
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Ecology and evolution of large-scale bird migration patterns

A natural history and comparative study of the migration in common and little ringed plovers
Hedh, Linus

2022

Link to publication

Citation for published version (APA):
Hedh, L. (2022). Ecology and evolution of large-scale bird migration patterns: A natural history and comparative
study of the migration in common and little ringed plovers. Media-Tryck, Lund University, Sweden.

Total number of authors:
1

Creative Commons License:
CC BY-NC-ND

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 08. Oct. 2022

https://portal.research.lu.se/en/publications/5f48c89a-239d-4946-a67f-bfa362dff32b


Ecology and evolution of large-
scale bird migration patterns
A natural history and comparative study of the 
migration in common and little ringed plovers
LINUS HEDH | DEPARTMENT OF BIOLOGY | FACULTY OF SCIENCE | LUND UNIVERSITY



Faculty of Science
Department of Biology

ISBN 978-91-8039-113-9 9
7
8
9
1
8
0

3
9
1
1
3
9

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

22

I.	 Hedh, L., Dänhardt, J., and Hedenström, A. Evolution 
of leap-frog migration: a test of alternative hypotheses. 
Submitted. 

II.	 Hedh, L., and Hedenström, A. 2020. The migration pat-
tern of a monogamous shorebird challenges existing 
hypotheses explaining the evolution of differential mig-
ration. Journal of Theoretical Biology, 487:2020110111.

III.	 Hedh, L., Dänhardt, J., and Hedenström, A. Population 
specific annual cycles and migration strategies in a le-
ap-frog migrant. Submitted. 

IV.	 Hedh, L., and Hedenström, A. 2016. ‘Autumn migration 
strategies and trapping numbers in the common ringed 
plover Charadrius hiaticula in Southern Sweden’. Ardea, 
104(3): 227-237.

V.	 Hedh, L., and Hedenström, A. Consequences of mig-
ratory distance and season on the migratory process 
in a temperate population of common ringed plover 
Charadrius hiaticula. Manuscript.

VI.	 Hedenström, A., and Hedh, L. Seasonal patterns and 
processes of migration in the little ringed plover Char-
adrius dubius. Manuscript.



Ecology and evolution of large-scale 
bird migration patterns 

A natural history and comparative study of the migration 
in common and little ringed plovers 

Linus Hedh 

DOCTORAL DISSERTATION 

by due permission of the Faculty of Science, Lund University, Sweden. 
To be defended in the Blue Hall, Ecology Building, Sölvegatan 37, Lund, Sweden 

on Friday 21 January 2022 at 9:00 AM. 

Faculty opponent 
Professor Theunis Piersma 

University of Groningen & NIOZ Royal Netherlands Institute of Sea Research 



196



Ecology and evolution of large-scale 
bird migration patterns 

A natural history and comparative study of the migration 
in common and little ringed plovers 

Linus Hedh 



Front cover illustration by Peter Nilsson

Copyright pp 1-66 Linus Hedh

Paper 1 © By the Authors (Manuscript unpublished)

Paper 2 © Elsevier Ltd.

Paper 3 © By the Authors (Manuscript unpublished)

Paper 4 © Netherlands Ornithologist’s Union

Paper 5 © By the Authors (Manuscripts unpublished)

Paper 6 © By the Authors (Manuscripts unpublished)

Faculty of Science
Department of Biology

ISBN 978-91-8039-113-9 (print)
ISBN 978-91-8039-114-6 (pdf)

Printed in Sweden by Media-Tryck, Lund University
Lund 2022



Till Lars-Göran Lööf 





Table of Contents

List of papers ...................................................................................................... 9
Additional published papers not included in the thesis ................................ 9

Author contributions ....................................................................................... 10

Abstract ............................................................................................................ 11

Introduction ..................................................................................................... 13
Aims ........................................................................................................ 15

Paper specific aims .......................................................................... 16
Ecological and physiological drivers and constraints of migration............. 17

Seasonality (food availability and thermoregulation) ........................ 17
Competition ..................................................................................... 18
Cost of migration ............................................................................. 19
Social mating system ....................................................................... 20

General methodology ....................................................................................... 21
Approaches .............................................................................................. 21
The common ringed plover ....................................................................... 22
The little ringed plover ............................................................................. 23
Study sites and field work ........................................................................ 24

Results and discussion ...................................................................................... 27
Between and within population patterns of migration in the common ringed 
plover....................................................................................................... 27
Testing ecological hypotheses explaining between and within population 
migration patterns .................................................................................... 29

The evolution of leap-frog migration in the common ringed plover .. 30
Evolution of differential migration by sex in the common ringed 
plover .............................................................................................. 33

Annual cycle adaptations .......................................................................... 35
Time allocation and potential bottlenecks in the common and little 
ringed plover ................................................................................... 35
Migration timing in relation to migration distance and breeding site 
climate in the common ringed plover ............................................... 36



Migration speed ....................................................................................... 38
The process of migration in relation to migration distance and adaptive 
values....................................................................................................... 39

Division between migratory flight and stopovers .............................. 39
Number and duration of migratory flights ........................................ 40

Conclusions and future outlook ....................................................................... 43
Acknowledgements .................................................................................. 46

Thank you! ....................................................................................................... 47

Populärvetenskaplig sammanfattning ............................................................. 51

References ........................................................................................................ 55



9 

List of papers 

I. Hedh, L., Dänhardt, J., and Hedenström, A. Evolution of leap-frog 
migration: a test of alternative hypotheses. Submitted.  

II. Hedh, L., and Hedenström, A. 2020. The migration pattern of a 
monogamous shorebird challenges existing hypotheses explaining the 
evolution of differential migration. Journal of Theoretical Biology, 
487:2020110111. 

III. Hedh, L., Dänhardt, J., and Hedenström, A. Population specific annual 
cycles and migration strategies in a leap-frog migrant. Submitted.  

IV. Hedh, L., and Hedenström, A. 2016. ‘Autumn migration strategies and 
trapping numbers in the common ringed plover Charadrius hiaticula in 
Southern Sweden’. Ardea, 104(3): 227-237. 

V. Hedh, L., and Hedenström, A. Consequences of migratory distance and 
season on the migratory process in a temperate population of common 
ringed plover Charadrius hiaticula. Manuscript. 

VI. Hedenström, A., and Hedh, L. Seasonal patterns and processes of migration 
in the little ringed plover Charadrius dubius. Manuscript. 

Paper II and IV are reprinted with permission from the publishers 

Additional published papers not included in the thesis 
Hedh, L., Guglielmo, C.G., Johansson, L.C., Deakin, J., Voight, C. and Hedenström, 
A. 2020. Measuring power input, power output and energy conversion efficiency in 
un-instrumented flying birds. Journal of Experimental Biology, 223:jeb223545. 



10 

Author contributions 

 
I. L.H. conceived the idea of the study; L.H., J.D. and A.H. collected the 

data; L.H. analyzed and visualized the data; L.H. wrote the first draft with 
support from A.H.; L.H., J.D. and A.H. edited and revised the manuscript; 
L.H., J.D. and A.H. acquired the funding. 

II. L.H and A.H. conceived the idea of the study; L.H. and A.H. collected the 
data; L.H. analyzed and visualized the data; L.H. wrote the first draft with 
support from A.H.; L.H. and A.H. edited and revised the manuscript; L.H. 
and A.H. received funding. 

III. L.H., J.D. and A.H. conceived the idea of the study; L.H., J.D. and A.H. 
collected the data; L.H. did the formal analysis of the data and drafted the 
manuscript with input from J.D. and A.H. All authors contributed 
critically to the drafts and edited the manuscript. L.H., J.D. and A.H 
acquired the funding. 

IV. A.H conceived the idea of the study; L.H. collected and analyzed the 
historical ringing data and made visualizations; L.H. wrote the first draft 
with support from A.H.; L.H. and A.H. edited and revised the manuscript; 
A.H. received funding. 

V. L.H. and A.H. conceived the idea of the study; L.H. collected the data; 
L.H. analyzed and visualized the data; L.H. wrote the first draft; L.H. and 
A.H edited and revised the manuscript; L.H. and A.H. received funding. 

VI. A.H. conceived the idea of the study; L.H. and A.H. collected the data; 
L.H. and A.H. analyzed and visualized the data; A.H. wrote the first draft; 
L.H. and A.H edited and revised the manuscript; L.H. and A.H. received 
funding. 

 
  



11 

Abstract 

Migration distance and seasonal redistribution patterns may vary between and 
within bird populations. A common pattern is leap-frog migration, in which 
northerly breeding populations migrate farther and winter south of more southerly 
breeding populations. Another common pattern is difference in migration distances 
between males and females within the same population. Evidently different 
populations and sexes may experience different environmental conditions and 
selection pressures throughout the annual cycle. Such systems are interesting from 
an evolutionary perspective, since it allows researchers to identify and study cost-
benefit trade-offs, ecological drivers and constraints to better understand species 
distributions and behavioral adaptations, such as migration. The aim of this thesis 
was to study the migration patterns and processes in the common ringed plover 
Charadrius hiaticula and little ringed plover Charadrius dubius to test predictions 
and assumptions in the underpinning hypotheses regarding the evolution of between 
and within population migration patterns, and behavioral adaptations associated 
with the migratory journey.  

By studying different populations of common ringed plovers, a textbook example 
of leap-frog migration, the general leap-frog pattern was confirmed. However, two 
populations breeding on the same sub-Arctic latitude separated in the winter. 
Relative winter distribution, body size patterns and autumn departure/arrival 
patterns between four populations suggest that neither body size nor spring 
predictability could explain leap-frog migration. Thus, two hypotheses explaining 
leap-frog migration could be rejected. Individuals from a temperate population 
spread out over the whole known (subspecies-specific) wintering distribution area. 
Interestingly, on average, males were found to migrate farther (~ 800 km) compared 
to females. This pattern is rare among birds. Neither of the proposed hypotheses set 
out to explain differential migration could satisfactorily explain the observed 
pattern. A new hypothesis was formulated (but not tested), which proposes that sex 
specific energetic needs upon spring arrival and winter site-specific fueling rates 
may sometimes benefit one sex - in this case males - to migrate farther. 

Migration distance alone did not seem to have an effect on migration speed in the 
common and little ringed plover. Contrary to the general predictions and 
observations, lower migration speeds were found in spring compared to autumn in 
little ringed plovers and in a temperate breeding population of common ringed 
plover. Interestingly, the Arctic population of common ringed plovers realized a 
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higher spring migration speed compared to the temperate population, suggesting 
that high fueling rates may be attained on European spring stopover sites, well timed 
in relation to the onset of the northern breeding season. Temperate populations of 
common ringed plovers arrive in spring with a higher inter-annual variation 
compared to Arctic populations, indicating a more flexible migratory schedule. 
Migration distance and season influenced the number, organization and duration of 
migratory flights in the common ringed plover. In autumn, there was no difference 
in number of migratory flights between individuals migrating different distances. 
However, individuals migrating longer distances initially made 2-4 short flights 
followed by a longer flight. This is indicative of a time minimizing strategy, which 
was unexpected given previous assumptions of autumn migration being more 
relaxed. In spring however, the number of flights increased with distance and there 
is no clear way to distinguish between strategies without knowledge of fueling 
conditions.  
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Introduction 

Animals living in a seasonal environment need to adapt to the continuously 
fluctuating environmental conditions (Fretwell 1972). One behavioral adaptation to 
mitigate potentially negative effects or exploit opportunities presented by the 
environment - and which has fascinated humans for centuries - is to migrate 
(Alerstam 1990, Dingle 2014). Migration can be found in almost all major animal 
groups (Hansson and Åkesson 2014). However, most notable - and perhaps most 
studied - are these journeys in birds, in which some species have been shown to 
travel thousands of kilometers encompassing hemispheric scales, within a single 
year (Salomonsen 1967, Gill et al. 2005, Egevang et al. 2010, Klaassen et al. 2011, 
Bairlein et al. 2012, Sokolovskis et al. 2018). These journeys allow migratory birds 
to track seasonal pulses of food resources, which are separated in time and space 
(Thorup et al. 2017, Norevik et al. 2019), and to find suitable environmental 
conditions for both reproduction and survival (Lack 1968, Alerstam et al. 2003).  

Migration is found in a variety of bird species, across phylogenetic origins (Helbig 
2003, O’Connor et al. 2018), and migratory behavior is expressed to various degrees 
in terms of migration distance and strategies (Alerstam 1990, Newton 2008). As 
with partial migrants, when only a subset of a populations is leaving their breeding 
grounds in the non-breeding season (Lack 1943, Chapman et al. 2011), between and 
within population patterns can also be found among fully migrating populations. 
Already in the mid 19th century, Nilsson (1858) noted that migratory populations 
breeding at more northerly latitudes (I will adopt a north hemispheric perspective 
throughout this text) may also maintain more northerly wintering grounds as 
compared with populations breeding at latitudes farther south. Later, Palmén (1874) 
discovered that the relative sequential order of wintering latitudes of many species, 
and populations, was reversed relative to the breeding latitude. Hence, populations 
breeding farther north winter south of more southerly breeding populations. Almost 
a century later, Salomonsen (1955) - using ringing data, which by then had been 
systematically collected for little over half a century (Newton 2008) - compiled 
further accounts of these patterns, which are referred to as “chain” and “leap-frog” 
migration, respectively (Fig. 1). Early students of ornithology also noted that males 
often migrate shorter distances than females and that they usually return earlier in 
spring (e.g., Linné 1758). The “differential migration” pattern between males and 
females within populations, in which males usually migrate a shorter distance, has 
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now been established as a rule rather than an exception (Fig. 1) (Ketterson and 
Nolan 1983, Cristol et al. 1999). 

With these migration patterns in mind, it becomes evident that different populations 
or individuals may experience different environmental conditions throughout the 
annual cycle. To illustrate, just imagine the widely diverse conditions two willow 
warblers Phylloscopus throchilus may encounter when arriving to a temperate 
breeding area in southern Sweden and to the sub-alpine birch forest, in the Arctic 
part of the species’ distribution range, where snow and sub-zero degrees are not 
uncommon in spring. Thus, timing of migration in relation to resource pulses along 
the migratory routes, and at the departure and destination sites, are likely to be under 
strong selection and may differ between populations (Conklin et al. 2010, Bauer et 
al. 2016, 2020, Briedis et al. 2016). Moreover, the ecological context that a 
migrating bird is facing may affects the employed migration strategy (Alerstam and 
Lindström 1990, Hedenström and Alerstam 1997). For example, in spring, when 
fierce competition for breeding resources is taking place and rank order of arrival is 
predicted to be crucial (Kokko 1999), birds are expected to maximize the speed of 
migration to outcompete potential opponents (Hedenström and Alerstam 1997). 
Such selective forces should, in combination with the current environment, 
physiological constraints and migration distance, result in different behavioral 
outcomes to complete the migratory journey in an optimal way (Alerstam and 

Between population patterns

Leap-frog migration Chain migration Differential migration

Within population pattern
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Lindström 1990, Ens et al. 1994, Weber et al. 1998, Alerstam and Hedenström 
1998). 

What is hopefully clear is that migration is, to paraphrase Alerstam (1990), “the 
‘cement’ with which birds put together several different temporary detached niches 
to form a complete and adequate living niche”. A growing number of studies are 
confirming that different events of the annual cycle are inter-linked, so that the 
consequences of one event occurring in one part of the year may have carryover 
effects on another (Harrison et al. 2011). In the case of migratory birds, such effects 
may come into play in a spatially distant location relative to the source. Thus, to be 
put in an evolutionary perspective, patterns and behaviours of migration must be 
analyzed in a cost-benefit framework in relation to ecological conditions and life-
history strategies, for each stage of the annual cycle (Greenberg 1980, Myers et al. 
1985, Alerstam et al. 2003, García-Peña et al. 2009, Newton 2011, Marra et al. 2015, 
Grist et al. 2017, Lok et al. 2017). Fortunately, we are living in an exciting time, 
when technological advancements make it possible to use novel tracking techniques 
to observe even the smallest birds, sometimes over large parts of the annual cycle 
and even entire life cycles in larger birds (e.g. Sergio et al. 2014; Sokolovskis et al. 
2018; Williamson and Witt 2021) 

Aims 
The aim of this thesis is to address a set of questions regarding the evolution and 
ecology of migration patterns, which can be generalized to 

i) why do different migratory patterns evolve, resulting in variation in 
migratory distances and redistribution patterns within and between 
populations, and 

ii) what are the behavioral adaptations, such as migration speed, timing, 
and the process of migration, associated with these differences? 

The question of why a pattern evolves and how to carry out the migration 
accordingly, are evolutionary and mechanistic questions, respectively. But they are 
certainly not unrelated. By asking the question how, one may through careful 
observations of nature, pinpoint important selective forces that enable us to find 
answers to the question why (Lundberg and Alerstam 1986, Piersma 2007). By 
extension, the aim is to contribute to our general understanding of the evolution of 
migration. 

To address these questions, I have mainly used individual tracking techniques to 
comparatively study the migration of two species in the genus of plovers, 
Charadrius. Plovers exhibit highly variable migratory patterns and behaviors, both 
inter- and intraspecifically, which provides an exciting study system to test theory 
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about the evolution and ecology of migration (Conklin 2019). I have mainly focused 
my work on the common ringed plover Charadrius hiaticula, which is a textbook 
example of a ”leap-frog” migrant (Fig. 1) (Salomonsen 1955, Hale 1980, Newton 
2008). I have also studied the little ringed plover Charadrius dubius, in which 
individuals breeding just next to each other have been shown to be separated up to 
7000 km in the non-breeding season (Hedenström et al. 2013). 

The aims are largely motivated by the wide base of previous theoretical work 
concerning the evolution of differential migration patterns and behavioral 
adaptations related to migration (reviewed in Gauthreaux Jr. 1982; Ketterson and 
Nolan 1983; Alerstam and Hedenström 1998; Cristol et al. 1999; Somveille et al. 
2015). However, with the technological advancement of miniaturized tracking 
devices, new opportunities to revisit and analyze patterns and behaviours from a 
different perspective is now possible (Bäckman et al. 2017, McKinnon and Love 
2018). Individual tracking may provide critical data that have previously been 
lacking or hard to obtain. Firstly, although previous comparative studies on the 
evolution of different migration patterns and behaviours have focused on 
intraspecific variation, details of population/group-specific origins and wintering 
sites (i.e., migratory connectivity [Webster et al. 2002]) have remained largely 
unknown except for a few study systems (e.g., red knot Calidris canutus [Piersma 
and Davidson 1992]). Secondly, complete annual timing, with regard to arrival and 
departure times from breeding and non-breeding areas, has similarly been lacking. 
Finally, year around tracking aids the possibility to observe and understand potential 
interrelationships between different parts of the annual cycle (Marra et al. 2015). 

Paper specific aims 
In Paper I, we first described the between population patters of common ringed 
plovers by tracking four different populations breeding in a in a climate/latitudinal 
gradient. Second, we test assumptions and predictions in some of the hypotheses 
trying to explain leap-frog migration. 

In Paper II, we describe the within population migration pattern in a temperate 
breeding population of common ringed plover. Because males winters farther from 
the breeding area compared to females we evaluate hypotheses trying to explain 
differential migration and propose a new one. 

In Paper III, we describe the migration and annual cycle of two populations of 
common ringed plovers (one Arctic and one temperate), with the aim to test 
predictions regarding migration timing, speed and time allocations, in relation to the 
leap-frog migration pattern (i.e. with respect to differences in migration distance 
and contrasting environments in winter/breeding). 

In Paper IV, we studied stopover behaviour and migration timing of common 
ringed plovers at a stopover site by using ringing data obtained by Ottenby Bird 
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Observatory. Our aim was to contrast the behaviour of two subspecies (C. hiaticula 
and C. tundrae, i.e. temperate and sub-Arctic/Arctic breeding populations) and test 
predictions obtained from optimal bird migration theory.  

In Paper V, we studied the migratory process in one population of common ringed 
plover breeding in southern Sweden, in which individuals have been shown to vary 
in migration distance. We further tested the effect of season and migration distance 
on the number of migratory flights, duration initial fueling period, duration of total 
stopover time, total flight duration and maximum individual flight duration. We 
discuss the result in relation to different adaptive values. 

In Paper VI, we studied the migratory process and migration strategies in a 
population of little ringed plovers. We specifically evaluated the effect of season 
and migration distance on migratory behaviour.  

In the following sections I will describe the general methodology, study system and 
study sites. But before I do that, I will briefly highlight some of the ecological 
drivers, adaptive values and physiological constraints, which are all generally 
related to different hypotheses trying to explain the evolution of differential 
migration patterns (such as leap-frog migration and differential migration by sex) 
and may act on selective forces, influencing behaviour during migration and 
organization of the annual cycle 

Ecological and physiological drivers and constraints of 
migration 

Seasonality (food availability and thermoregulation) 
While the geographical origin of bird migration is still debated (Winger et al. 2014, 
O’Connor et al. 2018), seasonality, with variation in food resource availability in 
time and space, is recognized to be one of the ultimate factors for the evolution of 
seasonal migration in birds (Berthold 1999, Bell et al. 2000, Zink 2002, Salewski 
and Bruderer 2007, Somveille et al. 2015). Increased seasonality in a given 
geographical area results in decreased food resources when conditions deteriorate, 
which in turn increase mortality and consequently reduce fitness (Lack 1954, 1968). 
Under these circumstances, moving to another area when the climatic conditions 
deteriorate may be a viable option (Bell 2000). This is elegantly illustrated by the 
general pattern of an increasing proportion in migratory bird species when moving 
from lower to higher latitudes, where the amplitude and severity of seasonality 
increases (Newton and Dale 1996, Somveille et al. 2015). Seen from another 
perspective, increased seasonality also promotes a surge of food in other parts of the 
year, which may increase reproductive output and consequently increase fitness in 
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temperate and Arctic areas (Cox 1968, Berthold 1999, Salewski and Bruderer 2007). 
Therefore it is worthwhile moving towards seasonal areas during the breeding 
season (Cox 1968). 

It is easy to see that amplitude and severity of a seasonal environment not only have 
a direct effect on the food resource itself, but also on the physiological ability for 
the birds to thermoregulate (Angilletta 2009). The daily maximal metabolizable 
energy a bird can attain needs to cover all daily energetic costs, such as the basal 
metabolic rate, locomotion, other activities (e.g., moult, breeding, mate attraction) 
and on top of that thermoregulation (Wiersma and Piersma 1994). When lower 
temperature forces animals to divert more energy in to thermoregulation, other parts 
of the energy budget may not be covered sufficiently. This will eventually lead to 
death if adaptations to even out the deficiency are absent. Migration is such an 
adaptation, which allows birds to lower the thermoregulatory costs (Somveille et al. 
2018).  

The thermal environment may also generate different conditions during winter 
depending on wintering site. In temperate wintering areas the cost of 
thermoregulation is generally much higher compared with those experienced in the 
tropics or lower latitudes (e.g., Castro et al. 1992). Furthermore, apart from the 
shorter summer season in Arctic environments, the thermal environment may 
shorten the window of breeding even more due to higher energy requirements 
compared to temperate breeding sites (Piersma et al. 2003). 

Competition 
In many cases the environment in a particular area will allow for year-around 
residency, despite reduced resources and low temperatures during the winter 
months, but with a lower upper limit compared to other parts of the year (Fretwell 
1972). If the limit is reached, density dependent processes, such as competition, will 
act so that birds that are unable to compete for resources have to give way and move 
somewhere else. On a population level competition can lead to obligate migratory 
behaviour (Cox 1968, Fretwell 1980), or partial migration (Lack 1943, Lundberg 
1987). The same reasoning can be applied to a given wintering area: the suitability 
of the site will decrease with increasing bird numbers to a point in which birds, that 
for some reason are not able to compete, will have to move to another site (Fretwell 
1972, Alerstam 1990). Competition has been identified as an important factor in 
most models and hypotheses trying to between and within population patterns of 
migration (Gauthreaux 1982, Ketterson and Nolan 1983, Lundberg and Alerstam 
1986, Holmgren and Lundberg 1993). However, the importance of competition for 
the migratory behaviours and patterns may vary between seasons, sexes, 
populations and ecological context (Ketterson 1979, Ketterson and Nolan 1983, 
Cristol et al. 1999). Numerous ecological contexts have been pointed out, such as 
competition for breeding resources, mates and nest sites (von Haartman 1968, 
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Myers 1981b, Bensch and Hasselquist 1991, Martin and Martin 2001) food 
resources on stopover sites (Lindström et al. 2011, Minias et al. 2014) and 
favourable non-breeding sites (Ketterson and Nolan 1976, Pienkowski et al. 1985). 

Several proximate mechanisms on how competitive interactions may be resolved, 
and how they are linked to differential migration patterns, have correspondingly 
been suggested. Competitions leading to spatial displacement can either be resolved 
based on rank order in arrival (prior occupancy), offering individuals that are 
familiar with an area competitive advantage over newcomers (Fretwell and Lucas 
1969, Rutten et al. 2010), or unequal competitive ability between individuals 
(Sutherland and Parker 1985). The latter is in most cases attributed to trait related 
dominance (Gauthreaux 1978, Sutherland and Parker 1985). Dominance can be 
achieved either by phenotypic traits such as size (Ketterson 1979, Sutherland and 
Parker 1985) and sex (Ketterson 1979, Piper 1997), but also on state dependent 
factors such as motivation (Piper 1997). Sex as a determinant of dominance is a 
complicated case since body size and sex are often correlated. But sex is also 
correlated with testosterone levels, which may facilitate aggressive responses 
(Wingfield et al. 1987). In that respect, sex can be seen as a state dependent 
mechanism, since hormone levels may vary with season (Piper 1997). But, in most 
cases, males have been found dominant compared to females regardless of body size 
(Whitfield 1985, Piper 1997). 

Cost of migration 
Birds face three fundamental costs while migrating. First, all types of self-powered 
locomotion requires energy, which directly increases the energetic demands 
(Alexander 2003). An important implication for migrating birds, which are making 
long flights, is that sufficient fuel stores are required to meet these demands. These 
fuel stores mostly consist of adipose fat, stored at different locations on the body, 
and protein (King and Farner 1965, Lindström and Piersma 1993, Jenni and Jenni-
Eiermann 1998). Adding fuel will increase the energetic cost of working, because 
the flight cost is dependent on body mass (Pennycuick 1969). Higher mass will not 
only increase the direct energetic cost, but also the potential flight range. However, 
the relationship between flight range and fuel load attain a negatively accelerating 
curve (Alerstam and Lindström 1990, Pennycuick 2008). Thus, longer flights 
require disproportionally more energy (fuel) than shorter flights. This leads over to 
the second cost - time. Fuel required to cover a certain distance usually needs to be 
accumulated during stopover periods (although a fly-and-forage strategy is used by 
some avian migrants, e.g. Strandberg and Alerstam 2007). Because fuel is consumed 
at a higher rate compared to fuel accumulation, which is much due to physiological 
constraints (Kirkwood 1983, Lindström 1991), birds need to spend more time on 
fueling (Hedenström and Alerstam 1997). Depending on the ecological context (e.g. 
spring versus autumn migration) and the time window to perform the next step in 
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the annual cycle (e.g. breeding or moult), time constraints due to fueling becomes 
an important ecological factor, especially for long distance migrants and larger sized 
birds (Hedenström 2006, Newton 2011). It should also be noted that because more 
time is diverted into fueling than flight during migration, a larger proportion of the 
total energy expenditure is consumed during stopovers (Wikelski et al. 2003). The 
third cost is associated with the elevated mortality risk due to other factors than 
energetic fatigue or starvation. For example, behavioural studies and experiments 
have shown that birds modulate behaviour during migration to evade predation, 
suggesting that predation is elevated during migration (e.g., Fransson and Weber 
1997, Lank et al. 2003). This is partly due to the fact that birds take risks while 
fueling and that an increased body mass decreases manoeuvrability (Metcalfe and 
Furness 1984, Hedenström 1992). Other risks, such as increased exposure to disease 
and parasites have also been suggested to an important cost of  migration (Piersma 
1997).  

Social mating system 
Social mating systems can have a profound effect on differential timing of migration 
within populations and migration distance in general (Myers 1981a). During spring 
migration, individuals of the sex that establishes and defend territories, should be 
rewarded by arriving early at the breeding grounds relative to competitors (Kokko 
1999). This is true for most social mating systems, but may be especially important 
in polygynous or polyandric systems (Oring and Lank 1982, Bensch and Hasselquist 
1991). Protandry (earlier departure and/or arrival in males) or protogyny (earlier 
departure and/or arrival in females) in spring could be achieved either by leaving 
the non-breeding grounds before the other sex, migrating faster (increase air speed 
or fueling rates modulated by behaviour) or, more importantly in the context of 
differential migration patterns, winter closer to the breeding area (Myers 1981b, 
Ketterson and Nolan 1983, Morbey and Ydenberg 2001). Sex specific autumn 
departure date depends largely on the extent of parental care, in which the sex that 
provides less care is free to depart earlier (Reynolds and Székely 1997). 
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General methodology 

Approaches 
The main part of this thesis concern migration patterns and behaviours, in which 
various tracking devices (Fig. 2) have been used to describe, characterize and 
compare populations, age/sex groups and individuals (Paper I, II, III, V and VI). 
However, traditional ringing data from a stop-over site was also utilized for analysis 
of stopover behaviour (Paper IV). In Papers I, II and III, I used light level 
geolocators to determine wintering areas, stop-over sites, timing and speed of 
migration. In Paper V and VI, custom-built multi sensor data loggers, which record 
vertical acceleration generated by the birds’ wing-beats, were used to investigate the 
process of migration (i.e., number and duration of flight bouts and stop-overs) in 
relatively high resolution compared to traditional geolocators (Bäckman et al. 
2016). These data loggers also recorded light data periodically, primarily to identify 
wintering sites. In general, I used a comparative approach to analyse the resulting 
behavioural parameters and patters with respect to predictions from optimal 
migration theory and hypotheses concerning evolution of migration patterns. 
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The common ringed plover 
The common ringed plover (Fig. 3a) has a large global breeding range and three 
subspecies are currently recognized based on morphometrics and genetic markers 
(Fig. 4)  (Engelmoer and Roselaar 1998, Thies et al. 2018). The subspecies C. h. 
hiaticula (hiaticula henceforth) breeds in temperate areas in northern Europe, 
southern Scandinavia and the Baltic Sea. C. h. tundrae (tundrae henceforth) has 
traditionally been identified to occupy alpine and tundra areas from the 
Scandinavian mountain range to Chukotka in far eastern Russia (Fig. 4). C. h. 
psammadroma (psammadroma henceforth) is breeding on Iceland (Delany 2009). 
Populations breeding on Greenland and in the East Canadian Arctic are also 
suggested to belong to psammadroma, although genetic evidence is still absent 
(Engelmoer and Roselaar 1998, Thies et al. 2018). Recently a hybrid zone between 
the nominate form and tundrae was discovered by analyzing the population 
structure, using eight polymorphic microsatellite loci, among ringed plover 
populations across the global distribution range (apart from Greenland and the 
Canadian Arctic). The hybrid zone is orientated in a northwest-southeast direction 
and range from northern Scandinavia to Belarus (Thies et al. 2018). 
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The global wintering range is also large, and includes coastal areas along the East-
Atlantic coast (from the British Isles to South Africa), East Africa, the Middle East 
and the Indian subcontinent (Fig. 4). Inland wetlands, particularly in Africa, are also 
used during winter (Davidson and Scott 2009). Hiaticula mainly winters in western 
Europe, the Iberian Peninsula and some as far south as north-western Africa 
(Morocco), while tundrae and psammadroma migrates mainly to Africa (Taylor 
1980, Wymenga et al. 1990, Davidson and Scott 2009, Thorisson et al. 2012, 
Lislevand et al. 2017, Léandri-Breton et al. 2019). Furthermore, populations 
breeding on the British Isles (which belongs to the subspecies hiaticula) are more 
or less resident (Taylor 1980). 

The little ringed plover 
The little ringed plover (Fig. 3b) also has a wide breeding range across the Eurasian 
continent and several subspecies have been described (Kirby and Scott 2009). The 
breeding populations in Europe consist of the subspecies C. d. curonicus, which is 
the only subspecies documented to conduct longer migrations, and the breeding 
range extends to the Russian Far East (Fig. 5). The other two recognized subspecies, 
C. d. dubius and jerdoni are mainly sedentary or nomadic (Piersma and Wiersma 
1996). Populations breeding in Europe mainly migrate to Africa, south of the Sahara 
Desert (Kirby and Scott 2009), but recoveries from birds ringed in Sweden and 
Finland indicate a south-easterly migration route and at least one recovery from a 
wintering bird has been made in India (Fig. 5) (Fransson et al. 2008). Interestingly, 
Hedenström et al. (2013) found in a study using light-level geolocators, that one out 
of six individuals from a breeding population in southern Sweden migrated to India.  
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Study sites and field work 
All studies except Paper IV, which concerned stopover behaviour, were conducted 
in the breeding area of different populations and thus, these birds were caught while 
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breeding using a circular walk-in trap or small clap-trap. However, one site 
(Ottenby; see Fig. 6), constitutes as both a breeding site and stop-over site for 
common ringed plovers. Ottenby is located in south-eastern Sweden and the 
breeding population belong to the subspecies hiaticula. In autumn, both hiaticula 
and tundrae are using this site for stopover and are trapped within the standardized 
wader trapping conducted by Ottenby Bird Observatory (Paper IV). Two sites, 
Abisko and Ammarnäs are located on the alpine tundra (900-1100 m.a.s.l) in Arctic 
and sub-Arctic Sweden, respectively (Fig. 6). In both areas common ringed plovers 
are breeding on gravel patches located around smaller lakes or on top of ridges and 
plateaus. Malören is a small island in the northern part of the Bothnian Bay, that is 
located within the sub-Arctic climate zone (Fig. 6). In Lund/Vomb, little ringed 
plovers have been studied for about a decade (Hedenström et al. 2013), where the 
breeding birds make use of man-made infiltration ponds (for water treatment), 
ponds and gravel pits.  
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The different breeding sites of common ringed plovers were chosen to compare 
populations that experience diverse conditions during the annual cycle. First, the 
different sites provide widely different breeding environments with respect to the 
length and phenology of the breeding season, spring conditions at arrival and 
general seasonality (Fig. 7). Second, based on current knowledge, the common 
ringed plovers breeding in northern and southern Scandinavia differ both in 
migration distance and conditions at the wintering sites (Taylor 1980, Meltofte 
1996, Lislevand et al. 2017). Ammarnäs and Malören were chosen specifically 
because they are located on nearly the same geographic latitude and thus have 
similar migration distance to the closest possible wintering sites (Davidson and 
Scott 2009). But the onset of spring, and hence breeding seasons, are slightly shifted 
in time between the two population (Väisänen 1977), because of the altitudinal cline 
between the Scandinavian mountain range and the coast of the Bothnian Bay. 
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Results and discussion 

Between and within population patterns of migration in 
the common ringed plover 
By comparing several populations of common ringed plover across latitudes (from 
temperate to Arctic regions in Sweden) in Paper I, the general pattern of leap-frog 
migration was recovered (Fig. 8). However, the population breeding on Malören, in 
the Bothnian Bay, overlapped in winter with the temperate population, which breaks 
the otherwise clear latitudinal pattern (Fig. 8) (Paper I).  
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Notably, the population breeding in southern Sweden was spread out along more or 
less the whole European and Moroccan coast lines in winter, encompassing the 
whole known wintering range for temperate breeding populations (Paper I, II, V). 
This finding contrasts to Salomonsen (1955) suggestion that the leap-frog migration 
pattern in the common ringed plover is nested among the breeding populations in 
temperate Europe. He proposed that populations breeding in the Baltic Sea and 
southern Scandinavia winter from the Iberian Peninsula to Mauritania, and 
populations from southern most Sweden, Denmark and Germany winter farther 
north, but overlap with the Baltic populations on the Iberian Peninsula. Furthermore, 
an unexpected pattern of differential migration was found when examining the 
winter distribution of this population with respect to sex (Paper II). Males mainly 
wintered on the Iberian Peninsula and females in France (average difference in great 
circle distance was ~ 800 km, Paper II). This pattern still holds true when adding 
data on winter distribution data from the MDLs’ and recoveries of colour-ringed 
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individuals in winter (Fig. 9). More overlaps, was however observed compared to 
that seen in Paper II. It seems that females tend to spread out more across latitudes, 
compared to males (Fig. 9). Differential migration by sex in ringed plovers was 
hypothesised by Wallander (2001) who found a female-biased recovery probability, 
based on a data set of winter recoveries of Swedish breeding birds wintering on the 
British Isles and in northern France. However, the data set contained too few 
recoveries at the time and only contained a few sightings from southern Europe. The 
pattern found in Paper II, that males migrate further from the breeding area 
compared to females is rare and most cases in which it occurs concern examples of 
reverse sexual dimorphism or polyandric social mating systems (summarised in 
Cristol et al. 1999; Newton 2008). 

Testing ecological hypotheses explaining between and 
within population migration patterns 
Several hypotheses for why different migratory patterns evolve between and within 
populations have been proposed (Table 1). Many empirical tests of these hypotheses 
have been made, particularly on within population patterns, such as differential 
migration between sexes (reviewed in Ketterson and Nolan 1983; Cristol et al. 
1999). However, critical tests of the predictions and assumptions in hypotheses 
regarding the evolution of for example leap-frog migration are sparse. Some of the 
hypotheses concerning both between and within population patterns share the same 
assumptions, but differ in the ultimate ecological explanations. However, most 
hypotheses attribute competition, in one way or the other, as a main driver. 
Evidently, the predictions accompanying many of these hypotheses are not mutually 
exclusive (Ketterson and Nolan 1983). However, with the good resolution of winter 
destinations of individuals from several known breeding populations and the 
somewhat unexpected outcomes of the among and within population comparisons 
of common ringed plover, our data provided an excellent opportunity to test 
predictions and assumptions for a number of the existing hypotheses (Paper I, II). 
One hypothesis (the “Time allocation and seasonality” model, Table 1) was not 
testable given the data, because it requires winter range wide information on fueling 
rates prior to spring departure. 
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The evolution of leap-frog migration in the common ringed plover 
Building on the notion that body size is an important trait correlated with 
dominance, larger birds are suggested to settle in potential wintering sites closest to 
the breeding area, given the assumption that there is high competition for wintering 
sites and the cost of migration is severe (the "Dominance/winter competition" 
hypothesis, Table 1; Pienkowski and Evans 1985, Pienkowski et al. 1985). 
Considering the segregation between individuals breeding in Ammarnäs and on 
Malören (sub-Arctic populations) found in Paper I, we expected that individuals 
from Malören to have a larger body size than individuals from Ammarnäs. However, 
we did not find such a difference (Fig. 10) (Paper I). Furthermore, individuals 
breeding on Malören had a smaller body size compared to those breeding at Ottenby 
(Fig. 10). Taken together, there is no reason, based on body size, why individuals 
from Ammarnäs should not stay and winter in Europe as well (Paper I). Thus, we 
could reject the “Dominance/winter competition” hypothesis, in which migration 
distance is driven by body size mediated dominance, as an explanation for leap-frog 
migration in the common ringed plover.  
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Early arrival in potential wintering or breeding site is considered a premium when 
competing for resources (von Haartman 1968, Alerstam and Enckell, Pehr 1979, 
Townshend 1985, Bensch and Hasselquist 1991). Theoretically, if competition for 
wintering and breeding sites occurs, dominance relationships related to being early, 
could lead to both stable (without fitness differences) and despotic patterns (with 
fitness differences) of leap-frog migration under different conditions related to 
latitudinal suitability gradients (the "Prior occupancy" hypothses, Table 1; 
Lundberg and Alerstam 1986, Holmgren and Lundberg 1993). In Paper I, both 
populations of common ringed plover wintering in Europe (Malören and Ottenby), 
left their breeding sites and arrived to continental Europe approximately 2 weeks 
earlier than the two populations wintering in Africa (Abisko and Ammarnäs) (Fig. 
11). Thus, prior arrival to the closest wintering grounds is supported as an 
explanation for the development of leap-frog migration in the common ringed 
plover (Paper I).

Interestingly, experimental studies set out to test the effect of “prior occupancy” in 
wild birds have found little support for this to have a large effect on competitive 
ability in the long term. Rather, motivation to compete for a resource is more 
important and thus, competitive interactions may be shifting quickly in nature (e.g.,

ab

bc c

d

−2

0

2

4

Abisko Ammarnäs Malören Ottenby

P
C

1 
−

 b
od

y 
si

ze



32 

Lindström et al. 1990). If this is true, it raises the question why newly arrived 
individuals from northern breeding populations are not able to compete for 
wintering grounds in Europe? After all, other traits, such as body size, do not seem 
to be of importance (Paper I). One possible explanation is that there may be a benefit 
of migrating to Africa, which may offer more benign environment seen to the 
energetic costs of thermoregulation and thus, potentially higher winter survival 
(Greenbegr 1980; but see Reneerkens et al. 2020) and potential positive carry over 
effects to the breeding season, may offset the extra migration cost (Drent and 
Piersma 1990, Meltofte 1996, Kersten et al. 1998, Carneiro et al. 2021). Temperate 
populations may stay in Europe for other reasons. One such reason was proposed 
by Alerstam and Högstedt (1980) by formulating the “Spring predictability” 
hypotheses (Table 1). They suggested that populations that are able to find wintering 
sites close to the breeding grounds, with tolerable conditions should do so, if they 
can make use of correlated environmental cues to time spring migration optimally 
in relation to the spring phenology at the breeding site (Alerstam and Högstedt 
1980). As mentioned earlier, optimal arrival to the breeding site may facilitate 
higher reproductive output. But more importantly, in accordance with Alerstam and 
Högstedt’s (1980) conjecture, is the arrival order in relation to competitors. The 
hypothesis further assumes that correlated environmental cues decrease with 
distance and, in general, populations that ultimately leave their climate zone, such 
as those from sub-Arctic and Arctic latitudes, would not be able to make use of such 
cues. Northerly populations should then pay the extra cost to migrate to more benign 
sites farther south (Alerstam and Högstedt 1980). However, the generality of this 
hypothesis falls when applied on all studied populations of common ringed plovers, 
as individuals from Malören segregate from those breeding at Ammarnäs in winter, 
despite that both are breeding in the sub-Arctic zone (Fig. 6 & 8) (Paper I). 

Greenberg (1980) offered an alternative explanation for the development of leap-
frog migration that does not include competition as a determining factor (Table 1). 
Instead, he suggested it is the relative ratio between time allocated in the breeding 
and wintering area, and the associated reproductive and survival costs/benefits in 
remaining at each given site, that dictated if individuals should pay an extra cost to 
migrate farther south. Similarly, to Alerstam and Högstedt (1980), Greenberg 
(1980) assumes that non-breeding survival increases at lower latitudes. We note that 
the time window for breeding, seen as the period between initiation of incubation to 
autumn departure, in the two populations breeding on the same latitude and in the 
same climate zone (Ammarnäs and Malören) is very similar (Väisänen 1977, Hedh, 
L., unpublished data, Paper I). Yet, they winter mainly separate, which is contrary 
to Greenberg’s (1980) predictions (Paper I). However, critical tests of the seasonal 
survival rates between population have to be made before ruling out Greenberg’s 
(1980) hypothesis. 
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Evolution of differential migration by sex in the common ringed plover
Similar to some hypotheses explaining leap-frog migration, within population 
segregation between sexes during the non-breeding season has been attributed to 
dominance related traits and competition for wintering resources (Gauthreaux 1978, 
1982). Recapitulating that body size is considered to be positively correlated with 
dominance, the prediction based on the observed differential migration pattern in 
Paper II was that male common ringed plovers are smaller than females (the 
“Dominance” hypothesis, Table 1). However, males were, if anything, the larger 
sex in the population studied here (Paper II). The body size pattern also contradicts 
the suggestion that the larger sized sex would migrate shorter distance because body 
size is positively correlated with cold tolerance (the “Body size” hypothesis, Table 
1) both in terms of reduced heat loss and the ability to conserve energy stores 
(Bergmann 1847, Ketterson and Nolan 1976). Also, the “Arrival time” hypothesis
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(Table 1; Ketterson and Nolan 1976), which states that intrasexual competition 
among individuals in the sex that establishes breeding territories leads to shorter 
migration distance do not fit with the pattern observed because, in the common 
ringed plover it is the males that establishing the territory (Glutz von Blotzheim et 
al. 1975). 

It is a possibility that females gain a competitive advantage by leaving the breeding 
site earlier than males (as observed in Paper II) and thereby arrive to the wintering 
sites earlier (Ketterson 1979), which was observed in the common ringed plover 
(Paper II). However, before accepting this as an explanation, one would first have 
to find the mechanism explaining why females leave earlier in the first place. Above, 
I concluded that prior occupancy could explain leap-frog migration between 
populations because initiation of autumn migration in northerly populations is 
restricted by the later breeding season. Such a mechanism is however not applicable 
within a single population. In some other wader species, females leave the males to 
take care for the offspring (Jenni 1974), whereby they theoretically could migrate 
earlier and gain prior access. However, there is to my knowledge no example in 
which this behaviour leads to sexual segregation in winter. Furthermore, the 
common ringed plover is strictly socially monogamous and both parents take part 
in the brooding (Blomqvist et al. 2001, Wallander 2001). Thus, finding the 
mechanism explaining earlier departure (or later departure by males) is essential to 
evaluate the option that females gain prior access and therefore can winter closer to 
the breeding area.  

The general view is that longer migration distance, or migrating at all, always comes 
with a fitness penalty (Pienkowski and Evans 1985, Lok et al. 2015, Buchan et al. 
2020), but recent studies indicate that this is not necessarily the case (Alves et al. 
2012, 2013, Kentie et al. 2017). In Paper II, we propose an alternative hypothesis 
for the differential migration pattern observed. We postulate that migrating farther 
could be adaptive, given differential energetic needs upon spring arrival and 
dynamics of spatiotemporal fueling rates. We observed that 1) the pre-egg laying 
time in the common ringed plovers breeding in southern, temperate Sweden is up to 
1.5 month (Väisänen 1977, Hedh, L., unpublished data, Paper II, III) and 2), males 
initiate display behaviour and defend breeding territories immediately after arrival 
(Hedh, L., unpublished data). Upon arrival, sub-zero temperatures are not 
uncommon in temperate areas and one could hypothesize that additional fuel stores 
accumulated at the wintering site, as an insurance for reduced foraging time in males 
after arrival, may increase male fitness (Holmes 1972, Ens et al. 1994, Morrison et 
al. 2005). Given that predation risk increases with increased body mass, fueling time 
prior to departure should then be minimized (Hedenström 1992, Witter and Cuthill 
1993). Based on the premises described above, we used the flight range equation 
(Pennycuick 1975), which describes the required fuel load to fly a given distance, 
to calculate the time it would take to accumulate the necessary fuel stores to cover 
the migration distance for males and females, respectively (Paper II). We then added 
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the assumption that males carry additional fuel stores (10% of lean body mass) into 
the breeding area. By using these calculations, we found that longer migration 
distance in males would be preferred as long as the fueling rate is at least 2.18 times 
higher compared to the average female wintering site. If we assume that females, 
which we hypothesize carry little or no additional fuel stores after arrival, were to 
favour the same wintering site as males, fueling rate has to be 2.63 times higher 
compared to the average female wintering site (Paper II). Thus, given the 
assumptions and assumed adaptive values, longer migration distance for one sex 
could potentially be beneficial given certain conditions. 

Annual cycle adaptations 
The partitioning and scheduling of the annual cycle, with respect to the three main 
stages (breeding, moult and migration), depends largely on seasonal patterns, 
migration distance, and body size (Hedenström 2006, Buehler and Piersma 2008, 
Newton 2011). For instance, in Arctic or sub-Arctic areas the window of opportunity 
to breed is short compared to temperate areas. Temperate areas, on the other hand, 
allow for longer residency and earlier springs, and show larger variation in spring 
onset (Paper III). Particularly in larger birds breeding on the Arctic tundra, such as 
swans and geese, the breeding period becomes even more restricted because of the 
long incubation periods and low growth rate in the young (Hedenström 2006). 
Therefore preparation for breeding in some species (or populations) may start well 
before arrival to the breeding sites, generating an overlap between life-history 
activities, which may create energetic bottlenecks (Drent et al. 2003, Buehler and 
Piersma 2008, Williams et al. 2017). 

Time allocation and potential bottlenecks in the common and little 
ringed plover 
By comparing the annual cycle of two populations of common ringed plovers 
breeding in Arctic and temperate Sweden (Paper III), we found that the latter 
population spent more than twice as long time in the breeding area (136 vs. 60 days) 
and arrived up to 1.5 months before egg laying, compared to approximately 2 weeks 
in the former (Paper III, Hedh, L. unpublished data). Longer active breeding time 
havs been found in temperate populations of common ringed plover, compared to 
the Arctic, and it is not unusual with several replacement clutches or double 
brooding, which could partly explain the longer breeding site residency (Pienkowski 
1984, Blomqvist et al. 2001, Wallander 2001). However, there was a considerable 
overlap in autumn migration timing between adults and juveniles in the temperate 
subspecies as revealed from ringing data at a temperate stopover site (Paper IV). 
Among most Arctic shorebirds adults usually migrate ahead of juveniles in autumn 
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(Kolthoff 1896), a pattern which was also observed among the tundra breeding 
subspecies of common ringed plovers (Paper IV). The differences in relative autumn 
timing between age groups in the two subspecies suggest that adults in populations 
breeding in temperate areas prolong their stay in the breeding area. Possibly the 
additional time is to initiate, or even complete, wing feather moult. Moult in 
temperate breeding populations of common ringed plovers is usually completed 
early in the autumn (Clapham 1978). However, at the moment, no moult data from 
the studied temperate population is available, but anecdotal evidence suggests that 
primary moult can be initiated already during incubation (Hedh, L., unpublished 
data). Wing feather moult is energetically expensive and do not usually overlap with 
migration (Lindström et al. 1993, 2010, but see Holmgren et al. 1993), but  the 
climate on the wintering site may set limits on the possibility to carry out moult, due 
to for example low temperatures and less available food (Machín et al. 2018). If 
moult is conducted in close proximity to migration or even overlap with migration, 
this may result in an energetic or time associated bottleneck (Buehler and Piersma 
2008), which may have consequences for the behaviours employed during the 
migratory journey, such as employing an energy minimizing strategy (Hedenström 
and Alerstam 1997, Hedenström 2008)  

Interestingly, we found that all but one little ringed plover had long interruptions 
during autumn migration (lasting up to 77 days in one individual, which utilized a 
site in south-eastern France) (Paper VI). This time period is far longer than needed 
to fuel up for the next migratory flight (even with modest fueling rates), as the little 
ringed plover seem to make many but relatively short flights (Paper VI). Accounts 
of moult in the little ringed plover have been found short after the main breeding 
period or during early migration in, for example, Camargue, France (Glutz von 
Blotzheim et al. 1975). This suggests that the interruptions of migration in the little 
ringed plover found in Paper VI could be associated with moult. If this is true, it 
raises the question why little ringed plover interrupt autumn migration to moult, 
instead of postponing it to after winter site arrival? One reason could be that they 
make use of productive, ephemeral wetlands on the route. To answering this 
question requires further tracking with devices offering higher spatial resolution, 
coupled with studies in the field. 

Migration timing in relation to migration distance and breeding site 
climate in the common ringed plover 
Not surprising, the Arctic population of common ringed plovers always arrived 
and departed later to the breeding and wintering sites compared to the temperate 
population, indicating that the two populations are adapted to their respectively 
breeding site specific phenology (Conklin et al. 2010; Briedis et al. 2016 Paper 
III). However, as mentioned earlier, proximity to the breeding site during winter 
can allow birds to use weather cues, such as ambient temperature, to determine 
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when to optimally time spring migration in relation to the conditions at the 
breeding site (e.g. Burnside et al. 2021; Powers et al. 2021). We estimated yearly 
variation in spring arrival date by using citizen science data from the two 
provinces in which the breeding areas of the Arctic and temperate populations are 
located, and found that that the temperate population had a larger interannual 
variation in arrival date than the Arctic population. This suggests a more flexible 
migration schedule in the temperate compared to the Arctic population (Fig. 12) 
(Paper III). However, currently we lack data from repeated tracks to analyse if this
variation is due to flexible spring departure or if arrival time is adjusted after 
migration is initiated, and depends on conditions experienced en route (e.g. 
Amélineau et al. 2021). 
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Migration speed 
Because competition for breeding resources  and early initiation of breeding may be 
associate with higher reproductive output (Perrins 1970, Kokko 1999, Morrison et 
al. 2019, Halupka et al. 2021), the time spent on spring migration should be 
minimized (Hedenström and Alerstam 1997). However, arriving too early to the 
breeding ground may reduce fitness due to inclement and adverse weather 
conditions (Kokko 1999). Building on the reasoning regarding the ability to time 
spring migration in relation to weather cues, which may be correlated between 
breeding and wintering sites, minimizing time should be particularly important for 
a population wintering far from the breeding area. This is because timing of arrival 
should preferably be after the average date of spring onset at the breeding grounds 
(Bauer et al. 2020) and thus, timing of migration in long distance migratory 
populations are set by the circannual clock (Alerstam and Högstedt 1980, Gwinner 
1996). Indeed, migration speed in spring has been found to be higher compared to 
autumn (Nilsson et al. 2013; but see Norevik et al. 2017; Carneiro et al. 2019, Paper 
III, VI), which can partly be explained by increased air speeds (Hedenström and 
Alerstam 1995, Karlsson et al. 2012). However, higher air speeds in spring have 
been found in both short and long-distance migratory birds (Nilsson et al. 2014). 
One may also consider that an increased migration distance may create more time 
constraint seen to the annual cycle and indeed, in multi-species comparisons, higher 
migration speeds have been found among long-distance migrants in autumn 
(Ellegren 1993, Alerstam 2003). 

In accordance with general predictions, we found that spring migration speed was 
higher in an Arctic population of common ringed plovers compared to a temperate 
population (Paper III). Furthermore, there was no difference in migration speed 
between the two populations in autumn (Fig. 13). However, spring migration speed 
in the temperate populations was lower compared to the autumn migration speed 
(Fig. 13) (Paper III). These results are surprising, because the total flight time was 
found to be 36% lower in spring compared to autumn in the temperate population 
as revealed by MDLs (Paper IV). Thus, the most likely explanation, considering that 
the average time between departure and arrival was only 5 days in Paper III, is the 
fueling time prior to the first migratory flight. 

One intriguing potential explanation for why individuals from the Arctic population 
in Paper III achieve relatively high spring migration speeds compared to the 
temperate population, despite that they are dependent on larger fuel stores to cover 
their first migratory flight, could be because they migrate later in spring, when food 
stuffs are more accessible along the route (i.e. on European stopover sites). Thus, 
they may be using European stopover sites as a well-timed “stepping-stone” 
generating high instantaneous migration speeds (Drent and Piersma 1990, 
Gudmundsson et al. 1991). However, to explore this possibility, which could also 
partly be an explanation for leap-frog migration (Drent and Piersma 1990, Bell 
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1996), one must measure the dynamics of food availability over large spatial and 
temporal scales. 
 

 

The process of migration in relation to migration 
distance and adaptive values 

Division between migratory flight and stopovers 
As mentioned earlier, the migratory process is divided between migratory flights 
and stopovers, which are used to accumulate fuel reserves used during flight. 
Because fuel is metabolized at a higher rate compared to the rate of fuel 
accumulation (Lindström 1991, 2003, Pennycuick 2008), more time should be spent 
on fueling during migration. Based on estimations of maximum daily metabolizable 
energy, maintenance costs (i.e. basal metabolism and thermoregulation) and flight 
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metabolism, Hedenström and Alerstam (1997) calculated that the time ratio between 
flight and fueling time should be 1:7 (12.5% flight time) over the whole migratory 
journey. We found empirical support for this ratio in both common and little ringed 
plovers (Paper V, VI). However, the ratio was lower in spring for the common 
ringed plover, which may be explained by wind-support as suggested by the shorter 
total flight times in spring compared to autumn (mentioned above; paper V) or low 
fueling rates. 

Number and duration of migratory flights  
Some birds, like the bar-tailed godwit Limosa lapponica baueri breeding in Alaska, 
are able to cover the whole migratory journey in one single flight after one longer 
fueling episode (Gill et al. 2009). However, most birds need to stop several times 
for re-fueling, generating distinct episodes of migratory flights and fueling. Piersma 
(1987) described three hypothetical outcome patterns (“hop”, “skip” or “jump”) 
depending on constrains in fueling conditions and possible effects of wind. The bar-
tailed godwit, mentioned above, is an example of a typical “jumper”. However, 
fueling conditions may directly prevent long “jumps” and will result in smaller 
“hops” instead (Piersma 1987). However, the process of migration may also be 
related to the adaptive value of the behaviour performed. For instance, if the goal is 
to minimize the time of migration a bird should put on large stores to cover long 
distances (“jumps”), given that the fueling rate is sufficiently high (Alerstam and 
Lindström 1990). However, if the resource landscape is homogenously high, the 
fastest way to travel could be to make more, but shorter, flights with equal step 
length (Weber and Houston 1997). One reason for this, particularly related to 
waders, could for example be to reduce the time required to remodel the digestive 
tract (Weber and Hedenström 2001). Similarly, if the migratory direction is pointed 
against a resource gradient (i.e. fueling deposition rates are increasing) lower 
departure fuel loads and shorter flights would be expected at the beginning of the 
migratory journey, but should gradually increase with increasing rates of fuel 
deposition (Ellegren 1990, Lindström and Alerstam 1992, Weber and Houston 
1997, Lindström 1998, Lindström et al. 2002).  

Based on the reasoning above, the number, duration and division of migratory 
flights suggest that common ringed plover breeding in southern Sweden are 
attending a time minimization strategy in autumn (Paper V). The number of autumn 
migratory flights did not increase with increasing migration distance, instead 75% 
of all individuals migrating > 2000 km made at least one flight longer than 20 hours 
(Fig. 14a) (Paper V). Furthermore, 90% of all flights > 20 hours occurred after the 
second stopover (Fig. 14c) This suggests that common ringed plover move towards 
stopover sites, e.g. the Danish/German/Dutch Wadden Sea, with potentially higher 
fuelling rates, whereby the individuals migrating farther fuel up extensively and 
perform one relatively long migratory flight (Paper V). If the birds were energy 
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minimizing one would expect those individuals migrating farther to continue 
making more but shorter “hops” (Hedenström and Alerstam 1997). In spring, 
common ringed plovers migrating longer distances made more stopovers compared 
to individuals migrating shorter distances. This pattern could indicate that they are 
time-minimizing in accordance to the theoretical prediction made by Weber and 
Houston (1997). However, other factors could explain the spring pattern. For 
example, individuals may modulate the progression of spring migration in 
accordance with available resources or the progression of spring (Pakanen et al. 
2018, Bauer et al. 2020). Therefore, based on the current data, it is impossible to 
determine which currency is ought to be minimized in during spring migration. 
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As mentioned in an earlier section, the total flight duration during spring migration, 
in a temperate population of common ringed plover, was 36% lower compared to 
autumn (Paper V). Since the detour in autumn was very low (1.8%) the shorter total 
flight duration cannot be explained by a shorter route in spring. Rather it may be 
explained by either tail-winds or increased air speed, or both (Kemp et al. 2010, 
Klaassen et al. 2010, Nilsson et al. 2014). If air speeds are increased it may be 
indicative of a time-minimization strategy (Alerstam and Lindström 1990). 
However, future studies aiming to partitioning the effect of winds and seasonal 
modulation of air speeds is needed to draw further conclusions. 
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Conclusions and future outlook 

In this thesis I have revisited some fundamental questions and theories regarding 
the evolution of migration patterns and behavioural adaptations during migration, 
which may be linked both to completing the journey itself and to the adaptive value 
relating to the next step of the annual cycle. To do so I used individual based tracking 
techniques to comparatively study among and within population differences in 
seasonal, spatiotemporal distribution patterns and migratory behaviour in the 
common and little ringed plover.  

Individual tracking studies have furthered our knowledge about population specific 
winter destinations and connectivity (McKinnon and Love 2018). In Paper I and II 
three important findings related to the migratory connectivity were made, which 
adds to the current natural history of the common ringed plover. Firstly, we found 
that birds from two populations breeding only 350 km apart and on nearly the same 
latitude (in sub-Arctic Sweden), segregated latitudinally during the winter (Paper I). 
Secondly, individuals in the temperate breeding population utilized wintering sites 
along the whole known European wintering distribution (Paper II). And lastly, we 
found that male common ringed plovers, on average, winter farther from the 
breeding site than do females (Paper II). Apart from these findings we confirmed 
the general pattern of leap-frog migration pattern, i.e. that northerly populations 
associated with alpine/tundra environments winter at lower latitudes compared to 
temperate breeding populations (Paper I). 

The findings in Paper I provide a good starting point to evaluate and test hypotheses 
aiming to explain the evolution of migration patterns in general, and leap-frog 
migration in particular. Based on the furthered knowledge of the wintering 
distribution and body size relationships between populations breeding in Sweden, 
the “Dominance/winter competition” hypotheses, predicting that populations with 
larger body sizes should winter closer to the breeding grounds, could be rejected - 
in the case of the common ringed plover (Paper I). Similarly, the “Spring 
predictability” hypotheses cannot explain the difference in migration distance 
between the populations breeding on the same latitude (Ammarnäs and Malören) 
(Paper I). If, for example, only the Arctic and temperate populations would have 
been used in the tests, all hypotheses would ultimately have been supported. This 
highlights the importance of natural history in basic life science (Travis 2020). 
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One alternative explanation to the results in Paper I is that the breeding population 
on Malören (one of the sub-Arctic populations) could originate from populations 
breeding farther south, which have recently colonized northwards. Thus, one may 
speculate that the current pattern (i.e. that they utilize wintering sites in Europe) can 
be explained by history rather than any competing hypotheses e.g. that they arrive 
to the wintering site earlier and therefore outcompete individuals arriving later 
(Paper I). To address this, studies to establish the genetic structure of the populations 
included in this work (and preferably more intermediate populations) need to be 
carried out, and is an obvious next step forward.   

Neither of the hypotheses concerning the evolution of differential migration by sex 
could explain the pattern found in Paper II. Such a situation is rare, as support for 
all or many of the hypotheses are usually found (Ketterson and Nolan 1983). 
Building on the insights provided by recent tracking studies, showing that birds are 
able to migrate longer distances than previously believed (considering theoretical 
physiological constraints) and that longer migration not always incur a fitness 
penalty (Pennycuick 1975, Hedenström 2010a, b, Niles et al. 2010, Alves et al. 
2012, Lindström et al. 2015), we suggest a new hypothesis proposes that a longer 
migration distance in one sex can be adaptive (Paper II).  

In contrast to many empirical studies (e.g. Nilsson et al. 2013), we found lower 
spring migration speeds compared to autumn, in the temperate population of 
common ringed plovers (Paper III). This was mainly due to our inclusion of the 
fueling period prior to the first flight. We calculated the length of the first fueling 
period based on a conservative but reasonable fueling rate and the measured 
distance/duration of the first migratory flight in both autumn and spring. This may 
result in migration speeds that are not entirely true, but most likely closer to real 
migration speed. Nevertheless, inclusion of a fueling period prior to the first flight, 
highlights the impact this period may have on speed calculations and the potential 
danger to draw conclusions about strategy based on estimates where only the period 
between departure and arrival is included (Winkler et al. 2014, Carneiro et al. 2019, 
Lindström 2020). 

Studying within population differences in migratory behaviour in the common and 
little ringed plovers by using multi sensor data loggers revealed exciting behavioural 
patterns in relation to migration distance (Paper V, VI). The pattern of individual 
flight durations suggests that common ringed plovers, in a temperate population, are 
time minimizing during autumn migration. This notion goes against the general 
belief that birds are less time constrained in autumn than spring and may be of 
importance when considering competition as an important driver for the evolution 
of between population migration patterns.  

Although tracking reveals new and exciting opportunities to revisit old hypotheses, 
it still has many limitations. Throughout this thesis I have mainly compared 
outcomes from tracking devices with predictions and assumed adaptive values. 
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Thus, I have not measured environmental factors or fitness (survival and 
reproductive success). Instead I have used information from the literature to make 
assumptions about the condition different populations of particularly common 
ringed plover may experience at different seasons and locations. Many of the new 
insights drawn from this work still need to be confirmed with good old, tedious and 
time-consuming ecological field work. For instance, the predictions from the new 
hypothesis presented in Paper II, which explains why male common ringed plovers 
migrate farther than females, require to both measure site specific spring fueling 
rates and arrival fuel loads. Similarly, the potential gradient in fueling rate, with 
gradually increasing fueling rates towards the migratory direction, during autumn, 
as suggested in Paper V needs to be confirmed by studying fueling rates along the 
whole migratory route. 

Finally, the implication of the breeding environment on the development and 
canalization of the behavioural phenotype (i.e. winter destination or timing) has not 
been considered. It has been shown that different environments have different 
impact on migratory phenotypes, such as homing to natal grounds (experienced after 
displacement during ontogeny) (Verhoeven and Loonstra 2020). To assess the role 
of environment during ontogeny, particularly just after hatching, may help to 
elucidate new aspects and insights about the evolution of migration patterns, such 
as leap-frog migration. The merit of the study system put forward in Paper I (e.g. 
the among population variation in migratory behaviour and that all populations 
largely utilize the same migratory fly-way) may constitute an excellent opportunity 
for future displacement experiments combined with tracking to assess the effect of 
the environment on the phenotype (Wikelski et al. 2007, Piersma 2011). A similar 
question concerns the choice of wintering site among males and females in the 
temperate population (Paper II). Studies have indicated that individual wintering 
site is decided early in life (e.g. Townshend 1985), but there is also evidence that, 
for example, migratory routes improve over life-time with respect to the optimal 
choice (e.g. Sergio et al. 2014). Thus, assuming that the new hypothesis put forward 
in Paper II explains the observed pattern, are males settling at sub-optimal wintering 
areas selected against or do they learn over the course of their life-time (Verhoeven 
et al. 2019)? Future tracking devices that are small enough even for medium sized 
birds (like the ringed plovers) and can last for several years, which is required to 
address these kinds of questions, already lay at the door step. 
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Populärvetenskaplig sammanfattning 

Flyttfåglar har fascinerat människor i århundraden. Att fåglar flyttar är särskilt 
märkbart på våra svenska breddgrader, där skillnaden mellan säsongerna är 
påtagliga. När hösten och tillika de första frostnätterna kommer är det dags att flytta 
söderut, särskilt för insektsätande fåglar. I folkmun pratar vi ofta om flytt eller 
stannfåglar, vilket inte alltid är helt rätt begrepp. Många av de fåglar som vi upplever 
som stannfåglar, liksom koltrast och i södra Sverige även rödhake, är i själva verket 
ofta individer som faktiskt har flyttat från nordligare platser.  

Det är inte ovanligt att nordligt häckande fåglar flyttar söderut och etablerar 
vinterrevir där en annan individ av samma art häckat tidigare under sommaren. Men 
som senare har lämnat Sverige för kontinenten. Detta är ett flyttningsmöster som 
kallas ”kedjeflytt”. Det är heller inte helt ovanligt att fåglar från populationer som 
häckar långt norrut, övervintrar längst söderut. Även kallat ”spegelflytt”. I det här 
fallet skiljer sig inte bara flyttningsavståndet, men också klimatförhållandena på de 
olika platserna de olika populationerna upplever under årscykeln. Det är inte heller 
ovanligt att flyttningsavståndet skiljer sig åt mellan hanar och honor, inom samma 
population. Vanligtvis brukar hanar övervintra närmast häckningsplatserna. Detta 
är ett mönster som Carl von Linné beskrev redan på 1700-talet.  

Men varför uppstår flyttningsmöster som ”spegelflytt”? Och hur ska en flyttande 
fågel bete sig på bästa sätt för att genomföra flytten så optimalt som möjligt i 
förhållande till flyttningsavståndet och de varierande miljöerna de kan tänkas 
utsättas för? För att försöka svar på de här frågorna har jag studerat större och mindre 
strandpipare under deras flyttning. Jag har använt mig av så kallade ljus- och 
aktivitets-loggar för att följa deras rörelsemönster under ett helt år. Anledningen till 
att just de här arterna studerats är att båda arterna uppvisar stor variation i 
flyttningsavstånd. Både mellan och inom populationer. Större strandpipare häckar i 
södra och norra Sverige. Den större strandpiparen är en typisk ”spegelflyttare” där 
de nordligaste populationerna övervintrar i Afrika och de sydligaste längs med den 
europeiska atlantkusten. Populationer av den mindre strandpiparen från södra 
Sverige har tidigare visat sig övervintra på lägre breddgrader, men från Afrika i 
väster hela vägen till Indien i öst. Faktum är att en hane och en hona som häckat 
tillsammans i Skåne, flera år i rad, har befunnit sig på nästan 4000 kilometers 
avstånd från varandra under varje vinter!  
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Fyra olika populationer av större strandpipare, utspridda över Sverige från norr till 
söder, undersöktes. Vi fann liksom tidigare att den allra nordligaste populationen 
övervintrade i Afrika, och den allra sydligaste i Europa. Men, vi fann att två 
populationer i norra Sverige, som häckar på samma latitud, men i olika miljöer, hade 
olika övervintringsplatser. Den ena, häckande i fjällen, övervintrade liksom den 
nordligaste populationen i Afrika, och den andra, häckande i Bottenviken, 
övervintrade i Europa.  

Så tillbaka till frågan. Varför flyttar nordliga populationer längre, och förbi, sydliga 
populationer? En hypotes är att det råder konkurrens om övervintringsplatser så 
ligger så nära häckningsområdena som möjligt. Större fåglar anses var mer 
konkurrenskraftiga och fåglar som anländer tidigt har en fördel jämfört med 
nykomlingar. Intressant nog hittade vi ingen skillnad i individuell kroppsstorlek 
mellan populationerna som häckar på samma breddgrad, men som övervintrar 
åtskilda. Dessutom var det en stor skillnad i kroppsstorlek mellan den av de två 
populationerna som övervintrar i Europa och den sydligt häckande populationen. 
Kroppsstorlek har alltså inget att göra med vilken breddgrad övervintringen sker på. 
Däremot anländer båda populationerna som övervintrar i Europa tidigare än de två 
andra. Således skulle den senare häckningssäsongen i fjällen göra att årscykeln blir 
senarelagd och när de anländer till potentiella övervintringsplatser i Europa är dessa 
redan uppfyllda.  

En annan hypotes är att det kan finnas en fördel att häcka nära häckningsområdet, 
särskilt om det är möjligt att förutspå vårens ankomst med hjälp av de stora 
vädersystemen. Då finns det möjlighet att anpassa avgångstiden för vårflytten efter 
vårens frammarsch, så att häckningen kan starta tidigast möjligt. Populationer som 
flyttar ut ur sin klimatzon under vintern, tillexempel arktiskt häckade populationer, 
kan inte utnyttja vädersystem för att förutspå vårens ankomst från 
övervintringsplatsen. I sådant fall skulle det snarare vara en fördel att förlänga 
flyttsträckan och övervintra i tillexempel Afrika, istället. Där är födotillgången mer 
konstant och temperaturen är högre (notera dock att för hög temperatur också 
innebära en kostnad). Det faktum att de två populationerna som häckar på samma 
breddgrad, i den subarktiska klimatzonen (fjällen och Bottenviken), skiljer sig åt 
under vintern innebär att den här förklaringsmodellen inte är särskilt trolig. Varför 
skulle den ena populationen, men inte den andra, kunna förutspå väderutvecklingen, 
givet att det är mer eller mindre samma avstånd mellan de två häckningsplatserna 
till de europeiska övervintringsplatserna?  

Jag fann vidare att individer från populationen häckande i södra Sverige spred ut sig 
över hela det kända europeiska övervintringsområdet (från norr till söder). 
Dessutom flyttade hanar längre än honorna. Ett mönster som är extremt ovanligt. 
Ingen av hypoteserna som förklarar detta mönster kunde styrkas. Därför 
formulerade jag en ny hypotes som, till skillnad från de flesta andra, går ut på att 
det ibland kan löna sig att flytta längre sträckor om förutsättningarna för att lägga 
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på sig fett där är högre jämfört med övervintringsplatser som ligger närmare 
häckningsområdet. 

Nästa fråga rörde hur fåglar anpassar sitt beteende till olika flyttningsdistanser och 
de förutsättningar de direkt erfar eller förväntar sig. För det första: flyttning tar tid. 
För att kunna flyga längre sträckor måste tillräckligt mycket energireserver fyllas 
på. Detta gör fåglar genom att äta och lägga på sig fett, vilket är det primära 
flygbränslet. Men energikonsumtionen under flygning är betydligt högre än 
fettupplagringshastigheten. Därför spenderar flyttfåglar allra mest tid till att äta. 
Baserat på teoretiska uträkningar som inkluderar flygkostnad, energiinnehåll av 
flygbränsle (fett) och kostnaden för basala livsuppehållande system, borde mindre 
flyttande fåglar spendera 87,5% av sin totala tid till att leta föda och resterande 
12,5% till att flyga. Vi fann bevis för detta förhållande för större och mindre 
strandpipare. 

Alltså, ju längre flytten är, ju mer måste fett måste lagras och desto mer tid tar 
flytten. Långdistansflyttare borde därför försöka minimera tiden de spenderar på 
själva flytten. Vidare så är individer tillhörande populationer som häckar långt 
norrut, tillexempel Arktis eller fjällen, begränsade av en kort häckningssäsong. 
Därför förväntas det att långdistansflyttare borde flytta snabbare än 
kortdistansflyttare. Vi fann detta förhållande mellan en arktisk och sydlig population 
på våren. Däremot fann vi att den tempererade populationen av större strandpipare 
och mindre strandpipare flyttade långsammare på våren än på hösten. Detta är 
förvånande. Generellt bör vårflytten vara snabbare, eftersom det är bråttom till 
häckningslokalerna för att etablera revir i de allra bästa områdena. Den 
långsammare vårflytten för de sydligt häckande större strandpiparna kan förklaras 
på olika sätt. En trolig förklaring är dock att de lägger på sig större mängd fett innan 
den första flygningen (vilket vi vet tar tid). En annan förklaring är att de måste 
anpassa sin frammarsch eftersom det fortfarande kan vara vinter när de anländer. Vi 
fann baserat på data från Artportalen (ArtDatabanken), som samlats in och 
rapporterats genom åren av fågelskådare runtom i Sverige, att större strandpipare 
som häckar i södra Sverige anländer med mer mellanårsvariation än de som häckar 
längre norrut. Detta indikerar att strandpipare som häckar i Europa och anländer 
tidigare på våren anpassar sin ankomst efter väder och att strandpipare som 
övervintrar i Afrika och häckar i Arktis baserar sin flytt på en inre tidtabell.  

Hur flyttningen delas upp i olika etapper av flygningar och stop för fettupplagring 
kan te sig på många olika sett. Myrspovar Limosa lapponica bauri som häckar i 
Alaska och övervintrar på Nya Zeeland, lägger på sig fett en gång och gör sedan en 
enda flygning på hösten. På våren å andra sidan, flyttar den längs med östra Asien 
och gör fler stop på vägen. Man kan tänka sig flera olika anledningar till varför detta 
varierar mellan säsonger och flyttningsavstånd. Det första är såklart vart födan finns. 
Om det är långt mellan rastplatserna måste de göra längre flygningar. Om det 
däremot är kort, kan det löna sig att flytta i kortare etapper. EN annan variabel är 
vindmönster. Om det finns en möjlighet att få hjälp av lite extra medvind kan det 



54 

löna sig stanna och lägga på sig mer fett för att sedan snabbare flyga en längre 
sträcka. Uppdelningen beror såklart också på vilken strategi en fågel ämnar anta. 
Om det finns gott om resurser längs med hela flyttsträckan skulle vi förvänta oss att 
en fågel som vill flytta så snabbt som möjligt borde ”hoppa” mellan rastplatser och 
lägga på sig lite fett i taget. Om rastplatser med goda fettupplagringsmöjligheter 
däremot är utspridda så bör fågeln lägga på sig mer fett och göra längre flygningar. 
En fågel som å andra sidan ämnar minimera energiåtgången under flytten ska alltid 
göra små hopp, med små fettreserver, eftersom en högre vikt ökar flygkostnaden 
(detta är analogt med att en lättare bil drar mindre bensin per mil). Som tidigare 
antar vi att fåglar är under tidspress på våren, men mindre så på hösten. Vi fann att 
större strandpipare som häckar i södra Sverige verkar tidsminimera sin flyttning 
även på hösten. Genom att mäta flygtiderna kunde under hela höstflyttningen verkar 
det som om de börjar med att göra små hopp i början av flyttningen innan de når de 
stora, produktiva tidvattensområdena i Vadehavet. Härifrån följer två mönster 
beroende på vilka vinterkvarter en given strandpipare är destinerade för. De som 
flyttar längre, tillexempel till Portugal och Spanien, gör totalt lika många flygningar 
som de som endast ska till Frankrike, men de gör en långflygning (ofta över 20 
timmar). Detta tyder på att strandpiparna börjar med att göra korta flygningar för att 
de är begränsade av fettupplagringshastigheterna i södra Sverige. Vi fann att 
fettupplagringshastigheten vid Ottenby, där strandpiparna häckar, bara var 1,7% av 
den fettfria kroppsvikten per dag, vilket är relativt lågt jämfört med andra uppmätta 
värden. När de senare kommer till Vadehavet, där upplagringshastigheten troligare 
är högre, vilket vi kan anta eftersom de bara stannar en kortare tid följt av en 
långflygning.  

 

Detta är några exempel på vad modern spårningstecknik kan lära oss om fåglars 
flyttningsbeteende. Som alltid så har de här studierna genererat fler frågor än svar 
och framtida studier av den större och mindre strandpiparen ligger redan på 
ritbordet.  
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