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Abstract  

Connexin-50 (Cx50) is among the most frequently mutated genes associated with 

congenital cataracts. While most of these disease-linked variants cause loss-of-function 

due to misfolding or aberrant trafficking, others directly alter channel properties. The 

mechanistic bases for such functional defects are mostly unknown. We investigated the 

functional and structural properties of a cataract-linked mutant, Cx50T39R (T39R), in the 

Xenopus oocyte system. T39R exhibited greatly enhanced hemichannel currents with 

altered voltage-gating properties compared to Cx50 and induced cell death. Co-

expression of mutant T39R with wild-type Cx50 (to mimic the heterozygous state) resulted 

in hemichannel currents whose properties were indistinguishable from those induced by 

T39R alone, suggesting that the mutant had a dominant effect. Co-expression with Cx46 

also produced channels with altered voltage-gating properties, particularly at negative 

potentials. All-atom molecular dynamics simulations indicate that the R39 substitution can 

form multiple electrostatic salt-bridge interactions between neighboring subunits that 

could stabilize the open-state conformation of the N-terminal domain, while also 

neutralizing the voltage-sensing residue D3 as well as residue E42 which participates in 

loop-gating. Together, these results suggest T39R acts as a dominant gain-of-function 

mutation that produces leaky hemichannels that may cause cytotoxicity in the lens and 

lead to development of cataracts.  

 

Statement of significance 

We investigated the functional and structural properties of a cataract-linked 

mutant, Cx50T39R (T39R), in the Xenopus oocyte system and showed that T39R 

exhibited greatly enhanced hemichannel currents with altered voltage-gating properties 
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compared to Cx50 and induced cell death.  Consistent with our experimental findings, all-

atom equilibrium state molecular dynamics (MD) simulations of T39R show that R39 

stabilized the open-state configuration of the N-terminal (NT) domain from an adjacent 

subunit. These results suggest that T39R causes disease by preventing the 

hemichannels from closing when present in the plasma membrane in the undocked state 

and provide an atomistic rationalization for the Cx50 disease-linked phenotype.  They 

also expand our understanding of how connexin hemichannel channel gating is 

controlled. 
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Introduction 

The eye lens is an avascular, transparent organ whose main function is to focus 

light on the retina to support vision. It is composed of epithelial cells and fiber cells that 

are interconnected by a vast network of gap junctions. These gap junctions allow the flow 

of fluid, ions and nutrients throughout the lens with minimal blocking of light transmission 

compared to a circulation system dependent on blood vessels, which would block and 

distort the transmission of light (see [1] for a review). Gap junctions are composed of 

many intercellular channels, each of which is composed of two connexons or 

hemichannels (residing in the plasma membrane of neighboring cells) that dock to form 

a complete gap junctional channel. Hemichannels can also exist as undocked channels 

which form large, relatively nonselective conductances in single plasma membranes that 

are gated by external calcium and transmembrane voltage [2, 3].  

Gap junctional channels in vertebrates are formed by a family of closely related 

proteins called connexins, with 21 members in humans [4]. Three different types of gap 

junctional proteins that show a differential pattern of expression have been identified in 

the lens: Cx43 [5], Cx50 [6] and Cx46 [7]. Both Cx50 and Cx46 are highly expressed in 

lens fiber cells, where they may form heteromeric channels [8, 9], while Cx43 is expressed 

primarily in epithelial cells together with Cx50. The importance of these proteins in the 

lens has been confirmed by studies which showed that genetic ablation of either Cx50 or 

Cx46 led to the development of cataract in mice [10, 11]. Moreover, mutations in Cx50 

and Cx46 have been linked to congenital cataract in humans and mice (see [12] for a 

review). Indeed, there are more cataract-associated Cx50 variants than for any other 

gene expressed in the lens [13].  
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When expressed in heterologous expression systems, most of these cataract-

linked connexin mutations are associated with a decrease or loss of gap junctional 

communication, either because of biosynthetic defects or degradation that decrease the 

abundance of connexins at the plasma membrane, or because the mutants form non-

functional gap junctional channels [14-19]. Some of the mutants also act as dominant 

negative inhibitors of co-expressed wild-type lens connexin function [15, 16, 20]. At least 

one of the mutations causes a gain-of-hemichannel function [17, 21]. 

In the present study, we examined the functional properties of the Cx50 mutation, 

T39R (replacement of threonine by arginine at amino acid position 39), that has been 

associated with congenital cataract [22, 23]. We show that this mutant causes a dominant 

gain-of-hemichannel function when expressed in Xenopus oocytes. Consistent with our 

experimental findings, all-atom equilibrium state molecular dynamics (MD) simulations of 

T39R, based on the high-resolution cryo-EM structure of Cx50 in the open-state [24], 

shows that R39 stabilizes the open-state configuration of the N-terminal (NT) domain from 

an adjacent subunit. These results suggest that mutation of T39R causes disease by 

preventing the hemichannels from closing when present in the plasma membrane in the 

undocked state. This would cause cell depolarization and the release of intracellular 

metabolites into the extracellular spaces, ultimately resulting in cell death. These results 

further support and extend our understanding of the functional roles played by key 

residues within Cx50 that contribute to channel gating properties. 

 

Materials and Methods 

Generation of constructs 
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Mutations were introduced into human Cx50 cDNA in a SP64T vector with 

QuikChange Site-Directed Mutagenesis Kit (Stratagene) by using PCR primers that 

amplified the whole plasmid. The primers used were as follows: T39R, sense 5′-ctc atc 

ctt ggc agg gcc gca gag ttc-3′ and antisense 5′-gaa ctc tgc ggc cct gcc aag gat gag-3′; 

T39A, sense 5′-ctc atc ctt ggc gcg gcc gca gag-3′ and antisense 5′-ctc tgc ggc cgc gcc 

aag gat gag-3′; and T39S, sense 5′-cct cat cct tgg ctc ggc cgc aga g-3′ and antisense 5′-

ctc tgc ggc cga gcc aag gat gag g-3′. The coding regions of all amplified constructs were 

fully sequenced at the Cancer Research Center DNA Sequencing Facility of the 

University of Chicago (Chicago, IL) to confirm the absence of additional unwanted 

mutations. 

 

Expression of connexins in Xenopus oocytes 

Connexin cRNAs were synthesized using the mMessage mMachine in vitro 

transcription kit (Ambion, Austin, TX) according to the manufacturer's instructions. The 

amount of cRNA was quantitated by measuring the absorbance at 260 nm. 

Adult female Xenopus laevis frogs were anesthetized with tricaine and a partial 

ovariectomy was performed in accordance with protocols approved by the Rosalind 

Franklin University Animal Care and Use Committee. The oocytes were manually 

defolliculated after treating them with collagenase type 4 (Worthington Biochemical, 

Lakewood, NJ). Stage V and VI oocytes were selected. For some of the experiments, 

single, collagenase-treated oocytes (Ecocyte Biosciences, Austin, TX) were used. The 

oocytes were pressure-injected using a Nanoject variable microinjection apparatus 

(model mo. 3-000-203, Drummond Scientific, Broomal, PA) with 0.05 – 500 ng/μl of 
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connexin cRNA along with 5 ng/36.8 nl of oligonucleotide antisense to mRNA for Xenopus 

Cx38 to prevent contamination by endogenous connexin hemichannel currents [25]. The 

total volume of injected cRNA and oligonucleotides was held constant at 36.8 nl in all of 

the experiments.  The oocytes were incubated for 16 to 72 hours at 18°C in Modified 

Barth’s Solution (MBS) containing 0.7 mM CaCl2 prior to performing the 

electrophysiological experiments. Only those oocytes that had very low levels of 

endogenous connexin hemichannel currents were used for data collection and analysis. 

 

Immunoblotting 

Oocytes were injected with 2 ng/µl T39R, T39A, T39S or wild type Cx50 cRNA + 

Cx38 antisense oligonucleotides, or antisense alone and incubated for 24 hours in MBS 

containing 0.7 mM [Ca2+]o at 18°C. Healthy oocytes were fastfrozen in liquid nitrogen and 

stored at -80°C. Oocytes were homogenized in 1 ml of homogenization buffer (5 mM Tris 

· HCl, 1 mM EDTA, 2 mM EGTA, 2 mM phenylmethylsulfonyl fluoride, pH 8.0, containing 

cOmplete EDTA-free protease inhibitor cocktail at a concentration of 1 tablet/7 ml (Roche 

Applied Science, Indianapolis, IN, USA)) by repeated passage through a 20-gauge 

needle to obtain plasma membrane-enriched preparations. Homogenates were then 

centrifuged at 3,000 g for 5 min at 4°C to pellet yolk granules. The supernatant was then 

centrifuged at 100,000 g for 1 hour at 4°C on a Sorvall RC M120EX microultracentrifuge, 

and the pellet was resuspended in the homogenization buffer as previously described [6, 

26]. Proteins were resolved by SDS-PAGE on 8% acrylamide gels and electrotransferred 

onto Immobilon P (Millipore, Bedford, MA). Then, the membranes were stained with 

Ponceau S (to verify equal electrotransfer of the proteins) before being subjected to 
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immunoblotting as previously described [21, 27]. The X-ray films were scanned on a flat-

bed scanner (Epson Perfection V700 Photo; Epson America, Long Beach, CA) to obtain 

a digital image on which to quantify the bands. Their density was quantified using Adobe 

Photoshop CS3 (Adobe Systems Inc., San Jose, CA) as previously described [28]. The 

results are reported in arbitrary units. Graphs were prepared using SigmaPlot 10.0 (Systat 

Software, Inc.).  

 

Oocyte viability experiments 

For the oocyte viability experiments, the oocytes were injected with 2 ng/µl of T39R 

or Cx50 cRNA and incubated in MBS either in the nominal absence of external calcium 

or in the presence of 3 mM [Ca2+]o for 48 hours at 18°C. The oocytes were scored for cell 

death using cell blebbing and disorganization of pigment in the animal pole as markers at 

19, 22, 24, 43 and 48 hours after injection. 

 

Electrophysiology 

Hemichannel currents were recorded from single oocytes using a GeneClamp 200 

two-electrode voltage-clamp amplifier (Molecular Devices, Sunnyvale, CA) as previously 

described [29]. The standard external bath solution contained (in mM) 88 choline Cl or 88 

NaCl, 1 KCl, 2.4 NaHCO3, 1 MgCl2, and 15 HEPES, pH 7.4 to which different 

concentrations of calcium were added.  

The normalized conductance-voltage curves were determined from tail currents as 

previously described [29]. Briefly, the membrane potential was stepped from −10 mV to 

the test potential for 20 s and then hyperpolarized to −80 mV. Initial tail current amplitudes 
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at -80 mV were determined by fitting the tail currents to a single exponential or the sum 

of 2 exponentials and then extrapolating back to t = 0. The initial tail currents were 

normalized to the initial tail current amplitude after a 40 mV test pulse and plotted as a 

function of test potential.  

Pulse generation and data acquisition were performed using a PC computer 

equipped with PCLAMP9 software and a Digidata 1322A data acquisition system 

(Molecular Devices). The currents were sampled at 2 kHz and low pass filtered at 50-100 

Hz.  Leak correction, when applied, was performed by subtracting the average leakage 

current in control oocytes (oocytes injected only with AS). All experiments were performed 

at room temperature (20 – 22° C).  

Data analysis and graphing were performed using PCLAMP10.6 software 

(Molecular Devices), OriginPro 2021 (OriginLab, Northampton, Massachusetts), and 

SigmaPlot 14 (Systat software, San Jose, California). Group statistics were reported as 

mean ± SEM. 

 

Molecular dynamics simulation and analysis 

Visual Molecular Dynamics (VMD) v.1.9.3 [30] was used to build Cx50 (PDB: 7JJP) 

[24] mutant systems for molecular dynamics (MD) simulations. Side chains were 

protonated according to neutral conditions, and the protonated HSD model was used for 

all histidine residues. Disulfide bonds identified in the experimental structures were 

enforced for all models. Amino acids corresponding to the cytoplasmic loop (CL) 

connecting TM2 and TM3 (residues 110 – 148) and the C-terminal domain (residues 237 

– 440) were not included, as experimental data describing the structure of these large 
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flexible regions are unresolved. The N- and C-terminal residues resulting from the missing 

CL (R109 and R149) were neutralized. N-terminal acetylation was added at the G2 

position (G2ACE) in VMD through an all-atom acetylation patch using the AutoPSF plugin, 

to mimic the in-vivo co-translational modification identified in the native protein[9, 31]. 

The T39R mutation was introduced using two separate techniques, to allow 

comparison of different starting conformations. VMD’s mutator plugin [30] was used to 

create a naïve model, where arginine was placed in the exact same conformation as the 

threonine it replaced (Model 1). SWISS-MODE [32] was used on the Cx50 template (PDB: 

7JJP) to generate a mutant homology model, with a minimized initial conformation (Model 

2). 

Both resulting structures were then embedded in 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine (POPC) lipid bilayers generated by CHARMM-GUI [33] using VMD’s 

mergestructs plugin. Lipids that overlapped with the protein and the pore were removed, 

and the systems were placed in water boxes using VMD’s solvate plugin. Water that 

overlapped with the lipid bilayers was then removed. Hexagonal boundary conditions 

were used, with circumradius 70 Å and height 200 Å. The systems were then neutralized 

using the autoionize plugin, followed by the addition of 150 mM KCl and 150 mM NaCl to 

the solvent areas corresponding to intracellular and extracellular regions of the simulation 

box, respectively. Finally, hydrogen mass repartitioning [34] was applied to both systems 

to enable a 4 fs timestep. 

Nanoscale Molecular Dynamics (NAMD) v.3.0 alpha [35] was used for all classical 

molecular dynamics (MD) simulations, using the CHARMM36 force field [36] for all atoms 

and TIP3P explicit solvent model. Periodic boundary conditions were used to allow for the 
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particle mesh Ewald calculation of electrostatics [37]. Both systems were prepared 

following the same minimization and equilibration protocol, as follows. First, the lipid tails 

were allowed to minimize with all other atoms fixed for 1 ns using a 1 fs timestep, allowing 

the acyl chains to “melt” with constant volume at a temperature of 300 K (NVT). All 

subsequent simulations were performed using the Langevin piston Nosé-Hoover method 

for pressure control (NPT). Next, the entire system, including lipids, solvent, and ions, 

was allowed to minimize with the protein harmonically constrained (1 kcal mol-1), for 2 ns 

using a 2 fs timestep. Another 2 ns minimization step was then applied, also with a 2 fs 

timestep, in which the system was free to minimize with a harmonic constraint applied 

only to the protein backbone (1 kcal mol-1), to ensure stable quaternary structure while 

side chains relax in their local environment. The entire system was then released from all 

constraints and subject to all-atom equilibration using a Langevin thermostat (damping 

coefficient of 0.5 ps-1), with a constant temperature of 310 K and constant pressure of 1 

atm, using a 4 fs timestep for 30 ns. Finally, both systems were simulated in triplicate for 

100 ns production runs, again with a 4 fs timestep. Each replica (n = 3) started from the 

end of a 30 ns equilibration phase with velocities reinitialized. 

Root mean squared deviations (r.m.s.d.), comparing the backbone conformations 

of MD simulation to the original starting structures, and root mean square fluctuations 

(r.m.s.f.), comparing the amplitudes of backbone fluctuations during MD simulation, were 

calculated using VMD. Both T39R models approached a steady r.m.s.d. during the 

equilibration phase and maintained stability during all production runs, and r.m.s.f. values 

were comparable to previous simulations of Cx50 [24]. 
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To assess interactions introduced by the R39 mutation, we recorded which 

residues were within 4 Å of R39 every 10 ps, and aggregated counts across chains and 

replicates. Once key residues were identified, the distances between each R39 and the 

residues of interest were recorded every 10 ps across all replicates of all production runs. 

The points of reference for R39 (Cζ), D3 (Cɣ), and E42 (Cδ) were chosen to capture 

equivalent rotameric states. Since the acetylated G2 contains two carbonyl oxygen 

atoms, either of which can interact with R39, the minimum of the distances between R39 

and the oxygen atoms was recorded as the distance to G2ACE. Histograms (bin size ≈ 0.1 

Å) and corresponding empirical distribution functions (ECDFs) were then plotted. 

Based on the distance histograms, 4.5 Å was chosen as the cutoff distance below 

which R39 and another residue are considered to be interacting. This criterion was used 

to generate time series of binary interaction states for each R39 and each contact residue, 

recorded every 10ps. Dwell times were obtained by calculating the length of consecutive 

interaction states, ignoring periods of noninteraction that lasted less than 500 ps. Any 

interactions with a final length of less than 1 ns were ignored. Histograms (bin size = 4 

ns) and corresponding ECDFs were then plotted. 

Nonbonding energies between residue 39 and G2ACE or D3 were computed across 

all trajectories using the namdenergy plugin, with a 1 ns timestep. Each chain was treated 

independently from all replicates (n = 36 for T39R models and n = 24 for Cx50) to 

calculate the final summary statistics, plotted as mean ± SEM. A two-sample independent 

t-test was used to compare sample means to determine statistical significance. 
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Results 

Functional characterization of Cx50 T39R hemichannels 

In our initial experiments, we observed that expression of T39R in Xenopus 

oocytes appeared to have a toxic effect on oocytes. To study this phenomenon in more 

detail, we injected oocytes with 2 ng/µl of T39R or Cx50 cRNA and incubated them in 

Modified Barth’s Solution in the presence or absence of external calcium. In the absence 

of external calcium, most of the T39R cRNA-injected oocytes developed cell blebbing, 

cytoplasm leakage, and pigmentation changes consistent with cell death by 24 hours after 

injection, as illustrated in Figure 1A. In contrast, Cx50 cRNA injected oocytes and control 

oocytes injected only with antisense oligonucleotides to the endogenous Xenopus Cx38 

(AS) remained healthy without any obvious changes in membrane pigmentation. The 

survival time of the T39R expressing oocytes was significantly prolonged by incubating 

the oocytes in external medium containing 3 mM [Ca2+]o. The results of 4 independent 

experiments are summarized in Figure 1B. Less than 5% of the control or Cx50-injected 

oocytes died by 48 hours, regardless of the absence or presence of added calcium. In 

contrast, 98% of the T39R cRNA-injected oocytes died by 48 hours when incubated in 

the absence of calcium and 38% died in the presence of calcium. 

One explanation for these findings is enhanced hemichannel activity of T39R 

channels that is partially blocked by increasing external calcium. To investigate this 

possibility, we injected oocytes with extremely low concentrations of mutant cRNA (0.05 

– 0.25 ng/µl) that were insufficient to induce cell death and we studied the oocytes at 

times ranging between 18 – 72 hours after injection using a two-electrode-voltage-clamp 

technique. Oocytes injected with 0.25 ng/µl of T39R cRNA exhibited large hemichannel 
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currents that were partially blocked by raising [Ca2+]o from nominally zero to 2 mM and 

had a reversal potential of ~-25 mV in choline chloride external solution, as illustrated in 

Figure 1C-E. In contrast, oocytes injected with 3 ng/µl Cx50 cRNA or antisense-injected 

control oocytes showed little or no calcium-sensitive hemichannel currents, consistent 

with the results of previous studies [17, 21]. 

 

Functional comparison of T39R, T39S and T39A variants 

To further examine the role of residue 39 in Cx50 hemichannel gating, threonine 

39 was replaced by alanine (the amino acid at the equivalent position in the first 

transmembrane spanning domain of Cx46) or serine (another hydroxyl group-containing 

amino acid). T39A and T39S cRNA-injected oocytes developed hemichannel currents 

whose size was much greater than that of Cx50, but significantly lower than that observed 

in T39R cRNA-injected oocytes. Therefore, to facilitate comparison of voltage gating 

properties of the three mutants, we injected oocytes with 10-30 times lower amounts of 

T39R cRNA to reduce the size of its hemichannel currents to levels similar to those 

observed for T39A and T39S.   

  To compare levels of expression of the different Cx50 constructs, we performed 

immunoblot analysis of membrane-enriched samples prepared from oocytes injected with 

antisense Cx38 oligonucleotides alone or in combination with similar amounts of cRNA 

encoding T39R, T39S, T39A, or Cx50. Homogenates of oocytes injected with wild-type 

or mutant cRNAs contained a predominant band with an Mr of ∼61 kDa (Figure 2A). The 

densitometric value of the bands of the mutant proteins were similar or lower than the 

densitometric value of the Cx50 band (Figure 2B). No immunoreactive bands were 
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detected in antisense-injected control oocytes. Thus, these results excluded the 

possibility that increased hemichannel activity could result from increased mutant protein 

production. 

Figure 2C compares the electrophysiological properties of hemichannel currents 

recorded from single oocytes injected with cRNA for T39R, T39A or T39S in sodium 

external solutions containing 0.7 mM [Ca2+]o. The pulse protocol consisted of a 20-s test 

pulse, ranging between −80 mV and +40 mV from a holding potential of −10 mV, followed 

by a hyperpolarizing pulse to −80 mV. When the oocytes were bathed in 0.7 mM [Ca2+]o, 

all 3 mutant hemichannels exhibited a negative voltage-gating process, termed loop 

gating [38], that tended to cause the channels to close at negative potentials and slowly 

open at positive potentials. However, the rate and extent of hemichannel closure at 

negative potentials was greatly reduced for T39R compared to T39A and T39S. In 

addition, the normalized G-V curve for T39R, determined by plotting the relative amplitude 

of the tail current at −80 mV as a function of test potential, was shifted to the left with 

respect to that observed for T39A and T39S (Figure 2D). At positive potentials, T39A and 

T39S hemichannels exhibited another voltage-gating process termed Vj gating [38], which 

has been previously shown to close Cx50 hemichannels at positive potentials [39, 40]. 

This gating process was reduced in T39R hemichannels. Thus, our findings suggest that 

replacement of T39 by arginine, but not by serine or alanine, results in a loss of voltage-

dependent gating at both positive and negative potentials. 

 

Functional characterization of T39R mixed with Cx50 and Cx46 
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To mimic the effect of heterozygous expression, we investigated the effect of 

mixing Cx50 and T39R by injecting oocytes with a 1:1 mixture of Cx50 and T39R. Oocytes 

co-expressing Cx50 and T39R showed hemichannel currents whose amplitude and 

voltage dependent gating properties resembled those observed in oocytes injected with 

T39R cRNA alone, indicating that T39R modified channel gating in a dominant manner 

(Figure 3A,B). 

Because a second connexin (Cx46) is co-expressed with Cx50 in the lens and 

shown to be capable of co-assembling into heteromeric channels [8, 9], we studied the 

effect of mixing of Cx50 or T39R with Cx46 on hemichannel function as shown in Figure 

3C-E. As expected, Cx46 formed time- and voltage-dependent currents that slowly 

activated at membrane potentials more positive than -10 mV. On repolarization to -60 

mV, a large, inward tail current was observed that decayed to baseline over a period of 

several seconds. The main effect of co-expressing Cx50 with Cx46 was to reduce the 

size of the resulting hemichannel currents compared to those seen in oocytes injected 

with only Cx46, in agreement with our previously described results [17]. In contrast, 

oocytes co-injected with a 1:1 mixture of T39R and Cx46 cRNA showed large 

hemichannel currents, with magnitudes similar to that observed in oocytes injected with 

Cx46 alone. However, the mixed currents showed a slowing of the time course of 

deactivation at negative potentials and a negative shift in the threshold for activation 

compared to Cx46. These findings suggest that both wild-type and mutant Cx50 can 

interact with Cx46 to form heteromeric channels with altered gating properties. 

    

MD-simulation of Cx50 T39R 
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To gain mechanistic insight into the gain-of-function observed by T39R, we 

conducted all-atom equilibrium-state MD simulation studies, using the previously 

determined 1.9 Å structure of native sheep Cx50 as a template [24]. Sheep Cx50 contains 

~95% sequence identity (~98% similarity) to human over the structured domains. T39R 

models were constructed in silico by two independent methods (Model #1 and #2), to 

allow comparison of different starting conformations (see Methods). In both models, the 

N-terminal residue G2 is acetylated (G2ACE) to match the prominent state found in the 

lens (Myers et al., 2018). In Cx50, T39 is located in the middle of transmembrane helix 1 

(TM1), and positioned toward the hydrophobic anchoring residue W4 on the NT domain 

(Figure 4A,B). The NT domain is thought to function both as the voltage-sensing domain 

and as a gate to close the channel [40-43]. Homology modeling of arginine at this site 

introduces a steric clash with the indole ring of W4 (Figure 4B), which by naïve 

interpretation might be expected to destabilize the open-state conformation of Cx50. 

However, following energy minimization and all-atom MD equilibration, R39 is able to 

reorient and found to adopt a fluctuating range of conformational states that are 

compatible with the previously characterized open state conformation of the NT domain 

(Figure 4B) [9]. Indeed, root-mean-square-fluctuation (r.m.s.f.) analyses of the NT 

domain, which reports on the conformational stability, were indistinguishable between the 

T39R models and Cx50 in multiple replicate MD simulations (Figure 4C and [24]). These 

results indicate that T39R does not significantly disrupt the overall architecture or stability 

of the open-state of the channel. 

 Contact analyses of R39 highlighted a cluster of amino acids that are within 

interacting distance to the introduced positively charged guanidinium group. The sites 
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with the highest contact frequency were consistent in both MD simulation models, and 

localize to the proximal region of the NT domain, and surrounding residues on TM1 

(Figure 4D,E). The interaction with the NT domain were localized to residues G2, D3 and 

W4, while the most significant interaction within TM1 localized to the negatively charged 

residue E42. Given the role of the NT domain in voltage-sensing and potential coupling 

between TM1 and the voltage-gating response [29, 40-42, 44-46], we conducted a 

detailed analysis of these interacting residues. 

  

T39R forms a salt-bridge interaction with the voltage-sensing residue D3 

The residue D3, located at the proximal end of the NT domain, has been shown to 

function as a voltage-sensor in Cx50 [40, 42] as well as in other connexins [40, 41, 47]. 

Remarkably, in each of the simulations conducted, the large, positively charged side 

chain of R39 extended towards the negatively charged carboxylate group on D3, located 

on a neighboring subunit, forming an apparent salt-bridge interaction (Figure 5A and 

Supplemental Movie 1). This charge-neutralizing interaction might alter the voltage 

sensitivity of Cx50T39R. To assess the prevalence of this interaction we conducted a 

detailed contact distance analysis, which showed that this neutralizing salt-bridge 

interaction accounts for ~9 – 21% of the conformational states sampled by R39 during 

the MD production period and for a significant energetic contribution compared with Cx50, 

which would increase the energy barrier to move toward the closed state (Figure 5B). 

Dwell-time analysis of the R39-D3 interaction indicates transient stability, with the majority 

of interactions lasting < 50 ns, although in a few instances the interaction persisted 

through the duration of the MD production runs (100 ns) (Figure 5C,D).  
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R39 forms additional interactions with G2 and E42 

Given the transient nature of the R39-D3 interaction, we next sought for additional 

interactions between R39 and the NT domain that might contribute to the drastic increase 

in open-state stability of T39R observed by electrophysiology. Remarkably, R39 adopts 

an alternative downward conformation that facilitates simultaneous interaction with the 

two partial negative charges presented by the carbonyl oxygens on the acetylated G2 

residue (G2ACE) and also with the negatively charged residue E42 from a neighboring 

subunit (Figure 6A and Supplemental Movie 2). Such interactions, in particular with G2, 

could further stabilize the open-state conformation of the NT domain. Contact distance 

analysis indicates that interactions between R39 and G2ACE are highly populated, 

accounting for 46 – 62% of the conformational states adopted by R39 during the MD 

simulation runs (Figure 6B). Similarly, the salt-bridge with E42 was present in 30 – 64% 

of the conformations sampled in the two MD models (Figure 6C), while no equivalent 

interaction is made by the wildtype protein (Figure 6C, inset). Assessment of non-bonding 

energies resulting from the R39-G2ACE interaction were significantly greater than in wild-

type Cx50 (Figure 6B, inset), and consistent with providing additional stability to the open-

state conformation of the NT domain. The frequency of these interactions was also 

significant in both MD models, as assessed by dwell-time analysis (Figure 6D-F). In 

comparison to the R39-D3 interaction, the coupling to G2 and E42 appears much more 

frequent and persistent (compare Figure 5D and Figure 6E-F). While the majority of dwell 

times for the R39-G2ACE and R39-E42 interactions are < 50 ns, a number of trajectories 

displayed interaction dwell times of 50 – 100 ns (Figure 6E,F).  
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 Notably, the conformational state supporting the interaction with G2ACE appears to 

occur concomitantly with the salt-bridge with E42 (Figure 6A,D). Corresponding dwell-

time analysis of the E42 interaction is overlaid with the G2 interaction in Figure 6D (top 

black bars vs. bottom black bars, respectively). This analysis indicates that R39 interaction 

with G2 may be supported by the salt-bridge interaction with E42; however, it is not a 

requirement as analysis of multiple trajectories show that these interactions are not 

necessarily correlated.   

 

Discussion 

We studied a human Cx50 mutation associated with congenital cataract, T39R. 

Oocytes injected with T39R cRNA developed greatly enhanced hemichannel currents 

compared to wild-type Cx50 leading to cell death. Increasing external calcium partially 

blocked the hemichannel currents and attenuated cell death. When T39R was co-

expressed with wildtype lens connexins, it acted in a dominant manner to increase 

hemichannel activity. Taken together, these findings suggest that T39R causes cataracts 

through a gain-of-hemichannel function mechanism. Here, the notion is that a 

hemichannel should reside primarily in the closed state unless it is docked to another 

hemichannel forming a gap junctional conduit between cells. If an undocked hemichannel 

has a high probability of opening, it will cause cell death.  

T39 (threonine at residue 39) is conserved among all Cx50 orthologues. In 

contrast, all Cx46 orthologues contain alanine at this position. High resolution structural 

studies of heteromeric Cx50/Cx46 sheep lens gap junctional channels by cryo-EM show 

that residue 39 localizes to the first transmembrane pore lining helix (TM1) and anchors 
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the N-terminus (NT) to the inner wall of the channel via hydrophobic interactions with 

tryptophan 4 (W4), located on the NT domain of a neighboring protomer (Myers et al., 

2018). Replacement of threonine at position 39 in Cx50 by positively charged arginine 

(T39R) appears to stabilize the open state of the undocked hemichannel. It also causes 

a partial loss of voltage-dependent closure at both positive and negative transmembrane 

potentials. All-atom MD simulation studies suggest that R39 forms multiple stabilizing 

interactions with the NT domain, which has been implicated in voltage gating of 

hemichannels as well as gap junctional channels and contains the negatively charged 

residue, D3, which has previously been shown to play a critical role in Vj gating of Cx50 

hemichannels [40, 42]. R39 forms a relatively stable salt-bridge with D3 that would 

stabilize the NT against the inner wall of the channel when the channel is in the open 

state and neutralize the negative charge on D3 leading to a loss of Vj gating. In addition, 

R39 adopts an alternative conformational state that facilitates electrostatic interaction with 

the acetylated G2 position, providing further stability to the open-state conformation of the 

NT domain. Together, these interactions with the NT domain account for as much as ~67 

– 71% of the conformational states observed for R39 by MD.  

Remarkably, we observed that R39 forms an additional neutralizing salt-bridge 

with E42, as part of a possible tripartite interaction with G2 (see Figure 5). Structurally, 

E42 is located at the distal end of TM1, near the first extracellular loop, (aka parahelix) 

and directly adjacent to a Ca2+ binding site identified in a crystal structure of Cx26 [48]. 

This residue contributes to a highly conserved electrostatic network within the 

extracellular vestibule implicated in hemichannel Ca2+ sensitivity and voltage-dependent 

loop gating in Cx26 and Cx46 [49, 50]. The neutralizing interaction with R39 would be 
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expected to disrupt this electrostatic network and/or Ca2+ binding, and therefore 

potentially further contribute to the attenuated loop gating behavior displayed by T39R. 

The role of the positive charge at residue 39 in stabilizing the channel open-state, 

disabling the voltage-sensing residue D3, and interacting with the negatively charged 

residue E42 is further supported by experiments replacing threonine at position 39 with 

alanine (uncharged) or serine (polar). These variants also produced an increase in 

hemichannel activity albeit to a lesser extent than the arginine variant; however, unlike 

T39R they retained Vj and loop gating. These results are consistent with the inability of 

these residues to form similar charge-neutralizing salt-bridge interactions with D3 and 

E42. However, these results also suggest that even small changes at the T39 position 

can lead to significant alterations in the hydrophobic anchoring interactions of the NT 

domain with the pore forming TM1/TM2 domain and affect the stability of the open state. 

We have observed a similar increase in hemichannel activity to occur in a chicken Cx50 

chimera in which the first transmembrane domain of Cx50 was replaced by the 

corresponding domain of Cx46, resulting in the substitution of threonine for alanine at 

residue 39 [29]. At the same time, we have observed that NT domain swapped chimeras 

in sheep Cx46 and Cx50 gap junction channels stabilize or destabilize the open-state, 

depending on the context [46]. Another explanation for the effect of these amino acid 

substitutions on hemichannel activity is that they may destabilize the closed state. 

Unfortunately, there are currently no atomic resolution structural models of lens undocked 

Cx50 hemichannels (or Cx50 gap junctional channels) residing in the closed state. Thus, 

it is not possible to predict what effect amino acid substitutions at this position might have 

on the structure of the closed channel. 
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Our data are also consistent with a dominant gain-of-hemichannel function for 

T39R. Interactions between wild-type and mutant Cx50 failed to alter the activity or 

voltage gating properties of T39R hemichannels, suggesting that T39R interacted with 

Cx50 in a dominant manner. The latter is supported by our MD simulation results, where 

R39 forms stabilizing interactions with the NT domain of a neighboring subunit. 

Furthermore, co-expression of T39R with Cx46 resulted in the formation of heteromeric 

hemichannels that exhibited increased activity at negative potentials, suggesting that they 

may contribute to the toxic effect of T39R in the lens. In contrast, co-expression of Cx50 

with Cx46 was associated with a marked reduction in hemichannel activity indicating that 

it may have a protective effect.  

Comparison of T39R with another Cx50 cataract associated mutant, G46V, 

showed both similarities and differences [17, 21]. Like T39R, Xenopus oocytes 

expressing G46V developed large, calcium-sensitive hemichannel currents. However, 

G46V induced smaller transmembrane currents than T39R when expressed in Xenopus 

oocytes at comparable levels and it did not disrupt voltage-dependent closure of Cx50 

hemichannels at positive or negative potentials.  

In conclusion, our results suggest that T39R causes cataracts by greatly increasing 

the probability of hemichannel opening in the undocked state. This increase in 

hemichannel activity would be expected to lead to cell depolarization, loss of ionic 

gradients, increase in intracellular calcium, and depletion of intracellular metabolites 

resulting in widespread cell death and the development of total cataract.  
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Figures and legends 

 

Figure 1. T39R has a toxic effect on oocytes that can be rescued by increasing 

external calcium. A. Oocytes injected with T39R cRNA show obvious signs of cell death 

(cell blebbing and pigment disorganization in the animal pole) after a 24 hour incubation 

period in modified Barth’s solution (MBS) containing zero-added calcium (bottom left). In 

contrast, Cx50 cRNA-injected oocytes (Cx50) and antisense-injected control oocytes 

(AS) remained healthy when incubated under identical conditions (top left and right). 

Raising the external calcium from 0 to 3 mM rescued the T39R cRNA-injected oocytes 

from cell death (bottom right). B. Graph shows the percentage of surviving oocytes/total 

number of oocytes at various times following injection of 2 ng/µl wild-type or mutant cRNA. 

The total number of oocytes in each group ranged between 14-17. Each point in panel B 

represents the mean ± SEM of 4 independent experiments. C and D. Families of current 

traces recorded from a T39R cRNA-injected oocyte before and after application of 2 mM 
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calcium, respectively. The voltage clamp protocol consisted of a series of sequential steps 

from a holding potential of -40 mV to 30 mV in 10 mV increments. In the presence of 

nominally zero calcium, a large hemichannel current was observed that was mostly 

activated at a holding potential of -40 mV. Application of 2 mM [Ca2+]o caused a marked 

reduction in the amplitude of the current at both positive and negative potentials. The 

dashed line represents zero current level. E. Steady-state I-V relationships (measured at 

the end of the pulse) in Cx50 (closed symbols) and T39R (open symbols) cRNA-injected 

oocytes before and after application of calcium. Each point in panel E represents the 

mean ± SEM of 5-6 oocytes. All of the data were obtained with oocytes from a single 

donor frog.  Similar results were obtained with oocytes from at least 3 other donors. 
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Figure 2. Hemichannel currents formed from T39R, T39S and T39A show 

differences in Vj and loop gating. A. Immunoblot analysis of plasma membrane 

enriched samples prepared from Xenopus oocytes injected with similar amounts of Cx50, 

T39R, T39S or T39A cRNA in combination with antisense Cx38 oligonucleoties or with 

antisense Cx38 oligonucleotides alone and incubated for 24 hours at 18° C. B. The graph 

shows the mean ± SEM of the densitometric values of the immunoreactive bands 

obtained from 4 or 5 biological replicates expressed in arbitrary units (a.u.). The mean 

densitometric value of the band for Cx50 was similar or higher than the mean 

densitometric values of the bands for the mutants indicating that the protein levels of Cx50 

were similar or higher than those of oocytes expressing T39R, T39S or T39A. C. 

Representative families of membrane current traces recorded from single oocytes 

injected with cRNA for T39R (top), T39A (middle) or T39S (bottom) in sodium chloride 

solution containing 0.7 mM [Ca2+]o using the pulse protocol shown in Figure 2D (inset). 

The dashed lines represent zero current level. The data were corrected for leakage. D. 

Normalized G-V curves for T39R (solid circles; n = 5), T39A (solid triangles; n = 4), T39S 
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(open squares; n = 6) determined by plotting the amplitude of the tail current at -80 mV 

normalized to the tail current following a step to +40 mV as a function of test potential. 

Each point represents the mean ± SEM. 
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Figure 3. T39R acts as a dominant gain-of-hemichannel function mutation when co-

expressed with wild-type Cx50 or Cx46. A. Representative families of current traces 

recorded from oocytes injected with a 1:1 mixture of T39R+Cx50 cRNA (top) or T39R 

cRNA alone (bottom) in response to a series of voltage clamp steps applied from a holding 

potential of -60 mV to potentials between -60 and +30 mV in increments of 10 mV.  The 

amount of T39R cRNA injected into each oocyte was held constant. The oocytes were 
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bathed in NaCl solution containing 0.7 mM [Ca2+]o.  Dashed lines represent zero current. 

B. Steady-state I-V curves for T39R (open circles, n = 5), T39R+Cx50 (solid triangles, n 

= 3), Cx50 (open inverted triangles, n = 5) and antisense-treated controls (AS; solid 

squares, n = 7). Each point represents the mean ± SEM.  All data were obtained with 

oocytes from a single donor frog.  Similar results were obtained in the presence of 

nominally zero [Ca2+]o (data not shown). C. Representative families of current traces 

recorded from oocytes injected with Cx46 cRNA alone (left), a 1:1 mixture of Cx46+T39R 

cRNA (middle), or a 1:1 mixture of Cx46+Cx50 cRNA (right) in response to voltage clamp 

steps applied from -60 mV to +30 mV in 10 mV increments from a holding potential of -

60 mV. The amount of Cx46 cRNA injected into each oocyte was held constant. The 

oocytes were bathed in NaCl solution containing 0.7 mM [Ca2+]o. The data were corrected 

for leakage. D. Steady-state I-V curves for Cx46 (open squares, n = 6), Cx46+Cx50 (open 

inverted triangles, n = 6), Cx46+T39R (solid circles, n = 7), and AS (solid squares, n=4). 

E. Normalized G-V curves for Cx46 (open squares, n = 5) and Cx46+T39R (solid circles, 

n = 7). Each data point in panels D and E represents the mean ± SEM. All data were 

obtained with oocytes from a single donor frog. 
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Figure 4. Molecular dynamics simulation of T39R. A. Illustration representing an en 

face (left) and a side view (right) of a Cx50 hemichannel with the NT domain in grey and 

T39 in blue (PDB: 7JJP; Flores et al., 2020). B. Magnified views showing that T39 is 

positioned beneath the NT domain near the hydrophobic anchoring residue W4 in Cx50 

(left), the position of T39R based on a naïve homology model (center), and representative 

poses of R39 following all-atom equilibrium MD simulation (Model #2) (right). C. Root-

mean-square-fluctuation (r.m.s.f.) analysis of the NT domain obtained by MD simulation 

on T39R models (Model #1 – blue; Model #2 – orange) and Cx50 (grey). Solid line 

indicates the mean with ± SEM in light shading. Each data point represents the average 

of 12 subunits from each replicate (n = 36 for T39R Model #1 and #2, and n = 24 for 

Cx50). Grey ribbon diagram illustrates the helical secondary structure of the NT domain. 

D. Surface representation of Cx50 with the frequency of R39 contacts mapped in color 

(white = no contact; dark blue = high contact frequency). E. Histogram showing R39 
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contact frequency by residue number (Model #1 – blue; Model #2 – orange). Error bars 

represent ± SEM. Grey dashed line boxes indicate regions of high contact frequency that 

were further investigated. 
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Figure 5. T39R forms a neutralizing salt-bridge interaction with D3. A. 

Representative snapshot of an MD trajectory illustrating a salt-bridge interaction between 

the positively charged R39 and the negatively charged residue D3, from a neighboring 

subunit. B. Histogram showing the population distribution of distance measurements 

between R39 C and D3 C obtained from the MD trajectories. Distances less than 4.5 Å 

separating these two heavy atoms are considered to be within contact distance (indicated 

by the grey dashed line). The cumulative density profile (right axis) is overlaid as a solid 

line. Inset, shows non-bonded energies (kcal/mol) between residue 39 and D3 in the 

T39R models and Cx50, calculated as the mean ± SEM from each subunit over 3 

replicates (n = 36 for T39R Model #1 and #2, and n = 24 for Cx50; *** indicates p value < 
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0.001). C. R39-D3 dwell-time analysis for representative subunit trajectories, shown in 

color. Black bars indicate the filtered dwell time in each of the trajectories. D. Histogram 

showing the population distribution of filtered dwell-time measurements. The cumulative 

density profile (right axis) is overlaid as a solid line. In panels B-D, data are presented for 

Model #1 (blue) and Model #2 (orange). 
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Figure 6. T39R forms a stable interaction with G2ACE and E42. A. Representative 

snapshot of an MD trajectory illustrating a possible triad interaction between the positively 

charged R39 and negatively charged residue E42 and acetylated G2 (G2ACE), from a 

neighboring subunit. B and C. Histograms showing the population distribution of distance 

measurements obtained from the MD trajectories between R39 C and carbonyl oxygens 

on G2ACE (panel B) and E42 C (panel C). Distances less than 4.5 Å separating heavy 

atoms are considered to be within contact distance (indicated by the grey, dashed line). 

The cumulative density profile (right axis) is overlaid as a solid line. Inset, in panels B and 

C shows non-bonded energies (kcal/mol) involving the respective interactions with 

residue 39 in the T39R models and Cx50, calculated as the mean ± SEM from each 

subunit over 3 replicates (n = 36 for T39R Model #1 and #2, and n = 24 for Cx50; ** 

indicates p value < 0.01; **** indicates p value < 0.0001). D. R39-G2ACE dwell-time 

analysis for representative subunit trajectories, shown in color. Black bars indicate the 

filtered dwell time of interaction between R39 and E42 (top) and R39 and G2ACE (bottom). 

E and F. Histogram showing the population distribution of filtered dwell-time 
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measurements for R39-G2ACE (panel E) and R39-E42 (panel F). The cumulative density 

(right axis) profile is overlaid as a solid line. In panels B-F, data are presented for Model 

#1 (blue) and Model #2 (orange). 
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Supplemental Movie Legends 

 

Supplemental Movie 1. T39R forms a neutralizing salt-bridge interaction with D3. 

Representative MD trajectory (100 ns) of T39R forming a salt-bridge between the 

positively charged R39 and the negatively charged residue D3, from a neighboring 

subunit 

 

Supplemental Movie 2. T39R forms a stable interaction with G2ACE and E42. 

Representative MD trajectory (100 ns) of T39R forming a triad interaction between the 

positively charged R39 and negatively charged residue E42 and acetylated G2 (G2ACE), 

from a neighboring subunit. 
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