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I 

Abstract 

Throughout the most recent part of geological history, glaciers repeatedly built up 

in the Alps and advanced into the mountain foreland, episodically covering the 

majority of Switzerland and neighbouring regions with ice. This had severe 

geomorphic impacts that include the subglacial erosion of overdeepenings. These 

closed basins are not only a potential source of geohazards, but also contain valuable 

resources and archives of past environments, and therefore deserve our closer 

attention. However, our knowledge of i) the erosional mechanisms and the 

subglacial conditions that lead to the formation of overdeepenings, and ii) of the 

number, the timing, and the extent of Alpine glaciations, is still very limited.  

The present thesis is centred around four scientific boreholes in the Lower Aare 

Valley in northern Switzerland and addresses the above-mentioned uncertainties. 

The study area hosts the overdeepened Gebenstorf-Stilli Trough, whose subsurface 

morphology is the first major focus. It is constrained by borehole and geophysical 

data that together reveal a complex trough shape controlled by the particular local 

bedrock architecture comprising rocks of varying subglacial erodibility. The results 

further highlight the important role of basal water in overdeepening erosion, which 

is further corroborated in a second case study. There, surficial brecciation of the 

walls of a paleokarst network in limestone underlying the overdeepening is 

presented. Following detailed macro- and microscopic analysis, it is interpreted as 

the result of subglacial hydrofracturing, and thus illustrates the extreme water 

pressures below the glacier ice. 

Finally, the focus is shifted towards the sedimentary archives of the Gebenstorf-Stilli 

Trough and its surrounding. Based on a multi-method sedimentological approach, 

the diverse Quaternary deposits are characterised and their depositional history is 

reconstructed. Several phases of glacial and glaciofluvial reactivation of the major 

drainage pathways as well as contributions from confluent glaciers are identified. 

An integration of luminescence data indicates that overdeepening erosion in the 

Lower Aare Valley dates back to MIS 10 or earlier, and that the local sedimentary 

record spans large parts of the Middle and Late Pleistocene.  
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I. Introduction 

1. Background and Motivation 

Tiefe Wasser sind nicht still. 

‘Deep waters don’t run silent.’ 

- Rammstein: Rosenrot (2005) 

1.1. What is an overdeepening? 

Strongly fluctuating climate conditions and the repeated build-up and expansion of 

ice masses at the earth’s poles and in mountain ranges characterised the most recent 

part of geological history (Ehlers and Gibbard, 2007; Lisiecki and Raymo, 2005). 

Like the glaciations themselves, their recognition is only relatively young: The first 

identifications of ice-rafted or ice-derived sediment far from present-day glaciers 

were made by 18th century scholars, and it took another ~100 years for such ideas 

to become broadly accepted (Krüger, 2013). With increasing prevalence of the ‘ice 

age’ concept in the scientific world however, the erosive potential of glacier systems 

– ice and melt water – was soon perceived as well (e.g. Davis, 1900; Johnson, 1909; 

Ramsay, 1878). The term ‘overdeepening’ is attributed to Albrecht Penck (Cook and 

Swift, 2012; Evans, 2008), and in the work that should become the fundament of 

Alpine Quaternary geology, Penck and Brückner (1909) already framed the ‘rules of 

overdeepening’. However, the term was only roughly defined and used 

synonymously with deep subglacial erosion, focused in the major Alpine ‘troughs’.  

Today, overdeepenings are generally defined as subglacially eroded closed basins, 

i.e. they are characterised by an adverse slope at their distal end (Alley et al., 2003b; 

Cook and Swift, 2012; Hooke, 1989). Occurring in all presently and formerly 

glaciated regions of the world (Cook and Swift, 2012, and references therein), 

overdeepened basins are common subglacial landforms. In Switzerland, for 

example, 5-10 % of the surface area of the Alpine foreland are underlain by 

Pleistocene overdeepenings (e.g. Fig. I-1; Dürst Stucki and Schlunegger, 2013).   
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Besides such young basins, the geological record further includes spectacular 

examples from the glaciations of the Permo-Carboniferous (Visser, 1987), the 

Ordovician (Clerc et al., 2013), and potentially the Ediacaran (Li et al., 2020). Recent 

studies finally suggested the existence of thousands of yet hidden subglacial basins 

below the ice masses of Antarctica and Greenland (Patton et al., 2016), but also those 

of the Andes (Colonia et al., 2017), the Himalayas (Furian et al., 2021; Linsbauer et 

al., 2016), and the European Alps (Haeberli et al., 2016; Magnin et al., 2020). 

A distinction should be made between the sometimes synonymously applied terms 

overdeepening and tunnel valley. While ‘overdeepening’ is a morphologically 

descriptive term that refers to landforms of a broader environmental setting, tunnel 

valleys are landforms that are formed by a specific erosion process, namely through 

subglacial meltwater erosion at ice sheet margins (Cofaigh, 1996; Kehew et al., 2012; 

Lonergan et al., 2006; Van der Vegt et al., 2012). As a result, not all overdeepenings 

are necessarily tunnel valleys, whereas most tunnel valleys are, or contain, 

overdeepened basins. 

 

Fig. I-1: Longitudinal section depicting the pre-Quaternary bedrock topography along the 

Reuss/Lower Aare Valley between Lucerne and Würenlingen (Loepfe et al., in prep.; Pietsch 

and Jordan, 2014). Large parts of the valley are underlain by overdeepenings (hatched red).   
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Major overdeepenings are over 100 km long and well over 1 km deep, so that the 

bases of some intra-mountain overdeepenings lie below sea level (Dürst Stucki and 

Schlunegger, 2013; Eyles et al., 1990; Mullins and Hinchey, 1989). Consequently, 

several of the world’s largest contemporaneous lakes are entirely or partially hosted 

by overdeepened basins, including the Great Lakes of North America (Larson and 

Schaetzl, 2001) and Lake Ladoga in Russia (Subetto et al., 1998), as well as the 

‘Zungenbeckenseen’ of the Alpine foreland (e.g. Lake Constance, Lake Geneva, Lake 

Garda; Penck and Brückner, 1909; Preusser et al., 2010).  

The scientific interest in overdeepenings is growing (Fig. I-2), and this chapter gives 

an overview over the socio-economic and academic motivations to study these 

basins as well as the processes of their formation. It further introduces the study 

area and the major issues addressed by the present thesis and the overarching 

research project. 

 

Fig. I-2: Numbers of search results (journal articles and book chapters) for the terms 

‘overdeepening’ and, for reference, ‘glaciation’ at ScienceDirect.com for the past 25 years 

(number of results in 1998 = 100 %) illustrate the growing scientific interest in the topic.  
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1.2. Why should we care? 

1.2.1. The present-day state of the cryosphere 

We are living in a time of climate change, with ever new temperature records 

surpassing one another on a regular basis (Cheng et al., 2021; Readfern, 2020; 

Voosen, 2021; Zhao et al., 2020). Consequently, both the Earth’s polar ice masses 

(Paolo et al., 2015; Thomas et al., 2006) as well as its mountain glaciers are decaying 

at increasing rates (Davies and Glasser, 2012; Maurer et al., 2019). This affects also 

the European Alps: Recent studies estimate that Switzerland might be largely 

glacier-free by the end of the century (Huss, 2012; Sommer et al., 2020), and 

Germany even by the end of the decade (Hagg et al., 2008; Mayer et al., 2021). Thus 

one might ask, why should we care about glacial geology in general, and subglacial 

overdeepenings in specific? 

1.2.2. Past overdeepenings 

After abandonment by the occupying glacier, overdeepened basins act as water and 

sediment sinks. Sediment input rates under continued glacial influence are often 

very large, and as a result, many overdeepenings are quickly infilled and their lakes 

silted up entirely (De Winter et al., 2012; Owen et al., 2003; see also chapter IV). In 

this stage, overdeepenings need to be considered, for example, in construction and 

tunnelling works, as the loose sediment infill may be very different in strength and 

consistency from the host rock (Henningsen, 2002). Quickly deposited sediment 

with a high water content is especially prone to destabilisation by internal 

deformation and fluidisation (Mills, 1983; Pisarska-Jamrozy and Weckwerth, 2013). 

This is exemplified by a tragic incident during the attempted construction of a first 

Lötschberg Tunnel in the Bernese Oberland in 1908, when blasting their way into 

an infilled overdeepening cost the lives of 24 workers, as the liquefied valley infill 

flooded the tunnel (Waltham, 2008). Loose sediment infills of overdeepened basins 

also react very differently from solid rock to ground motion during an earthquake. 

Johnson and Silva (1981), for example, have observed surface accelerations 

amplified by multiples in unconsolidated sediment as opposed to bedrock (cf. Bauer 

et al., 2001; Faccioli et al., 2002; Pratt et al., 2017), which need to be accounted for 

in housing and infrastructure projects. 
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Overdeepenings and, generally, (peri-)glacial deposits are not only potential sources 

of hazard, but also of valuable resources. Overdeepened basin infills frequently 

contain decametres of sand and gravel that are in high demand as raw materials 

(Bisht, 2021; Gavriletea, 2017). In light of the ongoing construction boom and the 

depletion of suitable deposits, this demand will likely continue to increase, which 

offers economic opportunities to formerly glaciated countries and regions 

(Bendixen et al., 2019; Sverdrup et al., 2017). Furthermore, the permeable and 

porous sedimentary infills are well suited host rocks for other valuable resources. 

An example are hydrocarbon deposits – oil and gas – in Paleozoic tunnel valleys of 

northern Africa (Hirst et al., 2002; Huuse et al., 2012; Soua, 2013). Pleistocene 

overdeepenings in contrast frequently host relevant groundwater resources (Huuse 

et al., 2003, and references therein; Seiler, 1990; Sharpe et al., 2003). New sources 

of clean drinking water will become increasingly important in the future, as shallow 

groundwater is frequently impaired by overexploitation and pollution, while global 

demand steadily increases (Petersen et al., 2016; UNESCO, 2021). 

Their role as sediment traps makes overdeepened basins finally promising targets 

of scientific exploration. The Pleistocene terrestrial record, particularly in the 

vicinity of mountain ranges, is frequently characterised by discontinuous deposition 

both in space and time, alternating with phases of intensive erosion. As a 

consequence, the preservation potential of the glacial, proglacial, and periglacial 

sediments is generally low, and the geological record fragmentary (Hughes et al., 

2019; Merritt et al., 2019). Thus, the Pleistocene environmental histories, especially 

predating the last glacial cycle, of many formerly glaciated regions of the world can 

only be very poorly constrained (e.g. Abramowski et al., 2006; Astakhov, 2013; 

Calvet et al., 2011; Clague and Ward, 2011; Gibbard and Clark, 2011; Harrison, 

2004). Trapped below the fluvial base level, deposits in overdeepenings have a 

much higher preservation potential than coeval deposits in non-overdeepened 

settings (Cook and Swift, 2012; Livingstone et al., 2012). It is not uncommon that the 

infills of overdeepened basins comprise sediments delivered in several glacial 

cycles, separated from each other by hiati representing phases of partial re-

excavation (Astakhov, 2013; Buechi et al., 2017b; Burschil et al., 2018; Nitsche et al., 

2001; Preusser et al., 2010; Schlüchter, 1989).  
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Overdeepenings are therefore unique geological archives, and the geophysical 

exploration, drilling and analysis of the basins and their infill can be immensely 

helpful to refine regional environmental histories. The connection of these histories 

to paleoclimate records is the fundament of understanding and predicting landscape 

responses to current and future climate change (e.g. Gardner et al., 2006; Schildgen 

et al., 2016). 

1.2.3. Current overdeepenings  

As closed basins, overdeepenings are capable of holding subglacial lakes, which have 

been known to drain in intense and potentially hazardous outburst floods referred 

to as jökulhlaups (Björnsson, 1992; Carrivick, 2011; Maizels, 1997). With ongoing 

ice retreat, overdeepened subglacial lakes eventually develop into proglacial lakes, 

which does not make them less problematic, as their environment is often a dynamic 

and unstable one. As glacier ice retreats and disintegrates, oversteepened rock walls 

and sediment bodies lose mechanical support (Kos et al., 2016; Mancini and Lane, 

2020), and may be further weakened by simultaneous permafrost thaw (Gruber and 

Haeberli, 2007; Krautblatter et al., 2013). Resulting mass wasting events can be 

disastrous if they occur into large proglacial lakes and trigger glacio-lacustrine 

tsunamis (Carrivick and Tweed, 2013; Haeberli et al., 2017). Currently, the number 

of proglacial lakes is growing worldwide (Mölg et al., 2021; Shugar et al., 2020), and 

with globally progressing glacier retreat, this trend is likely to continue and to 

increase the flood hazard for people in mountain regions (Colonia et al., 2017; 

Furian et al., 2021; Haeberli et al., 2017; Veh et al., 2020; Wilhelm et al., 2012; Zheng 

et al., 2021). 

However, overdeepenings that are still in the lake phase can also provide valuable 

drinking water. This is especially relevant for human settlements that at present rely 

largely on glacial and/or snow-melt water which might become scarce as ice retreat 

continues (Barnett et al., 2005; Cyranoski, 2005). Farinotti et al. (2019) estimated 

that newly formed glacial lakes should be sufficient to store several hundred km3 of 

water by 2050, roughly equivalent to half of the annual runoff from glaciers 

worldwide.   
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Glacial lake reservoirs can further be used for energy production, with a potential 

annual yield on the order of 1015 Wh globally (Farinotti et al., 2019), equalling to ~¼ 

of the current hydropower production, and ~4 % of the total electricity 

consumption (International Energy Agency, 2020). A sustainable use of this power 

resource can in some areas be a vital part of the transition to renewable energies. 

1.2.4. Future overdeepenings 

Finally, the topic of overdeepening erosion is especially relevant in the context of 

radioactive waste disposal. Due to the long half-lives of some relevant radionuclides, 

future disposal sites for (high-level) radioactive waste must be constructed in a way 

that guarantees stability for time scales of up to 1 Myr (Birkholzer et al., 2012; Fyfe, 

1999; Rao, 2001). For now, underground geological repositories are the best 

solution we can offer (Choppin and Wong, 1996; Nagra, 2014; Rempe, 2007). 

However, while the earth’s glaciers are currently on the retreat, predictions of the 

climate in the more distant future are difficult to make, and new glaciations whose 

overdeepening activity could endanger such repositories are not unlikely to occur 

(Fischer et al., 2015; Talbot, 1999). By forward modelling of both natural as well as 

anthropogenic factors, several studies suggest that extensive global glaciations will 

take place within the next 1 Myr (Archer and Ganopolski, 2005; Texier et al., 2003), 

possibly initiating less than 100 kyr from now (Berger and Loutre, 2002; Crucifix 

and Rougier, 2009; Pimenoff et al., 2011). For the planning and construction of 

permanently safe repositories, the understanding and consideration of the process 

of overdeepening erosion is thus vital. 

Summing up, a profound knowledge about glacial geology in general, and subglacial 

overdeepenings in specific, are needed in order to mitigate potential risks and in 

order to use potential resources sustainably and efficiently (Fig. I-3). Besides their 

concrete socio-economic implications, overdeepenings can be archives of utmost 

scientific value, and help with solving some of the most pressing ecological issues of 

our time, provided that we read their records carefully. Herein lies the motivation 

of this thesis. It targets two major areas of uncertainty: i) the still highly disputed 

question, how and through which processes subglacial overdeepening erosion 

occurs, and ii) the unsatisfactory vagueness of the Pleistocene glaciation history of 

the Alps and their foreland.  
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Fig. I-3: Why we should care: hazards and resources associated with overdeepened basins. 

1.3. Process-mechanic uncertainties 

Despite the abundance of overdeepenings, the responsible erosion processes as well 

as the key factors controlling and limiting their formation are still subject to debate. 

Unfortunately, direct observation of subglacial overdeepening erosion yet remains 

impossible, and we have to rely on indirect inferences from subglacial landforms 

and deposits, as well as on glaciological and hydrological considerations. 

Two erosive agents come into play at the ice-sediment/bedrock interface: the 

glacier ice itself (i.e. glacial erosion) and basal water (i.e. subglaciofluvial erosion). 

Both are capable of rupturing and eroding the glacier bed, either through 

glaciotectonic shearing, fracturing, and plucking, or through hydraulic brecciation 

and flushing, respectively (Fig. I-4; e.g. Alley et al., 1997; Alley et al., 2019; Boulton, 

1979; Van der Meer et al., 2009; Van der Wateren, 2002). In addition, both can be 

debris-laden, which further increases their erosional efficiency through mechanic 

abrasion, scouring, and impacting (Fig. I-4; e.g. Alley et al., 2019; Boulton, 1979; 

Chatanantavet and Parker, 2009; Glasser and Bennett, 2004; Lliboutry, 1994), and 

also chemical erosion may play a certain role (Hallet et al., 1996). It is clear that 

these processes cannot be regarded separate from each other but are part of a 

continuum. In response to changing temperature and pressure conditions, for 

example seasonally, basal ice may melt and release debris, or basal water and 

sediment may freeze to the glacier base. In addition, water and ice flow are coupled 

and influence each other through positive and negative feedbacks (Alley et al., 1997; 

Alley et al., 2003a; Bell, 2008; Boulton et al., 1995; Creyts and Clarke, 2010). 
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Two zones where large overdeepenings occur frequently have been identified in the 

vicinity of mountain ranges: the main intra-mountain valleys, and the distal foreland 

near past glacier termini (Cook and Swift, 2012; Magrani et al., 2020; Preusser et al., 

2010). Large-scale analyses and models indicate that the dominant subglacial 

erosion processes differ between those two settings. Direct glacial erosion likely 

prevails under fast flowing ice streams in the mountain valleys, while vast amounts 

of subglacial water appear to play a central role in carving terminal overdeepenings 

(Dürst Stucki and Schlunegger, 2013; Egholm et al., 2012; Herman et al., 2011). 

However, it would probably be an oversimplification to attribute any given 

overdeepening to exclusively glacial or subglaciofluvial erosion. The general 

importance of fluid water flushing sediment from the glacier base and maintaining 

erosion, and facilitating plucking through pressure gradients was highlighted by 

Alley et al., (1997, 2003a, 2019) and Hooke (1991), respectively. Also, clear 

sedimentological evidence for glaciotectonic thrusting and plucking in distal 

foreland settings exists, although such deposits have not yet been reported from the 

bases of foreland overdeepenings (e.g. LFA 4 in Buechi et al., 2017a). The processes 

of subglacial overdeepening erosion as well as their external controlling factors, 

relative importances and mutual interactions thus remain elusive and enigmatic. 

 

Fig. I-4: A variety of (mechanical) subglacial erosion processes contribute to the formation 

of overdeepenings in bedrock. 
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Further uncertainties lie in the spatial and, especially, the temporal pattern of 

subglacial overdeepening erosion, of which two concurring views exist. One of them 

considers the erosion a gradual, ‘time-transgressive’ process driven by continuous 

basal sliding and water discharge (Hooke, 1991; Kristensen et al., 2008; Mooers, 

1989). It has been shown that especially if supraglacial water is fed to the glacier 

base through moulins and flushes debris off the glacier bed, continued substantial 

erosion is feasible (Alley et al., 2019; Boulton, 2006). In contrast, other studies 

suggest excavation of overdeepenings during catastrophic jökulhlaups (subglacial 

outburst floods; Alley et al., 2006; Shaw, 2002). This has been inferred for 

overdeepenings and tunnel valleys e.g. in Antarctica (Denton and Sugden, 2005; 

Larter et al., 2019), North America (Cutler et al., 2002; Hooke and Jennings, 2006), 

and the North Sea (Piotrowski, 1997; Wingfield, 1990). While the continuous, 

steady-state erosion model has recently been favoured (Alley et al., 2019), 

substantial subglacial erosion has been observed during an outburst flood in Iceland 

in 1996 (Russell et al., 2007), suggesting that both models contribute to 

overdeepening formation.  

The previous points highlight that overdeepening erosion is yet difficult to interpret 

and to predict, even in the case of an ideal, homogeneous bed. Such beds however 

exist only in model environments, whereas in reality, glaciers override and erode a 

variety of beds that differ lithologically and structurally. How such differences affect 

the overdeepening efficiency and extent has hardly been investigated. Connections 

between glacial erosion and lithological or structural properties of the respective 

bedrock have been made from outcrop (e.g. Dühnforth et al., 2010; Glasser et al., 

1998; Krabbendam and Glasser, 2011) to valley scale (e.g. Augustinus, 1992; Brook 

et al., 2004; Phillips et al., 2010). However, they have mostly been made on presently 

exposed, non-overdeepened landforms, and their applicability to overdeepenings is 

questionable due to the specific hydrological and glaciological conditions in these 

enclosed basins. Studies focused on subglacial basin morphologies in mechanically 

varying bedrock are still lacking, but could significantly further our current 

understanding of the mechanisms of and controls on overdeepening erosion. 
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1.4. Regional stratigraphic uncertainties 

The global-scale climate fluctuations can be traced throughout the Quaternary 

period based on continuous records. Well-studied archives include polar ice cores 

(e.g. Kindler et al., 2014; Wolff et al., 2010) and marine sediments (e.g. Lisiecki and 

Raymo, 2005; Mudelsee et al., 2014). Several variables, e.g. δ18O as a proxy of global 

ice volume, can be used to reconstruct the Earth’s climatic evolution, and reveal that 

the Pleistocene is characterised by consistent cold/warm-oscillations. However, the 

period of these oscillations shifted from ~40 kyr to ~100 kyr in an event referred to 

as Mid-Pleistocene Transition at ~1 Ma (Chalk et al., 2017; Tziperman and Gildor, 

2003). At the same time, the oscillation amplitude increased notably, illustrating 

that cold phases became less frequent, but more severe in the Middle Pleistocene. 

On a global scale, eight major ‘ice ages’ (MIS 6, 8, 10, …, 20) with extensive polar 

glaciations occurred between ca. 800 and 150 ka (Fig. I-5; Cohen and Gibbard, 2011; 

Lisiecki and Raymo, 2005). Attempts to correlate these global cold phases with 

terrestrial sedimentary records have however often remained unsuccessful: While 

such records, for example in mountain forelands, provide clear evidence of 

extensive regional glaciations, they are frequently fragmentary with entire 

glaciations apparently missing, and generally difficult to date (Hughes et al., 2019). 

 

Fig. I-5: Global-scale climate fluctuations throughout the past 1 Ma illustrated by the marine 

isotope stack (from Cohen and Gibbard, 2011, altered). Even numbered marine isotope 

stages 6 to 20 correspond to major polar, and likely Alpine, glaciations of the Middle 

Pleistocene. * includes the Holocene. 
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This is illustrated by the example of the northern Alpine foreland. At present, several 

different regional stratigraphic schemes exist, with own naming conventions for 

glaciations identified in the geological record (Doppler et al., 2011; Ellwanger et al., 

2011; Preusser et al., 2011; Van Husen and Reitner, 2011). One commonality of 

these schemes is that they all comprise only three to four distinct Middle Pleistocene 

glaciations. It is not clear whether this is due to misinterpretation or fragmentarity 

of the respective archives, or whether not every global cold phase resulted in an 

Alpine glaciation (Hughes et al., 2019). With the very limited availability of reliable 

absolute ages of the respective deposits, it is also questionable if the three to four 

regionally identified glaciations are generally correlative to each other, or if 

different (global) cold phases are represented in the present-day records. As an 

example, the “Riss” glaciation in Austria is correlated to MIS 6, whereas in Bavaria 

MIS 6 to 10 are binned to the “Riss” complex (Doppler et al., 2011; Van Husen and 

Reitner, 2011). An investigation of the sedimentary records preserved in lakes in 

general, and in overdeepened basins in specific, combined with state-of-the-art 

dating techniques is a promising approach to resolve such regional uncertainties.  
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2. The Wasserschloss in the Lower Aare Valley 

一石二鳥 (yì shí ' èr niǎo) 

‘One stone, two birds.’ 

- Chinese saying 

2.1. Regional setting 

The confluence area of the rivers Aare, Reuss, and Limmat in central northern 

Switzerland is commonly referred to as the ‘Wasserschloss’. It is located ~25 km 

northwest of Zurich, and ~15 km south of the river Rhine and the Swiss-German 

border (Fig. I-6). Geologically, the Wasserschloss area is situated at the transition 

from the distal Molasse Basin into the northward-adjacent Jura Mountains. During 

Pleistocene ice advances, it was repeatedly reached and overridden by the tongues 

of Alpine glaciers, and its landscape shaped by diverse peri-, pro-, and subglacial 

processes. 

2.2. Brief geological history  

The basement below the Wasserschloss area consists of crystalline rocks that crop 

out in the Black Forest further north (Fig. I-6), and kilometre-thick Permo-

Carboniferous sediments infilled in transverse fault-bound troughs that formed 

during the Variscan orogeny (Bachmann et al., 1987; Bitterli-Dreher et al., 2007; 

Diebold et al., 1992). After cessation of the orogeny, the topography became eroded 

and flattened into an epicontinental platform that was covered by a several 

hundred-meter thick stack of Mesozoic sediments. 

Over the Triassic, diverse terrestrial to shallow marine sediments – clastics, 

carbonates, and evaporites – that reflect repeated transgression and regression 

were deposited onto the basement peneplain (Jordan, 2016; Jordan et al., 2016). 

Shallow marine conditions became permanent in Early through Middle Jurassic, 

under which mudstones, marls, and limestones formed (Bitterli-Dreher et al., 2007; 

Jordan et al., 2008). Water depth further increased towards the Late Jurassic, which 

is represented by thick carbonaceous marls overlain by micritic limestones (Bitterli-

Dreher et al., 2007; Gygi, 2000; Jordan et al., 2008). 
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Fig. I-6: Regional-scale overview map of central northern Switzerland. The Wasserschloss 

area (inner rectangle; Fig. I-7) is situated at the southeastern margin of the Jura Mountains 

(Folded and Tabular Jura). IGME 2005: Commission for the Geological Map of the World et 

al. (2005). 

The present-day Jura Mountains were uplifted on the forebulge of the emerging Alps 

in the Paleogene, and were subject to intensive erosion and karstification, resulting 

in a >100 Ma-hiatus (Berger et al., 2005; Burkhard and Sommaruga, 1998; Pfiffner, 

1986). Concurrently, the Molasse Basin began to subside and collect diverse clastic 

sediments derived from the young Alps (Fig. I-6). The Molasse sedimentation 

progressed northward, reached the study area in Late Oligocene, and accumulated 

predominantly heterogeneous sandstones through Early and Middle Miocene 

(Bitterli-Dreher et al., 2007). The Late Miocene then saw the formation of the Folded 

Jura, which was upthrusted above a décollement horizon in Triassic evaporites 

(Burkhard, 1990; Laubscher, 1987; Looser et al., 2021), and the cessation of Molasse 

sedimentation.  
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North of the Folded Jura, the Mesozoic strata of the Tabular Jura remained largely 

undeformed (Fig. I-6). At this time, the confluence of Aare, Reuss, and Limmat had 

presumably already been established at roughly its present-day position at the 

boundary of Folded and Tabular Jura (Fig. I-7; Ziegler and Fraefel, 2009). 

Under the fluctuating climate conditions of the Quaternary with pronounced cold 

phases, glaciers formed in the high Alps and repeatedly advanced into the mountain 

foreland (Keller and Krayss, 2010; Preusser et al., 2011). Decametre-thick glacial 

and proglacial deposits accumulated over the Pleistocene in paleovalleys that 

progressively lowered, resulting in a terrace stratigraphy with old sediments at 

higher, and young sediments at lower elevations (Graf, 1993, 2009), and below the 

glacier tongues, terminal overdeepenings were carved, especially where bedrock 

consisted of relatively soft Molasse deposits (Dürst Stucki and Schlunegger, 2013; 

Loepfe et al., in prep.; Preusser et al., 2010).  

Throughout the Middle Pleistocene, the Wasserschloss area was overridden by 

glacier ice at least twice (Möhlin, or Most Extensive Glaciation MEG, and Beringen 

Glaciation), whereas the last-glacial ice advances (Birrfeld Glaciation with Last 

Glacial Maximum LGM) were less extensive and did not cross the Folded Jura 

(Fig. I-6; Bini et al., 2009; Graf, 2009; Keller and Krayss, 2010; Preusser et al., 2011). 

Several phases of overdeepening erosion carved the ~200 m deep and several 

kilometres wide Birrfeld Basin that is located just south of the Folded Jura chain, and 

its two narrow branch basins extending further to the north, the Hausen Trough and, 

focus of this thesis, the Gebenstorf-Stilli Trough (Fig. I-7; Graf, 2009; Loepfe et al., in 

prep.; Nitsche et al., 2001). Due to its geological history and architecture, the 

Wasserschloss area with the underlying Gebenstorf-Stilli Trough is an ideally suited 

study area to tackle the issues introduced in sections 1.3 and 1.4. 
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2.3. Key site for subglacial erosion 

In the northern Alpine foreland, overdeepenings generally only occur where 

Molasse deposits form the underlying bedrock (Dürst Stucki and Schlunegger, 2013; 

Preusser et al., 2010). Upon reaching the distal end of the Molasse Basin, 

overdeepenings abruptly shallow and terminate, for example the Birrfeld Basin and 

the Seetal Valley overdeepening further west (Loepfe et al., in prep.; Nitsche et al., 

2001). The Hausen Trough and Gebenstorf-Stilli Trough are notable exceptions to 

this rule: Both cut through the upthrusted Mesozoic strata of the Folded Jura, and 

the latter additionally into the Tabular Jura (Fig. I-7).  

The Gebenstorf-Stilli Trough is therefore not only incised into the heterogeneous 

but overall soft Molasse strata (Lat. mollis = weak) but also into very diverse and 

well consolidated Mesozoic sedimentary rocks (Bitterli-Dreher et al., 2007; De 

Quervain and Frey, 1963). These are generally more resilient than the former (Dürst 

Stucki and Schlunegger, 2013; Kühni and Pfiffner, 2001), but have pronounced 

internal differences in erosional resistance (Yanites et al., 2017). In addition, the 

Mesozoic strata of Folded and Tabular Jura are characterised by different degrees of 

tectonic preconditioning: In contrast to the largely undisturbed Tabular Jura, the 

Folded Jura has been upthrusted, more intensively faulted, and affected by 

additional fracture sets (Graf et al., 2006; Madritsch, 2015).  

The setting of the Gebenstorf-Stilli Trough with its complex bedrock architecture is 

regionally unique. The bedrock below but also the sediments within the trough as 

well as its shape and dimensions may allow conclusions about the bedrock control 

of subglacial overdeepening, the dominant erosion processes, and the subglacial 

environment in general. These are the central subjects of chapters II and III.  
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2.4. Promising archives of environmental history 

With deposits representing, to our current knowledge, the entirety of the 

Pleistocene foreland glaciations (Graf, 1993, 2009; Keller and Krayss, 2010; 

Preusser et al., 2011), the area around the Wasserschloss contains regionally 

important archives of the Quaternary of the Alps. Being located outside the LGM ice 

extent, the older (pro-)glacial deposits and landforms have been spared strong Late 

Pleistocene overprint (Bini et al., 2009). Especially the Middle Pleistocene is well 

represented in the study area: The Habsburg-Rinikerfeld Paleochannel is 

interpreted as one of the earliest Mid-Pleistocene landforms, and is infilled with 

deposits of several different glaciations, including glaciofluvial gravels, tills, and 

lacustrine fines (Fig. I-7; Bitterli-Dreher et al., 2007; Graf, 2009). Together with the 

previously underexplored archive of the Gebenstorf-Stilli Trough, these deposits 

should allow to reconstruct a glacial and environmental history spanning several 

100 kyr. 

However, the area of the Wasserschloss is a promising archive not only due to the 

shear amount of deposits preserved there. As indicated, the location of the Aare-

Reuss-Limmat confluence is considered to have been spatially stable at roughly its 

present location (Fig. I-7; Ziegler and Fraefel, 2009). Therefore, sediments derived 

from at least these three, but possibly also of the Rhone and Rhine catchments, are 

expected to occur, and have been recognised, within the Pleistocene deposits of the 

study area (Graf, 2009).  

The archives of the Wasserschloss area therefore track the interplay of at least three 

major Alpine catchments over multiple glacial-interglacial cycles, possibly including 

evidence for relative glacier proximity and direct ice contact. The plenty of different 

deposits, and the interpretation of their paleo-glaciological and paleo-

environmental signals is the main focus of chapter IV. 
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Fig. I-7: Overview map of the Wasserschloss area with major Pleistocene landforms (see 

Fig. I-6 for localisation). 
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3. The Quartärbohrungen project 

Ihr wicht! Der Schauplatz wurde zu warm, und fern 

wohnt ihr am Pol jetzt! Aber der Herrschende, 

der dann zuletzt erschien, kennt euch! 

Staunt der Geschichten, die ihr ihm kundet! 

‘Ye ceded! The stage became too warm, and far  

away ye now live at the Pole! But the master 

who then last appeared, knows ye! 

Marvels at the tales ye tell him!’ 

- from K. F. Schimper: Die Eiszeit (1837) 

translation from Krüger (2013) 

3.1. Outline 

This thesis was realised in the scope of the Quartärbohrungen (QBO; ‘Quaternary 

drillings’) project of the Quaternary Geology and Paleoclimatology Group of the 

University of Bern and the Swiss National Cooperative for the Disposal of 

Radioactive Waste (Nagra). The primary aims of the QBO project are i) to identify 

the mechanisms and controls of overdeepening erosion, and ii) to refine the 

glaciation history of northern Switzerland. The findings are not only of great 

scientific interest, but will help Nagra to propose the safest possible locations for 

Switzerland’s future repositories of radioactive waste (Nagra, 2014). 

Three study areas in central northern Switzerland have been specifically targeted 

with Quaternary drillings: the Wasserschloss / Lower Aare Valley, the Glatt-Rhine 

confluence, and the Lower Thur Valley (Fig. I-8). In 2018 through 2020, eleven 

boreholes were successfully completed, and yielded a total of ~1800 m of drill cores. 

The focus of the drilling campaign lay on excellent core quality that was guaranteed 

by combined application of different drilling methods, the usage of protective liners, 

and a sophisticated core handling workflow (as outlined in the respective data 

reports, see Table I-1). 
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Fig. I-8: Target areas and boreholes of the Quartärbohrungen project (after Buechi, unpubl.; 

see Fig. I-6 for localisation and base map). 

3.2. Quartärbohrungen in the Wasserschloss area 

Four QBO were drilled in the Lower Aare Valley between March and October 2018 

(Table I-1). Three of them were targeted at the Gebenstorf-Stilli Trough below the 

present-day Wasserschloss, and one at a paleolake in the Habsburg-Rinikerfeld 

channel (Fig. I-7, I-8).  

These boreholes recovered ~350 m of high quality cores that record the entire 

Pleistocene sequence at the respective position, including several meters of the 

underlying bedrock, and build the backbone of the present thesis. And it turns out 

that deep waters, and mud, and sand, and rocks, in fact don’t run that silent, if we 

choose to listen carefully... 
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Table I-1: Quartärbohrungen in the Wasserschloss area. 

Borehole Coordinates 
Bedrock / 
final depth  

Reference 

Gebenstorf-Brüel (QGBR) 
47°29’00” N, 
8°14’11” E 

111.5 m /  
123.5 m 

Gegg et al. 
(2019b) 

Gebenstorf-Vogelsang (QGVO) 
47°29’43” N, 
8°14’18 E 

64.9 m /  
77.0 m 

Gegg et al. 
(2019a) 

Untersiggenthal (QUST) 
47°30’46” N, 
8°14’30” E 

76.0 m /  
86.4 m 

Gegg et al. 
(2019c) 

Riniken (QRIN) 
47°30’09” N, 
8°11’28” E 

41.2 m /  
52.7 m 

Gegg et al. 
(2018) 
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Subglacial erosion features in the Athabasca Glacier forefield (British Columbia, Canada). 
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II. How an overdeepening is eroded, and what its shape 

tells us 

This chapter investigates the subsurface morphology of the Gebenstorf-Stilli Trough 

in the context of its complex bedrock architecture. Based on borehole and seismic 

data, geological controls on overdeepening erosion are identified, and evidence for 

basal water as the prevailing erosive agent is presented. The manuscript has been 

published in Geomorphology 394 under the Creative Commons Attribution 4.0 

International license (open access) as 
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Anselmetti, F. S.1, & Buechi, M. W.1: 3D morphology of a glacially 

overdeepened trough controlled by underlying bedrock geology 
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1. Abstract 

Subglacial overdeepenings are common elements of mountain forelands and have 

considerable implications for human infrastructure. Yet, the processes of 

overdeepening by subglacial erosion and especially the role of bedrock geology are 

poorly understood. We present a case study of the Gebenstorf-Stilli Trough in 

northern Switzerland, a foreland overdeepening with a regionally unique, complex 

underlying bedrock geology: In contrast to other Swiss foreland overdeepenings, it 

is incised not only into Cenozoic Molasse deposits, but also into the underlying 

Mesozoic bedrock. In order to constrain the trough morphology in 3D, it was 

targeted with scientific boreholes as well as with seismic measurements acquired 

through analysis of surface waves. Our results reveal an unexpectedly complex 

trough morphology that appears to be closely related to the bedrock geology. Two 

sub-basins are incised into calcareous marls and Molasse deposits, and are 

separated by a distinct ridge of Jurassic limestones, indicating strong lithological 

control on erosional efficiency. We infer generally relatively low glacial erosion 

efficiency sensu stricto (i.e. quarrying and abrasion) and suggest that the glacier’s 

basal drainage system may have been the main driver of subglacial erosion of the 

Gebenstorf-Stilli Trough. 
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2. Introduction 

Subglacial overdeepenings, closed troughs eroded below the fluvial base level, are 

common elements of formerly glaciated mountain forelands (Cook and Swift, 2012). 

In the northern European Alpine example, they underlie ~10 % of the land surface 

(Dürst Stucki and Schlunegger, 2013). Despite their significance for, among others, 

construction projects, groundwater and radioactive waste disposal (Preusser et al., 

2010; Stumm, 2010), the understanding of overdeepenings in terms of formation 

processes and controlling factors is limited and subject to debate (Cook and Swift, 

2012; Alley et al., 2019). This applies especially to the influence of bedrock geology 

on the efficiency of subglacial erosion (Goudie, 2016).  

Several authors (e.g. Augustinus, 1992, Brook et al., 2004) have reported a 

correlation of rock mass strength and glacial trough cross section, with steep and 

narrow troughs developing in resistant bedrock, and wide and shallow troughs in 

weak lithologies. However, effects of more complex patterns of bedrock lithology 

have hardly been studied. As an exception, Pomper et al. (2017) reported deeper-

reaching subglacial erosion where the Lower Salzach Valley (Austria) is underlain 

by soft Cretaceous marls as opposed to lime- and dolostones. Further, Harbor 

(1995) modelled glacial erosion into bedrock with a weak zone in the trough centre, 

and observed increased downcutting, narrowing and steepening initiating in but, 

not restricted to, the weak zone. On a smaller scale, Glasser et al. (1998) showed by 

detailed field mapping that discontinuities from bedrock foliation parallel to the ice 

flow enhance erosion through quarrying, whereas discontinuities orthogonal to ice 

flow rather increase abrasion. Similarly, the orientation of sedimentary bedding has 

a discernible influence on basal ice velocity and thus on subglacial landform 

morphology (Phillips et al., 2010). Quarrying is frequently considered the more 

efficient glacial erosion process (e.g. Cohen et al., 2006; Zoet et al., 2013; Alley et al., 

2019), but in weak and poorly jointed rocks, abrasion might outweigh quarrying 

(Krabbendam and Glasser, 2011). The importance of jointing and joint spacing has 

been further highlighted by Dühnforth et al. (2010), who found a strong correlation 

of glacial erosion rates and fracture density (see also Hooyer et al., 2012; Becker et 

al., 2014). Most of these investigations specifically focused on glacial erosion in non-

overdeepened settings.   
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In overdeepenings, characterised by an adverse slope at the distal end, the 

subglacial hydrological conditions are very different (Cook and Swift, 2012). In 

order to maintain erosion, sediment has to be evacuated from the glacier base 

against this adverse slope, whereby pressurised melt water plays an important role 

(Alley et al., 1997, 2019; Cook and Swift, 2012; Buechi et al., 2017). The abundance 

of subglacial water steadily increases towards the glacier snout, where it facilitates 

the erosion of large terminal overdeepenings even under diffluent ice (Herman et 

al., 2011). There, subglacial water has been suggested to be the main driver of 

subglacial erosion, analogous to tunnel valleys (Cofaigh, 1996; Dürst Stucki et al., 

2010; Fiore et al., 2011; Dürst Stucki and Schlunegger, 2013). It is therefore 

questionable to what extent the findings of subglacial erosion in non-overdeepened 

settings can be applied to the formation and evolution of overdeepened glacial 

troughs. 

This study sheds light on the morphology of a subglacial overdeepening in the 

northern Alpine foreland of Switzerland, based on borehole and seismic data. The 

selected overdeepening is of special interest and relevance due to its unique, 

complex bedrock geology. The connection of the trough morphology with bedrock 

architecture and the area’s tectonic setting allow inferences about the geological 

controls and the processes of overdeepening erosion. 
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3. Study area  

The study area is located in northern Switzerland, close to the eastern termination 

of the WSW-ENE trending Jura Mountains (Fig. II-1). The local bedrock stratigraphy 

comprises Triassic and Jurassic sediments deposited on an epicontinental platform 

and unconformably overlain by Cenozoic clastics of the northern Alpine Molasse 

Basin (Bitterli-Dreher et al., 2007; Jordan et al., 2008). 

The oldest rocks exposed at the surface of the study area are shallow marine 

limestones and dolomites of the Schinznach Formation (Fm.; late Middle Triassic; 

Figs. II-2A, -S1). They are overlain by the Middle to Late Triassic Bänkerjoch Fm., an 

alternation of gypsum/anhydrite with claystone and dolomite, and Klettgau Fm., a 

heterogeneous unit comprising mostly marl, silt- and sandstone. The following Early 

Jurassic Staffelegg Fm. as well as the Opalinus Clay of the early Middle Jurassic 

consist of marine claystones, siltstones and marls. During the later Middle Jurassic, 

marls and limestones (PKI: Passwang Fm., Klingnau Fm., Ifenthal Fm.; Fig. II-S1) 

were deposited in a shallow sea that deepened towards the early Late Jurassic, when 

the predominantly calcareous marls of the Wildegg Fm. formed (Gygi, 2000; 

Deplazes et al., 2013). These marls transition gradually over few meters to 

decameters into bedded and massive marine limestones of the Villigen and 

Burghorn Fms. (in the following referred to as «Malmkalk»; Fig. II-S1; Gygi, 2000; 

Bitterli-Dreher et al., 2007; Jordan et al., 2008). 

In the Paleogene, the Mesozoic strata of the Jura Mountains were uplifted on the 

forebulge of the Alpine orogeny and began being eroded and karstified, while 

further south/southeast the Molasse Basin subsided (Fig. II-1; Pfiffner, 1986; Berger 

et al., 2005). In Oligocene-Miocene times heterogeneous sandstones, siltstones, and 

marls of the Lower Freshwater, Upper Marine, and Upper Freshwater Molasse were 

deposited in the study area, and generally remained rather poorly lithified 

(Fig. II-S1; Bitterli-Dreher et al., 2007). The Molasse deposition ended in the Late 

Miocene, around the same time the Folded Jura (FJ) formed. It was upthrusted as a 

consequence of collisional tectonics in the Central Alps via thin-skinned 

deformation above an evaporitic décollement horizon within Middle to Upper 

Triassic evaporites (Laubscher, 1962; Burkhard, 1990).   
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This décollement horizon crops out along the Jura Main Thrust that formed between 

9 and 4 Ma (Figs. II-1B, -2A; Looser et al., 2021). The Mesozoic sequences south of it, 

i.e. within its hanging wall, are affected by a dense stack of thrusts and dip 

moderately towards the south (Fig. II-2A; Malz et al. 2015). By contrast, north of the 

Jura Main Thrust the Mesozoic strata dip only very gently southward (Tabular Jura: 

TJ; Fig. II-2A). While the Mesozoic is overlain by a wedge of Molasse deposits 

immediately north of the Jura Main Thrust, continuously older rocks are exposed 

further to the north, where they form plateaus (e.g. in the northwest of Fig. II-2).  

During the Pleistocene, multiple advances of Alpine glaciers reached far into the 

foreland and considerably reshaped the landscape (Graf, 2009; Keller & Krayss, 

2010; Preusser et al., 2011). This includes the subglacial erosion of overdeepenings, 

most of which are carved exclusively into Molasse deposits (Fig. II-1; Graf, 2009; 

Preusser et al., 2010). An exception is the Gebenstorf-Stilli Trough (GST), which cuts 

through the FJ and into the TJ (Fig. II-2; Jordan, 2010). It extends ~9 km northward 

from the Birrfeld Basin (Nitsche et al., 2001) into the present-day confluence area of 

the rivers Aare, Reuss and Limmat and has a distinctly elongated shape with a 

maximum width of ~1 km (enclosed by the 300 m a.s.l. isoline; Bitterli-Dreher et al., 

2007; Pietsch and Jordan, 2014). The maximum trough depth exceeds 110 m below 

surface and 75 m below the lowest known Pleistocene base level (PBL, 300 m a.s.l.; 

Graf, 2009; Gegg et al., 2020). Situated entirely outside the LGM (Bini et al., 2009), 

the GST was presumably incised during the late Middle Pleistocene (Bitterli-Dreher 

et al., 2007; Graf, 2009). The significant narrowing from the wide Birrfeld Basin 

towards the GST coincides with a change in trough morphology from U-shaped to V-

shaped (Jordan, 2010; Dürst Stucki and Schlunegger, 2013). It has been 

hypothesised that the narrowing and change in shape are a result of the dominant 

bedrock lithology changing from rather soft, poorly lithified Molasse sandstones, 

siltstones and marls in the south towards the more resistant limestones and marls 

of the Jura Mountains in the north (Bitterli-Dreher et al., 2007; Jordan, 2010).  
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Fig. II-1: Overview map of central and eastern northern Switzerland with major tectonic 

units and surface geology (A; IGME 2005: Commission for the Geological Map of the World 

et al., 2005; LGM: Last Glacial Maximum; MEG: Most Extensive Glaciation). The cross-section 

(B; from Jordan et al., 2015, altered) illustrates the tectonic architecture of the study area 

(purple box in A). Note that foreland overdeepenings (SV: Seetal Valley, RV: Reuss Valley, 

LV: Limmat Valley, GV: Glatt Valley, TV: Thur Valley) generally only occur within the Molasse 

basin, with the exception of the Gebenstorf-Stilli Trough (Fig. II-2). 
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Fig. II 2: Overview map of the Gebenstorf-Stilli Trough. A: Simplified surface geology. B: 

Locations of boreholes and acquisition lines of seismic cross sections. For localisation, 

please refer to Fig. II-1. 
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4. Methodology 

The Gebenstorf-Stilli Trough was investigated with three scientific boreholes along 

its trough axis (Fig. II-2B). These are, from south to north, QGBR (47°29’00” N, 

8°14’11” E; Gegg et al., 2019b), QGVO (47°29’43” N, 8°14’18 E; Gegg et al., 2019c), 

and QUST (47°30’46” N, 8°14’3” E; Gegg et al., 2019a). All three boreholes 

terminated at least 10 m into the bedrock to allow for a confident bedrock 

identification. Recovery and core quality were maximised by combined application 

of pneumatic hammering (‘Düsterloh Hammer’) and wire-line drilling with a triple-

tube core barrel. After detailed stratigraphic logging of the drill cores, selected 1-m-

intervals were sampled for petrographic analysis of coarse-grained sediments 

(>100 clasts >15 mm in diameter, if not indicated otherwise).  

To further constrain the morphology of the Gebenstorf-Stilli Trough, we recorded 

ambient noise on ~230 seismic 3-component stations that were distributed along 

eight acquisition lines (Fig. II-2B; Nagra, 2021). The data processing workflow is 

sketched on Fig. II-3 and involved computation of the horizontal-to-vertical spectral 

ratio (HVSR) for each of the 10-30 min long recordings and picking of the respective 

fundamental frequency f0 (Fig. II-3A; SESAME European research project, 2004). 

The frequency of the pulse maximum f0 depends on the depth of the shear wave (S-

wave) velocity contrast indicative for the bedrock below unconsolidated sediments. 

In case of ambiguity in the spectral information, f0 was selected conservatively, with 

regard to the bedrock model of Pietsch and Jordan (2014).  

Conversion of f0 to bedrock depth z is possible if the average S-wave velocity of the 

Quaternary strata vs,E is known (eq. (i); see Nakamura, 1989, for details). It was 

determined by joint inversion of ~50 active measurements after Dziewonski et al. 

(1969; multiple frequency analysis MFA) in combination with deeper reaching ESAC 

measurements (extended spatial auto correlation; Ohori et al., 2002; typically one 

measurement per acquisition line) following Dal Moro et al. (2018). This process 

provided one S-wave velocity function per line, which was windowed for the intra-

Quaternary part (S-wave velocity < 1100 m/s; Wiemer et al., 2015) and averaged to 

obtain location-specific vs,E values (Fig. II-3B). These were applied to eq. (i) for 

conversion of f0 into depth profiles of the base of Quaternary (Fig. II-3C).  
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(i) 𝑧 =
𝑣𝑠,𝐸

4 ∗ 𝑓0
⁄  

We base our study on a geological and morphological interpretation of the resulting 

cross sections (Fig. II-3D) integrating surface (1 : 25’000 geological map: Graf et al., 

2006; 2 m LiDAR DEM: Swisstopo, 2013) and subsurface information (drill logs from 

the borehole database of the Swiss Cooperative for the Disposal of Radioactive 

Waste (Nagra); previous 25 m base of Quaternary DEM: Pietsch and Jordan, 2014). 

For cross section construction, boreholes with a distance of max. 200 m from the 

respective acquisition line were projected parallel to the isolines of the Gebenstorf-

Stilli Trough by Pietsch & Jordan (2014). The base of Quaternary was fitted to the 

boreholes while maintaining the seismically determined trough shape. 

Interpretations are focused on the overdeepened part of the trough, i.e. that lying 

below PBL at ~300 m a.s.l. (Graf, 2009). The same applies to the V-index (VI; Zimmer 

& Gabet, 2018) as a quantifier of trough shape. A perfectly V-shaped trough with 

even flanks would be characterised by a VI of 0, whereas increasing values 

correspond to more concave flanks, i.e. an increasingly U-shaped cross section. 
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Fig. II-3: Workflow applied for the construction of the cross sections from the geophysical 

data exemplified by a clip of acquisition line D. The fundamental frequency profile (A) is, 

with help of the shear wave velocity profile (B), converted into a depth model of the trough 

base (C), and complemented with borehole and surface data to a finalised geological cross 

section (D).  
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5. Results 

5.1. Planform morphology 

In terms of bedrock geology, the GST can be subdivided into three sections of 

approximately equal length. The southern section is embedded in the Folded Jura 

(FJ), whereas the middle section is mostly incised into Molasse deposits, and the 

northern section into the Mesozoic of the Tabular Jura (TJ, Fig. II-2A). These three 

sections show striking differences in planform morphology (Pietsch and Jordan, 

2014): both the TJ and FJ sections are narrow (300-400 m at 300 m a.s.l) and either 

straight in their entirety or composed of straight segments, respectively. In contrast, 

in the Molasse section the trough takes a sinuous course towards north while 

widening gradually (up to ~800 m at 300 m a.s.l.) until a sudden constriction at the 

transition to the TJ. The sinuosity index S of the Molasse section, defined as the ratio 

between total length of the trough axis between two selected points and the shortest 

connection of said points, is 1.06 (Fig. II-S3). Our boreholes and seismic acquisition 

lines cover the central (QGBR, QGVO, lines A-E) and northern (QUST, lines F-H) 

sections of the GST (Fig. II-2B). 

5.2. Boreholes 

QGBR and QGVO recovered Late Pleistocene Niederterrasse gravels overlying a 

thick unit of lacustrine/deltaic sand and several meters of basal coarse-grained 

sediment, while the trough infill in QUST almost exclusively comprises gravels 

(Fig. II-4; see Fig. II-2B for locations). The coarse-grained deposits consist largely of 

far-travelled, i.e. Alpine or Molasse-derived, clast lithologies dominated by grey 

limestones, diverse sandstones, and quartzites (Fig. II-4). Lithologies of the local 

Jura Mountains play a subordinate role: Light beige limestone clasts that can be 

attributed to the Villigen Fm. («Malmkalk») make up no more than 18 % (usually 

below 10 %), and calcareous marl clasts attributed to the Wildegg Fm. were not 

encountered in the chosen intervals. Only the lowermost ~0.3 m of the Quaternary 

infill at QGBR consists predominantly of light limestone fragments, and the 

lowermost ~0.4 m of QUST contains individual soft marly clumps identified as 

Wildegg Fm. (Gegg et al., 2019a,b).  
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The boreholes reached the base of the overdeepening in depths of 111.5 m (225.8 m 

a.s.l.), 64.9 m (266.1 m a.s.l.), and 76.0 m (255.2 m a.s.l.), respectively (Fig. II-4). 

Light beige limestones of the «Malmkalk» were encountered below the 

overdeepening in QGBR and QGVO, and grey calcareous marls of the Effingen 

Member, Wildegg Fm., in QUST. We combined these findings with the logs of >450 

existing boreholes in the perimeter as well as a 1 : 25’000 scale geological map (Graf 

et al., 2006) to a base Quaternary subcrop map (see section 6.2). The generally 

massive «Malmkalk» is characterised by frequent stylolites in varying orientations 

including horizontal and vertical, as well as shallow (<40 °), southeast-dipping 

fractures with an average spacing of ~0.6 m in QGBR, and ~1.4 m in QGVO 

(corrected after Terzaghi, 1965). Deep-reaching, sediment-filled paleokarst 

predating the Quaternary and exhibiting presumed subglacial hydrofractures was 

encountered in QGBR (Gegg et al., 2020). The calcareous marls of the Wildegg Fm. 

have a similar fracture spacing of ~1.1 m in QUST, and contain intervals where the 

rock is softened or granular-disintegrating. The bedrock surface is truncated by a 

karst cavity in QGBR, but developed as a sharp, horizontal boundary in QGVO and 

QUST with minor drilling-induced disturbance by fresh fracturing and/or grinding.  

5.3. Surface-seismic sections 

The interpreted cross sections are plotted on Fig. II-5, and Fig. II-S2A-H show the 

individual cross sections together with the respective raw data. The uncertainty of 

the applied method is difficult to quantify as it depends on multiple factors, such as 

the heterogeneity of the trough infill, the local inclination of the base of Quaternary, 

the impedance contrast to the bedrock, the presence of other geological boundaries 

(e.g. Molasse-Mesozoic) in close proximity, and the amplitude and frequency of 

industrial noise. Empirically, the seismic measurements are in good accordance 

with boreholes in the vicinity (max. distance 170 m). Average differences amount to 

-7/+10 m, with maximum values of -21/+22 m (over- and underestimation, 

respectively; see Table II-S2). An exception is the site of borehole QGBR, where the 

trough depth is underestimated by ~30 m, however this borehole is located close to 

the trough wall that has likely affected the respective measurements (Table II-S2, 

Fig. II-5).   
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The intra-Quaternary shear wave velocities show an increasing trend towards the 

north (~500 m/s at 50 m depth for lines A and B, ~550 m/s for lines C and D; 

~600 m/s for line G). Although these differences are smaller than the variations 

along a given line, they correlate with a trough infill that becomes increasingly more 

coarse-grained and higher in density towards the north (Fig. II-4; Gegg et al., 

2019a-c).  

 

Fig. II-4: Lithological logs of Quaternary boreholes QGBR, QGVO, and QUST (from Gegg et al., 

2019a-c, altered). PBL marks the lowest known Pleistocene base level at ~300 m a.s.l. (Graf, 

2009). Pie charts show the ratio of local limestones vs. far-travelled clasts in coarse-grained 

sediments (>100 clasts >15 mm, if not indicated otherwise). 

The cross sections show a trough composed of two sub-basins (Gebenstorf Basin in 

the central and Stilli Basin in the northern trough section; ‘nested basins’ after 

Patton et al., 2016) separated by a distinct bedrock ridge (Lauffohr Ridge, 

Figs. II-5, -6). The GST gradually widens from ~350 to ~800 m at 300 m a.s.l. (i.e. at 

PBL; Graf, 2009) between lines A and D while transitioning from a V- to a more U-

shaped cross section (VI increases from 0.2 to 0.4).   
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This widening coincides with a shallowing of the overdeepened centre from its 

maximum depth at ~225 to ~265 m a.s.l., following the trend of the «Malmkalk» 

surface that rises towards the TJ (Fig. II-6), and as a result, the overdeepened cross 

sectional area remains approximately constant (Fig. II-5). North of line D, the trough 

narrows abruptly and further shallows to ~295 m a.s.l. at line E, where the bedrock 

geology changes gradually from «Malmkalk» to the underlying marl (Wildegg Fm.; 

Fig. II-5). Further north (lines F-H), seismic data are afflicted by greater 

uncertainties than in the south. The trough deepens to at least 255 m a.s.l. at QUST, 

and the distinct trough shoulder east of QUST (constrained by a second borehole on 

line G, Figs. II-5, -S2G) suggests a rather U-shaped cross section (VI = 0.6). The 

overdeepening terminates close to line H, with an average adverse slope of ~1.6 ° 

between lines G and H (Fig. II-6).  

Fig. II-5 (next page): Interpreted surface-seismic cross sections A-H (see also Fig. II-S2A-H). 

For location of the cross sections, see inset map or Fig. II-2B. Profile traces X and Y refer to 

Fig. II-6. VI = V-index (Zimmer & Gabet, 2018), CA = overdeepened cross sectional area 

(below 300 m a.s.l.). 
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6. Discussion 

6.1. Planform morphology 

6.1.1. Paleo-ice flow and erosion 

Dürst Stucki and Schlunegger (2013) distinguish two general types of 

overdeepenings in the vicinity of the Alps, i) proximal Alpine-type overdeepenings 

composed of straight segments, and ii) distal, anastomosing foreland-type 

overdeepenings (see also Magrani et al., 2020). These morphologies are interpreted 

as a result of geological as well as paleo-glaciological differences: While Alpine-type 

overdeepenings are carved into zones of weakness (i.e. fault zones) by thick ice 

streams in the mountain valleys, foreland-type overdeepenings occur in the 

generally rather poorly lithified Molasse deposits independently from structural 

weak zones (Preusser et al., 2010; Dürst Stucki and Schlunegger, 2013). Pressurised 

subglacial melt water plays an important role especially in the erosion of foreland 

overdeepenings near the glacier termini (Herman et al., 2011; Alley et al., 2019), and 

could possibly be its main driver (Dürst Stucki et al., 2010; Dürst Stucki and 

Schlunegger, 2013).Morphologically, the central section of the GST resembles a 

typical foreland overdeepening, whereas the southern (FJ) and northern (TJ) 

sections have more similarities with inner-Alpine overdeepenings. This 

morphological variability occurs despite the common distal position, similar melt 

water availability (periodically high) and ice thickness (low), suggesting the same 

prevailing erosional mechanisms (see section 6.2.2; Herman et al., 2011; Cook and 

Swift, 2012). We infer that in the case of the GST, the morphological differences are 

controlled predominantly by the bedrock geology and resulting pre-glacial 

topography.  
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The Mesozoic strata outcropping in the FJ and TJ have a higher bulk erosional 

resistance than the Molasse deposits (Kühni and Pfiffner, 2001) despite strong 

internal variations (Yanites et al., 2017) and it has been shown before that glacial 

troughs tend to be narrower in more resilient rocks (Augustinus, 1992; Brook et al., 

2004). In addition, the erosional resistance of the Mesozoic has facilitated the Jura 

Mountains to persist as a low mountain range for several millions of years, whereas 

the Molasse Basin topography is comparatively levelled off. As a consequence, while 

Pleistocene ice flow over Molasse deposits could diverge to the sides, the FJ and TJ 

sections of the GST lie within distinct, likely pre-existing valleys (Ziegler and Fraefel, 

2009). These valleys constrained the ice and basal water flow, which is often 

accompanied by an increase in velocity and erosional activity (Hallet, 1979; Herman 

et al., 2015, Patton et al., 2016). Given the similar trough widths in FJ and TJ, it 

appears that the different tectonic histories of both units are not expressed through 

significantly different erosional susceptibilities, which could be due to the structural 

strike of the FJ being orthogonal to paleo-ice flow (Glasser et al., 1998).  

Although comparatively poorly constrained, the width of the overdeepened (below 

300 m a.s.l.) GST appears to remain largely constant across the FJ (Fig. II-1; Bitterli-

Dreher et al., 2007; Pietsch and Jordan, 2014) where bedrock properties change 

drastically over short distances (Yanites et al., 2017). In contrast to the modern 

valley, the shape of the buried overdeepening is seemingly little affected by short-

scale variations in erosional resistance, which applies also to the Hausen Trough 

further west (Fig. II-2B; Graf, 2009; Pietsch & Jordan, 2014). This suggests that there 

is a certain inertia in trough morphology, which can adjust only gradually to bedrock 

changes. This hypothesis is supported by the slow and gentle widening of the GST 

after the transition from the FJ into the northward adjacent Molasse. As a result, the 

GST remains comparatively narrow even in its central section, with a maximum 

width that is more typical of inner-Alpine than for foreland overdeepenings 

(Table II-1).  
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6.1.2. The role of structural preconditioning 

The Gebenstorf-Stilli Trough is the only known overdeepening of the northern 

Alpine foreland that extends significantly (i.e. kilometers) beyond the Molasse Basin 

(Fig. II-1; Jordan, 2010), raising the question why such localised incision into the 

Mesozoic strata was possible at this specific position. Previously, structural 

geological control enabling the breach of the (fluvial) Aare Valley into the exposed 

TJ (approx. at line F) has been suggested (Haldimann et al., 1984). The straight 

and/or kinked morphology of those GST sections incised into Mesozoic bedrock 

support the idea that the overdeepening, and the likely preceding fluvial valley 

system (Ziegler and Fraefel, 2009), could follow discrete fault zones in the bedrock 

(similar to e.g. the inner-Alpine valleys of the rivers Rhone and Adda). This 

hypothesis is in the following reviewed based on our investigations.  

At the outcrop-scale, N-S fractures, mostly with strike-slip kinematics, are a typical 

characteristic of Upper Jurassic limestones across the study area and beyond 

(Figs. II-7, -S4; Madritsch, 2015). Minor N-S striking faults have been recognised in 

elongation of the GST (Matousek et al., 2000) and along strike of the FJ to the east 

(Diebold et al. 2006; Jordan et al., 2011). However, a densification of this kind of 

structures around the breach of the GST, especially in the TJ, is not discernable. In 

addition, individual strike-slip faults do not appear to have a strong structural 

imprint on the immediately surrounding Mesozoic bedrock (e.g. increase of fracture 

density, cataclasis development) according to field observations in the vicinity of the 

GST (Fig. II-S4). No evidence for a major fault zone underneath the overdeepened 

trough has been observed in two regional seismic campaigns (Sprecher and Müller, 

1986; Madritsch et al., 2013). However, the presence of a strike-slip fault zone with 

minor vertical throw hindering its seismic detection (Nagra, 2019) in the subsurface 

of the GST cannot be excluded. Despite the lack of evidence for a distinct fault zone, 

we can therefore not rule out structural control for the breach of FJ and TJ and/or 

glacial erosion thereafter.  
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In contrast to the southern and northern GST sections, the central section is 

characterised by a gently sinuous planform morphology. Its sinuosity (S = 1.06) is 

similar to other distal Molasse-hosted overdeepenings in the northern Alpine 

foreland (Pietsch and Jordan, 2014; Fig. II-S3), e.g. Seetal Valley (S = 1.07), middle 

Reuss Valley (S = 1.05), Limmat Valley (S = 1.07), Glatt Valley (S = 1.12) and Thur 

Valley (S = 1.05), and generally similar to tunnel valleys (Cofaigh, 1996; van der Vegt 

et al., 2012). This morphology has previously been interpreted as indicative for 

erosion of the poorly lithified Molasse independent from structural control (i.e. not 

along straight fault segments; Preusser et al., 2010; Dürst Stucki and Schlunegger, 

2013).  

6.2. Trough morphology in 3D 

6.2.1. Lithological control on subglacial erosion 

The maximum depth of the GST of ≥112 m below surface (~225 m a.s.l.) is typical 

for Swiss foreland overdeepenings (Table II-1; Magrani et al., 2020). It is reached 

just beyond the FJ in the southern sub-basin (Gebenstorf Basin, GB) that shallows 

considerably further north. The shallowing of the GB occurs entirely within the 

narrow band of the «Malmkalk» that emerges at angle of ~4 ° towards the 

northwest, where it is exposed and referred to as TJ (Figs. II-5, -6). This suggests 

strong lithological control for the depth of the basin: It appears that the subglacial 

erosional efficiency decreased significantly upon reaching the Jurassic limestones. A 

similar erosion pattern was observed in a seismic study of Lake Neuchâtel (NW 

Switzerland; Ndiaye et al., 2014), whose overdeepened floor reaches down to, but is 

not significantly incised into, the Mesozoic strata under ~200 m of Molasse cover. In 

QGBR, deep-reaching sediment-filled paleokarst was encountered in the limestone 

(Gegg et al., 2020). The fact that even karstified and presumably weakened 

«Malmkalk» was preserved and not completely eroded by the overdeepening glacier 

emphasises its erosional resistance (see also Ndiaye et al., 2014). Moreover, the 

paleokarst walls throughout the bedrock interval of QGBR show abundant, 

randomly oriented surficial fractures, some of which are filled with intruded 

sediment (Gegg et al., 2020).  
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Fig. II-6: Longitudinal section X of the Gebenstorf-Stilli Trough compiling cross sections A 

to H. Section Y through the Tabular Jura escarpment illustrates the dip of the bedrock strata. 

For localisation and legend, please refer to Fig. II-5. Relative erodibilities and presumed 

erosion processes of the relevant bedrock lithologies are summarised at the bottom (see 

section 6.2.2). 

Table II-1: Quantitative comparison of the Gebenstorf-Stilli Trough (GST) with other 

overdeepenings in Switzerland (based on Magrani et al., 2020). * The approach by Magrani 

et al. (2020) uses a minimum sediment thickness or water column of 20 m to define 

overdeepening extent, thus maximum width is given 20 m below present-day ground 

surface. 

 
Max. depth 
[m] below 
surface 

Max width [m]  
20 m below 
surf.* 

Terminal 
adverse slope 
[°] 

Alpine 
overdeepenings 

Average 337 1453 2.7 

Median 288 962 1.7 

Foreland 
overdeepenings 

Average 180 2024 1.0 

Median 115 1298 0.6 

Gebenstorf-Stilli Trough ≥112 920 1.6 
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The authors conclude that subglacial hydrofracturing is the most plausible 

explanation for the origin of these fractures, and that their abundance could point 

towards a multitude of subglacial water pressure events. Such a record would 

require erosion rates low enough to allow for prolonged direct contact of the 

karstified limestone with the glacier’s basal drainage system. However, we consider 

possible that the limited downcutting over the «Malmkalk» may have led to 

increased lateral erosion within the overlying Molasse, as the shallowing of the GB 

coincides with a doubling in trough width, so that the overdeepened cross sectional 

area remains nearly constant (see Fig. II-5, sections A-D). 

The shallowest depth of the GST is reached at the crest of the Lauffohr Ridge, where 

the base of the southward-dipping Jurassic limestone is breached (Figs. II-6, -7). 

There, the GST is barely overdeepened as its base is close to PBL at 300 m a.s.l. (Graf, 

2009). In the underlying calcareous marls of the Wildegg Fm. erosional efficiency 

was again increased and culminated in the Stilli Basin (SB). We hypothesise that the 

enhanced erosion rates are the result of an interplay of several paleoglaciological as 

well as geological factors. Firstly, an abrupt increase in ice and melt water flux have 

likely increased subglacial erosion at the confluence of the catchments of Aare, 

Reuss, and Limmat (cf. MacGregor et al., 2000; Pomper et al., 2017). According to 

Ziegler and Fraefel (2009), this confluence had been established before, and 

remained largely fixed throughout, the Pleistocene. The deepening of the GST into 

the SB initiates where the three present-day valleys merge (Fig. II-7), and it is not 

unlikely that a major ice confluence occurred at the same position during excavation 

of the GST. This position lies along the escarpment of the TJ (Figs. II-6, -7), an area 

of increased topography, where ice flow was again focused into a morphologically 

defined valley, which may have further accelerated flow velocity (see section 6.1.1; 

Hallet, 1979; Herman et al., 2015; Patton et al., 2016). An increase in erosion rate 

towards the SB could thus be achieved through increased ice flux and velocity alone. 

In addition to that, Yanites et al. (2017) attributed generally lower erosional 

resistance (to fluvial downcutting) to the Wildegg Fm. when compared to the 

«Malmkalk» (see also Pomper et al., 2017).   
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This is supported not only by their slope-forming and cliff-forming nature (see 

Fig. II-7), respectively, but also by our drill cores: In contrast to the «Malmkalk» , the 

Wildegg Fm. is occasionally soft or disintegrating (see also Laws & Deplazes, 2007), 

and in the GST infill its clasts are not preserved, except for individual soft fragments 

in the lowermost ~0.4 m of QUST. Finally, additional structural weakening of the 

bedrock below the SB can again not be excluded (see e.g. Haldimann et al., 1984, and 

faults mapped by Matousek et al., 2000). 

It should be noted that a potential narrow and steep-walled inner gorge (Dürst 

Stucki et al., 2012; Jansen et al., 2014; Montgomery & Korup, 2011) inside the GST 

could possibly not be imaged by our chosen methodology. This is due to the spacing 

of acquisition points, and due to the HVSR peak widening related to steeply inclined 

reflectors (Dietiker et al., 2018). The existence of such a gorge can thus not be 

excluded. Below the trough centre at line A (Figs. II-5, -S2A), the inconclusive log of 

a (destructively drilled) geothermal probe records unconsolidated sand to a depth 

slightly below 200 m a.s.l. With regard to our seismic measurements (which are in 

good accordance with Pietsch & Jordan, 2014), we interpret a singular gravel layer 

at 245 m a.s.l. as coarse-grained sediment at the base of the Gebenstorf-Stilli Trough, 

but a significantly deeper trough base is possible at this position. 

The morphology of the GST is in strong contrast to the Birrfeld Basin, from which it 

originates, and which is significantly wider (>3.5 km at 300 m a.s.l.; Figs. II-1, -2) and 

deeper (<150 m a.s.l.; Pietsch & Jordan, 2014). Aside from the differing dominant 

bedrock lithologies (Molasse vs. Mesozoic, respectively; Bitterli-Dreher et al., 2007; 

Jordan, 2010), this is likely a consequence of the position and multiphase origin of 

the Birrfeld. We suspect that the FJ had a damming effect on the Pleistocene ice 

advances into the foreland, with ice repeatedly accumulating, basal melt water flow 

concentrating, and subglacial erosion focusing just south of it (approx. at the local 

LGM; Bini et al., 2009). As a result, the Birrfeld Basin is composed of several inlaid 

basin generations (Graf, 2009; Jordan, 2010; Nitsche et al., 2001). The same effect 

could explain the widening of the terminal Seetal Valley overdeepening below the 

town of Rupperswil (Fig. II-1; Pietsch & Jordan, 2014). 
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Fig. II-7: Revised elevation model of the Gebenstorf-Stilli Trough (Loepfe et al., in prep.) 

with underlying bedrock geology, combining surface geological information (Graf et al., 

2006) with borehole data. 

6.2.2. Mechanisms of overdeepening erosion 

Our study reveals that the «Malmkalk» was relatively resistant to the subglacial 

erosion that excavated the trough (Fig. II-6). We infer this predominantly from the 

morphology of the GST that shallows abruptly upon reaching the limestone, and 

deepens again immediately after the limestone is breached.  
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Although the abundant stylolites and fault planes as well as karst features of the 

«Malmkalk» should have facilitated glacial erosion sensu stricto by quarrying 

(Dühnforth et al., 2010; Krabbendam and Glasser, 2011), this erosion process was 

apparently rather inefficient. Relatively low glacial erosion efficiency is further 

supported by the low percentage of locally derived limestone clasts in the basal 

coarse-grained trough infill: with exception of the lowermost few decimeters of 

QGBR and QUST, it is not significantly higher than in the Niederterrasse gravels at 

the top of the GST infill (Fig. II-4). In addition, the bedrock directly below the base 

of the GST, even where it is pervaded by paleokarst (Gegg et al., 2020), is generally 

intact without evidence for glaciotectonic crushing or shearing at the former ice-bed 

interface (Van der Wateren, 2002). Although the representativity of three boreholes 

is low, the absence of glaciotectonic structures indicates that ice-bed coupling, and 

therefore glacial erosivity, was limited at least during the final stage of the GST 

incision (Hart and Boulton, 1991; Lee and Phillips, 2013). This is a consequence of 

high basal water pressure at the glacier base (Piotrowski and Tulaczyk, 1999; 

Fischer and Clarke, 2001; Buechi et al., 2017), of which presumed hydrofractures 

within the paleokarst in QGBR provide additional record (Gegg et al., 2020).  

These observations support the idea that subglacial water played a crucial role 

during the excavation of the GST. Periodically, basal water flow must have been 

sufficiently high to strip debris off the glacier bed and evacuate it out of the 

overdeepening, in order to enable ongoing erosion (Alley et al., 1997, 2019; Cook 

and Swift, 2012; Buechi et al., 2017). This flushing appears to have been rather 

efficient, because little basal coarse-grained sediment is preserved in the GST 

(<10 m in QGBR and QGVO; Fig. II-4), and because large parts of this sediment are 

gravelly instead of diamictic, i.e. have been washed out or reworked. While the 

terminal (between lines G and H; ~1.6 °) as well as the internal adverse slope of the 

GST (between lines B and E; ~1.9 °) are comparatively steep (Table II-1), they 

obviously did not significantly impede the evacuation of water and sediment from 

the basin (cf. Hooke, 1991; Alley et al., 1997; Cook and Swift, 2012). Consequently, 

much steeper adverse slope sections exist within Swiss foreland overdeepenings 

(e.g. in the Lower Glatt Valley; Buechi et al., 2017; see also Pietsch & Jordan, 2014).   
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Our findings can be interpreted in order to support the idea that subglacial water 

was in fact the main driver of erosion of the GST (Dürst Stucki et al., 2010; Fiore et 

al., 2011; Dürst Stucki and Schlunegger, 2013). This would explain the resilience of 

the «Malmkalk», as its decimeter- to meter-scale fracture spacing could be too large 

to allow for plucking by fluid water (Whipple et al., 2000; Sklar and Dietrich, 2001). 

In contrast, subglacial erosion of sand- and siltstone (Molasse) and marl (Wildegg 

Fm., Molasse) was far more efficient in the GST (Fig. II-6; Ndiaye et al., 2014). 

Compared to the Villigen Fm. limestone, the rather poorly lithified Molasse, and 

likely also the locally soft or disintegrating Wildegg Fm., are more readily eroded 

grain-by-grain by flowing water. The build-up of elevated pore pressures above 

impermeable interbeds or above the lower-permeability «Malmkalk», and 

associated liquefaction (Janszen et al., 2012; Ravier et al., 2015; Wenau and Alves, 

2020), may have further enhanced erosion in these softer lithologies. 

Whether this presumed subglacial erosion by water occurs predominantly through 

the long-term steady flow of seasonal melt water (e.g. Mooers, 1989) or through 

catastrophic outburst of subglacial reservoirs (‘jökulhlaups’; e.g. Shaw, 2002) is 

subject to debate (Alley et al., 2019). Both models are conceivable in the case of the 

GST: In the study area, three major regional drainage routeways (Aare, Reuss, 

Limmat) with a combined present-day catchment area of over 17’500 km2 collide, 

capable of delivering vast amounts of meteoric and melt water. Additionally, it is 

conceivable that outburst events e.g. from the Birrfeld Basin could have released 

short-lived pulses of subglacial water (Fig. II-2B; Gegg et al., 2020).  
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7. Summary and conclusions 

With the aim of better constraining the morphology of the overdeepened 

Gebenstorf-Stilli Trough (GST), a seismic campaign employing surface wave analysis 

was conducted. The combined approach of active and passive measurements 

succeeded at imaging the trough base and, calibrated and complemented with 

borehole data, allowed us to develop a well-constrained model of the GST (Fig. II-7) 

that is currently being incorporated into an updated version of the Base of 

Quaternary model of northern Switzerland by Nagra (Loepfe et al., in prep.). The 

chosen methodology is therefore a well-suited and cost-effective approach for 

mapping overdeepened basins. 

Our results suggest that the trough morphology is considerably controlled by the 

underlying bedrock geology. Due to relatively high erosional resistance, resulting 

high relief and constrained ice flow conditions, the overdeepening is inner-Alpine-

like and narrow across the Folded Jura. In contrast, where it transitions into the 

weaker Molasse deposits further north, the GST becomes wider and more sinuous, 

similar to other foreland overdeepenings. The trough widening in the Molasse is 

interpreted as a consequence of less constrained ice flow but likely also of the 

underlying, more resistant «Malmkalk» (Jurassic limestone) rising towards the 

north. The trough shallowing culminates in a bedrock ridge whose top lies close to 

the lowest known Pleistocene base level (i.e. in non-overdeepened position). 

Further north, erosion depth increased again resulting in a second sub-basin. This 

is due to weaker marls underlying the trough, aided by ice flow being again 

topographically constrained and possibly increased due to glacier confluence. Thus, 

we propose that bedrock geology and ensuing topography exert substantial control 

on subglacial overdeepening erosion. In addition, we suspect that based on borehole 

data, the morphological complexity of overdeepenings may generally be 

underestimated. 
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The different resiliences to subglacial erosion together with a lack of evidence of 

glaciotectonism as well as the composition of the basal coarse-grained trough infill, 

which is poor in locally derived material, suggest that both glacial coupling and 

therefore glacial erosion sensu stricto, especially through plucking, was relatively 

inefficient in the GST. In contrast, the scarcity of well-preserved basal diamict, signs 

of subglacial hydrofracturing, as well as the paleoglaciological setting in general 

indicate that availability and pressure of basal water must have been periodically 

very high. This basal water played a significant role in overdeepening erosion, and 

we consider possible that it may have been its main driver. This would render the 

GST and other Alpine foreland overdeepenings analogs of tunnel valleys, as has 

previously been suggested.  

However, it would probably be an oversimplification to attribute any given 

overdeepening to exclusively glacial or melt water erosion. The subglacial incision 

process is likely more complex, and the dominant mechanisms time-dependant (e.g. 

glacial erosion during peak glacial conditions, and enlargement by melt water 

during deglaciation). It should be noted that studies investigating erosion by melt 

water and its geological controls are restricted to the subaerial environment.  The 

erosive impact of subglacial water on the overdeepened glacier bed is poorly 

understood, and should be targeted by future work. 
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9. Supplementary material 

Supplement 1:  Summary scheme of the pre-Quaternary stratigraphy of the study 

area (Fig. II-S1).  

Supplement 2:  Cross sections A to H, input data and interpretations (Fig. II-S2, 

A-H). Differences between seismic and drilled trough depth 

(Table II-S2).  

Supplement 3:  Sinuosities of distal foreland overdeepenings of Switzerland 

(Fig. II-S3).  

Supplement 4:  Structural survey of a major strike-slip fault in a «Malmkalk» 

outcrop (Fig. II-S4).  

 

 

Fig. II-S1: Summary scheme of the pre-Quaternary stratigraphy of the study area. 
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Fig. II-S2A: Cross section A, input data and interpretation. 
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Fig. II-S2B: Cross section B, input data and interpretation. 
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Fig. II-S2C: Cross section C, input data and interpretation. 
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Fig. II-S2D: Cross section D, input data and interpretation. 
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Fig. II-S2E: Cross section E, input data and interpretation. 
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Fig. II-S2F: Cross section F, input data and interpretation. 
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Fig. II-S2G: Cross section G, input data and interpretation. 
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Fig. II-S2H: Cross section H, input data and interpretation. 
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Table II-S2: Differences between seismic and drilled base of Quaternary (BQu) along the 

Gebenstorf-Stilli Trough based on drill logs from the borehole database of Nagra. Drilled 

values are marked with (?) if they are taken from logs that do not specifically identify the 

underlying bedrock, but the described lithology suggests its interpretation. 

Sect. Borehole type Distance 
[m] 

BQu [m a.s.l.] Diff. [m] 
seismic borehole 

A Exploration borehole 170 325.9 316.0 9.9 

A Geothermal probe 0 322.3 322.8 -0.5 

A Geothermal probe 65 246.0 244.0 (?) 2.0 

A Geothermal probe 0 373.3 377.0 -3.7 

A Geothermal probe 0 393.3 377.0 16.3 

B Exploration borehole 20 392.5 398.0 -5.5 

B Geothermal probe 35 326.3 313.2 13.1 

B Exploration borehole 0 326.5 311.8 14.7 

B Exploration borehole 55 324.7 316.4 8.3 

B Scientific borehole QGBR 0 257.4 225.8 31.6 

B Exploration borehole 90 301.9 323.5 -21.6 

B Geothermal probe 55 335.1 349.0 -13.9 

C Exploration borehole 40 311.3 315.2 -3.9 

C Exploration borehole 85 307.1 312.7 (?) -5.6 

C Geothermal probe 20 369.1 362.0 7.1 

D Scientific borehole QGVO 30 264.1 266.1 -2.0 

D Exploration borehole 0 324.0 317.7 6.3 

E Exploration borehole 50 311.9 319.9 -8.0 

F Geothermal probe 30 332.1 331.0 1.1 

F Geothermal probe 70 331.2 326.0 5.2 

F Geothermal probe 90 327.0 314.0 13.0 

F Exploration borehole 30 345.4 338.6 6.8 

F Geothermal probe 70 344.7 336.0 8.7 

F Exploration borehole 25 345.4 342.5 2.9 

G Exploration borehole 35 341.0 330.1 10.9 

G Exploration borehole 160 326.6 310.7 (?) 15.9 

G Exploration borehole 25 323.2 305.1 (?) 18.1 

G Scientific borehole QUST 0 276.0 255.2 20.8 

G Scientific boreh. (seism. survey) 155 296.4 291.0 3.4 

G Exploration borehole 140 321.6 312.2 9.4 

H Scientific boreh. (seism. survey) 25 321.0 315.3 5.7 

H Exploration borehole 175 320.4 324.0 (?) 3.6 

H Exploration borehole 0 326.6 318.2 (?) 8.4 

average -7.2/+9.8 
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Fig. II-S3: Sinuosities of major distal foreland overdeepenings of Switzerland. Note that the 

sinuosity of the central GST segment (zoom-in; S = 1.06) is similar to other Molasse-hosted 

overdeepenings. 

  



87 

 

Fig. II-S4: Structural survey of a «Malmkalk» outcrop (notheastern slope of Scherzberg; 

47°26′43″ N, 8°10′40″ E) exposing a major strike-slip fault (red line on A; panoramic 

photograph not to scale with B). We observe no increased frequency of (striated) fractures 

in vicinity of the fault at 19 m along the outcrop wall (B). Two groups of fractures occur, one 

with orientations similar to the major fault (100/85, red line), one with orientations of 

~230/80 (C). D: Zoom-in on the core of the fault. E: Zoom-in on striated fracture plane (ruler 

is in centimetres).  
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Glacially overridden karstified limestone at The Burren (County Clare, Ireland). 
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III. A closer look into the subglacial environment 

This chapter presents brecciation features in karstified limestone underlying the 

overdeepened Gebenstorf-Stilli Trough. These brecciation features and their 

sedimentary infill are examined in detail, and interpreted as products of subglacial 

hydrofracturing, thus providing an insight into the hydrological conditions at the 

glacier bed. The manuscript has been published in Boreas 49/4 as  

 

Gegg, L.1, Buechi, M. W.1, Ebert, A.2, Deplazes, G.3, Madritsch, H.3, 

and Anselmetti, F. S.1, 2020, Brecciation of glacially overridden 

palaeokarst (Lower Aare Valley, northern Switzerland): result of 

subglacial water‐pressure peaks? (DOI 10.1111/bor.12457). 
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1. Abstract 

Water pressures at the base of active glacial overdeepenings are known to fluctuate 

strongly on various timescales. Rapid peaks in basal water pressure can lead to 

fracturing of the glacier bed, a process that has been described at numerous sites 

around the world, mostly based on large hydrofracture systems. This article 

presents drill cores from the base of a >100 m deep glacial overdeepening in the 

Lower Aare Valley in northern Switzerland that were investigated with high-

resolution imaging (including X-ray computed tomography) as well as 

compositional and microstructural analysis. The drill cores recovered Jurassic 

limestones hosting palaeokarst voids infilled with blue clay. We identify this clay, 

based on its kaolinitic composition, as siderolithic Bolus Clay but in a rather atypical 

variety formed under reducing conditions. The surfaces of the palaeokarst walls 

show smoothly undulating as well as brecciated sections with form-fit interlocking 

clasts, which are the result of an in situ brecciation process. We discuss the origin of 

these particular fractures and argue that they are not related to (glacio-)tectonics or 

frost action. Instead, we favour an explanation by water pressure peaks that were 

transmitted to the void walls by the clayey karst filling, resulting in hydrofracturing. 

In addition to pervasive karstification and tectonic overprinting, this water 

pressure-driven fracturing may have assisted the deep incision of the 

overdeepening into the rheologically competent bedrock.  
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2. Introduction 

A common feature of regions currently or previously covered by ice masses are 

glacial overdeepenings (Linton, 1963; Preusser et al. 2010; Patton et al. 2016). 

These are troughs eroded deeply into the substratum by debris-laden ice and water, 

often several hundred metres below the surface and the local base level. They are 

confined at all sides, with an adverse distal slope as a distinct characteristic and 

therefore have strong implications for the drainage system of an overlying glacier, 

allowing for diverse water pathways, subglacial ponding of large water volumes and 

possibly partial floatation of the glacier (Cook & Swift 2012). Consequently, basal 

water pressures can fluctuate strongly and rapidly with peak values reaching 

multiples of the local ice overburden pressure (Kavanaugh & Clarke 2000; Cook et 

al. 2006; Cook & Swift 2012). Ultimately, abrupt pressure peaks can result in 

rupturing of the glacier bed by subglacial hydrofracturing. Such processes have been 

identified and described in presently and previously glaciated areas around the 

world (Larsen & Mangerud 1992; van der Meer et al. 2009), including examples 

dating back to the Paleozoic (Ravier et al. 2014). Subglacial hydrofracturing is most 

frequently recognised in glacial sediments; examples in solid bedrock exist but have 

only rarely been described (Meehan et al. 1997; Lloyd Davies 2004; Phillips et al. 

2013). Due to its higher tensile strength, fracturing of bedrock requires water 

pressures significantly higher than those needed for fracturing of unconsolidated 

sediment (Phillips 1972; Cosgrove 1995; Broughton 2018), and thus its record 

provides an insight into extreme conditions at the glacier base. 

This study presents surficial brecciation features encountered in the void walls of a 

sediment-filled palaeokarst from the Lower Aare Valley in the Swiss Alpine foreland. 

Based on high-resolution imaging together with compositional and microstructural 

data, we discuss the origin of the observed structures and argue that they are 

possibly the result of peaks in subglacial water pressure.  
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3. Study area 

Our study area is located in northern Switzerland, at the eastern margin of the WSW-

ENE trending Jura mountains subdivided into the Jura fold-and-thrust belt and the 

northward adjacent Tabular Jura (Fig. III-1). Situated about 50 km northwest of the 

Alpine front, the Jura mountains are built up by Mesozoic sediments deposited on 

an epicontinental platform. In the study area, a diverse succession of carbonates, 

marls and siliciclastics dating from Triassic to Jurassic is exposed, with Upper 

Jurassic rocks (Malm) prevailing at the surface (Bitterli et al. 2000; Bitterli-Dreher 

et al. 2007): These are grey calcareous marl and limestone sequences of the Wildegg 

Fm. and overlying light-coloured micritic limestones of the Villigen Fm. In the Early 

Paleogene, the study area was uplifted on the forebulge of the approaching Alpine 

orogeny, which led to erosion and karstification of the Mesozoic carbonate plateau, 

while further south the Molasse Basin formed (Pfiffner 1986; Burkhard & 

Sommaruga 1998; Bitterli-Dreher et al. 2007). Karstification occurred mostly 

during Eocene times, when subtropical climate conditions prevailed and siderolithic 

deposits (formerly Bohnerz Fm.) developed from soil and limestone dissolution 

residues – a process that locally continued until the Miocene (Baumberger 1923; 

Hofmann 1991; Hofmann et al. 2017). These deposits consist of kaolinitic clay 

frequently referred to as “Bolus Clay” and may contain iron pisoliths and quartz sand 

(Baumberger 1923; Hofmann 1967). In Oligocene-Miocene times, Molasse 

sediments started to accumulate in the study area, with fine- to coarse grained 

clastics of the Lower Freshwater, Upper Marine, and Upper Freshwater Molasse 

(Berger et al. 2005; Bitterli-Dreher et al. 2007). The deposition ended in Late 

Miocene when the Jura fold-and-thrust belt was formed by thin-skinned 

deformation above an evaporitic decollement horizon (Laubscher 1962; Burkhard 

1990). 
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Fig. III-1. Map of the study area displaying the position of the drillsite QGBR (47.4832° N, 

8.2364° E), LGM ice extent, surface geology (simplified), and the position of the Gebenstorf-

Stilli Trough as marked by thick Quaternary sediments. The inset on the left shows the 

regional geological context and the red rectangle indicates the study area at the eastern end 

of the Jura mountains. 
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During the Pleistocene, the study area was affected by a number of advances of 

Alpine glaciers (Graf 2009; Preusser et al. 2011). At the confluence area of the rivers 

Aare, Reuss and Limmat, the elongated Gebenstorf-Stilli Trough formed, a finger-

like glacial overdeepening extending northward from the bowl-shaped Birrfeld 

Basin (Bitterli-Dreher et al. 2007; Fig. III-1). This 10 km-long trough has been 

incised into the Jura mountains by subglacial erosion, and reaches a depth of 

~100 m below surface or 80 m below the lowest Pleistocene base level (300 m a.s.l.; 

Graf 2009). The overdeepened part of the trough below this base level does not 

exceed 800 m in width (Pietsch & Jordan 2014). The contrast in cross-section from 

the wide Birrfeld Basin in the south (Nitsche et al. 2001) towards the steeper and 

narrower Gebenstorf-Stilli Trough in the north is interpreted as a result of changing 

bedrock lithology from rather soft, poorly lithified Molasse sandstones towards the 

more resistant limestones and marls of the Jura mountains (Bitterli-Dreher et al. 

2007). The Gebenstorf-Stilli Trough lies outside the local LGM glacier extent and was 

presumably eroded during the late Middle Pleistocene (Bitterli-Dreher et al. 2007; 

Graf, 2009). Today, the trough is infilled with sediment.  

Erosive glacial overdeepening below the local base level requires that the adverse 

slope of the overdeepened basin does not exceed 1.2-1.7 the ice surface slope, as 

otherwise the ascending water will freeze and prevent flushing of the eroded 

material from the overdeepening (Hooke, 1991; Alley et al. 1997; Cook & Swift 

2012). Hence the glacier ice must have towered considerably above the ground 

surface during the Gebenstorf-Stilli Trough formation, with more than 150 m of ice 

overlying the bedrock at the study site. The most elevated glacial deposits in the 

study area lie ~600 m a.s.l. (Graf et al. 2006; Bitterli-Dreher et al. 2007), 

corresponding to a maximum ice thickness of more than 350 m above the base of 

the Gebenstorf-Stilli Trough. The position of the study site, 18 km inward from the 

ice margin during the most extensive Möhlin Glaciation (Keller & Krayss 2010; 

Preusser et al. 2011), allows for an alternative estimation. LGM ice surface 

reconstructions give an average glacier thickness of ~350 m at the corresponding 

position (Jäckli 1970; Keller & Krayss 1993; Bini et al. 2009), suggesting a maximum 

possible ice thickness of ~450 m above the bottom of the Gebenstorf-Stilli Trough 

during the Pleistocene.  
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4. Methods 

4.1. Core recovery and initial description 

The borehole QGBR (Gegg et al. 2019) is located in the southern part of the 

Gebenstorf-Stilli Trough on the eastern bank of the river Reuss (47.4832° N, 

8.2364° E; Fig. III-1). It was drilled in summer 2018 in context of the Quaternary 

investigation program of the Swiss National Cooperative for the Disposal of 

Radioactive Waste (Nagra). Target of this borehole was the infill of the glacially 

overdeepened Gebenstorf-Stilli Trough as well as the uppermost ~10 m of the 

bedrock. The 10 cm diameter bedrock cores, focus of this study, were drilled by 

wireline using a triple-tube core barrel where the core is protected by a plastic liner. 

A borehole geophysical survey recorded natural gamma ray measurements and an 

acoustic borehole image. 

The cores were analysed at the Institute of Geological Sciences, University of Bern 

(IfG, UniBe) with a Geotek multi-sensor core logger (MSCL), which recorded bulk 

density by gamma attenuation, p-wave velocity and magnetic susceptibility in a 

5 mm depth-resolution. X-ray computed tomography (CT) scans were acquired at 

the Institute of Forensic Medicine of UniBe and visualised using the freeware 

programs 3D Slicer (www.slicer.org; Kikinis et al. 2014) and ImageVIS 3D 

(www.sci.utah.edu/software/imagevis3d; Fogal & Krüger 2010). Detailed 

lithological and structural descriptions were carried out, including high-resolution 

core photography recorded with a line-scan camera.  

4.2. Geochemical and mineralogical analysis 

Bulk samples comprising typically ~40 g of material were collected for geochemical 

and mineralogical analysis. Total organic and inorganic carbon (TOC/TIC) were 

determined by combustion of small (few mg) sample amounts and analysis of the 

combustion gas in a thermal conductivity detector, and TIC was converted to CaCO3 

content by multiplying with a stoichiometric factor of 8.33. 
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Mineralogical compositions were determined by x-ray diffraction, with bulk and 

clay mineralogy being measured in two separate approaches. For bulk mineralogy, 

two dried and powderised samples were spiked with Al2O3 powder as an internal 

standard and pressed into sample holders. The measurements of bulk mineralogy 

were taken with an X’Pert PRO diffractometer (Cu tube, 45 kV, 40 mA, 5°–75° 2θ). 

The mineralogical composition was determined by a semi-automatic Rietveld 

refinement in HighScore Plus.  

Clay mineralogy was determined from a set of seven oriented samples which were 

prepared by pipetting a few drops of a clay suspension obtained by Atterberg 

separation onto glass plates. The glass plates were left to dry and then placed in an 

ethylene glycol atmosphere at 50 °C for at least 24 h in order to saturate swellable 

clay minerals within the sample. Additional oriented samples were heated to 550 °C 

for at least 1.5 h in order to remove kaolinite and check for the presence of chlorite. 

Measurements were taken with a Philips PW1830 (Cu tube, 40 kV, 30 mA, 2°–

40° 2θ), and clay mineral abundances were calculated from relative peak intensities 

(smectite at ~5.2° 2θ, illite at ~8.8° 2θ, kaolinite at ~12.5° 2θ). We employed the 

100%-approach with in-house mineral intensity factors, thus the absolute results 

should be treated with caution (Kahle et al. 2002). Trace minerals were identified 

with the scanning electron microscope (SEM) at IfG. 

4.3. Thin section and microscopic analysis 

Despite the fragility of the limestone breccia we succeeded in producing a thin 

section ~2.5 cm in diameter. The sample was collected from the wall of a karst void 

at the edge of the core at 112.59 m depth. The breccia consists of limestone 

fragments between 2 and 10 mm embedded in blue clay. The sample was evacuated 

and impregnated with epoxy before being horizontally cut and ground. Finally, the 

section was polished with 6 and 3 μm diamond paste. Thin-section analysis was 

done with an Olympus BX41 microscope with attached SC30 camera. Additionally, 

one bulk sample (114.98 m depth) was used for palynological screening. 
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5. Results 

5.1. Stratigraphy and macroscopic description 

The borehole Gebenstorf-Brüel (QGBR) terminated at a depth of 123.5 m. The 

Pleistocene infill of the overdeepening below an anthropogenic refill (0.0-8.0 m 

depth) comprises glaciofluvial gravels (8.0-23.6 m) underlain by glaciodeltaic 

or -lacustrine sands (23.6-108.8 m) and glacial till (108.8-111.5 m) (Fig. III-2; Gegg 

et al. 2019). The bedrock was reached at 111.5 m depth and it consists of massive, 

light olive- to yellowish-grey micritic limestones of the Villigen Fm. of early Late 

Jurassic age (Oxfordian - Kimmeridgian; Bitterli et al. 2000). The transition from the 

till to the underlying bedrock is marked by a sharp decrease in the natural gamma 

log and magnetic susceptibility, and an increase in bulk density (Fig. III-2; Gegg et al. 

2019). Several macrofossils, possibly sponges, and dark nodules with diameters of 

up to 2 cm were observed, as well as frequent stylolites in varying orientations 

ranging from horizontal to vertical. 19 faults were logged along the 12 m bedrock 

core section, 15 of which could be correlated to faults detected on the acoustic image 

of the borehole wall allowing for orientation measurements. 14 of these faults dip 

towards southeast with dip angles between 5° and 31°, and one dips westwards at 

an angle of 17° (Fig. III-2). The five non-correlated faults have dip angles between 

5° and 45°.  

The intervals 111.5-119.8 m and 121.0-121.5 m are penetrated by a 3D network of 

few millimetre- to several centimetre-wide interconnected voids identified as 

palaeokarst features. In the description of these features, we do not differentiate 

between incipient dissolution features, conduits or cavities, but simply refer to them 

as karst voids. The voids are filled with clayey sediment and angular limestone clasts 

up to fine gravel-size range. When fresh, the clayey matrix has a distinct turquoise 

blue colour – with some olive patches – that fades upon oxidation to blueish green 

and later to greenish or blueish grey (Fig. III-3). The filling displays a scaly fabric 

(Maltman 1994) that appears strongly consolidated and breaks in shards with shiny, 

slickenside-like surfaces. Palynological screening did not reveal any pollen within 

the clay.  
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Fig. III-2. Overview plot of the 12.5 m bedrock section at bottom of the borehole QGBR (total 

depth 123.5 m) in the local stratigraphic context. Core photograph and X-ray CT image 

column (low-density material (palaeokarst filling) is light blue, high-density material 

(limestone) is black) are horizontally stretched by a factor of ~5. Dip direction of faults is 

given where correlation with ABI is possible. Gamma density is displayed as 20 cm moving 

average (black) and raw data (grey). 
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Two different void wall morphologies can be observed: i) smoothly undulating void 

walls with rough dissolution surfaces coated by a fine layer of dark brown clay (e.g. 

112.5-112.9 m; Fig. III-3B); and ii) surficially brecciated void walls, with clayey 

filling material intruding into the fractures (e.g. 111.6-111.8 m; Fig. III-3C). In 

several places (e.g. 111.6-111.7 m), the fragments of the resulting limestone breccia 

are form-fit and interlocking, with only a narrow clay layer in between. Limestone 

fragments are usually limited to a few cm-wide zone around angular, fractured 

sections of the rock wall, no ‘free-floating’ clasts are observed in the larger cavities. 

In addition, we observe narrow (below 1 cm), sometimes branching fractures filled 

with angular host rock fragments and no or little clay extending from wider voids 

into the limestone (e.g. 116.1-116.3 and 118.4-118.8 m; Fig. III-3D).  

5.2. Mineralogy and geochemistry of the palaeokarst filling 

Bulk X-ray diffraction data of two samples (112.48 and 116.35 m depth) show that 

the void filling in borehole QGBR consists of ~85% clay minerals with some quartz 

(~10%) and calcite (up to 5%). The latter is in agreement with geochemical (TIC) 

data. The clay mineralogical composition is dominated by kaolinite (~60-80%) with 

some illite and smectite (Fig. III-2, Table III-S1). Minor amounts of chlorite could be 

detected in all samples. Furthermore, few autigenic baryte crystals were identified 

in the SEM. TOC contents range between 0.1-0.2%. 
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Fig. III-3. Palaeokarst voids: infill and wall morphologies. Note drilling-related surface 

grooves on the limestone surfaces. A. Photograph of the fresh core. Note the prominent blue 

colour of the clayey palaeokarst filling. Inset: dried filling broken into shards. B. Smoothly 

undulating void walls (112.5-112.8 m depth; left: core photograph, right: CT image, low-

density material (clay filling) is light blue, high-density material (limestone) is 

transparent/black). Note the dark clay coating on the wall surfaces (inset). C. Brecciated 

void wall surfaces (111.6-111.8 m depth; left: core photograph, right: CT image). D. Narrow 

fractures filled with angular host rock fragments but only little clay (116.2-116.4 m depth; 

top: core photograph, bottom: CT image). 
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5.3. Microstructures  

Microscopic analysis of the horizontally oriented thin section at 112.59 m depth 

confirmed that the breccia-like material at the palaeokarst wall consists of limestone 

with vein-like fractures, which not always can be distinguished from narrow karst 

voids, filled with clayey sediment. These randomly oriented features can be as 

narrow as few 10s of micrometres. Their infill consists of a light, clayey matrix, few 

sand grains and occasionally larger clasts, which are frequently form-fit 

interlocking. The clasts consist of limestone not distinguishable from the host rock 

(Fig. III-4A). The limestone bedrock contains stylolites, one of which was observed 

to gradually widen and transition into a lighter clay-filled fracture/void as described 

above (Fig. III-4B). The sediment within the fractures/voids is vaguely undulatory 

laminated parallel to their margins, and diffuse lobate structures are observed in a 

~1 mm wide fracture/void (Fig. III-4C, D). Under crossed polarisers, optical 

anisotropy within the clay filling is evident (Fig. III-4E). 
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Fig. III-4. Microstructures in karstified limestone of QGBR (horizontally oriented thin 

section at 112.59 m depth). A. Palaeokarst void/fracture infilled with interlocking 

limestone fragments embedded in Bolus Clay. B. Transition of stylolite (dashed) into clay-

filled void/fracture. C. Diffusely laminated Bolus Clay filling of void/fracture. D. Lobate 

microstructures (‘ball-and-pillow structures’, Maltman 1994; ‘drip structures’, van der 

Meer et al. 2009) in the filling of a larger void/fracture. E. Optical anisotropy of the clayey 

infill under crossed polarisers (black lines are cracks related to the preparation process). 



108 

6. Discussion 

6.1. Origin of the karst void infill 

A number of possible origins for the clayey material infilled into palaeokarst voids 

in the drill cores are tested by comparing the clay-mineral compositions to reference 

samples (Table III-S1). These include i) reworked Molasse deposits, which may 

show a variety of bright colours including greenish and blueish tones (Bitterli-

Dreher et al. 2007), ii) infiltrated or injected subglacial till, and iii) pure insoluble 

residue from limestone dissolution. These reference materials have clay-mineral 

compositions dominated by illite, which agree with various analyses reported in 

literature (e.g. Peters 1969; Schmidt-Kaler & Salger 1986; Hofmann 1991; Schegg & 

Leu 1996), but are very different from the kaolinite-rich karst fillings observed in 

QGBR. Therefore, we rule out a Molasse as well as subglacial or pure residual origin 

of the karst fillings. 

Illite-dominated clay mineral compositions are typical for sediments originated by 

prevailing physical erosion, as would be expected e.g. under a cold (Pleistocene) 

climate, while high abundances of kaolinite and smectite point to intense chemical 

weathering under warm conditions (Weaver, 1989; Chen et al. 2019). Palaeokarst 

voids in the Alpine foreland are frequently infilled with siderolithic sediments. 

These are of Eocene, possibly up to Miocene, age and developed from Terra Rossa-

type soil formations under a subtropic climate as well as limestone dissolution 

residues (Baumberger 1923; Hofmann 1967; Hofmann et al. 2017). They consist of 

mostly kaolinitic Bolus Clay (“Boluston”) with concentric iron oxide pisoliths 

(“Bohnerze”) and some detrital quartz sand (Hofmann 1967; Hofmann 1991; 

Bitterli-Dreher et al. 2007). Two reference samples of Bolus Clay from borehole 

Bülach-1-1 (47.5427° N, 8.5204° E, 22 km E of QGBR) show clay mineral 

compositions of ~60% kaolinite and 40% of illite, and 5% of smectite in one of the 

samples (Table III-S1) – values that are similar to those of the karst filling in QGBR.  
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While typical Bolus Clay is Fe- and Al-rich and has a prominent ochre or red colour 

(Hofmann 1991; Bitterli-Dreher et al. 2007; Hofmann et al. 2017; see also Fig. III-6), 

in boreholes and especially in contact with limestone, blueish or green varieties of 

the Bolus Clay have been encountered (Hofmann 1967; Lemcke et al. 1968; Matter 

et al. 1988a; Matter et al. 1988b).  

In the case of Nagra borehole WEI-1 near Weiach (18 km NE of QGBR), a downcore 

colour change of the Bolus Clay from ‘typical’ ochre towards blue-green is evident 

(Matter et al. 1988a). This evolution coincides with a change in clay mineralogy from 

almost pure kaolinite towards 65-70% kaolinite and 30-35% smectite (Matter et al. 

1988a). Sediment petrography as well as clay mineral composition of the blueish 

Bolus Clay thus agree well with our palaeokarst fillings. We interpret the latter to 

consist of Bolus Clay in a blue-green variety.  

The blue-green variety of the Bolus Clay is characterised by the absence of iron 

pisoliths in QGBR as well as in other boreholes (e.g. Lemcke 1955; Matter et al. 

1988a). Instead, minor amounts of pyrite may be present (Lemcke 1955; Matter et 

al. 1988a). Further mineralogical data of the borehole Weiach show that goethite 

constitutes ~10% of the typical Bolus Clay but is not detectable within the blue-

green clays (Nagra, unpubl.). The downcore development from typical ochre 

towards blue-green Bolus Clay therefore appears to involve the removal of iron 

oxides as well as the formation of smectite, likely under reducing conditions (cf. 

similar reduced clays in modern cave sediments of Papua New Guinea; Gillieson 

1986). The smectite may act as an iron sink and could be the source of the distinct 

colour of the clays (Kohyama et al. 1973). The absence of iron minerals in the blue 

Bolus Clay also explains the generally low signal levels in magnetic susceptibility of 

the QGBR bedrock cores with only slightly increased values at larger karst voids 

(Fig. III-2). 

The lowermost two Quaternary till samples of QGBR (110.94 and 111.04 m depth) 

show a very similar, kaolinite-dominated clay mineral composition. This, together 

with the olive-blue colour of the till matrix in the lowermost 50 cm, is interpreted as 

a result of incorporation of Bolus Clay into the till, probably due to subglacial erosion 

of karstified and Bolus Clay-filled limestone, and not as a result of the mobilisation 

and injection of till into the karst fillings.  
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This is supported by the uniformly low carbonate content of the Bolus Clay 

throughout the core, which is significantly lower than in the till (up to 5% and ~35%, 

respectively; see Fig. III-2). An insertion of till into the void filling would be visible 

by increased carbonate contents in the upper samples. Also, clasts of lithologies 

different from the karstified limestone are frequent in the till, but do not occur 

within the Bolus Clay. 

6.2. Process of limestone brecciation  

6.2.1. Non-sedimentary origin of the breccia  

In the palaeokarst in QGBR we observe a combination of smoothly undulating wall 

rock morphologies and zones of brecciated host rock as well as limestone fragments 

embedded in the Bolus Clay filling. While sedimentary breccias with locally derived 

clasts are commonly deposited in karst voids or caves (Ford & Williams 2013), the 

breccia in QBR cannot be explained by a simple depositional process. Here, 

limestone clasts are in most cases restricted to a few centimetre-wide zone around 

angular, fractured sections of the palaeokarst wall but neither concentrated at the 

bottom, nor in horizontal layers within voids, as would be expected in a sedimentary 

karst breccia (e.g. Guendon 1984: photo 1). ‘Free-floating’ isolated clasts are absent 

within larger voids, which indicates that the palaeokarst filling originally consisted 

of well-sorted pure Bolus Clay without larger fragments. The observations point 

towards rock-wall fracturing after infilling of the karst voids resulting in the 

formation of an in situ-breccia. We frequently observe form-fit interlocking clasts 

which at several places can be pieced together via 2D slices of the CT scans and fit 

into breakouts of the void wall (Fig. III-5), which supports the idea that they are 

commonly derived from the rock wall that has been brecciated in situ. Additionally, 

the smoothly undulating, unbrecciated void walls are coated by a thin layer of dark 

brownish clay, which we interpret as a primary feature developed during 

karstification. This layer neither occurs on the brecciated surfaces nor on the 

limestone fragments embedded in the Bolus Clay, suggesting that these surfaces are 

younger than the unbrecciated palaeokarst walls. 
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6.2.2. Tectonic deformation 

In the 12 m long bedrock core section of QGBR a total of 19 faults were logged with 

remarkably uniform shallow dips towards southeast (Fig. III-2). This speaks for 

their interpretation in the context of the Jura fold-and-thrust belt formation and is 

consistent with observations of outcropping corresponding limestones in the area 

(Madritsch 2015). This tectonic preconditioning likely facilitated the incision of the 

Gebenstorf-Stilli Trough and potentially played a role in the limestone brecciation 

observed in the drill cores. Despite the frequent occurrence of faults, the bedrock 

does however not appear strongly tectonised. While the karst wall surfaces are 

locally intensively brecciated, the larger-scale structure of the palaeokarst is intact. 

Evidence for major deformation of the karst walls and infill is lacking, e.g. clasts 

aligned in bands indicative of localised shearing (Lloyd Davies 2004). The 

distribution of limestone fragments in close vicinity to the palaeokarst walls, as well 

as the possibility to piece adjacent clasts together, further suggests that only limited 

clast dislocation and Bolus Clay deformation occurred during or after the 

brecciation of the karst wall surfaces. Also, in contrast to the observed bedrock 

faults, the surficial fractures in the karst void walls show no preferred orientation 

(e.g. Fig. III-3C).  

More heavily tectonised Bolus Clay was recently recorded in Nagra borehole 

Bülach-1-1 (47.5427° N, 8.5204° E). It was drilled 22 km E of QGBR in a comparable 

position north of the Jura fold-and-thrust belt and dissected a gently dipping thrust 

fault branching off a complex E-W striking triangle zone (Malz et al. 2016; Nagra 

2019). At a depth of over 500 m, Bülach-1-1 recovered Bolus-Clay-filled palaeokarst 

with large-scale shear planes, mirror-like faults and planar (fault-bound) contacts 

between rock wall and karst filling as well as large angular, but hardly form-fit 

limestone fragments dispersed in the Bolus Clay and partly aligned in bands 

(Fig. III-6). In contrast, brecciated karst wall surfaces that are abundant in QGBR 

were rarely encountered in Bülach-1-1.  
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Fig. III-5. Limestone with palaeokarst, vertical 2D slice of a CT scan at ~112.5 m depth (left). 

The limestone can be distinguished well from the palaeokarst infill (middle). Note 

fragments of limestone embedded within the Bolus Clay (red outline). These fragments can 

be pieced back together and fit into breakouts of the wall rock (right), giving an impression 

of the void wall prior to brecciation.  

 

Fig. III-6. Indicators of strong tectonic overprinting of karstified, Bolus Clay-filled limestone 

in Nagra borehole Bülach-1-1. Left: fragments aligned in discrete band indicative of 

shearing (541.3-541.5 m depth). Middle: Larger palaeokarst void with dispersed, non-form-

fit fragments and dissected by a fault (arrow; 549.8-550.0 m). Right: Fault plane with calcite 

mineralisation (arrow, 550.8-551.0 m). Photograph courtesy of Nagra.  
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Considering the deformation features in Bülach-1-1 we argue that the small-scale 

brecciation encountered in QGBR is not due to the comparatively mild tectonic 

deformations observed here. Instead, the brecciation of the karst void walls is 

regarded as the result of a secondary deformation process that occurred 

independently from tectonic structures, but not independently from the karst voids. 

6.2.3. Glaciotectonism 

Planar shearing under overriding glacier ice can produce abundant brecciation 

features, as presented by Passchier et al. (1998) in glacial sediments from borehole 

CRP-1 at Roberts Ridge, Antarctica. CRP-1 recovered several brecciated intervals 

that contain a variety of breccia types commonly separated by sharp horizontal 

boundaries (Passchier et al. 1998). In contrast, in QGBR the style of brecciation is 

uniform but without a preferred orientation suggesting an undirected underlying 

process. The breccias in CRP-1 also span the entire core width and thus appear to be 

more laterally extensive than in QGBR, where the brecciation originates from the 

sediment-filled palaeokarst voids and does not reach further into the limestone than 

a few centimetres. We thus infer that the brecciation features in QGBR are not the 

result of glaciotectonism caused by subglacial shearing of the karstified limestone. 

Also, a glaciotectonic origin of the faults observed in QGBR is unlikely, as such faults 

would be expected to dip steeply into the flow direction, i.e. towards north (Van der 

Wateren, 2002; Lloyd Davies, 2004). 

6.2.4. Frost action 

Freezing of water results in a volume increase by almost 10%, which can lead to 

pressure build-up and fracturing in porous rocks. Subglacial overdeepening erosion, 

in contrast, occurs where the glacier is warm-based, either by debris-laden ice 

sliding over its bed, or by subglacial meltwater (Dürst Stucki & Schlunegger 2013). 

Below warm-based glaciers, a water film is generated by pressure melting at the 

stoss side of irregularities in the bed (Weertman 1957, 1964). At the lee side of these 

irregularities, it can regelate. However, the regelation of water from this sub-

millimetre thick film (Hallet 1979) may induce some traction and shearing of the 

bed, but likely not brecciation several metres below the bed surface.  
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With permafrost reaching as deep as 150 m into the bedrock during Pleniglacial 

conditions (Delisle 2003; Haeberli 2010), a temporary entire freezing of the 

karstified limestone in QGBR, while improbable, cannot completely be excluded. 

However, it is unlikely that this freezing could have resulted in frost bursting of the 

rock by volume expansion. To be extensive, this process demands rapid freezing so 

that pore pressures cannot be relieved by the migration of pore water (Matsuoka & 

Murton 2008) and a large number of freeze-thaw cycles (Potts 1970). Both is 

implausible under more than 150 m of glacier ice, where the rock is well insulated 

and thermally buffered. The same is true for rock fracturing by ice segregation and 

ice lens growth (Hallet et al. 1991; Murton et al. 2006; Matsuoka & Murton 2008) 

which is possible only if a threshold overburden pressure is not exceeded. This 

threshold overburden pressure is ~80 kPa in the idealised model case (Rempel, 

2007), which corresponds to an ice thickness of less than 10 m. 

6.2.5. Water pressure-driven brecciation 

In order to explain the surficial brecciation features in the palaeokarst walls of 

Gebenstorf-Brüel, we favour fracturing driven by subglacial water pressure, which 

may be regarded as hydrofracturing in the widest sense and at a small (centimetre-

decimetre) scale. Subglacial water pressures below warm-based glaciers are known 

to fluctuate on a number of timescales reaching values that exceed ice overburden 

pressure by a factor of up to 15, even in non-overdeepened settings (Kavanaugh & 

Clarke 2000). The build-up of high pressures is facilitated especially if water cannot 

escape from the subglacial drainage system. This is possible either if the subglacial 

drainage system is very inefficient or if the glacier front is frozen to the ground at 

the margin of the proglacial permafrost (Boulton & Caban 1995; Cook & Swift 2012). 

A rapid increase in subglacial water volume and pressure is possible e.g. during a 

jökulhlaup further up in the drainage area (Roberts et al. 2000; Stumm 2010). A 

potential source for a large meltwater outbreak could be the Birrfeld Basin just few 

kilometres south of the drill site (Fig. III-1). However, even without catastrophic 

events, basal water pressures have been shown to fluctuate considerably with 

distinct daily peaks during the melting season (Harper et al. 2002; Fudge et al. 

2008).  
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If such water pressure peaks exceed the sum of overburden and tensile strength of 

the bedrock – or overburden only, if pre-existing bedrock fractures can be 

reactivated – brittle deformation can occur, typically as (subglacial) hydrofracturing 

(Cosgrove 1995; Boulton & Caban 1995; Rijsdijk et al. 1999; Jolly & Lonergan, 2002). 

Subglacial hydrofracturing has been described in numerous places around the 

world, most frequently in glacial sediments, but it also occurs in solid bedrock, 

where highest water pressures are required (Meehan et al. 1997; Lloyd Davies 2004; 

Phillips et al. 2013; Broughton 2018). Hydrofracture systems can extend over 

several tens of metres (Kumpulainen 1994; Phillips et al. 2013; Phillips & Hughes 

2014). The fractures can be several decimetres to few metres wide and are in most 

cases filled by sediment that is laminated parallel to the fracture walls (Larsen & 

Mangerud 1992; Rijsdijk et al. 1999; van der Meer et al. 2009). Complex internal 

structures with laminae of different grain sizes that may be graded or cross-bedded 

suggest that hydrofracture systems are regularly open for a prolonged time with 

sustained, but fluctuating water through-flow (Phillips et al. 2013; Phillips & Hughes 

2014).  

During erosion of the Gebenstorf-Stilli Trough glacier ice must have had a 

considerable thickness of more than 150 m of ice overlying the bedrock at the site 

of QGBR. This is equivalent to an overburden of ~1.4 MPa, which is already at the 

same magnitude as the tensile strength of limestone (Nazir et al. 2013; Schön 2015). 

However, in an interconnected drainage system up to the accumulation area of the 

glacier occupying the Gebenstorf-Stilli Trough located high up in the Alps, peak 

hydraulic heads exceeding 1000 m are possible (Kavanaugh & Clarke 2000; Beaney 

& Hicks 2000), e.g. during a jökulhlaup. Such a drainage system discharges a large 

area, which may deliver pulses of large amounts of meltwater (Boulton & Caban 

1995). The similarly thick Laurentide Ice Sheet in Canada has been shown to 

produce hydraulic heads and water pressures sufficient for fracturing and explosive 

pressure release through 100s of metres of bedrock (Christiansen et al. 1982; 

Broughton 2018). Fracturing driven by subglacial water pressure at the site of QGBR 

is therefore well conceivable.  
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The observed surficial brecciation features in the drill cores of QGBR fit some 

previous descriptions of glacially induced hydrofractures, e.g. by Broughton (2018), 

and are similar in appearance to experimental hydrofractures (Guo et al. 2014; Chen 

et al. 2015). Bolus Clay within the fractures (Fig. III-3C) shows some 

microstructures indicative for viscous deformation, fluidisation, and dewatering 

(Maltman 1994). These are wall-parallel lamination (Fig. III-4C), diffuse ball-and-

pillow or drip structures (Fig. III-4D; Maltman 1994; van der Meer et al. 2009), as 

well as an optical anisotropy of the clay (Fig. III-4E), all of which are encountered in 

subglacial hydrofractures (van der Meer et al. 2009). However, open hydrofractures 

with sustained water through-flow do not seem to have existed in QGBR. 

Macroscopic sedimentary structures indicative for flow are lacking in the 

palaeokarst voids. There is further no evidence for the insertion of till or sediment-

laden water into the karst filling. For example, carbonate contents in the Bolus Clay 

throughout the whole cored section are uniformly low with one magnitude less than 

in the overlying till (Fig. III-2). The distribution of limestone fragments in close 

vicinity to the palaeokarst walls they are derived from, as well as the mosaic-like fit 

of adjacent clasts (Fig. III-5), indicates that only limited deformation and material 

transport over not more than a few centimetres occurred within the karst voids 

during or after brecciation. Thus, classical subglacial hydrofracturing releasing 

pressure via fractures that allow for sustained water through-flow cannot be 

postulated for QGBR. Instead, a different model of pressure-driven brecciation at the 

site of QGBR is proposed, which may be regarded as hydrofracturing in the widest 

sense, i.e. a process that is driven by water pressure but does not culminate in the 

opening of highly permeable fractures with sustained water through-flow (Fig. III-7).  

During erosion of the Gebenstorf-Stilli Trough, the palaeokarst filling was in direct 

contact with water at the temperate glacier base, and its pressure was transferred 

to the porewater within the clay. In addition, pressurised water from the glacier 

base may have been supplied to deeper voids via joints or faults, although we do not 

see evidence for this mechanism. Also, no evidence for water entering the karst 

system along the boundary between karst wall and clay infill occurs, neither in the 

shape of sedimentary structures nor as input of macroscopically or chemically 

identifiable till-derived material.   
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Fig. III-7. Conceptual model of water pressure-driven brecciation in QGBR. The Bolus Clay 

filling in the palaeokarst voids was in direct contact with the subglacial drainage system of 

the overriding, overdeepening glacier (left). Peak subglacial water pressures were 

transmitted via the porewater pressure of the clay filling, to the rock wall, initiating 

fracturing at points of weakness (middle). Opening of short (centimetre- to decimetre-

scale) fractures within the rock wall allowed for the intrusion of Bolus Clay and pressing of 

the karst filling into the voids (right). Strong deformation of the Bolus Clay intruding into 

the newly formed fractures led to a diffusely laminated microstructure (inset) as well as 

ball-and-pillow/drip structures and optical anisotropy. 

We infer that the Bolus Clay was water-saturated and has acted as a transmitter of 

pressure peaks from the subglacial system – be it pure water or a wet till bed – to 

the karst walls. These porewater pressure peaks may have been further amplified 

by ground shaking due to a small earth- or ice quake as a potential side effect of the 

increase in basal water availability (Ozaydin & Erguvanli 1980; Mortezale & Vucetic 

2013). In response to the rapid pressure increase fracturing occurred at points of 

weakness. These points of weakness could be stylolites (see Fig. III-4B), but also pre-

existing fractures that are abundant due to the local tectonic preconditioning. The 

observed limestone brecciation may have occurred at once or be the result of 

multiple brecciation events.  
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It appears to be restricted to a small scale with centimetre- to decimetre-long 

fractures. Similar brittle features have been encountered at the margins of larger-

scale subglacial hydrofractures in western Canada by Broughton (2018).  

It is inferred that the brecciation of the limestone resulted in steep pressure 

gradients, i.e. considerable stress acting on the palaeokarst infill in vicinity of the 

newly formed fractures, and that this allowed for the semi-plastic intrusion or 

viscous flow of small volumes of Bolus Clay into them. Natural clays are known to 

display a pronounced shear-thinning or thixotropic behaviour (Coussot 1995; 

Fossum 2012). Laboratory experiments have shown that under stress, the viscosity 

of sufficiently wet clay can decrease by six orders of magnitude (Khaldoun et al. 

2009). The remobilised clay was strongly deformed, resulting in a diffusely 

laminated microstructure (Fig. III-4C), including ball-and-pillow/drip structures 

(Fig. III-4D; Maltman 1994; van der Meer et al. 2009). Internal shearing during the 

intrusion led to the alignment of clay minerals within the Bolus Clay, visible as 

anisotropy of the material (Fig. III-4E). When the deformation ceases, thixotropic 

materials recover and their viscosity increases again (Barnes 1997). The 

deformation and re-solidification under high pressures is assumed to be the reason 

for the consolidated appearance of the karst filling that approaches a scaly fabric 

(Maltman 1994). Some fractures (Fig. III-3D) apparently were not infilled with clay 

and remained partly open, containing only some limestone fragments; these could 

however be washed out by the drilling fluid. 
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6.3. Palaeokarst substratum and subglacial hydrology  

Karstified bedrock can have a strong influence on the drainage network of an 

overriding glacier. It is usually highly permeable, thus subglacial water can enter the 

subsurface karst network and be efficiently drained from the glacier base (Smart 

1983, 2004). The result can be a warm-based but largely unlubricated glacier whose 

sliding velocity and therefore erosional activity is greatly reduced (Smart 1983; 

Steinemann et al. 2020). The observations on our drill cores, however, show that 

this was not the case at the site of QGBR. The clayey pre-Pleistocene filling was 

obviously not flushed out of the palaeokarst system by subglacial water draining 

into it. There is also no evidence for any input of subglacial sediment into the Bolus 

Clay.  

This shows that the palaeokarst at our study site was effectively sealed and 

deactivated by cohesive clay-sized sediment. Moreover, the inferred brecciation of 

the wall rock under water pressure peaks indicates that the karst void filling 

withstood even highest water pressures. Thus, a karstified and sediment-infilled 

substratum does not necessarily have a distinct effect on the hydrology of an 

overriding glacier when compared with an unkarstified one. 
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7. Conclusions 

We encountered extensive palaeokarst voids within Upper Jurassic limestone 

underlying a glacial overdeepening in the borehole QGBR. The palaeokarst is infilled 

and sealed by clayey sediment with a prominent blue colour. Based on its kaolinitic 

composition, we identified it as a variety of siderolithic Bolus Clay of presumably 

Eocene age. This variety is characterised by a significant smectite content and the 

absence of iron oxides, and likely developed under reducing conditions. 

We infer that the karstified and brecciated limestones recovered in QGBR depict an 

interaction between a glacier and its subglacial drainage system. The brecciation 

occurred in situ at the boundary between limestone and karst filling. We interpret 

that it is unlikely the result of (glacio-)tectonic deformation or frost action but was 

caused by peaks in subglacial water pressure. We further suggest that the karst void 

filling acted as a pressure transducer from the subglacial drainage system to the void 

wall, where small-scale rock failures occurred at points of weakness. 

In summary, the bedrock in QGBR was weakened by pervasive palaeokarst and 

abundant tectonic faults, which likely favoured the deep erosion of the Gebenstorf-

Stilli Trough into otherwise competent bedrock. The inferred water-pressure driven 

fracturing of the karstified limestone below the overriding glacier may have been an 

additional factor facilitating erosion of the subglacial overdeepening. 
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9. Supplementary material 

Table III-S1: Clay-mineral compositions determined for karst fillings in borehole QGBR as 

well as reference samples from QGBR, other Quaternary boreholes of the drilling campaign 

(QGVO = Gebenstorf-Vogelsang, 47.5952° N, 8.2382° E; QRIN = Riniken, 47.5021° N, 

8.1913° E; QTRU = Trüllikon, 47.6405° N, 8.6624° E) and Nagra borehole Bülach-1-1 

(Bul-1-1, 47.5427° N, 8.5204° E).  

Borehole, sample depth Kaolinite Illite Smectite 

Karst filling 

QGBR, 111.60 m 72% 22% 6% 

QGBR, 112.48 m 65% 27% 8% 

QGBR, 113.53 m 61% 21% 18% 

QGBR, 114.90 m 76% 17% 7% 

QGBR, 116.35 m 78% 7% 15% 

QGBR, 118.13 m 74% 15% 10% 

QGBR, 121.42 m 79% 5% 16% 

Reference samples: subglacial till 

QGBR, 108.86 m 23% 60% 17% 

QGBR, 109.54 m 24% 53% 22% 

QGBR, 110.94 m 76% 14% 10% 

QGBR, 111.04 m 80% 16% 4% 

QGVO, 64.63 m 25% 63% 11% 

QRIN, 38.89 m 19% 81% - 

QRIN, 40.99 m 21% 79% - 

Reference samples: Lower Freshwater Molasse 

QTRU, 91.00 m 20% 49% 31% 

QTRU, 95.00 m 24% 49% 27% 

Reference sample: limestone dissolution residue (clayey coating of a fault plane) 

QGBR, 123.40 m 34% 66% - 

Reference samples: siderolithic “Bolus Clay” 

Bul-1-1, 539.00 m 56% 5% 39% 

Bul-1-1, 550.30 m 60%  - 40%  
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Selected drill cores from the Quartärbohrungen of the Lower Aare Valley. 
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IV. Reconstruction of an environmental history 

This chapter focuses on the various sedimentary archives of the Wasserschloss area. 

Based on drill core and outcrop analysis, the development of the Gebenstorf-Stilli 

Trough and the Habsburg-Rinikerfeld Paleochannel are reconstructed. The findings 

are integrated into the regional context and allow conclusions on several pre-LGM 

glaciations of the Alpine foreland. The manuscript is in preparation for submission 

under the working title 

 

Gegg, L.1, Anselmetti, F. S.1, Deplazes, G.2, Fuelling, A.3, Madritsch, 

H.2, Mueller, D.3, Preusser, F.3, and Buechi, M. W.1, Multiple Alpine 

foreland glaciations recorded in the Pleistocene archives of the 

Lower Aare Valley. 
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 1. Abstract 

Throughout the Pleistocene, Alpine glaciers repeatedly advanced into the mountain 

foreland and temporarily covered large parts of northern Switzerland and its 

neighbouring areas in ice. However, the respective geological record is highly 

fragmentary and the regional glaciation history, especially before the last glacial 

maximum, is poorly understood. We explore the archives of the Lower Aare Valley 

in the confluence area with the rivers Reuss and Limmat, with focus on the 

overdeepened Gebenstorf-Stilli Trough. In four scientific boreholes, ~350 m of drill 

cores were recovered and complemented by samples from outcrops in the nearby 

glaciofluvial Habsburg-Rinikerfeld Paleochannel. A multi-method sedimentological 

approach including compositional and geotechnical analyses provides new insights 

into the local landscape evolution: We identify two glacial basin generations in the 

infill of the Gebenstorf-Stilli Trough that are overlain by Late Pleistocene 

Niederterrasse gravels. In addition, two distinct glaciofluvial gravel bodies are 

recognized in the neighbouring paleochannel, which also hosts paleo-lake deposits 

providing a high-resolution record of the environmental conditions during ice 

retreat. In the specific local setting, gravel petrographic compositions prove to be a 

powerful tool to identify inputs from the confluent catchments of Aare, Reuss, and 

Limmat, and to infer the respective ice-margin positions. An integration of 

luminescence ages as old as MIS 10 reveals that the Pleistocene archives of the 

Lower Aare Valley reach back well into the Middle Pleistocene. Multiple local phases 

of glacial, glaciolacustrine, and glaciofluvial re-occupation are recognized that add 

to, and significantly expand, the regional glaciation history. 
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2. Introduction 

During the Pleistocene, the Alpine glaciers repeatedly advanced into the foreland, 

temporarily covering the majority of northern Switzerland in ice (Graf, 2009b; 

Preusser et al., 2011; Seguinot et al., 2018). These glaciations had a significant 

geomorphic impact through glaciofluvial dissection, erosion of subglacial 

overdeepenings, and accumulation of decametre-thick deposits. In alternating 

phases of deposition and erosion (Buechi et al., 2017; Preusser and Graf, 2002) lies 

a major difficulty hindering Pleistocene research in the Alpine environment: the 

fragmentarity of the geological record. The remnants of entire glaciations may have 

been eroded and entirely obliterated by later ice advances (Hughes et al., 2019; 

Merritt et al., 2019), and as a result, the pre-last glacial stratigraphy and landscape 

history remains intricate and poorly constrained. 

Previous studies have identified at least four major phases of ice advance into the 

Swiss foreland throughout the Middle Pleistocene, termed, from youngest to oldest, 

Beringen, Hagenholz, Habsburg, and Möhlin (Graf, 2009b; Preusser et al., 2011; 

Schlüchter et al., 2021). The Beringen Glaciation has been correlated with MIS 6 

(~150 ka) with reasonable confidence (Buechi et al., 2017; Lowick et al., 2015; 

Preusser et al., 2011), but the chronostratigraphic positions of older glaciations are 

largely unknown. Preusser et al. (2021) suggest a correlation of Habsburg with 

MIS 8 or 10 (~270 or ~340 ka), and of Möhlin (Most Extensive Glaciation MEG; Graf, 

2009b; Preusser et al., 2011) with MIS 12 (~420 ka). It is, however, not clear 

whether all of these phases represent full glaciations or separate advances within a 

particular glaciation (Graf, 2009b), as the Mid-Pleistocene glaciations may have 

been as complex as the last glacial cycle (i.e. the Late Pleistocene) that comprises 

several distinct advances (Gaar et al., 2019; Ivy‐Ochs et al., 2008; Preusser, 2004; 

Seguinot et al., 2018). 
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In the present study, we aim to reconstruct a local glaciation history, specifically 

throughout the Mid-Pleistocene, and integrate it into the regional context. Drill cores 

and outcrops in the Lower Aare Valley are investigated with a multi-method 

approach combining sedimentology, geochemistry, and geotechnics, and integrating 

luminescence ages. We lay special focus on lacustrine records as lakes, developed 

e.g. in subglacial overdeepenings, can be valuable archives of past glaciations 

(Buechi et al., 2017; Preusser et al., 2005; Preusser et al., 2010; Schlüchter, 

1989a, b).  
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3. Study area 

The present-day confluence area of the rivers Aare, Reuss, and Limmat 

(“Wasserschloss”) in Northern Switzerland is a key site for regional Quaternary 

geology (Dick et al., 1996). It is located about 50 km northwest of the Alpine front, 

at the eastern margin of the Jura Mountains (Gegg et al., 2021). The Jura Mountains, 

comprising the Folded Jura and the northward-adjacent Tabular Jura, consist of 

Mesozoic sediments – carbonates, marls and siliciclastics – deposited on an 

epicontinental platform (Bitterli-Dreher et al., 2007; Bitterli et al., 2000; Jordan et 

al., 2008). In the early Paleogene, today’s Tabular Jura was uplifted on the forebulge 

of the approaching Alpine orogeny, while to the south of it, the Molasse Basin 

subsided (Burkhard and Sommaruga, 1998; Pfiffner, 1986). The deposition of 

heterogeneous Molasse sands, silts, and marls progressed northward, reached the 

southern part of the study area in the Oligocene, but stopped in the Late Miocene 

with the upthrusting and emersion of the Folded Jura (Burkhard, 1990; Laubscher, 

1962). The lithologically and structurally complex bedrock architecture gave rise to 

the study area’s diverse topography that is different from many other Quaternary 

sites of the Alpine foreland (Gegg et al., 2021). 

The Pleistocene was not only characterized by a cooling climate, but also by 

repeated lowering of the regional base level (Bitterli-Dreher et al., 2007; Bitterli et 

al., 2000). Two units of glaciofluvial Deckenschotter (Höhere/Tiefere D.) are 

correlated to the Early Pleistocene, and intercalated tills attest that the 

corresponding ice advances reached already far into the foreland (Bitterli-Dreher et 

al., 2007; Graf, 1993, 2009a). After abandonment of the Deckenschotter valleys, the 

Habsburg-Rinikerfeld paleochannel (HRPC; Fig. IV-1) and its northward 

continuation into the Hochrhein Valley were established, through which 

glaciofluvial drainage and glacial advance occurred throughout most of the Middle 

Pleistocene (Graf, 2009b). The respective deposits are referred to as Hochterrasse, 

and are subdivided into Habsburg Gravel, Ruckfeld Gravel, and Remigen Gravel. 

These units are presumed to represent three out of the four regionally identified 

glaciations (Habsburg, Hagenholz, Beringen; Bitterli-Dreher et al., 2007; Graf, 

2009b), and are correlated to the Upper, Middle, and Lower Hochterrasse of the 

Lower Aare Valley mapped by Matousek et al. (2000).  
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The Deckenschotter and Hochterrasse are morphostratigraphic units, but the 

subdivision of the Hochterrasse is mainly achieved by lithostratigraphy, as the 

individual gravels occur on similar elevations (roughly 350-450 m a.s.l. in the HRPC 

and Lower Aare Valley; Graf et al., 2006; Matousek et al., 2000). Occasional 

intercalated tills and glaciotectonic deformations in the Remigen Gravel as well as 

basal diamicts in the HRPC suggest that at least two Mid-Pleistocene ice advances 

reached into the study area (Bitterli-Dreher et al., 2007; Graf, 2009b).  

The Middle Pleistocene presumably also marked the onset of overdeepening in the 

Wasserschloss area, i.e. the subglacial carving of basins into the bedrock below the 

Pleistocene base level (today at ~300 m a.s.l.; Graf, 2009b; see also Cook and Swift, 

2012; Dürst Stucki and Schlunegger, 2013). These basins are the Birrfeld and its two 

branch basins, the Hausen Trough and the Gebenstorf-Stilli Trough (GST, Fig. IV-1; 

Gegg et al., 2021; Graf, 2009b; Pietsch and Jordan, 2014). The overdeepenings were 

eroded into the bedrock under high subglacial water pressure (Dürst Stucki and 

Schlunegger, 2013; Gegg et al., 2021) and, following ice retreat, became infilled with 

subglacial gravels and diamicts as well as with lake deposits (Bitterli-Dreher et al., 

2007). Forming a connection between the Birrfeld and the HRPC, the Hausen Trough 

is presumably older than the GST, which lies below the present-day Reuss/Aare 

Valley. The erosion of the GST may have enabled the abandonment of the HRPC and 

establishment of the modern drainage configuration (Graf, 2009b). The Late 

Pleistocene Niederterrasse gravels are generally restricted to the present-day river 

valleys (Gaar et al., 2019; Graf et al., 2006). 
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Fig. IV-1: Overview map of our study area in northern Switzerland (green rectangle in the 

inset). 1: from Loepfe et al. (in prep.). 2: after Graf (2009b). 3: Alpine ice extent of the Last 

Glacial Maximum (Bini et al., 2009). 4: Ice extent of the Most Extensive Glaciation (Keller and 

Krayss, 2010). 5: Profile lines for sections in Fig. IV-9 (A) and Fig. IV-10 (B). 6: Outcrop 

numbers refer to Table IV-S1; outcrops mentioned in the text: 5 (Götschtel), 10 (Alpberg), 

13 (Hönger).  
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4. Methodology 

4.1. Drilling and field campaign 

Our project comprises four scientific boreholes drilled in 2018 in context of the 

Quaternary investigation program of the Swiss National Cooperative for the 

Disposal of Radioactive Waste (Nagra). Three boreholes are located along the axis 

of the Gebenstorf-Stilli Trough, namely QGBR (latitude 47°29’00” N, longitude 

8°14’11” E; Gegg et al., 2019b), QGVO (47°29’43” N, 8°14’18 E; Gegg et al., 2019a), 

and QUST (47°30’46” N, 8°14’3” E; Gegg et al., 2019c). QRIN (47°30’09” N, 

8°11’28” E; Gegg et al., 2018) was targeted at the HRPC, and is a composite profile 

of two neighbouring boreholes. The 10 cm diameter drill cores, ~350 m in total, 

were recovered by pneumatic hammering and wireline coring using a triple tube 

core barrel where the core is protected by a plastic liner, allowing for excellent core 

quality. All boreholes recovered the entire Quaternary valley infill and terminated 

at least 10 m into the bedrock to guarantee a confident bedrock identification. After 

core recovery, a natural gamma log was acquired. Drilling was further 

complemented by an extensive field campaign studying and sampling over twenty 

outcrops in the study area (see Table IV-S1). 

4.2. Initial core logging and sampling 

After splitting of the individual drill cores, one half was shielded from light to allow 

later luminescence sampling and archived at the core repository of Nagra, while the 

other was processed at the Institute of Geological Sciences, University of Bern (IfG, 

UniBe). Bulk density, p-wave velocity and magnetic susceptibility were measured in 

5 mm depth-resolution using a Geotek multi-sensor core logger (MSCL; Schultheiss 

and Weaver, 1992). Following line-scan imaging, detailed sedimentological and 

structural descriptions were carried out. Where the sediment was sufficiently fine-

grained, we prepared smear slides and collected bulk sediment samples, each ~40 g 

of material, in sub-meter intervals for geochemical analysis. In selected core 

sections, we collected all clasts >15 mm diameter from entire core halves to assess 

gravel petrographical composition, and took undisturbed whole-core samples for 

geotechnical analysis prior to core splitting, both in 5-10 m intervals.  
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4.3. Compositional analysis 

Water content was determined by weighing and freeze-drying of bulk sediment 

samples. Geochemical composition (total inorganic carbon TIC, total organic carbon 

TOC, total Sulphur TS, total nitrogen TN) by combustion of small (few mg) sample 

amounts and combustion gas analysis in a thermal conductivity detector. TIC was 

converted to CaCO3 content by multiplication with a stoichiometric factor of 8.33. 

For gravel petrography we identified all clasts >15 mm in diameter from selected 

core halves, and all clasts >20 mm from volumetric samples collected in the field. 

The minimum clast diameters were chosen so that >100 clasts could be obtained per 

sample in most cases. For further evaluation, the data were simplified by 

classification into 13 lithology groups (Table IV-S2), due to some differentiations 

being gradual and thus poorly reproducible (e.g. light and dark grey limestones) or 

not regional-geologically meaningful (e.g. red sandstones and red conglomerates). 

The petrographic data were log-ratio transformed following Hammer (2018) and 

evaluated by principal component (PCA; variance-covariance matrix) and cluster 

analysis (Ward’s method, Euclidean distance matrix) in Past 3 (Hammer et al., 

2001). In addition, we performed endmember analyses using the R packages 

EMMAgeo (Dietze and Dietze, 2019) and RECA (Seidel and Hlawitschka, 2015). 

4.4. Geotechnical analysis 

During initial core logging, we estimated undrained shear strength with a pocket 

vane tester in meter-intervals where the sediment was sufficiently cohesive, i.e. rich 

in fines. Undisturbed whole-core samples were later analysed at the geotechnical 

laboratory of the Bern University of Applied Sciences in Burgdorf (Switzerland). To 

prevent drying and alteration, they were stored refrigerated and sealed prior to 

analysis. We determined the preconsolidation pressure of sediment samples by 

oedometer testing (International Organization for Standardization, 2004). 

Horizontally oriented cylindrical samples (d = 50 mm, h = 20 mm) were cut out with 

a metal ring and placed in an oedometer chamber filled with deionized water. The 

samples were, under lateral confinement and enabled drainage, loaded with up to 

3200 kN/m2 in increments of 24 h.  
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After every loading step, the compaction was measured, and the results evaluated 

following the work per unit volume-approach by Becker et al. (1987). In addition, 

Atterberg Limits (liquid limit and plastic limit), i.e. the water contents at which the 

material behaves mechanically in norm-specified ways, were determined after 

Swiss Association of Road and Transportation Experts (2008).  
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5. Results 

5.1. Lithostratigraphy and physical properties 

Based on lithological variations, we distinguish five lithofacies associations 

(LFA 1-5) that overly bedrock. They are briefly characterized in the following. 

5.1.1. Bedrock 

The Quaternary strata (Fig.  IV-2) overlie light micritic limestones of the Villigen Fm. 

in QGBR (contact in 111.5 m depth / at 225.8 m a.s.l.; Fig. IV-3) and QGVO (64.9 m 

depth / 266.1 m a.s.l.; Fig. IV-4), and olive grey calcareous marls of the Wildegg Fm., 

Effingen Member, in QUST (76.0 m depth / 255.2 m a.s.l.; Fig. IV-5; Gegg et al., 2021) 

and QRIN (41.2 m depth / 337.6 m a.s.l.; Fig. IV-6). The limestone in QGBR is 

pervaded by paleokarst infilled with Paleogene sediment (Gegg et al., 2020). 

5.1.2. LFA 1 – Basal diamicts 

Overlying the bedrock, all boreholes of our drilling campaign recovered basal 

diamicts (LFA 1) that can be subdivided into two subfacies associations LFA 1a and 

1b. In the overdeepened Gebenstorf-Stilli Trough, these are soft to stiff and generally 

massive (LFA 1a; Figs. IV-2A, -3 to -5). The diamicts are 2.7 m thick in QGBR, 0.7 m 

in QGVO, and 1.3 m in QUST. They consist of mostly angular gravel clasts and cobbles 

embedded in a soft, yellowish grey to olive (partly blueish in QGBR) and clayey to 

sandy matrix, and can be clast- as well as matrix-supported. In QGBR and QGVO, 

LFA 1a contains occasional striated clasts, which were not encountered in QUST. 

The basal diamicts in QRIN are ~3.5 m thick and crudely bedded on a decimetre-

scale (LFA 1b; Figs. IV-2B; -6). They comprise angular to well-rounded gravel clasts 

and cobbles in a stiff silty matrix of grey-beige to brown colour. In the top half, the 

diamicts are generally matrix-supported and contain frequent striated clasts, 

whereas the bottom half is clast-supported but lacks striated clasts. 

Both basal diamicts are characterized by low water content (<15 %, <10 % in QRIN), 

intermediate to high bulk density (2.0-2.5 g/cm3), and intermediate gamma signals 

(30-50 API, 50-70 in QGBR). Magnetic susceptibility shows distinct peaks, with the 

exception of QUST, where the signal is generally low in the basal diamict. These 

peaks may relate to individual clasts, but we occasionally observe fragments of the 

drill bit, which create strong artificial peaks. 
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5.1.3. LFA 2 – Sandy gravels 

5.1.3.1. Drill cores 

Sandy gravels occur in all studied cores (LFA 2; Figs. IV-2C/D; -3 to -6) and generally 

consist of decimetre- to meter-scale beds that are frequently graded. They are 

yellowish to brownish grey; in QRIN we observe additionally rusty-orange grain 

coatings (36.8-35.8 m depth). Gravels overlying the basal diamicts in QGVO 

(64.2-55.8 m depth), QUST (bottom ~20 m), and QRIN (37.6-35.7 m) are poorly 

sorted with a significant silt and sand component, and contain massive or crudely 

bedded sand intercalations up to ~1 m in thickness. These basal gravels contain few 

striated clasts in QGVO and QRIN, and cemented nodules in QUST. The shallower 

gravels in QGBR (23.6-8.0 m depth), QGVO (17.4-0.0 m), and QUST (top ~20 m) 

consist of both poorly sorted intervals and well-sorted open framework-gravel as 

well as pure decimetre-scale sand layers. Individual clasts are predominantly 

rounded.  

LFA 2 deposits have a high density (~2.5 g/cm3), low gamma signals (frequently 

<25 API), and distinct, natural or artificial (see above), peaks in magnetic 

susceptibility. Water content ranges from ~10 % at the base of QRIN up to 30 % in 

near-surface samples.  

5.1.3.2. Outcrops  

Our study includes outcrops exposing sandy gravels attributed to the Tiefere 

Deckenschotter, Hochterrasse (with occasional interbedded diamicts), and 

Niederterrasse. Coordinates and brief descriptions of the studied outcrops are given 

in Table IV-S1, together with a list of all samples collected in the field.  

5.1.4. LFA 3 – Massive and bedded sands and silts  

Sand- and silt-dominated intervals (LFA 3) occur in QGBR, QGVO, and QRIN. Two 

subfacies associations LFA 3a and 3b can be distinguished. The successions of QGBR 

(108.8-23.6 m depth) and QGVO (55.8-17.4 m) largely consist of soft, yellowish to 

olive grey silty sands (LFA 3a; Figs. IV-3, -4) that are subdivided into massive 

(Fig. IV-2E) and well-bedded sections (Fig. IV-2F). The latter are characterized by 

1-5 cm thick, olive-grey, coarse layers alternating with up to 2 cm thick, lighter 

yellowish grey, silt-dominated layers.   
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These bedded deposits are frequently deformed, including drilling-related 

drawdowns at the core edges but also convolution of the layering that may be 

unrelated to drilling-deformation. In QGVO, the LFA 3a section is interrupted by a 

coarse gravel (LFA 2) interbed from 28.3-26.5 m depth. Layers with infrequent 

dispersed gravel clasts occur throughout QGBR, and in the top half of QGVO (above 

35 m depth). QGBR further recovered occasional decimetre- to meter-scale 

interbeds that are silt-dominated and, both below 80 m and above 45 m depth, 

frequently contain outsized clasts (Fig. IV-2G). Such a diamictic section also occurs 

at the top of LFA 3a in QGVO (22.3-17.4 m depth). There, individual in situ-cemented 

nodules have been encountered in the bottom 1 m.  

The basal diamicts (LFA 1b) and gravels (LFA 2) in QRIN are overlain by ~2 m of 

very diverse, predominantly sandy deposits (LFA 3b, 35.7-33.5 m depth, Fig. IV-2H). 

They comprise crudely bedded sandy packages as well as finely laminated packages 

rich in silt and clay, and massive diamictic interbeds containing clasts up to medium 

gravel size. LFA 3b is brown-beige with orange-brown and greyish sections. These 

deposits contain several layers with cemented nodules and, close to their base, clay 

chips. The entire sections show abundant signs for deformation and convolution. 

Densities of LFA 3 sediments are generally intermediate (2.0-2.2 g/cm3), and 

magnetic susceptibility is low, with the exception of individual peaks especially in 

the top ~15 m of QGBR, which likely relate to outsized clasts. Gamma signals are low 

(<25 API) throughout QGVO, upward-declining (from >50 to <25 API) in QGBR, and 

elevated (~50 API) in QRIN. Water contents are between 15 and 30 % in QGVO and 

QRIN, and increase from 10-15 % to 15-20 % in QGBR.  

5.1.5. LFA 4 – Bedded and laminated silts and clays 

QRIN recovered ~26 m of fine-grained deposits comprising predominantly silt and 

clay with occasional, often graded, sandy layers (LFA 4). LFA 4 deposits do not occur 

in the other boreholes, but can be subdivided into four subunits LFA 4a-d in QRIN. 

The lowermost ~2.5 m (LFA 4a, 33.5-31.1 m depth, Fig. IV-2I) are crudely 

laminated/bedded on a millimetre- to centimetre scale with decimetre-thick 

massive packages and sandy interbeds. LFA 4a is brownish grey and locally 

intensively deformed resulting in a ‘marbled’ texture, which may be an original 

feature or drilling-induced.   
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It is overlain by ~8 m of thinly laminated, slightly sandy silts and clays with rhythmic 

bedding pattern of 2-3 cm thick olive grey packages of ~1-10 mm laminae 

alternating with ~5 mm thick, finer-grained and darker bands (LFA 4b, 31.1-23.4 m, 

Fig. IV-2J). The deposits are occasionally interrupted by up to 10 cm thick, sandy 

interbeds. Above a sharp colour change at ~26.1 m from dark brownish grey to 

lighter ochre-grey, a second rhythmic pattern of 3-4 cm thick orange-brown 

laminated packages every ~10 cm is superimposed onto LFA 4b. These packages 

(LFA 4c, 26.1-9.3 m, Fig. IV-2K/L) become progressively thinner but occur in 

increasing frequency and finally supersede LFA 4b entirely at ~23.4 m below 

ground.  

LFA 4c fines are more homogeneous, with a relatively uniform fine lamination. 

While being orange-brown in alternating sequence with LFA 4b, they are medium 

beige-grey in colour where they are continuous (above ~23.4 m). In the upper half, 

above ~16.3 m, we observe four sub-meter intervals where the deposits are of a 

strikingly dark grey to black colour that fades to orange-brown upon oxidation. 

These intervals are more crudely bedded, softer and wetter than the remainder of 

LFA 4c. Near the top, ~10 m below ground, macroscopic plant fragments occur 

within a 30 cm thick, sandy intercalation. The uppermost ~2 m of fine-grained 

deposits in QRIN are again more diverse (LFA 4d, 9.3-7.4 m, Fig. IV-2M). They 

consist of interbedded laminated and massive packages of clay, silt, and sand with 

colours ranging from beige-grey to ochre-orange. At the very top, they contain again 

macroscopic plant fragments as well as cemented sand nodules. 

Fine-grained deposits in QRIN are characterized by intermediate density 

(2.0-2.2 g/cm3), elevated gamma signal (50-70 API in LFA 4a/b, ~50 API in 

LFA 4c/d), and low magnetic susceptibility with only minor distinct peaks that 

correlate with dark layers in the upper LFA 4c. Water contents are around 20-25 %, 

and more homogeneous in LFA 4c/d, where a slight upward increase is observed, 

than in LFA 4a/b. 
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5.1.6. LFA 5 – Cover diamicts 

At the top of the respective successions, QGBR and QRIN recovered few meters of 

cover diamicts (LFA 5). In QGBR, these are 8.0 m thick and part of an anthropogenic 

waste deposit, with brick and metal fragments in an olive grey to black silt-

dominated matrix. In QRIN we observe 7.4 m of predominantly beige to ochre-

orange sandy diamicts (Fig. IV-2N). They are matrix-supported, thick-bedded 

(decimetres) with graded packages, and contain predominantly angular clasts that 

are locally covered by a fine rusty coat. Towards the surface, the matrix becomes 

progressively more fines-rich and brown. The cover diamicts in QRIN increase in 

gamma signal from ~25 to ~75 API from bottom to top, while density decreases 

from ~2.5 to ~2.0 g/cm3, and magnetic susceptibility remains generally low with 

only minor (low-intensity) peaks. 

Fig. IV-2 (next page): Core photos representing lithofacies associations, width of all images 

is 10 cm. 2A: LFA 1a, massive sandy diamict at the base of QGVO (~64.4 m below ground). 

2B: LFA 1b, matrix-supported, silt-dominated diamict (QRIN, 38.4 m). 2C: LFA 2, poorly 

sorted, fines-rich gravel (QUST, 65.6 m). 2D: LFA 2, sandy gravel fining upwards into sand 

(QGBR, 14.2 m). 2E: LFA 3a, massive sand with fine grained interbed (QGVO, 34.4 m). 2F: 

LFA 3a, silty sand with rhythmic bedding (QGBR, 55.6 m). 2G: LFA 3a, clayey sand with 

dispersed clasts, diamictic (QGBR, 101.9 m). 2H: LFA  3b, bedded clayey sand with cemented 

nodules (arrow; QRIN, 34.0 m). 2I: LFA 4a, crudely bedded, sandy silt and clay (QRIN, 

31.2 m). 2J: LFA 4b, rhythmically banded silty clay (QRIN, 27.1 m). 2K: LFA 4b-4c transition: 

repeating orange-grey packages of LFA 4c (arrows) superimposed onto and, further 

upwards, gradually replacing LFA 4b sediments (see text; QRIN, 25.5 m). 2L: LFA 4c, 

laminated silty clay with occasional dark grey to black interbeds (QRIN, 15.8 m). 2M: 

LFA 4d, laminated, colourful sand, silt and clay (QRIN, 7.8 m). 2N: LFA 5, sandy diamict with 

rusty grain coatings (QRIN, 3.4 m). Note: anthropogenic waste deposits of QGBR are not 

displayed. 
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Fig. IV-3: Composite plot of borehole QGBR. Lithofacies codes refer to Eyles et al. (1983). 

PBL: lowest known Pleistocene base level (300 m a.s.l.; Graf, 2009). Samples: gravel 

petrography (black; see Table IV-S4) and luminescence (grey; Mueller et al., in prep.). 
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Fig. IV-4: Composite plot of borehole QGVO. Lithofacies codes refer to Eyles et al. (1983). 

PBL: lowest known Pleistocene base level (300 m a.s.l.; Graf, 2009). Samples: gravel 

petrography (see Table IV-S4). 

 

Fig. IV-5: Composite plot of borehole QUST. Lithofacies codes refer to Eyles et al. (1983). 

PBL: lowest known Pleistocene base level (300 m a.s.l.; Graf, 2009). Samples: gravel 

petrography (black; see Table IV-S4) and luminescence (grey; Mueller et al., in prep.).  
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Fig. IV-6: Composite plot of borehole QRIN. Lithofacies codes refer to Eyles et al. (1983). 

Samples: gravel petrography (black; see Table IV-S4) and luminescence (grey; Mueller et al., 

2020).  
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5.2. Sediment composition 

5.2.1. Geochemistry 

Geochemical data are shown on Figs. IV-3, -4, and -6. LFA 3a sediments of QGBR and 

QGVO are characterized by TOC and TS values generally below 0.2 and 0.1 %, 

respectively. CaCO3 content is generally ~40 %, but drops abruptly to ~30 % above 

the LFA 2 interbed of QGVO at 28.3-26.5 m depth (Fig. IV-4). In the fine-grained 

lacustrine sequence of QRIN, TOC increases gradually upcore from ~0.1 to ~0.5 % 

(Fig. IV-6). Both sulphur and nitrogen are detected in the upper parts of LFA 4b and 

LFA 4c/d, with maximum values below 0.2 %. A sharp upcore increase in CaCO3 

content from ~45 to ~55 % is observed at the LFA 4b-c transition (26.1-23.4 m 

depth; Fig. IV-6). 

5.2.2. Gravel petrography 

Gravel petrographic data are provided in Tables IV-S3 (drill cores) and -S4 

(outcrops). Limestone clasts are generally most abundant, representing half to two 

thirds of most samples, followed by clastic sediments (sandstones and 

conglomerates; below one third), quartzites sensu lato (including vein quartz, cherts 

and radiolarites; below one third), and igneous clasts (below 10 %).  

Principal component analysis (PCA) of the full dataset, i.e. integrating all lithology 

groups (Table IV-S2), clearly separates one sample from LFA 5 of QRIN (6.5-7.5 m 

depth; see section 6.2.2.3.) from the other samples based on its high content (>50 % 

as opposed to <20 %) in limestones of the Jura Mountains (Fig. IV-7, inset). In a 

second PCA excluding these limestones, which represent local erosion and 

reworking but are not indicative for an Alpine source, component 1 (PC1, x axis) 

distinguishes samples with high quartzite content (high PC1) from samples with a 

high content of siliceous Alpine limestones (Fig. IV-7; low PC1; both lithology groups 

have a correlation coefficient of -0.64). This distinction appears to be diagnostic for 

the sediment-delivering catchments, with high PC1 indicating a relatively increased 

Aare contribution, while lower PC1 indicate a relatively increased Reuss/Limmat 

contribution, as suggested by reference samples (green) from the Niederterrasse of 

the respective river valleys (see also Graf, 2009b). In contrast, component 2 (y axis) 

separates predominantly samples rich in Alpine limestones from samples rich in 

sandstones, and does not appear to be of catchment-diagnostic value.  
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A statistical distinction between the signals of Reuss and Limmat is difficult, but the 

latter is characterized by index lithologies (red sandstones: ~5 % in both Limmat 

reference samples, max. 1 % in Aare/Reuss reference samples; non-rhyolitic 

volcanics: ~1 % in both Limmat reference samples, none in Aare/Reuss reference 

samples; Table IV-S4; see also Graf, 2009b; Hantke, 1978). 

An Aare-dominated petrography is thus inferred for all samples of QGBR and QRIN, 

while the samples of QGVO and QUST are interpreted to contain a considerable 

Reuss/Limmat component (Fig. IV-7). In QGVO, isolated red sandstones and/or non-

rhyolitic volcanics were only sporadically encountered (except for the uppermost 

sample QGVO 10-11), whereas these lithologies occur more regularly in QUST, 

suggesting an increased Limmat influence in QUST compared to QGVO 

(Table IV-S4). In accordance with Graf (2009b), our data indicate further a rather 

variable mixed Aare/Reuss provenance for the Habsburg Gravel, and a well 

distinguishable Reuss/Limmat provenance for the Remigen Gravel in the HRPC 

(Fig. IV-7). The composition of the Hochterrasse further downstream the Aare 

Valley indicates a mixed provenance (Fig. IV-7). A Reuss-dominated petrography is 

further inferred for two samples of the Tiefere Deckenschotter of Bruggerberg, in 

agreement with the findings of Graf (1993). These results are generally confirmed 

by cluster analysis (Fig. IV-S1) as well as endmember analysis using the EMMAgeo 

package (Dietze and Dietze, 2019), which, in our case, appears to produce more 

reliable results than the RECA package (Seidel and Hlawitschka, 2015; Fig. IV-S2). 

Interestingly, both, cluster as well as endmember analysis, groups all samples of 

QGVO and QUST with Limmat reference samples, except for the gravel interbed of 

QGVO at ~28 m depth and the interval ~37-30 m depth of QUST, which are grouped 

with Reuss reference samples. 

Fig. IV-7 (next page): Principal component analysis (PCA) of gravel petrographic data. The 

main plot includes all lithology groups except from locally derived (Jura Mountains) 

limestones, while the inset plot is based on PC analysis of the full dataset.  
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5.3. Geotechnical properties 

5.3.1. Shear strength 

In LFA 3a of QGBR, pocket vane testing revealed three distinct intervals (~40-50 m, 

~65-70 m, and ~100-110 m) where shear strength is elevated from background 

values below 100 kPa up to 170 kPa, and in the deepest interval >250 kPa 

(Fig. IV-3). The upper LFA 3a section of QGVO shows upwards-increasing shear 

strength from ~20 to ~140 kPa (Fig. IV-4). Similarly, shear strength of QRIN 

deposits increases from ~20 kPa at the base of LFA 3b to ~130 kPa at the LFA 4b-4c 

boundary, but then decreases again to ~30 kPa at the top of LFA 4d (Fig. IV-6). 

5.3.2. Preconsolidation pressure 

Oedometer measurements from QGBR (9 samples) and QRIN (5 samples) were 

evaluated following the work per unit volume-approach by Becker et al. (1987) and 

the results compared to the calculated sediment overload in the present-day setting 

(Tables IV-1, -S5). Preconsolidation pressures determined for the QGBR samples are 

similar to the calculated overload (max. deviations -18 % / +35 %; Table IV-1; 

Fig. IV-3). In QRIN, preconsolidation pressures exceeding sediment overload by 

>250 % were determined for the intermediate three samples, and by 133 and 61 % 

for the uppermost and lowest sample, respectively (Table IV-1; Fig. IV-6). It should 

be noted that all samples of QGBR as well as the intermediate three samples of QRIN 

were recovered by rotary drilling, and both the uppermost and lowest QRIN sample 

by pneumatic hammering. 

5.3.3. Atterberg Limits 

10 QGBR samples, of which three proved to be sufficiently cohesive, and 6 QRIN 

samples were tested for Atterberg Limits (liquid limit LL and plastic limit PL; 

Table IV-S6). Results are plotted on Fig. IV-8. All samples plot above the A-line of 

Casagrande (1948), on or close to the T-line of glacial sediments (Boulton and Paul, 

1976; Schlüchter, 1997; Trenter, 1999). The natural water contents (WC) of all 

samples lie between LL and PL, with the exception of QRIN 39.88, where WC is below 

the plastic limit (Table IV-S6). Liquidity indices LI ([WC-PL]/[LL-PL]; Schlüchter, 

1984) range between 0.3-0.9 for all samples except QRIN 39.88, where LI is -0.8. 
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Table IV-1: Preconsolidation pressures determined from oedometer measurements of 

samples from QGBR and QRIN compared to the calculated present-day sediment overload 

(see also Figs. IV-3, -6). 

QGBR QRIN 

Depth 
[m] 

Sediment 
overload 
[kN/m2] 

Prec. 
pressure 
[kN/m2] 

Depth 
[m] 

Sediment 
overload 
[kN/m2] 

Prec. 
pressure 
[kN/m2] 

43.10 585 
793  
(+ 35 %) 

9.65 134 
312  
(+ 133 %) 

63.90 807 
924  
(+ 14 %) 

16.26 203 
751  
(+ 270 %) 

68.90 865 
1042  
(+ 20 %) 

20.89 253 
909  
(+ 259 %) 

74.90 927 
1254  
(+ 35 %) 

29.15 342 
1218  
(+ 256 %) 

78.90 973 
924  
(- 5 %) 

31.88 369 
594  
(+ 61 %) 

84.90 1033 
1022  
(- 1 %) 

 
96.90 1160 

953  
(- 18 %) 

100.90 1205 
1281  
(+ 6 %) 

106.90 1270 
1646  
(+ 30 %) 

 

 

Fig. IV-8: Diagram plotting the Atterberg Limits of samples from QGBR and QRIN. 
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6. Discussion 

6.1. Evolution of the overdeepened Gebenstorf-Stilli Trough 

6.1.1. Subglacial erosion and onset of sedimentation 

The Gebenstorf-Stilli Trough (GST) is one of two northward extensions of the 

Birrfeld Basin, and has been excavated in the context of an ice advance over the 

Birrfeld and the Jura fold-and-thrust belt along the present-day lower Reuss Valley 

(Gegg et al., 2021). Following ice retreat, the Gebenstorf-Stilli Trough was infilled 

with diverse deposits reflecting its development after erosion. The sedimentary 

architecture is displayed on Fig. IV-9.  

 

Fig. IV-9: Longitudinal section A (Gegg et al., 2021, altered; see Fig. IV-1 for location) along 

the Gebenstorf-Stilli Trough. B: Intersection with profile B (Fig. IV-10). 

Overlying the basal unconformity in the centre of the overdeepening, the Gebenstorf 

Trough Diamict comprises several metres of massive diamict and/or gravel (LFA 1a, 

2). Striated clasts in QGBR and QGVO identify the diamict as an ice-derived deposit. 

In QGBR, the lowermost 0.5 m are stiff and compact, and may have been directly 

loaded by ice. In contrast, the remainder of the basal diamicts is more loose and soft, 

and has a water content >10 % (Fig. IV-4), which is larger than the sediment’s plastic 

limit. This is consistent rather with waterlain glacigenic diamicts, i.e. deposits 

originating mainly from melt-out and subglacial mass movements, than 

overconsolidated subglacial tills dominated by processes such as lodgement (Evans 

et al., 2006; Evans, 2007; Schlüchter, 1984, 1997). Although no (macroscopic) 

evidence for post-depositional deformation such as shear bands is observed, loading 

and homogenization by ice under high pore-water pressure, and thus low effective 

pressure can however not be excluded (Bell, 2002; Benn and Evans, 1996; Evans, 

2007).   
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The basal infill of overdeepened basins typically contains metre- to decametre-thick 

basal glacigenic diamicts and till sequences (e.g. Lower Glatt Valley, Buechi et al. 

2017; Birrfeld Basin, Dr. H. Jäckli AG and DMT GmbH & Co. KG, 2012; see also Nitsche 

et al., 2001). In comparison, only little glacigenic diamicts were encountered in the 

GST, of which only a small percentage can be regarded as typical subglacial till. We 

explain this by efficient flushing of debris from the glacier base during erosion and 

ice occupation of the GST. The combined drainage area of Aare, Reuss, and Limmat 

delivered large amounts of melt water that passed through the narrow cross-section 

of the GST, while its sediments may have been largely retained by the Birrfeld Basin 

and the overdeepened reaches further up the Reuss Valley (Alley et al., 1997; Alley 

et al., 2019; Gegg et al., 2021; Loepfe et al., in prep.). The deposition of the Gebenstorf 

Trough Diamict reflects the cessation of this efficient flushing and thus the transition 

to subglacio-lacustrine conditions of the ice-decay rather than the pleniglacial 

phase. 

6.1.3. Lacustrine phase 

Above the basal diamicts, the several decametre-thick massive to bedded 

Gebenstorf Sand (LFA 3a) represents the glaciolacustrine infill of the overdeepening 

(Fig. IV-9). This interpretation is based on its uniform, entirely detrital 

sedimentology (Graf, 2009b), very low contents of organic material with TOC 

generally below 0.2 %, and no macro- and microfossils encountered (cf. Anselmetti 

et al., 2010; Dehnert et al., 2012). The dominant preservation of the sedimentary 

bedding further indicates a cold, inorganic environment without burrowing 

organisms (Zolitschka et al., 2015). The lower part of the Gebenstorf Sand may have 

been partly emplaced under a floating, decaying glacier and thus incorporated some 

molten-out debris (Bitterli-Dreher et al., 2007). A glacially-derived component in 

the basal Gebenstorf Sand is indicated by diamictic interbeds, their mechanical 

properties (Fig. IV-8; Boulton and Paul, 1976; Schlüchter, 1997; Trenter, 1999) as 

well as elevated gamma signals (>50 API) that are indicative for increased clay 

mineral content (Serra and Sulpice, 1975).  
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In contrast to several other records of overdeepened basin fills that also comprise 

thick units of basinal fines (Anselmetti et al., 2010; Buechi et al., 2017; Dehnert et 

al., 2012), that of the GST is entirely sand-dominated. Only further south and 

stratigraphically higher up, a finer-grained Reusstal Clay occurs (Graf et al., 2006; 

Graf and Burkhalter, 2016). This clay may have also been deposited and later eroded 

in the GST, which would correspond to an ancient lake level of at least ~330 m a.s.l. 

(Fig. IV-9). The preserved sandy infill of the trough indicates a comparatively 

glacier-proximal setting with high sediment input from three Alpine catchments. 

Massive LFA 3a sections point towards instabilities due to fast deposition and 

consequent soft-sediment deformation, but could also be drilling-related (Mills, 

1983; Pisarska-Jamrozy and Weckwerth, 2013).  

Especially in QGBR, the basin infill is horizontally well bedded, with darker, sand-

dominated layers alternating with lighter and thinner, silt-dominated layers 

(Fig. IV-2F). These packages are encountered throughout the entire succession in 

relatively constant thickness of few centimetres. They are interpreted as clastic 

varves (Leonard, 1986; Peach and Perrie, 1975; Zolitschka et al., 2015), and suggest 

an emplacement of the lacustrine sequence during a single, continuous phase over 

several thousand years. This is supported by the generally uniform sedimentology 

as well as by the only gradually changing geochemistry, e.g. CaCO3 and TOC content 

(Fig. IV-3). However, repeatedly occurring intervals that are distinctly enriched in 

fines (and consequently of higher shear strength; Fig. IV-3) and/or contain 

dropstones may indicate centennial- to millennial-scale oscillations of a glacier front 

further south that influenced the sediment input into the basin (Chiverrell et al., 

2018; Smedley et al., 2017). Consequently, Atterberg Limits of a sample from a 

diamictic bed at 68.9 m depth in QGBR suggest a glacially-derived component 

(Fig. IV-8; Boulton and Paul, 1976; Schlüchter, 1997; Trenter, 1999).  

6.1.4. Origin of distal gravels 

Overlying the Gebenstorf Trough Diamict, QUST recovered exclusively sandy gravel 

with occasional sand interbeds. Logs of more than a dozen previous boreholes in the 

study area confirm that the distal GST infill is generally gravelly (Stilli Delta Gravel; 

Fig. IV-9). Based on seismic and drilling data, we assume a total volume of these 

coarse-grained distal sediments of ~5*107 m3 (Fig. IV-9; Gegg et al., 2021).  
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Two groundwater exploration boreholes (47°30’20” N, 8°14’11” E and 47°30’39” N, 

8°14’04” E) further reveal an interdigitation of the Stilli Delta Gravel with the 

Gebenstorf Sand in the south, and thus a simultaneous deposition of both facies. The 

distal gravels of the GST must have been emplaced in a (glacio-)deltaic setting, which 

agrees well with the thick-bedded and frequently graded architecture (e.g. Gilbert 

et al., 2017). 

The petrographic composition of the gravels throughout QUST is dominated by far-

travelled, Alpine lithologies (90 % and above; see Table IV-S3, Gegg et al., 2021), 

precluding an origin from local erosion in the Jura Mountains. We also rule out 

reworking and redeposition of proglacial gravels from the Lower Aare Valley north 

of the GST, as there is no evidence for a temporary drainage reversal, such as index 

lithologies indicative for sediment input from the Hochrhein in the trough infill of 

QUST (e.g. rocks from the Black Forest, Hegau volcanics; Graf, 2009b). 

Counterintuitively, the Stilli Delta Gravel must have been deposited from upstream 

by glacial and/or glaciofluvial transport toward the distal trough end.  

Near the trough base, a (sub-)glacial origin of the coarse-grained material, being 

transported towards the terminal slope of the overdeepening by water flow along 

the glacier base, cannot be excluded. However, further up the sequence, the gravels 

interfinger with well-sorted lacustrine sands that are likely not deposited in direct 

proximity to a glacier. The petrography of the Stilli Delta Gravel in QUST shows a 

strong Limmat signal (Table IV-S4; Figs. IV-S1, -S2), indicating that it has been 

delivered from the Limmat catchment laterally into the overdeepening, forming a 

gravel delta at the distal trough end, in front of the lacustrine sands. This hypothesis 

is plausible considering the bedrock morphology: Large parts of the Reuss Valley 

further south, e.g. the Birrfeld Basin (Fig. IV-1), are overdeepened and therefore 

prone to retain coarse-grained sediment, whereas in the Limmat Valley 

overdeepened sections occur only ~20 km upstream of the study area (Pietsch and 

Jordan, 2014), so that any coarse-grained material delivered into the valley in 

between would likely be transported into the GST. 
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6.1.5. Renewed ice advance 

In contrast to the seemingly continuous sedimentology in QGBR and QUST, the 

Gebenstorf Sand is sharply overlain by a ~2 m-thick gravelly intercalation 

(Vogelsang Gravel) in QGVO at ~28 m depth (Fig. IV-9). This interbed coincides with 

an abrupt upsection decrease in CaCO3 and a significant increase in fines as well as 

outsized gravel clasts (Fig. IV-4) that signals a drastic change in the basin 

sedimentation. A striated dark limestone clast at the top of the gravel bed together 

with the diamictic character of the overlying LFA 3a deposits (Vogelsang Sand; 

Fig. IV-9) indicates glacier proximity. This points towards a re-advance close to, and 

possibly over, the site of QGVO (although a reworking of older deposits, e.g. by a 

mass movement in the Tiefere Deckenschotter at Bruggerberg, cannot be excluded).  

While this facies change occurs in several boreholes near QGVO, it is missing in the 

record of QGBR, where we observe no indication for a renewed ice contact. There, 

the upper Gebenstorf Sand is softer than in QGVO, and preconsolidation pressures 

determined by oedometer testing throughout the borehole are close to the present-

day sediment overload indicating that the lacustrine succession has not been 

overconsolidated (Fig. IV-3; O'Regan et al., 2016; Van Gelder et al., 1990), and no 

indication for discrete water escape, such as subglacial hydrofractures, is observed 

(Van der Meer et al., 2009). Therefore, it would seem plausible that the 

sedimentological break in QGVO is the result of a lateral advance into the GST, e.g. 

along the Limmat Valley. However, we need to stress that the dominantly sandy 

facies is not ideally suited for determination of preconsolidation pressures. In 

addition, its petrographic composition (Figs. IV-S1, -S2) indicates that the Vogelsang 

Gravel has a rather Reuss-dominated petrography, which speaks for an axial 

advance along the Reuss Valley and over the GST.  

Whether this advance occurred during the same glacial cycle and only briefly after 

deposition of the underlying Gebenstorf Sand, or after a considerable hiatus, cannot 

be determined from the sedimentary facies. The same applies to the location of the 

boundary between Stilli Delta Gravel and Vogelsang Gravel (Fig. IV-9). 
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6.1.6. Post-lacustrine phase 

The (glacio-)lacustrine infill of the GST is sharply truncated and overlain by ~15 m 

of Niederterrasse gravels (Graf et al., 2006). Interglacial deposits, peat and/or soil 

have not been recovered in between. Borehole data indicate that the Niederterrasse 

gravels fill gentle channels incised into the lake deposits (Fig. IV-10; Gegg et al., 

2021). Several boreholes at the northern end of the GST further recovered limestone 

blocks at ~320 m a.s.l. (317.2 m a.s.l. or 13.9 m depth in QUST), which indicates an 

important event horizon near the base of the Niederterrasse (lying at ~313 m a.s.l.). 

Anthropogenic waste in the cover diamicts of QGBR identifies this material as a 

recent waste deposit (see also Graf et al., 2006). 

6.2. Evolution of the Habsburg-Rinikerfeld Paleochannel 

6.2.1. Glacial and glaciofluvial activity 

At the base of the HRPC, borehole QRIN recovered ~3.5 m of crudely bedded glacial 

diamicts overlain by ~2 m of poorly sorted gravels with a near-identical Aare-

dominated petrographic composition. It is very similar to, and we thus suggest a 

correlation with, the Habsburg Gravel (Figs. IV-6, -7, -10). Gravel and underlying till 

could represent two different glacial cycles as has previously been assumed 

(Bitterli-Dreher et al., 2007; Graf, 2009b), whose ice advances had equivalent 

provenances. However, it appears more likely that the two units have been 

deposited during the same glaciation, and that this glaciation advanced into and 

possibly beyond the Rinikerfeld. In their upper half (QRIN 37.6-39.1 m depth), the 

diamicts contain frequent faceted and striated clasts dispersed in a silty-sandy 

matrix, evidence for a direct ice contact (Evans et al., 2006; Evans, 2007). In contrast, 

the lower half of the diamicts is clast-supported and lacks striated clasts, and may 

be interpreted as a mixture of glacigenic diamicts and proximal glaciofluvial gravels 

deposited in front of the advancing glacier. A negative liquidity index classifies the 

sediment as an overconsolidated till (Schlüchter, 1984). 

The Remigen Gravel occurs on top of the Habsburg Gravel, occasionally in the shape 

of an incised channel infill (Fig. IV-11; Graf, 2009b; Graf et al., 2006; Preusser et al., 

2011). It can be separated from the Habsburg Gravel based on its Reuss/Limmat-

dominated petrography.   
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One sample attributed to the Habsburg Gravel north of Brugg (HS-Hfs; Table IV-S1; 

Graf et al., 2006) is thus identified as Remigen Gravel based on petrographic 

composition (suggesting that the respective channel is slightly wider than 

previously assumed). The same applies to gravels outcropping in the Götschtel pit 

further south (Habsburg Gravel in Graf et al., 2006) but attributed to the Remigen 

Gravel in Graf (2009b). The minimum ice extent during the according glaciation is 

documented from the northern margin of the Rinikerfeld by intercalated glacial 

deposits close to the former gravel pit at Alpberg (Fig. IV-10; Table IV-S2).  

 

Fig. IV-10: Cross-section B (see Fig. IV-1 for location) through the study area illustrating the 

stratigraphy of the HRPC and the overdeepened GST. A: Intersection with profile A 

(Fig. IV-9). 

 

Fig. IV-11: Schematic longitudinal profile through the study area, from the Folded Jura in 

the south to the Hochrhein in the north (cf. Fig. IV-1). Polygons visualize the outcrop/drilled 

elevations of the different gravel units. Base of Quaternary from Loepfe et al. (in prep.). 
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The Remigen Gravel has been overridden by a later ice advance, as indicated by a till 

cap in the Alpberg pit as well as glaciotectonic deformations and crushed grains in 

the Götschtel pit. Evidence for an ice contact in the shape of striated clasts and 

conglomerate blocks is also encountered at the top of the Upper Hochterrasse in the 

Hönger gravel pit (Table IV-S1; Bugmann, 1961; Graf, 2009b). This unit is 

interpreted as a correlative to the Habsburg Gravel by Graf (2009b) but with a 

different, mixed Aare/Reuss/Limmat/Rhine petrography that is supported by our 

compositional data (Fig. IV-7; few schist clasts and an individual serpentinite are 

potential indicators for a Rhine component; Table IV-S4; Hantke, 1978). Based on 

the outcrop elevations and the ice contact at the top of both units, but predoimnantly 

dating results (section 6.3) we correlate the Upper Hochterrasse to the Remigen 

Gravel, while we suggest that the elevation of the Habsburg Gravel might correspond 

better to the Middle and Lower Hochterrasse (Fig. IV-11). 

6.2.2. Lake formation in the Rinikerfeld 

6.2.2.1. Lake establishment and initial sedimentation 

Previous drillings have revealed the existence of a buried paleolake in the northern 

HRPC (local name Rinikerfeld). The Rinikerfeld Paleolake extends over 

~1.5 x 0.5 km2, its deposits are ~30 m thick and surrounded by glacial and 

glaciofluvial deposits (Fig. IV-10). The paleolake has been interpreted as part of an 

ice-decay landscape related to an early Mid-Pleistocene glaciation that predated the 

Habsburg Gravel (Bitterli-Dreher et al., 2007; Graf, 2009b). Overlying till and 

glaciofluvial (presumably Habsburg-) gravel, the lacustrine sequence in QRIN starts 

with ~2 m of predominantly sandy deposits that are diverse in composition, with 

gravelly and silty, partly graded layers, and convoluted bedding (LFA 3b; Fig. IV-6). 

This speaks for lacustrine sedimentation dominated by small-scale mass wasting 

and traction currents, while clay chips indicate occasional high-energy events. Clear 

evidence for an ice contact is lacking (see also below), but the sedimentary facies is 

compatible with an ice-decay setting. The Rinikerfeld Paleolake may thus have 

originated as a kettle hole (Fleisher, 1986; Krüger et al., 2010) or may have been 

dammed by a moraine ridge or landslide body (Carrivick and Tweed, 2013).  
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6.2.2.2. Lacustrine phase 

At ~33.5 m below ground, the LFA 3b deposits of QRIN are sharply overlain by a 

~26 m thick succession of relatively homogeneous lacustrine fines. The lowermost 

~2.5 m (LFA 4a) have a rather crude and thick bedding and sand interbeds that, 

together with presumed soft-sediment deformation features (drilling-induced 

deformation cannot be excluded), suggests a high sedimentation rate (Mills, 1983; 

Pisarska-Jamrozy and Weckwerth, 2013). However, the well sorted nature of the 

deposits and the absence of dropstones indicates that the Rinikerfeld Paleolake was 

not an ice-contact lake. Above (31.0-23.4 m depth; LFA 4b), the lacustrine fines are 

clay-dominated and well bedded/laminated. The excellent preservation of the 

laminations, the lack of macrofossils (except from plant fragments towards the top 

of the lacustrine sequence) and autigenic calcite as well as the low TOC values (max. 

~0.5 %; Fig. IV-6) support its interpretation as a continuously cold (glacial/stadial) 

lake (Anselmetti et al., 2010; Dehnert et al., 2012; Vogel et al., 2010). A rhythmic 

pattern of ~5 mm thick, finer-grained dark bands every 2-3 cm indicates detrital 

varves (Leonard, 1986; Zolitschka et al., 2015) whose summer layers have been 

deposited in several sediment-input events, e.g. phases of increased snowmelt. This 

interpretation suggests a sedimentation rate of few cm/yr, corresponding to 

deposition of this lacustrine section over few hundred years. The dark olive-grey 

colour and homogeneous facies of LFA 4b suggest deposition under reducing 

conditions in a stable, meromictic lake of considerable depth (cf. Anderson, 1985; 

Van Dijk et al., 1978). 

The LFA 4b-4c transition is characterised by an increasing CaCO3 content coinciding 

with an abrupt drop in the gamma log (~45 to ~55 % and ~65 to ~50 API, 

respectively; Fig. 6). This indicates a change in sediment input that could represent 

a transition from an (indirectly) glacier-fed towards a more locally dominated lake, 

fed by runoff from the limestones and calcareous marls of the Jura Mountains 

(Karlén and Matthews, 1992). This transition could be explained by an 

abandonment of the Rinikerfeld by the previously occupying glacier, and drainage 

rerouting into a new channel, which would likely involve a sharp decrease in 

sedimentation rate (Regnéll et al., 2019; Svendsen et al., 2019). The modern Lower 

Aare Valley would be a plausible candidate for this new channel (Fig. 10).  
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LFA 4c first occurs in the shape of repeating, few cm thick orange-brown laminated 

packages starting at 26.1 m depth, which could represent more oxygenated 

conditions that became more frequent, and lastly continuous, at 23.4 m depth, and 

that may be explained e.g. by episodic lake-level fluctuations or increased mixing by 

wind (Moscariello et al., 1998; Wennrich et al., 2014). The sediments of LFA 4c are 

finely laminated with alternating lighter and darker layers that are significantly 

finer and less uniform than in LFA 4b, and that are interpreted as varves but with a 

lower and more variable sedimentation rate on the order of few mm/yr. Individual 

layers can be olive-grey or brownish, indicating fluctuating oxygenation (Van Dijk et 

al., 1978). Occasional intercalated sand layers indicate higher-energy sedimentation 

events typical for a floodplain setting (Asselman and Middelkoop, 1995; He and 

Walling, 1998; Huybrechts, 2000). Assuming that the HRPC was abandoned in 

favour of the modern Lower Aare Valley during the lifetime of the paleolake, it is not 

unlikely that the Rinikerfeld was occasionally inundated by overbank floods from 

the new river valley that delivered fine-grained sediments from the catchment.  

A distinct upward-increasing trend in TOC in the Rinikerfeld Paleolake illustrates 

ameliorating climate conditions (Fig. IV-6). Above ~16.3 m depth, dark grey to black 

intervals occur that, when exposed to air, quickly fade to a rusty brown, which 

indicates that the colour is due to finely dispersed sulphides (Rickard et al., 2017). 

These intervals thus provide first macroscopic indications for organic matter, but 

possibly also for mild bioturbation as they are much more crudely bedded than the 

remainder of LFA 4c (Berner, 1985; Suits and Wilkin, 1998). They are overlain by 

macroscopic plant fragments occurring ~10 m below ground where the lacustrine 

fines become more diverse, with laminated and massive packages of clay, silt, and 

sand, and colours ranging from beige-grey to ochre-orange (LFA 4d). This marks the 

transition from a now silted-up lake basin to a shore setting, whose deposits, 

terminating 7.4 m below ground, contain again macroscopic plant fragments and 

may periodically have been subaerially exposed (Urban and Bigga, 2015). The 

inferred sedimentation rates of initially few cm/yr (LFA 4b), and later few mm/yr 

(LFA 4c) indicate a lifetime of the Rinikerfeld Paleolake of few thousand years. 
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6.2.2.3. Post-lacustrine phase 

The sediments of the Rinikerfeld Paleolake is overlain by 7.4 m of thick-bedded 

matrix-supported diamicts whose petrographic spectrum consists of >50 % light 

limestones derived locally from the Mesozoic rocks of the Jura Mountains 

(Table IV-S3). The diamicts contain predominantly angular clasts without striations, 

and are very sandy but poor in silt and clay, which makes both a pure fluvial and a 

pure glacial origin implausible. Together, these characteristics are indicative for 

periglacial slope deposits (PSD), i.e. the products of frost cracking, cryoturbation, 

solifluction and/or debris flows (Raab et al., 2007; Veit et al., 2017), and we thus 

refer to these diamicts as Rinikerfeld Colluvium (Fig. IV-10). It is questionable 

whether active (glacio-)fluvial input into the Rinikerfeld Colluvium occurred. 

Reworking of older gravels appears to be the more likely explanation for the 

occurrence of well-sorted, far-travelled clasts. Compared to last-glacial PSD, those 

of the Rinikerfeld are strikingly thick, suggesting intensive subaerial erosion and 

redeposition during the time of their deposition (Mailänder and Veit, 2001).  

Preconsolidation pressures determined for five sediment samples of the Rinikerfeld 

Paleolake are significantly higher than the present-day overload (Fig. IV-6, 

Table IV-S5). The three intermediate samples, recovered by wireline coring, show 

preconsolidation pressures that exceed their overload by >500 kN/m2 or >250 %. 

These values can be explained by overconsolidation under >20/40 m of dry/water-

saturated sediment that has since been eroded, or >50 m of glacier ice (O'Regan et 

al., 2016; Van Gelder et al., 1990). The topmost (9.65 m) and lowermost sample 

(31.88 m), recovered by pneumatic hammering, exceed the respective overload by 

~200 kN/m2 or 60-130 %, corresponding to ~10/20 m of dry/water-saturated 

sediment or ~20 m of glacier ice.   
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The overconsolidation recorded in the lacustrine deposits is enigmatic as we 

observe neither sedimentological indication for loading by ice (e.g. ice-contact 

deposits, glaciotectonism, fluid-escape structures; O'Regan et al., 2016; Van der 

Meer et al., 2009), nor potential gaps in the seemingly continuous Quaternary 

succession (see discussion above). It is possible that the overconsolidation is a result 

of freezing and thawing of the sediment (Alkire, 1981; Chamberlain, 1981; Qi et al., 

2006), which could also account for the shear-strength pattern that shows a distinct 

peak at the LFA 4b/4c boundary (Fig. IV-6), where generally lowering and 

fluctuating water levels are inferred. 

6.3. Chronology 

Several stratigraphic units of the Lower Aare Valley have recently been 

luminescence-dated by Mueller et al. (2020, in prep.), based on a combined 

approach analysing quartz, feldspar, and polymineral fractions. These studies 

revealed that the record of both, the overdeepened Gebenstorf-Stilli Trough (GST, 

Remigen Gravel) and the Habsburg-Rinikerfeld Paleochannel (HRPC; Gebenstorf 

Sand and Stilli Delta Gravel), reach back to at least MIS 10 (Fig. IV-12; Mueller et al., 

in prep.).  

Combining luminescence ages with sedimentology and sediment petrography, the 

Mid-Pleistocene environmental history of the Lower Aare Valley, and the confluence 

area with Reuss and Limmat, can be reconstructed. The minimum MIS 10 age of the 

GST incision suggests that the formation of the Birrfeld Basin started latest in MIS 12 

(Graf, 2009b). Similarly, the Habsburg Gravel underlying the Remigen Gravel (see 

below), the supposedly correlative Rinikerfeld Basal Till, as well as the HRPC itself 

likely date back to MIS 12 or earlier (Graf, 2009b; Preusser et al., 2011). The Aare-

dominated petrography of the Habsburg Gravel identifies the HRPC as an ancient 

Aare riverbed (Fig. IV-7; Graf, 2009b), and the Rinikerfeld Basal Till indicates a pre-

MIS 10 (MIS 12?) advance of the Aare glacier into the paleochannel.  

The oldest directly dated deposits of the Lower Aare Valley have been deposited 

during MIS  10 (Habsburg Glaciation?; Mueller et al., in prep.). These include the 

majority of the GST infill as well as the Remigen Gravel (1) of Alpberg (Rinikerfeld; 

Fig. IV-12).  
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It is noteworthy that the Habsburg Gravel predates the Remigen Gravel and thus, 

according to these new data, also the period tentatively referred to as Habsburg 

Glaciation (Graf, 2009b; Preusser et al., 2021; Preusser et al., 2011). The excavation 

of the GST requires a minimum ice extent beyond the trough terminus that is in 

accordance with intercalated tills in the Alpberg gravel pit (Fig. IV-1). Along the GST, 

we observe a change in sediment composition from an Aare/Reuss dominance 

(QGBR, QGVO) to a Limmat signal (QUST; see section 5.2.2, Table IV-S4). This 

suggests that the confluence of the Limmat catchment with the Aare/Reuss 

catchment occurred close to its present-day location (Figs. IV-1, -12; see also Gegg 

et al., 2021).  

The Remigen Gravel (2) in the Götschtel pit as well as the Upper High Terrace at 

Hönger have been dated to MIS 8 (Hagenholz Glaciation?; Fig. IV-12; Mueller et al., 

in prep.). It appears that the Remigen Gravel comprises sediments related to at least 

two different glaciations (Fig. IV-12). The sediment at both localities is 

comparatively well sorted with pure sand layers, and no intercalated tills occur, 

compatible with a moderate ice extent inside the LGM as suggested by Graf (2009b). 

Gravel compositions of the Remigen Gravel suggest that these deposits generally 

represent a variable, mixed Reuss/Limmat facies. Our limited petrographic data 

indicate that the supposedly older (MIS 10) deposit could tend more towards a 

Reuss, and the younger (MIS 8) deposit more towards a Limmat composition 

(Figs. IV-7, -S1, -S2, Table IV-S4), but more samples would be needed to test this 

hypothesis. Further, it is questionable how Limmat-derived material could be 

deposited as far west as at the Götschtel site (Fig. IV-1). 

An MIS 6 age has been inferred for one gravel sample below the Niederterrasse of 

QUST (Fig. IV-12; Mueller et al., in prep.). We interpret this by the excavation of an 

inlaid basin inside the GST, and correlate the respective interval to the Vogelsang 

Gravel and Sand of QGVO (Fig. IV-9). The gravel petrography of the respective 

deposits indicates that this inlaid basin was mainly excavated by and infilled from 

the Reuss Glacier (Figs. IV-7, -S1, -S2).  
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A minimum glacier extent near Stilli (Fig. IV-1) is thus inferred for the Beringen 

Glaciation, but the MIS 6 glaciers advanced over the entire study area and beyond 

the Hochrhein (Fig. IV-12; Graf, 2009b; Preusser et al., 2011), which is supported by 

glacigenic deposits at the top of the Hönger gravel pit (Upper Hochterrasse, 

Fig. IV-1). This makes it unlikely that the site of QGBR has not been overridden as 

well, and we suggest that the Gebenstorf Sand is - despite its fines content - not 

suitable for the determination of preconsolidation pressures (see section 6.1.5). 

Further MIS 6 ages are attributed to the Rinikerfeld Paleolake and Colluvium 

(Mueller et al., 2020) that were deposited in the HRPC in a periglacial setting 

during/after ice retreat. To our knowledge, no younger glacial or glaciofluvial 

deposits exist within the paleochannel. Therefore, we hypothesize that, despite the 

GST being incised presumably already during MIS 10, the modern Aare Valley was 

deepened below the level of the HRPC, and the latter abandoned, only in late MIS 6. 

The Niederterrasse of QGBR and QUST have been assigned MIS 4 and MIS 5d ages, 

respectively, the former thus correlating to the Mülligen Gravel of the Birrfeld Basin 

(Preusser and Graf, 2002). MIS 2 (LGM) ages have not been determined (Mueller et 

al., in prep.). 
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Fig. IV-12: Reconstruction of the glaciation history of the Lower Aare Valley area (scheme 

after Buechi et al., 2017). Displayed are major phases of overdeepening erosion and 

sediment aggradation, and the respective reconstructed glacier extents (A: Aare, R: Reuss, 

L: Limmat). Chronological data a-h are taken from Mueller et al. (in prep.); a: Alpberg pit, b: 

QGBR 23.9-91.6 m depth, c: QUST 33.2-72.7 m, d: Götschtel pit, e: Hönger pit, f: QUST 19.2 m, 

g: QUST 13.2 m, h: QGBR 11.2 m. For locations, please refer to Fig. IV-1. 
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7. Synthesis 

7.1. Integration into the regional stratigraphic record 

The ample Quaternary record of the Lower Aare Valley complements and 

significantly expands our knowledge of the regional landscape and glaciation 

history (Graf, 2009b; Preusser et al., 2011), as it comprises some of the first deposits 

of the Swiss Alpine foreland confidently dated to Mid-Pleistocene glaciations 

predating the Beringen Glaciation (as old as MIS 10; Mueller et al., in prep.). Beyond 

that, sediment units (Habsburg Gravel, Rinikerfeld Basal Till) and large-scale 

landforms (Birrfeld Basin, HRPC) exist that are presumably yet older (Graf, 2009b; 

Preusser et al., 2011). For their formation, MIS 12, tentatively connected to the 

Möhlin Glaciation (i.e. the supposed Most Extensive Glaciation of the Swiss Alpine 

foreland, see Fig. IV-1; Preusser et al., 2021), is a plausible candidate (Fig. IV-12). 

The Remigen Gravel 1 at Alpberg as well as the Gebenstorf-Stilli Trough and large 

parts of its infill trace a major erosive Alpine ice advance into the foreland during 

the Habsburg (?) Glaciation (MIS 10) that exceeded the LGM ice limit in the study 

area by ≥10 km. Similar ice extent, as well as the erosion and infilling of an 

overdeepening, have been tentatively inferred for the Habsburg Glaciation in the 

Lower Glatt Valley (Buechi et al., 2017). In the Thalgut gravel pit (Aare Valley south 

of Bern; Schlüchter, 1989a, b), lake deposits with an inferred MIS 11 age are 

conformably overlain by a glaciofluvial delta complex and waterlain till (Preusser et 

al., 2005) that may thus also correlate to the Habsburg (?) Glaciation. 

Despite the probably rather limited ice extent (Graf, 2009b; Preusser et al., 2011), 

the Hagenholz (?) Glaciation (MIS 8) delivered large amounts of meltwater gravel 

into the Lower Aare Valley (Remigen Gravel 2 at Götschtel, Untere Hochterrasse at 

Hönger; Mueller et al., in prep.). The same has been suggested by Buechi et al. (2017) 

for the Lower Glatt Valley, and by Claude et al. (2017) for the Hochrhein Valley near 

Basel. A possibly correlative waterlain till underlies an MIS 7-paleolake in the 

Meikirch borehole (Aare Valley north of Bern; Preusser et al., 2005).  
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The Beringen Glaciation (MIS 6) is well represented in other foreland records in the 

shape of both glaciofluvial outwash and glaciolacustrine basin infills (Anselmetti et 

al., 2010; Buechi et al., 2017; Dehnert et al., 2010, 2012; Preusser and Schlüchter, 

2004). Petrographic evidence further indicates the build-up and expansion of local 

ice caps in the Jura Mountains (Graf et al., 2015) and in the Black Forest (Graf, 

2009b). The glaciofluvial gravels of the Klettgau (Hochrhein Valley) record an 

especially complex and dynamic Beringen Glaciation: here, Lowick et al. (2015) 

identified up to four different ice advances during MIS 6 (and possibly MIS 5d). In 

contrast, the Beringen Glaciation left only little remains behind in the Lower Aare 

Valley, namely the infill of a minor inlaid basin within the GST (Mueller et al., in 

prep.) and periglacial lacustrine and colluvial deposits in the Rinikerfeld (Mueller et 

al., 2020). However, we consider plausible that the HRPC was abandoned in late 

MIS  6 due to significant erosion along, and deepening of, the modern Lower Aare 

Valley in the Beringen Glaciation. 

Two samples from the Niederterrasse of the Lower Aare Valley yielded MIS 5d and 

MIS 4 ages, but none corresponding to MIS 2 (LGM; Mueller et al., in prep.). These 

dates support a trinity of Late Pleistocene ice advances in the Western Alps that are 

all associated with substantial sediment production and deposition in the foreland 

(Chaline and Jerz, 1984; Ivy‐Ochs et al., 2008; Preusser et al., 2011). Further 

evidence for early and middle Late Pleistocene glaciofluvial activity has been 

presented by Preusser et al. (2003), Preusser and Schlüchter (2004), Lowick et al. 

(2015), and Preusser and Graf (2002), Preusser et al. (2007), respectively. 

7.2. Implications of the local setting for Quaternary stratigraphy 

The Lower Aare Valley area stands out from the majority of other Quaternary sites 

in the Swiss Alpine foreland due to its local geological and topographic setting. While 

many well-studied localities are situated in the Molasse Basin, the GST and HRPC lie 

within the southeastern foothills of the Jura mountains. Here, in diverse but 

generally rather erosion-resistant Mesozoic rocks, an area of considerably increased 

relief developed (Yanites et al., 2017) with morphologically well-defined and stable 

valleys (Ziegler and Fraefel, 2009).   
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As a result, the Pleistocene ice advances and meltwater streams were not only 

topographically constrained (Gegg et al., 2021) but also repeatedly directed along 

the same pathways. This is illustrated i) by the remnants of at least three, but likely 

four or more, different glaciations occurring in the HRPC, and by ii) the Limmat-Aare 

confluence being established at its present-day location already in MIS 10, as 

revealed by the infill of the GST. 

One consequence of the repeated occupation of the same valleys is a complex, 

intertwined stratigraphy whose components are difficult to identify and resolve. 

This is well exemplified by the finding that the Remigen Gravel appears to comprise 

deposits of at least two separate glaciations. However, the comprehensiveness of the 

Quaternary record in our study area spanning four glacial cycles at the minimum is 

rather surprising in light of its special setting. One might expect that multiple phases 

of glacial and/or glaciofluvial reactivation could have effectively obliterated older 

Pleistocene deposits in the GST and HRPC (Buechi et al., 2017; Hughes et al., 2019; 

Merritt et al., 2019), but in contrast, we could identify sediments that predate those 

at many other well-studied localities.  

It remains questionable why both MIS 2 and MIS 6, the presumably most severe cold 

phases of the last ~200 ka (Cohen and Gibbard, 2011; Lisiecki and Raymo, 2005), 

apparently only left little traces in the Lower Aare Valley. Based on our results we 

suggest that the regional Quaternary record may be further expanded and the 

landscape history better understood by detailed sedimentological and petrographic 

analysis combined with state-of-the-art chronostratigraphy in other areas. 
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9. Supplementary material 

Table IV-S1: List of sampled outcrops. GA25: Graf et al., 2006; Matousek et al., 2000.   

1: attributed to Remigen Gravel in Graf, 2009. 
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Table IV-S1 (continued): List of sampled outcrops. GA25: Graf et al., 2006; Matousek et al., 

2000. 2: correlative unit after Graf, 2009. 
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Table IV-S1 (continued): List of sampled outcrops. GA25: Graf et al., 2006; Matousek et al., 

2000.  
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Table IV-S2: Lithology groups as input for statistical analysis. 

Lithology group Lithologies 

Alpine limestones 
dark grey limestone, light grey limestone, other 

limestone 

Siliceous Alpine 

limestones 

dark grey siliceous limestone, light grey siliceous 

limestone, dark granular limestone 

Jura Mountains 

limestones 

beige limestone, angular beige limestone, patterned 

beige limestone 

Dolostones dolostone 

Sandstones and 

conglomerates 

sandstone general, glauconitic sandstone, conglomerate 

general, breccia general, rauhwacke-type breccia,  

Red sandstones red sandstone, red conglomerate 

Taveyannaz 

sandstones 
Taveyannaz sandstone 

Quartzites quartzite, vein quartz 

Cherts chert, radiolarite 

Plutonics, undiff. granitoid, dioritoid, gabbroid, foidite 

Rhyolites rhyolite 

Further volcanics green/yellow volcanic, purple volcanic, other volcanic 

Metamorphics, undiff. gneiss, schist, amphibolite, serpentinite 
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Table IV-S3: Petrographic composition of selected core intervals. 1: Bulk sample integrating 

5 m of poorly recovered core. 
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Table IV-S3 (continued): Petrographic composition of selected core intervals. 
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Table IV-S3 (continued): Petrographic composition of selected core intervals (percentage). 

1: Bulk sample integrating 5 m of poorly recovered core. 
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Table IV-S3 (continued): Petrographic composition of selected core intervals (percentage).  
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Table IV-S4: Petrographic composition of field-collected samples (see Table IV-S1 for 

descriptions and coordinates). 
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Table IV-S4 (continued): Petrographic composition of field-collected samples (percentage; 

see Table IV-S1 for descriptions and coordinates). 

  



193 

 

Fig. IV-S1: Results of a cluster analysis of the petrographic samples (Ward’s method, 

Euclidean distance matrix). Facies groups are identified based on reference samples from 

the Niederterrasse, and generally agree well with principal component analysis as well as 

previous studies (see text).  
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Fig. IV-S2: Results of three different endmember (EM) analyses (Robust EMMA; 

deterministic EMMA with 3 EM; RECA with 3 EM, convexity threshold -6, and weighing 

exponent 1). All approaches produce a quartz-rich EM (EM1, tentatively correlated with an 

Aare input; S2A), a siliceous Alpine limestone-rich EM (EM2, ~Reuss?), and a third EM rich 

in non-siliceous Alpine limestone (EM3, ~Limmat?). The EM scores of Niederterrasse 

reference samples (last 6 lines; S2B) suggests that in our case the EMMAgeo package 

performs better than the RECA package. The calculated EM scores of the EMMA analyses 

generally agree well with principal component analysis, clustering, and previous studies 

(see text, Fig. IV-S1).   
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Table IV-S5: Oedometer measurement data (sample compaction in response to applied 

vertical load) and work done per unit volume after Becker et al. (1987). Initial thickness of 

all samples is 20 mm. 
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Table IV-S5 (continued): Oedometer measurement data (sample compaction in response to 

applied vertical load) and work done per unit volume after Becker et al. (1987). Initial 

thickness of all samples is 20 mm (1: 19.1 mm; 2: sample QRIN, 20.89 m). 
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Table IV-S6: Water contents and Atterberg limits determined from samples from QGBR and 

QRIN. 

QGBR QRIN 

Depth 

[m] 

Water 

content 

Liquid 

limit 

Plastic 

limit 

Depth 

[m] 

Water 

content 

Liquid 

limit 

Plastic 

limit 

68.90 16% 18% 15% 9.65 25% 25% 14% 

106.90 19% 19% 14% 16.26 23% 34% 17% 

109.80 14% 18% 11% 20.89 22% 34% 16% 

Note: samples from 43.10, 63.90, 74.90, 

78.90, 84.90, 96.90, 100.90 m depth not 

sufficiently cohesive. 

29.15 20% 24% 16% 

31.88 21% 31% 14% 

39.88 9% 18% 13% 
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Terminus of the Athabasca Glacier (British Columbia, Canada). 
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V. Conclusions and Outlook 

The present thesis sheds light on the process of overdeepening erosion and the 

associated subglacial conditions, as well as on the sedimentary archive contained in 

the resulting basin. This is done by the example of the Lower Aare Valley in northern 

Switzerland, which has been targeted by a scientific drilling campaign. 

For the second chapter, borehole data were complemented with a geophysical 

survey based on the analysis of surface waves, a cost-effective approach found well-

suited for subsurface mapping of the overdeepened Gebenstorf-Stilli Trough. It 

revealed an unexpected, complex trough shape that could be linked to the study 

area’s regionally unique bedrock architecture, and shows that varying rock 

erodibilities exert major control on the efficiency of overdeepening erosion. This 

suggests that the morphologic complexity of overdeepenings in heterogeneous 

bedrock may have been considerably underestimated (e.g. in Linsbauer et al., 2016; 

Patton et al., 2016; Pietsch & Jordan, 2014). The presented results further indicate 

that subglacial water played a significant, possibly the leading, role in the erosion of 

the trough, and thus that the overdeepenings of mountain forelands may be 

appropriately regarded as analogues of tunnel valleys (Cofaigh, 1996; Dürst Stucki 

and Schlunegger, 2013; Van der Vegt et al., 2012). 

The role of fluid water in overdeepening erosion is further exemplified by the 

findings of the third chapter. There, surficial brecciation in sediment-filled 

paleokarst walls underneath the overdeepened trough was identified as the result 

of hydrofracturing, illustrating the occurrence of high water-pressure events. In 

contrast to typical hydrofractures (e.g. Phillips et al., 2013; Rijsdijk et al., 1999) 

however, no macroscopic, microscopic or mineralogical evidence was encountered 

for water flow through the paleokarst or the newly formed fractures, indicating that 

they did not act as ‘safety valves’ (Van der Meer et al., 2009) and that the pressurised 

water could not escape from the base of the overdeepening. In spite – or exactly 

because – of that, subglacial hydrofracturing may be an important but yet 

underestimated mechanism of subglacial overdeepening erosion. 
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The sedimentary archive of the Gebenstorf-Stilli Trough, as well as further 

Pleistocene deposits in its vicinity, are the main focus of the fourth chapter. Borehole 

logs, detailed sedimentological characterisation and gravel petrographic 

compositions prove to be valuable stratigraphic tools in both the overdeepening and 

neighbouring glaciofluvial paleovalleys (Graf, 2009). That way, discernible sediment 

bodies are recognised, material inputs from the individual confluent glaciers (Aare, 

Reuss, Limmat) are identified, and several phases of glacial and/or glaciofluvial 

reactivation are reconstructed. An integration of luminescence ages shows that the 

Pleistocene deposits of the Lower Aare Valley represent large parts of the Middle 

and Late Pleistocene (MIS 10-4 at minimum), and allows to tie them into the 

regional framework, where evidence of the early Mid-Pleistocene has previously 

been very scarce (Preusser et al., 2011). However, the results of this study indicate 

that detailed multi-method investigations at other key sites have the potential to 

further expand the regional record.  

At the time of completion of this thesis, overdeepened basins and their infills are the 

target of several independent projects under Bernese lead or participation. With 

scientific drillings completed in central northern Switzerland (QBO; Fig. I-7) and 

further upstream the Aare Valley (Schwenk et al., 2020), and ongoing in the Lake 

Constance area (ICDP DOVE: Anselmetti et al., 2016), many hundred meters of cores 

are undergoing or awaiting analysis. Further valuable insights are to be expected 

from palynological analysis of the recovered records (Schläfli et al., 2020), as well as 

from gravimetric mapping of overdeepenings (Bandou et al., 2020), and regional-

scale models (Magrani et al., 2020). There is therefore all reason to be curious about 

the future… 
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Sedimentary structures in glaciofluvial gravel and sand (Lower Aare Valley, Switzerland). 
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Appendix A: Beyond the scope 

1. Introduction 

During the process of sample analysis and interpretation, and writing of the thesis 

at hand, much more data have been acquired than could reasonably be integrated 

into the main chapters. Here, some of the data that did not make it into these 

manuscripts are presented and tentatively interpreted. The following section thus 

provides further insights into very specific topics, and is intended as a basis for 

future work. 
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2. Approaches towards bedrock erodibility quantification 

In chapter II, evidence for strong lithological control on the efficiency of subglacial 

overdeepening erosion in the Wasserschloss area was provided. The results of this 

study indicate that the Upper Jurassic limestones (Villigen Fm.) of the Jura 

Mountains are significantly more resistant to overdeepening erosion than 

underlying marls (Wildegg Fm.) and overlying Molasse deposits. A quantification of 

this erodibility contrast however is difficult (Zhang, 2010). In applied geology, 

several attempts have been made to assess rock mass strength (RMS), i.e. the 

macroscale strength of a natural, jointed rock body, based on outcrop and drill core 

evaluation (e.g. Bieniawski, 1973; Deere, 1963; Marinos and Hoek, 2000; see also 

Edelbro, 2003). It has been suggested that RMS is among the primary controls on 

subaerial hillslope denudation, and that slope angles that are not predefined by 

distinct fracture sets will tend towards a ‘strength equilibrium’ (Selby, 1982; see 

also e.g. Augustinus, 1992; Brook and Tippett, 2002; Moore et al., 2009). Therefore, 

an assessment of RMS via analysis of digital elevation data could be a viable 

approach. 

Thus, LiDAR surface elevation data with a spatial resolution of 2 m (Swisstopo, 

2013) were analysed in order to better characterise the resilience of the above-

mentioned lithologies, and of further stratigraphic units in the vicinity. Based on the 

1 : 25’000-scale Geologic Atlas of Switzerland (Graf et al., 2006), outcrop areas of the 

bedrock units were mapped, and slope angle histograms of these areas were 

computed (Fig. A-1). On average, higher slope angles should correspond to higher 

RMS and thus reduced erodibility. However, the interpretation of the diagrams on 

Fig. A-1 is not straightforward due to the tectonic setting: Dip angles of the bedrock 

strata vary strongly throughout the study area (see chapter II) and may result in an 

overrepresentation of certain slope angles. As an example, the sub-horizontal 

Villigen Fm. limestones of the Tabular Jura form plateaus that reduce the 

average/median hillslope angle. Therefore, it may be more appropriate to compare 

the abundances of steep hillslopes, which are here defined by an angle of >30° 

(DiBiase et al., 2017; Tian et al., 2017).  
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The results suggest relatively low RMS / high erodibility for Molasse and Opalinus 

Clay (≤5% >30°), intermediate RMS / erodibility for Wildegg Fm., Staffelegg Fm. and 

Klettgau/Bänkerjoch Fm. (5-10% >30°), and relatively high RMS / low erodibility 

for Villigen Fm., PKI, and Schinznach Fm. (>10% >30°). This is in qualitative 

agreement with conclusions by Ludwig (2018). 

The incision of the Gebenstorf-Stilli Trough through the Folded Jura allows for a 

second approach targeting the differences of RMS. As described in chapter II, the 

cross section of the buried trough remains largely constant throughout the FJ 

despite the bedrock lithologies changing repeatedly over short distances. However, 

the exposed valley slopes above the trough infill have been subject to continued 

erosion and slope retreat whose extent shows considerable differences (Fig. A-2). 

On average, estimated values range from <300 m in the presumably resistant 

Villigen Fm. and Schinznach Fm., to >500 m in the weaker Opalinus Clay. In the 

Wildegg Fm., PKI, and Klettgau/Bänkerjoch Fm., intermediate values (350-420 m on 

average) are determined, whereas the Molasse beyond the FJ is almost entirely 

levelled off (Fig. A-2). While these results generally agree with the considerations 

above, they have to be again interpreted cautiously, as a direct conversion of 

estimated slope retreat to RMS would likely be a gross oversimplification. Locally, 

slope retreat may have been enhanced through weakening by faults (Graf et al., 

2006) or through undercutting by the meandering Reuss river, leading to an 

underestimation of the respective RMS. In addition, some of the stratigraphic units, 

especially the aggregated PKI and Klettgau/Bänkerjoch Fm., are lithologically 

diverse and likely not appropriately characterised by a single RMS value. 

As a concluding remark, it needs to be emphasised that LiDAR data, like most digital 

elevation data, only provide insights into the non-overdeepened realm. Therefore, 

an assessment of rock resilience via DEMs, and conclusions drawn from it, are 

restricted to the corresponding erosion processes, which are likely different from 

the prevailing processes in overdeepening erosion (see chapter II). The analysed 

hillslopes have not been glaciated for ~150 ka (Bini et al., 2009; Preusser et al., 

2011), and their present-day morphology is a product of subaerial denudation. It is 

not clear and needs to be a focus of future work in how far subaerial erodibilities 

can be applied to the overdeepening process.   



Appendix A 

 

Fig. A-1: Slope histograms for outcrop areas of the bedrock strata in the Wasserschloss area, 

distinguishing between Tabular (TJ) and Folded Jura (FJ).   

Med. = median (dashed line), ave. = average (dotted line), max. = maximum values. 

Fig. A-2 (next page): Cross sections of the buried Gebenstorf-Stilli Trough and the modern 

valley flanks through the Folded Jura from south (bottom) to north (top). With dashed lines, 

the post-incisional slope retreat of the exposed valley walls is estimated.  
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3. Further thoughts on gravel petrography 

Gravel petrographic compositions are a valuable tool to subdivide individual 

sediment bodies and to infer material provenance (chapter IV; Gerth and Becker-

Haumann, 2007; Graf, 2009; Schlüchter, 1975). In contrast to the sand fraction that 

predominantly reflects local bedrock erosion, for example in heavy mineral spectra, 

coarser-grained components of Pleistocene deposits of Switzerland have been 

shown to better preserve a source signal (Gasser and Nabholz, 1969; Graf, 2009). In 

the Wasserschloss area, sediment petrography and provenance can be especially 

powerful tools for Quaternary geology. On the one hand, petrographic analysis 

allows a distinction of sediments delivered from Aare, Reuss, and Limmat. On the 

other hand, especially the Stilli Delta Gravel contains a comparatively long and 

continuous record to explore (see chapter IV), which cannot be expected in a 

glaciofluvial setting. 

Pitfalls of petrographic analysis can lie in mixing of different deposits, e.g. by 

reworking of older glaciofluvial gravels or Molasse deposits (Weltje and von 

Eynatten, 2004). Thus, individual clasts of certain lithologies, especially of index 

lithologies, must be interpreted with caution and under consideration of complex 

transport pathways. Further complication can arise from sediment modification 

during and after transport, e.g. by the erosion of non-resistant clasts that end up 

being underrepresented (Weltje and von Eynatten, 2004). In the Wasserschloss 

area, potential examples include dolostones and certain sandstones and granitoids 

that are occasionally encountered in a weathered, disintegrating shape (see Graf, 

2009). Finally, inferring the provenance of old deposits through gravel petrography 

may be difficult as the surface geology in the source areas may change with ongoing 

erosion, distorting its specific fingerprint over time (Schlüchter, 1975). 
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In chapter IV, the results of principal component analysis (PCA) were presented, and 

it was inferred that principal component (PC) 1 is indicative for the sediment-

delivering catchments, which PC2 appears not to be. PC2 separates primarily 

samples rich in Alpine limestones (high PC2) from samples rich in sandstones (low 

PC2; correlation coefficient -0.40; Fig. A-3). I assume that PC2 could contain 

information on the dominant sediment source in terms of tectonic units, with low 

PC2 values indicating erosion focused in the Molasse basin, i.e. the mountain 

foreland, and high PC2 values indicating predominantly inner-Alpine erosion. This 

could be linked to peak glacial conditions vs. conditions of rather limited ice extent, 

respectively.  

 

Fig. A-3: Results of a principal component analysis (PCA) of gravel petrographic data 

including all lithology groups except from locally derived (Jura Mountains) limestones. For 

details, please see chapter IV. 

It is noteworthy that the PC2 (and PC1) scores of QUST do not display a random 

scatter but several distinct trends whose breaks lie at the approximate locations of 

unit boundaries, some of which are presumably associated with hiati (Fig. A-4). This 

gives the impression that both PC have, in fact, geological implications.  
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Applying the above-mentioned considerations, the first increasing and then 

decreasing PC2 scores in the Gebenstorf Trough Diamict and Stilli Delta Gravel could 

indicate ice retreat followed by a re-advance, which could be connected with, and 

supported by, presumed dropstones encountered towards the top of the Gebenstorf 

Sand in QGBR and QGVO (see chapter IV). Increasing PC2 scores in the Vogelsang 

Gravel would thus suggest its deposition during ice retreat, while the decreasing 

scores in the Niederterrasse would point towards deposition during ice advance 

(Fig. A-4).  

Further, a positive correlation of PC1 and PC2 is observed in QUST (correlation 

coefficient 0.56; Fig. A-4), indicating that larger glacier distances coincided with 

relatively increased sediment input from the Aare catchment (high PC1, see 

chapter IV). This is not readily explained. Different magnitudes of local redeposition 

as opposed to the delivery of fresh sediment from outside of the study area may, for 

example, play a role.  

Generally, these considerations at their present stage require significantly more 

discussion to be viable. Several important points of uncertainty exist and will have 

to be addressed. i) Considerable contributions of, among others, siliceous Alpine 

limestones and quartzites (Reuss and Aare signals?) to PC2 suggest that its 

significance is more complex and that it should be interpreted with caution. ii) While 

sediment in the subglacial drainage network is presumably transported into the 

terminal overdeepening relatively quickly, clasts that fall onto or are entrained into 

the glacier may be deposited only after a significant delay. Different debris pathways 

between erosion and deposition will have to be characterised and discussed 

(Boulton, 1978; Kirkbride, 2002). iii) The previously proposed connection of 

sandstones with the Molasse Basin as sediment source is an oversimplification, as 

several Alpine sandstones (e.g. derived from Flysch or the Helvetic Garschella Fm.; 

Meyer, 2013) are also classified into this group. A refinement of the lithology groups 

with a stronger emphasis on the clast stratigraphy would help to better resolve 

source signals.  
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Fig. A-4: Principal components of petrography samples from QUST, with interpretation 

based on chapter IV (VG: Vogelsang Gravel, GTD: Gebenstorf Trough Diamict). Lithofacies 

codes refer to Eyles et al. (1983). 
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4. The Rinikerfeld Paleolake: detailed insights 

4.1. Elementary analysis 

X-ray fluorescence (XRF) scanning provides high-resolution insights into the 

elementary composition of fine-grained sediments that can be diagnostic for a 

variety of sedimentary and climatic processes (e.g. Croudace et al., 2019, and 

references therein). XRF scans of the Rinikerfeld Paleolake (see chapter IV) deposits 

were acquired and tentatively interpreted under guidance from Hendrik Vogel 

(University of Bern). 

The interval between 28.6 and 23.1 m depth brackets the gradual sedimentary 

change from LFA 4b to 4c (26.1-23.4 m depth; see chapter IV) and was considered 

of special interest. The respective core sections were analysed with a Cox Ltd. Itrax 

x-ray fluorescence (XRF) core scanner (Cr tube, 30 kV, 50 mA, 20 s integration time) 

at the Institute of Geological Sciences, University of Bern. Relative element 

abundances were determined in a resolution of 2500 μm, and 500 μm in selected 

intervals. 

No systematic variations are evident within the rhythmically banded fine-grained 

deposits of LFA 4b below 26.1 m depth: The presumed summer and winter layers 

are not distinguishable by XRF data. Only occasional sandy interbeds are relatively 

enriched in Si and Zr/Rb, and depleted in K, Ti, and Fe. The rhythmic occurrence of 

orange-brown laminated packages (LFA 4c) starting at 26.1 m depth is interpreted 

as indicative for repeated episodes of bottom water oxygenation that became 

continuous at 23.4 m below ground (see chapter IV). This is supported by a slight 

decrease in Fe/Mn (Fig. A-5; Naeher et al., 2013; Żarczyński et al., 2019) and S 

(Holmer and Storkholm, 2001). Over the LFA 4b-4c transition, the deposits become 

progressively richer in Ca and accordingly, CaCO3 content inreases from ~45% to 

~55% as inferred from combustion gas analysis. A concurring decrease in Zr/Rb 

indicates that the clay mineral content decreased (Dypvik and Harris, 2001), as can 

also be inferred from the gamma log. This supports the interpretation of a significant 

change in sediment input into the lake that may reflect the transition from a glacier-

fed towards a locally dominated lake, fed by runoff from the Jura Mountains (see 

chapter IV).  
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Fig. A-5: XRF data of the upper LFA 4b and transition to LFA 4c (shaded orange), illustrating 

changes in sediment input and redox conditions. Top: Zoom-in on drill core QRIN1, 25.3-

26.3 m (photograph). 

4.2. Palynology 

The pollen content of the Rinikerfeld Paleolake was identified and interpreted by 

Maria Knipping (University of Hohenheim), who provided a detailed report on her 

findings to Nagra. I contributed to this study by selecting the samples to be analysed, 

and in the following provide a brief summary of the findings. They offer valuable 

information about the environmental conditions and floral evolution during the 

lifetime of the paleolake. 
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Material from 8 bulk sediment samples of QRIN was processed and analysed at the 

palynology laboratory at the Institute of Botany, University of Hohenheim 

(Germany). Palynomorphs were extracted from the sediment by subsequent 

leaching with HCl, NaOH/KOH, and HF, followed by chemical drying with acetic acid 

and acetolysis with acetic anhydride and H2SO4 (Eisele et al., 1994; Knipping et al., 

2008). The separated palynomorphs were spiked with non-endemic Lycopodium 

spores and sieved to ≤7 μm. In aliquots of the so-treated samples, pollen grains were 

identified under a binocular with 500x and 1250x magnification (Beug, 2004; Moore 

et al., 1991), and the respective state of pollen preservation was noted. 

Sedimentary facies and TOC contents in the Rinikerfeld Paleolake indicate sediment 

deposition in a cold – glacial or stadial – lake under gradually ameliorating climate 

(see chapter IV). This trend towards more temperate conditions is also evident by 

the pollen content of the lake deposits that strongly increase upwards (Table A-1, 

Fig. A-6). LFA 4a and 4b (33.5-23.4 m depth) contain only few, mostly arboreal 

pollen, e.g. Pinus, Picea, Abies, that are likely allochthonous or contaminated (<10 

grains per aliquot, projected to approx. 15, 70 and 140 grains per cm3, respectively). 

However, the low pollen concentrations of LFA 4a and 4b are also a consequence of 

the presumed high sedimentation rates of few cm/yr. In the basal LFA 4c, starting at 

21.39 m, concentrations of Pleistocene pollen (~400 grains per cm3) increase 

considerably (Table A-1). Poaceae and Cyperaceae indicate an open steppe-tundra 

(Starnberger et al., 2013) that becomes progressively more diverse. However, 

throughout LFA 4c, no more than ~25% arboreal pollen are encountered, and light-

demanding taxa such as Artemisia, Botrychium, Hippophae, Selaginella selaginoides 

and Plumbaginaceae further support a continuously open vegetation with small 

shrubs (e.g. Salix, Juniperus; Lang, 1994; Sebald et al., 1990). The presence of 

Hippophae suggests summer temperatures as high as 11.5 °C (Kolstrup, 1980), and 

individual findings of Batrachium and Sparganium as well as Botryococcus and 

Pediastrum indicate the presence of a sparse aquatic flora. 
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Table A-1: Pollen contents of samples 

from borehole QRIN. Data provided by 

Maria Knipping.
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Fig. A-6: Total pollen contents in the Rinikerfeld Paleolake of QRIN. For details, please refer 

to Table A-1. Lithofacies codes refer to Eyles et al. (1983). 

The observed pollen assemblage is similar to other Pleistocene records of the 

northern Alpine foreland (Knipping, 1990; Lang, 1985; Müller, 2001) but not 

diagnostic for a certain glaciation. Abundant reworked palynomorphs, including 

marine taxa (Table A-1), indicate intensive erosion in the catchment, whereas 

individual thermophile pollen (e.g. Abies, Corylus, Quercus) are likely the result of 

contamination during drilling and/or core handling. 
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5. Pleistocene deposits as archives of neotectonism – the Ruckfeld case 

5.1. Project and motivation 

Neotectonic activity in the northern Alpine foreland is generally associated with low 

deformation rates and therefore moderate seismicity (Isler, 1985). While the 

present-day stress field and mild earthquakes can be registered with precision 

instruments (Wiget et al., 2007), the field study of pre-historic neotectonic events is 

challenging. Natural as well as anthropogenic processes effectively obliterate the 

surface expression of mild movements, and thick and extensive unconsolidated 

deposits, for example glaciofluvial gravels, cover large areas of the northern Alpine 

foreland, blanketing and compensating underlying deformations (Isler, 1985). 

However, these gravels are also a valuable potential archive of neotectonic 

deformations. As a prominent example, the Deckenschotter west of the Aare record 

the cut-off of a major glaciofluvial channel that is likely due to a re-activation of the 

Mandach Thrust at ~1 Ma (Bitterli et al., 2000; Graf, 1993; Knudsen et al., 2020).  

Based on high-resolution reflection seismic data, the Mid-Pleistocene Ruckfeld 

gravel plain in Northern Switzerland was investigated in close cooperation with 

Herfried Madritsch (Swiss National Cooperative for the Disposal of Radioactive 

Waste Nagra) and considering previous interpretations by Bernd Fiebig, Louis 

Hauvette, and Rodolpho Lathion (University of Geneva). Special focus lay on 

displacements of the Pleistocene sediments that could hint at neotectonic 

deformation since roughly 0.5 Ma (Graf, 2009). Elevated ~100 m above today’s Aare 

river level, the Ruckfeld plain lies at the eastern termination of the Mandach Thrust, 

a major thin-skinned overthrust and the northernmost extension of the Jura fold-

and-thrust belt (Fig. A-7; Bitterli-Brunner, 1987; Bitterli et al., 2000).  

The Mandach Thrust is only the youngest component of a threefold superimposed 

tectonic structure: It is situated above a major transverse fault zone in the 

crystalline basement that forms the northern margin of a several kilometre-deep 

variscan sedimentary basin (Permo-Carboniferous Trough; Bitterli-Brunner, 1987; 

Laubscher, 1986). It was buried by several hundred meters of sediments deposited 

on an epicontinental platform, today referred to as Tabular Jura, during early 

Triassic through late Jurassic (Bitterli et al., 2000; Jordan and Deplazes, 2019).   
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The fault zone was later reactivated first in an extensional regime during the early 

Cenozoic, and a second time during the Miocene in a now compressional stress field, 

resulting in the Mandach Flexure and the superimposed Mandach Thrust, 

respectively (Laubscher, 1986). 

During the Pleistocene, the northern Alpine foreland was intensively dissected by 

glaciofluvial activity, and the valleys infilled with meltwater gravels. The Ruckfeld 

plain lies in elongation of the Habsburg-Rinikerfeld paleochannel, presumably the 

oldest mid-Pleistocene draw in the lower Aare valley area (Bitterli-Dreher et al., 

2007; Graf, 2009), and its stratigraphy consists of basal diamicts overlain by several 

decametres of Hochterrasse gravel (Middle Pleistocene glaciofluvial deposits) that 

are in turn covered by colluvium and last-glacial loess (Graf, 2009; Preusser and 

Graf, 2002). It is a promising location to study potential neotectonic dislocations 

near the transition between the Tabular Jura and the Jura fold-and-thrust belt 

(Fig. A-7). 

 

Fig. A-7: Map of the study area in the regional (A) and local (B) tectonic context, including 

boreholes and seismic acquisition lines. IGME 2005: Commission for the Geological Map of 

the World et al. (2005); NAB 13-10: Madritsch et al. (2013); GA25: Matousek et al. (2000), 

Graf et al. (2006). Background: Swisstopo (2013). 
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5.2. Seismic data and interpretation 

Three high-resolution 2D seismic lines of the Ruckfeld were acquired by Nagra in 

2016: 16-QAU_23 (‘line 23’), 16-QAU_24 (‘line 24’, both oriented SW-NE), and 

16-QAU_25 (‘line 25’ oriented SE-NW; Fig. A-7). These are 1.5-2.2 km long and 

image the Mesozoic and Cenozoic strata up to ca. 0.9 s two-way travel time (TWT) 

in depth. The data were analysed in IHS KingdomSuite and DMNG SeiSee in stacked 

form, with focus on sedimentary architecture as well as potential tectonic 

displacements. 

Line 25 passes through the site of Ruckfeld R1 (latitude 47°32’58” N, longitude 

8°16’30” E), an >700 m deep well. The depths of major geological boundaries from 

R1 (Bitterli et al., 2000) were converted into TWT with help of literature values for 

the respective seismic velocities (Table A-2). The resulting values were plotted into 

seismic line 25 at the site of R1 (at ~800 m) and, with exception of the Middle 

Jurassic Passwang Fm., all contacts coincided with more or less distinct reflectors 

that could be confidently followed through the seismic line. The results agree with 

the stratigraphy recorded in well Ruckfeld R2 (47°33’31” N, 8°16’3” E) located 

further northwest (at ~2000 m), and were transferred to lines 23 and 24. 

Stratigraphy, discontinuities and dislocations were then mapped in consideration of 

further boreholes (R2, 82-1, 11-NS-AZ 10; Fig. A-7; Nagra borehole database) as well 

as known and inferred fault locations (Madritsch et al., 2013; Matousek et al., 2000; 

Sprecher and Müller, 1986). 

5.3. Preliminary results 

5.3.1. Seismic stratigraphy 

The reflection seismic data image the sedimentary architecture of the Ruckfeld to a 

depth of ~0.9 s TWT (Fig. A-8). From top to bottom, three major seismic facies (SF) 

are distinguished (Fig. A-9): SF A (above ~0.2 s TWT) is characterised by overall low 

amplitudes and continuous as well as discontinuous reflections. In the lower part of 

SF A (~0.1-0.2 s TWT) our data image distinct, 100-500 m wide packages of 

moderate amplitude, discontinuous internal reflections. The base of SF A is formed 

by a prominent horizontal reflection that coincides with an angular unconformity.   
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SF B (~0.2-0.6 s TWT) consists of horizontal to slightly southward-dipping 

continuous reflections. Amplitudes within SF B are moderate to high, with 

prominent reflections at ~0.3 and ~0.4 s TWT, and a thick package of well-imaged, 

high-amplitude reflections between ~0.4 and ~0.5 s TWT. In SF C, reflections are 

again significantly lower in amplitude and mainly discontinuous to chaotic. 

Pre-Quaternary – The prominent reflector at ~0.2 s TWT marks the base of the 

Quaternary strata that unconformably overlie the Mesozoic deposits of the Tabular 

Jura. Major internal reflectors of the Mesozoic likely represent the base of the Middle 

Jurassic Klingnau Fm. (~0.3 s TWT) and the base of the Lower Jurassic Staffelegg 

Fm. (~0.4 s TWT), the latter being underlain by well-developed high-amplitude 

reflectors of the Upper Triassic Bänkerjoch Fm. This is in qualitative agreement with 

regional seismic interpretation by Madritsch et al. (2013), whereas Malz et al. 

(2020) chose a slightly different interpretation attributing the package of high-

amplitude reflectors partly to the underlying Middle Triassic. 

Table A-2: Stratigraphy in well Ruckfeld R1 and expected TWT of lithological contacts.   

1 Dr. H. Jäckli AG and DMT GmbH & Co. KG (2012), well 11-NS-AZ 10; 2 Sprecher and Müller 

(1986), well Weiach, Fig. 23; 3 Bitterli et al. (2000), Fig. 11. 

Sedimentary unit  
Seismic 
velocity 
[m/s] 

Base in R1 
[m depth]3 

Base in R1 
[s TWT] 

Base below 
datum  
[s TWT] 

Pleistocene  13201 85 0.129 0.206 

Upper Jur., Wildegg Fm. 30502 159 0.177 0.254 

Middle 
Jurassic 

Klingnau Fm. 30502 233 0.226 0.303 

Passwang Fm. 30502 280 0.257 0.334 

Opalinus Clay 31502 417 0.344 0.421 

Lower Jur., Staffelegg Fm. 31502 459 0.370 0.447 

Upper Triassic, 
Bänkerjoch Fm. 

31502 608 0.465 0.542 

Middle Triassic, 
Schinznach Fm. 

31502 682 0.512 0.589 

Lower Triassic, 
Dinkelberg Fm. 

31502 748 0.554 0.631 
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Fig. A-8: Seismic lines 23, 24, and 25 imaging the sedimentary architecture of the Ruckfeld. 
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Fig. A-9: Interpretation of seismic lines 23, 24, and 25.  
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Quaternary – The base of the Quaternary below the Ruckfeld appears to be mostly 

flat and smooth on the SW-NE lines, with the exception of a distinct U-shaped 

depression on line 23 (at 500-800 m), while it has slightly more relief on the SE-NW 

line 25 (Fig. A-9). The angular unconformity towards the underlying bedrock 

identifies it as an erosional boundary. With a bedrock elevation of <330 m a.s.l., the 

Ruckfeld is interpreted as the northward continuation of the early Mid-Pleistocene 

Habsburg-Rinikerfeld channel (Graf, 2009; Pietsch and Jordan, 2014). Due to its 

gentle downstream gradient it is presumed to be a (glacio-)fluvially eroded valley 

(Bitterli-Dreher et al., 2007), and the depression on line 23 could thus be the cross-

section of an individual fluvial channel, possibly eroded along a zone of weakness 

within the underlying Mesozoic (see following section). 

Internally, the Pleistocene is largely seismically transparent on the seismic data with 

few discontinuous packages of high-amplitude reflectors in the lower part. All 

available boreholes are located within the transparent seismic facies or at its 

margin. Borehole 82-1 records >50 m of Hochterrasse gravel overlying 1.5 m of 

glacial till and overlain by ~10 m of loess, while 11-NS-AZ 10 (Dr. H. Jäckli AG and 

DMT GmbH & Co. KG, 2012) records 70 m of Hochterrasse gravel. In R1 and R2 the 

Pleistocene was not described. The transparent portions of the Quaternary are thus 

interpreted as glaciofluvial gravel, while the high-amplitude packages could 

represent glacigenic diamicts (till; Fig. A-9; cf. Graf, 2009). Comparable seismic 

facies are connected to similar lithologies for example in the Tannwald Basin in 

Southern Germany (~100 km ENE; Burschil et al., 2018). The presumed till bodies 

could be part of distinct moraine ridges or of a glaciofluvially dissected ice decay 

landscape. On seismic line 23 and the northeastern half of line 24 one relatively 

prominent and continuous internal reflector within the Pleistocene is imaged, which 

lies approximately at the top of the presumed till packages at ~0.1 s TWT. It could 

be the expression of an erosional boundary and thus indication for a two-phase 

origin of the Ruckfeld gravel plain, as hypothesized by Bitterli et al. (2000). 
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5.3.2. Structures 

Large-scale structures – The seismic data image several distinct extensional flexures 

within the Mesozoic deposits that indicate underlying normal faults (Fig. A-9). 

Above these flexures, larger-scale dislocations of the Mesozoic strata below the 

Ruckfeld could be identified on all seismic lines (line 23 at 900-1400 m, line 24 at 

500-1000 m, line 25 at 800-1400 m; Fig. A-9). These dislocations originate in a 

depth of ~0.6 s TWT, are inclined towards north, and can be traced up to the base of 

Quaternary at ~0.2 s TWT. A further dislocation at the northwestern end of line 25 

is only partly imaged and appears to dip towards north, which is however not 

entirely clear (Fig. A-9). 

The flexures on lines 23, 24, and 25 can be connected to one continuous W-E striking 

structure (Mandach Flexure). Analogously, the southward-dipping dislocations 

represent one W-E striking fault F1 (Fig. A-9) that lies approximately in elongation 

of the Mandach Thrust as shown on Fig. A-7. Near the Aare, the Mandach Thrust dips 

towards south with an angle of ~30°, and accounts for a shortening of ~150 m 

(Madritsch et al., 2013, line 11-NS-10). In contrast, tracing the bedrock contacts on 

lines 23-25 indicates that F1 is a pure normal fault, which is supported by the 

findings of well R1 (Bitterli et al., 2000). Extension along F1 is on the order of ~50 m, 

and its dip angle of ~55° in the western Ruckfeld (lines 24, 25) appears to increase 

towards east to ~65° (line 23). F1 corresponds thus likely to the Unterendingen 

Fault identified east of the Ruckfeld by Madritsch et al. (2013, line 10-NS-12). The 

dislocation at the northwestern end of line 25 (F2; Fig. A-9) could correspond to the 

Tegerfelden-Kohlgruben (normal) Fault (Fig. A-7; Bitterli et al., 2000) that is 

however not expressed in the data of Madritsch et al. (2013). 

Evidence for a reverse reactivation of F1, or another major overthrust, as it has been 

imaged near the Aare (Mandach Thrust) is therefore neither identified below the 

Ruckfeld, nor further east (see Bitterli et al., 2000; Madritsch et al., 2013, line 

10-NS-12). Only ~3 km to the south, near Endingen (Fig. A-7), a major thrust wedge 

is located on the eastern side of the Aare (Madritsch et al., 2013, line 10-NS-12). This 

situation has previously been tentatively explained by the existence of a larger 

transverse Ruckfeld Fault that dislocates both the Mandach Flexure and Thrust to 

the south (Amsler, 1915; Bitterli et al., 2000).   
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The SW-NE trend of the Ruckfeld Fault as inferred by Matousek et al. (2000; Fig. A-7) 

coincides with a prominent U-shaped depression in the base of the Quaternary on 

line 23 (at 500-800 m; and with a slight dislocation on line 25 at ~700 m). This 

depression could be due to (e.g. glaciofluvial) incision into the underlying Mesozoic 

along a weak zone, and it is therefore plausible that a fault exists at this location. 

However, the seismic data indicate that this fault is not of regional-tectonic 

significance. The Mandach Flexure crosses below the Ruckfeld seemingly 

undisturbed (cf. Madritsch et al., 2013, lines 11-NS-10/-12), while the Mandach 

Thrust appears to terminate abruptly between the Aare and the Ruckfeld. If the 

thrust wedge at Endingen is in fact to be regarded as the Mandach Thrust’s eastward 

continuation, the dislocation between these two thrust segments must lie in a 

narrow corridor close to the present-day Aare river (cf. chapter II, section 6.1.2; 

faults mapped by Matousek et al., 2000).  

Neotectonism – The Pleistocene strata, and seemingly also the base of the 

Quaternary as well as the underlying Mesozoic, display a series of smaller-scale 

discontinuities (down to depths of ~0,4 s TWT; Fig. A-9). It is striking that many of 

these structures are associated with the high-amplitude reflector packages 

tentatively identified as till bodies. These discontinuities could be artefacts related 

to the contrast in seismic properties between till and adjacent gravel, or the result 

of heterogeneities within the till. Both can however not account for deformations 

offside the till packages, e.g. on line 25 at 600-1200 m.  

Some dislocations could be explained by sagging of loose sediment due to 

differences in compaction between gravel and till, especially in the case of 

overconsolidated subglacial till (Bitterli et al., 2000), e.g. on line 23 at 500 m. 

However, intra-Quaternary sagging cannot explain dislocations that can well be 

traced into the Mesozoic. The same applies to periglacial surface processes such as 

solifluction, which has been previously observed on the Ruckfeld plain (Graf, 2009). 

In addition, the majority of the dislocations appear to be the result of compressive 

deformation. Considering indication for a multiphase origin of the Ruckfeld gravel 

plain, glaciotectonism below an overriding glacier could explain deformation and 

thrusting, but likely not in bedrock below decametres of soft sediment. 
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It appears possible that small-scale dislocations of the Pleistocene deposits and of 

the base of the Quaternary could in fact be the result of minor neotectonic activity. 

The steepness of some dislocations (e.g. at 1400-1700 m on line 25) would fit an 

oblique-slip motion with considerable transverse component that is consistent with 

the present day stress field (Deichmann et al., 2000; Heidbach and Reinecker, 2013). 

It is noteworthy though that no evidence for deformation of the Pleistocene strata is 

observed above the subcrop of fault F1. Thus, it appears that minor neotectonic 

activity may have occurred, but that the major tectonic structure below the Ruckfeld 

was quiescent over the last ~0.5 Myr.  
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Appendix B: Large-scale sections 

Longitudinal and cross sections are an important tool for the interpretation of 

landscapes with a complex geological architecture. In the Lower Aare Valley, three 

profile lines have been defined (B-2, B-3 (a and b), B-4 (with auxiliary line B-4*); 

Fig. B-1). Along these lines, sections have been constructed considering a variety of 

different input data (Table B-1). Excerpts of the respective sections are included in 

chapters II and IV, and the full sections are plotted on Fig. B-2 to B-4. 

 

Fig. B-1: Layout of profile lines. For an explanation of the base map, please refer to Fig. I-7. 

Table B-1: Input data for section construction. 1 Boreholes in the Gebenstorf-Stilli Trough 

and, generally, the Lower Aare Valley are projected onto the sections parallel to the isolines 

of the base of Quaternary-model by Pietsch and Jordan (2014). 

Topography Swisstopo (2013) 

Quaternary and bedrock 
stratigraphy 

Graf et al. (2006), Loepfe et al. (in prep.), Nitsche et 
al. (2001), Pietsch and Jordan (2014), Nagra 
borehole database (version 11/2018)1 

Structural and 
morphological concept 

Diebold et al. (1992), Heuberger (unpubl.), 
Madritsch et al. (2013), Malz et al. (2015), Sprecher 
and Müller (1986) 

Design Naef et al. (2019) 
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Fig. B-2: Section B-2 along the 

Gebenstorf-Stilli Trough (see Fig. B-1). 
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Fig. B-3: Sections B-3a, B-3b across the 

study area (see Fig. B-1). 
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Fig. B-4: Section B-4, with auxiliary 

section B-4*, along the Habsburg-

Rinikerfeld Paleochannel (see 

Fig. B-1). 
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Appendix C: Publication Mueller et al., 2020 

This study addresses the difficulties of luminescence-dating the Pleistocene 

deposits of the northern Alpine foreland, specifically of the Rinikerfeld Paleolake 

and Colluvium. The in-depth investigation and comparison of different 

luminescence signals gives confidence in sedimentary ages dating back to a least 

MIS 6. My contribution in the framework of this thesis consisted in characterising 

the regional geologic setting and providing sample material and illustrations. The 

manuscript has been published in Geochronology 2 under the Creative Commons 

Attribution 4.0 International license (open access) as  

 

Mueller, D.1, Preusser, F.1, Buechi, M. W.2, Gegg, L.2, and Deplazes, 

G.3, 2020, Luminescence properties and dating of glacial to 

periglacial sediments from northern Switzerland (DOI 
10.5194/gchron-2-305-2020). 

 

1 Institute of Earth and Environmental Sciences, University of Freiburg, 

Alberstraße 23b, 79104 Freiburg, Germany 

2 Institute of Geological Sciences and Oeschger Centre for Climate Change Research, 

University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland 

3 National Cooperative for the Disposal of Radioactive Waste (Nagra), 

Hardstrasse 73, 5430 Wettingen, Switzerland 
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