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Darcy’s law for evolving microstructure
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A Darcy law for evolving microstructure is derived by homogenisation of Stokes flow. We transform the Stokes equations
from the locally evolving domain onto a periodic reference domain. There, we pass to the homogenisation limit by employing
the method of two-scale convergence. After transforming the limit back to its original two-scale domain, we obtain a Darcy
Law for evolving microstructure. This Darcy Law does not only capture the space- and time-dependent permeability, but also
includes how the change of the porosity induces pressure. In order to give uniform a priori estimates, we derive a Korn-type
inequality for this two-scale transformation method as well as a family of ε-scaled operators div−1

ε .
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1 Introduction

Saturated fluid flow through porous media plays an important role in many chemical, biological and geological applications.
There, the Darcy law is widely used as the physical model. However, if the pore structure is evolving in time, the standard
Darcy law does not constitute a sufficient model anymore. Therefore, we derive an appropriate model for such processes by
homogenising the Stokes flow in porous media evolving in time. In order to pass to the homogenisation limit rigorously, we
use the two-scale transformation method (cf. (1)), which was proposed in [2] and substantially developed further in [3]. First,
we transform the problem to a periodic domain. There, we derive a new Korn-type inequality for the two-scale transformation
method as well as a sequence of ε-scaled operators div−1

ε , which are right inverses to the divergence operator. Using these
results, we obtain uniform a priori estimates which allow to pass to the homogenisation limit in the periodic substitute prob-
lem and to derive a two-pressure Stokes system. After a back-transformation, we can derive a new Darcy law for evolving
microstructure with a time- and space-dependent permeability tensor. Moreover, the new Darcy law captures compression and
suction effects arising from the change of the porosity by a new source term for the pressure.

microproblem macroproblem

transformed microproblem transformed macroproblem

homogenisation on evolving domain

transformation back-transformation

homogenisation on periodic domain

(1)

2 Microscopic model

On the microscopic scale, we consider the steady state Stokes equations in a time-dependent domain Ωp
ε(t) on a time interval

S, where Ωp
ε(t) represents the pore space and Ωs

ε(t) = Ω \ Ωp
ε(t) the solid space of a porous medium Ω ⊂ RN at t ∈ S:

−ε2ν div(2e(vε)) +∇pε = f, div(vε) = 0 in Ωp
ε(t). (2)

Thereby, vε denotes the fluid velocity, pε the pressure field, e(vε) the symmetric gradient of vε and f a source term. For
the boundary condition, we distinguish between the interface of the pores with the solid part and the outer boundary. At the
interface Γε(t) := ∂Ωp

ε(t) ∩ ∂Ωs
ε(t), we use a no-slip boundary condition. In our case of an evolving domain, this means that

the fluid velocity is equal to the velocity of the boundary’s evolution, i.e. vε = vΓε
. Since the evolution of the domain can

cause a change of the total pore volume, we have to enable fluid in- and outflow at the outer boundary. Therefore, we use the
pressure boundary condition pεn− ε2ν2e(vε)n = gn for a given pressure g at the outer boundary ∂Ωp

ε(t) \ ∂Ωs
ε(t), where n

is the outward unit normal.

3 Transformation to a periodic reference domain

We assume that there exists a reference cell Y = [0, 1]N with a reference open pore space Y p ⊂ Y and a reference solid space
Y s = Y \ Y p such that Y p

# := int(
⋃

k∈ZN k+ Y p) is connected and has a Lipschitz boundary. We denote the interface of the
reference cell by Γ := ∂Y p∩∂Y s. For a macroscopic domain Ω, we define the ε-periodic reference domains by Ωp

ε := Ω∩εY p
#

and the corresponding interfaces by Γε := ∂Ωp
ε∩∂Y p

#. Then, we assume that Ωp
ε(t) ⊂ Ω is a locally periodic domain, i.e. there
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exists a family of locally periodic transformations ψε : S × Ωp
ε → Ω such that Ωp

ε(t) = ψε(t,Ω
p
ε) and Γε(t) = ψε(t,Γε)

(for the concept of locally periodic transformations, see [3]). We define Ψε(t, x) = Dxψε(t, x), Jε(t, x) = det(Ψε(t, x)) and
Aε = JεΨ

−1
ε and denote the transformation with ψε by ·̂ε, i.e. v̂ε(t, x) = vε(t, ψε(t, x)), f̂ε(t, x) = f(t, ψε(t, x)), . . . . In

order to state the following weak form for (2), we substitute ŵε := v̂ε− ∂tψε and q̂ε := p̂ε− ĝε and transform (2) via ψε from
the locally evolving domain onto the periodic reference domain S × Ωp

ε . The weak form of the transformed Stokes equations
is given by: Find (wε(t), pε(t)) ∈ H1

Γε
(Ωε)× L2(Ωε) such that

∫

Ωε

νε2Aε(t, x)eΨε
(ŵε(t, x)) : ∇φ(x)− q̂ε(t, x) div(Aε(t, x)φ(x))dx =

∫

Ωε

Jε(t, x)f̂ε(t, x) · φ(x)dx

−
∫

Ωε

A⊤
ε (t, x)∇ĝε(t, x) · φ(x)dx−

∫

Ωε

νε2Aε(t, x)eΨε
(∂tψε(t, x)) : ∇φ(x)dx, (3)

div(Aε(t, x)vε(t, x)) = −div(Aε(t, x)∂tψε(t, x)) (4)

for any φ ∈ H1
Γε
(Ωε), where eΨε denotes the transformed symmetric gradient, i.e. eΨε(v) := Ψ−⊤

ε ∇v + (Ψ−⊤
ε ∇v)⊤ and

H1
Γε
(Ωp

ε) := {v ∈ H1(Ωp
ε) | v|Γε

= 0}.

4 A priori estimates

In order to derive uniform a priori estimates for wε and pε, we show the following uniform Korn-type inequality for the
two-scale transformation method:

∣∣∣∣Ψ−⊤
ε (t)∇φ+ (Ψ−⊤

ε (t)∇φ)⊤
∣∣∣∣
L2(Ωp

ε)
≥ C ||∇φ||L2(Ωp

ε)
for every wε ∈ H1

Γε
(Ωp

ε). (5)

However, we still cannot use the existing theory for the derivation of the a priori estimates because of the inhomogeneous
div-condition (4). Instead, we construct a family of ε-scaled operators div−1

ε : L2(Ωp
ε) → H1

Γε
(Ωp

ε) such that

div ◦ div−1
ε = idL2(Ωp

ε), ε
∣∣∣∣∇ div−1

ε (f)
∣∣∣∣
L2(Ωp

ε)
≤ C ||f ||L2(Ωp

ε)
for every f ∈ L2(Ω̂ε). (6)

These estimates allow us to derive the uniform a priori estimate

||wε(t)||L2(Ωp
ε)

+ ε ||∇wε(t)||L2(Ωp
ε)

+ ||qε(t)||L2(Ωp
ε)

≤ C (7)

for the solutions (wε(t), qε(t)) of (3)–(4).

5 Homogenisation and back-transformation

Using the two-scale convergence method and modifying the approach of [1], we pass to the limit ε → 0 in (3)–(4). Thereby,
we use the fact that the transformations ψε two-scale converge to a limit transformation ψ0 : S×Ω×Y p → Y , which describes
the pore Y p

x (t) := ψ0(t, x, Y
p) at a time t ∈ S and a macroscopic point x in Ω with its porosity Θ(t, x) = |Y p

x (t)|. In the limit,
we obtain a two-pressure Stokes system on the cylindrical domain S×Ω×Y p with a microscopic incompressibility condition
and a macroscopic compressibility condition. We transform this system with ψ0 back on its actual two-scale coordinates
{(t, x, y) ∈ S × Ω× Y | y ∈ Y p

x (t)}. Then, we separate the y-dependence and obtain the following Darcy law:

v(t, x) =
1

ν
K(t, x)(f(t, x)−∇p(t, x)), div(v(t, x)) = − d

dt
Θ(t, x) in Ω, (8)

with boundary condition p = pb on ∂Ω and permeability tensor (K(t, x))ij =
∫
Y p
x
ui(t, x, y) · ejdy, where ej is the jth unit

vector and ui is the y-periodic solution of

−∆yui(t, x, y) +∇yπ(t, x, y) = ei, divy(ui(t, x, y)) = 0 in Y p
x (t), v = 0 in Y \ Y p

x (t). (9)

By combining both equations of (8) and the pressure boundary condition, we obtain a well-posed second-order elliptic equation
for the pressure p. The new term d

dtΘ(t, x) constitutes an additional source term for the pressure and captures the compression
and suction of the fluid arising from the change of the porosity. After solving the equation for the pressure, the fluid velocity
can be computed explicitly.
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