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Abstract—Acoustic Scene Classification (ASC) aims to classify
the environment in which the audio signals are recorded. Recently,
Convolutional Neural Networks (CNNs) have been successfully
applied to ASC. However, the data distributions of the audio signals
recorded with multiple devices are different. There has been little
research on the training of robust neural networks on acoustic
scene datasets recorded with multiple devices, and on explaining
the operation of the internal layers of the neural networks. In this
article, we focus on training and explaining device-robust CNNs
on multi-device acoustic scene data. We propose conditional atrous
CNNs with attention for multi-device ASC. Our proposed system
contains an ASC branch and a device classification branch, both
modelled by CNNs. We visualise and analyse the intermediate
layers of the atrous CNNs. A time-frequency attention mechanism
is employed to analyse the contribution of each time-frequency
bin of the feature maps in the CNNs. On the Detection and
Classification of Acoustic Scenes and Events (DCASE) 2018 ASC
dataset, recorded with three devices, our proposed model performs
significantly better than CNNs trained on single-device data.

Index Terms—Acoustic scene classification, attention,
conditional atrous convolutional neural networks, multi-device
data, visualisation.
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I. INTRODUCTION

W ITH the development of computer audition [1], Acous-
tic Scene Classification (ASC) has become a major re-

search field, aiming to automatically recognise acoustic envi-
ronments [2], [3]. The goal of ASC is to identify acoustic scenes
in an audio stream, using computational approaches such as sig-
nal processing [4], [5], machine learning [6], and deep learn-
ing [7], [8]. ASC has been used in various applications, includ-
ing context-aware services [9], intelligent wearable devices [10],
and robot navigation systems [11].

In recent years, deep learning approaches have shown good
performance in ASC [7], [12]. Deep learning can often learn
high-level representations, which yield better performance than
those using conventional machine learning methods [4], [13].
Many deep learning structures have been proposed for ASC,
including Convolutional Neural Networks (CNNs) [7] and Re-
current Neural Networks (RNNs) [14]. In this article, we will use
CNNs due to their ability to learn strong representations from
spectrograms [15], [16]. Specifically, log mel spectrograms have
been successfully utilised in ASC [7], [17]. In this regard, we
extract log mel spectrograms as the inputs of the CNNs.

Varying characteristics of recording devices lead to various
qualities of audio data, such as sampling rate, amplitude, and
frequency response, and data distributions [18]. Audio data is
often recorded with distinct devices, such as professional sound
recording devices [19], and mobile devices [20]. However, it is
challenging to optimise the training model on a multi-device au-
dio dataset, due to the different data distributions of mismatched
devices [21]. Supervised domain adaptation by transfer learning
can adjust models from the source data to the target data [22].
Yet, it is time-consuming to train two deep models before and af-
ter transferring the learnt paramters. In this regard, jointly train-
ing a single model on multi-device data can reduce the com-
putational complexity compared to training separate models. In
previous studies [23], [24], researchers trained joint models on
multi-device data. However, joint training cannot analyse the
difference of data from mismatched devices, as the deep neural
networks learn common parameters for multi-device data [25].
Inspired by the task of speaker verification [26], [27], we pro-
pose to condition the CNNs with device information, through
feeding the device information into CNNs: we call this condi-
tional training. Through conditional training, the CNN model
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learns specific parameters for the data from each device. To fur-
ther solve the problem caused by unknown device information
in the test set, we show that our proposed multi-task conditional
training can also condition the CNNs using predicted device
information.

A CNN model generally contains convolutional layers, local
pooling layers, and fully connected layers, to achieve a final
classification [28]. To learn global information from the fea-
ture maps using the convolutional kernels, each convolutional
layer applies either stride convolutions with strides of length
stride ≥ 2, where strides are the moving steps of convolutional
kernels, or local pooling operations. Such CNNs can classify
acoustic scenes with state-of-the-art performance [24]. Visual-
ising the operation of the internal layers of CNNs can help us to
understand what characteristics are important for classification.
For example, the feature maps can be visualised according to the
contribution of time-frequency bins to classification. This idea
is inspired by image processing tasks, including object localisa-
tion [29], and saliency detection [30].

Two difficulties emerge when visualising ASC systems.
Firstly, the size of the feature maps decreases due to either stride
convolution or local pooling layers. Low-resolution feature maps
lose time-frequency details compared to the log mel spectro-
grams. Secondly, the classification result depends on global
pooling operations, which summarise the feature maps into fixed
dimensional vectors for later classification. Global max and aver-
age pooling layers have been widely used in ASC [24]. However,
if the value of each bin is viewed as the contribution, the contri-
butions of the bins in feature maps are over- or underestimated
in the output of these two kinds of global pooling layers [24]. To
overcome these difficulties, we propose to employ atrous CNNs
and an attention mechanism for visualisation. Atrous CNNs can
retain the size of the feature maps to be the same as that of the
input, by using dilated convolutions [31]. Furthermore, an atten-
tion mechanism can estimate the contribution of time-frequency
bins better than global max or average pooling [32]. Our pro-
posed conditional training framework, which is based on atrous
CNNs with attention, is called Conditional Atrous CNNs with
Attention (CAA-Net).

The remainder of this article is structured as follows. Re-
lated work will be introduced in Section II. In Section III, we
will describe the proposed CAA-Net, including the framework
overview, conditional training, atrous CNNs, and global pool-
ing. The database description, experimental setup and evaluation
metrics, experimental results, and the visualisation of the CNNs
will then be presented in Section IV. Finally, the conclusions
and future work will be given in Section V.

II. RELATED WORK

Since acoustic scene data from different devices has dif-
ferent qualities and distributions, CNNs trained on different
single-device data will differ from each other. To reduce the com-
putational burden caused by training a separate CNN model for
each device, researchers proposed a series of learning strategies.
In transfer learning, supervised domain adaptation [33] trained
separate CNN models for the source and target data. In multi-task

learning, CNNs shared the parameters of the low-level con-
volutional layers, and trained the high-level convolutional lay-
ers separately [34]. However, more convolutional layers lead to
more parameters, so that the training procedure tends to be sub-
optimised [35]. Joint learning with shared context was proposed
to process multi-source data using a selective loss function [25],
but it is challenging to analyse the data difference among mul-
tiple devices using joint learning [25]. Conditional CNNs were
proposed for multi-pose face recognition [36], where the convo-
lutional kernels of the conditional CNNs were sparsely activated
using a conditional activation function in each convolutional
layer. Similar to the idea of conditional CNNs, a deep learn-
ing model was conditioned with the speaker information which
was fed into the model as an extra input to achieve speech gen-
eration [37], [38]. Inspired by these approaches [37], [38], we
propose to condition CNNs with device information. Further-
more, multi-task learning was employed for multi-modal emo-
tion recognition, and the predicted difficulty level of the samples
during the learning process was fed back into the deep neural
networks [39]. Inspired by this work, we propose multi-task
conditional training to learn CNNs, predicting acoustic scene
classes and device information.

Many CNN models result in low-resolution feature maps,
which cannot describe the time-frequency details [24]. A ba-
sic CNN model without pooling layers can retain the size of the
feature maps to be the same as that of the input at each convolu-
tional layer. However, more convolutional operations than those
in CNNs with local pooling result in sub-optimised training pro-
cedures and lower performances [24]. Some image processing
approaches have investigated increasing the size of feature maps
at the final convolutional layer to be the same as the input. For
example, encoder-decoder CNNs [40] learnt internal representa-
tions by employing encoders and decoders to respectively down-
sample and upsample the feature maps. Fully Convolutional Net-
works (FCNs) [41] utilised deconvolutional layers to upsample
the low-resolution feature maps. Deconvolutional layers were
also applied in the architecture of Generative Adversarial Net-
works (GANs), generating synthetic images which can be used
to augment the training data and further improve classification
performance [42]. However, these image processing methods
mostly use strongly labelled data, where each pixel of the input
image is labelled. The data in ASC is weakly labelled as each
audio clip has only one label, rather than each frame being anno-
tated. It is challenging to apply these image processing methods
to preserve the same size as the input on the feature maps at
the final convolutional layer in ASC [24]. In a separate study of
image segmentation [31], atrous CNNs employed dilated con-
volutions to retain the size of the feature maps to be the same of
that of the input at each layer, instead of preserving the size of
the feature maps at the final layer only. Inspired by the success
of atrous CNNs in image segmentation, we apply atrous CNNs
to achieve pixel-wise visualisation of the feature maps for audio
classification.

For a classification task, convolutional layers are often fol-
lowed by global pooling layers [43]. However, conventional
global pooling methods, such as global max and average pool-
ing, cannot estimate the contribution of each time-frequency bin
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Fig. 1. The framework of our proposed multi-task CAA-Net. The log mel spectrograms are fed into two CNN models. The top CNN model predicts the device
classes, and the bottom CNN model predicts the acoustic scenes. The predicted device information is transformed into a one-hot encoder, and is then expanded
to a three dimensional tensor. Next, the convolutions of the tensors are fed into a convolutional layer of the bottom CNN model. Finally, a global attention layer
is applied to the feature maps of the last convolutional layer. The dash lines indicate that the transformed device information is fed into one of the convolutional
layers.

in the feature maps [24], [43]. Instead, weighted pooling was
proposed to combine different convolutional layers by learning
weighted masks, which solves this problem [44], [45]. Sim-
ilarly, the attention mechanism was proposed for audio and
speech-related tasks to estimate the contribution of the feature
vectors at each time step [46]. Inspired by the attention mecha-
nism idea, we propose to apply a global attention pooling layer
to estimate the contribution of each time-frequency bin to the fi-
nal classification. Finally, our proposed CAA-Net conditions the
CNNs with device information, and applies dilated convolutions
and an attention mechanism for visualising the intermediate lay-
ers of the CNNs.

III. PROPOSED METHODOLOGY

In this section, we will give an overview of the CAA-Net
framework. Then, conditional CNNs will be proposed to adapt
the CNNs to handle multi-device data. Finally, we will describe
the atrous CNNs and the attention mechanism that we use to
visualise the internal layers of the CNNs.

A. Framework Overview

The framework of our proposed multi-task CAA-Net is shown
in Fig. 1. We extract log mel spectrograms from the multi-device
audio waves. Then, the log mel spectrograms are used as input
to train our proposed multi-task CAA-Net. CAA-Net contains
two branches: one branch aims to predict acoustic scene classes,
while the other branch predicts device classes. The first branch
contains four convolutional layers and a global attention pool-
ing layer. The four convolutional layers output feature maps
with channels of dimensions 64, 128, 256, and 512. Notably, to
preserve the same size of the feature maps as the log mel spec-
tograms, there is no local pooling following each convolutional
layer. After the convolutional layers, a global attention pooling
layer is applied to learn weight values for each time-frequency
bin in the feature maps.

To process multi-device data, the CNN model in the first
branch is conditioned by the predicted device information in-
ferred from the CNN model in the second branch. The CNN

model in the second branch consists of two convolutional layers
with channels of dimensions 64 and 128. Each convolutional
layer is followed by a local pooling layer. A global max pooling
layer is then used to summarise the feature maps to a fixed dimen-
sional vector for classification. The predicted device classes are
represented as one-hot encoders, quantifying the integer classes
into binary vectors. The one-hot encoders are repeated along
the time and frequency axes to form three-dimensional tensors,
which are fed into the convolutional layers of the first branch.
More details will be introduced in the next subsections.

B. Conditional Training

We now introduce four training strategies, including single-
device training, joint training, teacher forcing conditional train-
ing, and multi-task conditional training.

1) Single-Device Training: Single-device training is an ap-
proach to train several separate ASC systems on the separate
data from each device, as shown in Fig. 2(a). With single-device
training, several CNN models can be learnt, on each single-
device dataset as part of the multi-device dataset [43]. However,
some datasets may be not big enough to train a deep learning
model [47]. Additionally, single-device training requires many
resources to train N systems for N -device data.

2) Joint Training: To overcome the shortcomings of single-
device training, we jointly train the audio data from different
devices, as shown in Fig. 2(b). We assume that data from mul-
tiple devices has common features that can be learnt in a CNN
model [25], and that CNNs can learn complementary represen-
tations by jointly training on multi-device data. However, data
from different devices share the same network structure and pa-
rameters with this approach, so that it is challenging to learn
device-related features via joint learning [25].

3) Teacher Forcing Conditional Training: To learn device-
related representations, the ground truth from a previous time
step was fed into the current time step using conditional training
in RNNs [48]. Conditional training has been applied to speech
recognition [38], and speaker verification [49]. In our approach,
the device information is forwarded to a convolutional layer, and
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Fig. 2. Comparison of the four training strategies. In (d) ‘CNN-d’ means the
CNN-device, which aims to predict the device classes.

then is fed into the classification branch, as shown in Fig. 2(c). In
a similar way to a mask, the feature map learnt from the device
information gives different weights to each time-frequency bin
of the representations in the classification branch, filtering out
the time-frequency bins of the feature maps which are not useful.
In this regard, the representations computed from the device
information are called as ‘masks’ in this article. We call this
method teacher forcing conditional training.

The initial mask is generated by expanding the N -length de-
vice one-hot encoder into a matrix of size N × Uw × Ul, where
Uw × Ul is the size of the feature maps in the CNN model of the
classification branch. The expansion makes it possible to com-
bine the device information with the feature maps. Referring
to the linear transformation of the speaker one-hot encoder in a
multi-speaker text-to-speech task [37], we then apply a convolu-
tional layer with a kernel size of 1× 1, which is called a 1-by-1
convolution [43]. Notably, the output of the 1-by-1 convolution
has the same number of channels as that of the convolutional
layer in the classification branch, with which will be combined.
The combined result is given by

Mi+1 = σ(Wi ∗Mi + Vi ∗ Ei), (1)

where Mi is the input of the i-th convolutional layers, Ei is the
expanded one-hot encoder, Wi and Vi are the weights of the
convolutional procedures, ∗ denotes convolution, and σ is the
‘ReLU’ activation function.

4) Multi-task Conditional Training: In teacher forcing con-
ditional training, the device information is required to be fed
into the deep neural networks as prior knowledge. However,
the device information is sometimes unknown, so we propose

Fig. 3. Three CNN architectures: (a) CNNs with local pooling, (b) CNNs
without local pooling, and (c) atrous CNNs.

to train a model to predict both the acoustic scenes and device
classes simultaneously using multi-task learning [50], and we
call this approach multi-task conditional training. As shown in
Fig. 2(d), multi-task conditional training learns an additional
CNN-device (CNN-d) model to predict the device classes, com-
pared to teacher forcing conditional training. The structure of
‘CNN-d’ model was the same as that introduced in Section III-A.
The local pooling following each convolutional layer has a ker-
nel size of 2× 2 to reduce the size of feature maps and accelerate
the training procedure. The predicted device classes, represented
as one-hot encoders, are expanded and processed using Eq. (1).
In the training procedure, the loss function is computed as the
weighted sum of the loss functions in the two CNN models, i. e.,

loss = losss + λ × lossd, (2)

where losss, and lossd are the loss values of the CNN model
for predicting scenes, and the CNN-d model for predicting de-
vices, respectively. The weight factor λ can be use to balance
the gradient difference between the two CNN models [51].

C. Atrous Convolutional Neural Networks

To classify the log mel spectrograms representing the audio
waveforms, we use atrous CNNs, which can preserve the size
of the feature maps to help visualise the internal layers of the
CNNs [24].

1) CNNs With Local Pooling: In conventional CNNs, the
convolutional layers are usually followed by local pooling lay-
ers. As shown in Fig. 3(a), each convolutional layer is followed
by a local max pooling layer with a kernel size of 2× 2. Local
max pooling is able to extract time-frequency shift-invariant fea-
tures, and can accelerate the training procedure by reducing the
size of the feature maps [52]. However, the local pooling means
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Fig. 4. Comparison of the receptive fields in the three CNN architectures. In
each subfigure, the white grid at the bottom denotes the feature map in the first
convolutional layer, and the blue grid means the convolutional kernel. The top
green grid is the kernel in the second convolutional layer.

that the visualisation of the CNNs is limited to low-resolution
feature maps.

2) CNNs Without Local Pooling: To solve the problem of
low-resolution feature maps in CNNs with local pooling, the
local max pooling layers are removed from the CNN model
in Fig. 3(b). This is a basic approach to retain the size of the
feature maps, that will lead to a performance reduction [24].
In our previous study [24], we found that the reason is related
to the receptive field, the input area with a size of number of
frequency bins × number of time frames that can affect a single
output pixel in the feature maps. For example, in Fig. 4(a-b), the
two receptive fields in the first convolutional layer both have a
size of r × r, but in the second convolutional layer, the receptive
field of the CNNs with local pooling has a size of 2r × 2r, while
the receptive field of the CNNs without local pooling still has a
size of r × r. Further, at the l-th layer, l ∈ {1, . . ., L} where L is
the total number of convolutional layers, the size of the receptive
field in the CNNs with local pooling will be2l−1r × 2l−1r, while
the CNNs without local pooling will have a fixed receptive field
size of r × r at all layers. Hence, for CNNs with local pooling,
the size of the receptive field increases exponentially with the
number of layers; but for CNNs without local pooling, it does
not change on the number of layers.

3) Atrous CNNs: To preserve the size of feature maps to be
the same as that of the input, we employ atrous CNNs, increasing
the size of the receptive field exponentially. In atrous CNNs, the
convolutional kernel is replaced by a sparse kernel with holes,
called a dilated kernel, the size of which is determined by the
dilation rate. The dilation rate in each of the four convolutional
layers is set to 1, 2, 4, and 8, so that the size of the receptive
field increases exponentially, the same as in CNNs with local
pooling. For example, in Fig. 4(c), the size of the receptive field
in the second convolutional layer is (2r − 1)× (2r − 1), and
(2l−1r − 1)× (2l−1r − 1) in the l-th layer. The convolutional
operations in atrous CNNs are mostly less than those of the
CNNs without local pooling.

D. Global Pooling Mechanism

We denote a log mel spectrogram as S of size F × T , where
F is number of the frequency bins and T is number of the time
frames. The feature maps from the final convolutional layers
of the CNNs are denoted as a three-dimensional tensor M of
size H × P ×Q, where H denotes the number of channels,
and P ×Q is the size of each feature map. The convolutional
layers are then followed by a global pooling layer [53], which

summarises each of the H feature maps into a scalar value,
which is stacked into anH-dimensional vector for classification.
Global pooling performs better than flattening the feature maps
into a vector, as global pooling can filter out the units from the
feature maps which are not useful [43]. In this subsection, three
conventional global pooling methods will be compared, and the
proposed attention pooling will be introduced.

1) Global Max Pooling: With the assumption that the max-
imum value can represent the area of each kernel [54], global
max pooling selects the maximum value from the kernel. Each
kernel has the same size as the feature map. Global max pooling
can be defined by

Rh = max
1<q<Q

max
1<p<P

Mhpq, (3)

where Rh is the h-th value of the vector R which will be fed
into a softmax layer for classification. Global max pooling has
achieved success in many applications, such as image process-
ing [55] and audio event detection [56]. However, global max
pooling ignores the contribution of the units with smaller values
than the maximum value. The lost information might lead to
under-performance of the classification [43].

2) Global Average Pooling: Different from global max pool-
ing, global average pooling treats every unit as having the same
contribution for the classification [57]. Global average pooling
computes the average value of each feature map by

Rh =
1

PQ

Q∑

q=1

P∑

p=1

Mhpq. (4)

However, average pooling overestimates the contribution of
some units which are not useful for the final classification,
and underestimates the contribution of useful units [43]. Hence,
global average pooling is also not suitable to accurately estimate
the contribution of each unit.

3) Global Region of Interest Pooling: Global Region of In-
terest (ROI) pooling [58] first splits a feature map into sev-
eral sub-areas, and then applies global max pooling on these
sub-areas. The outputs from these sub-areas are then flattened
into a vector for the final classification. Notably, while com-
bining the ROI pooling and the global attention pooling, which
will be introduced in the following paragraph, the outputs of
the ROI pooling are fed into the attention mechanism instead of
flattening, to learn the contribution of each time-frequency bin.
To compare global ROI pooling methods to other pooling meth-
ods without considering the effect of hyper-parameters, the size
of the sub-areas is set to 16× 16. Therefore, the feature maps
after global ROI pooling have the same size as the feature maps
from four local max pooling layers with a 2× 2 kernel. Global
ROI pooling can select more useful units from each feature map.
However, like global max and average pooling, it cannot accu-
rately estimate the contribution of each time-frequency bin [24].

4) Global Attention Pooling: Compared to the aforemen-
tioned pooling methods, the global attention pooling aims to
reduce the dimensions of feature maps, by estimating the con-
tribution of each unit [24]. Global attention pooling contains two
branches: one is a classification branch, and the other is an at-
tention branch. Global attention pooling can classify the feature
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maps without a final linear transformation. To achieve the classi-
fication in attention pooling, we employ a 1-by-1 convolutional
layer in each branch, and the channel number of the output is
equal to the class number. Further, in the classification branch,
a softmax activation function follows the 1-by-1 convolutional
layer for classification. In the attention branch, a sigmoid func-
tion is employed. The sigmoid function transforms the values in
the feature maps into the interval [0, 1], representing the weight
value of each time-frequency bin. In the attention branch, the
obtained attention matrix A is normalised using

A′
kpq = Akpq/

Q∑

q=1

P∑

p=1

Akpq, (5)

where k means the k-th class, and A′ denotes the probability
matrix, holding the weight of each element in the H feature
maps C from the classification branch. Finally, the prediction Y
is computed by

Yk =

Q∑

q=1

P∑

p=1

A′
kpq · Ckpq. (6)

Notably, the matrices A′ and C have the same size, and are
multiplied using the element-wise product. In CNNs without
local pooling and in atrous CNNs, the feature maps produced
by the convolutional layers have the same size as the log mel
spectrograms, i.e., P = F and Q = T .

IV. EXPERIMENTS AND RESULTS

A. Database

We evaluate our proposed CAA-Net on the open dataset in the
ASC task of the IEEE AASP Challenge on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) 2018 and
2019 [23]. We test the development set only, as the labels of the
test set are not publicly released. The DCASE 2018 database was
recorded in ten scene environments of six large European cities.
The ten acoustic scenes include: airport, shopping mall, metro
station, street pedestrian, public square, street traffic, tram, bus,
metro, and park. Three devices were employed to record the
audio waves simultaneously. The main recording device (called
device A) comprises a Soundman OKM II Klassik/studio A3,
an electret binaural in-ear microphone, and a Zoom F8 audio
recorder. The other two recording devices are mobile phones: a
Samsung Galaxy S7 (called device B), and an iPhone SE (called
device C). During recording, device A was worn in the ears,
device B was held in a hand, and device C was worn in a sleeve
of the strap of a backpack. The sampling rate of device A was
48 kHz, and the sampling rates of device B and C were both
44.1 kHz. The original recordings were split into several audio
clips with a length of 10 seconds. Finally, the development set
consists of 8,640 audio files from device A, and 720 audio files
from device B and C in parallel. The ten scene classes are bal-
anced in the whole development set, so that each scene consists
of 864 audio clips from device A, 72 clips from device B, and 72
clips from device C. The development set was officially split into
a training subset and a test subset by the organisers of DCASE

2018. The training subset contains 6,122 audio clips from device
A, 540 clips from device B, and 540 clips from device C. The
test subset contains 2,518 audio clips from device A, 180 clips
from device B, and 180 clips from device C.

The DCASE 2019 dataset was recorded in the same ten scene
environments as the DCASE 2018 dataset, and extended from
six cities to 12 cities. The three devices and data recording pro-
cedures were the same as those in DCASE 2018. Audio clips
with a length of 10 seconds were obtained from the original
recordings. The development set contains 16,560 audio clips in
total (10,265 audio clips in the training subset, 5,265 clips in
the test subset, and 1,030 clips from Milan). The training subset
consists of 9,185 audio clips from device A, and 540 clips from
devices B and C in parallel. The test subset contains 4,185 au-
dio clips from device A, and 540 clips from devices B and C in
parallel. As the data from Milan was not split into the training
or test subsets due to data balance issue in the challenge, only
the official training and test subsets are used in our experiments.

B. Experimental Setup and Evaluation Metrics

The audio clips are first resampled to 44.1 kHz. Then, the
log mel spectrograms are extracted from the audio clips using a
Hamming window of 2,048 samples length, an overlap of 672,
and 64 mel bins. Hence, log mel spectrograms with a size of
64× 320 are obtained, where 320 is the number of time frames.
The log mel spectrograms are then fed into the CNN model for
classification. The CNN model is optimised using an Adam opti-
miser with a learning rate of 0.001. During training, the learning
rate is reduced by a factor of 0.9 at each 200-th iteration. Finally,
the training procedure is stopped at the 15,000-th iteration. No-
tably, in the multi-task conditional training, the λ value in Eq. (2)
is set to 1 and 0.0001 empirically before and after the accuracy
of the ‘CNN-d’ on the test subset achieves 98%, respectively.
The setting of λ aims to obtain a robust ‘CNN-d’ before training
the CNN model for the ASC task. All of these training hyperpa-
rameters are chosen empirically. The source code of our work
is publicly released.1

For the evaluation of the performance, we use the unweighted
average of class-wise accuracies, which are the number of cor-
rectly classified clips divided by the total number of clips in
each class. Accuracy is the official DCASE evaluation metrics
for ASC.

C. Results and Discussion

We tested the performance of the three CNN models intro-
duced in Section III-C on the DCASE 2018 dataset, while con-
ditioning the device information at four convolutional layers us-
ing teacher forcing conditional training. A set of global pooling
methods introduced in Section III-D were applied for each CNN
model. The performances of the CNN models on the data from
the three devices are compared in Fig. 5. In Fig. 5, the perfor-
mances of the CNN models on device A are better than those on
devices B and C, which might be caused by the data imbalance

1[Online]. Available: https://github.com/EIHW/CAANet_DCASE_ASC
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Fig. 5. Performance (accuracy) comparison of the CNN models evaluated on the DCASE 2018 dataset, while teaching forcing conditional training works at
different convolutional layers. The three CNN topologies contain CNNs with local pooling, CNNs without local pooling, and atrous CNNs. The CNNs are followed
by flattening (‘fla’) and five global pooling models, including max, average (‘avg’), ROI, attention (‘att’), and the combination of ROI and attention (‘r+a’). The
performance is evaluated on the data from the three devices A, B, and C.

TABLE I
THE AVERAGE PERFORMANCE (ACCURACY) COMPARISON OF THE CNN

TOPOLOGIES EVALUATED ON THE DATA FROM THE THREE DEVICES (A, B, AND

C) AVAILABLE IN THE DCASE 2018 DATASET, WHILE THE TEACHING FORCING

CONDITIONAL TRAINING WORKS AT DIFFERENT CONVOLUTIONAL LAYERS.
THE THREE TYPES OF CNN TOPOLOGIES CONTAIN CNNS WITH LOCAL

POOLING, CNNS WITHOUT LOCAL POOLING, AND ATROUS CNNS. THE CNNS

ARE FOLLOWED BY FLATTENING AND FIVE GLOBAL POOLING MODELS,
INCLUDING MAX, AVERAGE (‘AVG’), ROI, ATTENTION (‘ATT’), AND THE

COMBINATION OF ROI AND ATTENTION (‘ROI+ATT’). THE BEST RESULT

CHOSEN FROM FOUR LAYERS IN EACH CNN MODEL IS HIGHLIGHTED

among the data from devices A, B, and C, and the potential ex-
istence of more noise in the data from the mobile devices (B and
C). While comparing the performances of all CNN models in
each device, the atrous CNNs mostly perform better than CNNs
with or without local pooling. The results from conditioning the
device information at different convolutional layers are similar
on each CNN model.

To better compare the performance of all CNN models
and choose the best convolutional layer to achieve multi-task
conditional training by each CNN model, the average per-
formances on the data of the three devices are calculated
in Table I . As shown in Table I, in the CNNs with local
pooling and atrous CNNs, we can obtain better results from
global attention pooling than from other global pooling meth-
ods. This indicates that attention pooling is suitable to esti-
mate the contribution of each time-frequency bin in the fea-
ture maps to the final classification. Further, conditioning the

device information at different layers can affect the classifica-
tion accuracy. Especially, in CNNs without local pooling, most
models perform best when the transformed device informa-
tion is fed into the first convolutional layer. In atrous CNNs,
the models in which the device information was conditioned at
the third convolutional layer produce better results than those
conditioned in other layers. We select the best results from the
four conditioned layers for later comparison of the four training
strategies in Section III-B.

In Table II, teacher forcing conditional training and multi-task
conditional training are compared to the other two training strate-
gies, including single-device training and joint training. The
results of multi-task conditional training were obtained while
conditioning in the same convolutional layers as teacher forc-
ing conditional training. The two conditional training strategies
perform the best in most CNN models, except global attention
and global ROI, and attention pooling in CNNs without local
pooling. This may be caused by the large number of convolu-
tional operations in those two global pooling methods in CNNs
without local pooling. Teacher forcing conditional training per-
forms slightly better than multi-task conditional training. This is
reasonable, as the true device information is fed into the CNNs
during teacher forcing conditional training. For devices B and
C, the performance of joint training is comparable with that
of single-device training. This indicates that joint training can
learn complementary features for each single-device data. In
contrast, conditional training can learn not only complementary
features, but also device-related representations. Hence, in our
results, conditional training can effectively improve the perfor-
mance on devices B and C. Finally, our best result of 68.0%
on average was obtained by multi-task conditional training. It
is significantly higher than the result of 65.0% from the atrous
CNNs with attention on a single device (in a one-tailed z-test,
p < 0.01), and the result of 49.0% from the CNNs without lo-
cal pooling with ROI pooling on a single device (in a one-tailed
z-test, p < 0.001).

Finally, the confusion matrices of the best results obtained
by our proposed multi-task CAA-Net are shown in Fig. 6. The
proposed model performs the best on the data from device A,
perhaps because the database contains more data for device A
than B and C, and the data recorded with device A has a higher
quality than the other data. The CAA-Net performs well in some
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TABLE II
PERFORMANCE (ACCURACY) COMPARISON OF THE CNN TOPOLOGIES ASSESSED ON THE DCASE 2018 DATASET USING FOUR TRAINING STRATEGIES, INCLUDING

SINGLE-DEVICE TRAINING, JOINT TRAINING, TEACHER FORCING CONDITIONAL TRAINING, AND MULTI-TASK CONDITIONAL TRAINING. THE POOLING METHODS

ARE THE SAME AS THE METHODS IN TABLE I. THE PERFORMANCE IS EVALUATED ON THE DATA FROM THE THREE DEVICES A, B, AND C. THE BEST RESULT

AMONG THE FOUR TRAINING STRATEGIES FOR EACH CNN MODEL IS HIGHLIGHTED

TABLE III
PERFORMANCE (ACCURACY) COMPARISON OF THE CNN TOPOLOGIES ASSESSED ON THE DCASE 2019 DATASET IN THE FOUR TRAINING STRATEGIES, INCLUDING

SINGLE-DEVICE TRAINING, JOINT TRAINING, TEACHER FORCING CONDITIONAL TRAINING, AND MULTI-TASK CONDITIONAL TRAINING. THE POOLING METHODS

ARE THE SAME AS THE METHODS IN TABLE I. THE PERFORMANCE IS EVALUATED ON THE DATA FROM THE THREE DEVICES A, B, AND C. THE BEST RESULT

AMONG THE FOUR TRAINING STRATEGIES FOR EACH CNN MODEL IS HIGHLIGHTED

Fig. 6. Confusion matrices of the results on the data from devices A, B, and C computed by the proposed multi-task CAA-Net model, which achieves the best
result on the DCASE 2018 dataset.

classes, such as metro, park, and street traffic, but for not well
for other classes, including public square, and street pedestrian.
The reason may be that the audio recordings in these two en-
vironments contain more noise. Furthermore, some classes of
scenes are easy to be predicted as other similar scenes. For in-
stance, the scene class tram is mostly predicted into the classes
of bus and metro, especially on the data from devices B and C,
perhaps because the audio recordings from these three scenes
are all traffic sounds. This suggests that besides the types of de-
vices, the type of acoustic scene might also be a factor to be
considered in this classification task.

To verify the robustness of our proposed approach, the three
CNN models with attention were trained on the DCASE 2019
dataset, as shown in Table III. For conditional training, the CNN
layers corresponding to those highlighted in Table I were con-
ditioned in the CNN models to predict the acoustic scenes. We
can see that, in a similar way to the work on the DCASE 2018
dataset, conditional training achieves the best results in the three
CNN models assessed on the DCASE 2019 dataset. The consis-
tent results indicate that our proposed approach is more effective
and robust than single-device training and joint training on mul-
tiple datasets.
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Fig. 7. Heat maps with a size of 64× 320 are obtained by visualising the attention matrix A in our multi-task CAA-Net which works on DCASE 2018 dataset.
The horizontal and vertical axes represent the time frames and frequency bins, respectively.

D. Visualisation of CNNs

To visualise the internal convolutional layers of the CNNs,
heat maps of the attention matrices in our proposed multi-task
CAA-Net are shown in Fig. 7. The heat maps are obtained from

the learnt attention matrices in each class of acoustic scene
recorded at the same time and place by the three devices. We can
see that, the learnt attention matrices are mostly similar across
the three devices. For some classes, such as airport, metro, pub-
lic square, and tram, more time-frequency bins in the heat maps
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of device A have high values than in those of devices B and C.
This may be caused by the fact that the data qualities differ from
each other, as the recordings of the database were performed us-
ing three devices. Device A, as an in-ear device, has less noise
than devices B and C, which both are mobile devices. The heat
maps can reflect features of some special acoustic scenes. For
instance, the heat maps of traffic scenes, such as bus, metro,
and tram, contain time-continuity bins, which is consistent with
the characteristics of traffic scenes. In airport, metro station,
park, shopping mall, street pedestrian, and street traffic classes,
there are some non-traffic sounds like speech, bird sound, etc.
Hence, the time-frequency bins in these scenes concentrate on
the high-frequency areas.

Visualisation of heat maps can provide a way to explain the
decisions of CNNs in real-life applications, particularly in the
security field. To ensure the machine is able to make an un-
derstandable and correct decision, it is essential to obtain an
explanation of the decisions from the classifiers. Further, the vi-
sualisation technique offers the potential to improve the perfor-
mance of other acoustic tasks such as in sound event detection,
as the contribution weights of the heat maps might be related to
the time and frequency of sound events.

V. CONCLUSIONS AND FUTURE WORK

We proposed multi-task conditional atrous Convolutional
Neural Networks (CNNs) with attention, to visualise and un-
derstand acoustic scenes recorded with multiple devices. In the
proposed model, log mel spectrograms were fed into two CNN
models to predict device classes and acoustic scene classes. The
predicted device classes were represented by one-hot encoders.
The CNNs for acoustic scene classification were conditioned by
feeding the transformation of device one-hot encoders into the
convolutional layers. Four dilated convolutional layers, followed
by a global attention pooling layer, were utilised to preserve the
size of the feature maps for visualisation. Our proposed condi-
tional training performed better than single-device training and
joint training. Further, the intermediate layers of the CNNs were
visualised and analysed in our work.

In future work, as the fixed weight of the loss function (the
value of λ) is not friendly to optimise while training a neural
network, and not flexible to adapt to a new dataset, we will ex-
plore learning the value of λ during the training procedure, to
obtain a more robust and flexible model able to work on different
datasets. Due to the effect of type of scenes as aforementioned,
a hierarchical structure to classify both the type of scenes and
device classes will also be considered. Next, CNNs trained on
one dataset which is collected with three concrete devices are
challenging to be applied to datasets recorded by other devices.
Therefore, training of cross-database CNN models will be con-
sidered, so that the data from more devices can be included. The
computation complexity of our conditional training approach
will be a burden if the data is recorded by many devices (more
than three) in practice. In this regard, efficient training strate-
gies such as transfer learning [59], and lifelong learning [60] are
promising to achieve an efficient training procedure. We will
also attempt to utilise the learnt heat maps for other acoustic
tasks, such as audio event detection.
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