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Identifying Opportunities for Augmented Cognition During Live Flight Scenario: An  

Analysis of Pilot Mental Workload using EEG  

 

Nicholas Wilson1, Hamed Taheri Gorji2, Jessica  VanBree4, Bradley Hoffmann3, Kouhyar 

Tavakolian3, Thomas Petros4  

University of North Dakota; Departments of Aviation1, Electrical Engineering2, Biomedical 

Engineering3, and Psychology4  

Augmented cognition is a form of human-systems interaction in which 

physiological sensing of a user’s cognitive state is used to precisely invoke system 

automations when needed. The present study monitored the in-flight physiological 

state of the pilot to determine the optimal combination of EEG indices to predict 

variations in workload, or opportunities for augmented cognition.The participants 

were 10 collegiate aviation students with FAA commercial pilot certificates and 

current medical certificates. Each participant performed a uniform flight scenario 

that included procedures that varied in workload demands. All maneuvers were 

performed while simultaneously acquiring EEG data in flight. The EEG data were 

divided into periods of high and low workload. Power spectral density values were 

computed and subjected to several machine learning methods to distinguish high 

and low workload periods. The results indicate excellent classification accuracy for 

distinguishing low and high workload. The present results further demonstrate the 

potential of augmented cognition. 

A growing body of research focusing pilot, driver or operator physiological and cognitive 

state monitoring during operations of air or ground vehicles facilitates our understandings of the 

role of human and machine operations (Dussault et al., 2004; Wilson et al., 2019; Guragain et al., 

2019; Wang et al., 2019). Within this domain of research, we can apply observed changes in 

physiological and cognitive state to invoke augmented cognition, or system adaptation based on 

the condition of the operator. One promising avenue of research in augmented cognition involves 

developing the capability to continuously monitor an individual’s level of fatigue, stress, 

attention, task engagement, and mental workload in operational environments using 

physiological parameters (Berka et al., 2007). These physio-cognitive monitoring systems have a 

wide range of potential applications that could significantly enhance performance, productivity, 

and safety in military, industrial, and educational settings, including evaluating alternative 

interface designs, enhancing skill acquisition, and optimizing the ways humans interact with 

technology (Berka et al., 2007). 

Monitoring of the operator functional state can determine if or when the operator is task-

saturated, stressed or disengaged and allow the introduction of adaptive aiding by 

implementation of some form of automation. Attempts to implement adaptive aiding have 

utilized physiological triggering of adaptive aiding (Wilson & Russell, 2007). One of the 

challenges for those engaged in operator state monitoring is to utilize the most sensitive set of 

sensors that are the least intrusive and most practical for the operator. 
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Blanco et al. (2018) examined the utility of dry electrode EEG measures for 

distinguishing workload during simulated flight. All participants had previously experienced 

basic flight training and tested under three different flight scenarios of differential levels of 

difficulty (easy, medium difficulty, difficult). Each participant flew each scenario once for 10 

minutes in counterbalanced order. Scalp EEG dry electrode signals were recorded from Fz, FCz, 

Cz and Pz using the International 10-20 system. The authors reported that a strong negative 

correlation between behavioral performance and EEG workload measures. However, a subset of 

subjects demonstrated increased cognitive workload without any decrement in flight 

performance. Perhaps physiologically based workload measures can be used to assess learning 

proficiency during pilot training to identify pilots who are cognitively saturated and at a higher 

risk to perform poorly as new cognitive challenges emerge. 

The present study collected physiological data from pilots while they executed flight 

patterns that varied in their workload. The purpose of this research was to demonstrate the 

validity of EEG measures for distinguishing workload in flight. Some of the higher workload 

flight maneuvers are executing a missed approach at minimums and performing consecutive 

steep turns. Whereas maneuvers that were classified as low workload included flying straight and 

level and taxiing at an un-towered airport. To cross-validate perceived workload differentiation 

between maneuvers, elements of the flight profile were individually ranked by experienced 

faculty and/or flight instructors at the University of North Dakota’s John D. Odegard School of 
Aerospace Sciences. 

Methods  

Participants 

Ten undergraduate aviation students participated in this study. Study participants held a 

Federal Aviation Administration (FAA) commercial pilot certificate and either a FAA Class I or 

Class II medical certificate. The average self-reported flight hours of each participant were 323.6 

at the time of the study, with a range of 170 to 840. Each participant was current in the aircraft 

type flown and all had experience with the Garmin G1000 avionics system. Study participants 

were informed and provided consent through the approved Institutional Review Board (IRB) 

protocol. Participants were provided a monetary incentive for their participation. 

Experimental Procedure 

Informed consent was first obtained from each participant  in advance of the meeting time 

at the airport. Upon arrival at the airport, the participant  completed a demographic, recent sleep,  

and  recent stimulant (e.g. caffeine) intake  questionnaire and  was  subsequently  connected to the 

ABM-B-Alert X24 data collection system  (Advanced Brain Monitoring, Inc).  A baseline  

recording was collected while the participant was in a quiet, closed office  space. Once the 

baseline recording was completed, the participant boarded a  common four-seat single engine 

trainer aircraft equipped with Garmin G1000 avionics. The participant then performed a pre-

determined flight sequence while at the  control of the aircraft at the direction of a safety-pilot 

(the PI) with support of a research assistant sitting in the back seat of the aircraft. During the 

collection of physiological data, the safety pilot and research assistant noted times of maneuvers. 

Later the aircraft flight data was downloaded from the avionics to cross-reference against the 

performed maneuvers. To add a second cross-reference of workload, the PI  collected survey data 

from “experts” aviation faculty or airport leadership to classify maneuvers included in the data 
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collection flight profile as “high” “medium” or  “low” workload.  This information was used to 

determine time periods where changes in workload are anticipated to occur.  

Image 1 Image 2 Figure 1 

ABM B-Alert Data Collection EEG 10/20 Placement 

EEG Recording 

Note. Image 1 showing the ABM B-Alert X24 system. Image 2 showing the data collection flight 

environment. Figure 1 showing the international 10/20 electrode placement. 

EEG recording was accomplished using the Advanced Brain Monitoring (ABM) X-24 

system (ABM, 2020). The ABM system includes 20 electrodes placed in the standard 

international 10-20 system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 

O1, POz, and O2) with a sampling rate of 256 Hz. Data is transferred via Bluetooth signal to a 

laptop with corresponding ABM EEG recording software. 

EEG Pre-processing 

The recorded EEG data were pre-processed using EEGLAB, an open-source interactive  

MATLAB toolbox (Delorme & Makeig, 2004)  (http://sccn.ucsd.edu/eeglab). The data was 

filtered using a high-pass filter (1 Hz) followed by a low-pass filter (45 Hz) to remove low-

frequency drifts and high-frequency artifacts. Subsequently, the filtered data were visually 

inspected, and noisy channels, dead channels (channel data indicated no activity over longer  

periods), muscle activity, mechanical artifacts in the time domain were  removed manually, and 

using EEGLAB "clean_rawdata" plugin. On average, 19.5 EEG channels remained for further 

analyses (range: 18–20; SD = 0.67). Then, all missing channels were interpolated by spherical 

algorithm to minimize the potential bias toward a  hemisphere. In the next step, Independent 

Component Analysis (ICA) was computed using the EEGLAB runica function in order to extract 

independent components (ICs) from signals in scalp level that represent maximum statistical 

independent sources (Gramann, Ferris, Gwin, & Makeig, 2014; Gramann et al., 2011). Using the  

ICLabel toolbox (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019), which is an automatic  

independent component (IC) classification algorithm, source descriptions including brain, non-

brain, eye, muscle, heart, and other sources were  automatically assigned to each IC. 

Consequently, the artifactual ICs with an assigned probability of higher than 0.8 were selected 

and eliminated from the data,  and cleaned EEG signals were used for  further processing.  
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Feature Extraction  and Selection  

The feature extraction step was performed using power spectral analysis. Fast Fourier 

Transform (FFT) using one-second hamming windows with 50% overlap was used to transform 

the EEG into power spectral density (PSD). Each EEG channel based on its frequency was 

divided into four sub-bands, namely Delta (1-4Hz), Theta (4-8Hz), Alpha (8-13Hz), and Beta 

(13-30Hz). Since each EEG sub-band has a different frequency range, the average power 

spectrum for each channel and sub-band was calculated and used for further analysis. Moreover, 

we calculated the ratios of average spectral powers for theta of each electrode in the frontal area 

divided by the alpha of the electrodes in the parietal and occipital region; theta divided by beta 

for each EEG electrode, and beta divided by alpha plus theta for each EEG channel resulting in 

148 features. Lasso cross-validation (LassoCV) algorithm was employed to select the most 

important features. 

Classification 

Classification refers to a supervised method in which algorithms aim to learn from one 

portion of already labeled data called training data and uses the learned pattern and information 

to classify the new unseen portion of data into a proper class. The main goal of this study is to 

determine the level of the cognitive load of pilots in two classes of high workload and low 

workload, and this task is defined under the binary classification category. We used the support 

vector machine (SVM) algorithm as the binary classifier because it is considered one of the most 

widely used technique in the field of brain signal analysis due to the robust approach for 

recognition of the complex pattern, good generalization performance, and its efficient 

computational cost (Wei et al., 2018). To achieve a more accurate estimate of the SVM 

performance on unseen data and prevent our model from overfitting, we used k-fold cross-

validation (k=5), in which all the data were split into 5 subsets. The k-fold cross-validation is an 

iterative process (k times), and each time the model is evaluated by one of the k subsets while the 

k-1 subsets used for training and the final results will be the average of all k time evaluations. 

Moreover, we used accuracy, precision, recall and F score to evaluate the performance of the 

proposed model to differentiate between high and low workloads. 

Result 

The top ten features out of 148 features were selected using the LassoCV based on the 

highest absolute coefficient value as follows: frontal (F4) theta/parietal, occipital (Poz) alpha, 

frontal (F8) theta/parietal, occipital (Poz) alpha, frontal (F7) theta/parietal (P3) alpha, frontal 

(F4) theta/parietal (P3) alpha, temporal (T4) theta, temporal (T3) delta, central (C3) theta, 

temporal (T6) beta/T6 alpha + T6 theta, temporal (T3) beta/T3 alpha + T3 theta, and central (C3) 

beta/C3 alpha + C3 theta. At the next step, to classify the high and low workloads using the 

features mentioned above, we trained and tested our SVM classifier with 5-fold cross-validation, 

and 95.00 ± 0.30 percent was the highest accuracy achieved. Moreover, the SVM classifier 

resulted in 100% precision, 90.00 ± 0.20 recall, and 93.33 ± 0.13 F-score. The results show that 

the selected feature can successfully be used as an indicator for the level of the pilots' cognitive 

workloads. 
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Figure 2  

EEG Data Collection and Analysis Process  

Note. Process above shows collection of EEG data from participant through pre-processing, 

decomposition to EEG sub-bands, feature extraction and selection through SVM classifier. 

Ultimately, periods of high and low cognitive workload are determined. 

Limitations and Future Directions 

Results of this study are consistent with Dussault et al. (2004) in showing cognitive 

workload fluctuations during flight scenarios. These results will enhance our confidence in 

establishing reliability during active monitoring of pilot cognitive workload during periods of 

high workload. The results of this study also support technical feasibility of continued 

development of advanced headset technology designed to improve pilot situational awareness 

and monitoring physiological measures underway by Wilson and Tavakolian (2019). Earlier 

EEG research within a flight simulator also showed promise of EEG and other external measures 

such as eye tracking to detect periods of drowsiness and fatigue with pilots in a collegiate 

aviation environment (Guragain et al., 2019; Wang et al., 2019). 

The nature of the data collection was in a “live” flight environment. As such, there is 

greater possibility of motion artifact as a result of aircraft vibration or typical pilot activity which 

could influence data quality on individual electrodes. Additionally, environmental conditions 

such as temperature, wind or turbulence may influence certain workload or stress indicators from 

one flight to another, however, the flight sequence was nearly identical from one flight sequence 

to another, as such, changes in workload were expected between maneuvers, regardless of 

outside environmental conditions. Also, the dataset used in this analysis included only 10 

participants. A larger dataset could improve data validity and generalizability. 

This research provides a foundation for understanding changes in pilot cognitive 

workload during live flight of aircraft. Such research allows us to establish benchmarks where 

augmentation of a pilot’s available tools or increases in automation may serve to improve the 

safety of flight. Examples of changes in automation could include changes in density of 

displayed flight information during high workload conditions or increases in the control exerted 
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by autopilot(s) on relevant flight control surfaces to aid in aircraft control and stability. Future  

opportunity exists to establish a more formal link between human and machine (referred to as 

human-machine interface), within the aviation and aerospace domain.  
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