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RNA modifications are evolutionarily conserved hallmarks of gene
expression regulation. Here is represented a multitude of RNA species
modified with pseudouridine (red dots) and 2’-O-methylation (blue
dots) guided by snoRNAs, drawn in red and blue.
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“If you experiment, you have to fail. By definition, experimenting means
going to territory where you’ve never been, where failure is very
possible. How can you know you’re going to succeed? Having the
courage to face the unknown is so important.”

Marina Abramovi¢ - Walk through walls
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Preface

Since the moment I started studying biology, I always had a fascination for the
complexity of biological systems and for the billions of processes that
simultaneously happen in all the tiny cells of our body to make life possible. They
might seem extremely chaotic to our eye but, once you start to dig deep, they reveal
how tightly regulated and magnificently programmed they are. I pursued my
doctoral studies driven by the curiosity to understand this biological order.

During these years | focused my attention on the world of non-coding RNAs and
RNA modifications with the aim to better understand their regulation and, when
things go wrong, how and if they have a role to play in cancer development. My
work, together with the others in the field, is adding an extra layer of complexity to
the already complex picture we have of biological processes and increasing our
knowledge of RNA biology. The hope is that the basic knowledge I gained now will
contribute, even if just in a very small part, to more specialized and targeted
therapies in the future.
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Abstract

Splicing and translation are two of the key steps of post-transcriptional regulation
of gene expression. Their tight regulation is essential for development, whereas their
deregulation is involved in cancer pathogenesis. Nevertheless, many of the
molecular mechanisms controlling these processes are still unknown. Hence, the
main aim of this thesis is to elucidate novel regulatory mechanisms that affect
splicing and translation in stem and cancer cells.

An emerging layer of regulation is represented by RNA modifications,
evolutionarily conserved hallmarks of coding and non-coding RNA. Indeed, small
nuclear RNA (snRNA) and ribosomal RNA (rRNA), the RNA components of the
spliceosome and ribosome, are decorated with pseudouridines (V) and 2’-O-methyl
groups (2°0OMe) within key functional regions. These modifications are introduced
by RNA-dependent small ribonucleoproteins (snoRNPs), guided by snoRNAs and
scaRNAs. In Paper I 1 identified the role of the SCARNA15-guided U2 snRNA-¥
in driving alternative splicing events affecting the pivotal tumor suppressor p53 and
redox homeostasis in cancer cells. In Paper Il | unraveled the importance of the
rRNA pseudouridylation machinery for the homeostasis of the hematopoietic
system and the reconstitution capacity of HSCs in vivo. In Paper 1l 1 discovered a
developmentally regulated 28S rRNA-2’OMe guided by SNORD123. The loss of
this modification affected hESCs differentiation and caused translation defects
perturbing the resistance to A-site specific antibiotics in fibroblasts. In Paper IV 1
highlighted a novel interplay between splicing and translation. Here, I uncovered a
translationally regulated splicing factor, SF3A3, upon oncogenic stress which
affects splicing of genes contributing to mitochondrial homeostasis and metabolism
and that influences tumorigenesis of MY C-driven breast cancer.

In sum, this doctoral thesis explores novel post-transcriptional regulatory
mechanisms, especially involving RNA modification modulation and
dysregulation, with the aim to broaden the knowledge on stem and cancer cells
functioning and to contribute to the discovery of future clinical implications.
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Introduction

RNA modifications

The central dogma is one of the fundamental principles of molecular biology that
describes the flow of the genetic information encoded in the DNA, which is
transcribed into RNA and finally translated into proteins. The linearity of this
process is juxtaposed to an intricate network consisting of a multitude of regulatory
layers that tightly control the molecular machineries involved at each critical step
of DNA replication, RNA transcription and translation. Accumulating evidence
illustrated that the addition of chemical modifications is pivotal for the accurate
function of DNA, RNA, and proteins. The most studied, so far, are the modifications
of DNA and histone proteins, collectively named epigenetics, which regulate the
expression and transcription of genes (Allis and Jenuwein, 2016). Post-translational
modification of proteins is also very well studied and can represent a fast way to
inhibit, enhance or modify the activity of a given protein (Mann and Jensen, 2003).
Similarly, it has long been known that non-coding and coding RNAs are heavily
decorated with a collection of modifications, giving rise to a new research field
recently named the “epitranscriptome” (Roundtree et al., 2017; Saletore et al.,
2012). Among around 170 different RNA modifications (Boccaletto et al., 2018), I
will focus my work on pseudouridine (‘) and 2’-O-methylation (2°’OMe), which
are some of the first modifications discovered and are very abundant on regulatory
RNAs, such as ribosomal RNA (rRNA) and small nuclear RNA (snRNA), and how
their dynamics regulate splicing and translation to coordinate gene expression.

/m
rRNA o M /// -

SNRNA other ncRNAs % Z0NMe

Figure 1: Schematic representation of the target RNAs modified with ¥ and 2’OMe.

17



snoRNAs and scaRNAs

Recent advances in high-throughput RNA sequencing approaches revealed that the
majority of our genome encodes for a great variety of non-coding RNAs (ncRNAs)
that play important roles in essentially every biological process that impacts cell fate
(Morris and Mattick, 2014). An evolutionarily conserved class of ncRNAs consists
of the abundant small nucleolar RNAs (snoRNAs), small RNAs of approximately
60-200 nucleotides length. In cells, snoRNAs are primarily assembled with proteins
within small nucleolar ribonucleoprotein (snoRNP) complexes that are responsible
for post-transcriptional modification of rRNA, snRNA, and also mRNA and other
ncRNAs (Figure 1) (Carlile et al., 2014; Kiss, 2001; Schwartz et al., 2014).
Interestingly, the vast majority of snoRNAs are encoded from the intronic regions
of host genes; however, a minority is transcribed from an independent promoter
(Tollervey and Kiss, 1997).

The role of snoRNAs is to provide the base complementarity to the target RNA and
guide the snoRNP to the site of modification. They are classified in two main
categories depending on the presence of evolutionarily conserved sequence motifs
(Kiss, 2001). The first class is represented by H/ACA box snoRNAs, which guide
Y modifications and are characterized by the presence of the conserved motifs
known as box H (ANANNA) and box ACA (ACA), and two hairpin structural
elements (Figure 2) (Kiss et al., 2010). The second class consists of C/D box
snoRNAs, involved in 2’0OMe, which possess distinct conserved sequence elements:
the C (UGAUGA) and D (CUGA) boxes (Figure 2) (Kiss-Laszlo et al., 1998).
Importantly, snoRNAs guiding modification of snRNA are considered a separate
sub-class and are named small Cajal body-specific RNAs (scaRNAs). scaRNAs
share a specific sequence (CAB box, with a consensus of UGAQG) to promote their
accumulation into the Cajal bodies, the major site of spliceosome assembly (Figure
2) (Kiss et al., 2010). They can belong to both the H/ACA and C/D box categories
and sometimes they exist even as composite H/ACA-C/D scaRNAs (Kiss et al.,
2010). Notably, snoRNAs and scaRNAs are frequently altered in cancers (Gong et
al., 2017; Mannoor et al., 2012) such as hematological malignancies (Ronchetti et
al., 2013; Ronchetti et al., 2012; Teittinen et al., 2013), solid tumors (Gao et al.,
2015), and in the cancer-susceptibility syndrome X-linked Dyskeratosis Congenita
(X-DC) (Bellodi et al., 2013).

A special category of snoRNAs enlists a multitude of so-called “orphan” snoRNAs,
still harboring H/ACA or C/D box domains, but lacking a defined target and
function yet (Dupuis-Sandoval et al., 2015). Recent data show that specific orphan

18



snoRNAs are deregulated in human diseases and cancer, and a non-canonical
biological mechanism has been proposed for some members of this class in
alternative splicing, cell growth and oncogenic signaling (Chu et al., 2012; Kishore
et al., 2010; Kishore and Stamm, 2006; Siprashvili et al., 2016; Valleron et al.,
2012). For instance, a processed version of SNORDI115 regulates the alternative
splicing of the serotonin receptor Sc affecting its expression and contributing to the
pathogenesis of Prader-Willi syndrome (Kishore et al., 2010; Kishore and Stamm,
2006). SNORDS0A and 50B are frequently deleted in cancer and their loss
determines activation of K-Ras and the downstream MAPK pathway (Siprashvili et
al., 2016). Nevertheless, the biological role of most of the orphan snoRNAs remains
completely unknown. Interestingly, a recent study showed that some snoRNAs,
including some orphan snoRNAs, have a tissue specific expression profile (Jorjani
et al.,, 2016), indicating the possibility of specialized functions for these small
RNAs.

CAB CAB @ only in scaRNAs

H ACA

Figure 2: Representation of the two categories of snoRNAs with the respective sequence motifs:
H/ACA box on the left and C/D box on the right. The CAB box is only present in scaRNAs.

Pseudouridine

The conversion of uridine into its isomer pseudouridine (V) is the most abundant
single-nucleotide RNA modification in living organisms (Kiss et al., 2010). ¥
possesses unique chemical properties determined by the formation of a C-C bond
between the sugar and the base and the presence if an additional hydrogen bond
donor site (Figure 3), which enhances the rigidity of the RNA backbone and
increases base stacking (Charette and Gray, 2000). ¥ modifications are enriched on
regulatory RNAs such as TRNA, snRNA and tRNAs, within clusters located in
conserved important structural and functional regions. These include sequences
involved in RNA-RNA and RNA-protein interaction regions of snRNA, the
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peptidyltransferase and decoding center of rRNA and the anticodon stem and loop
of tRNA (Charette and Gray, 2000). Recent advances in high-throughput ¥
sequencing methods also highlighted the presence of the modification in mRNA and
other ncRNAs, expanding on the epitranscriptome (Carlile et al., 2014; Li et al,,
2015; Lovejoy et al., 2014; Schwartz et al., 2014).

Pseudouridylation can be catalyzed via RNA-dependent or RNA-independent
mechanisms. The RNA-dependent mechanism is driven by the snoRNP complex
composed of an H/ACA snoRNAs and four evolutionarily conserved proteins:
DKC1, which is the catalytic component, NOP10, NHP2 and GAR1 (Figure 3) (Kiss
et al., 2010). Notably, the human telomerase RNA (hTERC) harbors the H/ACA
domain at the 3’ and assembles into a pre-RNP with H/ACA proteins NAF1, DKC1,
NOP10, and NHP2, with a structural role that does not seem to involve catalysis of
Y (Mitchell et al., 1999a). The RNA-independent mechanism is instead represented
by the pseudouridine synthase (PUS) family of enzymes, which recognize the target
RNA region using a consensus sequence or structural elements (Hamma and Ferre-
D'Amare, 2006). The work of this thesis will focus on RNA-dependent complexes,
while the PUS enzymes are investigated in other projects of our group.

0 0
NH HN)kNH
| N/k “§ «

o] 0
0] o]
—>
QO OH OH
% %
sno/scaRNA H ACA Uridine (U) Pseudouridine ()

H/ACA snoRNP

Figure 3: Pseudouridylation performed via the RNA-dependent mechanism. On the left the H/ACA
snoRNP is represented with the target RNA in position for modification. On the right, highlighted in
pink, the C-C bond and the extra hydrogen bond donor, which give ¥ its special chemical properties.

Pseudouridine has proven more challenging to detect and quantify in comparison to
other RNA modifications. This is because of several reasons: ¥ has the same mass
and creates the same Watson and Crick base pairings as uridine; it is “silent” in
RNA sequencing since it does not introduce specific errors during reverse
transcription as it happens, for instance, with inosine (Oakes et al., 2017); and there
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are currently no antibodies that can recognize it specifically, as for example for N°-
methyladenosine (m°A) (Saletore et al., 2012). Most of the currently used
techniques for ¥ detection are based on the chemical CMCT, that binds ¥ with
higher affinity compared to other nucleotides, U and G, from which it can be
removed by mild alkali treatment (Ofengand et al., 2001). This binding has been
exploited, since it causes the stop of reverse transcription reactions, for primer
extension (Bakin and Ofengand, 1993) and was recently adapted for high-
throughput sequencing (Carlile et al., 2014; Li et al., 2015; Lovejoy et al., 2014;
Schwartz et al., 2014). These CMCT-based techniques have been used in Paper [
and /I to analyze snRNA and rRNA modifications. However, these assays are
limited in their quantitative properties and the difference in sequencing and ¥ site
calling methods between groups makes results more variable for the discovery of
new sites in low abundance RNAs (Zaringhalam and Papavasiliou, 2016). Other
techniques for ¥ detection are instead based on RNase H site specific cleavage of
2’-O-methyl RNA and DNA hybrids and the ability to distinguish ¥ from U in a
thin layer chromatography (TLC) (Liu et al., 2013; Zhao and Yu, 2004). These
methods, though, are labor-intensive, inefficient, and highly dependent on the
design of a good RNase H oligo, which is mostly influenced by the sequence
surrounding the modification. Very recently a study showed the possibility to detect
Y by sequencing native RNA directly with Nanopore technology (Begik et al.,
2021), opening new prospects for more reliable and direct ¥ identification with
single molecule resolution.

2’-O-methylation

2’-O-methylation (2°OMe) is an evolutionarily conserved RNA modification
consisting in the addition of a methyl group to the 2’ hydroxyl of the ribose of a
nucleoside (Figure 4) and it can stabilize single base pairs or hydrogen bonds and
strengthen or alter RNA folds (Watkins and Bohnsack, 2012). As described for P,
2’0OMe is common in TRNA, snRNA and tRNA, and was also recently found in
internal sites of mRNA (Dai et al., 2017). Moreover, 2’0OMe sites location often
corresponds with significant structural and functional regions of the target RNA.
The effect of 2°0OMe modification on structure and biogenesis has been
predominantly studied in the context of rRNA and tRNAs, ranging from bacteria to
yeast and vertebrates. On the other hand, the function of 2°0OMe on mRNA, with
few evidence showing an effect on translation, still remains largely unknown (Ayadi
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etal., 2019). I will further expand on the function of 2’OMe modification in snRNA
and rRNA in the following chapters.

2’-O-methylation is catalyzed via an RNA-dependent mechanism that involves C/D
box snoRNAs assembled within snoRNPs together with four evolutionarily
conserved protein components: FBL, which is the catalytic component, NOP56,
NOP58 and SNU13 (Figure 4) (Watkins and Bohnsack, 2012).

AINOP56
’ "o “a
P58 . =
_) _)
SNU13
D O OH O  OCH,
Ry Y

sno/scaRNA

Target RNA 2’-0-methylated

C/D snoRNP

Figure 4: 2’-O-methylation performed by the C/D box snoRNP, shown on the left with the target RNA
in position for modification. On the right the methyl group (CHs) added to the nucleotide ribose is
highlighted in light blue.

Several methods are available to detect and quantify 2°OMe, both in a site-specific
and high-throughput manner, and they are based on three different properties of this
RNA modification. The first class of techniques is based on the resistance of 2°OMe
nucleotides to alkaline fragmentation. This principle is exploited in RiboMeth-seq
(Birkedal et al., 2015; Marchand et al., 2016), which identifies a methylated
nucleotide by the absence or less representation of read-ends at that specific site.
This method quantitatively identifies sub-stoichiometric modification sites, even
though the resolution is reduced with sites modified at low levels (below 30%).
Another class of techniques is based on the resistance of 2’0OMe nucleotides to
RNase H site specific cleavage of 2’-O-methyl RNA and DNA hybrids, which I
used in Paper III coupled with RT-qPCR quantification (Yu et al., 1997). Although
this method is not high-throughput and does not enable discovery of new sites, it is
quite robust in site-specific analysis, with the only limitation given by the quality of
the RNase H oligo, which, as mentioned for ¥ detection techniques, is highly
dependent on the sequence surrounding the modification. The last category of
methods is based on the discovery that 2’0OMe stops reverse transcription when
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performed with low dNTP concentration. This approach was first used for simple
primer extension (Maden et al., 1995) or coupled with qPCR quantification (used in
Paper 1II) (Dong et al., 2012) for site-specific detection and, more recently, was
adapted for sequencing (Incarnato et al., 2017).

RNA modifications and cancer

Emerging evidence has revealed that RNA modification pathways are frequently
altered in human disease and cancer and the most well studied modifications in this
context have been so far rRNA and tRNA modifications (Barbieri and Kouzarides,
2020; Janin et al., 2020). Mutations of the pseudouridine synthase DKC1 have been
associated with X-linked Dyskeratosis Congenita (X-DC). X-DC is characterized
by bone marrow failure, skin abnormalities, and high cancer susceptibility,
including hematological malignancies such as myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML) (Heiss et al., 1998; Mitchell et al., 1999b;
Montanaro, 2010). Defects in DKC1 and rRNA-Y have been associated with
aberrant translation fidelity (Jack et al., 2011) and IRES-mediated translation
leading to impairments in specific mRNAs encoding tumor suppressors, such as p53
(Bellodi et al., 2010a; Montanaro et al., 2010) and p27 (Bellodi et al., 2010b; Yoon
et al., 2006), in X-DC and solid tumors. Moreover, dysregulation of individual
snoRNAs have also been reported in cancer (Gong et al., 2017; Mannoor et al.,
2012). For example, depletion of SNORA24, which guides two rRNA-Y sites, is
correlated with reduced translation accuracy and development of liver cancer in
mouse, and poor prognosis in human hepatocellular carcinoma (McMahon et al.,
2019). Additionally, data from our group showed that PUS7-dependent
pseudouridylation of specific tRNA-derived fragments has an impact on global
protein synthesis and HSCs function and is reduced in specific subtypes of MDS
with high risk of transformation to AML (Guzzi et al., 2018). Another recent study
reported that inhibition of PUS7-dependent tRNA pseudouridylation affects the
tumorigenic potential of glioblastoma stem cells (Cui et al., 2021).

Altered 2°’OMe has also been linked to cancer (Janin et al., 2020). For instance, high
levels of the methyltransferase FBL in breast cancer cause alteration of the rRNA
2’0OMe pattern, which leads to defects in translation fidelity and IRES translation
contributing to tumorigenesis and representing a poor prognostic factor (Marcel et
al., 2013). Similarly, it was also shown by another group that FBL levels and
snoRNA biogenesis are frequently increased in breast and prostate cancer, with
important roles for the tumorigenic potential in vitro and in vivo (Su et al., 2014).
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Subsequently, IRNA 2°OMe was also associated with leukemia by the identification
of a link between the fusion protein AMLI-ETO and enhanced snoRNAs
functionality. The study showed how abrogation of specific rRNA methylation sites
affected the clonogenic potential in vitro and leukemogenesis in vivo, without
however showing the direct effects on translation (Zhou et al., 2017).

A wealth of studies has highlighted a key role for m°A, another very common
mRNA modification, in cancer pathogenesis. Important works by different groups
have identified a connection between defects m®A writers and erasers in leukemia
and solid tumors, with examples of both mRNA and rRNA modification (Barbieri
and Kouzarides, 2020; Shen et al., 2020; Vu et al., 2019). However, 1 will not
discuss the details by which m°A contributes to tumorigenesis in my thesis. Taken
together, this body of evidence strengthens the importance of RNA modifications in
cancer biology, opening new avenues for developing prognostic and therapeutic
possibilities. One recent example is the pharmacological inhibition of the
methyltransferase METTL3, which has been tested as therapeutic strategy for AML
in cell lines and mouse models (Yankova et al., 2021). Nevertheless, very much is
still unknown, especially regarding defects of snRNA modifications, which have
been largely overlooked so far and that I will expand more on with the work of this
thesis.
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Splicing

Splicing is a central cellular process that enables removal of intronic sequences from
pre-mRNAs and it governs the flow of the genetic information by directing the
maturation of the mRNA that will be finally translated into proteins. Splicing was
first observed in the 1970s in adenoviruses by Philip Sharp and Richard Roberts,
which were awarded the Nobel Prize for their discovery (Berget et al., 1977; Chow
et al., 1977). Splicing is a complex and energy demanding process that involves a
highly dynamic multi-subunit machinery and undergoes multiple layers of
regulation, many of which are still unknown. In this thesis, I will primarily focus on
snRNA modification dynamics and splicing factor abundance as novel splicing
regulatory mechanisms, which can be hijacked by cancer cells to improve their
survival and increase tumorigenic potential.
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Figure 5: Simplified schematic of the main steps of the splicing process showing the formation of the
different dynamic complexes. On the top left, the intron is represented highlighting the 5’ss,
branchpoint (BP) and 3’ss signals with the respective sequence elements. Figure adapted from Will
and Luhrmann, 2011.
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The spliceosome and splicing

The spliceosome is a dynamic macromolecular machinery consisting of five small
nuclear ribonucleoproteins (snRNPs), each with a core snRNA backbone bound to
several core and associated splicing factors (Will and Luhrmann, 2011). Two unique
spliceosomes coexist in eukaryotic cells, including humans: the major (or U2-
dependent) spliceosome, which is composed of U1, U2, U4, U5 and U6 snRNPs,
and the minor (or Ul2-dependent) spliceosome, which is composed of Ul1, Ul2,
Udatac, U5 and U6atac snRNPs (Will and Luhrmann, 2011). The major
spliceosome catalyzes the removal of U2-type introns, which represent most of the
introns, while the less abundant minor spliceosome splices the rare U12-type class
of introns. U12-type introns are mainly present in genes related to processes such as
DNA replication and repair, transcription, RNA processing, and translation
(Turunen et al., 2013).

The primary signals that define the boundaries between exons and introns are the 5’
splice site (5’ss) at the beginning of the intron, the 3” splice site (3°ss) at the end of
the intron, and the branch point, which is usually optimally located around 15-50
nucleotides upstream the 3’ss (Figure 5). These primary signals are also
accompanied by several cis-acting regulatory elements, which can enhance or
reduce the splicing of specific introns (Matera and Wang, 2014). During the splicing
reaction, introns are removed from the pre-mRNA by two consecutive
transesterification reactions. The first reaction is the nucleophilic attach from the
2’0H of the branch point adenosine on the 5’ss, which leads to the cleavage at the
5’ss and to the formation of the lariat structure. This is followed by a second reaction
where the 3’ss is attached by the 3’OH group of 5’ exon, enabling the ligation of the
5’ and 3’ exons and the release of the intron. The execution of these two chemical
reactions is made possible by a complicated orchestrated process guided by the
snRNPs and many co-factors that dynamically assemble and dis-assemble forming
different complexes (Figure 5) (Matera and Wang, 2014; Will and Luhrmann,
2011). The process of spliceosome assembly is very well described in yeast, but the
main steps are shared in humans. Briefly, the first to be formed is complex E, where
the U1l snRNP binds the 5’ss of the intron. Then, the U2 snRNP binds the branch
point sequence and the 3’ss and interacts with the Ul snRNP forming the pre-
splicing complex A. At this point, the pre-catalytic complex B is formed by the
addition of the pre-assembled tri-snRNP U4/U6.US. In the next step, the U1 and U4
snRNPs are released and U6 snRNA substitutes Ul in the binding of the 5’ss to
form the activated B complex. Subsequently, the B* catalytically activated complex
performs the first transesterification reaction, and the complex C is formed, where
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the 5’ exon end is free, and the lariat structure is bound to the 3’ exon. The complex
C performs the second catalytic step, leaving a post-splicing complex from which
the lariat, the spliced mRNA and the snRNP will be released (Figure 5) (Matera and
Wang, 2014; Will and Luhrmann, 2011). snRNAs are key for most of the steps and
allow the recognition of specific structures in the pre-mRNA introns, for instance
Ul snRNA with the 5’ss or U2 snRNA with the branch point (Will and Luhrmann,
2011). Interestingly, snRNAs, and not the proteins, are the elements that yield the
catalytic activity during the splicing process (Valadkhan et al., 2009; Valadkhan et
al., 2007).

snRNA modifications

snRNAs are heavily modified molecules harboring several ¥ and 2’OMe sites
clustered in key functional regions critical for snRNA biogenesis, structure, and
function, that involve intramolecular snRNPs interactions and pre-mRNA binding
(Ge and Yu, 2013; Karijolich and Yu, 2010). Some examples are the U2 region
involved in branchpoint recognition, the interaction areas between U4 and U6, and
the region of Ul which contacts the 5° splice site on the pre-mRNA (Ge and Yu,
2013; Karijolich and Yu, 2010). Given the location of most modifications along the
snRNA secondary and tertiary structure, it has been suggested that they might be
implicated in structure maintenance as well as in the splicing function of snRNAs
(Karijolich and Yu, 2010). Indeed, it has been shown that U2 snRNA Y and
particularly those located close to the branchpoint recognition site are essential for
U2 snRNP assembly and proper pre-mRNA splicing in Xenopus (Yu et al., 1998;
Zhao et al., 2002). Moreover, 2°’0OMe at the 5’ of U2 snRNA were shown to be
individually required for pre-mRNA splicing in HeLa cells (Donmez et al., 2004).
Although snRNA modifications were long considered static and constitutive, this
assumption has been challenged by recent data showing that some U2 and U6
pseudouridylations are instead inducible in yeast, especially upon stress conditions
such as nutrient deprivation and filamentous growth (Basak and Query, 2014; Wu
et al., 2016; Wu et al., 2011). Another study recently indicated that specific snRNA
2’0OMe sites are sub-stoichiometric upon T cell activation and in a T cell leukemia
cell line (Krogh et al., 2017).

Seminal work in yeast cells and other organisms has unraveled the central role of
snRNA modifications within the splicing machinery; however, the contribution and
the dynamics of snRNA modifications in humans and disease remain not fully
understood. Very recent evidence started to highlight the importance of snRNA
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modifications for splicing fidelity in development, for example U6 2°0OMe in
connection to a developmental syndrome in humans (Hasler et al., 2020) and to
spermatogenesis in mouse (Wang et al., 2020), as well as a SCARNA1-driven U2-
Y for heart development (Nagasawa et al., 2020; Patil et al., 2015). Nevertheless,
dysregulation and dynamics of snRNA modifications in tumorigenesis remain an
outstanding question, which I explored in Paper I and will further discuss in the
next chapters.

Alternative splicing

Alternative splicing is the process that enables the formation of multiple mature
mRNAs from the same pre-mRNA, thus expanding the coding capacity of the
genome. There are several types of alternative splicing events: cassette-exon
alternative splicing, which is the most common type and consists in the exclusion
or inclusion of a single exon; alternative 5° and 3’ splice sites; intron retention; and,
lastly, mutually exclusive exons (Figure 6) (Blencowe, 2006). It is now known that
the vast majority of human genes, around 90-95%, undergoes alternative splicing
(Pan et al., 2008; Wang et al., 2008), thus making very important to understand the
final functional outcome of such events. Alternative splicing can generate different
protein isoforms from the same gene, thus expanding the cell’s coding capacity. A
notable example is the gene Bel-x that can produce two different protein isoforms
by alternative splicing, Bcl-xL and Bcl-xS, which have opposite effect on apoptosis
(Boise et al., 1993). Another option is that the alternative protein isoforms contain
new regions that determine an increase or decrease of protein stability, as we show
in Paper IV for a critical regulator of mitochondrial dynamics, namely DRP1 (Ciesla
et al., 2021). It is also possible that alternative splicing directly affects the stability
and the localization of the mRNA, by altering both translated and untranslated
regions (Baralle and Giudice, 2017; Blencowe, 2006). Although it was recently
shown that most of the alternatively spliced mRNAs with exon skipping events and
high-medium abundance are associated to polysomes (Weatheritt et al., 2016), yet
not all the products of alternative splicing are translated. A big part of the events,
around 30%, determine the introduction of an in frame premature termination codon
(PTC) which might target the mRNA for non-sense mediated decay (NMD) (Lewis
et al., 2003) and define a way to control gene expression of specific genes. There is
still a debate in the field on how much these PTCs directly yield mRNA decay as it
was shown that these aberrant variants occur with very low frequency (Pan et al.,
2000).
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Alternative splicing was shown to be key for development and tissue specification
in various organs and cell types, for example brain, muscle, pancreas, liver, and the
hematopoietic system (Baralle and Giudice, 2017). Moreover, it was also shown
that alternative splicing is affected in several human diseases and cancers by genetic
mutations of splicing signals (Cartegni et al., 2002). The potential role of splicing
factors (SFs) and snRNAs as determinants of alternative splicing variability remains
an open question, which will be further discussed in the context of cancer in the next
chapter and that has been one of the main focuses of this thesis work.
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Figure 6: Representation of the main categories of alternative splicing events. With black and red lines
are shown the two different combinations for each type of event, which can give rise the two products
depicted on the right.

Splicing and cancer

There is a growing realization that splicing is frequently altered in many cancer
types and that alternative splicing affects genes involved in all the hallmarks of
cancer (Oltean and Bates, 2014; Sveen et al., 2016). The recent discovery of splicing
factors mutations in a large number of hematological cancers and solid tumors has
highlighted a direct role for splicing in disease pathogenesis (Dvinge et al., 2016).
One notable example is the mutation of the splicing factor SF3B1, which affects
selection of 3’ splice sites and induces aberrant splicing and decay of many mRNA
targets (Darman et al., 2015). However, it has been shown that splicing alterations
can occur even in absence of splicing factor mutations (Danan-Gotthold et al., 2015;
Dvinge and Bradley, 2015; Simon et al., 2014). For example, a way to alter the
splicing patterns in cancer could be via regulation of the abundance of specific
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splicing factors. Interestingly, recent studies showed how the oncogene MYC
regulates the levels of PRMTS, BUD31 and SRSF1 splicing factors to ensure
accurate splicing and cancer cell survival and growth (Das et al., 2012; Hsu et al,,
2015; Koh et al., 2015). Nevertheless, the mechanisms whereby oncogenes hijack
the spliceosome to promote tumorigenesis remain poorly understood. With our work
in Paper IV, we identified a translation-based program downstream MYC that
controls the levels of SF3A3 splicing factor to ensure accurate splicing of genes
important for survival and tumorigenesis in breast cancer cells (Ciesla et al., 2021).
Another element that could contribute to the spliceosome regulation is the catalytic
snRNA component. A recent study showed how mutations of Ul snRNA can
function as cancer drivers (Shuai et al., 2019), but other involvements of snRNA in
cancer alternative splicing remain largely unexplored. Based on the evidence that
scaRNAs are frequently altered in cancer (Gong et al., 2017; Ronchetti et al., 2013;
Ronchetti et al., 2012; Teittinen et al., 2013), we hypothesized a relevant
contribution of snRNA modification dynamics in tumorigenesis, which so far has
been overlooked. Following up on this hypothesis, in Paper I | uncovered the role
of SCARNAI1S5 in regulation of specific U2 snRNA-¥ and cancer promoting
splicing events, that promote the survival through regulation of the cellular stress
response (Beneventi et al., 2021). In conclusion, all these studies show the central
role of splicing in tumorigenesis and highlight splicing as a cancer prognostic factor
and therapeutic vulnerability to be further exploited.

30



Translation

Translation is the process that decodes the information contained in the mature
mRNA into proteins and it is one of the most critical and energy demanding cellular
processes. It requires tight regulation by coordination of several players such as
ribosomes, mRNA, tRNAs and a multitude of additional and regulatory factors,
which can be represented by proteins or RNAs. It is not surprising that defects in
multiple steps of translation regulation are often observed in human diseases ranging
from, for example, genetic ribosomopathies to cancer (Tahmasebi et al., 2018;
Vaklavas et al., 2017). Because of the complexity of the translation process, still
many layers of regulation remain uncharacterized and especially their biological
role is still largely unexplored. Paper II and III are centered on ribosome function
and translation control mediated by changes in rRNA modifications, specifically in
the context of embryonic and hematopoietic stem cell biology.

The ribosome and translation

The ribosome is the machinery that performs translation of spliced mRNAs into
proteins. The eukaryotic ribosome, also known as 80S ribosome, is made of two
subunits both composed of rRNA and several proteins. The large subunit (LSU), or
60S subunit, is composed of the RNA scaffolds 28S, 5S and 5.8S rRNA together
with 47 proteins, while the small subunit (SSU), or 40S subunit, has only 18S rRNA
as scaffold together with 33 proteins (Ben-Shem et al., 2011; Khatter et al., 2015).
The LSU contains the peptidyltransferase center, where the peptide bond is formed,
while the SSU is mostly responsible for the decoding process and the proper binding
between the mRNA codon and the tRNA anticodon (Sloan et al., 2017). The “old
school” assumption of ribosomes as static machineries has been challenged over the
past years by several studies supporting the notion that ribosomes are heterogeneous
with respect to their composition and function (Gay et al., 2021; Genuth and Barna,
2018). Potential sources of heterogeneity are the tissue specific expression of
ribosomal protein paralogs or different rRNA alleles, the presence of sub-
stoichiometric levels of core ribosomal proteins or the addition of several ribosome
associated proteins, post-translational modifications of ribosomal proteins and
rRNA modifications (Gay et al., 2021; Genuth and Barna, 2018). Although the exact
function of all these heterogeneous ribosomes is mostly uncharacterized, this idea
opens great possibilities for additional layers of translation regulation. In Paper 111,
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I studied rRNA modifications as a potential source of heterogeneity and regulation
of specific ribosome properties during development.

The process of mRNA translation is divided into four main stages: initiation,
elongation, termination, and ribosome recycling (Figure 7). In this section, I will
briefly describe all the steps focusing on initiation and elongation, which are
relevant for this thesis. Translation initiation involves several eukaryotic translation
initiation factors (elFs) and consists of multiple phases leading to the formation of
an 808S ribosome competent for elongation, with the Met-tRNA;"* anticodon bound
to the start codon of the mRNA in the P site (Jackson et al., 2010; Sonenberg and
Hinnebusch, 2009). The main mechanism for initiation involves the binding of the
43S pre-initiation complex (PIC) close to the 5’cap of the mRNA through the
binding with the elF4F cap-complex. The elF4F cap-complex is formed by eIF4E,
the cap-binding protein, e[F4G, that acts as a scaffold, and e[F4A, an RNA helicase
that unwinds the secondary structures present in the 5° UTR. The PIC scans the 5’
UTR to find the AUG start codon and enable the pairing of the Met-tRNAM
anticodon to form the 48S complex. Then, the 60S subunit is bound, the elFs are
released and the 80S is formed (Figure 7) (Jackson et al., 2010; Sonenberg and
Hinnebusch, 2009). This process is called cap-dependent translation initiation.

Although the cap-dependent mRNA activation is mainly reliant on the elF4F cap-
complex and other factors, it was recently shown that cap-dependent initiation can
also be stimulated by the elF3 complex by binding internal secondary structures of
the mRNA 5’ UTR and with eIF3D as the cap-binding protein (Figure 8) (Lee et al.,
2015; Lee et al., 2016). In Paper IV we found that the latter mechanism regulates
translation of the splicing factor SF3A3 levels in response to the oncogene MYC
(Cieslaetal., 2021). There are other non-canonical initiation mechanisms including
internal ribosomal entry sites (IRES), structural motifs present in the 5 UTR which
enable ribosome recruitment bypassing the cap recognition complexes (Figure 8)
(Cullen, 2009). IRES elements were first discovered in picornaviruses (Jang et al.,
1988; Pelletier and Sonenberg, 1988) and, subsequently, in hepatitis C virus (HCV),
which recruits the 43S pre-initiation complex with only a few initiation factors
(Pestova et al., 1998) or even directly the translating 80S ribosome (Yokoyama et
al., 2019), and in cricket paralysis virus (CrPV), which directly recruits the 40S
small subunit (Pestova and Hellen, 2003; Wilson et al., 2000). Interestingly, IRES
elements are also present in cellular mRNAs; however, much less is known about
their exact structure and regulatory functions. Cellular IRES-mediated translation is
important during stress conditions when canonical cap-dependent translation is
reduced or inefficient (Cullen, 2009; Schuster and Hsieh, 2019). As previously

32



described, IRES translation is affected and contributes to tumorigenesis in the
disease X-DC, where rRNA-Y modifications are reduced (Bellodi et al., 2010a;
Bellodi et al., 2010b; Yoon et al., 2006).

) ;
Met-tRNAi °® Recycling
& GTP 60S Amino acids

60S

elFs aa-tRNAs
. : 'Y 408
43S pre-initiation Polypeptide chain
complex ®-, ( }
) @ 80S f\, .x N 7
elF4F Sfcam'(‘ag E P A E PA E PA \E P A EPA
cap-complex ot &
- - Y NSy §
4E. e AAAAAAA
m7G AUG Stop
Initiation Elongation Termination

Figure 7: Simplified schematic of the main phases of translation. In the initiation phase, the 43S pre-
initiation complex binds close to the 5’cap through the eIF4F cap-complex and starts to scan for the
AUG start codon. Once the start codon is found, the 60S subunit joins and the eIFs are released. For
the elongation phase the ribosomes are represented in different states: with P- and A-site occupied by
tRNAs to form the peptidyl bond (arrow); in the “hybrid” state, where tRNAs occupy different states
on the two subunits, before the translocation; with the unloaded tRNA in the E-site about to exit the
ribosome and the new aa-tRNA that needs to bind the A-site to restart the cycle. Then, also the
termination and recycling phase are shown. Figure adapted from Schuller and Green, 2018 and Saba
etal., 2021.

Translation elongation is characterized by the 80S ribosome moving along the
mRNA, three nucleotides at the time, encoding the mRNA codons into a polypeptide
chain using aminoacyl-tRNAs (aa-tRNAs), which are the tRNA molecules charged
with the amino acid correspondent to the anticodon. During elongation, tRNAs
transition between three important ribosomal domains: the aminoacyl (A) site, the
peptidyl (P) site and the exit (E) site. The A-site accommodates and binds the
incoming aa-tRNAs, the P-site accommodates the tRNA with attached the nascent
polypeptide chain and the E-site contains the uncharged tRNA that will then exit the
ribosome (Figure 7) (Schuller and Green, 2018). The process is regulated by
elongation factors (eEFs) including eEF1A and eEF2, which regulate the tRNA
binding to the A-site and the transition state, or “hybrid” state, where tRNAs are
partially positioned in two sites and need to translocate to enable the formation of
the next peptide bond (Schuller and Green, 2018). During the elongation, the
ribosome may encounter some obstacles that slow down the process. These include
specific amino acid combinations or rare cognate tRNAs, which might stall the
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ribosome, and strong secondary structures, which might stop elongation (Schuller
and Green, 2018). For example, —1 programmed ribosomal frameshifting (PRF) is
a well-established event affecting elongation that is promoted by secondary
structures consisting of pseudoknots and slippery sequences (Figure 8). These were
originally identified in viruses to induce elongating ribosomes to slip one-base in
the 5’ direction to a —1 coding frame, and so enabling the virus to encode multiple
genes in a small genome and to produce the proteins with a precise ratio (Jacks and
Varmus, 1985). Moreover, —1 PRF signals have also been found in cellular mRNAs,
where they seem to have more a function in mRNA stability rather than new protein
production (Dinman, 2012). It was shown that defects in rRNA pseudouridylation
affect —1 PRF rates and might also contribute to translation impairments underlying
X-DC pathogenesis (Jack et al., 2011).

Lastly, translation termination consists in the recognition of the stop codon at the
end of the open reading frame and the release of the nascent polypeptide chain from
the ribosome. At the end of translation, the post-termination 80S ribosome is
recycled into 40S and 60S subunits, which can be used again for the initiation phase
(Figure 7) (Schuller and Green, 2018).
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Figure 8: Representation of some regulatory elements of translation initiation and elongation. The
non-canonical cap recruitment via the eIF3 complex and the non-canonical initiation via IRES element
are shown in the 5” UTR region. The —1 PRF event is shown in the coding region with the slippery
sequence and the pseudoknot which make the ribosome shift one nucleotide back towards the 5°, thus
changing the frame of translation.
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rRNA modifications

As previously mentioned for snRNA, also rRNA is heavily pseudouridylated and
2’-O-methylated. Interestingly, the modifications are progressively increasing in
number with evolution ranging from, for example, ten ¥ sites and four 2’0OMe in E.
Coli, to 45 ¥ and 55 2°0OMe in S. cerevisiae and to around 100 sites for each
modification in humans (Bakin and Ofengand, 1993; Birkedal et al., 2015; Piekna-
Przybylska et al., 2008; Taoka et al., 2016). In bacteria most of the modifications
are catalyzed by stand-alone enzymes, while in eukaryotes both RNA-dependent
and independent mechanisms are involved, consistently with the evolutionarily
expansion of the rRNA modification repertoire (Decatur and Fournier, 2002). The
majority of the modifications occur co-transcriptionally during the early steps of
ribosome biogenesis (Kos and Tollervey, 2010; Turowski and Tollervey, 2015),
although in humans some occur at later stages of rRNA maturation with the
contribution of RNA helicases (Sloan et al., 2015). Notably, rRNA modifications
cluster within key evolutionarily conserved functional regions such as the
peptidyltranferase center (PTC), the regions of tRNA and mRNA binding
represented by the A-, P- and E-sites, and the intersubunit regions, suggesting their
importance for ribosome function. (Decatur and Fournier, 2002). Several studies
have highlighted the importance of single or clusters of rRNA modifications for
ribosome structure, biogenesis, activity, and fidelity in different model systems
(Sloan et al., 2017). For example, loss of a few ¥ sites within the PTC caused
reduction in translation in yeast (King et al., 2003). Similar reductions were
observed upon depletion of several modifications in the intersubunit bridge, which
were also associated with increased stop codon read-through (Liang et al., 2007).
Depletion of a cluster of modifications in the decoding center affected stop codon
termination and maintenance of the frame (Baudin-Baillieu et al., 2009). As
previously described in the chapter on the role of RNA modifications in cancer,
alterations of rRNA ¥ and 2°0OMe are associated with functional defects of the
ribosome, in particular translation fidelity and IRES-mediated translation of specific
mRNAs, including some tumor-suppressor genes (Bellodi et al., 2010a; Bellodi et
al., 2010b; Chaudhuri et al., 2007; Erales et al., 2017; Jack et al., 2011; Marcel et
al., 2013; Montanaro et al., 2010; Yoon et al., 2006).

Interestingly, it has been proposed that rRNA modifications may occur at sub-
stoichiometric levels (Andersen et al., 2004; Erales et al., 2017; Krogh et al., 2016;
Taoka et al., 2016). Even though these observations highlight rRNA modifications
as a possible source of ribosome heterogeneity, still very much is unknown about
the dynamic changes of rRNA modifications in mammals and humans. In line with
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this hypothesis, in the work of Paper III, we unraveled a previously undetected 28S
rRNA 2’0OMe at position U2044 that is sub-stoichiometric and upregulated during
development. Importantly, we found that this 2°’OMe site affects the sensitivity to
A-site specific translation inhibitors and impacts ribosomal frameshifting rates. In
conclusion, TRNA ¥ and 2°0OMe are conserved features important for the
functionality of the ribosome and potentially involved in many cellular systems and
in the pathogenesis of disease.

Translation regulation in stem cells

Tight regulation of protein synthesis, which can be achieved through several
mechanisms involving the ribosome and translation regulatory factors, is emerging
as a key element for ESCs self-renewal and differentiation (Buszczak et al., 2014;
Gabut et al., 2020; Saba et al., 2021). It has been shown that there are significant
differences in bulk protein levels between stem cells and their progeny, with ESCs
maintaining low translation which then increases during embryoid bodies (EBs)
differentiation (Ingolia et al., 2011; Sampath et al., 2008). Recent work from our lab
showed how increased translation, caused by the depletion of the pseudouridine
synthase PUS7 and the consequent reduction of pseudouridylated tRNA fragments,
alters hESCs differentiation with specific defects in the mesoderm lineage (Guzzi et
al., 2018). This study highlights the role of RNA modifications as a mean to control
and maintain proper levels of protein synthesis in stem cells. Other studies showed
how loss of specific rRNA m°A causes impaired mouse ESCs differentiation and
global as well as specific translation defects (Ignatova et al., 2020; Xing et al.,
2020), strengthening the link between RNA modifications and translation regulation
in ESCs. Nevertheless, still very much remains unknown about the contribution of
RNA modification, especially rRNA ¥ and 2’OMe, to translation control in stem
cells. Very recent studies showed that specific RNA 2°’OMe are regulated during
development in zebrafish and mouse (Hebras et al., 2020; Ramachandran et al.,
2020), but without exploring their functional effect on ribosomes and translation or
their biological role. In Paper III, we showed that the developmentally regulated
modification Um2044 of 28S rRNA affects specific ribosomal properties and is
essential for accurate hESCs differentiation and proper endoderm germ layer
formation, highlighting the connection between rRNA modifications, ribosome
function and stem cell biology.

As for ESCs, tight regulation of translation is also important for adult stem cells, for
example hematopoietic stem cells (HSCs) (Buszczak et al., 2014). Maintenance of
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appropriate levels of protein synthesis was shown to be important for HSCs self-
renewal and differentiation potential (Guzzi et al., 2018; Signer et al., 2014; Signer
et al., 2016). The study from Signer and colleagues showed that both lower and
higher protein synthesis caused impairment in HSC function (Signer et al., 2014).
Considering the observations in ESCs, it is interesting to explore whether rRNA
modifications could also play a role in translation regulation in HSCs. It is known
that defects in rRNA pseudouridylation, caused by mutations of DKC1 in X-DC,
lead to bone marrow failure and impairment of HSCs differentiation (Bellodi et al.,
2013). Nevertheless, the direct contribution of rRNA pseudouridylation defects to
translation defects and HSCs biology in vivo remains largely unknown. In Paper 11,
I explored how depletion of Garl, one of the H/ACA snoRNP components, impairs
rRNA pseudouridylation, decreases global protein synthesis and affects
hematopoiesis in mice. Gar/-KO HSCs showed defects in reconstitution capacity,
again highlighting the link between accurate translation levels and stem cell
functionality, which is consistent with previous results in Rp/24 mutants
characterized by reduced protein synthesis (Signer et al., 2014). However, while
Rpl24 mutant mice are viable and smaller in size (Signer et al., 2014), the full body
KO of Garl is not compatible with life and we could only employ conditional KO
models in the hematopoietic system.
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Aims of the thesis

The overarching aim of my thesis is to unravel post-transcriptional mechanisms that
regulate gene expression and impact cancer and stem cells. Specifically, I focused
on the regulation of two important steps during the flow of the genetic information
from DNA to proteins: splicing and translation. The main outstanding question is
whether and how ¥ and 2°’0OMe RNA modifications, among other factors, can act
as key regulators of both splicing and translation during tumorigenesis, development
and stem cells differentiation. To answer this question, I took several approaches,
employing cancer cells, mice models and embryonic stem cells, to understand how
spliceosome and ribosome dynamic changes may act as an extra layer of gene
expression regulation, which has been mostly overlooked so far.

Specific aims:

* Investigate how changes in snRNA modifications and splicing factors (SFs)
abundance affect spliceosome function and impact on cancer-promoting
splicing programs (Paper I and IV)

*  Study the effects of impaired rRNA pseudouridylation on translation and
hematopoiesis in vivo (Paper II)

* Explore the role of orphan snoRNAs in stem cell regulation and fate
determination (Paper 1)
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Summary of results

Paper I

The starting point for this work was the realization of a missing link between the
dysregulation of snRNA modifications and the effect they might have on
transformation and cancer development. Splicing is very frequently altered in cancer
(Oltean and Bates, 2014; Sveen et al., 2016), but the contribution of snRNAs has
been mostly overlooked in favor of research on SFs. Indeed, several studies showed
that scaRNA expression is altered in solid and hematological cancers (Gong et al.,
2017; Ronchetti et al., 2013; Ronchetti et al., 2012; Teittinen et al., 2013), leading
to the possibility of a connection between snRNA modifications and malignancies.
Nevertheless, how scaRNA levels can affect specific splicing patterns and play a
role in tumorigenesis is still an open question.
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Figure 9: Graphical abstract of Paper I. Figure adapted from Beneventi et al., 2021.

In Paper I, we uncovered the role of SCARNAI1S which, guiding a specific
pseudouridylation of U2 snRNA, can affect alternative splicing events important for
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stress response of cancer cells (Figure 9). Briefly, we first found that SCARNA15
was the most upregulated scaRNA upon oncogenic stress after MYC and AKT over-
expression and it was highly expressed in cancer cells compared to their normal
counterpart. These data showed a potential specificity of SCARNA1S5 expression in
cancer and upon MYC oncogenic stress. By developing the first SCARNA15-KO
cell line in HEK293T, we showed that SCARNAIS guides a specific
pseudouridylation of U2 snRNA at position 39, which is proximal to the functional
region of the snRNA that binds the pre-mRNA during splicing. Moreover, we
identified the specific alternative splicing program dependent on SCARNAI1S5 and
U2-¥39, with an enrichment for genes related to chromatic organization and p53
signaling. In line with these splicing changes, SCARNA15-KO cells hyperactivated
the p53 pathway, indicating a role of SCARNAIS in the regulation of this tumor
suppressive pathway. Importantly, we could show a direct connection between the
U2-modifying function of SCARNA15 and the observed molecular effects since the
validated splicing events and the p53 pathway could not be rescued by a mutant
version of SCARNA15 which is not able to guide U2-¥39. Furthermore, directed
by the categories of genes that were transcriptionally affected in SCARNA15-KO
cells, we uncovered profound defects in anchorage-independent growth and wound
closure, which were accompanied by an accumulation of reactive oxygen species
(ROS) and increased H»O,-dependent cell death. Similarly, we observed that
SCARNA15-KO leukemia cell lines showed defects in colony-forming capacity,
increased cell death and ROS accumulation. These phenotypes suggested a function
of SCARNA1S5 and U2-¥39 in supporting growth and survival of cancer cells in
stress conditions with an involvement in some of the major cancer hallmarks. In
sum, the results included in Paper I revealed a key role for SCARNA1S5 and U2-
Y39 in alternative splicing, mostly affecting chromatin remodeling and p53
signaling, which influenced the oxidative stress response and survival of cancer
cells.

Paper 11

Defects in rRNA pseudouridylation have been associated with translation defects
and HSC dysfunction in the context of X-DC, which is characterized by bone
marrow failure and high predisposition to cancer, especially of the hematopoietic
system (Bellodi et al., 2010a; Bellodi et al., 2010b; Bellodi et al., 2013; Jack et al.,
2011; Yoon et al., 2006). Yet, how snoRNP defects impact HSC function and
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whether this is uncoupled from the telomere maintenance, remains poorly
understood. Moreover, the embryonic lethality of Dkc/-KO mice (He et al., 2002)
made very challenging to study the consequences of snoRNP impairment in vivo.
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Figure 10: Graphical abstract of Paper II.

In Paper II, we developed a novel mouse model KO for Garl, one of the
components of the H/ACA snoRNP, which affects the efficiency of
pseudouridylation without being involved in telomere maintenance. Employing this
mouse model, we unraveled the importance of Garl and rRNA modifications for
hematopoiesis in vivo, especially for the hematopoietic stem and progenitor cell
(HSPC) populations. Additionally, we showed that loss of Garl reduced specific
rRNA-Y sites and affected global protein synthesis rate with effects on cell
proliferation (Figure 10). Briefly, in mice with conditional Garl loss in the
hematopoietic system (Vav-Cre; Garl-cKO), we observed a reduced frequency of
multipotent progenitors (MPPs) but not of HSCs in the bone marrow. However,
when challenged in transplantation experiments, these Gar/-KO HSCs showed
reduced reconstitution capacity, indicating a key role of rRNA-Y for the
functionality and self-renewal of HSC:s. Interestingly, we noticed that Garl depleted
cells were outcompeted in vivo in Garl-cKO mice, especially in HSPC populations,
suggesting a potential disadvantage of cells with defects in rRNA modifications. We
then used an inducible Gar/-KO mouse model (Mx1-Cre) to analyze the response
to acute Garl depletion and observed a deleterious effect on hematopoiesis. Garl
loss determined a drastic reduction of white blood cells and platelets in the
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peripheral blood, a general reduction of bone marrow cellularity as well as an almost
complete loss of the c-Kit+ compartment in the bone marrow. These results
indicated that Garl function is key for maintenance of the hematopoietic system
homeostasis. Ultimately, we employed Garl/-KO mouse embryonic fibroblasts
(MEFs) to assess the molecular consequences of Garl loss on ribosome and
translation. Here, differently from what shown with defects of Dkcl, we
surprisingly detected a small reduction in the levels of both 18S and 28S rRNA
levels and lower total protein synthesis. Using ¥-seq, we also determined the
reduction of specific TRNA-Y sites in Gar/-KO MEFs, indicating that some
modifications might be more sensitive than others to Garl depletion. Moreover, we
observed that loss of Garl and rRNA-Y affected the phenotype of the cells, which
had defects in cell cycle and proliferation rate. In sum, the results of Paper II
highlight the importance of the rRNA modifying machinery for hematopoiesis and
specifically for the HSC and HSPC populations.

Paper 111

Although several orphan snoRNAs have been implicated in human syndromes and
cancer with non-canonical functions (Chu et al., 2012; Kishore et al., 2010; Kishore
and Stamm, 2006; Siprashvili et al., 2016; Valleron et al., 2012), the biological role
of these small RN As remains mostly unknown. Further inspired by the evidence that
some orphan snoRNAs have a tissue specific expression (Jorjani et al., 2016), we
hypothesized they might possess specialized roles in different cell types and during
cell fate determination.

In Paper III we delineated a new function for the orphan snoRNA SNORD123 in
rRNA 2°0OMe during embryonic development. We showed that SNORDI123 and
Um2044 are critical for accurate hESCs differentiation and, functionally, affect
specific ribosomal properties (Figure 11). Briefly, we first identified SNORD123 as
one the most differentially expressed orphan snoRNAs among different cell types,
showing increasing expression from hESCs to differentiated cells. We then
uncovered the function of this orphan snoRNA as a canonical C/D box snoRNA by
confirming that it modifies a predicted 2°OMe site on rRNA, 28S U2044, previously
undetected. In line with the expression levels of SNORD123, we also showed that
the levels of Um2044 progressively increase during hESCs differentiation, with a
different distribution of the modification levels between the three germ layers.
Interestingly, Um2044 was always present at sub-stoichiometric levels in all the cell
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types tested, indicating the potential presence of heterogenous ribosomes within
these cells or within the populations. Next, by developing a SNORD123-KO hESC
line, we observed that while SNORD123 depletion had no effect on pluripotencys, it
instead caused profound defects during spontaneous differentiation with an increase
towards the endoderm lineage. These results indicate a novel role for a rRNA
2’0OMe in directing stem cell fate and lineage specification. Lastly, we sought to
determine the effect Um2044 loss on ribosome function and found no defects in
global protein synthesis or IRES-mediated translation. By analyzing the three-
dimensional structure surrounding U2044, our models indicated direct binding to
key amino acids of RPL3 involved in the regulation A-site accessibility.
Consistently with this observation, we showed that SNORDI123-KD fibroblasts
were resistant to the A-site specific translation inhibitor anisomycin and had reduced
—1 PRF, indicating that Um2044 may affect specific properties of the ribosome. In
conclusion, the work from Paper I illustrates a developmentally regulated rRNA
modification and creates a potential link between heterogeneously modified
ribosomes and specific ribosomal functions, which might impact on hESCs
differentiation and proper tissue specification.
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Figure 11: Graphical abstract of Paper II1.
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Paper IV

The work of Paper IV investigates the mechanism by which individual SFs are
hijacked to steer alternative splicing in cancer cells. Findings that splicing defects
in cancer can occur also in the absence on SF mutations (Danan-Gotthold et al.,
2015; Dvinge and Bradley, 2015; Simon et al., 2014), suggested that dysregulation
of SF levels might be achieved also through alternative methods, such as copy
number variation or expression regulation via transcription or translation.
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Figure 12: Graphical abstract of Paper IV. Figure from Ciesla et al., 2021.

In Paper IV we uncovered a translation regulatory program that governs the levels
of specific SFs during oncogenic stress. Specifically, levels of the core factor SF3A3
affect splicing of mitochondrial related genes, which impact on metabolism and
stem-cell properties of MYC-driven breast cancer and are fundamental for its
tumorigenesis in vivo (Figure 12). Briefly, we first uncovered a network of splicing
factors which are translationally regulated in response to the major oncogenes
MYC, RAS and AKT, of which SF3A3 was one of the few regulated by all three
oncogenes. We determined that translation regulation of SF3A3 in response to MYC
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occurs in a cap-dependent manner via elF3D and the binding to a stem loop structure
(SL3) in the 5° UTR of the SF3A3 mRNA. Hampering SF3A3 up-regulation in the
context of MYC hyperactivation caused several alternative splicing changes with
enrichment for mRNAs related to mitochondria and apoptosis. A notable example
is the gene DRP1, a central regulator of mitochondrial fission/fusion process (Kalia
et al., 2018). These changes in splicing led to defects in mitochondrial biogenesis
and respiration, showing the importance of SF3A3 for the establishment of the
metabolic program during MYC transformation. Interestingly, the alternative
splicing and transcriptional changes of SF3A3-KD cells were associated to breast
cancer gene signatures, suggesting a potential connection between SF3A3 and
MY C-driven breast cancer. Indeed, we showed that low levels of SF3A3 determined
a boost of the tumorigenic potential of breast cancer cell lines in vivo. This was
consistent with the observation of a switch to a more stem cell-like cancer phenotype
that promotes tumor initiation. Lastly, SF3A3 gene signature was able to stratify
triple negative breast cancer patients depending on their clinical outcome in
aggressive breast cancer, having increased late relapse risk correlating with lower
SF3A3 gene signature and stemness properties. In sum, findings from Paper IV
reveal a connection between the translation and splicing programs during oncogenic
stress and in cancer, which is key to maintain accurate levels of metabolic genes and
sustain MY C-driven tumorigenesis.
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Discussion and future perspectives

In this thesis I worked on post-transcriptional mechanisms of gene expression
control focusing on two main systems: splicing and translation. I investigated how
dynamic changes in snRNA modifications and crosstalk between the translation and
splicing programs can be used as a mean for oncogenes to hijack the spliceosome
and promote cancer. Moreover, I studied the contribution of specific and global
differences in rRNA modification for the maintenance and differentiation of
embryonic stem cells and adult hematopoietic stem cells.

More specifically, I identified the role of the SCARNAI1S5-driven snRNA
modification, U2-¥39, in driving splicing events that help cells cope with p53
signaling and redox stress response, sustaining the survival and growth of cancer
cells (Paper I). This work represents one of the first reports illustrating the potential
contribution of scaRNAs, snRNA-Y and the consequently regulated splicing events
to tumorigenesis. It inserts within the recent literature showing the involvement of
U6-2’0OMe in maintenance of specific splicing programs related, in this case, to
developmental defects (Hasler et al., 2020; Wang et al., 2020) instead of cancer.
While we analyzed the effect of the loss of a single scaRNA on snRNA
modifications, these studies showed the involvement of an RNA-binding protein in
regulating multiple modifications simultaneously to determine alterations in
splicing and the consequent phenotype. We focused on the SCARNA15-guided
modification, but several other snoRNAs and scaRNAs were affected by MYC
over-expression and higher in transformed cells, for example SCARNAY, guiding
U2-2’OMe, and SNORA79, guiding U6-Y. Interestingly, it was shown that
modifications have a hierarchy of biogenesis (Deryusheva and Gall, 2018), so the
absence or presence of one modification can affect others. We, therefore, cannot
exclude the involvement of a modification network in the maintenance of a
cancerous splicing program, which might be more extended that what we show just
by the loss of U2-¥39. Further work will be necessary to explore this possibility.
Additionally, our study remains incomplete in explaining the exact molecular
effects that the presence or absence of U2-'¥39 has on the activity of the U2 snRNP
and the spliceosome. Although we performed an analysis of the features
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contributing to alternative exon usage, which gave us some hints on why certain
exons might be more reliant or sensitive to U2-¥'39, still an in-depth investigation
needs to be carried out. Furthermore, it would be interesting to expand the work and
perform a broad inspection of different cancers to evaluate SCARNA15 expression
and U2-¥39 status and test whether loss of SCARNA15 would affect the same
pathways of p53 regulation, ROS response management, and migration and,
consequently, affect the tumorigenic potential in vitro and in vivo.

Continuing with the objective of understanding the regulation of the spliceosome in
cancer, | moved my attention from snRNAs to SFs. I contributed to the identification
of a translational program downstream of the oncogene MY C that regulates the level
of specific SFs, including SF3A3. This work highlighted a new connection between
translation and splicing in cancer. Maintenance of proper SF3A3 levels is key to
ensure accurate splicing of genes important for mitochondria and metabolism and
for stem cell-like properties involved in MY C-driven breast cancer tumorigenesis
(Paper IV). Some mechanistic questions remain open, for instance, regarding the
direct connection between different levels of SF3A3 and the effects on the
spliceosome structure and activity. We showed that SF3A3 binding to the U2
snRNP upon MYC overexpression is not affected and we supplied evidence of
increased binding of specific SFs around the exons affected by SF3A3 loss;
however, the molecular effect of SF3A3 absence or presence on the spliceosome
still needs to be further explored. A possibility can be, indeed, the involvement of
accessory splicing factors, the binding of which might be increased or decreased by
the presence of SF3A3. Another option is that SF3A3 containing spliceosomes
might be necessary to maintain the efficiency of certain splicing events, maybe more
difficult to splice, in limiting conditions like oncogenic stress. Moreover, our initial
screening revealed a network of several SFs that are translationally regulated by
oncogenes and especially upon MYC overexpression. We focused our attention on
SF3A3, but it would be extremely interesting to dig deeper in the possibility of a
concerted regulation of multiple SFs and the crosstalk between their activity in
response to oncogenic stress.

The second part of the thesis was directed towards understanding the biological role
of rRNA modifications (Paper Il and III). Although the modifications have already
been shown to be involved in disease and cancer (Barbieri and Kouzarides, 2020;
Janin et al., 2020), their contribution to stem cell biology is mostly unknown. In
Paper 1II 1 highlighted the role of the previously uncharacterized and
developmentally regulated SNORD123-guided rRNA 2°OMe in embryonic stem
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cell differentiation. Unlike previous works only showing differences in rRNA
2’0OMe during development (Hebras et al., 2020; Ramachandran et al., 2020), in our
study we started to unravel the translation defects downstream of the affected rRNA
modification. Nevertheless, many questions remain unanswered in this regard. For
instance, one question concerns the mechanistic explanation of why reduction of
that specific modification determined those effects on translation. The analysis of
the position of the SNORD123-guided modification, 28S Um2044, gave us an idea
on the potentially implicated region of the ribosome, the A-site, but we did not
uncover whether or how exactly the modification affects the ribosome conformation
and, consequently, its function. Yeast mutants of the same amino acids interacting
with U2044 show phenotypes very similar to what we observed in SNORD123-KD
cells, including anisomycin resistance and defects in —1 PRF, but also different
affinity for eEF1A-aa-tRNA and eEF2, which we have not fully explored yet
(Mailliot et al., 2016; Meskauskas and Dinman, 2007; Meskauskas et al., 2005). The
hypothesis might be that, by changing the conformation of the nucleotide sugar, the
2’0OMe of U2044 could affect the interaction with the RPL3 amino acids. This
would produce conformational changes of RPL3 similar to the ones observed in
yeast mutants, thus affecting the A-site. All together, these observations point
towards potential defects during the elongation process. It would be interesting to
determine whether specific mRNAs with features that affect elongation (fox
example specific codons or combinations of codons) are differentially translated in
the presence or absence of Um2044. Additionally, defects in —1 PRF might indicate
difficulty in frame maintenance and decrease fidelity (Jack et al., 2011), which could
lead to mistranslation of certain mRNAs and even read-through events (Mohler and
Ibba, 2017; Zaher and Green, 2009). Elucidation of such specific translation defects
might help us explain the phenotype of SNORD123-KO ESCs. Future work will be
necessary to explore these hypotheses and clarify the mechanism.

Lastly, in Paper II, 1 unraveled that depletion of Garl, one of the proteins
responsible for rRNA pseudouridylation, has a strong impact on the homeostasis of
the hematopoietic system and on the reconstitution capacity of HSCs. We also
observed a reduced rate of global protein synthesis and a small reduction of rRNA
levels. It had already been shown that post-transcriptional regulation of gene
expression via control of ribosome biogenesis proteins is particularly important for
HSCs (Zaro et al., 2020) and that proper levels of protein synthesis are key for
maintenance and differentiation of HSCs (Guzzi et al., 2018; Signer et al., 2014;
Signer et al., 2016). In addition, a recent study revealed that the quantity of available
ribosomes is key in dictating HSCs commitment to specific lineages but, in this case,
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via translation regulation of specific mRNAs (Khajuria et al., 2018). My work
further strengthens this connection between translation regulation and HSPCs, by
adding rRNA pseudouridylation as an extra factor to maintain protein synthesis
balance. Though, the effects on ribosomes and translation of Gari-KO were
unexpectedly different from the ones of Dkcl mutants, where only specific defects
in IRES and fidelity were shown without global translation defects (Bellodi et al.,
2010a; Bellodi et al., 2010b; Jack et al., 2011; Yoon et al., 2006). We still need to
further evaluate whether these specific translation changes are also happening upon
loss of Garl. Indeed, there is only a very small overlap between the rRNA
modifications affected by Garl depletion and Dkcl mutants, which might explain
some of the differences. Since Garl loss affects the efficiency of pseudouridylation
(Duan et al., 2009), it is possible that only some sites, maybe structurally more
difficult to modify, are more sensitive to it and, thus, would affect and slow
ribosome biogenesis. Nevertheless, this hypothesis was not explored yet and we
could also not recapitulate, so far, why the loss of certain modifications determined
global defects of the ribosome. Future work will be necessary to clarify these
possibilities. Additionally, a few more points would be interesting to expand as
future perspectives of Paper II. Firstly, | have some preliminary data indicating a
correlation between Garl and Myc expression levels. Myc is known to affect
translation and ribosome biogenesis in cancer cells (Ruggero, 2009) as well as to
have an important role for HSCs self-renewal and differentiation with implications
for AML stem cells (Bahr et al., 2018; Wilson et al., 2004). Since our results indicate
an important function of Garl in the hematopoietic system and a potential
correlation to Myc, it would be interesting to investigate whether Garl and rRNA
pseudouridylation might play a role or represent a vulnerability in Myc-dependent
hematological malignancies, for instance lymphomas. Secondly, I have not
examined the effect of Garl loss on snRNA pseudouridylation, which could also be
affected and lead to defects in alternative splicing important for the hematopoietic
system. This aspect has long been overlooked also in previous studies focused on
understanding the contribution of pseudouridylation defects in disease, described in
the introduction of the thesis, and it would be attractive to expand on it.

Overall, with this thesis I tried to elucidate novel layers of post-transcriptional
regulation, controlling specific aspects of splicing and translation, to advance the
knowledge on their contribution in stem cell and cancer cell biology. This work
converges on several outstanding research questions in the field which I will expand
here below.

52



Specialized spliceosomes and ribosomes

The concept of heterogeneity of ribosomes and spliceosomes entails the presence of
differentially composed ribonucleoprotein complexes, each of them potentially with
a specialized function. Diversity of ribosome composition was already considered
since the discovery of the machinery in the 1950s, with the initial hypothesis of “one
gene-one ribosome-one protein”, strongly supported by Francis Crick (Crick, 1958).
This theory was quickly dismissed, though, and for many years the ribosome was
considered a static entity. As previously discussed in the introduction of this thesis,
in recent years the heterogeneity of ribosomes has risen to attention again with the
evidence of several components that might bring diversity into the ribosome
composition, including rRNA modifications (Gay et al., 2021; Genuth and Barna,
2018). The discovery of the developmentally regulated Um2044 guided by
SNORDI123 on 28S rRNA (Paper Ill) is contributing towards this effort by
illustrating the possibility of heterogenous ribosomes between stem cells and their
progeny. The same concept is likewise expanding to the spliceosome (Basak and
Query, 2014; Krogh et al., 2017; Wu et al., 2016; Wu et al., 2011), partially also
through the contribution of this thesis work (Paper I and IV). Nevertheless, the
existence of heterogenous and specialized ribosomes and spliceosomes remains
challenging to ascertain definitively. For instance, regarding RNA modifications,
the presence of sub-stoichiometric levels was observed (Andersen et al., 2004;
Erales et al., 2017; Krogh et al., 2016; Krogh et al., 2017; Taoka et al., 2016);
however, the complete modification status of each rRNA or snRNA molecule is not
known, making it difficult to assess how many combinations might be present and
in which conditions. Moreover, in most cases, the function of all these potentially
heterogenous ribosomes or spliceosomes has not been elucidated yet, as well as
whether there might be several specialized machineries within the same cell or
among cell populations.

One intriguing hypothesis could be represented by ‘situation-specific’ specialized
machineries, which would consist of differentially composed ribosomes or
spliceosomes limited to a certain condition, such as cancer, differentiation, or stress,
that help fulfil the gene expression program important for that process. A stimulus
able to determine such specialization might be, for example, the oncogene MYC,
which is already known to be involved in translation by regulating genes involved
in protein synthesis and ribosome biogenesis (Dang, 2013; Eilers and Eisenman,
2008; Ruggero, 2009), as well as in splicing by regulating some SFs (Das et al.,
2012; Hsu et al., 2015; Koh et al., 2015). With the work of this thesis, I expanded
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the knowledge in this direction by showing that SCARNAT1S and the consequent
snRNA modification, as well as the SF SF3A3 are regulated downstream MYC to
sustain tumorigenesis through specific splicing events. It would be extremely
interesting to study how MYC globally affects the composition of the ribosome and
spliceosome, both in terms of protein and RNA components, to create a ‘MYC
cancerous machinery’ to hijack the systems and pursue its function in cancer
development. Another context of heterogeneity explored in this thesis is stem cells
differentiation, where I identified differentially modified ribosomes in a specific
position dependent from SNORD123 (Paper III). This result is in line with recent
studies showing that some rRNA 2’OMe sites are regulated during zebrafish and
mouse development (Hebras et al., 2020; Ramachandran et al., 2020) and that
expression of some H/ACA snoRNA is dynamic during mouse ESC differentiation,
reporting also differences in one rRNA-Y (McCann et al., 2020). To expand on this
idea, it would be attractive to perform a global analysis of the modification status of
the ribosome during differentiation, even potentially upon specific differentiation
protocols, to assess whether there are specialized ribosomes that translate genes
important for the specification of that cell type. The same could be done, of course,
for the spliceosome and alternative splicing since the process has already been
shown to be important in differentiation and cell specification (Baralle and Giudice,
2017). These important research questions still face the reality of our limitations in
terms of available tools to analyze the ribosome and spliceosome differences
molecule by molecule and at single cell levels. In an ideal situation, it would be
possible to combine structural analysis including cryo-EM, with mass spectrometry,
snRNA and rRNA sequencing and RNA modification detection techniques, but this
is currently a far-fetched option. Moreover, improvement of the techniques to
determine the functional effects of these specialized machineries on translation and
splicing needs to be achieved. In the meantime, the effort is focused on unraveling
heterogeneity in specific situations and one element at the time, with the hope of
converging them together in the future.

Splicing as a therapeutic target for cancer

As I showed throughout this thesis, splicing is frequently altered in cancer, and this
has made it an intriguing therapeutic target to pursue (Lee and Abdel-Wahab, 2016;
Zhang et al., 2021). There are several therapeutic strategies currently under study
and a lot of them aim at a general inhibition of splicing, such as SF3B-targeting
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compounds and SR protein phosphorylation regulators. It seems like modulation of
splicing might be tolerated by normal cells, while certain types of cancers are more
susceptible to it. Into this category fall cancers with SF mutations, which are
heterozygous and mutually exclusive between SFs. This suggests the mutations
might most likely cause a gain of function and the cells rely only on the normal
allele to sustain regular splicing, hence the susceptibility to splicing modulation
(Lee and Abdel-Wahab, 2016). Another category of sensitive malignancies are
MY C-driven cancers, which show high dependency from splicing (Lee and Abdel-
Wahab, 2016), as illustrated also by the results of Paper I and IV. Still a lot is
unknown about the exact modulation levels to achieve, specificity, and therapeutic
windows when it comes to these therapies that act globally on the splicing process.

With the work of Paper IV, we highlighted the susceptibility of MY C-driven breast
cancer to SF3A3, which represents an interesting target to follow up since its
translation regulation is strictly related to MYC-dependent responsive elements.
RNA therapies such as RNA interference and antisense oligos (ASOs) have already
been explored to regulate gene expression via RNA cleavage and translation (Kole
et al., 2012; McClorey and Wood, 2015) and it could be intriguing to analyze their
potential use in regulating elF3-dependent translation of SF3A3 to affect cancer.
Moreover, ASOs and, specifically, splice-switching oligonucleotides (SSOs) have
been used to influence splicing of specific genes and as a potential treatment for
diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy
(SMA) (Lee and Abdel-Wahab, 2016; Zhang et al., 2021). The use of similar
strategies is in discussion for cancer and the specific splicing events we identified
downstream of SF3A3 or SCARNALIS in support of cancer cells (Paper [ and IV)
might represent future targets of interest. However, while in diseases like DMD or
SMA the event to target is only one, in cancer there would most likely be several
events affected simultaneously, which might make this strategy more complicated
to achieve. Alternatively, SSOs might be used to target a certain category of splicing
events affected by the alteration of the same spliceosomal component (Lee and
Abdel-Wahab, 2016), which can be represented by either one SF or one snRNA
modification. For this reason, more studies like the ones performed in this thesis
might be beneficial to determine specific splicing events to target in cancer. These
splicing events might not only be directly targeted by ASOs to affect protein
expression, but they might also help identifying unique epitopes introduced by
alternative splicing in cancer cells to be used as immunotherapy targets (Zhang et
al., 2021). Another potential future application of our and similar studies could be
to identify the novel vulnerabilities determined by the defects of a spliceosome
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component. For instance, dysregulation of certain spliceosomal elements and the
consequent ASEs might determine different sensitivity to existing drugs, as showed
by the higher sensitivity to stausporine of TNBC cells with down-regulation of
SF3A3 (Paper IV). Another example might be the possibility to have indications on
the relapse probability, in correlation to the expression levels of a SF (Paper IV). In
conclusion, the more knowledge we obtain on spliceosome defects and alternative
splicing patterns of specific cancers, the more therapeutic avenues may be
potentially available for the development of precise cancer treatment and this thesis
work is hopefully inserted into this long-term effort.
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Popular summary

The “central dogma” is one of the fundamental principles of molecular biology. It
describes the flow of the genetic information, which is encoded in the DNA, then
transcribed into a messenger RNA (mRNA) molecule, and finally translated into
proteins. Two key steps along this journey are splicing and translation, which are
the focus of my thesis work. Splicing helps transform a precursor of the mRNA
(pre-mRNA) into its mature form by cutting away certain parts of the sequence and
patching together the ones that compose the mature mRNA. Most mRNAs are
subjected to alternative splicing, a process that creates different mature mRNAs
from the same pre-mRNA by patching together alternative combinations of
sequences, thus increasing the number of possible final products. The mature
mRNA is then exported from the cell nucleus into the cytoplasm, where it is
translated. Translation converts the information present within the mRNA sequence
into proteins, the ultimate building blocks of the cell. Splicing and translation are
complicated processes run by dynamic macromolecular complexes, the spliceosome
and the ribosome, composed of both RNA and proteins. Both splicing and
translation are finely executed through several regulatory steps, some of which are
still not fully known.

It is fascinating to notice that only a small part of the RNAs that are transcribed from
DNA are mRNAs carrying the information for the creation of proteins. The majority
of the RNAs in the cell do not actually code for proteins and are therefore called
non-coding RNAs (ncRNAs). These ncRNAs have many different regulatory
functions and are involved in almost all cellular processes, including splicing and
translation. Indeed, the very molecules that compose the RNA portion of the
spliceosome and the ribosome are ncRNAs, known as small nuclear RNA (snRNA)
and ribosomal RNA (rRNA) respectively, and they play a crucial role both
structurally and functionally in the macromolecular complexes. The snRNA and
rRNA are vastly decorated with two chemical modifications, pseudouridine (V) and
2’-O-methylation (2°0OMe). These modifications are guided by yet another class of
ncRNAs, composed of small nucleolar RNAs (snoRNAs) and small Cajal body-
specific RNAs (scaRNAs). The ¥ and 2’0OMe modifications are important for the
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structure, the biogenesis, and the function on snRNA and rRNA and have recently
emerged to be less static than previously thought. Nevertheless, the biological role
of these dynamic modifications, especially in cancer and development, remains
largely unknown.

The aim of my thesis is to explore new regulatory mechanisms of splicing and
translation, especially involving RNA modification modulation and dysregulation,
to better understand cancer development and stem cells maintenance and
differentiation.

Briefly, in Paper I and [V | focused on the regulation of the spliceosome in cancer.
I found that the loss of a single snRNA-Y affects specific splicing events important
for stress response and survival of cancer cells (Paper I). Furthermore, I observed
that maintaining specific levels of one of the protein components of the spliceosome
is essential for accurate splicing of genes involved in cell metabolism and for the
tumorigenic potential of breast cancer cells (Paper IV). In Paper II 1 analyzed the
impact of the dysregulation of rRNA-Y on the hematopoietic system, which is the
system involved in blood cell production. My results show that loss of these
modifications in mice is detrimental for hematopoietic stem cells (HSCs), which
display a reduced capacity of restoring the whole hematopoietic system. In Paper
11 1 discovered a previously uncharacterized rRNA-2’OMe, which I found to be
present in different amounts between the ribosomes of human embryonic stem cells
(hESCs) and the cells differentiated from those hESCs. The loss of this single
modification affects specific properties of the ribosome and alters hESCs
differentiation.

In conclusion, with the work of my thesis I help to shed some light on novel layers
of gene expression regulation, which have been mostly overlooked so far. My goal
with this doctoral work has been to extend the knowledge on cancer and stem cell
biology, and to contribute to pave the way for future clinical applications.
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Riassunto

Il “dogma centrale” ¢ uno dei principi fondamentali della biologia molecolare e
descrive il flusso che porta I’informazione genetica contenuta nel DNA ad essere
trascritta in molecole di RNA messaggero (mRNA) e, infine, tradotta in proteine.
Due passaggi fondamentali durante questo viaggio dell’informazione genetica sono
lo splicing e la traduzione, che sono il fulcro del lavoro della mia tesi. Lo splicing
aiuta a trasformare il precursore del’'mRNA (pre-mRNA) nella sua forma matura
attraverso il taglio di determinate porzioni della sequenza ribonucleica, e la
successiva unione delle rimanenti porzioni a formare ’'mRNA maturo. La maggior
parte degli mRNA sono sottoposti allo splicing alternativo, un processo che
permettere la creazione di mRNA maturi diversi a partire dallo stesso pre-mRNA
attraverso 1’unione di combinazioni alternative di sequenze, aumentando in questo
modo il numero di prodotti finali possibili. L’mRNA maturo viene poi esportato dal
nucleo cellulare al citoplasma, dove viene tradotto. La traduzione permette di
convertire in proteine, che sono i mattoni che costituiscono le cellule,
I’informazione presente nella sequenza del’mRNA. Lo splicing e la traduzione
sono processi complicati che vengono eseguiti da complessi macromolecolari
dinamici, lo spliceosoma e il ribosoma, che sono composti sia da RNA che proteine.
Sia lo splicing che la traduzione sono finemente eseguiti attraverso molteplici
passaggi di regolazione, alcuni dei quali sono ancora sconosciuti.

E affascinante notare come solo una piccola parte degli RNA che vengono trascritti
dal DNA siano degli mRNA contenenti I’informazione per creare le proteine. La
maggioranza degli RNA presenti nelle cellule, infatti, non codificano per proteine e
vengono per questo chiamati RNA non-codificanti (ncRNA). Questi ncRNA hanno
svariate funzioni di regolazione e sono coinvolti in quasi tutti i processi cellulari,
inclusi lo splicing e la traduzione. Le stesse molecole di RNA che costituiscono lo
spliceosoma e il ribosoma sono dei ncRNA, chiamati rispettivamente piccolo RNA
nucleare (snRNA) e RNA ribosomale (rRNA), e svolgono un ruolo importante sia
per la struttura che per la funzione di questi complessi macromolecolari. Gli snRNA
e TRNA sono ampiamente decorati da due modificazioni chimiche, la pseudouridina
(¥) la 2’-O-metilazione (2°0OMe). Queste modificazioni sono guidate da una

59



ulteriore classe di ncRNA, composta dai piccoli RNA nucleolari (snoRNA) e dai
piccoli RNA specifici dei Cajal bodies (scaRNA). Le modificazioni ¥ e 2°0OMe
sono importanti per la struttura, la biogenesi e la funzione degli snRNA e rRNA ed
¢ recentemente emerso che siano meno statiche di quanto si pensasse in precedenza.
Nonostante cio, il ruolo biologico svolto dai cambiamenti dinamici di queste
modificazioni rimane largamente sconosciuto, specialmente in cancro e durante lo
sviluppo.

Lo scopo della mia tesi ¢ di esplorare nuovi meccanismi di regolazione dello
splicing e della traduzione, specialmente riguardanti la modulazione e la
deregolazione delle modificazioni dell’RNA, per capire meglio lo sviluppo del
cancro e il mantenimento e il differenziamento delle cellule staminali.

Negli Articoli I e IV mi sono focalizzata sulla regolazione dello spliceosoma nel
cancro. Ho scoperto che la perdita di una singola modificazione ‘¥ del snRNA altera
specifici eventi di splicing importanti per la risposta allo stress e la sopravvivenza
delle cellule tumorali (Articolo I). Inoltre, ho osservato che il mantenimento di
specifici livelli di una delle proteine che sono parte dello spliceosoma ¢ essenziale
per I’accurato svolgimento dello splicing di geni coinvolti nel metabolismo cellulare
e nel potenziale tumorigenico delle cellule di cancro alla mammella (4rticolo IV).
Nel Articolo II ho analizzato I’impatto della deregolazione delle modificazioni ¥
del rRNA sul sistema emopoietico, che ¢ il sistema coinvolto nella produzione delle
cellule del sangue. I miei risultati mostrano che la perdita di tali modificazioni nei
topi ¢ dannosa per le cellule staminali emopoietiche, che di conseguenza
manifestano una ridotta capacita di ricreare 1’intero sistema emopoietico. Nel
Articolo III ho scoperto una modificazione 2’0OMe del rRNA che non era stata
precedentemente caratterizzata e che ho trovato essere presente a livelli diversi nei
ribosomi delle cellule staminali embrionali umane (hESC) rispetto a quelli delle
cellule differenziate derivate da quelle stesse hESC. La perdita di tale singola
modificazione altera specifiche proprieta dei ribosomi e il differenziamento delle
hESC.

In conclusione, con il lavoro della mia tesi ho aiutato a chiarire nuovi livelli della
regolazione dell’espressione genica, che erano stati finora sottovalutati. Lo scopo
del lavoro di questo dottorato ¢ stato quello di accrescere la conoscenza della
biologia delle cellule tumorali e staminali e contribuire ad aprire la strada verso
future applicazioni cliniche.
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Popularvetenskaplig sammanfattning

Det “centrala dogmat” &r en av de mest fundamentala principerna inom
molekylarbiologi. Det beskriver hur den lagrade, genetiska informationen som finns
kodat i DNA omsitts till funktion genom att forst transkriberas till ett “messenger
RNA” (mRNA) som sedan kodar for ett protein. ”Splicing” och “translation” &r tva
kritiska skeenden for att reglera detta flode frdn DNA till protein, och utgdr fokuset
for min avhandling. Splicing omvandlar ett forstadie (“pre-mRNA”) till mRNA
genom att trimma ned vissa delar av RNA-sekvensen och sedan sammanfoga de
kvarvarande. Det allra flesta mRNA kan splicas och séttas ihop pa olika sétt och
dédrmed okar komplexiteten av mgjliga slutgiltiga protein frén ett och samma
mRNA, en process som kallas “alternativ splicing”. For att sedan bilda protein
forflyttas splic:at mRNA fran cellkdrnan ut i cytoplasman, dér det translateras.
Translation omvandlar informationen som finns i mRNA-sekvensen till ett protein,
som &r den ultimata byggnadsstenen for cellen. Splicing och translation &r
komplicerade processer som regleras av dynamiska, makromolekyldra
sammansittningar (”spliceosomen” och “ribosomen”, for splicing respektive
translation), och dr sammanséttningar av bdde RNA och protein. De utfor sina
respektive biologiska funktioner genom ett flertal regulatoriska steg, varav somliga
inte &r fullstindigt forstadda inom forskningen.

Eftersom protein ér den ultimata byggstenen i cellen sa 4r det fascinerande att endast
en liten del av allt RNA som produceras faktiskt &r mRNA och kodar for ett protein.
I stillet s& utgors majoriteten utav en subgrupp som kallas icke-kodande RNA”
(non-coding RNA, ncRNA), som alltsa inte kodar for protein alls. I stillet har dessa
ncRNA manga olika regulatoriska funktioner och dr involverade i néstan alla
celluléra processer, inklusive splicing och translation. Faktiskt sa &r det ncRNA som
utgdr kritiska delar av spliceosomen och ribosomen. De kallas ’small nuclear RNA”
(snRNA) och “ribosomalt RNA” (rRNA). Dessa RNA modifieras med hjilp av tva
kemiska foreningar: pseudouridine (¥) och 2’-O-metylering (2°OMe).
Modifieringarna faststdlls med hjélp av ytterliggare en typ av ncRNA som kallas
”small nucleolar RNA” (snoRNA) samt “small Cajal body-specific RNA”
(scaRNA). ¥ och 2’0OME modifieringarna &r viktiga for strukturen, utvecklingen,
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och funktionen hos snRNA och rRNA och har nyligen fétt uppmérksamhet da
studier har visat att de dr dynamiskt reglerade i stéllet for statiskt uttryckta som man
tidigare trott. Men vad som é&r den biologiska rollen for deras dynamiska reglering,
sarskilt for cancer och embryonal utveckling, dr fortfarande i stort sett oként.

Malet med min avhandling &r att utforska nya regulatoriska mekanismer for splicing
och translation, med ett fokus pd RNA-modifieringar, for att battre forsta
cancerutveckling och stamcellers normala biologi.

Sammanfattningsvis, i publikation I och IV fokuserar vi pd regleringen av
spliceosomen 1 cancer. Jag identifierade att en felaktig ¥ modifiering ensamt
paverkar splicing pé ett sitt som &r viktigt for stressrespons och 6verlevnaden for
cancercellerna (publikation I). Vidare sa observerade jag att vidbehallandet av en
specifik proteinkomponent i spliceosomen ar essentiellt for riktig splicing av gener
som &r involverade i cellens metabolism och tumdrbildning fran brdstcancerceller
(publikation IV). 1 publikation II analyserade jag konsekvensen av felaktig W-rRNA
for det “hematopoietiska systemet”, alltsa det som bildar allt kroppens blod. Mina
resultat pavisar en nedsittning i musens hematopoietiska stamcellerna (HSC), som
har en nedsatt kapacitet for att producera mogna blodceller. 1 publikation III
identifierade jag en tidigare okdnd rRNA-2’OMe modifikation, vilket uttrycks olika
mycket i den humana embryonala stamcellen (hESC) och de celler som den bildar.
Genetisk defekt i den hir modifikationen péverkar specifika egenskaper hos
ribosomen och resulterar i felaktig mognadspotential hos hESC.

Sammanfattningsvis s& har min avhandling hjélpt att identifiera nya lager och
genreglering vars viktiga roll tidigare varit okidnd. Mitt mél med avhandlingen har
varit att utdka vir kunskap om cancers- och stamcellers biologi, som skulle kunna
leda till terapeutisk tillimpning.
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