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. Introduction 

Wayman [1] defines biometric authentication or biometrics as 

the automatic identification or identity verification of an indi- 

idual based on physiological and behavioural characteristics”. Ac- 

ording to this study, several biometric characteristics are available 

or biometric system designers to choose from, including but not 

imited to: “fingerprints, voice, iris, retina, hand, face, handwrit- 

ng, keystroke, and finger shape” [2] . These can be subdivided into 

hose that require physical contact of some sort for the characteris- 

ic to be verified such as fingerprints, handprints, or handwriting, 
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nd contact-less ones that do not – such as voice, iris, retina, or 

ace. 

The sudden outbreak of the COVID-19 pandemic presents a sig- 

ificant challenge to the field of biometrics in two ways. First, the 

irus stays active on surfaces for a long period of time [3] , dis-

ouraging users from interacting physically with biometric devices 

hared between multiple people. Consequently, contact-less bio- 

etrics became more crucial in the presence of COVID-19. Sec- 

nd, it also spreads in an airborne fashion [3] , prompting health 

uthorities worldwide to urge the general public to wear face 

asks regularly to reduce the spread of the virus [4] . This everyday 

se prevents existing facial identification systems from functioning 

roperly, whether they are personal (such as those found in per- 

onal computers or mobile phones) or public (found in personnel- 

estricted areas, such as hospitals or airports). For these reasons, 
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oice biometrics are among the few suitable contact-less biomet- 

ics, as the effects of masks impact them less compared to facial 

iometrics [5,6] . Furthermore, voice biometrics can be convenient 

n various contexts for several reasons, e. g., in health care [7] . They

re easy to use since any smartphone equipped with a microphone 

an be utilised [7] , and they do not need special training for the

sers, because there are many scenarios where users already use 

heir smartphones by way of speech communication [7] . 

Speaker identification and verification systems have been re- 

earched for a long time [8] ; several benchmark datasets are avail- 

ble in this domain [9,10] . Deep Learning (DL) voice biometrics sys- 

ems have recently been proposed as well [11] . The performance of 

peaker identification systems has been found by Saeidi et al. [6] to 

eteriorate when the conditions under which the systems are 

rained are mismatched with the conditions under which the sys- 

ems are evaluated. In the context of masks, this means that it is 

est to identify mask-wearing speakers with models trained on au- 

io from mask-wearing speakers and non-mask-wearing speakers 

ith models trained without. Consequently, automatically classify- 

ng whether a speaker is wearing a mask or not employing voice 

haracteristics can improve voice biometrics systems. 

The effect of wearing a mask has been thoroughly studied 

ithin other contexts; it has been shown to impact the human-to- 

uman perception of speech, although research results have been 

ontradictory as for the question whether this impact is signif- 

cant for non-hearing impaired people [12] or not [13] . Llamas 

t al. [14] conducted a thorough investigation of the acoustic ef- 

ects of different types of face coverings and whether they affect 

ntelligibility; their findings seem to agree with those of Kawase 

t al. [15] , who conclude that the impact of mask-wearing seems 

o stem from the loss of the visual information that the brain uses 

o compensate for degradation in auditory information, if not from 

 direct effect of the facial coverings on the acoustics themselves. 

ome studies [16,17] analysed the effects of wearing a mask from 

n acoustic perspective. They found that the affected frequencies 

re within the range of 1 – 8 kHz, with the greatest impact be- 

ng within the range of 2 – 4 kHz. These ranges are related to 

he ranges required for voice biometrics, namely < 1 kHz and 3 –

.5 kHz [18] . Audio models that predict whether a speaker is wear- 

ng a mask or not can offer insights into the relevant effects of 

ask-wearing by examining the audio features employed by the 

odels. 

Machine Learning (ML), and DL especially, have gained much 

omentum during the last decade. In the field of image process- 

ng, Convolutional Neural Networks (CNNs) [19–21] have been used 

or image classification. Similarly, CNNs [22] , Recurrent Neural Net- 

orks (RNNs) [23] , and generic audio features [24,25] have also 

een used for audio classification. Given their capabilities, ML and 

L have been used to tackle several issues related to the COVID- 

9 pandemic and other medicine-related problems like cancer de- 

ection [26] . Shuja et al. [27] survey a wide range of datasets con-

erned with several aspects related to COVID-19, including datasets 

f medical images, e. g., chest X-ray scans, and audio sounds, e. g., 

oughing and breathing. There are surveys of ML-based COVID-19 

iagnosis by way of speech [28] or by medical images [29] . Exam- 

les of speech-based applications can be found in [30,31] . DL has 

lso been successfully applied in biometrics; however, advances in 

oice biometrics are not as pronounced as those in face biomet- 

ics [32,33] , which necessitates bridging the gap between the two 

omains. 

In audio processing, spectrograms – visual representations of au- 

io signals – are often employed. They allow the modelling of au- 

io problems using computer vision techniques, where CNNs have 

ecently shown substantial advancements [34] . For example, Deep 

pectrum utilises pretrained CNNs to extract salient visual fea- 

ures from spectrograms and has proven effective in several tasks 
2 
ike snoring-sound classification [35] . Another technique is trans- 

er learning , which uses pretrained CNNs and enhances them fur- 

her by fine-tuning them to be better suited for specific tasks. This 

s also employed in [22,36] , where a large-scale training of CNNs 

n audio data was performed from scratch. There is a convergence 

n several DL-based methodologies between the image and audio 

omains, and consequently, audio processing has made use of the 

ecent advancements in computer vision using DL. 

The INTERSPEECH 2020 COMputational PARalinguistics chal- 

engE (ComParE) addressed three new problems within the field of 

omputational Paralinguistics [37] ; one of them was the Mask Sub- 

hallenge (MSC) where the task was to detect whether a speaker 

s wearing a surgical mask or not, based only on audio signals [38] .

e fully review the approaches and results of MSC, by that 

1. Providing a detailed review of face mask detection approaches 

via voice, which can directly enhance voice biometrics; 

2. Bridging the gap between DL and voice biometrics by examin- 

ing the key strengths of the approaches employed by the top 

participants of MSC; 

3. Giving insight on the effects of wearing masks and their impact 

on audio signal processing. 

The article is structured as follows: We will review MSC in 

ection 2 ,– its database, evaluation, and baseline features. Then, we 

resent the approaches and results of the participants in Section 3 . 

heir strengths and weaknesses are discussed in Section 4 as well 

s their usefulness and limitations for voice biometrics. Further- 

ore, in Section 5 , we showcase an Android-based smartphone 

pp that can be used as a proof of concept to deploy audio- 

ased face mask recognition models; benchmarking of the run- 

ime of the top models is included. Concluding remarks are given 

n Section 6 . 

. The Mask Sub-Challenge (MSC) 

The Mask Sub-Challenge (MSC) is one of the challenges held 

ithin INTERSPEECH 2020 ComParE . MSC is concerned with the 

roblem: Given a speech recording of 1 s duration, classify 

hether the speaker is wearing a mask or not. The Sub-Challenge 

ackage included scripts that allowed participants to reproduce 

he baselines and the evaluation. The audio tracks for the Train, 

ev(elopment), and Test sets were included, in addition to the bi- 

ary labels of the Train and Dev sets. The participants were asked 

o submit the binary labels of the Test set. 

In this section, we describe the background of the MSC: the 

ask Augsburg Speech Corpus (MASC), the evaluation metric, and 

he baseline approaches. 

.1. Mask Augsburg Speech Corpus (MASC) 

MASC consists of recordings of 32 German native speakers 

16 females, 16 males, age from 20 to 41 years, mean age 25.6 

ears, standard deviation 4.5 years), wearing a Sentinex Lite sur- 

ical mask from manufacturer Lohmann and Rauscher. The record- 

ngs took place in a sound-proof audio studio of the centre for me- 

ia and communication at the University of Passau. The studio is 

added with special noise reduction wall elements to reduce noise 

nterference and hence ensure good audio recording quality with 

ess reverberation. The recordings were taken using the C4500 BC 

arge diaphragm condenser microphone from AKG; cf. Fig. 1 . The 

udio was sampled at a rate of 48 kHz with 24 bit resolution. 

The participants performed different tasks while wearing a 

ask as well as without: They read the story “Der Nordwind 

nd die Sonne” (“The Northwind and the Sun”) out loud, an- 

wered some questions, repeated prerecorded words after listening 

o them, read words commonly used in medical operation rooms, 
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Fig. 1. MASC, recording session. 

Table 1 

Number of chunks per class in the Train/Dev/Test 

splits for MSC. Test split distributions were blinded 

during the ongoing challenge. 

# Train Dev Test �

clear 5 353 6 666 5 553 17 572 

mask 5 542 7 981 5 459 18 982 

� 10 895 14 647 11 012 36 554 

Fig. 2. Spectrograms of the German word “Gallenblase” ( gallbladder ); same male 

speaker with (below) and without mask (above); shown is ‘blase’, [bla:s@] in 

SAMPA transcription; time-aligned signals; displayed are 0.00 - 0.33 sec on the x- 

axis, 0 - 50 0 0 Hz on the y-axis. 
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1 Note that UAR is sometimes called ‘macro-average’, see [39] . 
rew a picture and talked about it, and described pictures, e. g., 

ood, sports activities, families, kids, or locations. Both free speech 

nd reading of a defined word list from the medical field are in- 

luded in the data. The corpus is monolingual (German). Addi- 

ional meta-data about the identity of the speakers and the speak- 

ng tasks were saved for each track. 

In order to prepare MASC for MSC, the audio was first down- 

ampled to 16 kHz and converted to mono/16 bit. The data was 

hen partitioned into the usual Train/Dev/Test sets, with 12 speak- 

rs in Train and 10 in Dev and Test each. Gender was balanced 

ithin each partition, while age differences were disregarded due 

o the quite homogeneous distribution. The speakers of the three 

artitions are disjoint; any information about speaker identity was 

ot included in order to be able to classify if a new speaker is 

earing a mask or not without any prior information about the 

peaker. The recordings were chunked consistently into excerpts 

f 1 s duration without overlap. Chunks without speech were re- 

oved from the final data. The total amount of speech in MSC is 

0 h 9 min 14 s. Statistics about the sizes of the splits are given in

able 1 . 

Fig. 2 illustrates differences between masked and clear speech: 

he same male speaker produces the German word ‘Gallenblase’ 

 gallbladder ) without (above) and with mask (below). Shown is the 

ut-out segment ‘blase’, in SAMPA transcription [bla:s@]. The sig- 

als are time-aligned. We can see no marked differences; however, 

specially at the transitions between consonant and vowel – at the 

eginning: [la:], and at the end: [s@] in schwa (unstressed) po- 

ition – the masked signal seems to be a bit more blurred. Per- 
3 
eptually, the difference is rather indistinguishable in this setting 

see Fig. 1 : high-quality microphone, sound-proof room). This will 

urely change in unfavourable listening conditions, at a distance or 

ith environmental noise. 

.2. Challenge evaluation 

In MSC, the performance of the binary classification problem 

s evaluated using the Unweighted Average Recall (UAR) 1 which is 

iven by: 

1 

2 

(
TP mask 

N mask 

+ 

TP clear 

N clear 

)
(1) 

here TP mask is the count of true positives for the mask class, 

P clear is the count of true positives of the clear class, N mask is the 

ctual number of mask examples in the evaluation set, and N clear 

s the actual number of clear examples in the evaluation set. In 

ther words, if wearing a mask is the positive class, then 

TP mask 
N mask 

is 

he True Positive Rate (TPR) and 

TP clear 
N clear 

is the True Negative Rate 

TNR), and accordingly, UAR is the average of TPR and TNR. Con- 

equently, UAR tries to balance both TPR and TNR, similar to other 

etrics like Area Under ROC Curve (AUC) [40] . UAR facilitates com- 

arison for skewed class distributions; hence it has been used as a 

tandard measure in ComParE since 2009 [41] . 

There is a correspondence between UAR and typical biometric 

erformance measures like False Match Rate (FMR) and False Non- 

atch Rate (FNMR), because these are related to the TPR and TNR, 

espectively. FMR is given by the ratio of false positives with re- 

pect to the positive examples, and FNMR is given by the ratio of 

he false negatives relative to the negative examples [40] . Hence, 

MR and FNMR are given by: 

FMR = 

FP mask 

N mask 

= 1[ H Y P H EN] TPR (2) 

NMR = 

FP clear 

N clear 

= 1[ H Y P H EN] TNR (2) 

here FP clear and FP mask are the numbers of falsely classified clear 

xamples and falsely classified mask examples, respectively. Both 

easures are related to UAR by the equation: 

AR = 1 − 1 

2 

( FMR + FNMR ) (3) 

It must be highlighted that measures like FMR and FNMR in 

iometrics are typically referred to in different contexts, where the 

lassification problem is an acceptance or rejection of transactions 

r authentication attempts [40] . Nevertheless, we will report the 

alues of these measures for the final results. Moreover, since the 

abels submitted to MSC are binary labels, only binary classification 

easures are applicable; measures that evaluate the performance 

nder different thresholds like AUC are not applicable. 

.3. Baseline approaches 

In this subsection, we describe different features that are used 

or the baseline approach; a comprehensive explanation and hy- 

erparameters’ exploration are provided by Schuller et al. [38] . The 

est fusion achieved a UAR of 71 . 8% . 

COMPARE Acoustic Feature Set: The official baseline feature 

et is the same as has been used in previous editions of the Com- 

arE challenges starting from 2013 [42] . It contains 6 373 static 

eatures resulting from the computation of 54 functionals (statis- 

ics) over 130 low-level descriptor (LLD) contours [42,43] . A full 
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Fig. 3. Illustration of a common generic structure in methodology, which is adapted in some ways by the participants. 
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Fig. 4. Comparison of approaches based on how generic they are, and if they are 

algorithm-based or feature-based. The exact positioning of the approaches is based 

on the authors’ estimate and not on ‘objective’ criteria. The estimation is based on 

the definitions given in Section 3 , and their rationale can be found at the end of 

the description of each approach in Section 3.1 . 
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escription of the feature set, including the LLDs and the function- 

ls, can be found in [24,25] . The LLDs include, but are not limited

o, energy, intensity, FFT spectrum, cepstral (MFCC), and psychoa- 

oustic sharpness. The LLDs are obtained on overlapping windows 

f the audio; then, functionals are applied to reduce the LLDs of 

he several windows to obtain static features. The functionals in- 

lude, but are not limited to, moments, extreme values, percentiles, 

egression coefficients, autoregressive coefficients, and Discrete Co- 

ine Transformation (DCT) coefficients. 

Bag-of-Audio-Words (BoAWs): BoAW features were provided 

s an alternative supra-segmental representation of the LLDs from 

he ComParE feature set. Instead of applying statistical function- 

ls, a histogram of the distribution of the acoustic descriptors is 

enerated. For this, the LLD vector from each frame is vector quan- 

ised in the first step. A codebook of size N for Vector Quantisa- 

ion (VQ) is learnt from the training partition by simple random 

ampling . For reproducibility, the toolkit 2 openXBOW [44] is em- 

loyed, enabling the creation and optimisation of codebooks and 

oAW features. Besides ComParE , the BoAW approach has proven 

ts effectiveness in a large variety of audio classification tasks, e. g., 

coustic event detection [45] . 

DEEP SPECTRUM : The feature extraction Deep Spectrum 

oolkit 3 is applied to obtain high-level deep visual features 

rom the input audio data utilising pretrained CNNs [35] . Mel- 

pectrograms of the audio are passed through a pretrained 

esNet50 [21] (trained on ImageNet), and the activations of the 

avg_pool’ layer are extracted, resulting in a 2 048 dimensional fea- 

ure vector. Deep Spectrum features have been shown to be effec- 

ive, e. g., for speech processing [46] and audio-based medical ap- 

lications [47] . 

AUDEEP : On the basis of using recurrent Sequence-to-Sequence 

utoencoders (S2SAE), the toolkit auDeep 
4 constructs unsupervised 

eep features [4 8,4 9] . The learned features explicitly model the in- 

erent sequential nature of the audio signal. Mel-spectrogram rep- 

esentations of the audio are clipped on four power levels below 

our thresholds X , in order to eliminate the effects of background 

oise. A distinct S2SAE model is trained for each of these four sets 

f spectrograms in an unsupervised way, i. e., without any label 

nformation. Finally, the learnt encoders’ representations are then 

xtracted as 1 024 feature vectors for each audio track, which are 

oncatenated to give fused vectors of 4 096 features. 

. Challenge results and contributions 

In this section, we elaborate on the individual approaches of the 

articipants and on the results of fusing their approaches. Many 

pproaches incorporate the baseline features [38] as extra models 

or their ensembles. Table 2 gives an overview of the performance 

f all approaches, with some of their highlights. 

In Fig. 3 , we show an abstract form of a pipeline adapted in one

ay or another by all participants in the challenge. All techniques 
2 https://github.com/openXBOW/openXBOW 

3 https://github.com/DeepSpectrum/DeepSpectrum 

4 https://github.com/auDeep/auDeep 

m

M

p

o

4 
ither use spectrogram representations or compute some audio 

eatures. For spectrogram representations, all approaches make use 

f the fact that spectrograms transfer the problem to the image 

omain, where many advanced models can be found. In this sce- 

ario, the participants utilise mixtures of several CNNs to classify 

he given input. ResNet [21] is a common choice, amongst oth- 

rs. Most approaches use transfer learning [22,36,50] to adapt pre- 

rained CNNs; thus, their models are trained on much more data 

n advance. Furthermore, many of the approaches apply techniques 

or data generation to expand the size of the training data and to 

vercome the effects of overfitting. These techniques include data 

ugmentations like SpecAugment [51] , training a Generative Ad- 

ersarial Network (GAN) to generate data, or the Mixup technique 

52] . Eventually, all the collected features or models are combined 

nd ensembled together to make a final prediction, hence mak- 

ng use of the diversity of the features extracted by each indi- 

idual model. The ensembling usually relies on simple averaging 

r majority voting; some approaches use ML models for ensem- 

ling such as Support Vector Machines (SVM) [53] for the final 

redictions. 

We categorise the approaches according to two main criteria: 

hether they focus on features or algorithms and whether the ap- 

roaches are generic or specific . Algorithm-based approaches de- 

end primarily on combining several DL techniques in an au- 

omated algorithm, while feature-based approaches focus on ex- 

racting descriptive (hand-crafted) features with more predictive 

ower. 

Generic approaches describe methods that can be adapted to 

ther tasks with only minor changes, while specific approaches 

eal with methods that have components particularly tailored for 

he task at hand. A comparison of the approaches regarding these 

wo aspects is shown in Fig. 4 . It may not come as a surprise that

ost of the approaches are localised in the upper right quadrant: 

ost of the approaches employed are not created for this specific 

roblem but are generic and have been developed for other (types 

f) problems. 

https://github.com/openXBOW/openXBOW
https://github.com/DeepSpectrum/DeepSpectrum
https://github.com/auDeep/auDeep
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Table 2 

INTERSPEECH 2020 ComParE – MSC Test set results of participants, ordered by performance. The missing ranks either have no submitted 

paper or they were not accepted by peer-review. Bold text marks the best approach for the specified metric. All metrics are measured in %. 

The highlights column briefly mentions the key components of the approaches. 

Rank Paper UAR FMR FNMR Highlights 

1 Szep and Hariri [54] 80.1 16.4 23.4 Multi-band spectrograms, Many CNNs pretrained on ImageNet 

3 Montacié and Caraty [55] 77.7 18.5 26.0 Frame and clustered phonetic classes, extracted by SPHINX 

4 Koike et al. [56] 77.5 22.7 22.4 CNNs pretrained on AudioSet, Mixup, snapshots during training 

6 Markitantov et al. [57] 75.9 16.4 31.9 Ensemble of ResNet18 variants, with k -folds and different optimisers 

9 Klumpp et al. [58] 75.4 21.8 27.4 RNN for phoneme recognition 

11 Yang et al. [59] 75.1 18.5 31.3 Fisher Vectors on ComParE and MFCC, early and late fusions 

13 Ristea and Ionescu [60] 74.6 29.2 21.6 Cycle-consistent GANs for augmentation 

18 Schuller et al. [38] 71.8 16.5 40.0 Deep Spectrum , BoWA, ComParE , auDeep 

19 Illium et al. [61] 71.5 34.7 22.3 CNNs with multiple augmentations 
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.1. Approaches 

We now describe the approaches found in the contributions to 

he challenge that were accepted for the conference 5 ; we first deal 

ith the algorithm-based ones, followed by the feature-based ones; 

e first describe the approach chosen by the authors in detail, 

hen we roughly assign to them a position in the two-dimensional 

pace of Fig. 4 . Finally, we discuss the key strengths, weaknesses, 

nd findings in Section 4 . 

.1.1. Algorithmic-based approaches 

Szep and Hariri [54] mainly use several spectrogram features: 

irst, they adopt 3-channel spectrograms with different band- 

idths (wide and narrow), with cutoffs at different noise levels: 

 dB and -70 dB. Additionally, they use transfer learning and fine- 

uning on three standard image classification CNNs, namely VGG19 

19] , DenseNet121 [20] , and ResNet101 [21] . These result in 12 

ombinations of models and features which they ensemble. Fur- 

hermore, they merge the Train and Dev sets and train five times 

sing 5-fold cross-validation and ensemble the models resulting 

rom each fold. The use of cross-validation allows the approach to 

ake use of more available data. For the data generation part, they 

tilise simple image augmentation techniques, e. g., rotation (up to 

 degrees) and warping. 

The procedure followed in [54] is generic , since it is not tailored 

o the given task and can be used as is for other speech classifi-

ation tasks. Furthermore, it adapts standard components: mainly 

tate-of-the-art image classification models and features based on 

everal variants of spectrograms, which are generic components 

hat can be applied to any audio data. 

Koike et al. [56] make use of several concepts. First, they use 

 pretrained 14 layers CNN for audio classification, where spectro- 

rams are employed as input method. Second, they use SpecAug- 

ent as an audio augmentation mechanism [51] , in addition to us- 

ng the Mixup strategy [52] , which mixes input and output exam- 

les during training by using a randomised weighted linear com- 

ination of different examples. Finally, they adopt an ensemble of 

everal snapshots of the model during training to reduce the ef- 

ects of overfitting. 

The approach in [56] is generic , because it consists of several 

omponents widely utilised in DL to enhance models and reduce 

he effect of overfitting. Ensembling with the baseline approaches 

s not algorithm-based ; however, the method is still effective with- 

ut this component. 
5 There are two other approaches found in [62,63] whose authors did not par- 

icipate in the challenge. We compare few aspects from them to the participants’ 

pproaches. 
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Markitantov et al. [57] submitted five different models to the 

SC. These models are all based on two models, ResNet18v1 and 

esNet18v2, which are variations of the standard ResNet18 [21] . 

hey make use of four parallel ResNet18s, which are connected to 

ully-connected layers at the end. The models took as input 64 log- 

el spectrograms and were cross-validated using a variation of k - 

old cross-validation with Train and Dev sets shuffled together and 

plit into k/ 2 stratified segments. Their best model is an ensemble 

f two versions of ResNet18v2, each trained with a different opti- 

isation algorithm. 

The approaches introduced in [57] are all generic audio-based 

pproaches that depend on variations of the standard ResNet18 

odel. As such, they can easily be used for other audio tasks with- 

ut much change. 

Ristea and Ionescu [60] use spectrograms as audio representa- 

ion; however, they employ the real and imaginary components as 

wo separate channels, as opposed to their magnitude as a single 

hannel, which is commonly used. The method trains an ensemble 

f ResNet models with varying depths, incorporating a novel data 

ugmentation based on cycle-consistent GANs. Eventually, vector 

epresentations are generated by the different ResNets and ensem- 

le together using SVM to predict the final classification. 

The method is generic and can be used for any audio classifi- 

ation task. Furthermore, the method introduces a data augmenta- 

ion technique, based on training a GAN to generate spectrograms 

imilar to the ones from MASC; this proved to be more effective 

ompared to already existing techniques like SpecAugment [51] –

 promising perspective for further experiments. 

Illium et al. [61] explore a method that tries using Mel- 

pectrograms as features representing audio, and then employ 

ome data augmentation technique combined with a CNN in order 

o solve the classification task at hand. Many augmentation tech- 

iques and CNN architectures are explored, and the best combi- 

ation is used. The augmentations are: speed, loudness, time-shift, 

andom noise, or SpecAugment [51] . From these, time-shifting has 

roved to be the best suited for the task. 

The method provides a generic framework for audio classifica- 

ion tasks and does not depend on the task at hand in particular 

ut can be applied for other audio classification tasks. 

.1.2. Phonetic and feature-based approaches 

Montacié and Caraty [55] build three different types of mod- 

ls. The first model, Mask Basic System (MBS), uses a variation of 

he baseline features on the entire audio chunks trained on MASC 

nd an external database Mask Sorbonne Speech Corpus (MSSC). 

he other two models use phonetic-based features on the level of 

rames, whole audio chunks, or clusters thereof. Finally, the au- 

hors fuse all the models, in addition to the baseline models. The 

rst phonetic-based model operates on a frame basis. The SPHINX 



M.M. Mohamed, M.A. Nessiem, A. Batliner et al. Pattern Recognition 122 (2022) 108361 

T

n

u

m

C

t

[

i

f

c

t

b

u

p

s

i

c

h

c

a

o

d

a

p

i

t

p

c

t

e

d

w

i

w

t

l

a

G

t

t

C

C

o

b

a

a

t

c

3

c

l

i

l

f

n

Fig. 5. Fusion results of the best n (1–21) approaches given by each participant 

following the final MSC ranking shown in Table 2 . Fusion calculation only con- 

siders classification systems of the 21 participating teams (including not submit- 

ted/rejected papers) and not the original baseline system provided by Schuller 

et al. [38] . Position 2 is empty because in the case of a tie, the winning system is 

chosen. Best fusion (five systems) is given in dark green. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. Two-sided significance test on the MSC Test set with various levels of sig- 

nificance. 
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oolkit [64] is used for each frame to extract phones and the pho- 

etic ‘macro-class’ (phone/phoneme classes such as front vowels, 

nvoiced fricatives, or nasals). For each of the 11 (10 + silence) 

acro-classes, a linear kernel SVM classifier is trained using the 

omParE -LLDs of the frames that belong to the macro-class. For 

he second phonetic-based model, the authors propose a k -means 

53] clustering-based model, wherein they cluster the audio frames 

nto k clusters (using ComParE-LLDs as their representation), and 

or each cluster, they train a linear kernel SVM classifier using the 

luster frames. The results are then used on the frame level and 

he chunk level. The authors perform experiments with the num- 

er of clusters ranging from 16 to 1 024. 

This approach has some generic components like MBS, which 

ses the baselines features, and partly specific features like the 

honetic features – partly, because the single phones are language- 

pecific, but phone classes are rather language-generic. Therefore, 

t can be conceived as a hybrid approach. 

Klumpp et al. [58] try to reduce the problem to a phoneme dis- 

rimination problem. In other words, wearing masks would affect 

ow phonemes would sound, and hence, the authors use this to 

lassify if the speaker is wearing a mask. First, the method trains 

 general phoneme recogniser 6 on an external dataset and runs it 

n MASC; the recogniser classifies 31 phonemes. After that, they 

istinguish the phonemes of the mask examples from the clear ex- 

mples, which results in 62 phonemes, and then trains a second 

honeme recogniser on MASC only to recognise the phonemes and 

f they are spoken with or without mask. This is then used to ex- 

ract frame features, which are reduced to one vector per sam- 

le by computing several functionals. Eventually, a Random Forest 

lassifier [65] is trained to decide whether this vector corresponds 

o speech with mask or not. 

This is a specific method that is tailored to the task at hand. An 

ssential part of the training pipeline is based on an assumption of 

istinguishing between mask and clear . It might not be straightfor- 

ard to use this same methodology as is for other audio process- 

ng tasks that have nothing to do with speech. 

Yang et al. [59] explore Fisher Vector (FV) encoders [66] , a 

idely used computer vision technique that uses a Gaussian Mix- 

ure Model (GMM), trained to model the distribution of a set of 

ow-level features. The Fisher Vector encapsulates the first-order 

nd second-order gradients of the features with respect to the 

MM model. The authors use two different sets of low level fea- 

ures as training for the Fisher Vector: 13 MFCC features with 

heir first-order and second-order time derivatives, and the 130 

omParE -LLDs – approaches that they term FV-MFCC and FV- 

omParE , respectively. Next, they train linear kernel SVMs, while 

ptimising their parameters on the Dev set. Subsequently, a num- 

er of experiments are performed, where the different feature sets 

re fused together, in both early and late fashions. 

The method followed by [59] is generic as it depends on generic 

udio features, namely several representations of the ComParE fea- 

ure set combined with FV, which can be applied for audio pro- 

essing in general. 

.2. Fusion results 

Fig. 5 visualises the fusion of the different approaches. In this 

ase, the best participant’s result (80.1% UAR) is defined as ‘base- 

ine’ at position 1. Gradually, the next best participant’s results are 

teratively fused by majority vote. In case of a stalemate, the base- 

ine system (position 1) is used, leading to the same UAR when 

using the first two approaches. Since the submitted labels are bi- 

ary, other fusion techniques cannot be applied. Fig. 5 shows that 
6 Strictly speaking, it is rather a phone and not a phoneme recogniser. 

f

t

a

6 
 fusion of the best five classification systems leads to an absolute 

mprovement of 2.5% UAR compared to the best single approach, 

esulting in a final and best MASC Test set UAR of 82.6%. 

In Fig. 5 , performance rises till it peaks at five fusions, then it 

eclines more or less slowly to the level of the winning system. In 

ur experience from earlier challenges, fusion does often not pay 

ff when the winning system itself employs several fusion steps. 

or MSC, the following four systems obviously contribute to mod- 

lling variety in the data and thus to the performance. 

.3. Significance test 

Fig. 6 visualises a two-sided significance test ( [67] , chapter 5B) 

ased on the MASC Test set and corresponding baseline system 

38] . Various levels of significance ( α-values) are utilised in order 

o calculate an absolute deviation with respect to the Test set, be- 

ng considered as significantly better or worse than the MSC base- 

ine system. Due to the fact that a two-sided significance test is 

mployed, the α-values must be halved to derive the respective Z- 

core used to calculate the p-value of a model fulfilling statistical 

ignificance for both sides [67] . Consequently, significantly outper- 

orming the MSC baseline system (71.8%, 11 012 Test set samples) 

t a significance level of α = 0 . 01 requires at least an absolute 

mprovement of 1 . 55% . Note that Null-Hypothesis-Testing with p- 

alues as criterion has been criticised from its beginning; see the 

tatement of the American Statistical Association in [68,69] . There- 

ore, we provide this plot with p-values as a service for readers in- 

erested in this approach, not as a guideline for deciding between 

pproaches. 
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. Discussion 

Based on the characteristics of the approaches detailed in 

ection 3 , we discuss here individual aspects of different ap- 

roaches. 

.1. Ensemble learning 

An essential key ingredient in all approaches is using ensem- 

les, i. e., combining several distinct approaches by employing 

ajority voting, averaging the results, or merging the features 

nd training an extra classifier (SVM in most cases). Ensembling 

urned out to be successful in all of the approaches. It is typi- 

al that ensembling reduces the overall variance of the approach, 

nd consequently gets better results [70] . The top approach in 

54] utilises ensembling strongly by merging models trained using 

-fold cross-validation, with 12 models trained for each fold, com- 

ining four different spectrogram representations and three differ- 

nt CNN architectures; this results in a large ensemble of 60 mod- 

ls with nearly 1.8 B parameters. Koike et al. [56] and Markitantov 

t al. [57] utilise ensembles of a particular model with different 

napshots during training, either by training several times using 

ifferent optimisation algorithms or just taking the same model 

uring one training at different steps. In [55,59,60,62] , ensembles 

re used as well. In fact, the approaches by Illium et al. [61] and

y [63] are the only approaches that have results worse than the 

aseline on the Test set, and both of them do not use ensembles. 

nly [58] managed to get good results without the use of ensem- 

les. 7 

.2. Transfer learning 

An aspect of DL-based approaches is the employment of trans- 

er learning, where pretrained CNNs are fine-tuned, with the pre- 

rained CNNs either being pretrained on image or audio data. This 

echnique has several advantages: it shortens training time, since 

he networks have already learned to extract salient features be- 

ore being trained on the task at hand. Another advantage is that it 

llows the training on large-scale data, which leads to better gener- 

lisation by the CNNs pretrained on more diverse data. This is ex- 

mplified by Koike et al. [56] , who train their CNN using AudioSet 

36] , which consists of nearly 5 0 0 0 hours of audio compared to

he total of approximately 10 hours available in MASC. 

Szep and Hariri [54] used models that are pretrained on im- 

ge data; this is similar to the baseline features extracted by 

eep Spectrum , which are also based on pretrained image CNNs. 

lumpp et al. [58] employed a phoneme recogniser that is pre- 

rained on a larger dataset. Non-DL approaches are based on hand- 

rafted features constructed by human experts for audio process- 

ng purposes. This knowledge transfer is utilised implicitly by the 

eature-based approaches. 

All the approaches [54–58,62] that obtained a UAR ≥ 75 . 4% for 

he Test set are the only ones that used knowledge transfer in 

ome form, either by hand-crafted features or pretrained neural 

etworks. 

.3. Utilising more training data 

A common aspect of DL is attempting to increase the size of the 

raining data by employing different techniques. Small data sizes 

re prone to overfitting; hence, using more data is always recom- 

ended for better generalisation of CNN-based models. However, 
7 Note that combining the best results of participants by using late fusion with 

imple majority voting has often been (slightly) superior to the results of the win- 

ing system in former ComParE challenges, see, e. g., [71] . 

r

r

a

c

7 
ue to the uniqueness and specificity of MASC, the participants 

ould not simply acquire additional data, except for Montacié and 

araty [55] , who utilised MSSC. This led them to attempt data gen- 

ration using different approaches. A common approach for this is 

mploying data augmentation techniques on the input data dur- 

ng training, like SpecAugment [51] , or other augmentations like 

ime-shifting and adding Gaussian noise to the input data; this is 

mployed in [61,62] . The most novel idea in this regard is intro- 

uced by Ristea and Ionescu [60] , who trained a GAN that gener- 

tes data similar to the training data; this approach surpassed tra- 

itional techniques like SpecAugment [51] which masks frequen- 

ies and time, as well as image warping. This new technique or 

ther more advanced data augmentation techniques [72] could be 

tilised in future works. Additionally, Koike et al. [56] used Mixup 

52] , which generates examples that are linear combinations of 

airs of examples from the training data. Furthermore, Szep and 

ariri [54] augmented the spectrogram images. Their augmenta- 

ions consisted of warping (similar to SpecAugment [51] ), and mi- 

or image rotation (up to 3 degrees). Image augmentations should 

e carefully applied, such that they do not jeopardise the function 

f spectrogram visualisations: plotting the time domain against the 

requency domain. 

.4. Phonetic features 

Montacié and Caraty [55] adopted phonetic features, extracting 

5 ‘phonemes’ using the SPHINX toolkit. Klumpp et al. [58] trained 

n RNN for phoneme recognition , i. e., phone recognition 

8 on an 

xternal larger database. They then used this model to predict 31 

hones for a given audio sample, including one model for silence. 

fter that, they distinguished between the phones produced with 

r without a mask. Phonemes/phones are obviously highly relevant 

arameters, impacted differently by being filtered through a mask; 

his is shown by the high performance obtained by Montacié and 

araty [55] , who, similarly to [63] , break down the results to show 

he impact on groups of phonemes/phones. 

.5. Interpretation 

Some of the approaches were able to extract interpretable in- 

ormation regarding their models. Szep and Hariri [54] extracted 

 feature map that corresponds in the spectrograms to high neu- 

al activation values at the end of the used neural networks. Their 

nalysis shows high activation values around 1 kHz, and the high- 

st activation values are within the frequency range 3 – 5 kHz. The 

uthors suspect that this is why the performance of log-scale spec- 

rograms is degraded compared to linear-scale spectrograms, be- 

ause the log-scale spectrograms focus more on lower frequency 

ange < 1 kHz than the higher frequencies. This agrees with the 

ttenuation within the range 1 – 8 kHz due to wearing masks, as 

oncluded by [16,17] . The extracted ranges strongly intersect with 

he ranges relevant for speaker identification, namely < 1 kHz and 

 – 4.5 kHz [18] . Together with earlier studies, these findings sug- 

est that wearing a mask indeed has a general acoustic effect, and 

 particular effect on tasks in voice biometrics such as speaker 

dentification. 

Klumpp et al. [58] conducted an analysis on which phoneme 

roups were most affected by using masks, the top four groups be- 

ng unvoiced plosive, fricatives, approximants and vibrants . We have 

een in Fig. 2 that fricatives are affected by filtering through the 
8 Note that phonemes are underlying, theoretical entities. Although ‘phoneme 

ecogniser/recognition’ is the common term, we rather should talk about ‘phone 

ecognition’ – phones are realisations of underlying phonemes and can be modelled 

coustically. These phones can be mapped, however, onto phonemes and phoneme 

lasses. 
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Fig. 7. Screenshots of the Android smartphone app, depicting the main functionalities. 
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9 Upon acceptance, a corresponding GitHub repository link will be added ( https: 

//github.com/EIHW/MaskDemoApp ). 
ask; approximants and vibrants have ‘weak’ and variable char- 

cteristics and might be prone to the same influences. Montacié

nd Caraty [55] investigated which phoneme groups are more pre- 

ictive of using masks or not; they concluded that the top four 

roups are diphthongs, laterals, central vowels , and back vowels . The 

requency ranges modelled by [54] and the phoneme classes em- 

loyed by [58] and [55] cannot be fully mapped onto each other. 

his might be due to different types of modelling. Nevertheless, 

verall this proves the relevancy of clustering according to pho- 

etic knowledge. 

.6. Limitations and practical aspects for biometrics 

A practical aspect that is not considered in the presented ap- 

roaches is the run-time of the approaches. The approaches are 

olely focused on the final performance, which often leads to util- 

sing many models to increase the performance. A complete analy- 

is in this regard is not available; however, we assume that the two 

pproaches with the highest performance are probably the ones 

hat most suffer from the worst run-time. It is not very surprising 

hat these methods have achieved the top performances – yet, real- 

ime processing might be required if it comes to real-life applica- 

ions. In the case of Szep and Hariri [54] , they use three CNN archi-

ectures, namely VGG19 (39 M) [19] , DenseNet121 (7 M) [20] , and 

esNet101 (43 M) [21] . For each, there are 20 variants (combina- 

ions of four spectrogram variants and five cross-validation folds), 

hich leads to a total of around 1.8 B parameters; we bench- 

ark these architectures in Section 5 . A set of CNN models with 

tructures of a low number of parameters [20,73] could proba- 

ly be utilised instead to reach a better computational efficiency 

hile still maintaining a comparably strong performance; however, 

 further study would be needed to investigate this. Montacié and 

araty [55] , on the other hand, utilised a vast range of features, 

hich included obtaining the baseline features, phonetic features 

t chunk and frame levels, and clustering them. Running all of 

hese might be computationally intensive at run-time for inference. 

urthermore, such an approach is tailored because, in a sense, it 
8 
erforms a form of brute-forcing over many possible features, and 

t obtains the best ones for the task at hand. 

Furthermore, when image processing is applicable, e. g., in 

ultimodal biometrics, it is plausible that it yields better re- 

ults for mask recognition than audio processing; e. g., Mohan 

t al. [74] achieve over 98% for classifying whether a person is 

earing a mask or not. As a result, this would surpass the models 

resented in this work. On the other hand, wearing a mask still 

trongly challenges face biometrics compared to voice biometrics 

5,6] , even if they are better at classifying masks. This opens the 

pace for applications to switch from using face biometrics to using 

oice biometrics, or multimodal biometrics combining voice bio- 

etrics and other non-face contact-less biometrics; in these two 

cenarios, the presented models would be of direct aid. In partic- 

lar, they would be used to automatically select speaker identifi- 

ation or verification models that are fine-tuned for dealing either 

ith mask-wearing speakers or non-mask-wearing speakers, which 

s expected to deliver the best results [6] . 

. Proof of concept demonstration 

Current smartphones are pocket-sized computers. They can 

rovide biometric functionalities, replacing dedicated devices. En- 

bling users to access biometric information on their own smart- 

hone has the additional benefit of limiting the need for physi- 

al interaction with shared devices, which could help reduce the 

pread of, for instance, COVID-19 through contaminated surfaces. 

As a proof of concept demonstrator, we have implemented an 

ndroid-based smartphone app to deploy the audio-based face 

ask detection models summarised in this work in real-life sce- 

arios. The app implements a microphone functionality for users 

o record their own voice (cf. Fig. 7 a). The code of the application

s available open-source 9 

https://github.com/EIHW/MaskDemoApp
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Table 3 

Benchmarks of the 3 architectures by the top participants [54] . Measured on 1 s frames 

or 12 s tracks (16 overlapping frames). Latency is the time needed to process a request. 

Throughput is the amount of requests that are processed (in parallel) per second. Latency 

values have 95% confidence intervals of ±0.04 s/request, regardless if a track or frame is 

sent. 

Latency (s/request) Throughput (requests/s) 

Architecture GPU CPU GPU CPU 

frame track frame track frame track frame track 

ResNet101 0.09 0.89 0.19 2.53 46.98 4.13 9.28 0.86 

DenseNet121 0.09 0.86 0.14 1.81 35.45 4.19 15.70 1.11 

VGG19 0.08 0.88 0.27 3.85 42.97 4.03 5.09 0.71 
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Once the recording is completed, the media file is transferred 

hrough network to a dedicated server. Upon receipt, we extract 

he audio component of the media file. While any of the models 

ummarised in this work could be used to analyse the audio file, 

e opt for deploying one of the baseline approaches: the extrac- 

ion of ComParE features combined with an SVM classifier. For the 

urrent deployment, the audio file is first segmented into acous- 

ic frames of 1 sec length and 25% overlap. Each frame is anal- 

sed with the model individually, and the final result is obtained 

hrough a majority voting scheme across frames to identify if the 

peaker is wearing a mask. This information is then transferred 

ack to the smartphone app to be displayed to the user. If the 

odel infers that the current user is wearing a face mask, the mes- 

age of Fig. 7 b is displayed on the screen; otherwise, the one of

ig. 7 c. 

Furthermore, we benchmark CNN architectures ResNet101 [21] , 

enseNet121 [20] , and VGG19 [19] (used by the top participants 

54] ) by deploying each model using the Docker setup of Tensor- 

low serving 10 on a device with an Intel(R) Core(TM) i7-8700PU @ 

.20GHz CPU, an Nvidia RTX 2080 GPU, and 64 GB RAM memory. 

n order to make use of the parallelisation due to batching, we con- 

gure the server to wait for 1 ms, and group all received requests 

nto batches (of at most 64 frames) for inference. In Table 3 , we

easure latency and throughput on both GPU and CPU-only, also 

sing one 1 s frame per request or a track of 16 frames per re-

uest (corresponding to a 12 s track with the 25% overlap spec- 

fied earlier). We do not include preprocessing time of calculat- 

ng spectrograms. Similar to [54] , we use an image of dimensions 

20 × 320 × 3 corresponding to the multi-channel spectrogram of 

 1 s frame. Requests are sent on the same local host of the server,

n order to diminish the arbitrary effects of network delays. La- 

ency is measured by sending 100 requests sequentially, and mea- 

uring the average time until a response is returned. Throughput is 

easured by sending 100 requests concurrently and the total time 

sed is measured after all of them are processed; we repeat this 

0 times and report the average. Deploying the best ensemble of 

odels used by Szep and Hariri [54] would slow down these val- 

es by a factor of 60 (20 instances of each of the 3 models), and

ould need much more GPU memory. The dedicated server can be 

voided altogether by deploying an offline model directly on the 

pp. However, we did not implement this, because it is computa- 

ionally costly for the users without a dedicated mobile GPU, as 

een by comparing CPU against GPU. 

. Conclusion 

In this paper, we summarised the findings of the Mask Sub- 

hallenge (MSC) from the INTERSPEECH ComParE challenge series. 

he goal of this challenge was to develop techniques for predict- 
10 https://www.tensorflow.org/tfx/serving/docker , visited on 15.Aug.2021 

m

t

9 
ng whether a speaker is wearing a surgical mask or not, based on 

udio only. This task gained momentum in the current COVID-19 

andemic, because of the sudden emergence of challenges to ex- 

sting biometric techniques such as fingerprint recognition and fa- 

ial detection, due to the virus’s survival on surfaces and the mask 

andates worldwide. These challenges placed a renewed focus on 

oice biometrics, which are less invasive. 

First, we introduced the MASC database (used by MSC), which 

onsists of audio recordings of people speaking both structured 

nd unstructured text while wearing surgical masks or not wear- 

ng them. To review the submitted approaches, we introduced a 

eneral analysis framework, wherein we classified the methodolo- 

ies of the presented approaches. The approaches mostly followed 

ne of two patterns: Making use of spectrogram representations of 

udio in combination with several pretrained CNNs, or using au- 

io features, which include the MSC baseline features as well as 

honetic features. Most approaches made use of ensembles of sev- 

ral different models, which led to improved performance due to 

he diversity of the methods used. Multiple approaches attempted 

o artificially increase the size of the training data via data aug- 

entation, training with GANs, or using Mixup. Furthermore, we 

resented an analysis of these approaches along two axes, spe- 

ific against generic characteristics as well as whether they were 

ased more on algorithms such as deep neural networks or more 

n hand-crafted (mostly phonetic) features . We then presented a 

usion of the top approaches: Fusing the top five participants led 

o the best results. The presented advances could be of benefit to 

uture voice biometrics approaches. 

We discussed several aspects of the presented approaches. In 

articular, three key ingredients are necessary for the success of 

he models, namely ensemble learning, transfer learning, and data 

eneration (mostly by using data augmentation) – all top mod- 

ls incorporated at least two of those in some form. The results 

btained show that there is indeed a difference between using a 

ask and not using a mask for speech processing, which suggests 

n impact on voice biometrics. 

This impact will likely be higher in realistic scenarios – note 

hat the MASC scenario was optimal for recordings (clean con- 

rolled environment, high-quality microphones and no background 

oise). We discussed a few practical aspects of the models and 

ome limitations, as well as the suitability of the presented models 

o voice biometrics. Furthermore, we presented a proof of concept 

ndroid app for smartphones. Together with the aforementioned 

esults, this app motivates voice biometrics applications that can 

enefit from the classification task at hand; it can improve the ap- 

lication accordingly by automatically choosing a suitable speaker 

dentification model based on the mask-wearing prediction. Also, 

e benchmarked the run-time of the top participants’ models, if 

hey are to be used for serving. 

Finally, the findings suggest that applications can start to rely 

ore on voice biometrics in the future, especially with the regula- 

ions of wearing masks. 

https://www.tensorflow.org/tfx/serving/docker
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