referred to as serverless because the developer does not
have to worry about the persistent execution or scaling of machines in the
cloud. FaaS is a practical way to implement micro-services and IoT applica-
tions. The thesis will deploy Kubeless, a FaaS service, on top of Kubernetes
and experiment with the Amazon Lambda function service in Chapter 8. A
compatible service is also implement using IaaS. The latter has a traditional
architecture and is not as resilient, automated and observable as the cloud
native solutions.

Figure 2.3 illustrates this difference and provides some insight into the
architecture of a cloud native deployment. The figure shows one project in
an OpenStack1 cloud, with three separate networks of connected machines.

1OpenStack is the leading open source cloud computing platform
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Figure 2.3 Clusters of a project in OpenStack.

The outer boxes in the figure, represent virtual machines. Inside, there are
boxes to represent container managers, and inside those, boxes that repre-
sent containers. The network topology and virtual machines are configured
through IaaS, and containers communicate using network interfaces.

The green cluster, at the top, represents a classic web application setup.
There are several workers that can service a user request, in this case only
providing Function A. Worker selection is performed by the load balancer,
which is the entry point to the cluster. A development machine is present in
the cluster. It can be used for various management and prototyping. Access is
granted from external sources by the cloud routing a public internet address
to the Service VM.

The purple cluster, on the left, shows a cloud native deployment akin
to an environment such as Kubernetes. The Master VM hosts a Cluster
Manager service that ensures the consistency of the cluster. If the cluster
is reconfigured, or some part of the cluster is malfunctioning, the manager
works to bring the cluster back to the operator requested state by shutting
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down, starting and restarting services. The Cluster Scheduler (also in the
Master VM) overlooks the health of the cluster in terms of resources and can
provision worker deployments to improve capacity.

Applications are launched as containers handled by Container Managers
executing inside the virtual machines. In the figure, a Function Service is
deployed as containers in the cluster. It is represented by green boxes in
the Worker VMs. The function service in turn manages additional containers
that provide the user functions. The Cluster Control API (Master VM) allows
developers to easily deploy other services next to the function service, and
extract information about the cluster nodes and applications. An external
load balancer is placed in a Gateway VM, separating the cluster from the
global network.

Additional VMs can easily be requested from the cloud to deploy addi-
tional workers as necessary. Several masters can also be active to provide
additional resilience and performance. The container manager provides con-
tainer services for both the cluster and the user applications. In the figure,
many cluster functions execute directly in the virtual machine OS but most
features can also be placed as containers managed by the Container Manager.
This way, the deployment and upgrade of the core system can also utilize the
convenient features of the cloud native environment. Each VM can be differ-
ent and do not need to host equally configured OSs. To upgrade a worker, a
new virtual machine can be commissioned, installed and configured, its func-
tion verified, and the obsolete virtual machine (the obsolete configuration)
removed when done. The same flow applies to containers, and in extension
functions, but at a different time scale.

At the bottom there is also a third, pink, network. This network serves
a cloud native cluster similar to the purple deployment, but those details
are not shown. The network also serves two machines represented by icons
displaying a circle of red, green, blue and orange arrows. These machines
are part of a Calvin network. They execute a runtime that provides a PaaS
that will be detailed in Chapter 7. These virtual machines are part of a
mesh network, creating a distributed execution platform spanning the cloud
in Figure 2.3, a base station edge break-out2, an IoT device, and a second
data center. Everything in Figure 2.3 is software defined and exist as virtual
resources in the data center. The topology can be reconfigured with resources
removed or added from a command line client or a web interface, with changes
applied promptly and billing changed to reflect the new resource usage.

To round of this overview of the cloud we turn to Figure 2.4. While the
previous iteration of cloud technology evolved the native technology in Fig-
ure 2.3, this figure represents a small snapshot of the critical cloud ecosystem
that is currently evolving. At the center of the picture we see a private data

2Additional computers used to serve a small edge cloud connected to the base station

43



Chapter 2. Intelligence in the Cloud

Figure 2.4 The cloud is a ubiquitous part of many systems and is set to
become more diverse.

center, represented by the Ericsson logo. Around it there are data centers
representing three public cloud providers. There are also smaller edge clouds
connected to 5G and 4G base stations. At various locations in this infrastruc-
ture, the autonomous vehicle and the robotic arm continuously filter their
data through machine learning algorithms, coordinate with other systems
and execute real time control to achieve their objectives. We place intelli-
gence and control in the cloud to make individual devices exhibit intelligent
behavior. The distributed cloud provides services that allow a wise use of
the cloud for a large range of non-critical and critical applications. The me-
chanical contraption in the figure, which will be introduced and used later,
is also acting in this environment. While the physical properties, objectives
and contexts of various machines are different, the way in which they inter-
act with the ecosystem in Figure 2.4 is the same. Therefore, the contraption
is a drop in replacement of the other systems and represents rapid proto-
typing, experimentation, education, and other positive benefits of the cloud
platform.

2.3 Research Challenges

In [Abdelzaher et al., 2020] five challenges were identified for placing intelli-
gence and control in the cloud.

1. Learning-as-a-Service Learning is an important part of au-
tonomous systems, both offline and on-line. How can one implement
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learning as a general-purpose service?

2. Sensing quality assurance The complexity of sensing and control
applications, and the presence of learning components, lead to a very
important challenge: how to make guarantees on quality of results?
Furthermore, cloud-assisted execution incurs cost, so it is important to
understand the trade-offs between incurred resource demand and result
quality.

3. Offloading optimization and control In intelligent sensing, the
cloud can be used to offload or cache machine learning tasks and data,
such as computing parameters of a neural network model . Much alike,
certain closed loop control functions can be offloaded to more capable
machines in the cloud.

4. Closed loop guarantees A key challenge in placing parts of a con-
trol loop in the cloud is to provide some guarantees on closed loop
performance, even in the presence of unpredictable latency or loss of
connectivity.

5. Collaborative execution In many environments, IoT devices are
not deployed individually, but rather as a collection of nodes, possibly
heterogeneous, that together support an application. In the distributed
cloud environment, how can one support such collaborative inferenc-
ing?

This thesis focuses on the challenge of offloading optimization and control,
and naturally has to consider the tightly coupled closed loop guarantees.
A further complication is that, while it may be possible to benefit from
offloading to the cloud and provide closed loop guarantees in isolation, the
true power and intelligence happens when solutions are automated and the
challenges are combined. Ultimately, this leads to flexible solutions that allow
plug-and-play integration and scalable designs. It is inconceivable that all
current and future risks of executing out of specification are assessed prior
to deployment of such a system. The offloading strategy should therefore be
flexible and closed loop guarantees resilient to unanticipated events. This is
especially true when there is also volatility and uncertainty in the underlying
execution platform.

2.4 Controller offloading

A useful way to implement control over the cloud is through controller of-
floading, i.e. placing part of the computations necessary to form a control
decision in the cloud. A distinguishing feature of offloading is that it is initi-
ated from the client. Offloading can be requested to support an action that
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the client is otherwise unable to perform, or to relieve the client from process-
ing, reducing energy consumption or releasing resources for other tasks. The
client may continuously request input from the cloud but can also initiate
offloading for a certain transaction. It is reasonable, that a client which is
capable of initiating offloading is also capable of a basic level of control. This
is useful in two ways that are intrinsic to cloud control system (CCS):

1) utility computing can be used, requesting support as-needed and when
cost allows, and

2) availability issues, partition tolerance, and request failure are sup-
ported.

One question is what type of control that may benefit from offloading. In
industrial process control, the basic control is often provided by Proportional,
Integral and Derivative (PID) controllers. These controllers require very few
computations (e.g., around 15-20 lines of sequential C code is enough for a
good PID controller including, the code for the logical safety network). The
same holds for control in home automation, where often even simpler con-
trollers are used (e.g., on-off controllers, proportional controllers, or integral
controllers). For these types of controllers, computational offloading is not
worthwhile.

However, there are a number of control loop examples for which offloading
is realistic. One such example is when a (possibly simple) controller inter-
acts with a more complex sensor. This includes controllers based on vision
feedback. Compute-intensive image processing may be needed. For example,
in a self-driving car, a deep neural network might be used to extract object
information from a video stream in order to recognize obstacles, determine
positions and trajectories of other vehicles, and finally control the trajectory
of the autonomous car. Two further examples are introduced in the following
sections.

Learning-based control

The second example is control based on models derived using machine learn-
ing. The aim is to make cloud control systems resilient, and resilient sys-
tems ultimately allows for exploration, which leads to learning. Furthermore,
machine learning can be transient and extremely resource intensive, and re-
sources is something the cloud can provide.

The use of learning techniques in closed loop control has a long history.
One of the first examples is dual control proposed in the mid 1960s [Feld-
baum, 1965]. The term dual refers to the need for the controller to both online
identify, or estimate, the model of the process, and to utilize this model to
control the process under uncertainty. This trade-off is the same as what is
known in the machine learning community as the trade-off between explo-
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ration and exploitation. The optimal solution to the dual control problem can
be found using value functions and dynamic programming [Bellman, 1957].
Dual control was relatively popular in the control research community during
the 1970s but because the approach suffers from the curse of dimensionality
this interest soon decayed due to the lack of computing power at the time.
Instead the focus shifted to adaptive control formulations based either on
approximations or reformulations of the optimal dual control problem.

The interest for learning-based control has exploded during the last 10
years, mainly as a result of the success that reinforcement learning (RL) has
had for various applications [Sutton and Barto, 1998]. A major reason for this
success is the availability of large-scale compute facilities based on hardware
acceleration and cloud technology, which is available now but not during the
1970s. RL has many similarities with dual control. Both frameworks are based
on dynamic programming and for both the trade-off between exploration and
exploitation is essential, see [Recht, 2018] for a comparison. The major suc-
cesses of RL have, however, been found for applications where the state space
and the action space are discrete, e.g., different game playing applications
such as Atari [Mnih et al., 2013], AlphaGo for playing Go [Silver et al., 2017]
and AlphaZero for playing chess [Silver et al., 2018]. There the results have
been spectacular, by far outperforming the best human players. However, as
soon as the state and/or action spaces are continuous the results are, so far,
less convincing. Also for discrete domain applications it is very common that
the size of the state space is so large that it cannot be represented explicitly,
e.g., the size of the state space of Go is ≈ 10170. Instead, the value functions
are approximated using some function approximation method, e.g., a deep
neural network (DNN), and then the difference between applications with
discrete and continuous state-spaces becomes smaller. Hence, a generic DNN
service that supports offloading of machine learning applications for IoT is
applicable also to on-line learning-based control.

Optimization-based control

The third example is optimization-based control. In optimization-based con-
trol, the control algorithm consists of the on-line solution to an optimization
problem. The optimization problem is formulated so that it minimizes some
cost function, subject to the dynamics of the process under control and con-
straints on, e.g., the control signal, the process output, or the process states.
This optimization-problem is solved repeatedly at each sampling instant. De-
pending on the process model, the cost function, the plant’s state, system
constraints and the selected solver, the optimization can be more or less
time-consuming.

The computational demands depend on both the nature of the underly-
ing control problem and the related safety and performance requirements.
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A common case consists of a linear controlled process and an optimization
problem with a quadratic cost function and linear constraints. This gives
rise to a quadratic programming problem for which very efficient solvers are
available. Yet, even with state-of-art solvers, the computation time may vary
substantially depending on whether the constraints are active or not. In the
case of nonlinear processes, either gain-scheduling between a set of linear op-
timization problems can be used or a nonlinear optimization problem must
be formulated. The latter can be very time consuming and require more
compute resources than what is available on local devices.

Optimization-based control is an increasingly popular technique. The
most commonly used form of optimization-based control is Model Predic-
tive Control (MPC) [Rawlings and Mayne, 2009b]. MPC is used in the thesis
and is introduced in detail in Chapter 4.

Challenges and opportunities

A general problem with offloading controllers is the increased latency from
the sensing to the actuation that it incurs. Control performance and stabil-
ity crucially depend on the experienced latency and jitter. The longer the
latency, the worse the performance. It is often possible to partially compen-
sate for the effects of the latency, but it can never be completely undone. As
mentioned in Section 3.1, networked control systems (NCSs) make assump-
tions about the latency in order to allow for analysis and formal guarantees.
To successfully implement a practical control over the cloud, we cannot make
such assumptions.

A second problem with offloading, in particular when wireless networks
are involved, is the risk of completely losing the connectivity between the
local device that is connected to the process under control and the node
to which the computations have been offloaded. Many control applications
are mission-critical and require that the controller promptly reacts to dis-
turbances and commands (e.g., changes in the setpoint or reference signal).
It is therefore essential that the control that is offloaded and is executing
remotely (e.g., at the edge or in a remote data center) is complemented with
a local controller that is able to provide some basic level of performance, in
case of connectivity loss. Related to this, there is a question of when to switch
between the local and remote controllers, and what information the decision
should be based on. An additional complexity is created by dynamic changes
in the latency characteristics, caused by migration of the offloaded computa-
tions between different nodes in the network, as an effect of load balancing
and other cloud artifacts. This means that latency will not only vary due to
varying computation times (e.g., in an optimization algorithm) and commu-
nication delays (e.g., due to packet collisions), but also due to changes in the
placement of the computations and to varying request admission times.
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However, using the cloud for offloading also has several advantages. The
illusion of infinite compute and storage resources that the cloud and the
edge/fog provide opens up a number of interesting possibilities for control
applications. The resources can be used for executing more advanced control
strategies (e.g., based on online optimization and learning using massive data
sets), than what is possible on the local device. The cloud can scale resources
with the problem and implement efficient strategies for each computation.
This allows the controller to evaluate complex problems that are too compu-
tationally demanding to perform locally. Information made available through
the communication network (e.g., additional more complex models and in-
formation about other similar application types) can be incorporated and
used to improve the control, avoiding the overhead and potential concerns of
communicating this information to the local device.

2.5 Closed loop guarantees

A key challenge in controller offloading is to provide some guarantees on
closed loop performance, even in the presence of unpredictable latency or
loss of connectivity. Stability often requires that the control loop remain
closed. The general solution is thus to use a local controller that can take
over from the remote controller when communication is lost or the latency
is too long. A challenge is to understand the conditions under which such
a hybrid scheme might offer stability assurances. Beyond stability, one can
also consider other guarantees, such as those on worst-case response time,
maximum overshoot, or worst-case settling time.

Control theory offers rich literature on techniques used to attain the afore-
mentioned guarantees in the context of controlling both physical [Dorf and
Bishop, 2011] and computational [Hellerstein et al., 2004] systems. Most of
that literature assumes sufficient connectivity between the control algorithm
on one hand, and the sensors and actuators on the other. When the con-
troller is in the cloud, this basic connectivity assumption underlying (most)
existing literature may be violated. Lack of predictable connectivity makes
it challenging to offload control algorithms away from the controlled system.
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3
Control over the Cloud

This chapter provides a short introduction to networked control, real-time,
and cloud control systems, as they are related to the contents of the the-
sis. This is followed by an introduction of Control over the Cloud and the
offloading control used to implement experiments in the thesis.

3.1 Networked control

Networked Control Systems (NCSs) are control systems where parts of the
control loop are separated by an unreliable communication channel. This
communication introduces either or both, non-negligible delays and packet
dropout. Two general classes of NCSs can be considered: direct networked
control and hierarchical network control. In the former, the control signal
is transferred directly over the network to the actuator. In the latter, ad-
ditional control logic is present on the plant side of the network. A basic
representation of these two structures are shown in Figure 3.1. The details
and terminology of the structures differ in the literature (see for example
[Tipsuwan and Chow, 2003; Zhao et al., 2015]). For instance, the lower part
of the hierarchical structure to the right in Figure 3.1 may be referred to as
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Figure 3.1 Direct and hierarchical network control
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the local or remote control system, depending on the perspective. To avoid
confusion, this end of the network is referred to as the client, from the client-
server model. When the term local is used, it refers to something that is local
to the plant, unless otherwise specified. With this perspective, the remote is
always something that executes in the cloud.

A large part of the literature on NCSs deal with the direct form to the left
in Figure 3.1. One reason is that the local side of the hierarchical structure can
be represented by a new model, and the following analysis can be done using
the direct form. As mentioned in Section 2.5, most networked control must
nonetheless restrict the uncertainty of the network to ensure that control
actions repeatedly arrive at the plant, to ensure stability and performance.
The delays in Figure 3.1 are represented in state space form as,

ẋ(t) = Ax(t) +Bu(t− τ ca)

y(t) = Cx(t) +Du(t− τ ca)

ỹ(t) = y(t− τsc)

with τsc the sensor-to-controller delay, τ ca the controller-to-actuator delay,
and where A,B,C,D are the state space matrices for the plant without delays.
With constant delay, this representation allows for straight forward analy-
sis and an analytic definition of a controller. The form however, does not
allow packet loss. To handle stochastic delay and drop outs, delay distribu-
tions, statistical expectations, jump linear systems, and packet drop out pro-
cesses modeling are introduced (see for instance [Nilsson, 1998; Posthumus-
Cloosterman, 2008]). Control problems that incorporate such information
achieve better performance than deterministic alternatives, but also depend
on more information about the environment.

Generally, the range of network delays must be limited with known distri-
bution, and assumptions such as those in [Tipsuwan and Chow, 2003] apply,
i.e.,

• network transmissions are error-free,

• every frame or packet always has the same constant length,

• the computational delay of the controller is constant and is much
smaller than the sampling period,

• the network traffic cannot be overloaded, and

• transmission sizes of measurements and control signals are small.

In addition, one controller is supplying the control actions and can make
assumptions about what is applied to the plant. These are the kinds of as-
sumptions that we do not make in the cloud control system.

A common representation of delays is shown in Figure 3.2. This picture
includes a processing delay, τ ck , in addition to the sensor-to-controller, and
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Figure 3.2 The basic delay constituents.

controller-to-actuator delays present in Figure 3.1. The representation in Fig-
ure 3.2 also extends to time varying delays, as indicated by the parameter k.
The sampling time in this illustration is fixed at h = sk−sk−1 = sk+1−sk =
sk+2 − sk+1. The control signal generated from sample sk−1 arrives after
time k, and the sensor-to-actuator delay is τk−1 > h. The control signal from
the sample at sk arrives before k + 1 and τk < h. From works such as [Bo
Lincoln, 2000] it is established that the latter is referred to as short delay,
while the former (τk ≥ h) is an example of long delay. These classifications
cover enough detail for most control system analysis. It is also common to
work with the combined sensor-to-actuator delay, τk and study problems that
include only the sensor-to-controller or sensor-to-actuator delay.

Figure 3.3 shows a schematic view of the direct networked control system,
where prediction is used to handle network delay, as presented in [Tipsuwan
and Chow, 2003] based on the original design in [Luck and Ray, 1994]. The
loop introduces a deterministic delay through the predictor and a queue.
In this loop, the observer is reconstructing the plant state using the input
memory in Zk. This observation is passed to the predictor, to predict the
future state x̂k+µ using a model of the plant. The predicted state is input to
the controller, which produces the control signal for time k + µ. A queue at
the other end of the network ensures timely input of the control signal.

In an implementation, assuming packets in sequence and no packet drop-
out, the observer and predictor takes the form

xk+1 = Axk +Buk; yk = Cxk (3.1)

x̂k+1 = Ax̂k +Buk + Lk(yk − Cx̂k) (3.2)

x̂k+µ = Ax̂k+µ−1 +Buk+µ−1 for µ ≥ 2 (3.3)

where Equation (3.1) is the plant model, Equation (3.2) the observer model
and Equation (3.3) the predictor. This form handles delays that are multiples
of the sampling period. Additional care and further details are needed if
packets can arrive out-of-sequence, or if drop-outs may occur.

With the exception of Chapter 7, a single step prediction is consistently
used in the thesis. This is part of the scope in Section 1.2, but results should
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be easy to transfer to a setup similar to Figure 3.3.

3.2 Real-time

In computing, a system with hard real-time guarantee responds to events
within a predictable time. In time-triggered systems this implies well defined
sampling and actuation times, often at a fixed rate, i.e., the sampling time.
Deviations from the assumed periodicity, or the ideal timing, is referred to
as sampling and actuation jitter. The dependence on real-time systems in
the control community has since long been established and deterministic
execution is often assumed. In [Årzén, 1999] it was argued that a reliance
on well performing but non-deterministic off-the-shelf systems, networked
control, and hybrid controllers, makes this assumption unrealistic. Back in
1999 the problem related to execution on personal computers, loops closed
over local area computer networks, and switching controllers that may change
sampling interval in a controlled fashion. In a cloud context, the complexity is
far greater, and the problem exacerbated, but the underlying positive aspects
of applying off-the-shelf technology and relieving systems from the strict real-
time requirements remain the same.

The term off-the-shelf is reiterated, and how it appears in the context of
the thesis. In previous works such as [Årzén, 1999; Seto et al., 1998] off-the-
shelf refers to the use of general purpose networking and computers, operat-
ing systems, and advanced middleware. While these system do not exhibit
ideal characteristics, they can be deployed and thoroughly tested, after which
they remain unchanged, or are updated in a highly controlled fashion. In the
cloud domain, we extend off-the-shelf to include cloud services, virtual com-
ponents, software defined networks, open-source-software, and IoT devices.
Many of these are shared components that are usually maintained indepen-
dently of our specific control loop. Therefore, execution characteristics can
change during run-time, due to load etc, and a controlled update, such as
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a software security fix, may introduce side effects to performance. Besides,
clouds today, and the typical communication medium to access them, do not
include real-time support. A mobile edge cloud compute node with access
through ultra-reliable and low-latency communication (URLLC) can provide
deterministic response times. This is less likely for execution in a data center,
accessed over several shared networks. Improved support for real-time sys-
tems is likely to be implemented in broadly available clouds and networks,
but here, this is not an assumed property.

3.3 Cloud control system

The structure to the right in Figure 3.1 and the structure in Figure 3.3 form a
basis for the feedback control systems in this thesis, but there are differences.
Control signals from the cloud do not necessarily pass through the local
controller, but instead replaces its control actions. The MPC also provides
open loop predictions and control signals that can be sent to the client. In this
view, the CCSs is an extension of a predictive NCSs. Others have chosen this
view, [Mahmoud and Xia, 2020; Vick et al., 2016], and applied the predictive
control system as the solution to the problem of stochastic networks.

Elastic control

While it may be useful to implement traditional control systems in the cloud,
they do not necessarily have to be considered as cloud control systems. Of-
ten, the implementation, assumptions, and analysis used in control over the
Internet represents the deployment of a NCSs. This has been extended to in-
clude virtual machines, with no modification of the controller implementation
and analysis. As a direct extension of control over the Internet, experimen-
tal works implement a programmable logic controller (PLC) [Givehchi et al.,
2014] in a virtual machine or control drones through a series of cloud ser-
vices [Pelle et al., 2019]. These works provide suggestions and isolated studies
of the system to the left in Figure 3.1, but fall short in two useful aspects:
the control loop does not implement fallback and graceful degradation, and
the controller does not autonomously benefit from utility computing.

Another class of control systems emerges when we move away from a
classic, static view and transfer the elastic property of clouds into the control
loop. In this view, the control loop should aim to use the abundant resources
of the cloud as necessary and when available. On-going work to provide low-
latency and predictability in networks and clouds is not in conflict with this
view. It is an intrinsic feature of the elastic control systems that they make use
of iterative infrastructure improvements, and there are several other benefits
of designing with elastic properties in mind:
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1) an ever so small risk of an inaccessible remote system no longer has to
be a major concern,

2) external events not caused by the communication network or cloud
system provider can be acceptable, for instance a configuration change
or application software upgrade,

3) graceful degradation opens up for flexibility such as physical mobility
of the client, software relocation and on-line upgrades, and

4) resilient design opens up for a deploy-anywhere approach, useful in the
IoT domain.

An elastic system can also choose to deploy on both real-time enabled re-
sources, for reliability, and on non-real-time enabled resources, for maximum
average performance, simultaneously. As mentioned earlier, resiliency goes
hand-in-hand with important features in the fourth generation of industry,
such as on-line learning.

3.4 Control over the Cloud

Some distinctions concerning the architecture of the considered control sys-
tems is necessary. This will also introduce useful terminology. First, Control
over the Cloud (CotC) refers to the situation in Figure 3.4. A distinguishing
feature is that the control signal must leave the cloud to control an external
plant. The logic that binds the plant to the cloud is referred to as the client.
Exactly how this loop is closed is not defined. The input signal y can be
read by the client through sensors on the plant but could also come from
an external source. The client and the logic in the cloud together create the
controller. Throughout the thesis, the plant is considered to be a physical
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device and the closed loop is a cyber-physical system (CPS). The aim is to
implement closed loop control in a CPS using a cloud control system (CCS),
and more specifically a form of elastic control through utility computing.

Offloading

To implement the case in Figure 3.4, the client could be responsible only
for connecting to the cloud and forwarding control input to the actuators.
As mentioned when introducing offloading in Section 2.4, a client that can
connect to the cloud is often also capable of implementing at least some
control logic. We will therefore assume the general viewpoint that the client
is offloading. In addition to its usefulness in practice, an offloading scheme
serves as a good research platform. For example, with input and output in
the same client, we do not have to be concerned with synchronizing clocks.
The phrases controller offloading, the controller in the cloud and similar
expressions are interchangeable. While we can argue that they should be
differentiated because of differences in the implementations, as mentioned
earlier, it should be possible to transfer most reasoning to either case.

Figure 3.5 provides an overview picture of the offloaded controller in a
distributed cloud. The client contains a basic controller, the Linear Quadratic
Regulator (LQR), and a virtual MPC, representing an advanced controller.
The purpose of the MPC is to replace or augment the LQR so that per-
formance is improved by using the cloud. The MPC can also be allowed
to overrun its deadline and become infeasible, because there is a stabilizing
controller on-board the client device.

In the setup of Figure 3.5, the MPC can execute many heavy optimiza-
tions in the data center but this comes with a large and unknown delay
penalty. The edge cloud in Figure 3.5 lacks the abundance of resources and
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can therefore only provide a single, less demanding optimization, but in re-
turn provides a fixed delay. In the distributed cloud infrastructure, the aim is
to arbitrate controllers as necessary and achieve good, reliable performance
in the long run. Keep in mind from Section 2.2 that while Figure 3.5 in many
cases is the conceptual platform, the distributed cloud can offer more de-
ployments. The cloud can also present the abstract user view in Figure 3.4,
automating as many supporting systems as possible, including the physical
and virtual location of computations.
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4
Model Predictive Control

The strategy of Model Predictive Control (MPC), is to solve a finite-horizon
optimal control problem in every sample. At each sampling instant, the con-
troller optimizes a performance objective while satisfying (physical) system
constraints. The explicit, on-line solution is capable of optimizing the system
response with respect to the constraints, and the formulation of the optimal
control problem is a fairly general control specification. Because the MPC
has an intuitive design, applies directly to optimal control of multi-variable
systems, and includes explicit specification of plant and actuator constraints,
it has become a popular engineering tool. The primary draw-back is the need
for extensive calculations to solve the problem on-line. A large part of the
control engineering challenge is to find practical implementations and reduced
complexity problems that can be solved in real-time. Linear system models,
linear constraints, and quadratic cost functions are often used because solvers
exist that can quickly provide optimal solutions.

The MPC strategy has been applied as a mature technology within the
process industry for several decades. The survey [Qin and Badgwell, 2003]
presents a classic setup, in which the MPC controllers are designed to drive
the process from one constrained steady state to another, while minimizing
constraint violations along the way. The example is of a processing plant
with a hierarchical control system, and the conventional alternative that Qin
and Badgwell describes is to use combinations of PID controllers, lead-lag
blocks and selection logic, a method that is much less convenient than the
MPC design. In this hierarchy, the MPC executes only once every minute and
optimizes the configuration of a set of PID controllers, which work at a much
higher frequency. As computing systems, optimization software, and MPC
theory have evolved [Rawlings and Mayne, 2009b; Mattingley and Boyd,
2010; Bemporad et al., 2002], the online optimizing controller can now be
used for complex control tasks also at very high frequency and applies control
input directly to the plant rather than acting as a setpoint generator.

MPC was introduced as the method of choice to study controller offload-
ing in Section 2.4. The use of wireless connectivity such as Fifth Generation
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Wireless Specifications (5G) naturally sets the scope to applications in the
single to two digits milliseconds response time domain. As will be shown in
Part II, this is well aligned with practical lower limits for cloud control appli-
cations. This range is also suitable for a lot of automation in areas that now
use MPC and have a vested interest in the fourth industrial evolution, such as
factory automation [Qin and Badgwell, 2003; Vick et al., 2016; Maxim et al.,
2019], the automotive industry [Hrovat et al., 2012] and aerial drones [Pers-
son, 2019]. While approximations and explicit MPC [Bemporad et al., 2002]
allow for a large range of MPC problems to be solved in real time inside
on-board electronic control units, as detailed in [Hrovat et al., 2012], it re-
mains a fundamental challenge that the problems can become too complex.
Limited local computations (or other limiting resources such as memory and
storage) is one reason to use the cloud, and it generates two research paths
that need to be explored. One is that the cloud provides unique possibilities
to extend the potential of a device. The second is the exploration of extensive,
unknown computation times, in combination with a time-sensitive dynamic
system and on-demand platforms.

In the following, the study of cloud controllers is based on standard meth-
ods that are easy to implement and extend. It is important to recognize that
the implementations naturally extend to arbitrary non-linear specifications
and non-convex problems. After reading Part III, the reader will also rec-
ognize that such solutions can co-exist with, execute next to, and gradu-
ally evolve from standard approximations, in a single application. For the
method, it is interchangeable whether an extensive calculation comes from
an inefficient solver, or longer and more iterations due to a complex specifica-
tion, albeit the latter should provide better system performance. To provide
the necessary background for the following text, and especially Part III, the
following chapter presents an overview of the control strategy and the imple-
mentation used in the thesis.

4.1 Definition

The MPC solves the optimal control problem

minimize
x̂k,ûk

N−1∑
i=0

l(x̂(k + i|k), û(k + i|k)) + Vf (x̂(k +N |k)) (4.1a)

subject to x̂(k + i+ 1|k) = f(x̂(k + i|k), û(k + i|k)), (4.1b)

g(x̂(k + i|k)) ≤ 0, i = 0, . . . , N − 1, (4.1c)

h(û(k + i|k)) ≤ 0, i = 0, . . . , N − 1, (4.1d)

x̂(k +N |k) ∈ Xf , (4.1e)

x̂(k|k) = x(k) (4.1f)
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in each sampling period Ts, provided an initial state x(k) ∈ Rn. ûk =
{û(k|k), . . . , û(k + N − 1|k)} is a sequence of optimal control inputs and
x̂k = {x̂(k|k), . . . , x̂(k +N |k)} are the predicted plant states. From here on,
bold notation and the short hand x(i|k) = x(k + i|k) will be used for se-
quences of variables. N , specifying the number of predicted time steps, is the
controller horizon. Here, a single horizon N is used for prediction and control.
It is common to separate the MPC into one control horizon Nc and one pre-
diction horizon Np, where control can be applied only during Nc. With the
exception of a special case in Chapter 12, a single horizon is used throughout
the thesis. In Equation (4.1) the states x̂k are included as decision variables
under minimize. A convention of not including them is used in later parts of
the thesis.

Equation (4.1b) models the plant dynamics, (4.1c) defines state con-
straints with g : Rn → Rpx , and (4.1d) defines input constraints with
h : Rm → Rpu . The set definition (4.1e), Xf ⊂ Rn, is referred to as the
terminal set or terminal constraint. This constraint can be used to ensure
that the problem enters a new constrained steady state at the end of the
control horizon. Equation (4.1a) represents the cost-to-go as the value func-
tion

V (x,u) =

N−1∑
i=0

l(xi, ui) + Vf (xN ) (4.2)

composed of the stage cost l : Rn+m → R+ and the terminal cost Vf : Rn →
R+, both of which are decrescent, continuous and positive-definite functions.

Definition 1—Positive-definite function
A real valued function f : Rn → R is positive-definite if it is non-negative,
i.e., f(x) ≥ 0 for all x ∈ Rn, and f(x) = 0 if and only if x = 0. 2

The terminal cost Vf relates to the asymptotic properties of the controller.
The optimization variable is the control signal vector

ûk = {û(0|k), û(1|k), ..., û(N − 1|k)}. (4.3)

The solution provides a predicted optimal control sequence u∗k, a predicted
path x∗k, and an optimal cost to go

V ∗k := V (x∗k,u
∗
k). (4.4)

To implement feedback control, the implicit control law is

κ(k) = u∗k(0). (4.5)

Thus, the first control input in the optimal control sequence is applied to the
plant and this process is repeated for k+ 1, i.e. the next sampling period Ts.
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4.2 Stability

An MPC with soft constraints adds slack variables φ to the state cost of
the value function (4.1a) to form

N−1∑
i=0

l(x(i|k), u(i|k), φ(i|k))) + Vf (x(N |k)). (4.6)

The slack variables allows the controller to violate constraints at a high cost.
They enter the definition by replacing (4.1c) with

g(x(i|k), φ(i|k)) ≤ 0, ∀i ∈ {0, . . . , N − 1}. (4.7)

Without soft constraints, the optimizer can be faced with an infeasible prob-
lem due to discrepancies between the model and the actual plant dynamics,
or unexpectedly large disturbances.

At times, the controller may erroneously decide that it cannot keep
the system within constraints and conclude that the problem is infeasible,
whereas a simple solution such as holding the current control action or ap-
plying the predicted solution (i.e. u∗(k|k − 1)) may suffice to recover. Soft
constraints provides a systematic approach that is often a better practical
solution to ensure a feasible control problem [Levine and Raković, 2018; Ma-
ciejowski, 2002]. The downsides of soft constraints are the allowed (and pos-
sibly systematic) constraint violation, a larger optimal control problem, and
loss of formal stability guarantees for open-loop unstable systems [Zeilinger
et al., 2010]. Soft constraints are introduced into the control problem in
Part IV. They are important in Chapter 14 in order to keep the remote
controller feasible in the event of long delays.

4.2 Stability

Stability of the MPC is generally proven by showing that the value function
is a Lyapunov function for the closed loop system, i.e., that

V ∗(k) ≤ V ∗(k − 1). (4.8)

The deterministic nature of the time-invariant optimal control problem en-
sures that the infinite horizon nominal closed loop system

minimize
x,u

∞∑
i=0

l(xi, ui) (4.9a)

subject to xi+1 = f(xi, ui), (4.9b)

g(xi) ≤ 0, (4.9c)

h(ui) ≤ 0, (4.9d)

x0 = x(t) (4.9e)
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is stable and recursively feasible. For the finite-horizon problem, the terminal
cost and terminal constraints are used to ensure stability. This section recalls
some of the main stability results, presented in detail for instance in [Rawlings
and Mayne, 2009a].

Consider the control problem in Equation (4.1) without the terminal con-
straint, i.e., replace (4.1e) with the constraint g(x̂(k + N |k)) ≤ 0, and no
terminal cost, i.e., Vf = 0. Clearly, this controller is not concerned with what
happens after its prediction horizon, i.e., after k +N . With a perfect model
and no disturbances, the observed state at time k will correspond to the
state predicted in the previous step, x̂(k|k) = x̂(k|k − 1). Subsequent states
however, can be different from the previous prediction because of the new
time interval x̂(k +N |k), i.e.,

{u(k|k− 1), . . . , u(k+N − 2|k− 1)} 6= {u(k|k), . . . , u(k+N − 2|k)}, (4.10)

and the cost can increase so that V ∗(k) > V ∗(k − 1). With a sufficiently
large N this problem is avoided and (4.8) will hold, but the necessary value
for N can be difficult to find. A large N can also be intractable because of
the larger problem that must be computed when increasing the value of N .
Rather than using excessively large values of N and jeopardizing the stability
of the controller, the terminal constraint and terminal cost is introduced to
explicitly ensure stability of the nominal closed loop.

Consider an equilibrium at x = 0 and u = 0, i.e. 0 = f(0, 0), and the
terminal constraint x̂(k + N |k) = 0. The stability of this system is straight
forward. Assume that x̂(k|k) is feasible and that u∗k is the optimal control
sequence computed for x̂(k|k), and x∗k the corresponding predicted states.
As a consequence of the equilibrium and the terminal constraint, u∗k+1 =
{u∗(k + 1|k), u∗(k + 2|k), . . . , 0} is a feasible solution in the next iteration
of the control loop. Using the notation that xk(i) indexes into a sequence so
that xk(i) = x(k + i|k), the cost at time k + 1 is

V ∗(k + 1) =

N−1∑
i=0

l(x∗k+1(i), u∗k+1(i))

≤
N−1∑
i=0

l(x∗k(i), u∗k(i))− l(x∗k(0), u∗k(0))

+ l(x∗k+1(N − 1)), u∗k+1(N − 1))

= V ∗(k)− l(x∗k(0), u∗k(0)) + l(0, 0) (4.11)

as a consequence of the optimality of the solution u∗k and the ensured feasi-
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bility of u∗k+1(N) = 0. Rearranging and using telescope summation,

K∑
k=0

l(x∗k(0), u∗k(0)) ≤
K∑
k=0

V ∗(k)− V ∗(k + 1)

= V ∗(0)− V ∗(K + 1)

≤ V ∗(0).

(4.12)

Since l is non-negative, this leads to l(x∗k(0), u∗k(0))→ 0 as k →∞, providing
stability in the sense of Lyapunov. This however, depends on the feasibility
of achieving x̂(k + N |k) = 0, which is not practical. Thankfully, the results
intuitively extend to a constraint set through the terminal constraints, Xf ,
and terminal cost, Vf , which is how the stable controller is implemented. We
consider this extension.

First, define the positive invariant set [Blanchini, 1999] of a control law
such that if the initial state is in the set, the state will remain inside the set
under the effect of the control law.

Definition 2—Positively invariant
The set X is positively invariant for the control law κ(x) and plant function
f(x, u) if

x(0) ∈ X ⇒ x(k + 1) = f(x(k), κ(x(k))) ∈ X,∀k ≥ 0.

2

Then introduce the invariant set definition of Lyapunov stability.

Definition 3—Lyapunov function
Let X contain a neighborhood of the origin in its interior and let X be
a positively invariant set under the control law κ(x) and the plant model
f(x, u). The (continuous) function V : X → R+ is a Lyapunov function in X
if for all x ∈ X if:

V (0) = 0,

V (x) > 0 ∀x 6= 0,

V (x(k + 1)) ≤ V (x(k))

where x(k + 1) = f(x(k), κ(x(k))). 2

Also define the feasible set.

Definition 4—Feasible set
The feasible set XN is the set of initial states that admit a feasible solution
for the MPC problem with horizon N .

XN := {x | such that (4.1) is feasible and x = x(k) in (4.1f)} 2
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Theorem 4.1
Define a local control law κl and a terminal set Xf such that Xf is invariant
under the control law κl. All state and input constraints must be satisfied
in Xf . Now assume that the terminal cost is a Lyapunov function in the
terminal set Xf , so that

Vf (x+)− Vf (x) ≤ −l(x, κl(x)) ∀x ∈ Xf (4.13)

where x+ is the next state following x, i.e., x+ = f(x, κl(x)). The closed loop
system under the implicit MPC control law (4.5) is stable and the system
x+ = f(x, κ(k)) is invariant in the feasible set XN . 2

Theorem 4.1 is proven by assuming a feasible state x̂(k|k) and an optimal
control sequence u∗(k). The terminal constraint states that x̂(k+N |k) ∈ Xf
and the positive invariance that κl(x̂(k +N |k)) is feasible in Xf , and

x(k + 1) = f(x̂(k +N |k), κl(x̂(k +N |k)) ∈ Xf . (4.14)

There is therefore always a feasible solution

u∗(k + 1) = {u∗(k + 1|k), u∗(k + 2|k), . . . , κl(x
∗(k +N |k))} (4.15)

in terms of the local control law. This solution, (4.15), represents a sub-
optimal solution. Denote the terminal state of the sub-optimal solution
x̄k+1(N), and let u∗k(N) = κl(x

∗(k +N |k)) then

V ∗(k + 1) ≤
N∑
i=1

l(x∗k(i), u∗k(i)) + Vf (x̄k+1(N))

=

N−1∑
i=0

l(x∗k(i), u∗k(i)) + Vf (x∗k(N))− Vf (x∗k(N))

− l(x∗k(0), u∗k(0)) + l(x∗k(N), κl(x
∗
k(N)) + Vf (x̄k+1(N))

= V ∗(k)− l(x∗k(0), u∗k(0))

+ l(x∗k(N), κl(x
∗
k(N)) + Vf (x̄k+1(N))− Vf (x∗k(N))

(4.16)

and, because Vf (x) is a Lyapunov function according to (4.13),

l(x∗k(N), κl(x
∗
k(N)) + Vf (x̄k+1(N))− Vf (x∗k(N)) ≤ 0. (4.17)

As a result, V ∗ is a Lyapunov function that can be used to show stability of
the MPC system.
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4.3 The basic MPC - limitations and extensions

The stability outlined in the previous section is pleasing in that it applies
directly to the non-linear MPC, i.e., an MPC with non-linear dynamics and
constraints, and arbitrary (continuous and positive definite) cost functions.
It is also straight forward to extend to asymptotic stability. However, while
a terminal set is a practical tool to ensure stability, the terminal constraints
reduce the region of attraction of the MPC problem (4.1), i.e., the set of
states that admit a feasible solution. Increasing N will enlarge the available
state space but also increase computations. Another problem is the difficulty
of finding a suitable terminal set and terminal cost. It is therefore common
to not include the terminal set in the controller, and experimentally verify a
horizon that is ’large enough’ and can be computed on-line.

Robust control introduces random disturbances into the system dynamics
and finds control actions that keeps the control problem feasible and stable,
also in event of a sequence of worst case disturbances. Without robust control,
the system dynamics are represented in state space form as

x(k + 1) = Ax(k) +Bu(k) (4.18)

while the robust controller introduces a random disturbance w into the equal-
ity constraint (4.1b),

x(k + 1) = Ax(k) +Bu(k) + w(k). (4.19)

To ensure stability and constraint satisfaction, the problem is translated into
a conservative but deterministic form. In this thesis, robust control is not
implemented. It is generally considered a direct extension.

Switched systems introduce time varying changes into the dynamics

x(k + 1) = Akx(k) +Bku(k). (4.20)

Unless these can be anticipated in (4.1b), the deterministic properties nec-
essary in (4.16) are lost. The same goes for constraints and costs, but these
values can often be anticipated, especially the latter, i.e., determining when
to change the objective of the controller.

Finally, consider the constraint softening in (4.6) and (4.7). The recur-
sively feasibility of the MPC is only assured for the nominal problem, and a
small disturbance can cause it to become infeasible. Such disturbances always
exist in practice and soft constraints are introduced to make the controller
robust, ensuring that it remains feasible. One problem is that if a terminal set
is used, which is required for stability, a disturbance can still cause the con-
troller to become infeasible. Feasibility is ensured if the terminal constraints
are removed but then the stability analysis no longer holds.
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4.4 Linear and quadratic control

To implement the prototype controllers in the thesis, the standard method of
a linearized model, box constraints (i.e. constraints on the form xmin ≤ x ≤
xmax) and a quadratic cost function is used. This control problem defines
the stage cost

l(x, u) = xTQx+ uTRu (4.21)

where Q ∈ Rn×n, Q ≥ 0 is the state penalty and R ∈ Rm×n, R > 0 is the
control penalty.

Definition 5—Positive definite matrix

The real valued matrix M is positive semidefinite (M ≥ 0) if zTMz is positive
or zero for every non-zero real column vector z. The matrix is positive definite
(M > 0) if zTMz = 0 only when z = 0. 2

The terminal cost is defined in terms of a terminal cost matrix Qf ,

Vf (x) = xTQfx, (4.22)

and the linear constraints are

g(x) = Cxx− cx, Cx ∈ Rpx×n, cx ∈ Rpx , (4.23)

h(u) = Cuu− cu, Cu ∈ Rpu×n, cu ∈ Rpu , (4.24)

Xf := {x|Cfx− cf ≤ 0}, Cf ∈ Rpf×n, cf ∈ Rpf (4.25)

where px, pu, pf are, respectively, the number of state, inputs and terminal
constraints. The plant model f is given in the standard state space form
(4.18). Combining these components, the optimization problem becomes

minimize
u

V (x0, N) =

N−1∑
i=0

xTi Qxi + uTi Rui + xTNQfxN , (4.26a)

subject to xi+1 = Axi +Bui, (4.26b)

Cxxi ≤ cx, (4.26c)

Cuui ≤ cu, (4.26d)

xN ∈ Xf . (4.26e)

By joining x and u into the decision variable

z(k) =
[
xT (k + 1|k) · · · xT (k +N |k)

uT (k|k) · · · uT (k +N − 1|k)
]T ∈ RN(n+m) (4.27)
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this can be formulated as the quadratic program (QP)

minimize
z

zTHz + qTx (4.28a)

subject to Tz = t, (4.28b)

Gz ≤ g. (4.28c)

Equation (4.28) includes a linear cost term q, as it is formally part of the
QP, but it is set to zero, as no linear costs are defined. The cost of the QP
becomes

H =



Q
. . .

Q
Qf

R
. . .

R


∈ RN(n+m)×N(n+m), q = 0

where empty parts of the matrix contain zeros. The equality constraint is

T =


In −B
−A In −B

. . .
. . .

. . .

−A In −B

 ∈ RNn×N(n+m),

t =
[
(Ax(k|k))T 0 . . . 0

]T ∈ RNn,

where In is the n × n identity matrix. Finally, the inequality constraint be-
comes

G =



Cx
. . .

Cx
Cf

Cu
. . .

Cu


∈ Rpx+pu+pf×N(n+m),

g =
[
cTx . . . cTx cTf cTu . . . cTu

]T ∈ Rpx+pu+pf .

This is the basic form used in the experiments. Extensions are presented
when they are used.
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Terminal cost and terminal constraints

A convenient property of the QP problem is that it provides an easy solu-
tion to the problem of defining a terminal cost. This solution is found in the
unconstrained, infinite-horizon, Linear Quadratic (LQ) problem. This stan-
dard problem is obtained by taking the cost function (4.21), the plant model
(4.18), and an infinite horizon to form

minimize
u

V (x0) =

∞∑
i=0

xTi Qxi + uTi Rui (4.29a)

subject to xi+1 = Axi +Bui. (4.29b)

This form has a well known analytical solution providing a globally optimal
solution. The cost-to-go of the closed loop optimal control problem is given
by the solution to the discrete time Riccati equation

P = Q+ATPA−ATPB(R+BTPB)−1BTPA. (4.30)

Using the result from Equation (4.30) in Equation (4.22) provides the neces-
sary Lyapunov function (4.13). Therefore, entering the result from (4.30) into
H of (4.28) provides a known and stable controller action after the horizon.
It is not ensured, however, that the constraints are satisfied. While it may
often be sufficient to use a terminal cost in combination with a ’sufficient’
horizon, stability is not formally guaranteed. As presented in Section 4.2, for-
mal stability requires a terminal set that is an invariant set for the controller
represented by the cost Qf .

The control law arising from (4.30) is

κ(k) = Kx(k) = −(R+BTPB)−1BTPAx(k) (4.31)

and it is possible to find a convex polytope, i.e., a set of p linear functions

{x|Fx ≤ f}, F ∈ Rp×n, f ∈ Rp, (4.32)

that provides a bounded invariant set of the closed loop

x(k + 1) = Ax(k) +Bκ(k) = (A+BK)x(k) (4.33)

if it exists.
An example is shown in Figure 4.1. This figure shows state constraints,

a generated invariant set and two closed loop trajectories for a plant with
two states and one input, regulated by an LQR. The dashed lines show the
linear constraints of the polytope (4.32) that has been generated to form
the invariant set. In addition to the state constraints that are shown in the
figure, the invariant set also ensures that the controller does not violate the
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Figure 4.1 Example of invariant set for the closed loop system in Equa-
tion (4.33).

input constraint |u| ≤ 0.5. Trajectories that start inside the invariant set will
stay inside the invariant set. The solid trajectory is an example of this. The
dotted trajectory, however, violates the state constraints and also saturates
the control signal, as seen in the plot to the right in the figure.

While state constraints can often be ’soft’ in the sense that they can
be temporarily violated (they can be performance or comfort constraints),
input constraints are often hard, physical constraints limited by the actuator.
When the input constraints are hit, the linear properties of the system are
no longer valid. The only safe way to avoid input saturation and constraint
satisfaction is to ensure that Equation (4.33) is used inside the invariant set.
There is however a much larger set of starting states that are controllable,
i.e., for which there exists a sequence of control inputs that brings the state
to the origin, without violating constraints. It is the job of the MPC to find
these sequences.

Solvers

The QP is implemented in the thesis using various solvers: Matlab’s [MAT-
LAB, 2020] quadprog, QPgen [Giselsson, 2015] (using PyQPgen [Skarin,
2018]), Python CVXOPT [Andersen et al., 2021], and CVXGEN [Mattin-
gley and Boyd, 2012]. The latter three are used for optimizations that are
performed in the cloud. While the calculation time of QPgen and CVXGEN
are similar, CVXOPT is slower. One reason for this is that with QPgen and
CVXGEN, the problem is specified offline to generate compiler optimized,
machine native, dynamically loaded libraries, while CVXOPT is implemented
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directly in Python. The latter is therefore more convenient and flexible. CVX-
GEN is in turn more flexible than QPgen but also has downsides such as being
limited in the size of the optimization problem and not providing open access.
QPgen on the other hand is not easy to extend with custom MPC problems.
No explicit benchmarks of the different solvers are provided since this is not
the primary reasons for the selection. Rather, the ability to select a lower
performing solver in order to benefit from other properties, is a feature that
a powerful cloud can provide. As will be shown in Chapter 7, even the high
performing solvers can run into problems on a relatively powerful IoT device.
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With a few exceptions, the ball and beam process in Figure 5.1 is used
throughout the thesis to illustrate concepts and measure cloud performance.
The objective of this plant is to position and balance a ball on a rotating
beam. The controller sets the angular velocity of the beam and gets two
measurements from the plant: the position of the ball on the beam, and the
angle of the beam. The process has natural constraints in the length, angle,
and speed of the beam.

While the ball and beam process is non-trivial, it is simple enough that
it is certainly not necessary to use a powerful computer to control the plant.
It is straight forward to implement a controller using non-demanding meth-
ods such as a LQR or a cascade structure of two PID controllers. It is also
possible to implement an efficient explicit MPC on a very limited device to
control the process. Nonetheless, this simple example is sufficient and useful
for research. There are some basic benefits of using the plant: it is intuitive
to evaluate, there exists a physical plant that is easy to implement for and
verify, and its description can be compactly detailed. It is also good that
the MPC problem can be solved without the most efficient solvers, and that,
experiments can be designed to exhibit both short and long execution times.
What is important, is that the controller works at a reasonable frequency in
relation to the networks and computational demands. This is verified as part
of the explorations in Part II.

The model in Figure 5.2 is sufficient to represent the process. This is
the model implemented in Matlab Simulink and the base for simulations.

fo
b2rad/s

u (volt)

y1 (volt)

y2 (volt)
p (m)

v (m/s)

θ (rad)

Figure 5.1 The ball and beam process
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Figure 5.2 Ball and beam diagram

The model assumes that a change in the velocity of the beam is applied
instantaneously and uses a simple non-linear acceleration of the ball without
friction. The inputs and outputs, u and y, in this process are voltage levels, as

shown in Figure 5.1. The state of the plant is represented by x =
[
p v θ

]T
where p is the position of the ball, v the velocity of the ball and θ the
angle of the beam. The function fo in Figure 5.1 represents an observer that
reconstructs and estimates state x from y. When used with the QP solvers,
the model is linearized around θ = 0.

The physical plant has three hard constraints, the beam length l, the
angle θmax and the input u. A box constraint is also created for the velocity.
This represents a comfort constraint, but a large vmax can also cause model
errors because of the linearized acceleration. The constraints are generally
specified relative to the origin and are symmetric,

|x1| ≤ l/2, |x2| ≤ vmax, |x3| ≤ θmax, |u| ≤ umax (5.1)

More generally and represented as the inequality in (4.28),

Cx =
[
I3 −I3

]T
, cx =

[
xub xlb

]T
Cu =

[
1 −1

]T
, cu =

[
uub ulb

]T (5.2)

where, relative to the origin,

xlb =
[
−l/2 −vmax −θmax

]
,

xub =
[
l/2 vmax θmax

]
,

ulb = −umax,
uub = umax. (5.3)
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Figure 5.3 Left: The ball and beam. Right: Two client devices (Rasp-
berry Pi) with a custom made analog-to-digital and digital-to-analog ex-
tension.

When implementing tracking, the origin is moved to the setpoint and these
values must be updated accordingly.

The applicability of this basic process is verified in Chapter 7, after which
simulations are used to provide reproducible results. The ball and beam plant
that was used for the experiments in Chapter 7 is shown in Figure 5.3, next
to the client device used to control it.
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Cloud Performance





6
Introduction

The following two chapters present two research testbeds, with experimen-
tal results for mission critical control over the distributed edge cloud and
cloud native offloading. The testbeds have evolved from the assumption, and
investigated hypothesis, that critical feedback control systems can be built
using commercial off-the-shelf (COTS) components and cloud services. The
purpose of the experiments is to demonstrate running time sensitive and
mission critical applications using different clouds and cloud native software,
investigate feasibility, and find limitations of control over the cloud. The
testbeds are used to measure the performance of current state-of-the-art, as
an important first step towards frameworks that are capable of mission crit-
ical control over the cloud. This provides insights into the limitations of the
systems described in Part III.

Chapter 7 looks at a research testbed that consists of a distributed set of
compute nodes, a distributed PaaS framework, a 5G cell, and a time sensitive
and mission critical process under control. The application executing on this
testbed is a critical control system showing the potential for merged IoT,
5G and cloud. Mobility, reliability and low latency at the edge is provided
through the 5G wireless radio. The control loop is implemented using flow-
based programming [Szydlo et al., 2017] on an IoT PaaS called Calvin [Pers-
son and Angelsmark, 2015]. This environment provides the means to con-
tinuously execute a mission critical application, while seamlessly relocating
computations to various geographically diverse locations.

Chapter 8 takes a closer look at cloud performance in an offloading sce-
nario. Services that provide offloading are implemented using IaaS, Kuber-
netes and FaaS. This testbed is built for scalability and uses components
that have become representative of cloud-native software. Chapter 8 extends
the work in Chapter 7 with the offloading design, and an examination of
performance loss from geographical distance and the use of high-level inter-
faces. It also takes on the question of how prominently platform noise from
other tenants and service logic from the provider, appear in the delay profile
towards a typical cloud.
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6.1 Related work

Testbeds that join user equipments (UEs)1, wired and wireless networks, dis-
tributed cloud infrastructure and platforms are crucial instruments to realize
and study the complexity of the edge cloud. The literature contains a num-
ber of such attempts. The authors of [Kang et al., 2013] present the SAVI
testbed. SAVI is an edge cloud testbed realizing Network Function Virtual-
ization (NFV) with a Field-Programmable Gate Array (FPGA)-cloud. SAVI
is used in the investigation of virtualization of the wireless access network.
Similarly, in [Wan et al., 2016], a full testbed using existing wireless technolo-
gies, IoT frameworks, and devices is deployed on an actual production line.
In [Hu et al., 2016] the authors implement a rudimentary edge cloud testbed
to quantify the impact of edge computing on mobile applications using WiFi
and the public 4G network. Their effort reveals significant latency and energy
usage improvements compared to distant Data Centers (DCs).

[Tärneberg et al., 2016] studied the performance of cloud native applica-
tions on commercially available platforms in a smart city context. The study
implemented an IoT infrastructure for smart traffic lights using a standard
message passing framework, function services, and stateful storage, all pro-
vided as cloud services. The response time with this scalable IoT design,
from sensed events to control actions, was on average over one second and
also involved long tail times.

[Leitner and Cito, 2016] provides a benchmark of IaaS from several public
cloud providers. The goal of this study is to investigate how accurately the
performance of an acquired virtual machine can be estimated in advance.
Results showed substantial performance differences between cloud providers
and different regions. No substantial impact was seen from hardware het-
erogeneity in a region, or performance variations correlated with the time
of day. It was concluded that multi-tenancy is an important factor and that
selection of instance based on cost is non-trivial. The authors point out that
cloud performance is a moving target, making it important to continue with
benchmarks, and that users perform careful evaluations.

Other works have attempted to characterize and profile different aspects
of the edge cloud. Tärneberg et al. have developed simulators for studying
the dynamics of the edge cloud, culminating in [Tärneberg et al., 2017b], a
paper that provides a structure for resource management in the distributed
cloud. The simulation software iFogSim [Gupta et al., 2017] offers a platform
for conceptual exploration of resource management techniques in the IoT and
edge cloud environments, through simulation.

The authors of [Mahmud et al., 2014] evaluate a generic platform for in-

1A device used by an end-user to communicate in a mobile broadband network, such
as phones and IoT devices
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dustrial control, with respect to latency, jitter, throughput, and CPU load.
Their focus is on the pros and cons of virtualization in a multi-core environ-
ment rather than the cloud. Similarly, [Horn and Krüger, 2016] implements
a water tank control process and evaluates latency over a virtual Software
Programmable Logic Controllers (vSoftPLC) on top of LinuxRT. In both of
these works, the system implementation is evaluated, rather than control of
the plant. In [Hegazy and Hefeeda, 2015], Industrial automation as a cloud
service is proposed. The authors evaluate a system of time sensitive control
processes in a one-tier distributed cloud environment. Latency compensation
is modeled and redundancy with stability and smooth controller handover is
achieved.

The application testbed in Chapter 7 is distributed, event-driven, server-
less, and based on a data-flow programming model. There are a number
of such platforms for different workloads, e.g., Nebula [Ryden et al., 2014],
Node-RED [OpenJS Foundation and Node-RED contributors, 2021], IEC
61499 [Vyatkin, 2011], and Naiad [Murray et al., 2013]. These systems are
targeted for the IoT domain and cater for workloads varying from simple
event-driven automation to high-throughput Hadoop2 jobs. Calvin, which is
used in Chapter 7, is most similar to Node-RED. However, while Node-RED
emphasizes the programming model and graphical tools, Calvin puts more
focus on runtime dynamics and distributed deployment. The perspective of
Calvin is well attuned to the presentation of the distributed data-flow model
in [Giang et al., 2015] where a Distributed-NodeRED (DNR) extension is
proposed. A notable operational difference is that DNR employs duplication
to realize mobility, while Calvin implements the code migration technique,
which is arguably more efficient and is better suited for computationally
intense applications [Giang et al., 2015]. Additionally, Calvin can migrate
work loads using various performance criteria, to provide, for instance, load
balancing or jitter reduction.

The interest in using information and communication technology (ICT)
as a means to implement networked control using COTS predates the cloud
era. An example is found in [Kim et al., 2006], where control is implemented
over two private Local Area Networks (LANs), to balance a steel ball in a
magnetic levitation system. The engineering merit of COTS, which at that
time consisted of the Internet, general purpose networks, a web server, and
the Common Gateway Interface (CGI), is explicitly acknowledged in this
work. More recently, modern systems such as drones have been considered
[Pelle et al., 2019], and the potential for implementation using high levels of
abstraction.

Research on deploying traditional feedback control loops to a cloud in
general, is often focused on making cloud computing platforms and interme-

2Apache Hadoop, a software framework for distributed big data processing
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diate networks behave as real-time systems. Targeted efforts have, for exam-
ple, been made in the areas of deterministic dynamic networks [Gupta and
Chow, 2008], resource allocation in data centers [Ahn and Cheng, 2015], and
feedback control implemented in the network [Rüth et al., 2018]. An early ex-
ample of successful attempts at deploying feedback control loops that span
a cloud VM and back is found in [Esen et al., 2015]. The work in [Esen
et al., 2015] identified that time-varying network delays is a key challenge,
and it was shown that the availability gap introduced by the cloud could be
spanned reliably across multiple clouds, given comprehensive middle-ware.
With more consideration to control theory, the work in [Kaneko and Ito,
2016] use redundant PID controllers and Smith prediction to create a fail-
over system, that is both resilient to feedback controller and network failures.
On a tangent line of research, the authors of [Vick et al., 2016] demonstrate
that the delay incurred by the cloud and the intermediate network can be
accommodated for by designing the feedback control loop for a static delay
and using open loop prediction. Also, not to be underestimated, security is
a principal concern when operating in the cloud. On this topic, the authors
of [Alexandru et al., 2018] showed that the performance overhead of security
was manageable in a cloud-deployed feedback controller.

6.2 Research gap

Most systems surveyed in the related works are not mission critical and time
sensitive at the scale and complexity addressed in the following work. The
SAVI testbed is comprehensive, but does not provide a general edge cloud
implementation for cloud native applications, nor does it span from the device
across multiple tiers of cloud resources. The industrial applications targeted
in [Wan et al., 2016], and other works, focus on framework integration rather
than system and application performance. Also, they are not time sensitive.

Simulation tools are valuable, but cannot replace prototypes that cap-
ture the true complexities of the final applications. The experimental eval-
uations in the following chapters are justified, because a testbed could be
practically implemented, avoiding assumptions and allowing investigations
of the complexities of real clouds and networks. The testbed and application
in Chapter 7 are also unique in its combination of a time sensitive control
loop, an edge cloud infrastructure, massive MIMO wireless technology, and
a PaaS with migration support. It was constructed to examine the relatively
unexplored hypothesis, that the above combination will make it possible to
implement critical systems using wireless connectivity, COTS components,
on-demand computing, and flexible deployments. No PaaS similar to Calvin
had been experimentally evaluated for critical control of CPSs at rates that
challenge the low latency aspect of 5G. Online software migration is also a
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new study in this context. The potentials of deploying software anywhere on
a heterogeneous, spatially and interactively diverse cluster, then migrating
calculations to the best location had been suggested but not explored.

This extends also to the basic system performance explored in Chapter 8.
Works that study offloading in ordinary clouds, and control over the Internet,
often focus on bench-marking the relative performance of similar tools, the
services of a single cloud provider, and chains of execution, similar to the
application in Chapter 7. A large portion of current state-of-the-art propose
to change the notion of the cloud in order to fit the needs of feedback con-
trol systems, and are not pursuing an adaptation of feedback control systems
to the reality of the cloud. There is limited focus on the control challenge
and the basic performance of clouds and networks in general. In the broader
community, delays and uncertainty in the order of hundreds of milliseconds
are often assumed and studied. This is a consequence of chains of microser-
vices and other bottlenecks in the applications. Individual service requests
and stateless execution can achieve much better results. There is important
progress to be made by considering and experimenting on unmodified clouds,
when investigating boundaries and possibilities in utility computing.
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7
Towards Mission Critical
Control

The Wide Area Networks (WANs) separating a time sensitive and mission
critical system from a traditional distant DC, often incurs a variable de-
lay beyond what is operationally acceptable [Schulz et al., 2017]. The edge
cloud was proposed to mitigate the latent latency, jitter, throughput, and
availability barriers that separate the end users from distant DCs. To take
advantage of the edge cloud, applications should adopt contemporary soft-
ware platforms, such as PaaS. The following chapter presents a testbed for
time critical control systems. The testbed is complete in that it includes ultra
reliable wireless communication, IoT devices, edge compute connected to the
access network, and connections to data centers. A distributed PaaS allows
an application seamless access to the complete infrastructure.

7.1 5G enabled testbed

Historically, control systems have been deployed as monolithic software im-
plementations on carefully tuned hardware, adjacent to the plants they con-
trol. Deploying monolithic software on static hardware makes such systems
undesirably non-modular, less extensible, and limits their ability to self-
adapt. Conversely, cloud-native applications are built for the cloud with
the prospect of widening and deepening the penetration of cloud resources
through the IoT and the edge, offering the prospect of greater flexibility,
reuse, availability, and reliability with lower latency and jitter. When appli-
cations are implemented as loosely-coupled components, such as microser-
vices [Dragoni et al., 2017], their execution can be distributed across the
system’s many nodes, migrated, and scaled to meet their individual objec-
tives, as well as that of the system as a whole. To adapt to, and prosper in,

This chapter is based on [Skarin et al., 2018]
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7.2 Edge cloud and massive MIMO

Figure 7.1 A flow programming implementation of critical control, de-
ployed in runtimes on different machinery in several geographical locations.

the edge cloud, applications will arguably have to adhere to a cloud-native
paradigm.

When accessing the edge cloud over URLLC 5G [Shafi et al., 2017], the
delay and jitter are sufficiently low that time sensitive and mission critical ap-
plications can be deployed in the edge cloud. An edge cloud can also provide
an application with redundancy and fall-back solutions at various geograph-
ical points in the infrastructure, for additional resilience. Deploying mission
critical applications over the edge cloud must arguably occur in conjunction
with the availability of edge cloud resources, the flexibility of cloud-native
applications, and the reliability and low latency of next generation communi-
cation systems. There are many challenges and performance uncertainties in
this premise. Therefore, we study the feasibility of deploying time sensitive
and mission critical applications, and their performance, when deployed on
an actual edge cloud infrastructure.

7.2 Edge cloud and massive MIMO

The research testbed, shown in Figure 7.1, consists of:

1) A radio transmitter and a receiver1 (UE) constituting a 5G cell.

2) PC-type compute nodes in DCs and adjacent to the radio transmitter.

3) A reduced capacity input-output device and a physical plant at the
radio receiver end.

Here, the physical plant can be a mechanical device that continuously per-
forms a task, for example a robotic arm or an autonomous vehicle. The pro-
cess that controls the plant is mission critical and time sensitive. The radio

1More simultaneous receivers (and device clients) are supported by the testbed but
only one is shown.
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Figure 7.2 Illustration of a prototype deployment of the system in Fig-
ure 1.2 at WASP WARA-CAT in 2017. The base station, located outside of
Gothenburg, Sweden, provided virtual machines and access to the virtual-
ized 5G core. A distributed software platform was created using Calvin and
a data center in Lund, Sweden.

subsystem is capable of parallel, synchronized low latency communication
with several receivers.

The target is a platform with enough knowledge about the application
to perform load balancing while allowing an application its own mobility.
Further, there is a strong interplay between the edge cloud and the end user
equipment, such that an application can automatically scale on top of the
cloud and provide fall back on local devices. In the remainder of this chapter,
the research testbed is referred to as the system.

Fifth generation wireless specification

A 5G wireless system represents the next generation wireless infrastructure
[Shafi et al., 2017]. The emerging focus of 5G is URLLC and Massive Ma-
chine Type Communication (mMTC), where a large number of IoT devices,
can reliably be served simultaneously at a low latency, ≤ 5ms. These condi-
tions cannot be replicated with current 802.11 (Wi-Fi) or Long Term Evolu-
tion (LTE) systems. A next generation wireless network also implies a deeper
integration with associated cloud computing resources. On-demand resources
are integrated into the radio base station (RBS) and access networks, to of-
fload the back-haul and eliminate the latency overhead of traversing multiple
networks and providers.

The 5G network can service devices with very different requirements by
deploying services on elastic clouds at various locations in the infrastructure.
Figure 1.2 showed an illustration of such a system, from an Ericsson white
paper published in 2017 [Ericsson, 2017]. Figure 7.2 shows an early indepen-
dent prototype that was setup at Asta Zero testing grounds, as part of the
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7.2 Edge cloud and massive MIMO

Figure 7.3 The LuMaMi massive MIMO [Malkowsky et al., 2017]

WASP WARA-CAT program in 2017. It connected virtualized resources in a
base station with a data center cloud and implemented a Calvin PaaS. This
prototype is similar to the testbed detailed below, but was not used to access
a wireless interface or control an actual plant.

Massive multiple-input-multiple-output (MIMO) is an emerging radio ac-
cess technology (RAT) for 5G and beyond. Fundamentally, massive MIMO
is a multi-user MIMO (MU-MIMO) scheme, which can simultaneously com-
municate with multiple UEs on the same wireless resource. On the RBS-side,
massive MIMO is typically configured with an order of magnitude more an-
tennas than simultaneously served UEs. This is significantly more antennas
than existing LTE-based RATs. Consequently, the system’s spectral efficiency
is a few orders of magnitude greater than existing RATs. The increased spec-
tral efficiency can be used towards serving more simultaneous UEs, increase
throughput, or realizing high reliability, beyond what can be achieved with
existing RATs.

The testbed implements wireless access technology using the Lund Mas-
sive MIMO (LuMaMi) (Figure 7.3). LuMaMi is a massive MIMO testbed that
was built using COTS components at Lund University, Sweden. LuMaMi’s
scope and detailed implementation are found in [Malkowsky et al., 2017].
LuMaMi can be seen as one solitary 5G cell that can simultaneously com-
municate with twelve UEs. Using LuMaMi, traffic can be routed directly
through the system at the medium access control (MAC) layer, allowing the
placement of a compute node in the RBS. This is referred to as an RBS
break-out.

LuMaMi is configured according to [Tärneberg et al., 2017a]. The modu-
lation scheme and measured performance are shown Table 7.1 next to typical,
theoretical, 4G figures. While the achieved throughput may seem low, it is
on par or better than contemporary 3GPP machine type communication
standards. It is also more than sufficient to support the application. While
LuMaMi can provide record-setting throughput [NI, 2016], the used config-
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Table 7.1 Configuration with measured values for LuMaMi and the the-
oretical 4G performance of a public ISP.

Access LuMaMi ISP

Radio Technology Massive-MIMO LTE Cat13
Modulation QPSK Up to 64-QAM
Uplink 4.6 Mbps 75 Mbps
Downlink 9.1 Mbps 300 Mbps
Reliability Ultra-reliable Low
Minimal latency 5 ms 10 ms

Table 7.2 Node types

Node Device Location

Plant Raspberry Pi 3B Plant adjacent
RBS Intel Core i7 Desktop LuMaMi adjacent
ERDC Intel Core i7 VM Lund, Sweden.
AWS Intel Xeon VM Frankfurt, Germany

uration premiers a low latency and a highly reliable wireless link.

Edge cloud and network

The system as a whole is tied together by a set of compute nodes joined
by a network. A summary of the compute nodes is presented in Table 7.2.
Adjacent to the plant is a Raspberry Pi. In order to sample and manipulate
the plant, the Raspberry Pi has been equipped with a ADC/DAC shield.
The device also serves as a compute node and may host software in addition
to the software required for interacting with the plant. The Raspberry Pi is
also connected to a 5G UE. The 5G cell is isolated in its own sub-net. The
sub-net includes the wireless infrastructure, an edge cloud node, and plant
nodes. The plant-adjacent Raspberry Pis are connected to the system’s sub-
net over LuMaMi. The wireless edge cloud node is adjacent to the LuMaMi
RBS. It connects directly to the RBS without traversing additional networks.

A router is located between the cell’s sub-net and the larger DCs. The
Ericsson Research Data Center (ERDC) resides in Lund, Sweden a few kilo-
meters from the cell. ERDC is a research DC operated by Ericsson, that
is open to industrial and academic research efforts within the Wallenberg
AI, Autonomous Systems and Software Program (WASP). When the ex-
periments were made, the cloud management platform in ERDC was Open
Stack Pike and the servicing VM (a c4m16) has four Intel i7 cores registered
by Linux as 1.6 Ghz CPUs and 16 GB of RAM. The Amazon Web Ser-
vices (AWS) EC2 instance (a c4.large) is hosted on eu-central-1 (Frankfurt,
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7.3 Cloud native application

Germany). This node has two Intel Xeon cores at 2.9 Ghz and 8 GB of RAM.
The application does not make use of all CPU cores. The two VMs on ERDC
and AWS connect to the sub-net over a Virtual Private Network (VPN), al-
lowing direct access between all compute nodes.

7.3 Cloud native application

On the investigated platform, a cloud-native IoT application is defined to
be an application that has been dis-aggregated into logical and independent
components connected in a data-flow graph, and that is hosted on a PaaS
framework. The PaaS and its resident applications ubiquitously operate over
multiple geographically distributed and heterogeneous compute nodes. An
application’s data flow graph can be rerouted and extended at run-time,
when for example adding a new feature. Additionally, the components are
able to traverse the cloud and associate with, and discover, physical input-
output devices, if the application so requires.

Calvin

The testbed runs Calvin, a PaaS aimed at merging IoT and cloud in a unified
programming model [Persson and Angelsmark, 2015]. Calvin is conceptually
structured as follows.

Actors The operational units of Calvin are called actors (nodes in data-
flow). These are implemented in Python by the user.

Runtimes2 A runtime is an instance of the Calvin application environment
on a device.

Tokens An actors’ input and output messages, are known as tokens. The
actions of an actor are triggered by the arrival of tokens on its input queues,
and the result of an operation, a production, is placed in output queues. Each
runtime independently schedules its resident actors in a round-robin manner.

Migration and scaling Actor states can be migrated and horizontally
scaled across nodes. What constitutes an actors’ state is defined by the de-
veloper. The Calvin framework can autonomously migrate and place actors
to meet performance goals. Application owners can also specify requirements
for actors which tie them to a preferred runtime. For example, a sensor read-
ing actor can be tied the node associated with the physical plant it is meant
to observe.

2In the implementation there is a one-to-one mapping between Calvin runtimes and
compute nodes, they are therefore interchangeably referred to simply as nodes.
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Figure 7.4 Example of cascade control Calvin application deployed on
a set of runtimes. The green boxes are Calvin actors, the circles represent
runtimes. No actor is initially deployed on runtime D.

Application Calvin applications are described in terms of reusable actor
components. A set of actors and their interconnections constitute an appli-
cation. The CalvinScript defines a simple language used to connect actors to
form a directed graph, creating a Calvin application.

Distributed execution The application is deployed to a mesh network
of distributed Calvin runtimes, as illustrated in Figure 7.4. The location of
an actor and how its data is transported to other actors, is handled dy-
namically during deployment and throughout the application lifetime. The
set of runtimes form a distributed execution environment. This environment
manages actors and allows updates of the deployment, duplication of actors,
and actor migration. Figure 7.5 illustrates the distributed execution and the
overlay transport network provided by the PaaS. This figure also shows that
Control2 has migrated from runtime C, where it was deployed in Figure 7.4,
to runtime D.

A Calvin developer implements actors that are responsible for isolated
tasks. An actor should respond to messages on its (queued) input ports with
messages on its (queued) output ports. The actions of the actor should not
have side effects - inputs such as reading a sensor should be provided by
other actors, dedicated to that task. Actors are implemented using a spe-
cialized Python library. Through Python decorators, the library creates an
environment that triggers actor functions based on conditions on the actor’s
in-ports, and allows the actor to place productions (tokens) on its out-ports.
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Figure 7.5 The Calvin application in Figure 7.4 executing in its dis-
tributed environment. Notice that Control2 has migrated to runtime D from
its initial deployment on runtime C.

The runtime environment takes care of executing the actors, transferring the
token from out-ports to in-ports, handling token queues, duplicating tokens
to separate branches, moving an actor to a new runtime, enforcing deploy-
ment requirements, meeting QoS etc.

A Calvin script specifies relationships between actors, options for automa-
tion such as scaling, and actor affinities (optional device requirements) using
the CalvinScript language. The library of actors is made available to the
cluster of runtimes and the application definition, the Calvin script, can be
deployed to any of the runtimes. The actor affinities ensure that an actor such
as Sensor1, Sensor2 and the Actuator in Figure 7.5 are deployed on a runtime
with access to the input and output devices. Other actors, such as Estimation
and Control can be located on any runtime. These can be migrated freely
to obtain access to, for instance, low latency communication or more CPU
time. The Calvin runtime system itself uses a distributed key-value store to
manage actors and the distributed runtime environment.
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7.4 Implementation

Control application

The plant under control in the experiments is the ball and beam process from
Chapter 5. An optimizing controller is implemented in Calvin and used to
control the plant. For the optimization, a dynamically linked binary is created
with the use of QPgen [Giselsson, 2015]. The implementation uses a sampling
period of 50 ms (20 Hz). This choice is a reasonable trade off between control
performance and early observations of the system’s latencies. QPgen is an
efficient solver and the optimization problem has few variables, yet we shall
see that the time it takes to find a solution can be considerable. Sometimes
there is no solution, or one is very hard to find. In such case the search ends
after a fixed amount of optimization iterations.

The Calvin application graph for the MPC control loop is shown in
Figure 7.6. The rounded rectangles represent individual components, im-
plemented as actors, which are deployed onto the systems. To handle the
presence of plant and sensory noise, and to reconstruct the full plant state,
including the velocity of the ball, a Kalman filter is included. This could
reasonably be its own actor, but here it is implemented in the MPC actor.
The two Analog to Digital Converter (ADC) actors adhere to component
reuse and the principle idea that they need not be collocated. However, they
are to be read jointly and therefore share a clock tick. The setpoint actor is
responsible for periodically (every Ns seconds) generating a new setpoint for
the position of the ball. The components within the gray area can be freely
placed within the system. The ADCs (the position and angle sensors) and
the digital to analog converter (DAC) (the motor actuator) have an affinity
to the plant-adjacent node.

A nominal controller is deemed useful to study the performance of the
platform. Sensor input must be filtered, but the controller does not account
for delays.

Execution properties

All related software runs on top of Linux. The Calvin runtime is launched
using the Linux real-time scheduler with the POSIX FIFO scheduling policy.
The edge node at the RBS can take full advantage of the real-time configu-
ration3 as it runs directly on the physical hardware. In contrast, the guest
operating systems hosting Calvin runtimes in the cloud, can be arbitrarily
interrupted. The details of this depends on the cloud provider. The hosts
operating systems may very well use the ordinary Linux Completely Fair
Scheduler (CFS) to manage several, more or less active, virtual machines on
the same host. A heavily loaded host may start a virtual machine migration

3Using vanilla real-time support, the kernel is not preemptive [Rostedt and Hart, 2007]
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Figure 7.6 Calvin MPC implementation.

(Section 2.1) that slows down the system. There is no easy way to know or
configure this. We can only assume that the scheduling and inter-node com-
munication in the software platform will introduce a significant amount of
delay and jitter, with a negative effect on control performance.

7.5 Testbed evaluation

The testbed performance is evaluated in a set of experiments designed to:

1) Reveal characteristics by establishing a baseline observation of the per-
formance and behavior of the controller, over long time periods.

2) Verify the adaptability of the system by, at run-time, continuously mi-
grating the controller actor across the system’s nodes.

3) Measure control performance and execution properties to observe the
advantages and disadvantages of different placement of the controller.

In order to observe the system’s performance potential, the study is lim-
ited to normal operating conditions. Networks and clouds are shared and
the connections to the DCs may at times degrade. Significant changes in the
network and cloud behavior are assumed to be infrequent transient behaviors
and are not handled specifically in this work.
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Figure 7.7 Statistical summary of the MPC baseline measurements. A
box shows the (lower) 0.25-quartile to the (upper) 0.75-quartile. The line
inside the box is the median. Whiskers show the lower quartile− 1.5 · IQR
and upper quartile + 1.5 · IQR, where IQR is the interquartile range (the
difference between upper and lower quartiles). Outliers beyond the whiskers
are excluded.

System characteristics

To characterize and verify the basic functionality of the system, the MPC is
executed on each of the nodes in Table 7.2. With each test, the MPC controls
the beam for 60 minutes, while periodically changing the requested position
of the ball, alternating between the center position and one side of the beam.
To be robust in this experiment, the setpoint is restricted with a large margin
to the end of the beam. The further out on the beam the ball moves, the
more the controller is put to work. This is due to active constraints, which
is return to in a later section.

Figure 7.7a shows the network round trip times (RTTs) from the Rasp-
berry Pi at the plant to the other systems. Notably, the wireless link realized
with LuMaMi introduces a latency of 5ms one way, as made evident by the
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Figure 7.8 A comparison of the round-trip-times through LuMaMi and
over a public access network using LTE. The configuration of the boxes are
the same as in Figure 7.7

10ms RTT between the plant and the RBS node. 5G is pushing for even
faster RTT, but this is good radio link performance compared to commer-
cially available alternatives. To show how effective the system is in providing
low latency access, Figure 7.8 compares the measured run-trip times to a
commercial LTE network. The AWS 4G in this figure is accessing AWS over
a public Internet Service Provider (ISP) using an ordinary LTE modem. The
measurements for AWS and RBS in Figure 7.8 are the same as in 7.7a.

Figure 7.7b shows the MPC processing time. A simple scenario is chosen,
where all nodes can execute the MPC with a significant margin. However,
the Raspberry Pi at the plant is many times slower than the other systems.
The AWS node is faster than RBS and ERDC, which is to be expected by
the specification in Section 7.2. We see in this graph that there are large
outliers in terms of processing time at the plant. Even though the MPC
executes in real-time mode on the Raspberry Pi, recurrent extended system
interruptions have been observed on the device. This could be the cause of
these outliers. On the DCs, real-time properties do not apply outside the
virtual machine, as far as known, and therefore some outliers are expected.
Due to the short processing times, however, they are expected to be rare,
which is also observed.

Figure 7.7c shows the full latency from reading the position of the ball to
applying the control signal (i.e. adjusting the velocity of the beam). This is
an important measure, since the controller is designed with the assumption
that the input to output is instantaneous and hence, that the state of the
system has not changed when the control signal is applied. The differences
in delay are not as pronounced in Figure 7.7c as in Figure 7.7a. As seen
from the magnitude of delays in Figure 7.7c, processing times in Figure 7.7b
and the network latency in Figure 7.7a are far from the only contributors to
the control latency. This tells us that a significant proportion of the delay
in our system is introduced by the software platform or application design,
and not the network. In contrast, results have shown up to 90 percent of the
delay in public LTE (4G) systems is caused by the cellular network [Schulz
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Figure 7.9 Time-series of MPC being randomly migrated between the
system’s four nodes located in the remote data center (AWS), the municipal
data center (ERDC), at the radio base station (RBS) and in a plant-adjacent
Raspberry Pi (Plant).

et al., 2017], i.e., a very different situation. The effect on our process due to
these properties are visualized in Figure 7.7d, where we see that the power of
the control signal u increases the further the MPC is moved from the plant.
Notice that the AWS node performs well on average, but network delays
causes it to exhibit a larger mean and variance in the control signal. Such an
effect can be part of the heuristics when deciding where to place control in
the edge cloud.

System adaptability

It has been established that a controller can successfully be implemented
on the edge cloud testbed, and characteristics in terms of processing times,
latency, and jitter, have been investigated. Essential to the flexibility of the
system is its ability to migrate applications and actors to respond to the
application’s, and the infrastructure’s changing objectives. During a migra-
tion, the Calvin cluster performs the necessary modification of the network
communication path, recreates the actor at the target node, copies state,
and handles the transition of the token queues. Although the actor moves
point-to-point, changing the communication paths may involve many nodes
in the cluster. This perspective is now added by dynamically relocating the
MPC among the nodes, while balancing and repositioning the ball.

In Figure 7.9, the MPC actor is continuously migrated randomly across
the four compute nodes, at run-time. When doing this, the system must
ensure to keep the Kalman filter, the setpoint, the previous state, and tracing
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meta data intact. Delays, data loss or duplication, and incorrect state transfer
negatively impacts the control performance. The plot in the middle of the
figure shows the placement of the actor in time. The plot at the top shows the
setpoint and the registered position of the ball. The bottom plot shows the
output from the controller, again as the instantaneous power of the applied
control signal, i.e., the square of the control signal.

Figure 7.9 shows that the process is stable and is able to operate without
interruptions. The ball stays on the beam and close to the desired position.
The upper plot confirms what is presented in Figure 7.7d, i.e., the control
signal increases as a function of the distance to the plant. Setpoint changes
are clearly visible as peaks in the control signal, but the migrations in the
middle plot are not evident from the control signal nor in the ball’s position.
However, the peak in the control signal near the setpoint change after 650
seconds is likely caused by a coinciding migration. The control system is not
aware of when or to where a migration will occur and does not attempt to
mitigate its effects.

Active constraints

With the basic controller function and software migration established, it is
time to look at a use case where there is potential for the controller to take
advantage of the edge cloud. In the following experiment, there is a constraint
set on the control signal to the plant. Albeit being a synthetic exercise, it
is not an unreasonable action, since limits in control signal might be used
to, for instance, reduce actuator wear and to avoid non-linear parts of the
operating range. To make the associated optimization problem harder, the
setpoint is changed to move the ball just short of the end of the beam. In
combination with the constraints, this will cause a higher load on the MPC
host node and small disturbances may cause the ball to fall off.

The experiment shown in Figure 7.10 applies this configuration. The
graphs show the times series of the inputs to the controller, the process-
ing time of the MPC, and the total latency from input to output of the
measured nodes. The blue circles mark occasions when the MPC fails to find
a feasible solution.

As constraints are tightened, it becomes increasingly hard to find a control
signal sequence that moves the system from the present state to the target
state, while staying within the bounds. This manifests as longer execution
times for the optimization. As seen in the processing times of Figure 7.10,
when the system has settled around a setpoint, the optimization is easy to
solve and computationally light-weight. In these situations, the controller on
the plant performs well. Latency and jitter of the networked controllers may
cause them to deviate more from the setpoint.

Eventually however, the computational limitations of the plant causes
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Figure 7.10 Time-series of experiments run with tightened constraints
on the plant, RBS, and AWS nodes.

the ball to fall off the beam as a setpoint change occurs. Notice that the
plant is not unable to move the ball to the position at the end of the beam,
but eventually, model errors and noise become too large for it to handle. In
contrast, the RBS node is able to operate without failure. Also note that on
the AWS instance, despite its computational capacity, the controller fails to
cope with the resulting latency and system jitter, and the ball falls off.

The processing time at the plant (on the Raspberry Pi), when the MPC
fails to find a feasible solution, is close to an order of magnitude larger than
that of the sampling time, represented on the second row by a line, which
extends well beyond the top of the graph. This is representative of the com-
putational problems experienced at the plant due to noise during a setpoint
change. In contrast, an equal number of iterations consumes 80 ms on the
RBS node and only 40 ms on the AWS.

With the position closer to the end of the beam and with reduced range
in the control output signal, the controller repeatedly experiences non-trivial
situations, which require additional iterations of the optimisation. At times,
noisy readings make a tough situation even worse, and there may seemingly
be no solution that keeps the ball on the beam. If a new evaluation can be
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made quickly enough, the state may be such that the ball can be saved. On the
AWS node, the communication delays increase the number of occurrences of
these tough situations, and there are repeated problems of finding a solution.
The speed of the AWS node, however, allows it to cope with many of these
situations, since the combined processing and communication delay is much
less than the compute time at the plant. Only the RBS node is in a position
where it is able to handle the full range of the system noise.

7.6 Conclusions

This chapter presented an edge cloud research testbed for an IoT and het-
erogeneous cloud environment. The testbed includes 5G access technology,
infrastructure, and software platform. A control application was deployed
on the testbed controlling a time sensitive and mission critical process. The
viability, performance, and system characteristics were evaluated. The evalu-
ation shows that our reference controller can execute in a cloud native frame-
work and viably be deployed on the edge cloud.

Works such as [Tärneberg, 2019; Pelle et al., 2019] show that cloud plat-
form delays can be significant when combining services. In many cloud and
IoT applications, it is therefore not unusual to consider delays in terms of
hundreds of milliseconds. Calvin was created for IoT applications and the
data-flow programming model of Calvin is reminiscent of how such appli-
cations are implemented. In relation to this, the platform in Chapter 7 is
efficient. Nonetheless, the software platform is a major source of latency,
and a lack of real-time support results also in large variation in the delay.
The experiments operate at a sampling rate of 20 Hz, but there is potential
for this to be pushed further with improvements in the software platform
and control strategy. The experiments showed that the controller can benefit
from the edge cloud and that the system, and the placement of the controller
can be dynamically reconfigured during run-time without strictly sacrificing
stability.

In addition to what can be classified as ordinary software improvements,
such as reducing the overhead of message passing, there are also other fea-
tures that could support controllers. For instance, support for replicating
controllers and migrate active clones to other runtimes, to create redun-
dancy. The result would resemble the cloud control system proposed in [Xia,
2012]. This can help reduce problems with delay spikes, but is costly in terms
of resources. The result would also remain an instance of a direct NCS (Fig-
ure 3.1) and as such does not provide recovery if the network or application
fails. The next chapter introduces offloading and the hierarchical NCS, while
continuing to evaluate contemporary clouds in more detail.
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8
Function Service
Performance

Chapter 7 verified the soundness of the selected plant and controller in a
context of low latency access networks and edge clouds. This established that
the required bandwidth is reasonable and that an ordinary MPC can achieve
a basic level of performance. We now turn attention to the data centers,
function services, and the optimizing controller, progressively benchmarking
the layers of ICT that constitute a cloud, from two infrastructure providers.
This chapter adds the following contributions to the study of using cloud-
native technology for feedback control systems:

1) It provides a study of the progression of latency in clouds from theo-
retical lower bounds to cloud-native application layers.

2) It benchmarks response times when offloading to a private cloud, a
public cloud, and a massively parallel cloud service.

3) It proposes the cloud-augmented controller.

4) It replaces the PaaS application in Chapter 7 with client offloading,
enabling the use of FaaS to implement the MPC in the cloud.

5) It provides identification of how prominent the detrimental effects are,
when offloading feedback control using only arbitration.

The control problem is executed in two forms. The first form relies primarily
on the remote controller and abruptly switches to a client controller when
offloading fails. The second controller has a built in client mode, to reduce
the use of the cloud and provide a graceful degradation. Extensions of these
two forms are studied in Chapters 10 and 11.

This chapter is based on [Skarin et al., 2020c]
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8.1 Objective

The goal is to study the response from a cloud native platform when executing
a feedback controller using the client architecture in Figure 3.4. Chapter 7
showed that LuMaMi, a prototype 5G base station, can provide a reliable
low latency air interface, and that the software platform was the dominant
source of delay. With this knowledge, the software framework is simplified.
Communication is run directly over the wired interface, as focus is shifted to
the application and the cloud.

It is of interest to investigate the achievable response rate from the cloud
with this new configuration. It is also of interest to observe the perfor-
mance penalty from choosing technologies far up the software stack, such
as representational state transfer (REST) interfaces, as the view that the
cloud is unreliable and plagued by long delays often comes from judgments
based on complex applications and/or obsolete technology. The gain from us-
ing general purpose technology is a cost effective average performance, and
it is useful that applications can accept tail latencies [Bernat et al., 2002].
One question is how frequent and problematic outliers and self-imposed de-
lays (due to processing time, large payload, many requests etc) are, for an
offloaded control application. Therefore, we want to investigate if common
assessments of cloud latency are overly pessimistic.

From Chapter 7 and [Pelle et al., 2019] we find that control code execution
time is expected to be significant in a cloud application. It is therefore also of
interest to investigate the effect of this load on the processing time properties.
Complexity is reduced as much as possible to draw conclusions specifically
for the MPC and find the achievable lower bounds on response times. This
chapter limits the self-imposed delay to the optimization processing time,
since there is no redundancy or other parallel activity in the controller, and
no payload variation1.

To make it easier to refer and reason about the objectives, three assump-
tions are investigated:

Assumption 8.1
Cloud-native platforms are composed of many systems-of-systems. This re-
sults in a delay with greater variance for each successive system or OSI layer.
This is referred to as platform noise. 2

Assumption 8.2
Control applications of the type in Figure 3.4, with a necessary frequency
of at least 15 Hz, can benefit from offloading to the cloud using ordinary
cloud-native services. 2

1The response to a large number of requests is part of the measurements in Chapter 10,
where the controller implements multiple parallel requests and it is necessary to find a delay
distribution for this scenario.
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Figure 8.1 Cloud benchmarking infrastructure. The client is located on
the Swedish University Network Lund (Lunet). EDC is the Ericsson Re-
search Data Center (also referred to as ERDC).

Assumption 8.3
The targeted cloud control system incorporates multiple dynamic systems,
and cannot be trivially predicted. In extension, combining results from stud-
ies of individual components is at high risk of leading to incorrect assessments
of the suitability of the cloud. 2

8.2 Platform

The platform that was used for these experiments is shown in Figure 8.1. The
distant, hyperscale cloud in Frankfurt, Germany, from Chapter 7 is replaced
by a similar cloud in Stockholm, Sweden. The plant’s geographical location
is on the same campus as in Chapter 7 but it is now wired directly to the
Swedish University Network (SUNET) in Lund. ICMP, UDP, GRPC etc
are standard communication protocols. The icons linked to the two clouds
represent different deployments for the offloaded optimization.

The two locations represent a public cloud with an expected higher RTT
and a very large and highly tuned infrastructure, and an edge cloud with
an expected minimal RTT, comprised of a much smaller DC. The two are
included for two reasons. One is to observe the trade-off between RTT and
compute capacity, if any. The second is to make it possible to distinguish
the impact of the cloud from other system components, such as the client
implementation and intermediate networks. In summary:

ERDC is an OpenStack-based DC in Lund, Sweden hosted as a research
platform by Ericsson (1.3km (≈ 0.8mi) from the plant). It is labeled
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EDC in Figure 8.1 and is representative of a proximal private cloud,
alternatively, an Edge DC.

AWS eu-north-1 (a reasonably proximal AWS region) in Stockholm, Swe-
den (480km (≈ 300mi) from the plant) which is a representative of a
capable COTS public cloud DC.

The plant is connected to the cloud infrastructures with a high-bandwidth
and low-latency national back-bone network. The RTT is measured for
a set of communication technologies; Internet Control Message Protocol
(ICMP) echo, User Datagram Protocol (UDP), Transmission Control Pro-
tocol (TCP), gRPC (a cross-platform RPC framework), REST, and FaaS.
They are representative of a journey though the Open Systems Intercon-
nection (OSI) stack. At the application layer, Hypertext Transfer Proto-
col (HTTP) 1.1 and 2 are used in the form of REST and gRPC.

A minimal echo response is implemented for each communication tech-
nology and hosted on VMs (EC2 t3.micro and OpenStack c1m05) and con-
tainers (Hosted on equally dimensioned Kubernetes (K8S) clusters), when
technically permissible. VM and container deployments will from now on be
collectively referred to as IaaS. The combination of communication technol-
ogy, service abstraction, and run-time paradigm as a deployment.

The MPC controller is implemented in Python using CVXGEN [Mattin-
gley and Boyd, 2012] and adapted to the above set of deployments, so that
its response time can be compared to the RTT measurements. The control
client interfaces with the cloud using REST. This makes it directly compat-
ible with the FaaS deployments. Towards Lamda, the function is requested
using REST and native AWS Boto3 calls. When deployed directly on a VM,
Python Flask is used in the workers to handle incoming requests.

For reiteration and for conducting the experiments at scale, a custom,
automated deployment platform was constructed. With that platform, it is
possible to reproduce the experiments and consistently observe the behavior
of the system over long periods of time.

8.3 Experiments

A set of experiments were designed to test Assumptions 8.1 to 8.3. They are
as follows:

Baseline RTT Investigates the minimal time it takes to reach the cloud,
and go back again, at each successive layer in an infrastucture stack.
These experiments are fundamental to testing Assumptions 8.1 and 8.2.
The RTT experiments quantify the latency cost of accessing the cloud
and finds the latency profiles for a set of communication technologies
and cloud infrastructures.
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Computational complexity vs. response time Measures the RTT as
well as the controller processing time. These experiments explicitly test
Assumption 8.2 and determine if Assumption 8.1 is load dependent. To
create a varied load, the state of the plant and the MPC controller’s
prediction horizon is varied. To recreate identical conditions for each
deployment, three static workload intensities where determined through
experimentation; light, medium, and high. They are detailed below.

Feedback control Using the findings from the above experiments, we pro-
ceed to test Assumption 8.3 and evaluate the experimental feedback
control system presented in Section 8.6. The nominal controller is in-
vestigated using setpoint changes. The performance evaluation criteria
is the ability of the controller to stay within the constraints and to
quickly reach the setpoint.

The experiments run in batches, with each batch executed as quickly a
possible on a single thread, on an isolated computer at the campus. Although
the cloud can be used for massively parallel computations, it is important
to run single, serialized requests to find the shortest response times. There
are ten requests in each batch. Because FaaS is used in the experiments, one
request is sent initially and disregarded to remove cold starts from the data.
In FaaS, a cold start happens when a request arrives for a function that is
not yet loaded into memory. If there is a long idle period between requests,
the function may have been taken out of memory and has to be loaded again.
Due to the interest in lower bound performance and continuous sequences
of offloaded control, cold starts are cleaned from the data. In case of the
experiments in Section 8.5, these are executed a few times every minute over
several days.

Performance metrics

The cloud performance is asserted in terms of a request’s RTT and processing
time, measured in milliseconds. Medians and percentiles are used to show and
compare latency distributions. For the feedback control experiment, three
metrics allows an assesment of the control performance over time. They are
all relative to the stand alone performance of the client LQR (Figure 3.5),
which has been tuned to stay within the physical constraints of the plant.
The ball and beam plant is used, and focus is on the critically controlled
variable x1, i.e., the ball’s position. The constraints are slightly tightened in
the MPC to provide a bit of margin. Low values are desirable for all metrics.

Relative Accumulated Violations (RAV) A measure of the total viola-
tion of constraints. c0, c1 are the upper and lower constraints, respec-
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Figure 8.2 Processing time mean and variance for various horizons and
state errors.

tively.

1

T

T∑
k=0

1∑
j=0

max(0, |x1(k)| − |cj |) (8.1)

Relative Accumulated Error (RAE) A measure of the controllers abil-
ity to reach the requested setpoint. r is the setpoint.

1

T

T∑
k=0

|x1(k)− r(k)| (8.2)

Relative Maximum Constraint Violation (RMCV) Measures the
maximum distance from the constraint of the system state over time.
# »x1 is an array of all state samples. c0, c1 are again, the upper and lower
constraints. Subtraction and taking the absolute value, is done element
wise.

max(| # »x1| − |c0| ∪ | # »x1| − |c1|) (8.3)

8.4 Computational load

A benefit of the MPC is that its computational requirements can be scaled.
The performance and load of the controller depends on the design parameter
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state errors scaled by the horizon.

N in Equation (4.26). The solver that computes Equation (4.28) (or solves
the general Equation (4.1)) requires an unknown and variable number of
iterations to find the optimal control sequence for a given N , depending
on the state of the plant. This is illustrated in Figure 8.2 and Figure 8.3,
which show measurements of processing time, in different plant states and
with different horizons using the QPgen optimizer. The plots in these figures
are created from averaging a large amount of requests, several in each state,
towards one of the cloud services (HAProxy with a PyQPgen optimizer). The
vertical y-axis shows mean values in the upper plots and variance in the lower
plots. The x-axis shows the error in x1 and the z-axis the horizon. For each
combination of error and horizon, multiple requests have been processed over
a few combinations of x2 and x3.

The curvature in the figures shows variation in load when varying posi-
tion error and the horizon. A mostly linear increase in processing time and
variance in response to increased horizon is visible in the first figure. The sec-
ond figure verifies this observation by taking the computation time τ c and
dividing it by N . This will be compared with measurements on the different
platforms.

In the experiments, a range of horizons are observed and three load scenar-
ios are defined based on the number of required iterations. The load scenarios
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0 25 50 75 100 125 150

Iterations

Figure 8.4 Registered number of iterations in the optimizer. The darker
cluster at the lower end is where the bulk of requests are.

represent the variation in Figure 8.3. Running the controller for some time
reveals a range of iterations that the solver uses with N = 30. This result is
shown in Figure 8.4. From this, three plant states are determined and used
to define the load scenarios. The three load scenarios are

1) light with 5 iterations,

2) medium with 38-82 iterations, and

3) heavy with 93-152 iterations.

There is a range of iterations specified for the medium and heavy cases. The
reasons for this is that as N changes, the number of iterations can also change,
even through the plant’s state is fixed. Thus, in the experiments, the number
of iterations will not be equal for all cases of N , and the increased load might
not be linear. However, the number of iterations primarily change from N=5
to N=10. After N = 10 the increase is small with each step in N , and does
not have a significant impact. It is worth keeping in mind, that an increased
horizon can increase the number of iterations, especially when N is low.

8.5 Cloud stack latency progression

We proceed to evaluate Assumptions 8.1-8.3 through results from the ex-
periments detailed in Section 8.3. The used deployments, endpoints, and
communication protocols are listed in Tables 8.1 and 8.2. Descriptions in
Table 8.1 relate components to the overview Figure 2.3 on page 42.

Upper frequency bounds and noise floor

With the goal of using cloud-native platforms, testing Assumption 8.1 entails
answering whether or not a significant amount of delay and variance are
added for each layer in the cloud. Additionally, evaluating Assumption 8.2
requires an assessment of the frequency at which the cloud is able to reply
timely. Figure 8.5 shows the measured RTT towards the various layers in the
two cloud infrastructures. For completeness, at the bottom on the stack, the
RTT for light in fiber is included, and the theoretical RTT of a single IP
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Table 8.1 Deployments and endpoints used in the experiments and in
Figure 8.5.

Front End (FE) Entry point to the DC. Reached using the clouds
global domain name and represented by the cloud
provider interface (World) in Figure 2.3 on page 42.

Virtual Front (VF) The virtual machine serving as entry point of a clus-
ter. Represented by the Service VM (load balancer)
of the green cluster in Figure 2.3 on page 42.

Worker Node (WN) Requests to a virtual machine behind the Virtual
Front. Represented by are the worker VMs of the
green cluster in Figure 2.3 on page 42.

Kubernetes (K8S) Request to a Kubernetes node. This is represented
by the worker and master VMs of the purple cluster
in Figure 2.3 on page 42.

HAProxy (HAP) A request to a HAProxy cluster, represented by the
green cluster in Figure 2.3 on page 42.

Kubeless A request to a Kubeless function, a custom
Function-as-a-Service executing on a Kubernetes
cluster. Function A in Figure 2.3 on page 42.

Elastic Load Bal-
ancer (ELB)

Requests going through an external load balancer.
This is provided as a cloud service and does not
execute in a managed VM.

Lambda Large scale, Function-as-a-Service

Table 8.2 The communication protocols in Figure 8.5.

IP frame The theoretical value of transferring a minimal
Infrastructure Providers (IP) packet, the lowest level
software protocol.

ICMP A minimal request using the Internet Control Message
Protocol. Represents the lowest level of the IP stack. Not
used to transfer data. This is a ping request.

UDP A connectionless UDP request with no guarantee of deliv-
ery and ordering. Suitable for real-time applications that
prefer dropped packets over retransmission delays.

TCP Uses the connection-oriented TCP. Provides reliable and
ordered requests.

gRPC A modern Remote Procedure Call (RPC) framework en-
dorsed by the Cloud Native Computing Foundation (see
Section 2.2). Uses HTTP/2 to transport data.

REST Uses REST over HTTP. This is a very common way of
interfacing with cloud services.
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packet. This provides a RTT progression from the theoretical latency of light
in fiber to highly abstract FaaS deployments.

To discuss the results, we assume the requirement that the latency is
lower than one sampling period. With this assumption, all deployments are
compatible with Assumption 8.2, i.e., a response time of less than approxi-
mately 66 ms. There is room for computations even at the 99th percentile of
the worst case, Lambda, but a large portion of the response time would be
consumed in flight for the AWS REST deployments. The portion of time that
must be available for computations is case dependent, but using Chapter 7
and Figure 7.7b as an example, the cloud finishes the optimization roughly
five times faster than the device. If the device takes exactly the full 66 ms
to complete, the cloud will finish in around 13 ms leaving more than 50 ms
to transfer the result. If the frequency on the device is 50 Hz, the response
time has to be 16 ms. Doubling the frequency from 15 Hz to 30 Hz but assum-
ing the same execution time, the cloud has to respond within approximately
33 − 66/5 ≈ 20ms. With this reasoning, Lambda leaves little room for fre-
quencies above the requirement of Assumption 8.2, while the data suggests
there is room for more than doubling the frequency across all deployments
in the proximal DC. We see from the percentiles that the platform noise
increases in absolute terms when moving up the stack, as assessed by As-
sumption 8.1. In the lower layers (ICMP,UDP,TCP,gRPC), it looks similar
for the two infrastructures, and the noise is large in relative terms for the
municipal DC. In absolute terms, in relation to Assumption 8.2, the noise
looks sufficiently small.

Based on the observed RTT, the achievable response frequency from the
cloud varies between 100 Hz to 500 Hz and 33 Hz to 80 Hz, in ERDC and
AWS eu-north-1, respectively. The theoretical upper bound is the RTT in
fibre, which allows for 100 kHz and 156 Hz, in ERDC and AWS eu-north-
1, respectively. However, UDP is the first point of access to the compute
resources in the cloud, and frequencies of 500 Hz and 80 Hz are achieved
for the two cloud infrastructures. The discrepancy from the theoretical IP
frame latency in fibre to ICMP (first entry into the stack) is an indication
of the overhead in the intermediate networks. The increase is roughly 2-fold
for AWS eu-north-1(from six to twelve milliseconds). For ERDC, where the
theoretical values are in the order of microseconds (this appears as zero in
the figure), the increase is 90-fold. Continuing to look at ICMP, at an almost
370 times greater distance from ERDC to AWS eu-north-1, the latency is a
factor 8 higher towards the distant DC. The RTT over UDP is a factor 4
greater in AWS eu-north-1 compared to ERDC. Note also that the RTT’s
variance in the case of ERDC is significantly larger.

When communicating with the compute resources inside a DC, the most
significant degradation, in either DC, is when stepping into the application
layer, such as adding an HTTP 1.1 header. REST, a common service in-
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Figure 8.5 Echo request progression from theoretical round-trip delays
to cloud service response times. Entries marked with * are accessed using
REST. See deployments and protocols in Tables 8.1 and 8.2.
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terface, has twice the RTT compared to the TCP, the underlying transport
protocol employed by HTTP. Further, gRPC takes advantage of a newer
HTTP standard, HTTP/2, and therefore achieves a lower response time, al-
most half. REST APIs implemented with HTTP is a ubiquitous technology
among cloud applications and is the common approach for accessing FaaS
platforms. As a design criteria, FaaS is the targeted service model and as
outlined above, we can continue to investigate FaaS as an alternative com-
patible with Assumption 8.2. It is seen from Figure 8.5, that the layers of
software platforms and opaque infrastructure management policies can in-
crease the latency in comparison to ICMP, 5 and 2.5 fold, in ERDC and
AWS eu-north-1, respectively.

There is no reason to disqualify any deployments based on these measure-
ments. What should be noted though is the large increase in latency towards
the distant cloud when moving to the REST interface. There is also a very
noticeable increase when moving from the Virtual Front End (VF) to the
Worker Node (WN) when using REST. It is also clear that Lambda, the
only large scale function service, exhibits further latency and large variation.
On the other hand, there is no notable difference between the packet based,
unreliable UDP and the connection oriented, reliable TCP in these tests. If
anything, TCP has the upper hand. This is by no means a benchmark be-
tween these two protocols, but it is clear that our concern should be with
moving up the stack to the REST interface, where we have to use TCP.

There are some observation to be made concerning the two clouds. We saw
in Chapter 7 that the performance of the VMs was better on the instances in
AWS. We can see something similar again looking at the larger increase in the
mean for ERDC when moving from HAP VF to HAP WN, and the clearly
larger relative variations. When forwarding to HAP WN, the request data has
to be processed by two virtual machines (VF and WN). Another difference
is the increased latency from gRPC to HAP VF REST. It is certainly much
larger in absolute terms towards AWS, but also significantly in relative terms,
compared to ERDC (roughly 1.5 vs two-fold in the mean, and a large in crease
in the 75th percentile). On the positive side, moving to REST towards the
municipal DC does not significantly increase latency. We can assume that
this discrepancy is due to intermediate networks because of the distance to
AWS, but we do not know from the data how much of the added delay that
happens inside the cloud.

Keep in mind that these numbers are lower bound since the request pay-
loads are minimal and no valuable computation is done in the cloud. Next,
the systems are subjected to load in order to evaluate Assumption 8.1 and
the expected response times for the experimental control system.
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Noise floor and the response to load

Having established the upper bound response frequency and minimum vari-
ance in Section 8.5, we are ready to evaluate the response frequency and
platform noise when executing the controller. Since the REST and FaaS
deployments are our targets, we proceed with that subset of deployments,
namely,

(A) REST over High Availability-proxy (HAProxy)

(B) Kubeless

(C) AWS Lambda on eu-north-1.

These deployments are marked as (A),(B) and (C) in Figure 8.5. There are
five deployments in total, (A) and (B) have deployments in both data centers,
while (C) is a service only available on AWS. The interests is in determining
the response rate that can be achieved in these deployments, and how the
load affects the platform noise.

The plots in Figure 8.6 show response times per controller horizon for
each load scenario and deployment. A linear increase in the mean computa-
tion time is expected with an increasing horizon (N , on the x-axis). This is
clearly visible in Figure 8.6, and apart from Lambda, there are only small
discrepancies from this linear response.

There are notable differences in response times between the deployments.
Although the processing times visually start off at a similar level, the gradi-
ent on ERDC, going from light to heavy load, is significantly steeper than
on AWS, on average 2.3 times greater, consistently across the deployments.
The ERDC variance increases with the load. This is particularly evident in
the ERDC Kubeless deployment. However, on AWS the trend is not as pro-
nounced. Instead, there is an initial increase followed by a decline in variance
for AWS HAProxy, which peeks between N = 15 and N = 35 for both
processing and response time in the heavy experiment. It is also clearly vis-
ible that the Kubeless deployment on ERDC incurs a large response time
penalty and that processing times are affected negatively, especially in terms
of variance. This is reminiscent of the aforementioned platform noise.

There is a large offset in response time between ERDC HAProxy and
ERDC Kubeless. This is in contrast to what is observed in Figure 8.5, where
Kubeless has a faster response. The same effect is seen for AWS although
less pronounced. Looking at the light load and small N , the HAProxy de-
ployment is inline with what is expected, given Figure 8.5. The Kubeless
deployments for some reason seem to incur a penalty. This may be related to
a configuration issue but can also be attributed to a form of platform noise,
especially since the Kubeless deployment is the more complex of the two.

The visually most striking result is observed for Lambda. In the light
load scenario, the processing time is comparable across all deployments, but
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the Lambda response time has a clear mode shift between N = 30 and
N = 40. Note also that the variance in response time is significantly larger
than for the other deployments. The medium complexity case presents the
same attributes. Here, multiple modes are present, at around N = 15 and
N = 35. Also, the processing time is 20 times that of HAProxy and Kubeless,
and Lambda has a significant variance, across the range of horizons. These
phenomena point to a complex cloud-native platform, built to be shared by
many at a large scale, handle massive parallel requests, and not carry a single
real-time thread.

Except for Lambda and the response time difference between HAProxy
and FaaS, the results in Figure 8.6 mostly points to a performance difference
between the allocated VMs in the two different clouds. To get further insights
into the first four deployments, they were subjected to a static load for a few
hours. Figure 8.7 shows the median of the processing time, using a sliding
window, for a load scenario with N = 30 and more than 300 iterations in
a single optimization. The median is accompanied by area plots that show
the minimum and maximum processing time within the window. What is
clearly visible here is that there is a very notable difference in processing
time variation between the HAProxy and Kubeless deployments. There also
seems to be more platform noise in the ERDC HA deployment than in the
AWS HAProxy deployment. This could be a direct consequence of the much
longer (double) average processing time. It is also notable that although the
median is almost a straight line for AWS HAProxy, the brown area plot
in the background shows that there are occasions of extended processing
time. Some variation and sporadic delays can be expected from the non-real-
time property of the system, and equate to any ordinary general purpose
computer. However, the bump in processing time in AWS HAProxy at 5.5
hours is different. Here, the median changes over a longer period of time
which indicates that temporarily (although for several minutes) the available
computation time decreases.

Another interesting feature of Figure 8.7 is the difference between the HA
Proxy and the Kubeless deployments. Since these deployments are all on dif-
ferent VMs, it is possible that differences in hardware and over-provisioning
(i.e. sharing with other users) give rise to such discrepancies. However, note
that the effect is consistent and equally present on both infrastructures. This
enforces Assumption 8.1. Even though the experiments execute one service
at a time, the additional installed routing, software, monitoring etc that goes
into a Kubeless deployment incurs a distinguishable overhead.

To sum up, there is a performance gap between Lambda and the other
deployments. In a large scale public service such as Lambda, variations are
to be expected over time, due to for example congestion, but the results
also show service dynamics in the short term, based on the request rate
and load. Due to the rapidly diminishing usefulness as the load increases,
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Figure 8.7 Processing time of a static load evaluated with two requests
every 3 minutes, separated by a 0.5 seconds delay. Solid lines show a sliding
window median over 10 samples. Shaded areas show the max and min values
in the window.

Assumption 8.2 does not seem to hold for Lambda. If control frequencies are
selected close to the median, Assumption 8.1 should be relevant for the end
result, in which case our cloud native FaaS is at a disadvantage compared to
HAProxy, as seen from the variance observed in Figure 8.7.

In terms of the example control application, when requiring only a few
iterations (light load), the controller can be actuated at a rate of between
25 Hz to 90 Hz depending on the deployment, for all horizons. For the medium
and high load scenarios the response rates are between 4 Hz to 90 Hz and
2 Hz to 66 Hz, respectively. This assessment does not take into account the
probability of consecutive long delays or the effect that the variance causes.

8.6 Feedback control

Plant simulation

The MPC controller is derived from the same definition as in Chapter 7. It
implements hard constraints and is nominally stable. In addition to the risk of
not providing timely control signals, this controller can also become infeasible
due to model errors, measurement errors, and external disturbances. Since
we are not examining the robustness of the controller, the plant is simulated.
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Figure 8.8 Schematic view of primitive critical control over the cloud.
The switch is open for advanced control as long as the cloud is responsive.
The basic control is abruptly switched in when there is no input from the
cloud. The second method in the chapter replaces the switch with client
side logic.

This also removes the technical difficulties of achieving real-time on the client
in the experiments. The simulation of the plant uses an ordinary first order
approximation, i.e., the forward Euler method,

z(j + 1) = z(j) +

 v
−sin(θ) · g ·m

u

/ξ

z(0) = x(t)

x(t+ h) = z(s)

(8.4)

where x(t) is the plant state and ξ is the number of samples, i.e. the precision
of the simulation. Small errors between this simulation and the discretized
controller are enough to create problems around the constraints.

Control

A refined, primitive version of the controller from Figure 3.4 is shown in
Figure 8.8. The client has been replaced by a basic controller and a predictor.
An advanced controller is implemented in the cloud and switching logic select
between the local control signal u′ and the result from the cloud u∗. The two
controllers independently try to control the plant and directly manipulate its
input. The switch in the figure illustrates that there is arbitration between
the controllers.
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1: k ← 0
2: u← 0
3: for ∞ do
4: x← Read
5: if feasible solution and t′ + τ < kTs then
6: u← MPC(x̂+)
7: else
8: u← Kx
9: end if

10: Apply u
11: x̂+ ← f(x, u)
12: Send x̂+ to cloud
13: t′ ← t
14: k ← k + 1
15: while t < kTs do
16: Wait
17: end while
18: end for

Algorithm 8.1: Primitive client arbitration

The experiments use two control applications that differs with respect to
how the arbitration between the basic controller and the advanced controller
is done. In the first, the basic controller serves as an ancillary controller,
taking action when the advanced controller fails to respond, i.e., when u∗

does not arrive from the network. This client implements Algorithm 8.1. At
Line 11, a prediction is made using the model of the plant, i.e. at time k
the networked controller uses a predicted state x̂+ to calculate a control
signal u∗(0) for time k + 1. This prediction provides a time frame in which
the controller can send requests, allow optimizations to finish, and receive
responses from the cloud Adding this one step delay creates a static delay
for the controller, which is easy to account for. A one step delay is also a
natural way to handle the variable execution time delay caused by the MPC
controller itself [Findeisen and Allgöwer, 2004], as for example proposed in
[Cortes et al., 2012; Chen et al., 2000].

In the first of the two modes, the controller always requests support from
the network. At every iteration of the controller, a request is sent to the
network, and if a response arrives in time before the next iteration, the result
from the MPC is applied. When the request latency is too large, it uses the
ancillary control. In the second mode, the controller does not always use the
MPC, and when it does, it transitions differently to the local control mode
in case of failure. This is shown in the more involved Algorithm 8.2. In this
mode, the client does not execute the MPC when the plant state is inside
the terminal set of the MPC. To ensure reliable control, the terminal set
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1: k ← 0, i← 0, u← 0, u∗ ← (0, . . . ) ∈ R1 ×N , x∗ ← (0, . . . ) ∈ Rn ×N
2: for ∞ do
3: x← Read
4: if u = NaN then
5: u = Kx
6: end if
7: Apply u
8: u← NaN
9: if x /∈ Xf then

10: x̂+ ← f(x, u)
11: Send x̂+ to cloud
12: t′ ← t, k ← k + 1, i← i+ 1
13: if i < N then
14: u← κ2(u∗, x∗, i, x̂+)
15: end if
16: while t < kTs do
17: if feasible solution and t′ + τ < kTs then
18: x∗, u∗ ← MPC(x̂+)
19: i← 0
20: u← u∗(0)
21: end if
22: end while
23: end if
24: end for

Algorithm 8.2: Dual mode with graceful client switching

should be an invariant set for the basic controller, as detailed in Section 4.4.
This mode also receives and stores the predicted states and control signals of
the MPC (Line 18). This is used by the function κ2 at Line 14. The details
of κ2 are discussed in Chapter 10. For now, the important part is that this
function uses the previous prediction from the MPC and combines them with
the response from the basic controller to implement the switch.

Algorithm 8.1 examines how well a naive approach works. This will tell
us something about the detrimental effects of the deployments to control of
the reference plant, and studies Assumption 8.3. The second mode contrast
these results with an approach that aims to provide gracefully degradation
(Algorithm 8.2). The other difference between the modes is that the second
controller only executes the MPC on setpoint changes (or, in practice, due
to a large disturbance) and returns to local client control when the state has
sufficiently settled.
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Table 8.3 Performance measures for the feedback control system. All
measures are in relation to the local LQ regulator. A * marks the second
controller implementation, as described in Section 8.6.

System Cloud E(τ) RAE RAV RMCV

Baseline 0.00 0.00 1.00 1.00 1.00
Lambda 0.16 60.82 0.88 0.68 2.47
ERDC HAProxy 0.95 15.66 0.60 0.01 2.28
ERDC Kubeless 0.82 34.67 0.59 0.01 1.90
AWS HAProxy 0.96 31.95 0.60 0.01 2.28
AWS Kubeless 0.85 39.78 0.59 0.01 2.28
AWS HAProxy* 0.40 15.40 0.90 0.09 0.31
Lambda* 0.40 14.40 0.90 0.09 0.50
No Delay 1.00 0.00 0.60 0.00 0.00

Examining the closed loop control

We proceed to evaluate the closed loop as specified in Section 8.3. Kubeless
and AWS Lambda represent our cloud-native FaaS, the primary target of
interest. The set also includes the IaaS deployment for REST, since this a
compatible and comparable service. The basic controller is implemented as
an LQR that has been tuned to not violate the state and input constraints.
This local controller acts as the performance baseline, since it can be used
without connectivity to the cloud. The advanced controller implements the
MPC in Section 4.4. All deployments, also Lambda, run at 20 Hz. This is
the same frequency that was used in Chapter 7. The horizon for the first
control mode is set to N = 50. In line with being the naive approach, this
sets a large horizon in an attempt to achieve good performance. Based on the
findings so far, it should allow successful operation on all IaaS services, while
Lambda should be able to provide support for the lower loads. The second
mode is aimed at being reliable and tuned for use with the cloud. Therefore,
the horizon is reduced to N = 20 and responses from AWS HAProxy and
Lambda are examined. According to Figure 8.6, the second configuration
should allow an almost perfect response from AWS HAProxy, while Lambda
will remain problematic.

The experiment results should tell us at least three things:

1) whether the reference system works as expected in terms of meeting
the expectations from the benchmarks,

2) the response of the system when only the lower loads are able to respond
timely, which is what we expect to see from Lambda, and

3) how well the switching mechanism works.
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Table 8.3 provides an overview of the control outcome. The table shows
the baseline controller (the LQR) in the first row and the response without
delays in the last row (i.e. an ordinary MPC with a one step prediction and no
network). The starred rows execute the second controller mode. The second
column shows the fraction of time the networked controller was used.

The expected response time for each deployment, E(τ), is presented in
the table’s 3rd column. From Table 8.3, most noteworthy is the AWS Lambda
deployment. Here, only 16% of the requests get responses from the networked
controller. This is in line with the results from Section 8.5, where the response
times for AWS Lambda were often well above 50 ms, E(τ) = 60.82. Further,
the ERDC and AWS HA deployments utilized the cloud 95% and 96% of the
time. These numbers are 82% and 85% for ERDC and AWS FaaS.

The RAE in Table 8.3, which shows the long term efficiency of the con-
troller, is improved by all cloud-based networked controllers, as expected. In
fact, the ERDC Kubeless deployment scores a 40 % improvement, same as the
MPC without the network (bottom), at 82 % response rate. Even Lambda,
with its low response rate, scores a 12 % improvement.

The networked controller knows the system’s constraints and conse-
quently attempts to strictly enforce them. There are two complicating dis-
turbances that may cause this to fail: a small model error and network loss.
The RAV metric measures the extent to which the controller fails to enforce
the constraints by summing up the amount of constraint violation over the
course of the experiment. A RAV value above zero is undesirable, but also
hard to avoid. Small values are acceptable but being worse than the baseline
(i.e. above one) would be unacceptable. AWS Lambda makes extensive use
of the local controller and therefore gets a relatively high RAV. The four de-
ployments on rows 3-6 score almost perfectly due to the high response rates
from the networked controller.

Several deployments perform on par with ideal values (RAE of 0.6 and
zero RAV). Observed with the same metric, Lambda also performs satisfac-
torily compared to the baseline. However, it is important that the controller
achieves a low maximum constraint violation. This is measured by the RMCV
metric, which tells us whether temporary degradation can cause system fail-
ure. As seen in the table, this is where the primitive cloud controller fails. A
simulated RMCV above 2 indicates an unrecoverable error in the real plant,
and out of the first six cases in Table 8.3, only the baseline and ERDC Kub-
less manage to stay below this value. The ERDC Kubeless deployment does
score an RMCV below 2 in the experiment but it is expect that it will fail
eventually. In part, Assumption 8.3 states that switching cannot be assumed
safe just because the two individual systems are reliable, and we see here
how easy this is to verify. Even the limited loss of 4% for AWS HAProxy is
enough to cause repeated failure during an experiment of 3.5 hours.

Before turning to the second mode, in the last two cases of the table, take
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Figure 8.9 Statistics from responses in the HAProxy service of the mu-
nicipal data center and the large scale public FaaS service. The setpoint
changes in the upper plots are executed periodically over several hours which
are then merge into statics for each sample in the periodic window. The
second row shows the fraction of time the controller switched to the basic
controller. The bottom row shows a log scale of the average and maximum
number of iterations.

a look at Figure 8.9. In the experiments, step changes are executed repeatedly
over a longer period of time. The figure shows the controller response over
the periodic step change as statistics from all the step changes in the experi-
ment, in terms of a mean response, a minimum and maximum response, and
percentiles. The plot to the left shows that the ERDC HA Proxy deployment
has a good mean response, close to its maximum. It also has very little vari-
ation but has, on some occasion, deviated from its mean, as seen from the
dotted lines. The slow response on the rise, referred to as the minimum, is
due to failed requests at the start of the step change. The constraint violation
causing the RMCV value is observed in the dotted line (the minimum) in the
step down to −0.5. On the right we see that there is more variation and an
overshoot, in the max response, on the part of Lambda. While its mean is
better than the basic controller, this controller does not make very good use
of all the requests sent to the cloud. The second row shows the fraction of
samples that the basic controller was used. For ERDC HAProxy, there are
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spikes in this figure at points when the position is close to and moving to-
wards the constraint. This is not observed on the right, where request failure
is common and the basic controller is used most of the time. The pattern
repeats for the mean iterations of the optimizer, shown in the third row. The
third row also show the maximum iterations as dotted lines. Here, we see
on the left that extensive calculations can happen also in places where the
basic control is not used frequently (2.5 s to 5 s and 7.5 s to 10 s) although the
plant looks to have settled at the setpoint. In these time periods, the plant
state will often be inside the terminal constraints, and it is not necessary to
execute the MPC controller.

Now turn to the results of the second mode, in rows seven and eight
of Table 8.3. These experiment were run for seven hours, twice as long as
the previous experiments. Keep in mind the restricted use of the MPC, as
mentioned above, and that this controller uses a shorter horizon to reduce
its execution time. Ideal performance is not reached with this controller in
terms of RAE, but in return it keeps RAV and RMCV low. For this reason,
it achieves efficiency gains and remains reliable, for both deployments. The
reason for the higher RAE is the shorter horizon. This controller will experi-
ence a slow response, as with the minimum response of ERDC HAProxy in
Figure 8.9, because of the horizon. It cannot provide a feasible result until
it finds one that has settled within one second. Increasing the horizon will
provide a better RAE, at least on AWS HAProxy.

Looking at the differences between the results on Lambda, the efficiency
(the RAE) of the two controllers is similar on this deployment. Because of
the low load, the response time E(τ) for the second mode is similar to ERDC
HAProxy on Lambda. We can assume from this that most requests do not
fail because of delay. The number 0.4 in the Cloud column of Table 8.3 shows
how often the cloud is used for control. Because there are few losses due to
delay and infeasible optimizations, this number represents the request rate.
Thus, the number reflects that the controller uses the basic controller around
the setpoint, showing the reduced load compared to the first mode. In more
detail, the first mode is sending requests 100 % of the time, but only gets use-
ful responses 16% of the time. A mean response time of 60 ms is experienced.
The second deployment receives useful responses to most requests, but it also
only sends requests for roughly 40 % of its samples. It experiences a mean
response time of roughly 15 ms. The first deployment achieves an improved
error rate of 0.88, but also experiences critical constraint violations, and is
loading the cloud with a lot of unused requests. The second deployment, with
its lower load in computations and requests, achieves an improved error rate
of 0.9, with no critical constraint violations, and is much more cost effective.

Because of its reliability and lower load, the latter of the two installments
is preferred. However, its performance is limited by the horizon. This also
means that the switching in Algorithm 8.2 was never or seldom used. Chap-
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ter 10 explores this mode and expands it with flexible performance through
a variable horizon.

8.7 Conclusions

This chapter has provided the following insight into using clouds and cloud
native software for critical control of constrained dynamic systems.

• The first experiments looked at achievable performance of two clouds
by measuring access delay. This provided a measure of expected latency
and noise through the software stack of two clouds, from the theoretical
delay in fiber up to the cloud native service.

• The measurements show the increased latency issues in higher layers of
abstraction, but also how distance becomes increasingly relevant. The
small increase in latency when moving to HAProxy REST in ERDC,
and the respective significant change for AWS, shows how useful a
distributed cloud infrastructure can be, especially far up the software
stack.

• Combined with knowledge from the wireless interface, demonstrated
in Chapter 7, we see that the access medium, i.e. a wired or wireless
channel, is not the major issue. It is more relevant to consider classic
software engineering practice of weighting the efficiency of low level
designs towards the gains from higher levels of abstractions.

• The second set of experiments placed loads in the cloud by repeatedly
executing pre-defined optimization problems. This showed a large gap
between the true, large scale, FaaS service and personal IaaS/FaaS
deployments. An additional experiment showed large variations in the
custom FaaS deployment, compared to the classic HAProxy setup, and
a notable service distribution in the otherwise steady AWS HAProxy
deployment.

• The second set of experiments also showed modes in the delay caused
by the FaaS service when the load was changed. The IaaS/FaaS config-
urations showed a linear mean response, in-line with the added load.

• The third set of experiments deployed the reference feedback control
system, implemented to be compatible with FaaS. Results show that the
basic latency assessment holds in practice, with distinctly measurable
efficiency improvements, but it also identifies a challenge to provide
techniques that eliminate or reduces the impact of an increased RMCV.

• Through an improved design the request load of the cloud controller
was reduced while retaining measurable efficiency gains and providing
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a reliable closed-loop system. The results show potential for using the
cloud for temporary performance boosts, without real-time guarantees,
in critical control loops, also at relatively high frequency.

With the insights gained from experiments with 5G infrastructure and
cloud native implementations through PaaS and FaaS, the next part of the
thesis explores ways in which to construct control applications. The focus is
on using the cloud, and distributed clouds to improve performance, simplify
development, and mitigate latency and uncertainty issues. The most practical
way to study these concepts is to continue using FaaS and offloading as the
research platform.
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9
Introduction

The benefit of using COTS software and devices lies not only in the reduced
up-front costs but also in development and maintenance costs. This trans-
lates into effects such as a faster time-to-market, interoperability, a large
pool of competence, and iterative development. Utility computing enhances
these benefits by making it possible to prototype designs at a low cost and
allowing run-time demands to change without the need to replace hardware.
Another benefit is that different solutions can co-exist and selectively ex-
ecute in parallel or interchangeably. These solutions can also require very
different hardware, memory, storage, and compute capacity. The decision of
what is an acceptable, necessary, and efficient cost-to-performance ratio, and
whether it can be achieved, can be evaluated in the iterative development
process, changed in production, and even evaluated on-line. To allow this
flexibility, cloud services, and in extension the edge and fog architectures,
provide what appears as an infinite pool of resources. A design made for the
cloud should make use of this abundance of resources and be capable of uti-
lizing the different tiers of the infrastructure, from the hyperscale data center
down to the edge resources.

This section presents three MPC architectures that are designed for cloud
deployment and makes, from an MPC perspective, novel use of the ’infinite’
compute capacity of the cloud, while providing robustness to loss of connec-
tivity. The designs are generic and provide a controller extension through
the cloud. The first chapter examines the use of parallel requests and grace-
ful degradation, to implement a variable horizon MPC. The second chapter
utilizes a hierarchy to implement three levels of overriding control signals, al-
lowing different deployment on differently powerful nodes. The final chapter
wraps a client controller in a framework that can be modeled as a setpoint
governor and a feed-forward network. Explicit recovery is introduced and
examined.

Before continuing, it is also necessary to define the term quality elastic,
which is sometimes used. The term refers to the idea that a controller can
modify its performance in order to be resilient or, because there is a positive
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trade-off in releasing some of its resources. This does not imply that the
controller is producing something of lower quality, instead, it might reduce its
speed of production etc. The connection is to the use of the elastic properties
of the cloud.

9.1 Related Work

Several works with a focus on a high level of abstraction and replacing exist-
ing designs with cloud counterparts have been introduced ([Pelle et al., 2019;
Mubeen et al., 2017; Givehchi et al., 2014; Hegazy and Hefeeda, 2015; Heilig
et al., 2015]). Other works explicitly study the transfer of control systems to
the cloud [Xia, 2012; Lyu et al., 2019; Mubeen et al., 2017; Mahmud et al.,
2014; Horn and Krüger, 2016; Vick et al., 2015; Škulj et al., 2013]. These
tend to completely move the controller to the cloud and focus on the cloud’s
performance, software frameworks, delay mitigation and monitoring. This is
also what was done in Chapter 7. There are also architectures and control
software that are aimed at improving the reliability of the clouds [Li et al.,
2009; Nylander et al., 2018; Yfoulis and Gounaris, 2009; Saikrishna and Pa-
sumarthy, 2016], but these also do not consider novel control design by using
cloud technology.

Variable horizon MPC as introduced for nonlinear systems by [Michalska
and Mayne, 1993] adds minimization of the horizon to the optimization prob-
lem in order to reach a terminal set in the shortest possible amount of steps.
A variable horizon (or multiple horizon) is also used for the MPC in [Park
et al., 2015], but for a different reason. In this control problem, the optimal
horizon varies, and is determined by evaluating the gait of a quadruped as it
prepares for jumping an obstacle. In Chapter 10, a variable horizon controller
is shown as a means to implement an elastic controller, i.e., a controller that
depends on available resources and response times.

Robust model predictive control is a necessity in all practical systems
to handle disturbances and model errors. Three common techniques are
tube MPC [Wildhagen and Allgöwer, 2020; Limón et al., 2010], stochas-
tic MPC [Esen et al., 2015], and soft constraints [Levine and Raković, 2018].
These designs have in common that they rely on a single controller that re-
mains online, and their primary purpose is to handle limited disturbances,
not unforeseen disruptions in network connectivity and computation time.
Network latency and packet drop-out can be handled in robust control by
anticipation of a larger disturbance, something that generally results in a
conservative controller.

One strategy for using cloud services with critical systems is to build on
the concept and motivation of Simplex [Bak et al., 2009; Seto et al., 1998].
Simplex is aimed at using unverified software to achieve good performance,
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without sacrificing reliability. It is tiered, with one advanced controller that
provides the best performance, a reliable baseline controller, and a recovery
mode that can take over in the event of controller malfunctioning. The task
of the Simplex architecture is to monitor the system state, and fall back on
the baseline controller if the advanced controller is at risk of executing out
of specification. [Ma et al., 2020] propose Simplex for edge computing, in a
design referred to as switching multitier control (SMC). In the paper, a PID
is replaced by a device local LQR and a MPC executing at the other end of
a wireless network. This is used to position a robotic arm. A switching logic
chooses between local and remote control, based on the controlled system’s
state error and perceived network conditions. A data driven approach is used
to train the switching logic, on a Bernoulli random distribution and a two-
state Markov chain. The reliable, tiered system is shown to outperform the
original PID controller.

As has previously been mentioned, the MPC is historically often used as
a setpoint generator. In this case, the design relies on fast local control to
bring the system into a steady state in between new setpoints generated by
the MPC. The controllers are decoupled but highly dependent, and the MPC
does not provide the control actions to the plant. One example of this is found
in [Yang and Yang, 2007]. Assuming that the local controller does not require
continuous setpoint updates, this method is naturally applicable in the cloud.
However, in order to wait for the local control to settle, a large separation in
frequency is required. A cascade design aimed at reducing the frequency span
between the inner and outer loops is presented in [Scattolini and Colaneri,
2007; Picasso et al., 2010]. Here, robust model predictive control is used to
handle the discrepancy between the performance of the high frequency inner
loop, in achieving the requested setpoint, and the response predicted by the
outer loop.

Another possibility is to implement gain or mode switching, common in
control of non-linear systems, or due to mode changes in the plant. There
are many examples of switched model predictive control, often applied to
specific problems. The switching signal can be characterized as time, or state
dependent and be more or less arbitrary. Switching control systems are an-
alyzed to provide overlapping stability regions and minimum dwell-times, in
order to obtain formal guarantees. [Magni et al., 2008] uses switching to im-
proving the performance of an MPC, by splitting the state space into regions
associated with different cost functions. This form is aimed at increasing
the control performance through variation of the primary control objective.
General overviews of controlling autonomously switching systems are given
in [Ong et al., 2015] and [Zhang et al., 2016]. The latter also considers ro-
bustness, introducing a robust switching tube strategy. These papers study
systems with linear models that can change more or less arbitrarily. To pro-
vide guarantees, it is necessary to compute admissible terminal sets, add
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consistency constraints on the control signal, finding minimum dwell times
(how long a system must remain in a state before a new switch happens),
and formulating optimization problems that consider all admissible switching
sequences.

In extension, work on distributed MPC over networks include collabo-
rative agent systems, distributed optimizations, hierarchical control and op-
timal control in the presence of delays (for instance [Zheng et al., 2016;
Christofides et al., 2013; Alessio and Bemporad, 2007; Lu et al., 2014; Scat-
tolini, 2009; Stewart et al., 2010; Camponogara et al., 2002]). One example
that makes an explicit case for MPC in the cloud is [Heilig et al., 2015] which
presents an application for intelligent transport systems. A multi-agent sys-
tem comprising many MPCs executing in the cloud is proposed conceptually,
as a flexible method to handle heavy computations and large amounts of data

9.2 Research Gap

Developments in data driven methods, cloud computing, and Industry 4.0
introduce new opportunities and challenges for control system design. Future
systems should support incremental development and effectively incorporate
time-varying requirements, use of remote execution based on availability, and
evolving software [Abdelzaher et al., 2020]. A key aspect, and a particular
opportunity, is a move towards flexible and re-configurable designs [Levine
and Raković, 2018; Scattolini, 2009], and providing resiliency. An emphasis
on building resilient software has been one of the success factors in the latest
era of computing systems [Basiri et al., 2016] and will likely be important also
in industry. While in early considerations of cloud control, such as [Xia, 2015],
there is an element of mitigating latency, there is a lack of work on control
design that considers the possibilities and implications of the elastic, and
virtually unlimited compute resources of the cloud. Rapid elasticity promises
to be cost effective by quickly scaling up and down to meet demands, but
distributed clouds also create a diverse execution environment. This puts new
perspectives into the control design. One is to provide quality elasticity, that
is, instead of requiring a certain infrastructure performance, provide the best
quality that the infrastructure currently allows. Another is to keep quality
constant, but reducing resource usage whenever possible. These are things
that have not been explored in the control community.

A design such as plug-and-play MPC [Levine and Raković, 2018, p. 259-
283], while highly related, does not consider important aspects such as allow-
ing temporary degradation of the service. It focuses on the domain of CPS
and industrial Internet, but it considers strict constraints to admit or reject
components, to form a new, stringent structure with full connectivity. In dis-
tributed computing and cloud, the concept of partition tolerance, i.e., being
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able to function after loosing contact with the service, is important. This
adds a third perspective into the design, in terms of graceful degradation.

The hierarchical design in [Scattolini and Colaneri, 2007; Picasso et al.,
2010] achieves high frequency in the setpoint generator, by passing nominal
requests and robustness bounds from higher to lower layers. The objective
of these papers is to provide stability guarantees for the hierarchical con-
troller, and remove the need for clearly separable slow and fast dynamics in
the higher and lower layers. If the lower layer cannot meet the robustness
guarantees, it resorts to a conservative baseline controller. The papers are
examples of robust control, with results focused on the ability to find a ro-
bust controller on-line. There is limited consideration of some things that
are important to the CCS, such as large variations in availability, the effects
of computation time, and solving multiple solutions with the final decisions
made locally. In [Ma et al., 2020], Simplex is used to great advantage, but
the work focuses on an on-premise edge device and strictly critical control.

Controlled switching can be introduced as a performance enhancing fea-
ture. Some designs are directly transferable into the cloud context, such as
the performance enhancing MPC of [Magni et al., 2008]. The switching is
not critical and the design can be offloaded in the cloud, by executing the
non-critical switching decision there. The MPC problem is in this case al-
ways executed on the client and the offloading creates a form of supervisory
control. In cloud control systems, switching also arises due to connectivity
loss or long delays. This switching is different from controlled switching. The
supervisory mode also does not in itself make use of scaling features.

The various works in distributed and hierarchical control so far also
largely fail to consider the cloud as a separate paradigm. In the example
of the multi-agent transport system [Heilig et al., 2015], there is no con-
sideration as to how the control structure itself can be improved using the
cloud. The use of cloud in this case, and in cases including network con-
trol with strict assumptions, is an implementation detail. The performance
of the cloud, as studied in Part II, and of access networks, are relevant to
these cases, but the controller is not cloud specific. Similar designs should be
studied, in which small, intrinsic parts of the control loop can be lifted to the
cloud and performed differently in order to bridge the downsides of potential
delay and connectivity issues.

9.3 General Design

The premise in the following chapters is a control loop that requires the cloud
to reach its full potential, for instance due to computational restrictions on
the device, or the need to access data that is not locally available. Specifically,
for the sake of argument, the client exists on a computationally constrained
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Figure 9.1 Generic flow in the client software. The function κ1 imple-
ments closed loop predictive control. This can include robust control, such
as a tube. κ2 implements a graceful degradation to local control, and κ3

implements the local control.

device that is adjacent to the plant.

Client

A general flow of the client control logic is illustrated in Figure 9.1. In ev-
ery control period the client samples the plant sensors (1), obtains a state
estimate (2), selects between three control functions (3-7), updates the plant
actuators (8), predicts future states (9), sends a set of requests to the cloud
(10), and collects responses (11-13). The three functions κ1, κ2, κ3 represent
an ordinary MPC (4), a switching procedure (6), and baseline control (7).
The predictor in block 9 provides the one step prediction (i.e. x̂k+1|x̂k, uk) in-
troduced in Section 8.6, but can also generate other predictions, as necessary
for input to the subroutine 10. The unnumbered optimization blocks (also
titled Cloud) are triggered by output from block 10 and executed in parallel
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with the client. Blocks (11-13) create a loop that collects responses from the
cloud. The loop exits when the wall clock t reaches the next sampling time.
The function S is a value function that defines an order of priority for re-
sponses from the cloud, and r stores the selected response. The decision in
block 3 should be interpreted as ”if the MPC response for time k has been
received”. In the following, this will imply closed loop control and the use of
u∗k(0), but it could also implement some other strategy over several control
periods. The sampling time h is a base sampling rate, i.e., the shortest period
the system can accept.

Constant delay

In these chapters, and as was done previously, a dead-time is forced into the
controller. This is done in order to create a time frame for the optimization
A state prediction x̂k+1 is generated using the available system model

x̂k+1 = Ax̂k +Buk (9.1)

This prediction is used as the initial state of the optimization at time k, and
the resulting controller output is applied at the next sampling instant k+ 1.
The delay of one sample is the time frame available for the optimizations in
the cloud. Any results returned later are discarded.
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In a cloud implementation, the prediction horizon of an MPC can be de-
cided dynamically with stability and feasibility enforced in the optimization.
The client in this chapter implements two primary modes of operation. In
assisted mode, the client uses the resources of the cloud to solve the optimiza-
tion problem over a large set of horizons in parallel. In local mode, a simpler
controller stabilizes the system and provides a basic degree of performance.
The two modes are formed from the ordinary constrained and guaranteed
stable MPC. To handle connectivity loss and extensive delays, a third mode
provides the switch from assisted to local mode. The resulting system is con-
venient to implement, and has a built-in capacity to scale with the problem.
The approach naturally extends to edge clouds, which combine the compute
capacity of a centralized cloud with the low latency access of local nodes. It
also puts in perspective the use of flexible, cost effective, best effort control
systems as opposed to traditional, costly and static systems.

10.1 Targeted system

The system is illustrated in Figure 10.1, as a generalization of Figure 3.5. The
system is composed of a plant controlled by the cloud assisted controller, here
executed in the device local Client. The client continuously executes a local
on-board controller κl and a remote controller κr, which performs most of
its work in the cloud. Using a cloud service, the remote controller processes
several potential solutions in parallel, filters the responses and forwards the
best selection to a function fu(κl, κr) that merges the output of the two con-
trollers. The function fx(y, u) provides an observer and predicts the plant
state a number of sampling periods into the future. In relation to Figure 9.1
these components represent κ3, κ1, κ2, the observer and predictor, respec-
tively.

This chapter is based on [Skarin et al., 2019] and [Skarin et al., 2020b]
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Figure 10.1 A refinement of Figure 3.5. The control law is divided into
a local part κl(·) running in the client, and a remote part κr(·) that is off-
loaded to the cloud. The remote part κr(·) is realized by running multiple
parallel instances in the cloud.

A key element of the design is the use of the cloud to execute multiple
instances of a model predictive controller. In Figure 10.1, this is represented
by the stacked boxes labeled ψ(i) = fcloud(φ(i)). φ(i) represents the config-
uration of a request, from the request set φ. In the following, the variables
of this request set will be the initial state x0 and the horizon Ni, where i is
the request index. This forms the input pair (x0, Ni). In practice, the request
includes more information about the optimization, but we can assume here
that φ(i) = (x0, Ni). Similarly, the responses ψ(i) must include the predicted
state trajectory, x∗i , and a control input vector, u∗i , to form ψ(i) = (x∗i ,u

∗
i ).

In practice, this response also includes other useful information such as the
processing time, the optimal control cost V (x∗i ,u

∗
i ) etc.

10.2 Controller

The control strategy uses the cloud to implement a variable prediction hori-
zon MPC. For the purpose of the work herein, it is assumed that the local
device cannot execute an MPC controller locally, not even an explicit MPC
([Bemporad et al., 2002]). Instead, a LQR is used, derived from the specifi-
cations of the MPC.

The selection of the horizon in the MPC can be non-trivial. A short hori-
zon can lead to an infeasible optimization, while a long horizon can take
too long to evaluate. A scalable controller should not be bound by a prede-
termined horizon. The cloud allows us to run the optimization over many
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horizons, and select the best alternative that provides a response within the
deadline. When the state is inside the terminal set, the plant can be operated
using the local controller. If the remote controller fails to provide a response,
previous results are used in combination with the local controller.

Local and remote control laws

The function that executes in the cloud is an MPC, as defined in Section 4.1.
The MPC includes a terminal constraint set Xf and a terminal cost Vf . This
ensures that the controllers defined in the individual responses are stable. A
local control law, κl(x), is defined such that Xf is a positive invariant set
for the controller, as defined in Section 4.2. The conditions on the individual
MPC problems do not ensure that the switching system is stable. Arguments
can be made concerning the selection of responses and switching to ensure
this, but here the solution is empirically investigated. State feedback is used,
assuming that the system is fully observable.

Cloud assisted controller

We now consider the cloud assisted controller. First, if a result from the opti-
mization in Equation (4.1) can be guaranteed for all samples, then the local
control κl is not explicitly needed. It is introduced implicitly into the MPC
by adding the cost Qf as the terminal cost, and enforcing the terminal set.
A property of the cloud controller is that the availability of the MPC output
is not guaranteed due to connectivity, latency or feasibility issues. There-
fore there must be a local device controller available to ensure uninterrupted
control of the plant. For this purpose, the stabilizing LQR from the MPC
formulation is used to provide the baseline performance of the cloud assisted
controller. Both controllers implement tracking, and replace x̂ with the state
error in relation to a setpoint. For the nominal system, the local controller is
optimal and does not violate constraints, as long as the state error is inside
the terminal set. To ensure that the local controller is inside Xf , it is nec-
essary to use a setpoint governor to shape the setpoint, something which is
returned to in the description of the local mode.

To implement cloud assisted control, the client sends a request set

φk = {φk(0|N0), φk(1|N1), . . . , φk(i|Ni))} , Ni ∈ Z+ (10.1)

every time it samples the state. All requests must include everything nec-
essary to construct Equation (4.1), but each is different with respect to the
horizon. In every sampling period, the client receives a response set

ψk = {fcloud(φk−1(i))|tr(φk−1(i)) < hk} (10.2)

where the function tr provides the response time of a request. As illustrated
in block 12 of Figure 9.1, an ordering is applied to select one of the responses.
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It is assumed that the response set only includes results that are feasible, i.e.
that the solver either aborts in case of an infeasible problem, or returns an
indication causing the local device to discard the result.

Equation (10.1) is restricted to a single model, cost function, and con-
straint set, but this can easily be extended. We can consider a request set
defined as

φk = {φk(0|N0,m0, c0), . . . , φk(i|Ni,mi, ci))} ,
Ni ∈ Z+,mi ∈M, ci ∈ C

(10.3)

where M is a set of possible models, and C a set of possible constraint con-
figurations. This allows the parallel evaluation of combinations of horizons,
models, and constraints. If m and c are further defined using a time index
to form mi(k+ j|k) and ci(k+ j|k), this supports constraint tightening over
the horizon and switched systems. It is of course also reasonable to vary the
stage cost l. A further extension is to make these parameters functions that
depend on the state (such as mi(x(k + j|k)), ci(x(k + j|k)), li(x(k + j|k))),
which must then be evaluated inside the optimization. This vast potential
for variations1 motivates the use of offloading.

A note can be made also about the implementation used in the follow-
ing experiments. The cloud function (fcloud) allows that the client defines
the components of Equation (4.26) for each request, thus supporting Equa-
tion (10.3), and varying the cost function. Equation (4.28) is constructed
inside the cloud function and the model, constraints, and costs cannot vary
over the horizon. Including model parameters, box constraints (a minimum
and maximum for each state), and costs with each request, is of small con-
sequence to the overhead that we saw for REST in Chapter 8.

The two modes of the client, assisted mode and local mode, and the switch-
ing strategies are now further defined.

Assisted mode

In the assisted mode, the device is connected to the network. At each sample,
a new set of requests, φk, is sent to the cloud service. This set includes up-
dated state information, and the horizons to evaluate. Up until the deadline,
admissible MPC responses in ψk are received from the cloud. Several hori-
zons are evaluated to increase the chance of receiving an admissible response
in time.

At the start of a sampling period, the local control system selects one of
the arrived responses. Assuming that responses are independent, the value
function S (Figure 9.1) is applied individually to each request, providing a
priority that can select or discard responses as they arrive. The selection
criteria can be a simple criteria, such as always selecting the smallest or

1Which does not stop here, solver selection can be introduced etc
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Figure 10.2 Response of the setpoint shaped LQR (SS-LQR), open loop
prediction (OL), unrestricted LQR, and MPC in a system with a model
error. Terminal set and tightened constraints are marked in the figure. The
outer gray box shows the critical, original constraints.

largest horizon, or a more involved method which looks at the system state
or the predicted cost. The selected response contains a sequence of control
inputs over the length of the horizon

u∗k = [uk|k−1, uk+1|k−1, ..., uk+Nk−1|k−1] (10.4)

When operating in the assisted mode, and, hence, continuously receiving
responses from the cloud, the controller acts as an ordinary MPC and applies
to the plant only the first value in the sequence, u∗k(0).

Local mode

In local mode, the control is achieved using the LQR controller obtained from
the costs and model of the MPC. Local mode is entered when connectivity
is lost, the cloud is unable to provide admissible results, or when the state
error lies within the terminal set. The latter implies that resources are not re-
quested from the cloud when the state error is small. For the local controller
to reliably handle setpoint changes, the perceived state error is limited. Set-
points are also restricted so that the plant operates at a safe distance from
the constraints. In the following, this is referred to as setpoint shaping. Lim-
iting the magnitude of the error perceived by the controller makes the local
mode limited in performance, but in return provides stability and satisfies
constraints.

Figure 10.2 illustrates the effect of limiting the controller in this manner.
The figure shows an initial open loop prediction, an LQR, a setpoint shaped
LQR, and a MPC response to a step change in the reference of a second order
system. The system under control is described by the state space matrices

A =

[
0.9752 1.4544
−0.0327 0.9315

]
B =

[
0.0248
0.0327

]
, C =

[
1 0
0 1

]T
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and the optimal control objective by the cost matrices

Q =

[
10 0
0 10

]
R = 1.

An unconstrained LQR control law is derived for this problem, and a MPC is
defined with state constraints Gxi ≤ g, input constraints Hui ≤ h, a terminal
set Xf , and terminal cost Vf (x) = xTPx. The constraints are shown in the
figure, with a dark gray area representing the terminal state set, and a light
gray areas showing the state constraints. In the MPC, the state constraints
have been slightly contracted from the original constraints, shown as a larger,
medium dark gray box. A model error is introduced in the simulation, making
closed loop control necessary. The optimal path in Figure 10.2 is represented
by the MPC. The figure shows that the trajectory of the setpoint shaped,
conservative LQR is far from this optimal path, but also stays well within the
constraints. The severity of the model error is seen in the open loop sequence,
which does not correspond with the closed loop optimal path, and violates the
lower constraint. The unrestricted LQR shows the reaction without setpoint
shaping. This response largely violates the constraint, not due to the model
error, but because of the unconstrained response.

Switching from local to assisted mode

The switch from local to assisted mode is instantaneous. When ψk 6= ∅, i.e.
the controller has received one or more responses in time, it will use one of
those results for the next control output. Similarly, if the controller is in tran-
sition from assisted to local mode, that process is immediately interrupted.

Switching from assisted to local mode

The switch to local mode can happen when the system has entered into
the invariant set of the local controller, or because no response was received
from the network in time. This switching is critical, since the local control
does not handle constraints. In the first scenario, when having entered into
the invariant set, it is straight forward to hand over control to the local
controller. Being in the invariant set ensures that the local controller can
act without violating the constraints. In the second scenario, connectivity
is lost or the set of admissible responses becomes empty. If local mode is
entered immediately when this happens, the system can experience erratic
behavior or large constraint violations, because of the limitations of the local
controller. To avoid this, the control sequence from the latest selected MPC
response is used to provide a sequence of control inputs used in combination
with the local controller.

The client controller can be applied to the prediction error as

fu(κl, κr) = u∗i (k − i)−Kx̂k|xi−1 +Kx̂k|xk−1, (10.5)
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where i is the time step in which the MPC with output sequence u∗k was
selected. The state estimate x̂k|xi−1 is the prediction of the current state used
by the the MPC to generate u∗k, while x̂k|xk−1 is the current state prediction
from the previous sample, i.e., using the latest information as opposed to the
information available when the MPC was requested. The expression in (10.5)
removes the predicted LQR response from the MPC output, and re-adds the
LQR using updated state information. In the first step, when i = k, the two
last terms cancel and the closed loop MPC of Equation (4.1) is obtained. In
assisted mode, this happens repeatedly, as i = k when the response set is
non-empty, ψ 6= ∅. When i < k, the states may not match, and the LQR,
working in closed loop, is allowed to compensate for prediction errors. This
strategy assumes that the MPC, in addition to the control signal sequence,
also returns the corresponding state sequence, i.e., that this is provided in
the response set ψk. Notice that Equation (10.5) is defined to match exactly
the MPC when there is no request loss.

Using (10.5), the local LQR is active at all times, and applied as a resid-
ual to the MPC open loop trajectories during the mode switch. As a further
measure to create robustness and a smooth transition to local control, (10.5)
is extended with an averaging term, αi, which gradually decreases the im-
pact of the MPC control signal when switching from assisted to local mode.
The local controller is also using setpoint shaping, and the notation x̂limk is
introduced to make this explicit, denoting the limited state after shaping.
The α-switching control law becomes

fu(κl, κr) = αk−i(u
∗
i (k − i)−Kx̂limk |xi−1) +Kx̂limk |xk−1, (10.6)

where α starts at one and decrease to zero,

α0 = 1, αk−i → 0 when k − i→ N. (10.7)

Equation (10.6) is implemented in the client (inside fu in Figure 10.1), and
is not part of the MPC problem. Figure 10.3 shows again the scenario in
Figure 10.2, but this time with two examples of α-switching. The sequence
of α values is defined as

αi = 1− βi, i = {1, .., N}, (10.8)

βi = βi−1e
γ , β0 = 0.01, γ = log(99)/N, (10.9)

where the exponential decay is chosen from the observation that model errors
grow exponentially.

The two switching trajectories in Figure 10.3 have suffered connection
loss, and are switching to the local mode using the exponential decay given
by Equation (10.8), with different values of N . There are several things to
note in the figure. First, the closed loop MPC (green) represents the assisted
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1 2

−0.2

Xf

Gxi ≤ g

SS-LQR MPCN=9 OLN=9
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Figure 10.3 Same scenario as in Figure 10.2, with different controllers.
The local, setpoint shaped LQR (SS-LQR), a fully connected MPCN=9,
initial open loop prediction and two, disconnected, α-switching controllers,
using (10.6) with the decay in (10.8). Dashed lines show the paths for a
fixed αi = 1, i.e. (10.5).

mode. This is the typical path of the cloud assisted MPC controller, with a
horizon of nine steps. Second, the α-switch with N = 20 (gray) violates the
original constraints, while the α-switch with N = 9 (red) does not. To handle
connectivity issues, it is a more robust strategy to select short horizons,
since they are forced into the terminal set within fewer steps. Third, the
two dashed lines shows paths that use αi = 1. This is to be compared with
the solid lines using the α-switch. The effect of α-switching is clearly visible
when N = 9. The effect is reduced as N increases, since a large part of the
horizon is inside the terminal set. Fourth, the α-switching initially pulls the
path inwards towards the setpoint shaped LQR (blue), but as the system
approaches the terminal set, the N = 9 solid path again begins to merge
with its corresponding dashed path. This happens even though the local
controller becomes more and more dominant, because the paths of the two
modes begin to coincide. The strategy moves the path towards SS-LQR, with
the result that the slightly contracted constraints allows the path of N = 9 to
stay within the original constraints. Finally, on close inspection, the path of
the closed loop MPC temporarily violates the constraints at one point. This
can happen close to the constraints. When this happens, the MPC becomes
infeasible, but the client easily recovers by temporarily entering the switching
mode. The switching brings the state back inside the constraints, where in
turn the assisted mode, and therefore MPC efficiency, is regained.
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Figure 10.4 The maximal invariant set (outer hull), an invariant ellipse,
and the contained invariant set cube represented by three linear constraints.
The local controller is constrained to operate in this limited space.

10.3 Evaluation

This section provides an evaluation of the assisted controller, using the refer-
ence plant from Chapter 5, simulations in Matlab, and data from the cloud
platforms in Part II. Results are presented after some notes on deriving the
assisted controller, and on the simulation setup.

Deriving the assisted controller

The offloaded function that is executed in the cloud is the linear quadratic
optimization in Equation (4.26). This is used to implement the remote MPC,
represented by κr in Figure 10.1. Since the selected MPC is a linear quadratic
problem, an unconstrained linear state feedback controller κl(x) = Kx is de-
rived directly from it, and used for the local mode. As specified in Section 4.4,
the terminal cost follows as the asymptotic cost in the LQ problem. This pro-
cedure was presented in Section 4.4. The model matrices A, B, the constraint
pairs (Cx, cx), (Cu, cu), cost matrices Q, R, Qf , and the terminal set Xf must
be specified. A strategy must also be defined for choosing the request set φk.
Here, this strategy consists of using a fixed set of horizons, which are evalu-
ated every sample. These horizons are listed with the results in Tables 10.1
and 10.2.

Finally, a terminal set that is invariant for the local mode controller must
be defined. Based on the assumptions and purpose for creating the cloud
controller, it is not necessary to find the largest possible invariant set, a
reasonably small and robust subset will suffice. Polytopes can represent the
invariant set arbitrarily well, but a general polytope can become very com-
plex and hard to calculate. An alternative method to find a reasonable non-
optimal subset is to use elliptical constraints. However, this requires the use
of cone programming for the optimization. To provide the linear constraints
for the QP problem, a rectangular polytope

Xf = {x|Htx ≤ h} (10.10)

is defined, which fits inside the elliptical subset. This is illustrated in Fig-
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ure 10.42. The outer hull in this figure is the maximal invariant set for the
LQ controller. The ellipsoid is a simple sphere that fits inside this invariant
set, and the small cube inside the sphere is the final terminal constraints.
Naturally, this provides a very pessimistic terminal set, but also one that is
easy to find and represent. If this set is later updated and grows, it will reduce
the necessary controller horizon which can reduce the computational load on
the cloud. This in turn can translate to higher response rates, improving the
controller response, and reducing monetary costs. A thorough introduction
to the use and calculation of invariant sets is found in [Blanchini, 1999].

Finally, the setpoint must be shaped to ensure the invariant property of
the local controller. A governor function is applied to limit the perceived
error of the tracked state variable x1, so that

xlime =
[
xlime (1) xe(2) xe(3)

]T
(10.11)

where xe = x− xsp is the state error, and xsp the setpoint vector. A simple
procedure is to limit x1, using the terminal constraint.

Simulation

The simulations use Matlab, and Simulink, with a continuous-time model of
the plant, as shown in Figure 5.2. Matlab’s quadprog is used for the opti-
mizations, with support for the terminal conditions. However, as explained
in the following, another optimizer is used to obtain a processing time for
the request.

For each individual request, two sources of delays are considered, and
the latency of a single optimization, i.e., of one configuration φk(i|Ni), is
modeled as

τrt(N, ε) = Xp(N, ε) +Xs (10.12)

where τrt is the round trip delay, andXp andXs are random variables referred
to as the processing time and service delay. The processing time depends on
the controller horizon and the current state error ε. A repeated request is
expected to not provide an identical processing time, due to executing on
different machines, and alongside other applications in the cloud. The func-
tion and variability governing the processing time is unknown. To obtain an
estimate of the processing times as a function of state and horizon, and vari-
ability due to the cloud, an efficient optimizer (QPgen, [Giselsson, 2015]) is
deployed in a cloud service. A large set of measurements using this optimizer
is used as input to create distributions for Xp(N, ε) and Xs. However, this
optimizer lacks the necessary support for terminal conditions, and therefore,
the final evaluations are simulated in Matlab.

2Using the Multi-Parametric Toolbox by [Herceg et al., 2013].
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Figure 10.5 Delay distributions from three different services. The least
transparent, darkest, distribution in each configuration is the round-trip
time. The medium transparent is service time, and the most transparent,
lightest, distribution is the processing time. β2 is loaded by twice as many
parallel requests as the other configurations. This is also compensated by
more workers.

The service delay includes networking and other overhead such as queu-
ing for access to the cloud service. It is assumed that the distributions are
relatively stable, and therefore, they do not depend on the time step k. In
practice, if the load on the system temporarily causes the distributions to
change, the resulting request loss is managed by the switching and local
modes. Xs can be calculated through measurements of τrt(N, ε) and Xp(N, ε)
when running QPgen optimizations on real cloud services.

The processing time’s dependence on the state error ε and horizon N
was shown in Figure 8.2 and Figure 8.3. These figures show results from the
following experiments, using QPgen executed in the cloud. The experiments
are limited by the lack of terminal constraints, but are comparable in relative
terms, and assumed to be sufficiently representative of the optimal controller
executing in the cloud. This can also be seen from the results in Chapter 8.

Processing time and service delay

To obtain input for the simulations, measurements were performed on
HAProxy configurations and Lambda, as introduced in Chapter 8. Com-
pared to the measurements in Chapter 8, this evaluation uses a different
implementation for the optimization, and executes parallel requests (towards
the same cloud) with every sample.

Figure 10.5 shows results from executing the MPCs on three different plat-
forms. These platforms are a HAProxy cluster on AWS EC2 (α), a HAProxy
cluster in ERDC (β1,β2), and AWS Lambda (γ). As usual, while the details
of clusters change, the remote request API, the code of the remote function,
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and the implementation on the client remain unchanged. The tests repeatedly
evaluate a step change in the setpoint for the reference system (Chapter 5)
with constraints |x1| ≤ 0.55, |x2| ≤ 1.5, |x3| ≤ π/4. For a set of horizons
N = 5− 120, the step is evaluated a total of 1000 times, using each service.
The services γ, α, and β1 are continuously loaded with ten optimizations in
parallel, while β2 must handle twice as many, i.e. 20, parallel requests. With
each new request, the horizon is selected randomly from the above set.

The public FaaS, γ, uses the default service provider configuration for
the function, in terms of the container environment, concurrent requests,
available memory, maximum processing time etc. This default configuration
of the service is not restrictive for the scenario. Examples α, β1, and β2

use the infrastructure service of the cloud (IaaS) to create a custom service.
This uses Python Flask and HAProxy to provide the request API and a
load balancer. The data center provider and virtual machine configuration
are different for α and β1, but both have one load balancer and the same
number of total worker CPUs (eight). β2 is provided more cores to account
for the additional load.

The aim is to use a sampling period of 50ms (shown as a red line across
the experiments in Figure 10.5). This is not possible for γ, since service
times, and sometimes also processing times, end up beyond the red line. The
large spread of the processing times, Xe(N, ε), seems due to that the service
penalizes extended executions. This is also what was seen in Chapter 8. That
is, the performance per time unit decreases when the size of the problem or
the required iterations in the optimization increases. This translates to long
processing times for large horizons, and when the system state requires many
iterations for the optimization to converge.

The results for γ prompt the necessity to try something different, to find
a distribution that works with the controller. This is why α and β1 were
introduced. The response of α is much better than that of γ. Since they
use the same cloud provider, with the same locality, this shows that the
long delays of γ, caused by processing times, are due to the performance
of the public FaaS, not the general performance of the cloud. This is again
in line with the results in Chapter 8. The figure also shows that using the
local cloud provider, β1, gives a response similar to α. The more distant
provider has faster processing times, but a larger minimum service time.
This is attributed to network delay. Finally, β2 loads the ERDC cluster with
more concurrent requests, to allow for more horizons per sample. Although
the number of workers are scaled up to account for the load, the service
time increases. The ideal cloud scenario of servicing an arbitrary amount of
concurrent requests, without affecting the individual latency, does not fully
hold for this configuration and load. Still, if counting only the number of
successful requests per sample, this setup has a higher utility than β1.

Because β2 can serve more requests and includes a reasonable amount

143



Chapter 10. Variable Horizon Control

of failed requests, it is chosen as the baseline to study control performance.
These experiments were executed from a workstation located at the plant in
Figure 7.1. We know from Part II that the overhead of the network trans-
mission to the local data center is generally small, and are independent of
the plant and client state. Because there is a sufficient number of workers
in the cluster, we also assume that admission times are independent of the
plant and client state. The service time distribution, Xs, is obtained through
maximum likelihood fitting of the data in Figure 10.5 onto a log-normal dis-
tribution. Processing times are more complex, since they depend on the plant
state and the horizon. Figure 8.2 and Figure 8.3 show this, but do not pro-
vide the full picture, since they only illustrate the horizon and variations in
state x1. Each point is an average of another grid of a few values for state x2

and x3. Instead of creating theoretical distributions for the processing time,
the values of Xe(N, ε) are obtained by executing the functions on the cloud
service, as part of the simulation. As seen in Figure 10.5, the processing times
do not change between β1 and β2, because the clusters are not overloaded.
The simulations limit the number of parallel requests to retain this property.
Still, there may be differences to the results in Figure 10.5 in terms of longer
processing, due to other tenants etc.

Results

The performance of a nominal system is shown in Figure 10.6, Figure 10.7,
and Figure 10.8. The simulations are run in Matlab, but draw the processing
delays from the cloud, as presented in the previous section. In examples A
and B, the service times are drawn from a log-normal distribution,

f(x) =
1

xσ
√

(2π)
e−(ln x−µ)2/2σ2

, (10.13)

where f(x) is the probability density function. The used parameters are
µ = 2.54, σ = 0.48, and an offset of 6.8 is also applied. This represents
the service of β2 in the previous section. For examples C and D, problematic
network/service conditions are simulated by increasing to µ = 3.93.

Examples A and B in Figure 10.6 illustrate two different controller modes.
In A (left), S is defined to select the longest horizon from the admissible
set ψk. In B (right), S is instead defined to select the shortest available
horizon. Table 10.1 shows the percentage of times each horizon provides an
admissible result, i.e. is feasible and responds in time. In examples A and B,
service conditions are good and most requests respond in time. Looking at
Table 10.1, the decreasing values for horizons 11 to 3 are not due to service or
processing times, but because the horizons are too short to provide feasible
solutions. Horizons from 20 and above always provide feasible solutions, but a
few responses are lost due to delays. The lower values for the longer horizons
are attributed to processing time delays.
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Figure 10.6 (A): Assisted controller selecting the longest horizon. (B):
Assisted mode controller selecting the shortest horizon. The gray trajectory
is the setpoint and the state constraint is shown as the dashed gray line. A
dotted gray line shows the unconstrained LQR, and the dashed black line
show an LQR with setpoint shaping to not violate the constraints.
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Figure 10.7 The scenario in Figure 10.6-B with degraded service.

Table 10.2 shows how often each horizon is selected by the controller.
Here, N = 0 refers to the local mode of operation. Since the service perfor-
mance in β2 is good, selecting the long horizon effectively translates to using
N = 120 or N = 111 almost always, i.e., this system behaves similar to a
standard MPC with a long constant horizon. Service latency is the reason
why N = 120 is not always selected in example A. In B however, the se-
lected horizon will decrease as the state error gets smaller, and the controller
therefore operates over a range of horizons by design. In example A, the local
mode was almost never used, since the system does not have time to stabilize
around the setpoint before it changes. In difference to A, example B is able
to often execute in the local mode. This is due to the use of shorter horizons.
The difference in behavior between the two modes is clearly visible as the
system approaches a setpoint, emphasized by the encircled red areas in the
figure. Both systems stay within the constraints, which is not the case for the
unconstrained LQR, shown in the dotted line. Both are more efficient than
the setpoint-shaped LQR, shown as the dashed line.

Example C in Figure 10.7 also uses short horizon selection but the ser-
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Table 10.1 Admissible responses (percent)

N 3 5 7 9 11 20 29 38 47 56 66 75 84 93 102 111 120

A 26 40 51 60 69 94 94 96 94 92 90 93 91 92 87 90 85

B 23 36 47 56 65 95 98 98 99 99 96 95 92 95 94 91 88

C 7 13 19 20 28 39 25 31 26 27 24 21 24 20 23 16 19

D 6 8 11 12 12 17 22 21 17 15 15 14 10 4 11 8 9

Table 10.2 Horizon selection (percent)

N 0 3 5 7 9 11 20 29 38 47 56 66 75 84 93 102 111 120

A 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 24 73

B 55 15 5 4 4 4 11 2 0 0 0 0 0 0 0 0 0 0

C 40 4 10 11 6 8 9 3 4 2 1 1 1 1 0 0 0 0

D 20 5 5 5 5 2 11 10 15 7 4 2 3 2 0 1 1 0

vice delays are now longer. In Table 10.1 there is a clear decline in admissible
responses, as seen in the lower numbers and reduced blue color. The effect
of combined service time, processing time and feasible horizon also becomes
clearer with a peak of admissible responses at horizon 20. In Table 10.2,
the use of horizons above 20 shows that on occasion, the network conditions
of C causes unnecessarily long horizons to be the only choice available. This
translates into some of the used trajectories resembling example A, and some
example B. Overall, the controller continues to perform well. For the switch-
ing strategy to be reliable, it is useful that the MPC moves quickly away
from constraints and the shaped local controller is switched in early. When
using the mode switching, selecting the shortest feasible horizon creates these
conditions, but due to service latency and potential execution variability, the
shortest feasible result may not arrive to enter the admissible set.

In example D, Figure 10.8, a change has been made to the controller
constraints. The range of state x1 has been more than doubled, which al-
lows for a larger range of setpoints. At time t = 5, this is used to request
larger state changes than what was previously possible. This example also
uses short horizon selection. The larger setpoint changes may require longer
horizons for feasible solutions. Up until now, the controller could limit itself
to use horizons 3 to 20. When it now needs longer horizons, they may not
be admissible due to delay. If they become available, they can be used, and
if they do not, the local mode will eventually bring the system to a state
where the shorter horizons are feasible. The larger setpoint in D is observed
in Table 10.2, as the increased selection of horizons above 20. The peak in
admissible responses is not as clear as in example C, but there seems to be
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Figure 10.8 Assisted control with degraded network and modified con-
straint. In the gray area, the controller has no connectivity to the cloud
and transitions to local mode. Performance is regained when connectivity
is restored. Dashed line is a setpoint shaped LQR.

a slight shift upwards in Table 10.1, which is expected with the larger set-
point changes. In addition to modified constraints and the degraded service
conditions, example C also introduces connectivity loss at t = 10. When this
happens, the controller must switch from assisted to local mode, using the
open loop data of the latest selected MPC. After connectivity is restored,
the controller enters the assisted mode again as soon as a feasible MPC is
returned in time. The encircled red area shows the switch to and from local
mode. It may seem that the trajectory leaves the optimal path prematurely,
but this is part of the α-switching and short horizon strategy, which priori-
tizes robustness over the potential performance of the open loop data from
the MPC.

10.4 Edge perspective

After seeing how the variable horizon controller works, we now briefly con-
sider an application in the distributed cloud. Consider the setup in Figure 3.5,
where the client is connected to two systems, both of which can provide of-
floading. One is a large cloud that provide virtually endless and cheap com-
putations, but also introduce largely random access times. The other is an
edge node with limited and costly resources, but with access times that can
be considered constant. For the purpose of the following example, we assume
two ideal properties from the cloud. First, the network and admission delays
are independently drawn from a single distribution, and second, executions
are not interrupted, resulting in processing times that depend only on the
number of iterations in the optimizer and the size of the control problem.
This is an idealization of the cloud performance, which, as we saw in Part II,
cannot be assumed in practice. It is nonetheless conceptually useful and il-
lustrative.
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Figure 10.9 Probability density of delays drawn from a log-normal dis-
tribution with µ = 4, ρ = 0.5 and an offset of 14 ms.
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Figure 10.10 Experienced execution time distributions for various con-
trol horizons when executing the experiments. A box shows the (lower) 0.25-
quartile to the (upper) 0.75-quartile. The line inside the box is the median.
Whiskers show the lower quartile−1.5 ·IQR and upper quartile+1.5 ·IQR,
where IQR is the interquartile range (the difference between upper and lower
quartiles). Outliers beyond the whiskers are excluded.

The networking and admission delays towards the larger cloud are rep-
resented by the log-normal distribution (Equation (10.13)), with parameters
and a normalized histogram over a large set of samples illustrated in Fig-
ure 10.9. This distribution was originally obtained from measurements on a
public FaaS. Box plots of execution times are shown in Figure 10.10. This
figure shows one box plot per available horizon and the variation in execu-
tion time comes from the number of iterations required in the optimizer for
different plant states. Outliers are excluded from the figure and there are
instances of the larger horizons that execute well beyond fifteen milliseconds.
Notice that even with the idealization of the cloud, there are unknowns in
the number of iterations and the access times.

The response deadline is again 50 ms, meaning that a majority of requests
will fail already due to the access times in Figure 10.9. However, because the
response times are independent, multiple requests will increase the chance
of a timely response. We can further increase the chance by allowing shorter
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Figure 10.11 The time lines have been cut for illustrative purposes.

horizons, since they execute faster. However, only using short horizons will
be insufficient, since they will become infeasible as we move away from the
terminal set.

Now turn to Figure 10.11. This figure shows the results from an experi-
ment with the theoretical data center cloud, and results from using an edge
cloud. We return to the inclusion of the edge cloud shortly. The upper left
plot (A) shows the used horizons when executing the controller, using the
distribution in Figure 10.9 and the execution times in Figure 10.10. The dot-
ted line shows the response of an ideal scenario, where all the horizons are
evaluated without network, admission or processing time delay. While not
completely random, the large delay causes the used horizons to be spread
out, and only 75% of the iterations in the controller provide feasible results.
Plot C at the bottom shows the closed loop response in state x1, i.e., the po-
sition on the beam. The plant simulation is setup as presented previously in
the chapter, with one difference. Local control is only used as a backup, with
MPC responses used until they are exhausted, i.e. applying Equation (10.6),
also when the plant is inside the terminal set.

The response without a networked controller is shown for reference as a
dashed line, and the response with no delay is included as the dotted line.
On occasion, the closed loop response of the cloud controller deviates from
the ideal, but the seemingly random horizon and recurrent lack of responses
from the cloud do not cause any large build up of errors. One very noticeable
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degradation is at the step change after seven seconds. At this point the client
experiences a large amount of request loss in combination with a setpoint
change. The reason for this behavior is that the setpoint of the client only
changes when responses arrive from the network. This could be implemented
differently, and with setpoint changes allowed during local/switching mode,
the client would start to move the trajectory towards the new setpoint.

It is assumed that the edge node only can handle a single request at a
time, but that it provides a constant access latency. Execution times are the
same in the edge node, i.e., Figure 10.10. The latency of the edge node is set to
40 ms. This is substantial, and longer than the shortest delays in Figure 10.9,
but also much shorter than the mean and median of the cloud distribution.
This means that the edge can service most, but not all,requests when the
horizon increases. The edge is resource constrained, and assumed costly, so
the load should be kept low if possible. This makes for two reasons to keep
the horizon short. One, is to increase the chance of a successful response, and
the other to keep resource usage low.

Assuming no prior knowledge of the delay and processing times, and
no knowledge about whether a new configuration of the controller will be
feasible, the following strategy is selected. Assume that the controller used
at time k is feasible also at time k + 1. Let the edge execute the latest
verified configuration. If this configuration becomes infeasible, replace the
edge configuration with a controller that is likely to solve the problem. For
simplicity, the edge is re-configured for the longest horizon if the controller
becomes infeasible. Looking at the results in figure Figure 10.11, this strategy
regains a lot of structure in the used horizons, and since the edge can respond
to most of the request in time, there are very few occasions where open loop
and local control must be used. In fact, most of these occasions happen when
the ideal controller switches between two short horizons. This is due to some
unforeseen corner case in the optimization, and the reason why the edge
solution can experience a largely increased horizon even when there is no
setpoint change. The response in Figure 10.11-C closely resembles the ideal.

What should be noted from this experiment is that the used strategy is
very generic, assumes no knowledge about the properties of the distributed
cloud. Still, the setup has several useful properties. Computations at the
edge are kept low, by continuously updating the controller to fit the problem.
Meanwhile, the edge configurations are only updated after being verified in
the larger cloud. There are several redundancies in the system. The edge
ensures almost certain closed loop control. If the edge controller fails due
to unforeseen reasons, there are two recovery systems in place. The larger
cloud provides redundancy for the constrained MPC. The client’s gradual
degradation to local mode provides a second level of recovery. If the edge is
removed, the MPC controller will continue to function, and if the cloud is
removed, local control brings the system into a low performance mode.
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10.5 Conclusion

The chapter has presented the implementation of a variable horizon model
predictive controller using the cloud. The performance of the cloud services
and the controller were shown in a combination of benchmarks, performed
on the real services in the cloud, and controller simulations driven by the ob-
served data. Through a combination of local LQR and cloud supported MPC,
an improved MPC design was obtained, which allows flexible performance.
In the evaluations, the controller did not show indications of becoming un-
stable. Constraint satisfaction is made possible in the nominal case, and a
strategy combining short horizon selection and gradual mode switching pro-
vides smooth operation, performance and a degree of robustness. The idea
of elastic control extends to complex and non-linear systems, and the strat-
egy of evaluating many controllers concurrently should lend itself to many
problems for finding cost-minimizing solutions online, and for creating robust
best-effort solutions in control.

The variable horizon used in this chapter, and the exemplified extension
to an edge cloud environment, are crude approaches used to investigate and
illustrate the concept of quality elastic control. In practice, components such
as the request selection should rely on heuristics to be discriminating, and
change the selection over time. For instance, if an unanticipated change in
the state or control cost happens, the selection can shift or grow the range
of horizons, and increase the number of requests sent to the cloud. Another
example, to replace the shortest horizon principle, is to compare the cost of
each feasible trajectory and remove long trajectories that do not sufficiently
reduce the cost. Similar results may apply if the selection takes the longest
horizon, where x(N − 1|k) /∈ Xf , i.e. the longest horizon that reaches the
terminal set in the final state. Importantly, the resilient, quality-elastic, cloud
controller provides a general applicability of such heuristics based on context,
and the potential for evolving them online.
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11
Rate Switching

This chapter looks at a two-tier architecture, consisting of a high rate MPC
in the cloud and a low rate MPC on the local device. The MPC in the cloud
is the nominal controller. The system switches to the local MPC in case
of an unresponsive network. The two MPCs are designed to be as similar to
each other as possible, except for the sampling rate. The evaluation considers
different alternatives for when to execute the local MPC and how to perform
the switching.

From a control analysis point of view, the obtained system is a non-
linear switched system. A helpful property is that the physical plant under
control never switches. It is only the controller that switches, in particular
the sampling period and the equality constraint corresponding to the ZOH-
sampled process model. A challenge is that the switch from the cloud MPC
to the local client MPC is completely arbitrary, and it is not, e.g., possible
to impose any dwell-time constraints. The switch from the local client MPC
to the cloud MPC can, however, be delayed if necessary. The interest is in
observing the result of a well-defined controller, to see if it appears problem-
free. The hypothesis is that there will be no really problematic, unanticipated
dynamics, because of the small differences between the controllers.

11.1 Targeted system

The control architecture consists of two layers; A local device layer located
close to the plant, and a cloud layer that executes somewhere in the cloud,
see Figure 11.1. The local device performs the sampling, state estimation,
sends the data to the cloud MPC, and actuates the returned control sig-
nal. The client is not able to execute the same MPC problem as the cloud,
but is able to evaluate a less computationally complex and, hence, faster to
solve, MPC problem. This is in contrast to Chapter 10, where it was assumed

This chapter is based on [Skarin et al., 2020a]
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Figure 11.1 Setup of a local constrained controller, MPC2 assisted by a
high frequency remote, MPC1, and a local unconstrained controller, LQd,
for fallback recovery.

that the local device only had sufficient resources to execute a ’conventional’
controller, in that case a LQR. There is still an LQR on the device in Fig-
ure 11.1, here referred to as LQd. There is also a component on the device,
referred to as the Second tier, which implements an MPC. The Second tier
and the Device in Figure 11.1 together create the client in this chapter. The
Second tier is drawn as a component, since it can easily be moved to some
other location in a fog or cloud network, for instance, to the LuMaMi RBS
break-out in Chapter 7 (see Figure 7.1). It is assumed that communication
is reliable and without delay between the Second tier, the Device, and the
plant. It is only MPC1 in the figure to which communication is unreliable.

There are several ways of obtaining a simpler problem for MPC2 com-
pared to MPC1, e.g., using a reduced order model, or by only using the MPC
for a smaller physical part of the plant. Here, a less time consuming problem
is obtained by solving the original problem less often. The control frequency
is reduced on the client. Then, by keeping the same temporal horizon, Ns, in
both MPCs, the horizon in terms of number of samples, N, is decreased in
the local MPC. Hence, using the proposed approach, the optimization prob-
lem both becomes smaller, and the time available for solving it increases.
The decrease in sampling rate is selected so that both the fast and the slow
rate give acceptable performance. The meaning of x̂k+σ and the enable signal
in Figure 11.1 relate to the sampling rates and the interaction between the
controllers MPC1 and MPC2, and are explained in the following.
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11.2 Controller

Execution time and sampling rates

There are several rules of thumb for selecting the sampling period of a
discrete-time controller. In most cases, they are based on the properties of
the closed loop system. Equation (11.1) is an example of one such rule of
thumb [Xu, 2017].

0.15 ≤ wb/f ≤ 0.6, (11.1)

where f is the sampling frequency in Hz, and wb the closed loop bandwidth
in rad/s. This rule is based on the allowed change in the phase margin, as
a result of the sampling, and it specifies an interval of acceptable sampling
rates. As long as the sampling rate lies in this interval, the controller will have
reasonable performance, while not requiring an excessive resource utilization.
Equation (11.1) puts the frequency multiplier between the two controllers in
the range 1 to 4.

Setup

The controller architecture was shown in Figure 11.1. It consists of a remote
MPC executing in the cloud, with a sampling period of Ts, and a local client
MPC, with a sampling period of σTs, where σ ∈ N∗, i.e. is a non-zero positive
integer. A LQR is used as a backup in case also the local MPC fails to solve
the optimization problem. The device controls a plant, and has an arbitration
mechanism in κ to select the current control signal.

The plant is sampled at the base frequency, which corresponds to the
sampling period of the cloud MPC, i.e., Ts. The estimator generates a pre-
diction of the state at time (k + 1)Ts and (k + σ)Ts, i.e., a prediction for
the fast MPC and the slow MPC. Input to the local LQR is produced by
the observer. The arbitration mechanism in κ selects the final control signal.
It is assumed that the execution times of the LQR and the arbitration are
negligible.

Controller synthesis

The starting point for the control synthesis is the continuous-time plant
model

ẋ(t) = Ax(t) +Bu(t) (11.2)

where A ∈ Rn×n and B ∈ Rn×m. This system is ZOH-sampled to yield two
discrete-time systems

x((k + σ)Ts) = Aσx(kTs) +Bσu(kTs) (11.3)

where the sampling period multiplier, σ, is used to index the models. σ = 1
is the high frequency model, with sampling period h, used in the cloud MPC.
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σ = 2, i.e., a sampling period of 2Ts, is used for the low frequency mode in the
client. In the remainder of this chapter, these will be respectively referred to
as MPC1 and MPC2, with the subscripts matching the frequency multiplier.

The continuous-time infinite-horizon LQR for the system (11.2) is given
by the solution to

minimize
u

J(x, u) =

∫ ∞
−∞

x(t)TQcx(t) + u(t)TRcu(t) dt (11.4)

withQc, Rc symmetric and positive definite. The derived controller is referred
to as LQc. The discrete version of this controller, sampled using the base
frequency (sampling period Ts), is referred to as LQd (with gain Kd), and is
used as the backup controller on the local device.

The specification of LQc is also the basis for the design of the two MPCs.
The goal is that the two controllers should be as equivalent as possible,
except for the sampling periods. Therefore, the cost functions are derived as
the discretized versions of the continuous-time cost function of LQc.

The discretized version of the continuous-time cost for the system (11.2)
is given by

V (t, tk) = xTkQσxk + 2xTk Sσuk + uTkRσuk (11.5)

Qσ =

∫ Ts

0

ATσ (τ)QcAσ(τ) dτ (11.6)

Sσ =

∫ Ts

0

ATσ (τ)QcBσ(τ) dτ (11.7)

Rσ =

∫ Ts

0

BTσ (τ)QcBσ +Rc dτ (11.8)

with Ts = tk− t, see [Xu, 2017]. Starting from a continuous-time design, it is
straightforward to create the discrete LQ controller. A structural difference
appears in the discrete controller in the cross-coupling term Sσ, which is
often dropped in MPC. Therefore, it is typically not possible to calculate
the continuous cost from the discrete cost, and consequently derive a correct
re-sampled counterpart. With access to the continuous design, the approach
is to use the cost functions obtained from the discretized infinite-horizon LQ
controller in the finite-cost MPC controllers, and include the cross-coupling
term. This makes the controllers as similar as possible. In the evaluations,
Matlab’s quadprog is used to implement an MPC which includes Sσ.

The two MPC controllers have the same horizon expressed in the number
of time units. As a consequence of this, the horizon expressed in number of
samples is half as large for the slow MPC as for the fast MPC, i.e.,N2 = N1/2.
This means that in addition to having twice as long time available for solving
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the MPC optimization, the optimization problem to solve is also half as large
in the number of decision variables. This leads to the MPC formulation

minimize
u

Nσ−1∑
n=0

zTnQσzn + Vf,σ(xNσ ) (11.9a)

subject to x((k + σ)Ts) = Aσx(kTs) +Bσu(kTs), (11.9b)

Gzn ≤ g, (11.9c)

Qσ =

[
Qσ Sσ
STσ Rσ

]
, (11.9d)

where z =
[
xT uT

]T
is the augmented state vector, σ indexes the two

models, σ ∈ [1, 2], and Ts is the base sampling period. The equality constraint
(11.9b) is obtained from Equation (11.3). The inequality constraints (11.9c)
are the same for both controllers. The terminal cost Vf,σ(x) is individually
obtained from the discrete Riccati equation, i.e.,

Pσ = Qσ +ATσPσAσ

− (ATσPσBσ + Sσ)(Rσ +BTσ PσBσ)−1(BTσ PσAσ + STσ ). (11.10)

The controller uses a terminal cost Vf,σ(x) = xTPσx, but does not define a
terminal set. Formally, the stability of the controller depends on the following
assumption

Assumption 11.1
For any feasible state x ∈ X , the horizon Nσ of mode σ is large enough to
ensure that

xNσ ∈ Xf , where Xf ⊆ X ,

and

xk+1 = (A+BKσ)xk ∈ Xf ∀xk ∈ Xf . 2

That is, the final state xNσ will always be in a region Xf around the origin,
where the stabilizing control law κf = Kσxk is invariant.

Device execution

Three alternatives are considered in terms of when the local MPC should
execute. Figure 11.2 illustrates these alternatives in a timing diagram. The
dashed activities for MPC1 are executions when the response time is larger
than h, and hence, feedback from the cloud MPC is not available. For MPC2

the dashed activities show wasted executions, which have been invalidated by
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k k2 k4 k6 k8 k10

MPC1 x0 x1 x3 x5 x6 x7 x8 x10

x2 x4 x9

MPC2

(a) x2 x4 x9

(b) x0 x2 x4 x6 x8 x10

(c) x0 x1 x3 x5 x6 x7 x8 x10

Figure 11.2 Three execution alternatives for the local device MPC. In
(a), the client MPC does not start as long as there are responses available
from the network. In (b), the client MPC starts execution periodically.
In (c), the client MPC is restarted when input arrives from the remote
controller. The text in each execution shows associated sampled state. The
dashed blocks show optimizations that are not used, i.e. wasteful executions.

responses from MPC1. The text inside the activities represents the sampled
state used in the optimization.

In Alternative (a), the execution of the local MPC starts after the cloud
MPC has failed to respond within the deadline. In Alternative (b), the local
MPC runs periodically but the results are disregarded as long the cloud MPC
returns a reply. In Alternative (c), the local MPC also runs periodically, but
it is interrupted and restarted immediately if a response arrives from the
network. The high frequency MPC1 is invoked in every time step kTs, also
if it did not return any results in the last invocation. The two rows for
MPC1 illustrate that parallel MPCs can be started in the cloud, even though
previous requests are still being processed. Being able to start new instances
without concern of overloading the system is a convenient consequence of
using a cloud platform. This provides the opportunity to periodically start
new optimizations, while also collecting delayed responses. Here, however,
all late responses are discarded, and cannot be used for control, even if they
arrive only slightly delayed.

Control signal selection

Now consider the control signal selection mechanism. Denote the latest se-
quence of control inputs from MPC1 as u∗σ=1, and the latest sequence from
MPC2 as u∗σ=2. The output of κ is the control signal that is applied to the
plant. κ executes at the base frequency 1/Ts, and provides the switching
mechanism through the four cases in Table 11.1. Cases A1 and A2 apply
the closed loop constrained control of the two MPCs. When the cloud MPC
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Table 11.1 Four case selections in κ, in order of priority.

Case κ Description

A1 u∗σ=1(0) Applies MPC1

A2 u∗σ=2(0) Applies MPC2

A3 ζ(u∗σ=1, xk) Chooses an action during switching
A4 Kdx Use LQR when no MPC is available

responds within the sampling period, Ts, A1 is available, and the output of
MPC1 is applied. When the cloud MPC fails to respond, the possibility of
applying A2 depends on the device execution alternatives in Section 11.2.
For instance, in Figure 11.2, when MPC1 does not respond for state x1 at
time k2, Alternative (c) can apply A2 at time k3 (using state x1), but the
Alternatives (a) and (b) cannot apply A2 until at time k4 (using state x2).

A3 implements a function used in the intermediate stage when the cloud
MPC has missed its deadline and the system is waiting for A2 to become
available, i.e. waiting for the device MPC to finish. In Figure 11.2, at time
k2, all three alternatives must use A3. MPC1 successfully returns a result
for state x0, but then fails to respond to state x1 in the following step. At
this point, there is no local MPC2 result available. At time k3, execution
Alternative (c) is ready to apply A2, while Alternatives (a) and (b) must
apply A3 again.

Due to the half rate of MPC2, after at most two intermediate samples for
Alternatives (a) and (b), and one sample for Alternative (c), the device MPC
should provide a result. If it does not, the final fallback mode, A4, is used.
This final action uses unconstrained LQ control to stabilize the system in
case both MPCs fail. For Alternative (c) in Figure 11.2, A4 would be applied
at time k3, had the local MPC failed. Similarly for Alternatives (a) and (b)
this can happen at time k4.

One limitation that is not considered, is the possibility that the solver
could detect an infeasible problem and abort before its deadline of 2Ts has
passed. If this had been the case, A4 could have been applied earlier. A second
limitation is that the control signal from MPC2 is discarded if A1 is applied
while waiting for MPC2 to finish. This happens at time k2 for Alternative (b)
in Figure 11.2. MPC2 has had time to evaluate state x0 when MPC1 fails to
deliver a result for state x1. x0 was already applied through a response from
MPC1 in the previous step, and the result from MPC2 is therefore invalid. An
alternate choice is to view the previous input from MPC1 as a disturbance,
not an overriding signal, and apply MPC2 for state x0.

With the modes in place, it remains to define the function ζ(uσ=1, xk)
for the switching sequence, A3. Four versions of this case action are listed in
Table 11.2. The first, A3.1, applies the unconstrained LQ controller during
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Table 11.2 Four choices of action A3 in Table 11.1. kr is the latest re-
sponse time of MPC1, when uσ=1 was received.

Case κ Description

A3.1 Kdxk Use LQ control
A3.2 u∗σ=1(0) Hold the constrained control signal
A3.3 u∗σ=1(k − kr) Apply open loop control
A3.4 u∗σ=1(0) ∨ u∗σ=1(1) Conditional one step open loop

switching. The second, A3.2, simply holds the previous control signal. The
third, A3.3, uses the pre-calculated control signal sequence from the last
invocation of MPC1, i.e., runs MPC1 in open loop, while waiting for MPC2

to complete. In the fourth mode, A3.4, the control signal is held during the
execution of the local MPC. With this option, κ can choose to apply one
step of open loop, and then hold the control signal. The choice depends
on which Alternatives (a)-(c) that is used. For Alternative (a), κ applies
uσ=1(1). For Alternative (c), it applies uσ=1(0). For Alternative (b), it applies
uσ=1(0) if the local MPC started in the time slot when the latest network
response was received, otherwise it applies uσ=1(1). This ensures that, in the
nominal case, the state prediction used by the local MPC is correct. More
advanced control laws than the ones in Table 11.2 are possible, e.g., one could
use soft constraints, robust MPC, or decaying strategies such as the one in
Chapter 10.

11.3 Evaluation

The simulations are implemented in Simulink, using a continuous time plant
model and TrueTime [Cervin et al., 2003; Department of Automatic Con-
trol, Lund University, 2019] to implement the switching controller. Matlab’s
quadprog solver is used for the MPC implementation. Simulations are used
in order to be able to easily compare the various controllers’ nominal behavior
and how they behave during switching.

Constraints in the evaluations are set to to xub = xlb = [0.55 1 0.7854]
and uub = −uul = 10. The continuous-time costs are are Qc =
diag([1500 20 0]) and Rc = 1, chosen empirically. The rates 30 Hz and
15 Hz are used in the evaluation with controller horizons 10 for MPC2 and
20 for MPC1. The setpoint for the recovery LQR is not updated while MPC2

is producing a result.

Performance metrics

Three metrics are used for performance evaluation: the integrated continuous-
time cost, the integrated constraint violation, and the maximum constraint
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violation. The cost metric

C(t) =

∫ t

0

(x(s)TQcx(s) + u(s)TRcu(s)) ds. (11.11)

provides a comparison to the cost using the shared performance objective.
The constraint violation metrics measure the robustness of the approach.
Preferably, there should be no constraint violations, but since the system can
enter sequences of both open loop control and unconstrained LQ control, this
is unavoidable. The integrated constraint violation and maximum violation
metrics are defined as

V(t) =

∫ t

0

v(s) ds (11.12)

and

Vmax(t) = max(v(s)), s = 0, . . . , t, (11.13)

where the violation v(t) is

v(t) = max(0, |x(t)| − |xub|) + max(0, |x(t)| − |xlb|). (11.14)

The max operation is applied element wise, and v(t), V(t), and Vmax(t) are,
thus, vector valued. Only the first value, the controlled state x1, is used in
the evaluation.

Network and plant disturbances

In the evaluations, a random disturbance enters the system as w, affecting
the input to the plant such that

x((k + 1)Ts) = A1x(kTs) +B1(κ(·) + w(kTs)), (11.15)

i.e., the disturbance adds a random offset to the input.
The simulated scenarios are chosen to, in particular, evaluate the per-

formance during switching between the controllers. This is done by using a
fifty-fifty chance of packet loss, or in terms of network request latency, τ ,
P (τ < Ts) = 0.5. In practice, it is expect that under ordinary conditions,
control is performed by the cloud MPC, except for occasional deadline over-
runs. Similarly, if the network is down, the control will be done by the client
MPC. For comparison, results are provided also for the uninterrupted cloud
MPC and client MPC.

Synthesis validation

Before studying the switching design, the individual controllers are evaluated
to see that they work according to expectations. Figure 11.3 shows the step
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Figure 11.3 Step response of LQc and derived controllers. The MPCs
apply the control signal after a one sample delay. Left: Evolution of state
x1 (the ball position). Right: The applied control signal.

responses of four nominal closed loop systems, in terms of state x1 and the
control signal u. The controllers are designed according to the procedure in
Section 11.2. As seen in the right plot of Figure 11.3, the two unconstrained
LQ controllers violate the input constraint, and u is therefore saturated. This
is illustrated by the dashed lines showing the control signals requested by LQc

and LQd.
The response of the discrete-time LQR is very close to the continuous-

time counterpart, which is seen from LQc overlapping LQd in the left plot.
The same does not apply to MPC1, due to its built-in delay of one sampling
period, and the difference is even more prominent for MPC2, since the sam-
pling period is twice as long. For the cost metric given by Equation (11.11),
the excess cost of LQd compared to LQc is only 0.5‰. Due to the delays,
the two MPCs have additional costs of 11% for MPC1, and 26% for MPC2.
Introducing the remote controller, MPC1, can reduce the excess cost from
MPC2 by up to 15 percentage points, in this scenario.

Switching alternative

To see how the switching works and study its effect on performance, an ex-
periment consisting of repeated step changes is used in combination with
the network disturbance. A snapshot from this experiment is shown in Fig-
ure 11.4. The figure shows the response for six different controllers. LQd

provides a reference, unconstrained controller. MPC1 shows the result with
reliable connectivity to the cloud, and MPC2 the result when the cloud is
disconnected. The remaining controllers implement the execution Alterna-
tives (a)-(c) from Section 11.2.
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Figure 11.4 Example of switching control during a step change. Left:
Holding the latest control input when switching. Right: Applying open loop
control when switching.

The upper plots show the trajectory of x1, with min and max showing
the constraints on x1. Below this trajectory, there is a timing plot labeled
Net, which shows the network response. When this signal is high, timely
responses are received from the cloud. When this signal goes low, it indicates
that MPC1 (for cases A, B, and C, in the figure) cannot act due to long
delays in the network. Below the network plot are timing diagrams showing
the current source of control input for the switching controllers. The plots
are centered around a gray line. On the gray line, the device MPC is used, i.e.
MPC2. When the plot goes above the gray line, the system is using control
input from MPC1. This can be in closed loop or, when MPC1 fails to respond,
a held signal or the use of a previously calculated open loop sequence. When
the plot is below the gray line, constrained control has failed and the system
uses LQd.

On the left side of Figure 11.4, the strategy A3.2 from Table 11.2 is used,
i.e. when switching, κ(·) holds the previous output. This choice is risky, es-
pecially for Alternatives (a) and (b). The absence of control causes MPC
infeasibility in both MPC1 and MPC2 during 33.3 s to 34.2 s. This results
in a sequence of invocations of the unconstrained LQ controller, and, conse-
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quently, constraint violations. Alternative (c) does not violate the constraint,
since it is able to apply local MPC control faster when the network fails.
This is observed by looking at the sequence of events leading up to the un-
constrained LQ control. On two occasions when Net becomes low, mode (c)
more quickly changes to local MPC control, compared to (a) and (b). These
occasions are marked by two arrows under the plot for (c). Since the network
is unresponsive, (a) and (b) hold the control signal constant, while (c) is able
to apply the local constrained control. The faster response of (c) allows it
to remain on a feasible path, and it does not have to apply unconstrained
control. Note that no disturbance is added in this scenario, except for the
disturbance caused by not being able to apply closed loop control in the
switching sequence.

On the right side of Figure 11.4, the simulation is rerun using the switch-
ing strategy A3.3 from Table 11.2, i.e. applying open loop control. Alterna-
tive (a)-(c) all maintain MPC control. In the timing plots, there are now
smaller steps from the maximum level to the central, gray line. This shows
when the system runs in open loop. The number of open loop inputs and
use of the client MPC differ between the alternatives, but there are no drops
below the gray line, i.e., no unconstrained control is necessary. Being a nom-
inal simulation, this simply indicates that the system does not deteriorate
because of the switching, and that the implementation works.

Performance

The performance of the system must be considered in terms of both the
cost and the amount of constraint violations, as defined in Section 11.3. This
section looks at longer simulations, and shows the final values of the three
defined metrics. The experiments execute 360 s for a total of 10.8k samples.
In the step response simulations, the step looks as in Figure 11.4, and the
setpoint is held for two seconds, causing a total of 180 step changes. In the
disturbance rejection simulations, the setpoint is constant at 0.54, close to
the x1 constraint of 0.55. The disturbance w in Equation (11.15) is drawn
from the standard normal distribution, i.e. N (0, 1), with the same sequence
used in all examples.

Figures 11.5 and 11.6 shows the results of the step response simulations.
All alternatives are better than the device MPC, with the lowest costs oc-
curring when using A3.1. This case uses unconstrained LQ control during
switching, which gives a low cost in Figure 11.5, but is also the reason for the
constraint violations in Figure 11.6. Compared to unconstrained LQ control
though, the total violations are small. Being a nominal scenario, MPC1 and
MPC2 do not violate constraints, and neither does open loop control (A3.3).

In the simulations shown in Figures 11.7 and 11.8, the setpoint is con-
stant, but the disturbance w is active. The system can be forced into sit-
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A3.1 A3.2 A3.3 A3.4
0.8

0.9

1 MPC1 MPC2 (a) (b) (c)

Figure 11.5 Cost of 180 step changes relative to MPC2.

1

A3.1 A3.2 A3.3 A3.4
0

0.2

LQd MPC1 MPC2 (a) (b) (c)

Figure 11.6 Constraint violation metric relative to LQd, after 180 step
changes.

uations where the constraints will be violated, also when controlled by the
individual MPCs. When this happens, the MPC problem becomes infeasible
and LQd is applied for recovery, also in the MPC1 and MPC2 simulations.
The results in Figures 11.7 and 11.8 show three things. First, all switched
controllers outperform the local device MPC. This applies to both cost and
constraint violations. Second, none of the switched alternatives fare worse
than the unconstrained LQ control in terms of the constraint violations in
Figure 11.8. Third, while using unconstrained LQ control as the recovery
mechanism can cause some violations in the nominal case (see Figure 11.6),
its fast response is useful in the disturbance scenario. The effect is seen in
Figure 11.8, where mode (c), although fast to apply local constrained MPC
control, consistently has the worst constraint violation. Hence, the faster, un-
constrained LQ control is preferred over the constrained local MPC to handle
the disturbance.

In summary we see that, with a fifty percent chance of loosing the cloud
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A3.1 A3.2 A3.3 A3.4
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1 MPC1 MPC2 (a) (b) (c)

Figure 11.7 Cost, relative to MPC2, after a sequence of 10.8k random
input disturbances.

A3.1 A3.2 A3.3 A3.4
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1.5 LQd MPC1 MPC2 (a) (b) (c)

Figure 11.8 Constraint violations metric, relative to LQd, after a se-
quence of 10.8k random input disturbances.

MPC response, all cases perform well in the nominal case. The choice of
switching mechanism A3.1 provides the best performance in terms of cost,
but can cause constraint violations, as a consequence of the unconstrained
control during the switch. As expected, A3.2, which does not apply any
control during the switch, has the worst score in terms of both cost and
constraint violations. The better nominal performance of Alternative (c),
compared to Alternatives (a) and (b), is attributed to a faster response from
the device MPC when the cloud MPC fails. The two MPCs are derived to
be very similar, and so the momentary use of the device MPC causes only a
small disturbance for the high frequency control. In the disturbance scenario
though, Alternative (c) does not outperform the others. Its frequent use of
the device MPC is now counterproductive, since the delay of the controller
is problematic in the presence of the disturbance. To reject the disturbance,
A3.1 performs well in the combination of cost and constraint violations. When
the MPC control fails, this case has the benefit of a non-delayed optimal
LQ controller to quickly counteract the disturbance. Importantly though,
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A3.1 A3.2 A3.3 A3.4
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Figure 11.9 Maximum constraint violation over the course of the distur-
bance simulations.
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Figure 11.10 Maximum constraint violation over the course of the step
change simulations. These are shown relative to the constant overshot of
LQd.

all cases performs better than the standalone local MPC in terms of both
cost and constraint violations, in the nominal case and in the disturbance
scenario.

A downside of the approach is illustrated in Figure 11.9. The bars in this
figure show the maximum constraint violation of Equation (11.13) relative
to LQd, over the course of the disturbance experiment. It is seen here that
all modes have a worst case constraint violation that is larger than that of
the unconstrained LQd in the disturbance simulation. Because of its lower
sampling rate, this is also the case for the low frequency device MPC. Several
of the modes however, also have a somewhat larger value than MPC2. Mode
(a) provides the best result as a consequence of frequently using the LQR.

The results are completed by Figure 11.10. The figure shows the max-
imum constraint violations in the step simulations. This figure should be
approached with care. The violations happen on single occasions, at different
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times during the execution, and depending on the dynamics caused by failed
requests and frequently changing the setpoint. One thing to note is that the
open loop results in A3.3 are small but non-zero. This is due to differences
between the responses from the low and high frequency controllers. While it
is so small that it is barely visible, there is also a small error for MPC2 due
to infeasible optimizations near constraints.

Alternative (a) in A3.4 has a low value and this mode also avoids pre-
diction error. Alternative (c) holds the control signal in both A3.2 and A3.4.
Alternative (b), which shows the largest values, alternates between the other
two sequences depending on request loss timing. In A3.2, (a) and (b) are
worse than (c) because they hold the control signal more often. Finally, A3.1
shows that the quick application of constrained control in alternative (c) is
good for the maximum violation in this nominal scenario. The values when
using the LQR would be lower if there was more time for the state to settle
between setpoint changes. One way to improve this result is to hold the set-
point in the LQR recovery, but this will also increase the cost in Figure 11.7.

11.4 Conclusions

This chapter has proposed and demonstrated a two-tiered MPC architecture.
The two MPC controllers were designed to be as equivalent as possible, except
for the different sampling rate. This strong similarity was aimed at limiting
the detrimental effects of arbitrarily switching between the two controllers.
The lower rate MPC cannot always provide a result, so a third alternative
must be applied at times. The MPCs are implemented using hard constraints,
and can become infeasible. Alternatives for applying a control signal in these
situations were considered. With a twofold reduction in sampling frequency
on the client, the technical considerations for the execution of the client MPC
where detailed and switching alternatives were evaluated.

As expected, all combinations improved on the performance of the local
device in terms of accumulated cost and error. Possible concerns are around
maximum constraint violations which could increase in relation to the con-
strained local controller. From available results, mode (c) in combination
with A3.4 has the positive aspect of consistently showing low constraint vio-
lations. This is the mode that synchronizes the start of the local MPC with
the remote, and which uses the conditional one step open loop for the in-
termediate control action. Mode (a) in combination with the LQ recovery,
A3.1, has the benefit of the client MPC being mostly idle, while providing
low cost and good disturbance rejection. A downside is that the LQ might
accelerate the system to become infeasible. Mode (b) represents switching
between two independently executing controllers. This mode does not excel
in any combination.

167



12
Explicit Recovery

So far, the offloaded optimization has executed an ordinary MPC problem,
with recovery implemented only on the client. Stability has been asserted
through experiments and constraint satisfaction has not been required in the
transition from remotely assisted to local control. In this chapter, a recovery
action is evaluated in the cloud, by way of introducing it into the MPC. This
is aimed at providing a recovery mode in which the nominally system is stable
and can ensure that system constraints are not violated, also in the event
that the remote controller is suddenly disabled. This is implemented on the
reference platform, but extends directly to more complex systems because of
the explicit, on-line evaluation.

Different from Chapters 10 and 11, the goals of the remote do not have to
coincide with the basic client controller. The reason for having a remote with
a different objective can be context dependent. For instance, an autonomous
transport might be allowed more overshot in its response when the position
and actions of its peers are known. If disconnected from the remote systems,
the actions, for safety reasons, could be very different. Another reason could
be the model of the plant. The device controller may be based on a local linear
model, while the cloud evaluates a non-linear version. The more detailed
model could allow for a different objective.

12.1 Setup

As usual, the setup starts from two independent controllers, the basic, local
controller, and the more advanced controller, executed in the cloud. In this
chapter, the basic controller is referred to as the device controller. The re-
sponsibility of the client is as usual to initiate optimizations in the cloud and
apply the subsequent control actions. Different from previously is that the
graceful degradation (or recovery mode), κ2 in Figure 9.1, is provided by the

This chapter is based on [Skarin and Årzén, 2021]
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Figure 12.1 Supporting, remote controller structure

result from the cloud. To ensure constraints, the control problem executed
in the cloud must evaluate the response of the recovery mode κ2.

The following examination continues to exercise the reference system,
assuming full state knowledge and a linear device controller. The setpoint
governor from Chapter 10 is used to limit the error entering the system,
so that the device controller can handle setpoint changes without violating
constraints. The reference system can then be modeled as illustrated in Fig-
ure 12.1. In the figure, uc provides the command signal to the system. The
error signal generator provides the governing function, translating the com-
mand into a state error, xe, which is passed to the device controller. To do
so, it obtains a state estimate, x̂, from an observer and information from the
remote controller. The remote can also provide a feed-forward signal, ur. The
arrow leading from the client to the remote controller initiates new calcula-
tions in the cloud, and the arrow leading back provides results from MPC
optimizations.

The configuration in Figure 12.1 can be likened to the state-space ver-
sion of a 2-Degrees-of-Freedom (2-DoF) structure, presented in [Åström and
Wittenmark, 2011], with the model and feed-forward generator replaced by
an active part; the MPC and the error signal generator. The original 2-DoF
translates uc into a desired state xm and an open loop control signal uff ,
then applies

u(k) = l(xm(k)− x̂(k)) + uff (k), (12.1)

where l is the device controller in Figure 12.1. This is straight forward to
recreate, using the control signal and state predictions from the MPC. How-
ever, we are interested in a remote that can take full control, i.e., also handle
disturbances, and a client that is capable of tracking the reference with or
without the remote assistance. Therefore, uc must be passed to the local
controller, allowing it to also act on the command.

The typical, basic assumptions are used:
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A-1 The remote and the client are synchronized in sampling and actuation
time,

A-2 The control input has a deadline of one sampling interval, from sam-
pling to actuation, late arrivals are discarded and equal to packet loss,

A-3 The actions of the remote controller are always preferred, and

A-4 The remote controller is not necessary in order to perform tracking and
stabilize the system.

Assumption A-1 is easy to achieve with an offloading controller. Assump-
tion A-2 follows how the offloading control has been implemented so far.
Assumption A-3 is natural as long as the remote provides better perfor-
mance, but the requirement makes the client behavior predictable. The final
assumption, Assumption A-4, states that the remote predictive controller
can be removed from Figure 12.1. This implies that there is some state to
which the client can return the plant, and the configuration of the error signal
generator, then disable the remote controller function. The assumption does
not imply that the remote can be arbitrarily removed after it has started to
apply its control action.

12.2 Controller

Preliminaries

Assuming perfect state information, the client control law is given by

ul(k) = l(xe(k)), (12.2)

where xe is the state error generated by the error signal generator, and
l : Rn → Rm is a controller, translating state error to a control signal vector.
The device controller could take any form, but in accordance with Assump-
tion A-4, it is asymptotically stable for the set L ⊂ Rn of admissible initial
states. If hard constraints are defined on the system, L must be in the inte-
rior of the constraint set and positively invariant (Definition 2 in Section 4.2)
under the client control law (12.2).

To ensure the positively invariant property, the state error is limited by
the error signal generator through a function ψ1,

xe = ψ1(uc, x̂) (12.3)

This function is active when the client is acting stand-alone1. The admissible
set of the client, through the use of (12.3), is referred to as L +. This set is

1This chapter concentrate on tracking a reference signal and does not consider the
details of how ψ1 impacts the regulator problem.
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assumed to be positively invariant under (12.3) and (12.2). Finally, L + ⊆ Xc,
for some system constraints Xc and all sets are closed, convex, and contain
the origin in their interior.

The remote controller is based on the optimal control problem

minimize
u0,N
r ,κ0,N

N∑
k=0

J(zk, u
k
r , κ

k) (12.4a)

subject to zk+1 = fr(zk, u
k
r , κ

k), (12.4b)

g(zk) ≤ 0, (12.4c)

h(ukr , κ
k, zk) ≤ 0, (12.4d)

z0 = x̂(t), (12.4e)

xN ∈ Tf , (12.4f)

where x̂ is the observed plant state, J is the cost function, κk is a local control
law, g and h implement control and input constraints, and Tf is the terminal
set. The model used in fr can be different from the one used in the local client
(f) but is assumed to be at least as precise. State and input constraints are
freely defined, independent of the assumptions and requirements of the client
controller. The terminal set, Tf , is assumed to bring the plant state into the
admissible set of the client controller. It is straight forward to assume no
knowledge about the error signal generator and design the MPC with the
standard requirement that Tf ⊆ L .

Returning to Equation (12.3) and Equation (12.1), if κk is l, and ψ1 is
realized as

ψ1(uc, zk, x̂k) = x̂k − zk, (12.5)

i.e, the difference between the predicted and observed state, then, using the
nominal prediction and control signal, the 2-DoF structure is obtained. This
can be used to implement the action of a robust tube-MPC. A tube-MPC
uses an ancillary control law to keep the actual state x̂k close to the nominal
zk. It accounts for the disturbance rejection of l(xe) by tightening the state
and input constraints in the optimization. One might consider replacing l
online, and supporting an M-step sequence u0,M

r , x0,M
m , where a maximum

disturbance is assumed in each step. Such a strategy can be used to robustly
handle delays and packet losses but requires a reliable combination of dis-
turbance model and compensating controller. It also requires availability of
predictions and control signals over the horizon. We consider now an alter-
native that does not attempt to follow the predicted nominal path if the
MPC fails but instead reverts to use the device controller. There must be a
recovery option when the remote goes off-line and simply switching back to
(12.2) in combination with (12.3) is not a safe alternative.
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Figure 12.2 Predicted trajectory and four recovery paths. x1, x2 and x3

are plant state variables. Yellow areas show the recovery terminal set. Some
of the trajectories extend beyond the figure on the horizontal time axis.

Control strategy

The aim is to derive a safe control strategy from the structure in Figure 12.1,
which allows for the remote system to come and go. The remote is limited to
making temporary changes in the error signal generator, keeping the device
configuration unchanged. This is not a necessary limitation, it is straight
forward to replace the device controller l if the situation allows. A reason
for manipulating only the error signal generator is that this separation is
straight forward with the linear device and client controller. This setup, with
linear local control, does not limit the definition of the assisted controller but
makes the recovery control sequence easy to implement and fast to evaluate.

To explicitly ensure that the system is able to recover, (12.4) is extended
with a set of constraints that define recovery paths. An example of such
recovery paths is shown in Figure 12.2. The figure shows the result of one
optimization, with N = 10, and four out of ten recovery paths (one for each
step in the horizon). Solid black lines show the primary path for each system
state, x1, x2, and x3. The included recovery paths are at offset zero, two,
three and five, on the prediction horizon. The figure shows how, with each
step on the solid black line, the controller has found a recovery path that
ensures that the plant state is within the device constraints (yellow) within
five time steps. This creates a nominal guarantee that the constraints in the
remote controller (not shown in this figure) will not be violated in the event of
failure. The objective of the recovery is only to keep the system operational.
It is of essence that the inclusion of a recovery mode does not substantially
degrade remote control in closed loop, but low performance during recovery,
in terms of the objective defined for the remote control mode, is acceptable.
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Controller extension For every step in the prediction horizon of Equa-
tion (12.4), there must be a recovery path that 1) stays within constraints,
and 2) ends in a safe terminal set. The controller must evaluate N recovery
paths. The paths are denoted wkj , where k relates to the state zk in (12.4)
and j indexes steps in the recovery path. The additional set of constraints

wkj+1 = fr(w
k
j , κ2(wkj )),

wk0 = zk, wkNr ∈ Tr,
(12.6)

where j = k, . . . , k + Nr, defines recovery paths, using the recovery mode
κ2. The recovery horizon, Nr, sets the number of time steps within which a
recovery path must end in an acceptable state, as defined by the new terminal
set Tr. In addition, the states wkj must also satisfy the MPC constraints.
Inserting into Equation (12.4) and fixating the local controller to κ3, the
remote control problem becomes

minimize
u0,N
r

N∑
k=0

J(zk, u
k
r , κ3(zk)) (12.7a)

subject to zk+1 = fr(zk, u
k
r , κ3(zk)), (12.7b)

wkj+1 = fr(w
k
j , κ2(wkj )), k ≥ 1 (12.7c)

g(zk) ≤ 0, h(ukr , κ3(zk)) ≤ 0, (12.7d)

g(wkj ) ≤ 0, h(κ2(wkj )) ≤ 0, (12.7e)

z0 = x̂(t), wk0 = zk, (12.7f)

xN ∈ Tf , wkNr ∈ Tr (12.7g)

j = 0, . . . , Nr. (12.7h)

Device recovery First, consider inserting the device controller into Equa-
tion (12.7c) to provide

wkj+1 = fr(w
k
j , l(γ

k
j w

k
j )), (12.8)

where paths are traversed using the device controller, l, but predicted using
the remote’s model of the plant. A scaling γkj is added, allowing that the client
modifies the observed state during the recovery. This extends the governing
function ψ1. Note that the original limiting function (12.3) is not taken into
consideration in the remote and is not in effect during this sequence. Instead,
ψ2(γi,i+Nr , xe(k), k) = γik−ixe(k), can adjust the client response, and since

l is linear l(γkj xe(k)) = γkj l(xe(k)). If a solution exists for a set of gains γkj ,
they translate into a sequence of setpoints that can be generated by the error
signal generator.
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Using a sequence of scalar γkj , the recovery transition can scale the con-
trol action but the relative objectives of the controller do not change. These
objectives will limit the potential of the recovery but also has other compli-
cations. The equality constraint for the recovery paths becomes

wkj+1 = Awkj + γkjBl(w
k
j ) (12.9)

and adding γkj as optimization variables does not fit the linear and quadratic

reference MPC. Also, either γkj must be predefined and not change between

optimizations, or γkj must be included in the optimization cost function in
(12.4). In practice, the state will also deviate from the nominal path, which
can cause problems if the recovery ends outside the terminal set Tf . The
experiments will show examples where the device controller is used directly,
to illustrate some limited gains when doing so, but γkj is not optimized for.
Instead, further specialization of the recovery mode is added.

Recovery mode To really be useful in recovery, the client must be able to
counteract actions taken by the remote controller. This may not be the case
when executing using the objective of the device controller. The consequence
is that the admissible control of the remote controller will be limited. A
specialization is created by replacing γkj with a matrix, denoting it Γ. Two
ways in which it can be ensured that the recovery provides a proper counter
action are considered.

R1) Use the matrix transformation Γ to define a recovery controller. Let
the client control law be ul(k) = KΓxe(k), xe(k) ∈ Rn and Γ ∈ Rn×n.
A set of temporary objectives can be defined to generate a recovery
control law Kf , then find Γ so that KΓ = Kf . Assuming that K ∈ Rn
and contains no zeros, Γ is a diagonal matrix scaling each element of
K. This fits within the defined framework of using the error signal
generator as a means of implementing the recovery. It is optional to
make Tr in Equation (12.6) equal to the terminal set Tf .

R2) Define a new command signal ũc which tells the system where to go if
the remote is lost. For instance, returning to the origin in L +. Let χ
be a function translating the command signal to a state setpoint. The
terminal set Tr in Equation (12.6) is defined as a region around χ(ũc).
The recovery command ũc is used in place of uc during the recovery
procedure as the system approaches Tr. Although a new setpoint is
defined, the recovery sequence only has to reach Tr.

Both of these choices can provide a necessary counteraction for recovery
and, different from the issue with γkj , are compatible with an ordinary linear
system. In R1, if Tr is different from Tf , the recovery sequence can be short,
relative to the number of steps necessary to reach the final setpoint defined by
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uc. Similarly, the action in R2 does not intend to reach the recovery setpoint,
and depending on Tr, only a few steps of recovery might be necessary. While
R1 can provide important dampening in recovery, R2 can also ensure that,
within a short time frame, the state moves sufficiently far away from some
constraints. The two can be usefully combined.

Notes on implementation In an implementation, the remote must pass
Γ and/or ũc to the error signal generator. Knowing Tr is optional. Nominally,
the recovery can run over the full horizon Nr to reach Tr. If Tr is known,
the recovery sequence can also end early, or execute more than Nr steps
to handle disturbances. Kf , ũc and Tr are chosen freely. Notice also that all
recovery states are contained in the constraints of the remote controller, even
if Tr or Tf are differently defined. As such, it is also possible that the remote
enforces some tighter constraint during its actions, including the recovery
back to client mode, than what was initially considered in design of the
client.

Properties of the strategy

This section provides some notes on extremes of the proposed strategy and
stability considerations. First, consider what happens if the horizons are re-
duced to a minimum. Using Nr = 0, which is valid in Equation (12.6), creates
an MPC controller limited by the domain of Tr. This MPC verifies that all its
predicted states are admissible by the client controller. This may intuitively
not seem useful, but three things should be noted:

1) the restricting domain, Tr, may be different from the constraints con-
sidered when designing the client,

2) the remote can work with an improved plant and disturbance model,
and

3) the remote can implement a different control strategy.

Equation (12.4) can be reduced to a minimum by setting N = 0 and removing
the terminal set Tf . The remote then verifies that a state is admissible for
the defined recovery controller, making the recovery controller an explicitly
verified alternative to the local controller. With N = 1, and an excluded
terminal set Tf , the remote resembles an implementation of an MPC with
a control horizon of one. Note that the closed loop response of the client
should be included in the MPC terminal cost and the terminal state is verified
through Tr.

Now consider stability implications. The following is assumed:

1) the MPC defined by (12.4) is stable in closed loop,

2) the terminal set Tf is an invariant set for the client controller (12.2),
and
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3) the client is invariant in L+ under (12.3).

As is customary, the nominal system and a perfect model of the plant (in the
remote) is assumed. Let zj|k−1 be the solution at time k − 1 with j index-
ing the predicted time steps. When adding the constraints defined by (12.6),
preserving the stability of the remote controller depends only on recursive fea-
sibility, since no cost is added by (12.6) and the terminal conditions remain.
This depends on zj|k−1 remaining a valid solution. With zj|k the solution
at time k, it must be ensured that zk+N−1|k = zk+N |k−1 is a solution. For
this, there must exist a u such that zk+N |k = Azk+N |k−1 + Bu and where

zk+N |k emits a valid recovery path wk+N
j . The terminal conditions require

that zk+N |k is in the terminal set Tf , so we can state the stability criterion:
the remote is guaranteed stable in closed loop, if all states in the terminal
set, Tf , admit a valid recovery path. With this condition, a state zk+N |k that
is valid under (12.4) is also valid under (12.6).

Now assume that the requirement does not hold, i.e., the solution
zk+N |k ∈ Tf does not exist or Tf is not defined. This results in a remote
controller failure, forcing the system to enter the recovery mode. The recov-
ery mode starts in zk and follows a path that has been explicitly verified to
reach the terminal set Tr. It is required that client control is admissible and
stable in Tr, and we assume that the set is closed, so there can be no ambigu-
ity. Then, traversing the full recovery path, i.e., applying uj = KΓ(x̂−χ(ũc))
for j = k, . . . , k + Nr, ensures x̂ ∈ Tr. From there, the client will approach
the original setpoint χ(uc) and eventually the state enters Tf . This provides
a safe option.

If the remote control is lost but quickly recovers, it is preferable that the
remote controller action can be applied. The just stated safe option does not
allow this. To enable a switch back to the MPC it must be ensured that
there is no wind-up of the cost. Denote the remote solution at time k as u∗,
and the remote cost of state xk as Vr(xk). With closed loop remote control
Vr(Axk+Bu∗(0)) < Vr(xk) through ensured stability. If failure occurs at time
k, stability becomes an issue of the recovery control, Vδ(Ax̃k + KΓx̃k) <
Vδ(x̃k), where x̃ represents the translated state (see Section 12.3) and Vδ
the cost defined in the recovery mode. Denote the state xk after j steps of
recovery control as xk+j|δ The stability during recovery is assumed, as far as
reaching the necessary states in Tr, but it is not ensured that

Vr(xk+j|δ) < Vr(xk), (12.10)

i.e., the cost from the perspective of the remote controller is not guaranteed
to decrease during recovery. The same thing applies when the client controller
takes over, until reaching Tf . While it may not be know beforehand if (12.10)
holds, it can be evaluated online. This provides a practical, online solution,
as has also been used in performance enhancing switched MPC [Magni et al.,
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2008]. If the cost does not decrease since the latest remote control action, no
new action is admitted until the terminal set has been reached. The effect is
that the system exhibits and evaluates an unknown dwell time.

A consequence of this is that since there is always a valid return path to
the terminal set, the terminal constraint can be removed from the optimiza-
tion (12.4) when combined with (12.6), allowing a reduction of the control
horizon N . Recurrent feasibility will not be ensured, but stability can be
maintained through the recovery path. This could be important, since the
addition of (12.6) can create a large optimization problem, increasing in size
with N . On the negative side, the problem is at risk of often becoming in-
feasible, due to a short N , which will degrade performance.

Fewer recovery paths can also be considered. For instance, redefining
Equation (12.7c) to

wkj+1 = fr(w
k
j , κ2(wkj )), k = 1 (12.11)

modifies the MPC to evaluate a single recovery path. This is the path that
will be used in the next time step, if the remote fails to update with new
control input. The problem with this is that the controller is not recursively
feasible. There is a good chance that the system ends up in a state that does
not admit a new recovery path. When this happens, the client must start its
graceful degradation which leads to reduced performance.

Implementation

The evaluation implements the scheme in an MPC with linear model,
linear constraints and a quadratic cost function. The implementation,
which is rather straight forward, is provided in this section. The con-
troller was implemented using quadprog in Matlab [MATLAB, 2020] as
quadprog(H, f,A, b, Aeq, beq, z0).

The matrix H and vector f set quadratic and linear costs. Only H is
used, to form J = xTHx, the linear term f is not used. x must contain the
original states, recovery paths, and control inputs. It becomes

x =
[
zT (w0)T . . . (wN )T uT

]T
(12.12)

with z = z0, . . . , zN , wk = wk0 , . . . , w
k
Nr

, u = u0, . . . uN−1. The introduction

of w0, . . . , wN into the optimization variables expand x to x ∈ RNx×1 and
H ∈ RNx×Nx , where Nx = nN(2 + Nr) + mN . Here, n is the number of
plant states and m the number of inputs. All the new entries introduced by
wk in H are, however, zero, since the recovery paths do not introduce a cost
penalty.

A and b are the inequality constraints, Ax ≤ b. Every entry is of the form,[
In 0
0 −In

]
≤ cx(k) and

[
Im 0
0 −Im

]
≤ cu(k) (12.13)
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where In is the n × n identity matrix and cx and cu are state and input
constraints. Here, the constraints on zk are replicated for wkj , j = 0, . . . , Nr−
1, and N terminal constraints, from Tr, are entered for wkNr .

In the equality constraints, Aeq · x ≤ beq, the matrix Aeq contains a
mapping of zk to wk0 and a set or rows on the form[

. . . −In A−BKΓ . . .
]
, (12.14)

expressing the action of the recovery mode in terms of the plant model A,B of
the remote. On the r.h.s, beq depends on whether there is a defined recovery
command. With no recovery command, all new entries in beq are zero. If
there is a recovery command, it has to be considered that the initial state
error, z0, is set in relation to command uc as z0 = x̂− χ(uc), while the error
observed during recovery must be in relation to χ(ũc). To allow wkj to be set
in relation to the origin, i.e., in relation to χ(uc), the state transition during
recovery is written as

wkj+1 = (A−BKΓ)(wkj − x∗), (12.15)

with the observed error, x∗e = wkj − x∗, in relation to the recovery point x∗.
The equation resolves to

− wkj+1 + (A−BKΓ)wkj = (A−BKΓ)x∗, (12.16)

where the l.h.s. is what was entered into Aeq above (Equation (12.14)) and
the r.h.s. is constant. The recovery setpoint has to be translated in relation
to the origin χ(uc) to get

beqi = (A−BKΓ)(χ(ũc)− χ(uc)) (12.17)

for all i relating to the recovery path. These are the necessary steps to im-
plement the recovery control using quadprog.

In addition to quadprog, lsim and tools from Jittertime [Cervin, 2019]
were also used in the implementation.

12.3 Evaluation

The following simulations show results from recovery enabled control imple-
mented in the error signal generator framework. A brief reiteration of the
setup follows.

Setup

The device controller is an ordinary LQR. The client implements an error
generator function, (12.3), limiting the observed error in state x1. This keeps

178



12.3 Evaluation

Table 12.1 Configurations used in the evaluation. Results using the first
six configurations are shown in Figure 12.3 and Figure 12.4. The last three
are used for the example in Figure 12.6. #vars is the sum of control inputs
uk, predicted states zk and recovery path states wkj , ũc is the recovery
setpoint, Tf is true if ordinary MPC terminal set is enforced. Q∆ show
the costs on x1, x2, x3 in the recovery controller. Device costs are Qc =
[800, 10, 1] and remote Qr = [1600, 10, 1]

N Nr #vars ũc Tf Q∆ Legend

C1 15 - 60 - yes -
C2 - - - - - -
C3 15 5 285 - yes [1,100,10]
C4 1 5 19 - no [1,100,10]
C5 1 15 49 1.2 no Qc
C6 1 15 49 - no Qc

C7 2 5 38 0.8 no Qc
C8 5 5 95 0.8 no Qc
C9 2 10 68 0.8 no Qc

the plant and device controller within constraints. The remote controller is
assumed to have a better model of the plant, other information, or more
resources, allowing it to work with a different set of constraints. The remote
also uses a different cost function, with more focus on reducing the error
in state x1 compared to the client. Using the remote (12.4) to control the
plant, as opposed to the device controller, improves performance. Focus is
on the feasibility and experienced performance loss when introducing the
recovery. The terminal set Tf and terminal cost of the remote MPC is derived
by standard means from the device LQR, i.e., using the invariant set and
asymptotic cost. The controllers execute at a rate of 10 Hz and the command
signal uc defines the plant setpoint x1 = 1.5. The used configurations are
listed in Table 12.1, with device and remote controller gains in the caption.

Performance without failures

Figure 12.3 show the effects on MPC performance when recovery paths are
introduced. The plots show the three state variables. Colored areas show the
constraints used in the remote (Xc, gray) device controller’s extended state
set (L+, red) and remote terminal set (Tf , yellow). The latter is an invariant
set for (12.2) without (12.3). L+ is not shown for x1 because it is defined to
overlap with Xc. The terminal set Tr is also excluded, and it equals L+, thus
requiring that the recovery ends within the client constraints.

In Figure 12.3, C1 shows the response of an ordinary MPC, which does not
support failure recovery. The client response without remote control is shown
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Figure 12.3 Examples of closed loop control with recovery guarantee.
See configurations in Table 12.1.

in C2. This response is limited by the constraint on x2, implicitly ensured
by the error signal generator. The performance of a recovery enabled MPC
should fall between these two and preferably be close to the ideal response
of C1.

Case C3 is close to achieving this ideal response. In this configuration,
a recovery controller is defined by the cost Q∆, and is allowed five steps to
enter the recovery terminal set. Q∆ sets the objectives that are used to create
Kr and generate Γ, as specified in R1 of Section 12.2. Under the conditions in
Section 12.2 this controller is stable and recursively feasible, and therefore the
nominal performance is guaranteed. The downside is the amount of necessary
calculations. In order to implement the optimization, the problem must be
extended with almost five times as many variables compared to the ordinary
MPC, as seen in Table 12.1.

As was stated in Section 12.2, Tf can be excluded, allowing a feasible
controller with a shorter N . In C4, Tf is removed and, to stress the point, N
is reduced all the way down to one. This controller runs the risk of becoming

180



12.3 Evaluation

infeasible, in which case it must resort to a recovery path that will degrade
performance. In the scenario, there is no noticeable failure and the controller
achieves good performance, although not at the level of C3.

Reasonable performance can also be achieved using a recovery setpoint,
here illustrated with N = 1 as C5. Notice from the configuration of C5 in
Table 12.1 that the recovery horizon is extended to fifteen. This is necessary,
to allow the device controller time to settle in the recovery terminal set
Tr. The recovery setpoint, ũc, is arbitrary, and the response of C5 could
potentially be improved by moving ũc, possibly allowing it to vary over time.

The response in configuration C6 shows what happens if we go to the
extreme, predicting only a single remote control action and not adding any
recovery sequence. The performance is now limited by the device controller’s
response to the setpoint uc, which must be ensured in case of failure. There
is improvement, compared to the unassisted client, but the deviation from
C2 happens late in the sequence. The remote controller evaluates the device
controller’s response using its own constraints and model. This allows it to
override the error signal generator with an improved client response. The
acceleration happens close enough to the setpoint, so that the client does not
apply too much control action.

The take away from this is that, with the cost of a large optimization,
it is possible to achieve a recovery controller with nearly ideal performance.
Because the control response depends heavily on the recovery mechanism, it
is also possible to retain much of this performance in other, less demanding,
configurations. In the last two examples, increasing the horizon N will have
little effect, because the response depends on the device controller’s path to
the recovery setpoint. Instead, without a specialized recovery controller, a
large Nr is necessary, which also has the effect of a potentially long settling
time for the recovery.

Performance with failures

Seeing in Section 12.3 that good performance can be achieved, we now look at
the response in the event of remote failures. These responses are not compared
to the ordinary MPC. Since the ordinary MPC does not provide any support
for failure recovery, comparing to it could be misleading.

The examples in Figure 12.4 simulate external events causing failure.
There are four event sequences, which are shown in Figure 12.5. From the
bottom:

1) a single failure,

2) failure every other request,

3) an arbitrary random failure sequence, and

4) a failure over an extended period of time.
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Figure 12.4 Examples of closed loop control with recovery guarantee
when the system experiences failures due to the external events in Fig-
ure 12.5. See configurations in Table 12.1.
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Figure 12.5 Fail sequences used for the simulation in Figure 12.4. When
the signal is high there are responses from the MPC, when low there is a
failure.

These sequences are applied to the high performing configuration C3. The
second digit in the legend of Figure 12.4, i.e. d in C3.d, shows which sequence
is active.

As seen from C3.1, the single failure has no visible affect on the response.
When there is failure in every other request (C3.2) the performance degrades,
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but it remains far better than the client. The recovery mode is not clearly
distinguishable for states x1 and x2, while there is a notable jagged behavior
in x3. This is due to the recovery mode quickly trying to reduce x2 and
x3 in every other sample. For C3.3 and C3.4 the mode changes are clearly
visible in state x1. From C3.3 it is notable that performance recovers quickly
when conditions improve, and from C3.4 that a short initial remote response
is enough for notable performance improvement. In general, stability and
efficiency are achieved also in the event of failures.
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Figure 12.6 Examples of systems becoming infeasible and not reaching
the setpoint.

Infeasibility and recovery setpoint limitations

The simulations are concluded with two cases where the controller provides
an unwanted response, and an example remedy. This is shown in Figure 12.6.
The client response, C2, is shown again for reference. The second configura-
tion in the figure, C7, is a configuration that use short horizons, a recovery
setpoint and the device controller for recovery. This configuration repeatedly
applies too much control action and becomes infeasible. As a result, the per-
formance is low and the setpoint is not reached with this configuration. With
an increased N , the response of configuration C8 is better but the setpoint
is still not reached. The combination of recovery controller (the unmodified
device controller), recovery setpoint and short Nr reduces the reachable state
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in x1. It would help to switch off the remote at some point, or move the re-
covery setpoint, allowing the state to proceed to a larger x1. Another remedy
is to increase Nr, as in C9, providing an improved response.

It is worth noting that while C7 becomes infeasible and oscillates, it also
stabilizes. With a less restrictive recovery setpoint it would have reached the
intended state. If a recovery setpoint is used for the purpose of moving away
from the constraint in case of failure, a large Nr may be necessary. Notice
also the jagged line of C9 in the plot of x3. This implies that the controller
remains affected by recurrent failure, which can also be discerned from the
response in x1.

12.4 Conclusion

This chapter introduced an explicit recovery requirement into an MPC to
handle uncertainty in the execution platform, and investigated its impact.
An implementation using a feed-forward framework was shown. This provides
a framework to extend a client controller and includes guaranteed recovery
in case of remote failure, by manipulating input and output signals. It was
shown that this can provide good performance and is reliable in the event
of miss-configuration. In summary, a well defined recovery mode can provide
a good controller response from a reliable client, and the explicit nature of
the strategy allows for flexibility. The strategy is useful in best-effort control
systems, where sub-optimal control is an acceptable trade-off, and where
several options could be evaluated on-line. It also adds more calculations,
and more variability among control clients. This will cause more load, and
resource usage will be harder to predict. The final part of the thesis considers
how to handle this load, without real-time requirements.
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Adaptation





13
Resilient Elastic Control

An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem.

John Tukey

The following two chapters introduce a fundamental property of the cloud
control system, in the interaction between the control application and the
cloud. To appreciate how important this is, we first reiterate the aim of a
single controller, in the context of the elastic cloud.

Figure 13.1 is an illustration of the predictive control problem and its
various components, all of which have been presented earlier in the thesis.
When this controller is implemented through the cloud, it opens up the po-

nr. requestshorizon

law
cost

model

terminal region
new constraints

varying constraints

rate

φ(t) =





minimize
κ

V (x, κ(x, t)) =

N∑
J(x, κ(x, t), t) + Ω(xN )

subject to x(k + Ts) = f(x, κ(x, t), t)

xk ∈ X(t), κ(x, t) ∈ U(t), xN ∈ Xf (t)

, . . .





Figure 13.1 Variables in the definition of the MPC that may change at
runtime, during development, and over the lifetime of the MPC controller.
The number of requests symbolizes that several versions and instances may
be evaluated in parallel.

This chapter is based on [Skarin et al., 2021]
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tential to alter the various components on-line. Parameters or software may
be changed by an operator, developer, or an automated process based on,
e.g., machine learning or system health monitoring. The controller can be
part of a plug-in scenario, in which components can be added to, or removed
from the control problem. As components come and go, the control problem
might be scaled and change parameters, requiring very different resources
over time. Lastly, the control problem (or the client), can be implemented to
adjust its requirements to meet current conditions. Chapter 10 provided an
example of the latter, by implementing a variable horizon for the tracking
problem. Chapter 11 provided another scenario, with controllers executing
at different frequencies.

The following two chapters take a look at handling extensive process-
ing times, network delay, and congestion, due to overload in the network
or caused by extensive processing in a shared cluster. This provides further
insight into the properties of the cloud control system. A generic method
to handle congestion, both in terms of requests and in terms of individual
computations, is to reduce the frequency of the controller. The goal is to re-
duce the load caused by the controller, while avoiding missed deadlines, and
avoid entering a fallback mode. In this chapter, a single controller is consid-
ered and observations are made using simulated delays. In Chapter 14, the
imposed delay is replaced by execution on real clouds, with real congestion,
and controllers sharing a real cluster.

13.1 Background and related work

This section introduces two methods that enhance the performance of the
cloud controller.

Execute to completion

As observed in various places and throughout this thesis, worst-case exe-
cution times of an optimizing controller, can be far from the median and
average values. Since the worst-case execution times can occur at critical
moments in the execution of the controller, these outliers cannot simply be
discarded. Previously in the thesis, a single period delay has been used to
manage the computational burden of the controller and delay from the net-
work. In ordinary resource constrained scenarios, it is necessary to reduce
the control frequency, allow sub-optimal control1, implement a more efficient
solver, or simplify the control problem, to ensure that the controller meets
this execution time budget. In general, reliable worst case response times

1Ending the optimization prematurely based on a deadline or maximum number of
iterations.
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Figure 13.2 Delay constituents of the serviced CCS. Our primary con-
cern in this chapter is with the admission and processing times.

pose a problem in control design [Findeisen and Allgöwer, 2004; Tobuschat
et al., 2016] and lead to conservative choices. Soft real-time is one approach to
this problem, but it introduces its own issues with lateness [Fontanelli et al.,
2013]. Others have suggested improving overall performance through proba-
bilistic approaches to worst-case execution time [Bernat et al., 2002], and the
continuous stream model [Fontanelli et al., 2013] to remove dependence on
previous jobs. In an embedded system, it remains important that the system
does not become overloaded, but in the cloud service model, requests can
execute in parallel. Sporadic overruns of the execution time budget does not
overload the cloud system. If the average or peak load is too high, it can be
assumed that the cloud will be reconfigured accordingly, through vertical or
horizontal scaling. Therefore, the elastic controller can choose to execute all
requests to completion and make an informed decision when results arrive.

Resource constraints

In practice, the remotely supported cloud controller can, and will, run into
resource constraints, for several reasons. In a deploy-anywhere scenario, the
controller may be deployed to a limited edge device. In the cloud, the con-
troller may execute in an overloaded cluster. Communication to the cloud
and performance of the client (in managing all request and responses), can
also be a bottleneck. Constraints may arise in the network delay and band-
width, CPU and memory, number of worker nodes, the performance of load
balancing strategies etc, and the resilient controller must handle them all.

Figure 13.2 provides an updated view on the delay constituents from Sec-
tion 3.1. This forms a view of the delay when a control decision is requested
from a cloud service. The figure adds admission time and replaces the con-
trol decision by a computation. They are further accentuated by the circled
arrow to the left, illustrating that these components may arise from a chain
of events. Admission represents routing and forwarding to a worker node in
the cloud, while the computation is the actual work performed for the con-
troller. This forms the cloud portion of the experienced delay. The sensor to
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admission delay and the compute to actuation delay represent the network
that separates the client from the cloud service. The important take away
from this figure is that each of these components can be affected by external
factors, but also by the frequency of requests, and by the configuration of
the individual control problem. A further complication is that many compo-
nents can affect each other in a cluster, where even the admission work may,
directly or indirectly, be affected by the controller function and vice versa2.

There are works that propose and study real-time closed loop control over
the cloud [Lyu et al., 2019; Pelle et al., 2019; Heilig et al., 2015], and sugges-
tions to use advanced methods, such as stochastic predictive control [Esen
et al., 2015], to handle latency. While researchers have not been oblivious
to the elastic nature of clouds, the view of a traditional NCS remains. This
leads to no consideration of, for instance, transitional periods of scaling. An
adaptive, best-effort system can arguably be made very efficient working with
the cloud, and also supports the deploy-anywhere scenario. A generic way to
gracefully degrade the control system is to change control frequency, as has
previously been used for handling network quality of service [Björkbom et
al., 2010], bandwidth sharing in sensory networks [Xia and Zhao, 2007], and
overload scenarios in real-time systems [Buttazzo et al., 2007]. This is often
also referred to as sample rate adaptation, but since the sampling rate on
the client might not change, it is referred to as frequency control here.

Because of significant uncertainty and variability, delay mitigation and
adaptation are of particular interest to control over public and wireless net-
works [Kim et al., 2006; Yang et al., 2005; Ploplys et al., 2004]. Recent works
target modern concepts such as industrial Internet-of-things (IIoT) devices
and Fog computing [Inaltekin et al., 2018], and adapting to sporadic over-
runs in off-the-shelf embedded control systems [Mubeen et al., 2017]. When
adding the elasticity aspect, a frequency modification can improve the con-
troller response, but it also relieves the cloud from some of the load, giving
it time to scale. Three useful concepts are therefore combined:

1) executing to completion, removing execution time deadlines for control
calculations,

2) client performance scaling, modifying the control performance of the
client to support transitional periods and deploy-anywhere, and

3) cloud resource scaling, providing the benefits of elastic computing.

2As seen in Figure 2.3 many cluster functions can execute in the shared environment.
Compare also the HAProxy and Kubeless deployments in Figure 8.7
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Figure 13.3 Markov processes for processing time (X) and flight time
(Y). Transitions back to the same state have been excluded for brevity.

13.2 Simulations

This section describes how delays are simulated using Markov processes and
theoretical distributions, fitted from observations. Further, it presents how
the control loop in this chapter is subject to setpoint changes and random
disturbances.

Markov processes

Delays are obtained from the two Markov processes in Figure 13.3. The figure
shows states as rectangles. Inside a rectangle there is a state name, si, and
a distribution function, g,n,h. The edges, pij , shows transitions from state
i to j, which occurs with a certain probability. The transitions back to the
same state, i.e., pii have been excluded to simplify the figure. For each step
in the simulation, transitions are evaluated and delays are then drawn using
the distributions specified by the new states. X and Y represent the random
variables that draw from these two processes. The former, X, is used to
calculate the processing time of a request and the latter, Y, provides the
flight time. The processing time of request φk is obtained as

τ c(φk) = i(φk)X(k)
N(φk)

Nref
, (13.1)

where N(φk) provides the prediction horizon in the request, and i(φk) pro-
vides the number of iterations required in the optimization. Nref is the ref-
erence horizon used to generate the data sets3. Thus, the random variable
X provides a measure of the processing time per iteration, scaled by the
horizon. Y provides the flight time without modification.

3The used data was produced with Nref = 10.
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Table 13.1 Transition probabilities in two different scenarios. Values are
given in a condense scientific notation, where x−y = x · 10−y. Transitions
are evaluated in every step of the simulation, resulting in 200 Hz times every
simulated second.

Scenario 1 Scenario 2 Scenario 1 and 2

p12 p21 p12 p21 p34 p35 p43 p45 p53 p54

1−3 1−3 .75 .25 9−5 1−5 2.5−4 2.5−4 3.5−4 1.5−4

Two scenarios are defined. The flight time process remains the same in
both scenarios, but the processing time probabilities change. The transition
probabilities are shown in Table 13.1. In Scenario 1, the states s1 and s2

represent an under- and an over-utilized state. To create a reasonable load,
the processing times are scaled so that the under utilized mode, s1, execute
with an average load of 60%, assuming a single machine, over a period of ten
seconds. This must be considered low, since one aim of the shared cloud is to
achieve high utilization. In effect, from the distributions in the next section,
s2 will execute well above full utilization, thus requiring several workers to
handle the optimizations to avoid queuing requests. On average, it takes
several seconds before switching to the other state, but over time they are
equally used.

In Scenario 2, the states switch frequently with a higher probability of
being in state s2. In this mode, there is a high probability of transition every
time X is drawn. The transition probabilities were calculated from measured
data. In addition, when executing this scenario, it is assumed that there is
one request processing queue for each of the two modes. In contrast, Scenario
1 simulates either a single processing queue or no processing queue at all (i.e.
allowing any number of parallel requests).

The flight time states s3 and s4 resemble a nearby data center with or-
dinary, fast response (s3) and a degraded response (s4). State s5 represents
another, more distant data center. The transition probabilities provide recur-
rent entry to the degraded state, and less frequently switching to the remote
data center. The probability of switching to s5 goes up in the degraded state,
and when returning, it is more likely to enter s3 than s4. This is an ad-hoc
scenario, where s5 is used to offload the primary data center. The primary
purpose of the flight time modes is to observe if a change in network de-
lay, such as it has been registered towards the data centers, imposes a large
detrimental effect on the frequency control. The request rate of the controller
does not affect the flight time distribution, while in practice, congestion in
the network and admission will also be mitigated by the adaptive controller.
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Figure 13.4 Maximum likelihood fitted distributions for the states in
Figure 13.3

Distributions

Each state in Figure 13.3 provides a different random distribution for either
the processing time or the flight time. These distributions, and the parame-
ters in Table 13.2, were obtained by fitting data through maximum likelihood
estimation (MLE), using the SciPy library [Virtanen et al., 2020]. The dis-
tributions have been chosen because they fit the data well, not because of
any sought properties. Histograms of the input data, overlayed with the used
distribution, is shown in Figure 13.4.

The left, processing time, graph in Figure 13.4 shows two distinct modes.
These where registered towards a single cluster in ERDC. Exactly what
causes these modes is not known but it was concluded from examining the
data that 1) the modes do not appear distinct in time, and 2) they do not
repeat with any obvious pattern. Rather, requests seem to fall randomly into
one of the modes, with s1 three times as frequent as s2. This observation is
represented by Scenario 2.

Table 13.2 Parameters for the distributions, and the offset of the random
variables (i.e. b in f(x− b)), for states of Figure 13.3

State and Distribution Parameters Offset

s1 gen. logistic (13.2) c = 946 s = 8.91 · 10−6 1.3 · 10−5

s2 lognormal (10.13) σ = 0.193 µ = −8.86 5.53 · 10−5

s3 lognormal (10.13) σ = 0.632 µ = −7.14 6.02 · 10−3

s4 lognormal (10.13) σ = 0.431 µ = −4.2 5.56 · 10−3

s5 double gamma (13.3) a = 2.52 s = 3.4 · 10−4 0.0281
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The flight time data for s3 and s5, on the right side of the figure, is from
the Kubeless deployment in Chapter 8. Flight times for s3 were registered to-
wards the smaller, municipal data center, while s5 is from the larger, distant
data center. There are two clear modes in the data for s5. A single distribution
is preferred, and the double gamma distribution fits well with the observa-
tions. Finally, s4 is a refit of the distribution for case β2 in Section 10.3, in
a different time scale. We know from Chapter 10 that this represents a case
when the flight time experiences large variations due to load. These distribu-
tions are entered into the states of Figure 13.3, as suitable random number
generators.

There are three distributions, n(µ, σ2), g(c, s), and h(a, s). The function
n(µ, σ2) represents the log-normal distribution, which was also used in Chap-
ter 10, with probability density function specified in Equation (10.13). The
function g(c, s) represents the generalized logistic distribution function, with
the probability density

g(c, s) : f(x) =
c · e−x/s

s(1 + e−x/s)c+1
. (13.2)

and h(a, s) the double gamma distribution,

h(a, s) : f(x) =
1

2Γ(a)
|x/s|a−1e−|x/s|, (13.3)

where

Γ(a) =

∫ ∞
0

ta−1e−tdt.

Tracking and disturbance

The simulations execute periodic setpoint changes and introduces significant
pulse disturbances into the plant state. Setpoints are as usual close to the
constraints. Disturbances, and errors, can force the system to break con-
straints, but soft constraints (see next section) allow the optimization to
remain feasible. Disturbances enter the system as

x(k + 1) = Ax(k) +Bu(k) +
[
0 w(k) 0

]T
, (13.4)

i.e., adjusting the speed of the ball. Here, A and B are the state space ma-
trices for the base frequency, discretized using hq = 0.005. The sequence of
disturbances is,

w =
[
0 . . . w0 0 . . . w1 0 . . .

]
, (13.5)

where the values of wi are drawn from a normal distribution

N (µ, σ2) : f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )2 (13.6)
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with wi = N (µw, σ
2
w), µw = 0, σ2

w = 0.09. The position in w, i.e., the time
step k, is obtained as k(wi) = dt(wi)/hqe, where t(wi), is drawn using another
normal distribution

t(wi) = N (µd, σ
2
d) + t(wi−1). (13.7)

with µd = 2, σ2
d = 0.25. The time between two events varies but on average,

disturbances occur with a distance of two second.

13.3 Offloaded controller

The client in this chapter and the next, solves the control problem

minimize
z

V (x0, Ts(t)) =

N−1∑
j=0

l(zj , Ts(t)) + Vf (zN , Ts(t)), (13.8a)

subject to xj+1 = f(xj , uj , Ts(t)), (13.8b)

h(uj) ≤ 0, (13.8c)

g(xj , φj) ≤ 0, (13.8d)

zj =
[
xTj uTj φTj

]T
, (13.8e)

x0 = x̂(x(t),u(t), xs, µ(t)), (13.8f)

N = dNs/Ts(t)e. (13.8g)

Equation (13.8) does not include a terminal set but instead implements soft
constraints, through the slack variables, φj . Note that this is different from
the examples in the previous chapters. The problem is parameterized us-
ing the time varying sampling period Ts(t), and when implemented, Equa-
tion (13.8) is discretized as necessary using the procedures in Chapter 11.

The controller horizon is defined as a time period Ns, in seconds, and
converted to discrete time steps in (13.8g). The value is rounded up to ensure
that the prediction time of the controller is always at least Ns. The initial
state x0 is defined as a function that depend on the current state, the selection
of control signals u(t), the setpoint xs, and prediction steps µ. u and µ are
expressed in a base time step, which is implemented as a factor of Ts(t). Note
that t is constant in Equation (13.8), and only used to initialize the values in
the optimization problem. The generalization of the initial value as a function
allows the client to implement the predictor in Equation (3.3). The value of
x(t) is obtained through state feedback or an observer (Equation (3.2)).

The client structure is shown in Figure 13.5. The MPC block represents
Equation (13.8), on which the client depends for tracking the setpoint, uc.
The predictive part is included in this block. To the right of the MPC, there
is a frequency controller block. A loss measure, ρ, is input to this block. It
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Figure 13.5 Client structure, with a frequency controller as input to an
optimizing controller in the cloud, and a backup controller.

outputs hd, which translates to Ts(t) in Equation (13.8). The output from the
MPC block is input to the primary control block that selects from the results.
If the primary control block fails to provide a control action, the client falls
back on a backup controller. Before falling back on this controller, the client
will use data from Equation (13.8) in open loop. For the reference plant, the
client implements a fallback controller that regulates it back to the origin.
This can be alternatively replaced by, for instance, the explicit recovery that
was presented in Chapter 12, but the use of open loop and implementation
of frequency control must be handled with care. A conservative backup is
used here, implemented as an LQR, to clearly observe the effects of delay on
(13.8) and simplify implementation.

Dead time, control selection and open loop

Reusing the nomenclature from Chapter 10, the request set, φk, is a single
request sent every sampling period, Ts. The response set, ψk, is collected
continuously and can contain responses in any order. Events are synchronized
by the time slotted system illustrated in Figure 13.6. The rows in this figure
show MPC results. Horizontally, the indexed slots represent predicted control
actions. Filled slots are used, with the applied control actions shown below
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Figure 13.6 Time slotted selection of controller result. Dark slots have
arrived within their deadline and are used. The frequency is changed at
k = 6. D(φk(i)) is the imposed dead time of a request and τt|u∗k(i) the
effective control latency when using control action i of response ψk.

the x-axis. The first three requests are executed with a control period of
Ts(t) = 2hq. The fourth, modifies this period to Ts(t) = 3hq.

As previously, the controller uses a fixed control delay of one sampling
period. D(φ) is introduced to represent the dead time of a request. The time
index k represents steps in the base time period hq, and µ is an integer
number of steps in this discrete time. Because no more than one request is
sent at the same time instant, responses can be referred to using their request
time, i.e., ψk is the single response to the request φk. Equally, the resulting
control actions are given as u∗k, the response time as τk and so on.

The controller achieves closed loop mode when D(φk)< τk, in which case
u∗k(0) can be applied. When the closed loop response fails to arrive, the
controller applies open loop actions from the latest selected response. In
general, with j the time index of the latest selected response, the controller
applies

u(t) = u∗j (b(t− t′)/Ts(φj)c), (13.9a)

t′ ≤ t < tj + σ, (13.9b)

t′ = tj +D(φj), (13.9c)

where t′ is the predicted time for the first control, u∗j (0). Ts(φj) provides
the sampling rate of request φj , and σ is the maximum control latency. σ is
given in seconds and is independent of the frequency. The backup controller
is used when t < t′ and t − tj > σ, independent of whether there are more
control actions in u∗j (the number of which is determined by the independent
controller horizon N). Thus, there is a fixed maximum time from sampling
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to actuation. The number of available open loop control actions is thereby
reduced with the frequency.

Returning to Figure 13.6. On the first row, the response to request φ0

arrives in time to apply closed loop control. On row two, ψ2 arrives late,
as seen from the response time and that u2(0) is not used. However, control
actions from this response are applied, starting with u∗2(1). The third request,
φ4, is further delayed. It is registered by the client, but not used. Instead,
a frequency switch happens at time k = 6, on the fourth row, and u∗6(0) is
applied at k = 9. The controller always selects the latest available request
and the open loop procedure is used to fill in the gaps. Note that both u∗2(1)
and u∗2(2) were included in the prediction as

x0(k + 3|k = 6) = A(Ax̂(k) +Bu∗2(1)) +Bu∗2(2), (13.10)

to form the initial state of φ6. Here, A and B represent the discrete model
based on hq, and x̂ is the observed state.

Notes on open loop and predicted delay

If the controller is stable, we should not have to be concerned with an open
loop path in the nominal sense. However, this requires that the control se-
quence starts with the first control action, u∗(0). In Figure 13.6, the change
from ψ0 to ψ2 discards this. A difference between the control actions u∗0(1)
and u∗2(0) will cause u∗2(1) to not implement the predicted optimal control.
From the basic stability argument, this is a problem, but in practice it is
useful to apply ψ2. If a disturbance or setpoint change happens, it will be
acted upon quicker. It also avoids going into the backup mode. Improvements
can be made by compensating for the missed control action, but that is not
considered here.

Deadline

Previous chapters have used a one sampling period deadline mode. In that
mode, the response to φ2 in Figure 13.6 would have been discarded. If the
response ψ0 includes the open loop prediction, the client would continue to
apply results from ψ0 for as long as σ allows. The benefit of this mode, is
that it behaves like a hard real-time mode, and that it can relieve the remote
from extensive calculations. A further limitation can be to not transfer the
open loop sequence, i.e., replacing Equation (13.9b) with

t′ ≤ t < t′ + Ts(φj) = tj +D(φj) + Ts(φj) (13.11)

to obtain a forced closed loop mode. In this case, the remote only has to
transfer a single control action over the network, with the downside that steps
k = 2, . . . , 9 in Figure 13.6 would have to execute the backup controller.
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Figure 13.7 Trajectory and experienced delays of non-adaptive config-
urations in Scenario 1, described in Section 13.2. The dotted line is the
setpoint. All controllers run at 33 Hz. See Table 13.3 for definitions of the
modes.

Five modes are defined in Table 13.3. In addition, as mentioned in Sec-
tion 13.2, simulations can either assume parallel execution with independent
delays, or that requests must wait for previous processing to complete. The
† is appended to results when the latter applies. In these modes, Scenario 1
executes with a single queue, while Scenario 2 has one queue for each state
s1 and s2.

Figure 13.7 shows the first four modes in Scenario 1, illustrating the com-
bination of execute to completion, and open loop delay mitigation. The up-
per graph shows the response in the tracked position state. The graph below
shows experienced delays for the NDOL mode with and without independent
delays. The plot contains round-trip times as solid lines and processing times
as filled areas. Relating this graphs to the modes presented in Section 13.2,
the first part of this sequence executes in mode s1 and s3, representing the
ordinary, good conditions. At sixteen seconds, the flight mode changes al-
most simultaneously with the processing time mode, to s2 and s4. At this
point, the flight time of NDOL† disappears of the graph, due to the build
up of processing queues. Later in the sequence, at 33 seconds, processing
times improve and the flight time soon also reduces. A few seconds later, the
processing times increase again. The NDOL† will eventually recover, but it
takes a long time, since no requests are discarded.
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Table 13.3 Client modes

Ideal Result of the MPC assuming that all requests respond within
one sampling period, i.e., τk < Ts∀k.

SPSC Single Period Single Control. Transfers only the first control
action, u∗k(0), to the client, and has a request deadline of one
sampling period, i.e., implementing Equation (13.11).

SPOL Single Period Open Loop. Transfers the complete result of
the optimization and has a request deadline of one sampling
period. Open loop is used to mitigate delay (until the con-
trol latency reaches σ). Implements Equation (13.9) with the
requirement τk < Ts.

NDOL No Deadline Open Loop. Transfers the complete result of the
optimization and has no request deadline. Applies open loop
until the control latency reaches σ.

Adapt The controller in Figure 13.5, with no request deadline. Ap-
plies open loop until the control latency reaches σ.

† When † is appended to a mode, the remote system can become
overloaded and requests queued, i.e., the simulation does not
assume independent delays. This applies to NDOL and Adapt
but makes no difference to SPSC and SPOL, since requests
in these modes have a single period deadline.

In the initial, favorable conditions, all modes are able to complete the
objective fairly well. However, the SPSC mode must sometimes resort to the
backup controller, as seen in the marked locations around four and thirteen
seconds. This shows that there are delays causing deadline misses. These
delays are handled by the second mode, SPOL, which enforces a deadline,
but uses open loop to mitigate the loss. The mode without deadline, NDOL,
also executes perfectly, following along the dashed path of the ideal response.
When the conditions drastically deteriorate, at sixteen seconds, the modes
SPSC and SPOL fail, and resort to execute only the backup controller. A
delayed response is now also observed for the NDOL mode, showing a sluggish
behavior as a consequence of the control latency. Nonetheless, by executing
to completion and applying the resulting output, this mode continues to
meet the objective. This is good, but part of a simulation that is assuming
independent delays. Because NDOL does not have a deadline, requests can
pile up, as for NDOL†, and this will cause the client to enter the backup
mode.

Scenario 2 is shown in Figure 13.8. A third plot is added to this figure,
which will be returned to shortly. The dominating source of delay in these
simulations is processing, and because Scenario 2 is alternating between s1
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Figure 13.8 Trajectory and experienced delays of non-adaptive config-
urations in Scenario 2, described in Section 13.2. The dotted line is the
setpoint. All controllers run at 33 Hz. See Table 13.3 for definitions of the
modes.

and s2, the delay is now more even. Compared to Scenario 1, this has a clearly
negative effect on all cases except NDOL in the first part, up until sixteen
seconds. After sixteen seconds, there is instead a positive effect. This does
not make SPSC or SPOL useful, while NDOL† now manages to reach the
setpoint. What might not be directly obvious, is that the result for NDOL†

in effect comes from inefficient use of mode s1. This is the reason for adding
the third plot, showing the average processing load (as a mean over 0.5 s).
The NDOL data shown here, is really just a scaled version of the processing
data in the delay plot.

First, we look at SPSC. Since SPSC has a single period deadline, it will
never execute with a load above one. Requests that experience delay drawn
from s2 will fail, unless they finish in very few iterations. A request will for
sure not be returned unless

dNs/Tse ·X · i < Ts, (13.12)

where i is the number of iterations required in the optimization. With Ns =
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1, Ts = 0.03, and min(X|s1) ≈ 1.5 · 10−4 (Figure 13.4), i can never be
larger than five. SPSC is therefore roughly equivalent to a 25% chance of
getting a response, as successful results mostly come from s1, When the
network delay is increased, this is reduced further as the fast processing
mode also often fails to provide responses. The execute to completion mode,
NDOL, gets many delayed responses, as seen from the load, but with no
major consequence. This is seen from its trajectory closely resembling the
ideal dashed line. However, the system is overloaded, and in NDOL†, mode
s2 will build up a processing queue. Again, the system will be driven by
responses from s1. Because NDOL† accepts late responses, it manages this
better than SPSC.

The situation of NDOL† in Scenario 2 is due to the low performance of
state s2. A potential remedy, is to send more requests to mode s1, although it
is not known in practice, if this will cause it to behave more like s2. Another
solution is that the cloud can identify the load problem and scale, turning
the situation from NDOL† into NDOL. A third mitigating strategy is to use
frequency adaptation in the client. This modifies Ts in Equation (13.12), hav-
ing an effect on both sides of the equation. Therefore, doubling the sampling
time to 0.06 will go from five, up to 23 iterations in the optimizations. The
next section shows results from simulations that use frequency adaptation in
combination with execute to completion. Details of the implementation are
presented in Chapter 14.

Frequency control

The frequency control adjusts the sampling rate of Equation (13.8), based on
a measure of loss. In the following examples, this loss is related to the expe-
rienced delay, as detailed in Chapter 14. The focus is on executing requests
to completion, but it is easy to apply the frequency control also to a system
that enforces the single period deadline. The derived controller, and details
on how the loss factor is calculated, are presented in Chapter 14. Here, we
first look at some results from the adaptive controller in the simulations.

A Proportional and Integral (PI) controller is used for frequency control.
The setpoint of the frequency controller is at 5 %, and it works at a sampling
rate of 100 ms. Figure 13.9, is illustrating the results from this frequency
control. The figure combines the two scenarios from Table 13.1 (the same
scenarios that were used in the previous section). Figure 13.9 again shows
the balls position at the top and the computational load at the bottom. The
experienced delay has been replaced by a plot of the selected frequency. In the
upper graph, it is immediately noticeable that the adaptive controller works
well. Drops in disturbance rejection performance can be observed in some
places (for instance the marked occasions at 14 s and 30 s), but the overall
response is good in all cases. The controller adjusts frequency, translating
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Figure 13.9 Trajectory and experienced delays of the adaptive client for
Scenario 1 and 2, described in Section 13.2. The dotted line is the setpoint.

into reduced processing times and improved results. The frequency adjust-
ment is shown in the middle graph, and the processing load at the bottom.
There is a gray back-drop in the load graph. This shows the maximum load,
and the solid lines show the average (again as the mean over 0.5 s). While
the average load is below one, throughout the graph, it is clear from the
background that there are occasional processing time overruns. This is ad-
justed and compensated for by the frequency controller. When the system
registers loss, it will quickly compensate by adjusting its frequency. This is
seen from the frequency variations of the two configurations in Scenario 2.
These variations are larger at the higher frequencies, from 0 s to 16 s and
after 37 s. It can also be observed that in Scenario 2, the † mode often works
at a somewhat lower frequency, due to that the service can be overloaded.

These changes in frequency keeps the average load fairly stable. There is
a distinct drop in load for Scenario 1 from 32 s to 33 s. At this point, there
is a mode change, which is clearly visible in the delay graph of Figure 13.7.
Between 34 s to 35 s, the frequency controller starts to increase the frequency,
and an increase in the average load follows. In Scenario 1, the processing
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delays increase again at 37 s, otherwise the frequency would soon return to
33 Hz. Also in Scenario 1, a change in processing times is causing a large drop
in frequency at 16.5 s. This change is visible in the load graph, as a small
peak in the average load. If the frequency response was slower, the average
load would surpass one, causing queued requests in Scenario 1†, and likely
notable latency issues.

A final thing to notice in this figure is that the frequency and load goes
down, and frequency changes become smaller, for Scenario 2 at 16 s. Condi-
tions return towards the end of the timeline. This is attributed to the ad-
ditional transmission delay that happens between 16 s to 35 s (Figure 13.8).
This delay is compensated for, but is not affected by the load from the client.
Nonetheless, the controller will better predict the outcome of requests and
reduce the overall response time. The primary takeaways from this figure is
that the used frequency control handles load changes well, and that changes
in the frequency do not display any clearly negative effects.

For a more detailed analysis of the performance, the simulation is exe-
cuted over an extended period. In this longer sequence, all combinations of
modes (Figure 13.4 and Table 13.2) are represented. A performance mea-
sure must also be defined, and the control cost is not suitable. The reason is
that the simulations combine step changes with disturbances, and when the
backup controller is used, it can score a good control cost. This is not the
intended result, since use of the backup controller should be avoided. To be
clear, consider a client that must consistently use the backup controller. This
client will keep the state x1(k) close to zero. Let the setpoint be distinctly
non-zero, |xsp(k)| >> 0. A functional remote controller would keep its plant
state, x̄1(k), close to the setpoint, x̄1(k) ≈ xsp(k). If now the setpoint is
changed to zero, the client using the backup controller obtains a good score
due to that x1(k + 1) ≈ xsp(k + 1), but the correct state of the system is
close to the previous setpoint, represented by x̄1(k + 1) ≈ xsp(k).

A comparison is therefore made towards the ideal controller response,
introduced as the closed loop response error (CLRE), and defined as

CLRE(t) =

∫ t

(x1(s)− x̄1(s))2ds, (13.13)

where x1 is the value of the measured response, and x̄1 is the value of the ideal
response (represented by the dashed line in the previous figures). Further,
the control responses in Figure 13.7 and Figure 13.8 execute at 33 Hz and it is
already known that they cannot handle the case, †, of dependent processing
delays. The result from Figure 13.9 indicate that a frequency around 20 Hz
might work well, and 22.2 Hz is chosen in an attempt to beat the adaptive
controller. To also see if it is possible to obtain a better result by simply using
an even lower frequency, a 16 Hz controller is also compared. Note that the
adaptive controller can go lower (down to 10 Hz). The goal is not to motivate
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Figure 13.10 Accumulated closed loop error

the use of the adaptive controller in general, but to see if it consistently
provides good performance in these scenarios.

Results from Scenario 1 are shown in Figure 13.10. The figure shows the
CLRE in the upper graph, and frequency in the lower graph. Notice that
the simulation is now 400 s. The box in the lower right corner of the CLRE
graph shows a scaled up version of the first 30 s. This, zoomed time frame,
shows how initially the adaptive controller has the best performance, as it is
starting at a high frequency. As observed previously, there is a large increase
in processing times at around sixteen seconds. At this point, the error of the
adaptive controller distinctly increases, and the Adapt† temporarily becomes
the worst performing mode. Later, the mode performs better, in relative
terms, and soon surpasses both 16 Hz modes in performance. In the end, it
also outperforms the 22 Hz NDOL mode.

The error of mode 22 Hz NDOL† goes straight up shortly before 120 s. At
this point, the 22 Hz NDOL† client falls back on the recovery controller due
to latency buildup. The mode will recover, but its error is off the chart. This
mode will also run into a similar situation later in the simulation. Meanwhile,
the adaptive controller often uses a frequency around 22 Hz, but must resort
to lower frequencies at times. Especially, the † mode, which moves far down
in frequency at the point where the 22 Hz NDOL† mode takes off, as seen in
the frequency graph.

These simulations create conditions that the resilient controller should
be prepared for, but which are expected to be of transitory nature and not
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Table 13.4 Closed loop error response (Equation (13.13)) after executing
the scenarios in Table 13.1 for 400 seconds.

Adapt Adapt† 22.2 Hz
NDOL

22.2 Hz
NDOL†

16.6 Hz
NDOL

16.6 Hz
NDOL†

Scenario 1 15.96 19.25 21.22 307.87 28.14 30.00
Scenario 2 20.19 21.06 24.77 25.10 30.15 30.15

occur frequently. The adaptive modes will get to execute some sequences at
the highest frequency, but there is also a lot of variation in the simulations.
To see the mode switches of Scenario 1, tables with state transitions are
supplied in Appendix A. The results show that the adaptive controller not
only manages to avoid the backup controller under these conditions, it also
manages to outperform its rivaling cases while doing so.

A simulation of Scenario 2 was also run, with results presented next to
Scenario 1 in Table 13.4. Given that 22 Hz NDOL† comes in very close to
22 Hz NDOL for Scenario 2 in these results, we see that the problems from
Figure 13.8 are remedied by the reduced frequency. For the 16 Hz modes
there is no difference at all. The adaptive modes, however, provide the best
scores, and the Adapt mode again has lower error than Adapt†, although this
difference is smaller compared to Scenario 1. These results show no indication
of a negative effect of introducing the adaptive controller.
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14
Resilient Elastic Control in
the Cloud

This chapter returns to the cloud native testbeds, in order to study the
frequency adaptive design in combination with real clouds. This serves two
purposes. The first purpose is to observe the control system on real clouds,
with the intention of validating the design. The second purpose is to demon-
strate and evaluate the control system in combination with the clouds elastic
properties (i.e. resource scaling). The chapter first presents implementation
details for the frequency control from Chapter 13, then evaluates the result
in four scenarios.

The resulting control system is referred to as a Resilient Cloud Control
System (R-CCS). The R-CCS exhibits quality elastic properties, and targets
an elastic infrastructure. There are four identified challenges for the R-CCS.

Resilience A R-CCS must be tolerant to non-trivial delay distributions
and connectivity issues. This can be considered a form of partition toler-
ance, something that distinguishes the R-CCS from other control systems.
Partition tolerance necessarily requires that the system remains in a recov-
erable state, not requiring manual intervention, even if the remote extension
becomes unusually unresponsive, or is completely removed.

Performance The R-CCS should not rely on fault tolerance mechanisms
that systematically penalize or degrade general performance, i.e., when the
system is not subject to loss. Under nominal conditions, the control system
should achieve good, nearly optimal, performance.

Costs Failed requests that happen frequently constitute a resource waste.
This can incur a monetary cost and can have adverse system effects. To
reduce resource waste, a design that allows the specification of a maximum
loss is desired.

This chapter is based on [Skarin et al., 2021]
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Figure 14.1 Counting hits and misses. Below: Two sample inputs to the
frequency control.

Quality-of-Service The R-CCS assumes that the execution platform pro-
vides consistent quality of services most of the time, but allows arbitrary,
temporary degradation. The quality of service level varies on different plat-
forms, and can also change over time.

The previous chapter showed results from using two methods to meet
these challenges. The first was execute to completion, with delay mitigation.
Basic mitigation was implemented using the open loop sequence. The second
method was to use frequency adaptation to increase the chance of closed
loop control, and to mitigate congestion. Details of the frequency controller
were left out of the previous chapter. This chapter begins by detailing the
frequency controller, before moving on to the experimental setup and the
results.

14.1 Frequency Controller Details

The frequency controller is implemented using a PI controller, building on
similar work from [Ploplys et al., 2004; Xia and Zhao, 2007; Björkbom et al.,
2010]. Specifically, parameters from Xia and Zhao form a basis for the fre-
quency controller due to the similar range of sampling rates. The input to the
controller is a loss rate, ρ, which was introduced in Figure 13.5. The output
is a control period hd, for use in the following optimizations. The request
frequency follows from the control period, fc(t) = 1/hd(t). The frequency
controller has its own sampling frequency hf .

Miss ratio

Usually, ρ is calculated from the number of missed deadlines. However, be-
cause the client execute at a relatively high rate, and delayed responses can
be applied, a version was adopted that provides a measure of experienced
delay. This is illustrated in Figure 14.1. The upper part shows how hits and
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Table 14.1 Results of frequency adaptation implemented to track la-
tency using the procedure in Figure 14.1 (Adapt1 and Adapt1

†), and when
counting missed deadlines (Adapt2 and Adapt2

†)

Adapt1 Adapt1
† Adapt2 Adapt2

†

Scenario 1 15.96 19.25 17.16 15.18
Scenario 2 20.19 21.06 22.27 22.06

misses are registered. The observed sequences are stored in a buffer which
forms input to the frequency controller. l1 and l2 shows ranges on each side
of a sampling point, where the frequency controller is updated using l1. l
forms the miss ratio

l(k) = 1− 1

L

L∑
i=1

δ(i) (14.1)

where δ represent the buffer array and L is the buffer length. In Figure 14.1,
the response ψ1 arrives to apply the open loop action ψ1(1) but missed the
closed loop action ψ1(0). The intended activation time of ψ1(0) is shown as
the light gray region. The response ψ4(0) arrives within its activation time,
shown in a darker gray, and counts as a hit from when it arrived. Note that
there is a frequency change at φ7 and the hit from ψ4(0) is extended until
request φ11. Also, consider that ψ4(0) was further delayed, but ψ7(0) arrived
before its activation point (i.e. before φ11)). There will be a choice of selecting
miss because ψ4(0) was delayed, or a hit because ψ7(0) was observed early.
The results in the previous chapter were obtained using the latter alternative.

For reference, results from the simulations in Chapter 13 are repeated
in Table 14.1 as the pair Adapt1 and Adapt1

†, next to the pair Adapt2 and
Adapt2

†. The latter are results from a simulation where the miss ration l is in-
stead counted as missed deadlines, over the interval hf . Adapt2 and Adapt2

†

often use a lower frequency than the counterpart in Adapt1 and Adapt1
†,

which explains the relatively good response for Adapt2
†. Recall that the †

cases can overload the service, causing queued request that accumulate delay.
An already lower frequency will be less susceptible to load changes. The mode
represented by Adapt1 and Adapt1

† is chosen in the following experiments
for two reasons. First, because the non-† cases represent the targeted behav-
ior of the cloud service, and second, the higher request frequency should pose
a greater challenge, with more load imposed on the service.

The miss ratio is used as input to an exponential moving average (EMA)
filter,

ρ(t) =

{
0, t = 0

αl(t) + (1− α)ρ(t− hf ), t ≥ 0.
(14.2)

to smoothen the loss value. α is the smoothing factor of the filter, 0 < α < 1.
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Table 14.2 Value offsets, and parameter µ of the lognormal distributions
in Figure 14.2. σ is always one. The top row shows the start time of the
distribution.

0s 10s 40s 60s 70s

Offset/µ 15/0.78 45/1.02 28/-1.27 28/0.32 28/-1.27

Continuous time, t, is used here to signal that the frequency controller works
at its own rate. The filter is present in Xia and Zhao but it is specified
differently from Equation (14.2). Because the original filter has a very limited
smoothing effect, an EMA is assumed instead in the following examples. The
alternative is not useful when increasing the rate of the frequency controller.

Controller

The miss ratio is used to modify the effective sampling rate of the remote
controller using PI control. The design in Xia and Zhao uses PID control,
where the control signal is the sampling period of the MPC, i.e.,

ḣc(t) = K (ė(t) + e(t)/Ti + Tdë(t)) , (14.3)

where dot notation marks the first and second derivatives with respect to
time. K ∈ R−, Ti ∈ R+, and Td ∈ R are the gain, the integration time
constant and the derivation time constant, respectively. This expression is
discretized, using backward difference approximation, with the frequency
controller sampling rate Tf , to form

∆hc(k) = Kp(e(k)− e(k − 1)) +Kie(k)

+Kd(e(k)− 2e(k − 1) + e(k − 2)),
(14.4)

where Kp = K, Ki = KTf/Ti, Kd = KTd/Tf . Notice that K is a negative
number. This is due to the definition of the error, e, as a measure of loss, ρ
in relation to a targeted loss, ρr,

e(t) = ρr − ρ(t). (14.5)

When e(t) is positive, the loss is low, allowing for an increased frequency. This
translates to a reduced sampling period, and therefore a negative output from
the controller. The control signal hc ∈ R, hmin ≤ hc ≤ hmax, hmin > 0 is the
input to the MPC control period hd, which is rounded to the nearest integer
multiple of hq.

Four modifications are made to the design in Xia and Zhao (frequency
range and loss setpoint not included): the controller gain is increased, the
sampling period of the frequency controller is reduced, the derivative term is
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Figure 14.2 Frequency controller response to delay. A graph of the delay
at the top is followed by two plots showing the controller output. The bar
below shows the mean squared error. The final value, missing from the dark
red box, is 0.0028.

dropped, and the smoothing parameter of the filter (Equation (14.2)) is mod-
ified. These modifications are motivated by the result shown in Figure 14.2.
The figure shows six different controller responses, reacting to the delay pro-
file in the upper plot. The delay is created from arbitrarily selected lognormal
distributions, the parameters of which are listed in Table 14.2. The values in
the frequency plots are averaged over half a second.

The solid, dark blue line, in the middle plot of Figure 14.2, shows the
original design. The parameters of this controller are shown in Table 14.3
(although, the accepted frequency range is different). Note that the gains in
the table, Kp, Ki, and Kd, are scaled by 1× 103. While this configuration
could be used, the rise after 40 s is slow. There can also be an issue with the
overload scenarios, studied in the previous chapter. When the controller is
causing a high load, a sampling rate of 0.5 s can cause a substantial amount
of requests to pile up, before the frequency controller reacts. From these two
observations, a configuration with an increased gain and reduced sampling
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Table 14.3 The original configuration from [Xia and Zhao, 2007], inter-
mediate configuration for reference in the text, and the final configuration.
∗ These values are scaled by 1× 103

Kp
∗ Ki

∗ Kd
∗ α Tf ρr hmin hmax

Original 7 6 3 0.7 0.5 s 10 % 10 ms 30 ms
Intermediate 35 1.2 3 0.38 0.1 s 10 % - -
Used 35 1.2 0 0.1 0.1 s 5 % 20 ms 100 ms

period is attempted.
The medium dark blue line in the middle graph shows the result. While

this configuration meets the objective of a faster response, it is unsatisfactory
in terms of oscillations, especially from 40 s and on. The used parameters are
listed as the Intermediate configuration, on the second row of Table 14.3.
Note that α has changed, in addition to the gains. This is done to retain the
time constant, τ , (the reactivity) of the filter, when changing the sampling
rate. The time constant is defined as the time it takes for the filter to reach
63.2 % of the true value in response to a step function. It is calculated as

τ = − Tf
ln(1− α)

, (14.6)

and has a value of ≈ 0.42 in the original design. If α is not changed, the time
constant reduces to ≈ 0.08. This small time constant provides very limited
smoothing and is not useful.

The oscillations of the faster controller are dampened by removing the
derivative term, as seen in the bright red line of the bottom graph. Primarily
however, the issue is due to insufficient smoothing, which is why α is adjusted
to 0.1, to put less emphasis on recent values. The response is shown in the
medium dark red line of the bottom graph. At this point, the controller
has a much faster rise and a smooth response. With sufficient damping, the
derivative could be reintroduced. It will, for instance, slightly decrease the
steep fall at 10 s. To keep things simple, the derivative term is not used.

To arrive at the final configuration, as used in the previous chapter, the
loss setpoint is reduced from 10 % to 5 %. The new setpoint causes ’dips’
in the frequency and a slower rise time, as seen from the dark red line in
Figure 14.2. Notice that the changed setpoint has no effect on the original
configuration, as seen in the dashed blue line in the middle plot. This is an
arbitrarily chosen value, to test a more demanding configuration. Notably,
however, further lowering the setpoint will create a conservative controller,
recreating the slow rise time of the original. This is starting to show in the 5 %
case, while a loss of 7 % (not shown in the graph) would place the response
much closer to the response at 10 %.
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14.2 Experimental setup

The experiments in this chapter are aimed at demonstrating the feasibil-
ity of the proposed R-CCS using realistic scenarios. The objectives of the
experiments are to:

1) Validate the frequency adaptation controller.

2) Demonstrate the individual and combined effectiveness of the methods
initially presented in Chapter 13, i.e. frequency adaptation, predictive
control and recovery control.

3) Demonstrate that a R-CCS addresses the following challenges:

a) is able to cope with performance transients in the infrastructure.

b) is able to prevent resource starvation.

c) is able to successfully transition between heterogeneous cloud plat-
forms.

The experiments were conducted using a set of heterogeneous cloud de-
ployments and a real-time simulation of the reference plant. The control sys-
tem is deployed on four cloud platforms. The evaluation in these experiments
is aimed at the relative setpoint tracking performance of different configu-
rations. As was seen in Chapter 13, the goal is to have a robust frequency
control and avoid using the backup controller. For the purpose of these exper-
iments, it is enough to verify this through visual examination of the results.
To exercise the proposed R-CCS, all experiments are subjected to noise and
disturbances throughout the duration of the experiments. Gaussian noise,
µ = 0, σ = 3, is added to the control signal u. Additionally, the position
of the ball on the beam is altered between (−0.5, 0.5) every 10 s. The noisy
control signal provides a complementary benchmark to the disturbance used
in Chapter 13. Unless otherwise stated, all experiments run for 120 seconds.

Implementation

The optimization services are implemented in Python, using CVXOPT as
the optimization framework. The implementation is accessed over a persis-
tent HTTP connection. Multiple parallel connections can be made, thereby
enabling execute to completion. The async framework of Python is used for
this purpose. A POST request containing the predicted state of the plant,
and other parameters necessary to construct Equation (13.8), will yield a
response containing u∗ and the predicted states x̂∗. The latter is not used in
these experiments.

To the extent possible, requests are sent periodically with low jitter. For
this purpose, high priority real-time modes of the Linux kernel were used.
The deviations from the intended actuation times were also measured, and
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determined small in relation to the control periods. This is important, not
for the plant, which is simulated, but for a correct request sequence towards
the remote services.

Cloud platforms The four cloud infrastructures are heterogeneous in ca-
pacity, hosting platform and network proximity. The infrastructures are:

K8S: A Kubernetes cluster of seven bare-metal nodes located close to the
client. The controller service is exposed using an nginx ingress con-
troller. It has a measured median and 95th quantile RTTs of 11.71 ms
and 12.82 ms, respectively. This is the baseline deployment.

ERDC: The previously used Openstack-based research-focused DC located
1.3 km (0.6 miles) from the client. The controller service is hosted on
four VMs and ingress traffic is routed through an instance of HAProxy.
Measured median and 95th quantile RTTs are 24.24 ms and 26.46 ms,
respectively.

Central & North: AWS Lambda functions with 1024 MB RAM and no
throttling. They are hosted in Frankfurt, Germany (eu-central-1) and
Stockholm, Sweden (eu-north-1). The measured median and 95th quan-
tile RTTs are 37.55 ms and 52.62 ms for eu-central-1, and 180.06 ms and
218.57 ms for eu-north-1. The controllers are exposed using AWS API
Gateway.

Experiments

The following experiments were defined to demonstrate and validate the
R-CCS.

Single controller These experiments provides a first insight into how ca-
pable the platform is in hosting a single controller. A pure MPC without
mitigating features is evaluated, and three configurations from Chapter 13:
the SPSC, the NDOL, and the adaptive controller, now referred to as the
R-CCS.

Infrastructure disruptions and transients This experiment is in-
tended to exercise and validate the methods using a transient infrastructure,
allowing for all system dynamics to interact constructively. The transient
behavior is representative of events such as varying network load and con-
sequences of infrastructure resource management policies. Building on the
results from the single controllers, this evaluates a R-CCS’s ability to cope
with disruptions in the infrastructure. The experiments use the K8S cluster.
The cluster is subject to a periodic delay using the Chaos Mesh1. Specifi-
cally, the NetworkChaos module was used to subject one Kubernetes pod (a

1https://chaos-mesh.org
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service instance) to a delay with a mean of 100 ms, correlation of 25, and a
jitter of 15 ms, for 30 s every 1 m.

Resource starvation The proposed R-CCS is quality elastic, having the
potential to suppress resource starvation caused by contention between mul-
tiple cloud tenants (multi-tenancy), without fully compromising the perfor-
mance of the tenants. This aspect is relevant in terms of resource usage, but
also in terms of resiliency, as it may take the cloud some time to respond
to an increase in the workload. These experiments, evaluate the impact of
successively applying more tenants to a resource constrained instance of a
remote controller service. Each tenant is a new MPC offloading client, in
control of another ball and beam plant. Three plants are used, admitted 20 s
apart, all using a controller service deployed in K8S. At the start, the con-
troller deployment is hosted on one Kubernetes pod. After all three plants
have been admitted into the cluster, the deployment is scaled to three pods,
at t = 60 s. In addition to the basic criteria of success, the success in this
experiment is also determined by the ability to share resources and maintain
stability.

Transition between cloud platforms Although the proposed R-CCS
may be able to cope with a transient cloud infrastructure, any controller
has an upper RTT limit, beyond which the network controller is not useful,
or worse, unstable. If, at any point in time, that bound is violated, or another
cloud can offer better performance in terms of control frequency, an R-CCS
shall be able to seamlessly switch to that cloud. This returns us to the mi-
gration experiments in Chapter 7, but now implementing the feature using a
service architecture. In the experiment, a controller deployment is randomly
selected (other than the current) among the cloud infrastructures detailed in
Section 14.2, every 20 s. The criteria of success is the R-CCS’s ability to suc-
cessfully transition between cloud deployments and timely adapt the control
frequency of the process to that deployment.

14.3 Results

Single controller

Figure 14.3 shows the over-laid time-series of the outcome from the four con-
figurations, the MPC, the SPSC, the NDOL, and the R-CCS As usual, the
top plot shows the critical position of the ball, with a square-wave setpoint.
The middle plot shows the frequency, which is at 33 Hz for all configurations
except the R-CCS. The bottom plot shows load, defined as the ratio of ex-
ecution time versus the control period. For visibility, the load is only shown
for NDOL and the R-CCS.
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Figure 14.3 Evaluation of the merits of individual remedies and com-
binations of remedies, including the proposed R-CCS. sp is the position
setpoint.

It is not long until the MPC fails, at around 15 s. The trajectory of the
MPC falls of the chart at the second setpoint change, at the position marked
by a zoomed region. This is due to successive losses, no ability to adapt, and
no fall back on a local controller. This shows that the predictive controller is
not able to stabilize the plant under the conditions of the experiment. Also
observe that just before this failure happens, there is a visible bump in the
trajectory of the MPC. This shows how the applied disturbance can affect
the system when there is no control signal to handle it.

Adding the local recovery controller, yields the SPSC configuration. The
results are similar to the experiences from the simulations in Chapter 13.
Initially, the SPSC has some degree of performance, but does not reach the
setpoint. After some time it completely falls back on the backup controller.
It later recovers, and as seen in the 70 s to 80 seconds on the right.

Introduction of an acceptable control lag, in configuration NDOL, pro-
vides an improved response. This configuration is able to keep the ball on
the beam and track the setpoint most of the time. Significant effects on per-
formance, due to losses beyond the lag, are observed in relation to setpoint
changes, in the ranges t ∈ (10, 15), t ∈ (21, 24), and t ∈ (69, 78). Effects
of delay are also visible for NDOL at 6 s and 16 s, where the offset to the
setpoint becomes significant and clearly different from the R-CCS.
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The load plot shows that the problems experienced by the NDOL are due
to processing load. During the time frame 0 s to 25 s, and in the plots on the
right side, a processing load above one is occurring frequently. This leads to
extensive delays and reduced control performance. Lower load is experienced
from 25 s to 50 s, and here the controller works well.

Sequences where the load is zero, are due to timeouts of the control re-
quests. This could happen due to network delay but also because the remote
service is overloaded by optimizations. When a request is sent, the maximum
lag, σ, is set as a timeout on the connection. When this timeout is reached,
the connection is closed and no load is registered for the requests. Because
persistent connections are used, the cloud service learns about the timeout
when the connection is closed and shuts down the optimization. This helps
lowering the load, compared to the simulations in Chapter 13 where there
was no deadline. The NDOL mode repeatedly recovers, and can continue to
track the setpoint.

The frequency adaptive configuration gives the best result. It consistently
shows a quick and smooth response to setpoint changes and attenuates dis-
turbances well. The load plot also shows that the R-CCS is experiencing
loads above one, but frequent rate switching allows it to perform adequately.
In the frequency plot of Figure 14.3, the control frequency fc starts at 10 Hz
and the R-CCS successfully adapts the control frequency within 10 seconds.
It settles at a median control frequency of 33 Hz, equal to the other configu-
rations. Later, t ∈ (28, 50), response times increase, and the R-CCS adapts
to a lower control frequency. When looking at these results it is important
to note that the conditions are not equal between the various configurations.
This can be seen in the range 28 s to 50 s, where the load situation has clearly
improved for NDOL. This is contrary the situation of the R-CCS. The large
variation in the load after the first frequency reduction makes it reasonable
to conclude that the load on the cluster has changed. Meanwhile, the reduc-
tion at 45 s may be due to a temporary increase in the network or admission
time. We can conclude from this, that the R-CCS design that was simulated
in Chapter 13, is also working efficiently in a real setup.

The oscillations in the frequency are due variations in the computation
time. Spikes are visible both in the frequency plot and the load plot, and they
are more pronounced at high frequency than low. This indicates a somewhat
aggressive controller, but is also a consequence of disturbances acting on the
system, while the controller is acting close to constraints.

Infrastructure disruptions and transients

Figure 14.4 shows the over-laid time-series of the outcome from the NDOL
and the R-CCS when subjecting the hosting cloud infrastructure network to
an injected delay. The change in delay is seen from the RTT in the bottom
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Figure 14.4 Time series when applying a delay disturbance to the cloud
deployment, comparing fixed and adaptive frequency, as detailed in Sec-
tion 14.3.

graph of the figure. The mean delay disturbance of 100 ms is within the max-
imum allowed control latency, σ, of 210 ms. Therefore neither configuration
will intentionally be pushed beyond the point where it will not receive any
responses. Position and frequency are shown as before.

During the two periods of large network delay, the R-CCS reduces the
control frequency to match the experienced request RTT, pushing the fre-
quency to the very bottom of its range. This also affects the computation
time, and therefore the RTT of the R-CCS becomes lower than the NDOL.
The net effect is that the NDOL has to compensate for a larger delay than
the R-CCS, and clearly suffers a worse response. This experiment shows the
effect of the noise that is added in the simulation. After reaching the set-
point, the NDOL has problems attenuating this disturbance when the delay
is increased. This also affects the R-CCS but to a lower extent.

In this experiment, the R-CCS is compensating for an independent delay
imposed on all requests. This could also be handled by latency compensation,
without modifying the frequency. However, it shows the mitigating proper-
ties of the R-CCS, and while the transmission delay is dominant, there is a
double effect in the extended dead-time and lowering the system load. The
latter provides a shorter response time and if the delay was dependent on
the request frequency of the controller, this could have further effect. The
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Figure 14.5 Time series of outcome of resource starvation, comparing
fixed and adaptive frequency, as detailed in Section 14.2.

controller at the same time creates more room for processing load to occur,
which makes the controller less effected by load variation while the transmis-
sion delays are high.

There are some other things to note here as well. It should be reiter-
ated that the execute to completion strategy can be enhanced with a delay
compensation, which will improve the response of NDOL. This would not
remove the necessity to use an R-CCS, but in a scenario such as this one,
frequency reduction must be contrasted with compensation. Another thing
to note is that, over the course of the experiment, the accumulated error of
the R-CCS compared to NDOL is 11% lower, while at the same time it uses
51% less execution time. A lower error and lower execution time translate
to a higher yield per resource, lower resource usage, and potentially reduced
costs. This must also be weighted in, if considering delay compensation to
raise the frequency of the controller.
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Resource starvation

Two experiments are now performed to further explore the property of reduc-
ing the load on the hosting infrastructure. With the control service hosted in
K8S, Figure 14.5 shows responses for plants 1,2, and 3, successively admitted
20 s apart. The first chart shows the outcome when using the NDOL.

When one plant is using the cluster, from 0 s to 20 s, the cloud-deployment
is able to accommodate the MPC controller, executing at 33 Hz. At 20 s, a
second plant is admitted, and at 40 s, a third. There is a visible attempt by
the second plant to move towards the setpoint, but it quickly has to revert
to the backup controller, bringing the position back to zero. This also brings
the first controller to zero, showing that the cluster has already become
overloaded. The third controller does not even start, as seen by the offset in
the trajectory from the third client. The client is implemented to not start its
closed loop process until the first control response is received from the cloud.
Because the cluster is overloaded, the third client receives no responses and
its start is delayed.

At around 60 s, the cluster scales from one to three worker pods. When
scaling is done, all three plants can be accommodated, and subsequently they
leave the ’go-back-home’-mode and resume to successfully track the setpoint.

When employing adaptive control frequency, i.e., using the R-CCS, all
three plants successfully track the setpoint, with little or no error. Inde-
pendently but in unison, the plants reduce their control frequency until they
reach the tolerated level of loss, for each successive plant admission. An unan-
ticipated, positive, side effect is that the entry of a new plant is not at all
observable in the responses, at least not from a visual examination of the
position graph. Meanwhile, the entry of a new plant very abruptly affected
the outcome when using NDOL.

The admittance of new plants is visible in the frequency graph at the
bottom. Notice the difference to the previous experiment. The external and
persistent disturbance in Figure 14.4 causes a fast frequency reduction, and
later a slow ascent back to the high frequency. This was also seen frequently
in simulation. Here we see how all plants quickly reduce frequency, compen-
sating for each other, then progress back to a useful frequency. While there is
an overshoot to a slightly lower frequency, the response is fast and the clients
never have to resort to the lowest frequencies.

At 60 s, the deployment again scales to three pods. As shown in the bot-
tom chart in Figure 14.5, each plant independently and opportunistically
increase their control frequency. The control frequency, after the deployment
has scaled, is lower than with one pod and one plant. In theory, the three
pods can handle one client each, and they can all execute with the frequency
initially observed for the single controller. This lower performance can be
caused by increased network activity, admission control, insufficiently pow-
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Figure 14.6 Time series of outcome of one system transitioning between
set of heterogeneous cloud platform.

erful worker nodes, or unevenly distributed load. Ideal performance may be
hard to achieve without a lot of over provisioning, especially in more realis-
tic scenarios, with more variation in the clients and control problems. It is
a useful property, that the infrastructure can be probed and configurations
tuned while systems remain on-line.

Transition between cloud platforms

At this point, there is no reason to believe that the R-CCS would be incapable
of transitioning between deployments. In Chapter 7, this was accomplished
by deploying a runtime in virtual machines on two clouds, in a local resource-
constrained device, and on an edge resource at the base station. A resilient
design was not used in Chapter 7, and the offloaded structure was not used.
We have yet to demonstrate the potential of the service deployment, i.e., with
offloading using FaaS. The device now hosts the client, the edge device is re-
placed by the local K8S cloud, the small scale data center remains present as
ERDC, and large scale services are offered by the North and Central AWS
in Europe. Communication is over HTTP, while the runtimes in Chapter 7
would use TCP, or some other protocol, chosen by the platform. Cloud native
frameworks that provide scaling, introspection, and common software devel-
opment tools are used. In each of the locations, an idle, zero cost function
is stored and waiting for requests. The only thing the client needs in order
to execute at another location, is to modify the address of the request. We
now perform the experiment, similar to the Calvin migration, knowing that
if only the transitions work well, the resilient, offloaded controller will not
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fail, and should adapt its performance to the new deployment.
One client and one plant is used. The client randomly switches between

the four cloud deployments detailed in Section 14.2. As demonstrated in
Chapter 8, the deployments have different properties, but the client makes
no difference between them. Nevertheless, the R-CCS is able to seamlessly
switch between the locations, and expediently adapt to a control frequency
appropriate to that deployment. In Figure 14.6 the upper chart shows the
position of the ball, below, the target cloud, followed by the controller fre-
quency.

The deployment North has the highest prior measured RTT and the most
variations in processing time, and is therefore the most challenging. The
deployment K8S (from 0 s to 20 s and 40 s to 60 s) has the lowest measured
RTT, and this is also where the highest frequency is reached. Between 20 s
to 40 s the municipal data center, ERDC, is used. There are many, small,
frequency variations observed during this time, but this has no substantial
effect on the closed loop response. At 60 s, the deployment changes to a
distant, large scale data center service. Because of an increase in delay, the
control frequency is reduced to a minimum, but this compensation is not
enough. The client struggles to track the setpoint as the backup controller
repeatedly forces the plant towards the origin. At 80 s, when the service
goes back to K8S, tracking performance is immediately regained, and fifteen
seconds later, the high frequency mode is achieved.

The frequency drops again when the deployment is changed to another
large scale service. Clearly, the frequency is initially underestimated, as the
frequency controller reacts to a sudden large loss, but over the course of a
few seconds, the controller achieves a reasonable rate. Notice that Central
is a Lambda service, while in Chapter 7 a VM was used towards the same
cloud. The settled frequency is slightly higher than what was used on the
central cloud in Chapter 7, and now the implementation is also robust and
using higher level APIs. The sequence in Figure 14.6 is short, but indicates
that the service will work in practice. Another thing to note is that Central
and North are using a is more costly configuration than what has been used
towards Lambda previously in the thesis. This does not provide a positive
observation of results on North but is one reason for the positive result for
Central. This shows the flexibility of the cloud. The upgrade only requires
changing a value in a web interface, and this can be done independently of
the client, while it is executing.

14.4 Conclusions

This chapter and Chapter 13 have presented a resilient cloud controller de-
sign, through an offloading architecture and frequency control. The output
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of a loss ratio-based smoothing filter and PI control is used to manage the
client request rate. The result implements constrained MPC using the cloud.
To ensure reliability, the client implements a backup controller and a ’go-
back-home’ mode, in case the R-CCS fails its objective. Simulation and ex-
periments on clouds, show how the Resilient Cloud Control System is able to
mitigate delay, allow a cluster to admit new controllers while scaling to meet
the new demand, and change its deployment on-line. These positive effects
are achieved, while at the same time keeping the number of unused, waste-
ful, requests low. Further work on the R-CCS can introduce other means of
altering the controller load on-line, e.g., built-in delay compensation, statis-
tical methods for setting the frequency, and improved automation through
machine learning.
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15
Conclusions and Future
Work

Based on the prospect that many control systems will be connected to cloud
services, this thesis has explored cloud aspects from the perspective of control
engineering. In contrast to many related works, the method has been to focus
on redesigning control systems for using utility computing, in order to ex-
plore this potential and the uncertainty of using clouds to implement critical
control systems. To that end, it has examined generic principles, elementary
properties, and constructed prototypes to examine cloud native platforms.
The goals of the individual works have been to answer questions on the state
of current technology, demonstrate properties of cloud control systems, and
develop principles for resilient cloud control. The first part of the thesis in-
troduced the cloud control challenge and offloading. In controller offloading,
a client requests services from the cloud to replace its control function. In
the thesis, this is used to execute optimization problems, requested on an
as-needed basis by the client.

The second part of the thesis studied performance using two testbeds.
The first testbed implemented a controller on a PaaS, deployed in a dis-
tributed cloud. The platform traversed wireless and public networks, and sup-
ported software migration, allowing placement of the controller on a resource-
constrained device, an edge cloud, or in distant data centers, and relocating
it dynamically while controlling the plant. This demonstrated that such a
platform is able to support the reference system, but also showed problems
related to both networking and computation delay. Good performance was
only achieved at the edge, communicating over state of the art wireless com-
munication using the massive MIMO research testbed LuMaMi.

In the second testbed, the control system was implemented to be com-
patible with FaaS. This was used to measure response times in the cloud
stack and processing time variations on different platforms. Results indi-
cated that this design can also be used to control the reference plant, which
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was further verified using two versions of an offloaded client. The second
client achieved limited gains in terms of performance, but in return provided
good resource utilization and no constraint violations. Further, the measure-
ments illustrated the overhead of using cloud native services and high level
interfacing, and the impact of distance. A cloud within a few kilometers
was compared to one hundreds of kilometers away, but within nation bor-
ders. This showed the theoretical limit on achievable response time, and the
impact of communication layers and intermediate networks. In this specific
scenario, an offloaded task will have to execute several times faster in the
hyperscale data center, in order to compensate for access time overhead.

Control strategies were investigated in part three. First, parallelism was
used to implement a variable horizon controller. With every sample, the client
sends several requests to the cloud, and later chooses what action to apply
based on the responses it has received on time. Each optimization implements
an ordinary MPC with nominal stability guarantees. The client must handle
the event of not receiving responses, and the horizon can change between
control actions. The evaluation shows that the controller is executing reliably
and that it is able to handle request loss. The use of an edge cloud was also
considered. This illustrated the use of two different locations in a distributed
cloud, to improve the response while maintaining the basic structure.

The second strategy introduced rate switching. In this case, the client re-
quests support from the cloud to execute an MPC at higher rate than what
is possible locally. This creates another switching system, with alternatives
for when to execute the low frequency controller and how to handle the event
when neither of the two optimizing controllers provide a response. Several
modes were examined and simulated to show relative performance improve-
ments. It was also shown that the configurations can experience problematic
maximum constraint violations.

The final strategy expanded the control problem to ensure constraint sat-
isfaction in the event of request loss. This was done by introducing recovery
paths, explicitly verified in the remote MPC. This comes at a computational
cost but provides flexibility, separation of concerns, and a reliable way to
override a device controller with an advanced alternative executing in the
cloud. The evaluation examined effects on performance with various config-
urations of the recovery.

Part four took on a perspective of cloud control that is important indepen-
dently of how the controller is implemented: sharing resources and scaling.
Before demonstrating scale-out on the cloud testbed, a resilient controller
was developed using predictive control, control frequency adaptation, and a
go-back-home mode. Simulations based on previously recorded data where
used to assess the strategy and show that it has a positive effect on a single
control system. The strategy was then applied when executing on the testbed,
first applying artificial loads, and then in a scenario with three controllers
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and cluster scaling. The results showed good and reliable performance. The
adaptive controller reached higher frequencies than what was previously con-
figured from observation.

On-demand computing and elasticity, are intrinsic properties of clouds,
and something that should be taken into account and utilized also in the
design and implementation of control systems. One way to approach cloud
native control, is to focus on a resilient and performance-enhancing design.
Communication networks and cloud services will improve to support real-
time systems, but this does not exclude the potential benefits from high
average performance. With cloud, these properties may co-exist and a chal-
lenge is to create systems that can put this to good use. The thesis has taken
initial steps towards such architectures, and shown that they can be applied
in practice.

15.1 Future work

To introduce offloading and resilient control in engineering, the concepts must
be evaluated in a larger context and applied in practice to other use cases.
Preferably, this involves scenarios with several resilient controllers that exist
in a larger software framework. This will help to investigate how well best
practices scale and naturally include a larger part of cloud control, by intro-
duction of related technology such as plug-and-play support, collaborating
systems, and load balancing strategies. There are also many things that can
be done to directly extend parts of the thesis, as listed in the following.

Performance prediction and guarantees

Theory from networked control, switched systems and robust control should
be introduced to provide formal stability and constraint guarantees. In ad-
dition, on-line evaluation could predict the outcome from updated configu-
rations of the environment, or the controller, to support automatic scaling.
Introducing monetary costs in the evaluation allows systems to execute cost-
effectively and with cost constraints.

Reference control problem

Future works should extend the control system to a more complex struc-
ture, such as centralizing a distributed control problem or using non-linear
plant models. This can further motivate the use of offloading but also pro-
vide other benefits of using the cloud, such as executing the problem where
information is gathered. Additional information can be incorporated into
the remote controller, taking additional sensors or other, dependent, systems
into account, when calculating the control action. This will create research
in several directions, for instance: plug-and-play systems, resiliency in more
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complex scenarios, best practices and limits to achievable gains, architectures
that can collaborate and also use offloading, etc.

Cloud and control bench-marking

The experiments in this thesis have been formed by the perspective of dis-
tributed clouds, deploy anywhere and IoT, with focus on the architectures.
Experiments have mostly used what can be considered as average performing,
general purpose hardware and virtual machines. From individual providers,
there are often many alternatives to chose from, designed specifically for var-
ious purposes. For instance, machines that carry a low cost but have burst
performance, machines that are good at I/O operations, and machines that
provide GPU acceleration. The study in [Leitner and Cito, 2016] extensively
looks at virtual machines, and [Pelle et al., 2019] provides an example also
looking into storage and event triggering. Similar studies, with a resilient and
quality elastic client, would be useful. This can be used to verify the function
and performance of elastic control designs, and domain specific benchmarks
will help in selecting and evolving clouds to support these applications.

On-line statistics

Obtaining statistics on the execution environment, and using them on-line,
is an interesting research direction that did not make it into this thesis. A
direct extension would be to replace the PI frequency control with a differ-
ent adaptation. Such an alternative can use statistics on processing times,
execution times, network delay etc. This leads to data driven methods and
machine learning.

Latency compensation

Latency can be further compensated in the resilient controller by applying
techniques from Part III, and related theory from robust control and net-
work control. In a practical extension, a local client might work towards the
nominal path (i.e. the error xe = xm − x), and fall back to recovery if the
error becomes too large or the setpoint changes. Utility computing can be
supportive, evaluating several potential outcomes in the cloud, such as il-
lustrated by the variable horizons and edge cloud in Chapter 10. Another
extension is to apply a generic compensation for missing control actions that
result from a delayed response and the use of open loop. Such strategies
should be compared to alternatives that compensate for a certain delay pro-
file in the controller design.

Dependent and independent delay

The resilient controller that was used in Chapter 14, will reduce its frequency
even if the experienced delay is static. When the reduced frequency has lim-
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ited impact on the experienced delay, it is more reasonable to work with
latency compensation. Future work might combine these methods.

Update rate

The MPC controller does not have to be reevaluated for every control signal.
The MPC problem can be constructed to provide a higher rate of control
signals than the rate of update, i.e., control is executed in open-loop between
updates by design. An update rate that is modified independent of the control
frequency can serve as an alternative and extension to the frequency control
in Chapter 14.
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akoon, and K.-E. Årzén (2020). “Five challenges in cloud-enabled intel-
ligence and control”. ACM Transactions on Internet Technology (TOIT)
20:1. issn: 1533-5399.

Ahmad, R. W., A. Gani, S. H. A. Hamid, M. Shiraz, F. Xia, and S. A. Madani
(2015). “Virtual machine migration in cloud data centers: a review, tax-
onomy, and open research issues”. The Journal of Supercomputing 71:7,
pp. 2473–2515.

Ahn, Y. woon and A. M. K. Cheng (2015). “MIRRA: Rule-based resource
management for heterogeneous real-time applications running in cloud
computing infrastructures”. In: Presented at the Int. Workshop on Feed-
back Computing. Seattle, WA, USA.

Alessio, A. and A. Bemporad (2007). “Decentralized model predictive control
of constrained linear systems”. In: European Control Conference (ECC).
IEEE. Kos, Greece, pp. 2813–2818.

Alexandru, A. B., M. Morari, and G. J. Pappas (2018). “Cloud-based MPC
with encrypted data”. In: IEEE Conference on Decision and Control
(CDC). Miami, FL, USA, pp. 5014–5019.

Andersen, M., J. Dahl, and L. Vandenberghe (2021). CVXOPT. url: http:
//cvxopt.org/ (visited on 2021-07-12).

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia (2010). “A view
of cloud computing”. Commun. ACM 53:4, pp. 50–58. issn: 0001-0782.
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Li, Q., Q. Hao, L. Xiao, and Z. Li (2009). “Adaptive management of virtu-
alized resources in cloud computing using feedback control”. In: First In-
ternational Conference on Information Science and Engineering (ICISE).
IEEE. Nanjing, China.

Limón, D., I. Alvarado, T. Alamo, and E. F. Camacho (2010). “Robust tube-
based MPC for tracking of constrained linear systems with additive dis-
turbances”. Journal of Process Control 20:3.

Lu, Q., Y. Sun, Q. Zhou, and Z. Feng (2014). “New results on robust model
predictive control for time-delay systems with input constraints”. Journal
of Applied Mathematics 2014.

Luck, R. and A. Ray (1994). “Experimental verification of a delay com-
pensation algorithm for integrated communication and control systems”.
International Journal of Control 59:6, pp. 1357–1372.

Lyu, M., F. Biennier, and P. Ghodous (2019). “Control as a service architec-
ture to support cloud-based and event-driven control application develop-
ment”. In: IEEE International Congress on Internet of Things (ICIOT).
Milan, Italy, pp. 41–49.

Ma, Y., C. Lu, B. Sinopoli, and S. Zeng (2020). “Exploring edge computing
for multitier industrial control”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39:11, pp. 3506–3518.

Maciejowski, J. M. (2002). Predictive control: with constraints. Pearson Ed-
ucation.

Magni, L., R. Scattolini, and M. Tanelli (2008). “Switched model predictive
control for performance enhancement”. International Journal of Control
81:12, pp. 1859–1869.

Mahmoud, M. S. and Y. Xia (2020). Cloud Control Systems: Analysis, Design
and Estimation. Academic Press.

Mahmud, N., K. Sandström, and A. Vulgarakis (2014). “Evaluating industrial
applicability of virtualization on a distributed multicore platform”. In:
Emerging Technology and Factory Automation (ETFA). IEEE, pp. 1–8.

Malkowsky, S., J. Vieira, L. Liu, P. Harris, K. Nieman, N. Kundargi, I. C.
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Vick, A., J. Guhl, and J. Krüger (2016). “Model predictive control as a
service—concept and architecture for use in cloud-based robot control”.
In: IEEE International Conference on Methods and Models in Automation
and Robotics (MMAR). Miedzyzdroje, Poland.

Villari, M., M. Fazio, S. Dustdar, O. Rana, and R. Ranjan (2016). “Osmotic
computing: a new paradigm for edge/cloud integration”. IEEE Cloud
Computing 3:6. issn: 2325-6095.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
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A
Cost tables

These tables show the states and accumulated CLRE for the simulations
summed up in Table 13.4. States and distributions are show in Figure 13.3,
Figure 13.4, Table 13.2.

States (processing,flight) and end time

s1,s3 s1,s4 s2,s4 s1,s4 s1,s3 s2,s3 s1,s3

Method 16s 33s 35s 37s 56s 61s 88s

Adapt 0.00 1.64 1.73 1.74 2.42 2.45 3.13
Adapt† 0.00 2.20 2.38 2.42 2.67 2.67 3.32
22.2 Hz NDOL 0.01 1.39 1.45 1.48 1.88 1.95 2.28
22.2 Hz NDOL† 0.01 1.39 1.45 1.48 2.34 2.57 2.90
16.6 Hz NDOL 0.02 1.04 1.13 1.37 2.43 2.48 3.41
16.6 Hz NDOL† 0.02 1.04 1.13 1.37 2.43 2.48 3.41

States (processing,flight) and end time

s2,s3 s1,s3 s2,s3 s1,s3 s2,s3 s1,s3 s2,s3

Method 101s 105s 107s 116s 117s 145s 154s

Adapt 3.19 3.19 3.23 3.54 3.54 9.09 9.16
Adapt† 3.39 3.49 3.65 3.80 3.81 12.7 12.7
22.2 Hz NDOL 2.50 2.52 2.64 2.74 2.75 12.0 12.1
22.2 Hz NDOL† 3.12 3.14 3.26 3.36 3.37 209 209
16.6 Hz NDOL 3.88 3.91 4.01 4.42 4.46 14.4 14.6
16.6 Hz NDOL† 3.88 3.91 4.01 4.42 4.46 14.3 14.4
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Appendix A. Cost tables

States (processing,flight) and end time

s1,s3 s2,s3 s1,s3 s1,s4 s2,s4 s1,s4 s2,s4

Method 163s 169s 170s 174s 175s 180s 202s

Adapt 9.24 9.31 9.31 9.99 9.99 10.2 10.9
Adapt† 13.0 13.0 13.0 13.2 13.2 13.3 14.1
22.2 Hz NDOL 12.2 12.3 12.3 12.7 12.7 13.1 13.6
22.2 Hz NDOL† 210 210 210 210 210 210 211
16.6 Hz NDOL 14.9 15.1 15.1 15.4 15.4 15.5 16.7
16.6 Hz NDOL† 14.8 15.0 15.0 15.3 15.3 15.4 16.5

States (processing,flight) and end time

s1,s4 s2,s4 s2,s5 s1,s5 s1,s3 s2,s3 s1,s3

Method 221s 221s 229s 232s 232s 283s 283s

Adapt 13.6 13.6 14.1 14.1 14.1 14.4 14.4
Adapt† 16.6 16.6 17.2 17.2 17.2 17.3 17.3
22.2 Hz NDOL 17.6 17.6 17.8 17.9 17.9 18.6 18.6
22.2 Hz NDOL† 304 304 304 305 305 305 305
16.6 Hz NDOL 19.9 19.9 20.1 20.4 20.4 22.3 22.3
16.6 Hz NDOL† 21.8 21.8 22.0 22.3 22.3 24.2 24.2

States (processing,flight) and end time

s2,s3 s1,s3 s1,s4 s1,s3 s2,s3 s1,s3 s2,s3

Method 292s 300s 303s 310s 318s 334s 389s

Adapt 14.4 14.6 14.6 14.6 14.7 15.7 15.9
Adapt† 17.4 17.6 17.9 18.2 18.2 19.0 19.1
22.2 Hz NDOL 18.8 18.9 18.9 19.1 19.2 20.1 20.8
22.2 Hz NDOL† 305 306 306 306 306 307 307
16.6 Hz NDOL 22.8 23.1 23.2 23.5 23.8 25.1 27.0
16.6 Hz NDOL† 24.7 25.0 25.1 25.4 25.7 27.0 28.8

247



Appendix A. Cost tables

States (processing,flight) and end time

s1,s3 s2,s3

Method 389s 401s

Adapt 15.9 15.9
Adapt† 19.1 19.2
22.2 Hz NDOL 20.8 20.9
22.2 Hz NDOL† 307 308
16.6 Hz NDOL 27.0 27.7
16.6 Hz NDOL† 28.8 29.6

248


	Title Page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scope of the thesis
	1.3 Thesis outline and contributions
	1.4 Publications
	1.5 Notation

	Glossary
	Acronyms
	I Cloud Control Challenge
	2 Intelligence in the Cloud
	2.1 Cloud Overview
	2.2 Contemporary Cloud
	2.3 Research Challenges
	2.4 Controller offloading
	2.5 Closed loop guarantees

	3 Control over the Cloud
	3.1 Networked control
	3.2 Real-time
	3.3 Cloud control system
	3.4 Control over the Cloud

	4 Model Predictive Control
	4.1 Definition
	4.2 Stability
	4.3 The basic MPC - limitations and extensions
	4.4 Linear and quadratic control

	5 Reference Plant

	II Cloud Performance
	6 Introduction
	6.1 Related work
	6.2 Research gap

	7 Towards Mission Critical Control
	7.1 5G enabled testbed
	7.2 Edge cloud and massive MIMO
	7.3 Cloud native application
	7.4 Implementation
	7.5 Testbed evaluation
	7.6 Conclusions

	8 Function Service Performance
	8.1 Objective
	8.2 Platform
	8.3 Experiments
	8.4 Computational load
	8.5 Cloud stack latency progression
	8.6 Feedback control
	8.7 Conclusions


	III  Predictive Control in the Cloud
	9 Introduction
	9.1 Related Work
	9.2 Research Gap
	9.3 General Design

	10 Variable Horizon Control
	10.1 Targeted system
	10.2 Controller
	10.3 Evaluation
	10.4 Edge perspective
	10.5 Conclusion

	11 Rate Switching
	11.1 Targeted system
	11.2 Controller
	11.3 Evaluation
	11.4 Conclusions

	12 Explicit Recovery
	12.1 Setup
	12.2 Controller
	12.3 Evaluation
	12.4 Conclusion


	IV Adaptation
	13 Resilient Elastic Control
	13.1 Background and related work
	13.2 Simulations
	13.3 Offloaded controller

	14 Resilient Elastic Control in the Cloud
	14.1 Frequency Controller Details
	14.2 Experimental setup
	14.3 Results
	14.4 Conclusions


	V Conclusions
	15 Conclusions and Future Work
	15.1 Future work

	Bibliography
	A Cost tables


