

Fibre-based 3D Implants from Regenerated Silk Fibroin for Intervertebral Disc Regeneration

Andreas S. Croft¹, Michael Wöltje², Katharina A. C. Oswald³, Benjamin Gantenbein^{1,3}

UNIVERSITÄT BERN

¹ Bone & Joint Program, Tissue Engineering for Orthopaedic & Mechano-Biology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland. ²Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Dresden, Germany ²Department of Orthopaedic Surgery & Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

te de la fe fe te de la fe fe

and an an

Contraction of the for the for the for

INTRODUCTION

Intervertebral discs (IVD) allow for six Degree-of-Freedom motion. However, they only have a very limited ability to self-repair in the event of degeneration or trauma.^{1,2,3}

A promising approach to solve this problem could be the application of silk fibroin derived from the silk worm *Bombyx mori*.
 In the past, numerous studies have shown the remarkable

biocompatibility and bio-mechanical properties of silk.4,5

STUDY AIM

- Study the cyto-compatible properties of silk fibroin on human mesenchymal stromal cells with or without the addition of exogenously added growth factors.
- Investigate whether a 3D structure made of regenerated silk fibroin can potentially regenerate degenerated IVDs and ideally could be used for transplantation in patients suffering from damaged or degenerated IVDs.

^[2]Zhao CQ et al. (2007) Ageing Res Rev.
^[3]Hassett G et al. (2003) Arthritis Rheum.
^[4]Altman GH et al. (2003) Biomaterials
^[5]MacIntosh AC et al. (2008) Tissue Eng Regen Med.

FNSNF

Contact: andreas.croft@dbmr.unibe.ch

We want to thank our lab technician Andrea Oberli for technical support.

German Research Foundation - 437213841).