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ABSTRACT

Emotion is an inherently subjective psycho-physiological human
state and to produce an agreed-upon representation (gold standard)
for continuously perceived emotion requires time-consuming and
costly training of multiple human annotators. With this in mind,
there is strong evidence in the literature that physiological signals
are an objective marker for states of emotion, particularly arousal.
In this contribution, we utilise a multimodal dataset captured during
a Trier Social Stress Test to explore the benefit of fusing physiolog-
ical signals – Heartbeats per Minute (𝐵𝑃𝑀), Electrodermal Activity
(𝐸𝐷𝐴), and Respiration-rate – for recognition of continuously per-
ceived arousal utilising a Long Short-Term Memory, Recurrent
Neural Network architecture, and various audio, video, and textual
based features. We use the MuSe-Toolbox to create a gold standard
that considers annotator delay and agreement weighting. An im-
provement in Concordance Correlation Coefficient (CCC) is seen
across features sets when fusing 𝐸𝐷𝐴 with arousal, compared to
the arousal only gold standard results. Additionally, BERT -based
textual features’ results improved for arousal plus all physiological
signals, obtaining up to .3344 CCC (.2118 CCC for arousal only).
Multimodal fusion also improves CCC. Audio plus video features
obtain up to .6157 CCC for arousal plus 𝐸𝐷𝐴, 𝐵𝑃𝑀 .
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1 INTRODUCTION

Physiological and emotional responses can coincide during a stress-
ful situation [1], and the degree of correlation has shown to be
dependent on factors including underlying psychological traits and
states, e. g., social desirability, or physiological dispositions, e. g.,
brain morphology [2]. For research on the discrepancy between
physiological and self-reported emotional states see [3]. During a
stress-inducing situation, heart-rate, and breath become varied [4],
along with the voice [5] (which is related strongly to perceived
affect [6]). To this end, signals such as the Electrodermal Activity
(𝐸𝐷𝐴) – described as a psycho-physiological indication of emo-
tional arousal [7] – correlate with an individual current perceived
emotional state, specifically during high states of arousal, e. g., dur-
ing a competitive video game [8].

Within the field of affective computing, recognition approaches
to predict continuous states of emotion frequently utilise the two-
dimensional Circumplex Model of Affect [9], observing the arousal
(activation) and valence (positivity) of perceived emotion. However,
as emotion is a subjective state of being, multiple raters must con-
tinuously annotate, which is time-consuming and costly. Further to
this, the method to obtain a robust agreed-upon signal from multi-
ple raters (gold standard) remains an ongoing research question,
with several methods available. For example, given the likelihood
of disagreement, weighting annotators based on level of agreement
can be applied using the Evaluator Weighted Estimator (EWE) [10].
Furthermore, annotator delay is not consistent per annotator, and so
aligning rating with consideration to peaks is needed and Canonical
Time Warping (CTW) [11] can be applied in this case.

With this in mind, research into the fusion of physiological sig-
nals for use with perceived emotional signals is limited, and within
this contribution we suggest that there are potentially two benefits
to this (1) where agreement between raters is lower, replacing less
reliable raters with a physiological signal may improve agreement
(2) where only a small number of raters are available, adding a
physiological signal to the gold standard may also be fruitful . Phys-
iological signals have been utilised as features [12], or extracted
during particular tasks, to better target arousal [13], however there
has been minimal research on a combined physiological and per-
ceived arousal gold standard. Recently, in the 2021 edition of the
Multimodal Sentiment in-the-wild (MuSe) challenge, the signal
of arousal was fused with 𝐸𝐷𝐴 and used as a prediction target
for the MuSe-Physio sub-challenge [14]. The baseline result from
this was 0.3 CCC stronger than the arousal only MuSe-Stress sub-
challenge when performing a late-fusion of audio and video-based
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Table 1: Reported are the number (#) of speakers and total

duration of the data splits across Train, (Devel)opment and

Test partitions for the sub-set of the Ulm-TSST dataset.

Train Devel. Test
∑

# 33 9 11 53

hh:mm:ss 2:45:29 0:45:32 0:55:33 4:26:36

features. Furthermore, the text-based features (typically less helpful
for recognition of arousal) also improved through 𝐸𝐷𝐴 fusion with
arousal, showing promise that has encouraged the authors to inves-
tigate further. However, to the best of the authors’ knowledge, this
was the first time that arousal and 𝐸𝐷𝐴 were fused in this manner,
and there are no works that explore the fusion of arousal with other
physiological signals such as respiration or heart rate (as 𝐵𝑃𝑀).

To explore this idea further, in this contribution, we utilise the
same dataset available through the MuSe Challenge, the Ulm-Trier
Social Stress dataset (Ulm-TSST), and explore the fusion of 𝐸𝐷𝐴,
𝐵𝑃𝑀 , and respiration rate with arousal ratings. The Trier Social
Stress Test (TSST), which the subjects of the Ulm-TSST dataset
were undergoing, consists of a free-speech job interview scenario.
Given this pseudo-professional setting, we specifically consider that
utilisation of physiological signals (a more objective marker for
arousal) will be of use here, as perceived arousal may be suppressed
to make a better impression towards the interviewer [7]. For our
experiments, we utilise the recently released MuSe-Toolbox[15]1, to
apply a novel approach Rater Aligned AnnotationWeighting (RAAW)
for signal fusion which considers both weighting and alignment
of ratings to create a gold standard. We extract several multimodal
features from audio, video, and textual transcriptions and apply a
Long Short-Term-Memory-Recurrent Neural Network (LSTM-RNN)
as a regressor, following a similar training procedure as outlined in
the MuSe 2021 challenge.

2 THE ULM-TSST DATASET

We make use of the Ulm-Trier Social Stress dataset (Ulm-TSST) for
our experiments, a multimodal dataset first utilised as a part of the
MuSe 2021 challenge [14]. Within the Ulm-TSST dataset, the sub-
jects are undergoing a TSST, which is a standardised and renowned
experiment to induce states of stress, allowing for a controlled set-
ting with high-quality data. The full Ulm-TSST dataset consists of
recordings from 110 German-speaking individuals (ca. 10 hours),
which are annotated for the continuous dimensions of emotion
(valence and arousal). The continuous emotion ratings are recorded
at a sampling rate of 2Hz and made by three annotators (obtain-
ing an average inter-rater agreement for arousal of .173 Pearson’s
Correlation Coefficient). In addition, the modalities of audio, video,
and text can be extracted from the dataset, as well as four captured
physiological signals at a sampling rate of 1 kHz: Electrodermal
Activity (𝐸𝐷𝐴), Electrocardiogram (ECG), respiration rate (𝑅𝐸𝑆𝑃 )
as chest displacement during breath [-10:+10], and heart rate as
beats per minute (𝐵𝑃𝑀). For our experiments, we utilise a sub-set
of the dataset as presented in the MuSe 2021 challenge, which was
further processed, and reduced to 53 speakers.
1https://github.com/lstappen/MuSe-Toolbox

Table 2: The mean (𝜇) and standard deviation (±) for inter-

rater agreement, as Pearson correlation coefficient (CC). Cal-

culated during EWE after CTW alignment.

CC 𝜇 ±
𝐴1,𝐴2,𝐴3 .173 .191

𝐴1, 𝐴2, 𝐸𝐷𝐴 .230 .241
𝐴2,𝐴2 + 𝐵𝑃𝑀 .158 .187
𝐴2,𝐴2 + 𝑅𝐸𝑆𝑃 .108 .134

𝐴1,𝐴2,𝐴3, 𝐸𝐷𝐴,𝐵𝑃𝑀 .119 .155
𝐴1,𝐴2,𝐴3, 𝐸𝐷𝐴,𝑅𝐸𝑆𝑃 .088 .120
𝐴1,𝐴2,𝐴3, 𝐵𝑃𝑀 ,𝑅𝐸𝑆𝑃 .070 .097

𝐴2, 𝐴2, 𝐸𝐷𝐴, 𝐵𝑃𝑀 , 𝑅𝐸𝑆𝑃 .127 .123

𝐸𝐷𝐴, 𝐵𝑃𝑀 , 𝑅𝐸𝑆𝑃 .197 .149

The data is in a speaker-independent train, development, and
test partitioning, with balanced speaker demographics across the
partitions, cf. Table 1. Before feature extraction, videos are cut
from start to end of the TSST, and excluding participant names.
We choose to use only 𝐸𝐷𝐴, 𝐵𝑃𝑀 and 𝑅𝐸𝑆𝑃 for the physiological
signals, and each is down-sampled to 2Hz (to match the arousal
ratings) and smoothed, applying a Savitzky–Golay filter, to reduce
irrelevant, fine-grained artefacts in the signal. We exclude the ECG
signal, as 𝐵𝑃𝑀 captures this activity at a higher level which is more
optimal for the applied down-sampling.

3 EXPERIMENTAL SETTINGS

To evaluate the benefit of fusing physiological signals with per-
ceived arousal, we primarily conduct a series of continuous recog-
nition tasks utilising various combinations of the three perceived
arousal ratings with the 𝐸𝐷𝐴, 𝐵𝑃𝑀 , and 𝑅𝐸𝑆𝑃 signals.

(1) 𝐴1, 𝐴2, 𝐴3: Perceived arousal ratings only. From annotators
one, two, and three.

(2) 𝐴1, 𝐴2, 𝐸𝐷𝐴: Arousal rater one (𝐴1) and Arousal rater two
(𝐴2) plus EDA.𝐴1 and𝐴2 are chosen as correlation is slightly
higher for these signals compared to𝐴3, as shown in Figure 1.

(3) 𝐴1, 𝐴2, 𝐵𝑃𝑀 .
(4) 𝐴1, 𝐴2, 𝑅𝐸𝑆𝑃 .
(5) 𝐴1,𝐴2,𝐴3, 𝐸𝐷𝐴,𝐵𝑃𝑀 .
(6) 𝐴1,𝐴2,𝐴3, 𝐸𝐷𝐴,𝑅𝐸𝑆𝑃 .
(7) 𝐴1,𝐴2,𝐴3, 𝐵𝑃𝑀 ,𝑅𝐸𝑆𝑃 .
(8) 𝐴1, 𝐴2, 𝐴3, 𝐸𝐷𝐴, 𝐵𝑃𝑀 , 𝑅𝐸𝑆𝑃 .
(9) 𝐸𝐷𝐴, 𝐵𝑃𝑀 , 𝑅𝐸𝑆𝑃 : Physiological signals only.

3.1 Label Fusion Strategy

We utilise a continuous annotator fusion technique Rater Aligned
Annotation Weighting (RAAW), first presented in [14]. RAAW is
aimed at two challenges for gold standard creation of continuous
emotion, a) annotator delay, and b) rater disagreement. Annotator
delay is a typical issue with continuous ratings [16] and can be
reduced through an explicit time-shift or through methods that au-
tomatically time-shift based on factors such as rater agreement, and
in this instance, Canonical TimeWarping (CTW) is applied [11]. For
weighting the annotators based on their agreement, the Evaluator
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Figure 1: Correlation matrix between each individual signal

across all speakers in the training set.

Weighted Estimator (EWE) [10] is commonly applied for emotional
gold standard [17].

For our experiments, we create six gold standards as shown in
Table 2 and above. For each, we are comparing to the perceived
arousal only gold standard. There are two annotators (𝐴1, 𝐴2) and
a physiological signal. We explore the benefit of removing an an-
notator who is sub-optimal (in other words, the annotator with
the lowest agreement). Where we apply two arousal raters with all
physiological signals, we explore the advantage of using physiolog-
ical signals to bring the rating in the gold standard up to five.

3.2 Features

For all features, we utilise the package provided from the MuSe 2021
challenge [14]. To reduce the scope of our experiments, we select
the better performing features set from the baseline experiments.
However, speech is strongly linked to perceived arousal, so we
choose to use the two best performing feature sets. We offer a
short description of critical points for the feature extraction process
applied, for details cf. [14].

Audio: We apply a six-second window size for the acoustic
features. As a first step, the entire audio sequence is extracted from
a given video. This file is then converted from stereo to mono
with a sampling of 16 kHz, 16 bit, and then normalised to -3 dB.
For DeepSpectrum, we keep the default settings for extraction to
obtain a 4 096-dimensional feature set. For VGGish, by aligning
the frame and hop size to the annotation sample rate, we extract
a 128-dimensional VGGish embedding vector every 0.5 s from the
underlying log spectrograms.

Video: Given the human nature of this task, video-based fea-
tures focus on the face, although it may be beneficial to explore
gesture-based features more specifically in further research. The
MTCNN [18] is used to extract faces.MTCNN is pre-trained on the
datasetsWIDER FACE [19] andCelebA [20]. TheMTCNN extractions
are used as inputs for VGGface. VGGface [21] is aimed at the ex-
traction of general facial features and is based on detaching the
top-layer of a pre-trained version of the deep CNN referred to as
VGG16 [22]. This results in a 512 feature vector output.

Text: For extracting the text features from the transcripts, a pre-
trained Transformer language model BERT [23], is used. We obtain
word-level features from the sum of the last four BERT encoder
layers resulting in a 768-dimensional feature vector for each word
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Figure 2: An example for subject # 9 for three of the gold

standards used in these experiments. (Upper) 𝐴1, 𝐴2 + 𝐸𝐷𝐴,

𝐵𝑃𝑀 and 𝑅𝐸𝑆𝑃 (±: 0.203). (Middle) 𝐴1, 𝐴2 + 𝐸𝐷𝐴 (±: 0.217).
(Lower) comparison of the above gold standards including

arousal only (±: 0.241).

analogous to [24]. This data contains exclusively German speech.
For this reason, the BERT pre-trained on German texts2 is applied.

Alignment: The label-aligned features are made available from
the MuSe challenge. These include the same frame rate as the
provided label arousal labels. For the textual features of the Ulm-
TSST, as they are based on manual transcripts of the videos, the
Montreal Forced Aligner (MFA) [25] tool is applied to obtain word-
level timestamps.

3.3 Regressor: LSTM-RNN

Given the time-dependent nature of this task, we utilise the same
LSTM-RNN based architecture as applied for the baseline of the
MuSe 2021 Challenge3. Extensive hyperparameter optimisation is
applied, and the extracted feature sequences are input into a uni-
and bi-directional LSTM-RNN with a hidden state dimensionality
of ℎ = {32, 64, 128}, to encode the feature vector sequences. We test
different numbers of LSTM-RNN layers 𝑛 = {1, 2, 4}, and search for
a suitable learning rate 𝑙𝑟 = {0.0001, 0.001, 0.005}. For further detail
of the architecture applied cf. [14]. In the training processes, the
features and labels of every input video are further segmented via
a windowing approach [24]. As in the MuSe Challenge, a window
size of 300 steps (150 seconds) and a hop size of 50 steps (25 seconds)
is used.

3.4 Feature Fusion

To observe the benefits of multimodal approaches, we apply a
decision-level (late) fusion to evaluate the co-dependencies of the
modalities. The experiments are restricted to the best performing
features from eachmodality only. For decision-level fusion, separate
models are trained individually for each modality. The predictions
of these are fused by training an additional LSTM-RNN model as
described above. For all tasks, we apply a unidirectional version
with 𝑙𝑟 = 0.001, ℎ = 64, and 𝑛 = 4.

2https://deepset.ai/german-bert
3https://github.com/lstappen/MuSe2021
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Table 3: ReportingConcordance CorrelationCoefficient (CCC) results for prediction of nine combinations of perceived arousal

and physiological-arousal signals on the devel(opment) and test partitions. Utilising (V)ision: VGGface, (A)udio: DeepSpec-

trum, VGGish, and (T)ext: BERT . Reporting the best result from hyperparameter optimisation, as well as reporting the mean

(𝜇) across all feature sets for a given signal. Best test scores are emphasised.

Percieved 𝑨1,𝑨2,𝑨3 𝑨1,𝑨2 𝑨1,𝑨2 𝑨1,𝑨2 𝑨1,𝑨2,𝑨3 𝑨1,𝑨2,𝑨3 𝑨1,𝑨2,𝑨3 𝑨1,𝑨2
Physiological 𝐸𝐷𝐴 𝐵𝑃𝑀 𝑅𝐸𝑆𝑃 𝐸𝐷𝐴,𝐵𝑃𝑀 𝐸𝐷𝐴,𝑅𝐸𝑆𝑃 𝐵𝑃𝑀 ,𝑅𝐸𝑆𝑃 𝐸𝐷𝐴,𝐵𝑃𝑀 ,𝑅𝐸𝑆𝑃 𝐸𝐷𝐴,𝐵𝑃𝑀 ,𝑅𝐸𝑆𝑃

CCC Devel Test Devel Test Devel Test Devel Test Devel Test Devel Test Devel Test Devel Test Devel Test

VGGface .3025 .3813 .3216 .3959 .4805 .3771 .1869 .3745 .3694 .4062 .3995 .3941 .3637 .4306 .4704 .4707 .5679 .5838

DeepSpectrum .2826 .3060 .3366 .4031 .1649 .2327 .0382 .0977 .3089 .3861 .1841 .3807 .2527 .2046 .3683 .3832 .4189 .5157
VGGish .2127 .2856 .3493 .4210 .3156 .3313 -.0079 .1716 .4851 .5164 .0901 .3985 .2689 .3649 .5161 .4712 .3197 .4613
BERT .1341 .2118 .2431 .2402 .0567 .1037 .1063 .1802 .1999 .0542 .2733 .2393 .1210 .0922 .3568 .3344 .2909 .3842

Late-Fusion

A + V .4638 .5062 .4506 .5103 .4640 .3889 .3196 .3108 .5666 .6157 .3630 .3947 .4722 .4432 .6674 .5025 .5030 .5728
A + T .3240 .3841 .3821 .3470 .3044 .3205 .1396 .2032 .5089 .3677 .3249 .1777 .3295 .2817 .5570 .4357 .4175 .5586
V + T .2526 .4668 .3442 .4213 .4735 .4202 .3443 .2871 .4839 .3783 .3836 .2301 .3738 .3881 .5916 .5355 .4386 .5594
A + V + T .3476 .4965 .4186 .4987 .4458 .4104 .3811 .3036 .5895 .4596 .4028 .3470 .4086 .4230 .6669 .5055 .4623 .5639

𝜇 of All – .3798 – .4047 – .3231 – .2411 – .3980 – .3203 – .3285 – .4548 – .5250

Table 4: Mean (𝜇) and standard deviation (±) for test results
given in Table 3 which include either EDA, BPM, or RESP.

𝑨1,𝑨2,𝑨3 inc. 𝐸𝐷𝐴 inc. 𝐵𝑃𝑀 inc. 𝑅𝐸𝑆𝑃

𝜇 ± 𝜇 ± 𝜇 ±

VGGface .3813 .4167 .0364 .4212 .0396 .4175 .0424
DeepSpectrum .3060 .3883 .0101 .3017 .0965 .2666 .1402
VGGish .2856 .4518 .0527 .4210 .0872 .3516 .1279
BERT .2118 .2170 .1174 .1461 .1273 .2115 .1018

Late-Fusion

A + V .5062 .5058 .0903 .4876 .0972 .4128 .0810
A + T .3841 .3320 .1096 .3514 .0663 .2746 .1162
V + T .4668 .3913 .1263 .4305 .0722 .3602 .1339
A + V + T .4965 .4527 .0733 .4496 .0427 .3948 .0888

4 DISCUSSION OF RESULTS

To explore the benefit of physiological-based arousal and perceived
arousal fusion, the extensive results for the computational predic-
tion experiments conducted are given in Table 3, and Table 4. As
an evaluation metric for these experiments, CCC is employed, as is
typical for emotion recognition tasks, and to better compare to the
initial baseline results obtained using the Ulm-TSST dataset [14].

For the results in Table 3, we see that the perceived arousal only
(𝐴1-𝐴3) score is strong, particularly from a multimodal approach
where at best 0.5062 CCC is achieved on the test set, from late-
fusion of audio and video-based features. However, looking at the
uni-modal approaches for 𝐴1-𝐴3, as we expected given the pseudo-
professional scenario of the TSST, audio-only features capture the
perceived arousal to lesser degree compared to VGGface. Further-
more, as is typical for arousal prediction tasks, the uni-modal textual
features perform worst, obtaining 0.2118 CCC on the test set.

As we move along the table (cf. Table 3) to the right, we see in
general a slight improvement across features when incorporating
a physiological signal. Of interest, we see a ca. .3 CCC improve-
ment for BERT features when utilising the 𝐸𝐷𝐴 signal. Typically,
perceived arousal is a challenging task for textual-based features,
as seen from the perceived arousal baseline. However, at best for
BERT features when predicting the combined 𝐴1, 𝐴2, 𝐸𝐷𝐴, 𝐵𝑃𝑀 ,

𝑅𝐸𝑆𝑃 signal, we obtain .3344 CCC, which is .1 above the 𝐴1-𝐴3
baseline. When observing the mean across experiments, including
𝐸𝐷𝐴 Table 4, we confirm that 𝐸𝐷𝐴 is the strongest physiological
signal for the BERT features.

We also see the audio features obtain a more robust result than
VGGface when utilising 𝐸𝐷𝐴, suggesting that the behaviour of
𝐸𝐷𝐴 is present in the voice, making this gold standard more attain-
able for the speech-based features. Similar behaviour for 𝐵𝑃𝑀 and
𝑅𝐸𝑆𝑃 fusion results are obtained; however, this is not as consistent
as 𝐸𝐷𝐴 results, as we can see through the more consistent mean
results in Table 4. Furthermore, there are lower results for the 𝐴1,
𝐴2 𝐵𝑃𝑀 , and 𝐴1, 𝐴2 𝑅𝐸𝑆𝑃 results, compared to the 𝐴1-𝐴3 baseline.

For audio features, all gold standard approaches, which include
𝐸𝐷𝐴 report an improvement, and up to .4712 CCC is obtained by
VGGish features, where all physiological signal are utilised. In Fig-
ure 2, we can see that the two physiological-adapted gold standards
follow a similar trend to the arousal baseline gold standard. How-
ever, there is a slightly reduced standard deviation for this example,
with 0.24 for𝐴1-𝐴3 compared to 0.22 for𝐴1,𝐴2, 𝐸𝐷𝐴, and 0.203 for
the 𝐴1, 𝐴2, 𝐸𝐷𝐴, 𝐵𝑃𝑀 , 𝑅𝐸𝑆𝑃 signal. This may suggest that better
results are obtained from a smoothing effect when the perceived
arousal is fused with physiological signals.

To further analyse this smoothing effect, we see in Table 3 that
the results are consistently higher than the arousal only baseline
when utilising the physiological only (𝐸𝐷𝐴-𝑅𝐸𝑆𝑃 ) signal. With a
standard deviation of around 0.157 for the same example in Figure 2,
we do lean more toward this being a factor in results improvement.
We additionally extract the mean absolute change (MAC), and skew-
ness from each of the gold standard (Figure 3) across all speakers.
Although further investigation should be done here, we see that
there is an inherent difference in the MAC from 𝐴1-𝐴3, and 𝐸𝐷𝐴-
𝑅𝐸𝑆𝑃 , which is mirrored by the skew of the signals’ distribution.
Of promise, and perhaps opposing the smoothing effect, none of
the physiological signal results obtains higher than the best re-
sult when fusing with perceived arousal, i. e., .6157 CCC from 𝐴1,
𝐴2, 𝐸𝐷𝐴, 𝐵𝑃𝑀 with audio and video feature fusion. This leads us
to consider that further investigation on this topic may be fruit-
ful – particularly, as we do not see any reduction in results from
physiological-adapted arousal fusion.
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Figure 3: The mean absolute change and Skewness for the

mean (𝜇) of all speaker from each gold standard signal.

5 CONCLUSION

To explore recognition of internal emotional states and improve the
current state-quo for emotion-based gold standard creation, for the
first time in this work, we explored the prediction of fused physical-
based arousal with perceived arousal. We utilised the Ulm-TSST
dataset, which offers a scenario in which stress is induced, and ulti-
mately a testing bed for states of arousal. Findings have shown that
in most cases, the 𝐸𝐷𝐴 signal can improve recognition of arousal,
specifically textual based features, and aid acoustic features, which
the less aroused speech behaviours may have challenged. There was
less of an improvement from 𝐵𝑃𝑀 or 𝑅𝐸𝑆𝑃 signals alone, however,
when fused with 𝐸𝐷𝐴, various feature sets did see improvements,
with the best score obtained from a fusion of perceived arousal
with 𝐵𝑃𝑀 and 𝐸𝐷𝐴 of up to .6157 CCC with late-fusion of audio
and video features. One observation consistent throughout the ex-
periments was the reduction in the standard deviation for the gold
standard with physiological signals. Results seem to indicate that
this aided the learning process, and it would be of interest to explore
this more deeply in future work.

As the original sampling rate available for the physiological sig-
nals was 1 kHz, it would also be interesting to explore this in more
detail. For example, the Savitzky–Golay filtering and extreme down-
sampling may have caused vital information loss. Furthermore,
validation through other datasets would be optimal for exploring
more deeply the combinations of signals and perhaps exploring a
segmentation approach that is more suitable to the physiological
signal. Another next step is to explore the valence dimension in
this context. However, there is less literature supporting the mani-
festation of valence via physiological signals, so we have excluded
it from our current research.
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