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Abstract: Carbon fiber reinforcement used in concrete has become a remarkable alternative to steel
fibers. Admixing short fibers to fresh concrete and processing the material with a 3D printer leads
to an orientation of fibers and a material with high uniaxial strength properties, which offers an
economic use of fibers. To investigate its mechanical behavior, the material is subjected to flexural
and tensional tests, combining several measuring techniques. Numerical analysis complements this
research. Computed tomography is used with several post-processing algorithms for separating ma-
trix and fibers. This helps to validate fiber alignment and serves as input data for numerical analysis
with representative volume elements concatenating real fiber position and orientation with the three-
dimensional stress tensor. Flexural and uniaxial tensional tests are performed combining multiple
measuring techniques. Next to conventional displacement and strain measuring methods, sound
emission analysis, in terms of quantitative event analysis and amplitude appraisal, and also high-
resolution digital image correlation accompany the tests. Due to the electrical conductibility of carbon
fibers, the material’s resistivity could be measured during testing. All sensors detect the material’s
degradation behavior comparably, showing a strain-hardening effect, which results from multiple,
yet locally restricted and distributed, microcracks arising in combination with plastic deformation.

Keywords: carbon short fiber reinforced concrete; multi-scale modeling; multiple microcracking;
RVE; 3D-printed concrete; CT material analysis; acoustic emission

1. Introduction

The degradation phenomena of fiber-reinforced concrete during fatigue loading is a
complex mechanism framed by a combination of the destructive processes fiber rupture,
matrix rupture and fiber pull out. Being part of the priority program SPP 2020, this project
examines the materials fatigue behavior and crack development of a high strength carbon
short fiber reinforced concrete (CSFRC) in an experimental-virtual lab. As preparation
for the analysis of complex fatigue tests, this paper describes the investigation of static
flexural and tensile tests with multiple sensor types to capture the degradation process and
presents convergence studies of accompanying numerical algorithms.

The usage of discontinuous chopped fibers as reinforcement in cementitious composite
materials can yield materials with interesting properties but requires careful attention to
mixture design and sample preparation. Parameters such as fiber length and aspect ratio,
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dispersion and wetting behavior of the fibers as well as fiber orientation in the hardened
sample have a tremendous impact on the final mechanical properties of the material [1].
Especially fiber length plays an important role, as fibers that are too short cannot effectively
transfer tensile loads out of the matrix and thus only contribute to post-cracking toughness
by being pulled out of the fiber canal [2].

In contrast, composites in which the (micro-)mechanical behavior of fiber and matrix
are tailored to each other show a noticeable increase in tensile strength and a capacity
for deformation beyond their linear-elastic limit [3,4]. Stress–strain diagrams for loading
scenarios under tension for such composites appear bilinear, with the typical linear-elastic
behavior occurring until a first crack is introduced. After this point, deformation behavior
known as ‘strain-hardening’ starts to set in. The composite is able to withstand a further
increasing load, albeit with noticeably decreased stiffness. This strain-hardening behavior
is linked to multiple microcracking appearing in the specimen, as the fibers bridging the
cracks thus allow for further transmission of the load. Final failure will only occur once
this bridging capacity is eventually exhausted [5,6].

The small and very well controlled width of these microcracks leads to several ad-
vantages of these materials when considering durability. The small crack width hinders
diffusion of aggressive substances into the material [7] and has even been linked to self-
healing capabilities [8,9]. Materials exhibiting such behavior have been described by the
umbrella terms ‘strain-hardening cementitious composites’ (SHCC) or ‘engineered cemen-
titious composites’ (ECC). Prior research nearly universally focuses on the use of polymer
fibers in their systems. While these fibers provide the composite with an impressive capac-
ity for deformation, the achievable tensile strength is limiting when considering structural
use. Prior research by our group shows that composites with enticing strength values
(flexural strength above 100 N/mm2) can be achieved when using carbon fibers [10,11]. In
addition, carbon fibers provide additional benefits in the field of structural health mon-
itoring due to their electric conductivity [12] or fire protection due to better mechanical
behavior when exposed to heat [13].

We use a CSFRC with a specifically designed mixture and a fiber content of 1 to 3 vol%.
With the help of an additive manufacturing process, in which the admixed carbon fibers
are oriented in an almost uniaxial direction, this material gains extremely high flexural and
tensile strength and shows a strain-hardening effect [11,14,15]. The use of a 3D concrete
printer makes it possible to establish the alignment because of the homogenous material
flow inside the printer’s nozzle. The aligned fibers strengthen the concrete extremely in
comparison to non-reinforced concrete or a sample with statistically oriented fibers.

The virtual and numerical part of this study consists of a multiscale simulation method.
Using X-ray computed tomography (CT) data, the location and orientation of carbon fibers
are the basis for structural-oriented modeling in micro-scale. Small representative volume
elements (RVE) depict fibers and the cementitious matrix in high definition. Homogenizing
these elements for macro-scale simulation leads to global material properties. The question,
how changes in structure in micro-scale such as local fiber rupture, fiber–matrix debonding
and matrix failure affect macroscopic behavior of fatigue degradation, is one main goal of
this research project. Part of this paper is a convergence study of different RVE sizes and
numbers of elements.

The data of meso- and macro-scaled experiments delineate the calibration of these
calculations. The basic CT data originate from miniature specimens in order to attain
images capable of resolving the meso scale. Next to fiber detection, this method helps
to discover micro matrix cracks and their development during fatigue testing, as shown
in [16]. Here, we especially examine miniature specimens under flexural loading com-
bined with sound wave-based non-destructive testing methods giving an insight into the
load-bearing behavior.

On a macroscopic level, locally detached measurement methods accompanied uniaxial
tensile tests. Digital image correlation (DIC), in particular, makes a significant contribution
to identifying the development of cracks and damage by covering a large measurement
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range of the specimen’s surface. A new method based on the electrical conductivity of
the carbon fibers was also developed and successfully applied to show fiber destruction
as a main cause of failure. Furthermore, acoustic emission analysis provides additional
insight into the specimen degradation on macro-scale experiments as well. Both sound-
based analysis and electrical resistivity measurement enable the detection of damage in the
specimen’s inside while DIC gives high-resolution information about microcrack evolution
on the surface.

2. Raw Material and Sample Preparation

The use of fibers as reinforcement for concrete connects the tensional stress capabilities
of the fibers with the compression resistivity of concrete to form a composite material,
which can withstand high loads. Most often, fiber reinforcement is either admixed to the
fresh concrete as chopped fibers or textile layers consisting of continuous fiber strands are
embedded into the molded concrete [17]. The latter has the advantage that most of the
fibers are directed uniformly, which reinforces a uniaxial stressed construction in the best
way. The arbitrary orientation of short fibers leads to extreme inefficiency, as statistically
only 6% of the fibers face in the loading direction within an angle of 20◦. If all fibers point
in parallel along a beam, they all contribute to the absorption of tensile forces, allowing
for a resource-saving and efficient use of short-fiber reinforcement. Studies describing the
possibility of achieving an orientation of polymer fibers suggest an extrusion of concrete
as a viable way to control fiber alignment [18–22]. The concrete moves uniformly inside
the nozzle, which rectifies the admixed fibers along the printed strand’s longitudinal axis.
Similarly, an orientation can be achieved by pouring concrete into an oblong mold at one
end, letting the concrete flow to the other. Hereby the unidirectional movement leads to
fiber alignment parallel to the direction of movement as well [23]. By positioning several
extruded strands next to each other, structures build up. This procedure is a 3D printing
method called liquid deposition modeling (LDM). It leads to concrete with a high amount
of aligned fibers in the direction of nozzle movement [10,14]. By choosing engineered
extrusion paths, the possibility to align the fibers according to the principal tensional
stresses within the structure exists [24].

Ref. [14] examined the possibility of enhancing the fiber–matrix bond by pretreating
the carbon fibers in different ways. This research proposes a thermal de-sizing process
under oxidizing conditions that leads to hydrophilization of the fiber surface as oxygen is
introduced into the inorganic carbon structure. We adopt this process by heating the carbon
fibers to 425 ◦C and holding the temperature for three hours. Under these conditions,
the sizing burns and the fibers’ surface starts to oxidize, increasing its roughness. The
positive side effect of increasing the fiber’s hydrophilicity enables the addition and effective
dispersion of high fiber amounts of up to 3% by volume to the concrete. This high fiber
content requires a high amount of plasticizer to make the mixture suitable for pumping
and printing. Table 1 shows the concrete recipe used in this study. Due to the small nozzle
of 2 to 4 mm in diameter used for 3D printing, the maximum grain size is 0.5 mm. The
water–cement ration is 0.41, including the water in the plasticizer. Carbon fibers are added
additionally to the amounts specified.

After production, the specimens are cured at room temperature for one day at
100% RH, set under water for six days and stored for another 21 days with 60% RH.

2.1. Preparation of Miniature Bending Beams for Three-Point Bending Tests

Small-sized specimens with dimensions of 60 × 12 × 3 mm were manufactured as
described in [16] and subjected to the static three-point bending tests on the universal
testing machine Wolpert 10 kN, Ludwigshafen, Germany with a 500 N load cell. The test
was conducted in displacement-controlled mode with a constant rate of 0.11 mm/min. For
flexural testing, specimens are reinforced with 3 vol.-% carbon fibers (Tenax-J HT C261,
Teijin Ltd., Tokyo, Japan).
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Table 1. Concrete recipe for CSFRC with 3D printing ability. Carbon fibers are added additionally to the amounts specified.

Ingredient Name Amount

cement Holcim Sulfo 52, 5R 34.6 wt%
silica fume Sika Silicol P 21.6 wt%
quartz flour Quartzwerke SF500 21.6 wt%
quartz sand Quartzwerke H33 7.6 wt%

water - 11.6 wt%
plasticizer BASF Master ACE 460 3.0 wt%

carbon fiber Tenax-J HT C261
Zoltek PX35 0.82 wt% (per 1 vol.-%)

2.2. Macro Scaled Specimen for Uniaxial Tension Tests

Similar to the description in [16], the dry concrete components are admixed in a
BECKEL bucket mixer (Schwallungen, Germany), water and plasticizer are added and
mixing is continued until nearly all agglomerates are dispersed. Finally, 1 vol.-% carbon
fibers (PX35, Zoltek Corporation, Bridgeton, MO, USA) are added and the mixing process
is continued shortly for 40 s twice, while in between the bucket’s walls are cleared from
dry fibers.

For the production of larger specimens, we developed a 3D concrete printer with
a possible working zone of 1.00 × 1.00 × 0.50 m [15]. It consists of three separately
controllable axes, which are arranged spatially, to move the printing unit. It is a speed-
controlled pneumatic piston pump, which compresses a foil cartridge filled with fresh
CSFRC. The nozzle has a quadratic aperture with a lateral length of 4 mm.

The macroscopic specimens are bone-shaped and tested under uniaxial tensional load.
Their outermost dimensions are 450 × 100 × 50 mm with a tallied region of a constant
width of 50 mm in length in the specimen’s center, leading to a cross section of 50 × 50 mm
(Figure 11). In the reducing part, the specimen has a circular outline. Ref. [25] examined the
influence of different bone shapes concerning minimum stress peaks due to the specimen’s
outline resulting in the aforementioned dimensions. The printing path is parallel to the
bone-shaped outline, i.e., circular with increasing radiuses to the vertical centerline to
establish the tapering area. Consequently, the carbon fibers, which are oriented in the
printed strand’s direction, are aligned to the principal stresses of the specimen under a
uniaxial load.

After the printing process has finished, the specimen is molded to gain a more def-
inite surface. This is only necessary to flatten the specimen’s surface to be able to apply
measuring equipment. Therefore, the specimen’s prior outline is slightly bigger than
desired, as molding compresses the wet concrete. Concomitantly, the specimen’s top is
pushed upwards and needs to be cut off after curing with a stone saw Norton CM 501,
Wesseling, Germany.

The specimen is glued via connecting steel plates to the machine using a duromer
adhesive, MC-DUR 1280 (MC-Bauchemie Müller GmbH & Co. KG, Bottrop, Germany),
to establish a stressless clamping at the specimen’s end (Figure 11). Additional steel
plates are mounted to the sides in the clamping region to increase friction and to enlarge
the area of load transmission. Clamping is preferred to a jointed connection as it leads
to a uniaxial loading independent of the distribution of microcracks. The static tests are
performed displacement-controlled on a universal testing machine, Roell+Korthaus 100 kN,
Ulm, Germany.

3. CT Investigation and Numerical Simulation

The basis for numerical analysis is data obtained from X-ray computer tomography.
Even the carbon fibers with their very small diameter can be detected to serve as an outline
for a FEM-mesh with real fiber distribution.
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3.1. X-ray Computed Tomography
3.1.1. Measurement

The CT-scans were carried out using a Nanotom M X-ray CT scanner (GE Inspection
Technologies LP, Lewistown, PA, USA). An acceleration voltage of 70 kV and a current of
190 µA was set and a full scan consisted of 2000 single images taken at an exposure time
of 2000 ms. The scanned sample was prepared with a cross-section of 3.1 mm × 2.2 mm,
leading to a voxel size of 1.7 µm. Using phoenix datos|x, the raw data was reconstructed
into a 3-dimensional image, converted into RAW-format and imported into ORS Dragonfly
2020.2 (Object Research Systems (ORS) Inc., Montreal, QC, Canada) for segmentation and
quantitative analysis.

3.1.2. Segmentation Procedure

As the segmentation of the ‘Tenax-J HT C261′ fiber (Teijin Ltd., Tokyo, Japan; length
3 mm, diameter 7 µm) proved to be too inaccurate to act as a basis for a reliable representa-
tive volume element in numerical simulation (see Section 3.2), a sample containing 1 vol%
of the larger fiber ‘Kureha Kreca Chop C-103T’ (Kureha Corp., Tokyo, Japan; length: 3 mm,
diameter: 18 µm) was segmented instead as a model system, as alignment could also be
observed using those fibers.

Carbon fibers are well known to be challenging to segment using conventional X-ray
CT. Their small diameter sets strict limits to the dimensions of the sample to be measured,
as a similarly small voxel size has to be achieved. In addition, the density of carbon
fibers is fairly close to that of the cementitious matrix, making segmentation procedures
purely based on the thresholding of grayscale values highly inaccurate. Often, the use of
synchrotron CT is seen as necessary [26].

We lay out a segmentation procedure making use of image processing steps as well as
geometric parameters of the fibers allowing for successful analysis based on images ob-
tained from a regular laboratory X-ray CT machine. As a first step in segmentation, upper
and lower threshold grayscale values have to be defined for the material to be segmented.
This is problematic in the original scan image, as not every material present in the compos-
ite is represented by a singular separated peak. The grayscale values of our measurements
separate broadly into two categories—a first peak at low values (16,000–19,000) correspond-
ing to background and voids as well as a second peak at higher values (21,000–32,000)
encompassing all the material present in the sample without further separation (Figure 1a).
Coupled with the fact that the fibers themselves are not perfectly uniform in their grayscale
value, threshold values derived from the original scan are always highly inaccurate.

Solutions proposed in literature usually rely on segmenting using filters highlighting
the low variation of grayscale values within the fiber while there is a discontinuous jump
in value at the interface [27]. Further refinement can be carried out using geometric
parameters of the desired objects [28]. An algorithm matching the former approach is
implemented in ORS Dragonfly called ‘Local Histogram Equalization’ (LHE). The LHE
filter is a contrast-enhancing option recalculating a voxel’s grayscale value based on the
value of its direct neighbors [29,30]. As a result, the mostly homogenous fibers will appear
in a nearly monochromatic black and while the more heterogenic matrix appears in a
noisy gray. From the filtered image, a considerably more accurate threshold value can be
derived. Distributions of grayscale values and excerpts from the original and filtered scan
can be seen in Figure 1. The areas highlighted in red correspond to the approximate values
relevant for fiber segmentation.

While the LHE filter allows thresholding methods to work on a principal level, a lot
of isolated noise is still picked up alongside the fibers. To allow for further refinement,
a connectivity analysis is performed by Dragonfly, identifying each voxel present in the
segmentation that connects to at least 6 neighbors as a discrete object. This acts as a basis for
the quantitative analysis of the objects and enables further refinement of the segmentation.
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Figure 1. (a) Original, unfiltered scan. Fibers vary in grayscale value and overlap with the matrix,
making clean segmentation difficult. (b) Scan after being filtered through an LHE filter. Fibers appear
as monochromatic black with considerably improved contrast to the matrix. The areas marked in red
depict the approximate grayscale values corresponding to carbon fibers.

The discretized objects can be projected back onto the original reconstructed image
and a grayscale value histogram of each voxel intersecting with the segmented objects can
be created. As the initial segmentation was based on the filtered image’ s grayscale values
and preselected the fibers, this newly created histogram is considerably more significant
in terms of material represented in its peaks. As can be seen in Figure 2a, the histogram
separates into two regions, with the values below 21,000 mostly representing noise and
values above that mark mostly representing fibers. Everything outside the peak highlighted
in red is discarded from the segmentation. Final elimination of remaining noise is carried
out by a geometric analysis of the remaining objects. Objects with an excessively low
volume (<1000 µm3) and a high aspect ratio (>0.5) are removed, as they stray too far from
proper fiber geometry. The final segmentation seen in Figure 2b is used to quantify the
3-dimensional alignment parameters of the fibers within the sample as well as a basis for a
representative volume element (RVE) for modeling purposes.

3.1.3. Alignment Analysis

ORS Dragonfly allows for the automatic geometric analysis of segmented objects.
Following the steps laid out above enables the export of the 3-dimensional alignment
angles of the fibers present in the sample. Their distributions are shown in Figure 3.

As can be seen, both the θ- and φ-angles scatter tightly around specific angles, showing
the effectiveness of the alignment during extrusion. In-plane alignment (Figure 3b) occurs
mainly around the 0◦ angle (which coincides with the direction of tensile forces occurring
during flexural and tensile testing), deviating at about±10◦. Out-of-plane alignment occurs
at the 90◦-angle, i.e., fibers lie nearly perfectly horizontally (seen in Figure 3c), scattering at
about ±5◦.

The results correspond well to other published data on the alignment of samples
containing the thinner ‘Tenax-J HT C261′ fiber [10,16], showcasing that the usage of the
thicker KrecaChop fiber as a model system still leads to accurate results as far as alignment
is concerned.
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3.2. Numerical Simulations Based on µ-CT Data

The information obtained from CT data provides the basis for the realistic numerical
simulation of the mechanical behavior of CSFRC. To enable feasible computation, we
propose a two-scale approach that represents both the fiber (micro) scale and the specimen
(macro) scale. The approach in means of computational homogenization [31–33] requires
the determination of a (local) material law in each macroscopic material point by solving
cell problems in representative volume elements (RVE) on the fiber scale. In particular, the
macroscopic relationship of the deformation gradient ∇u and the stress tensor σ is given
by mean values of quantities determined in the RVE. This leads to a numerical material
law of the form

σ = f(∇u), (1)

where the mapping f realizes the macro–micro–macro scale transition and represents the
local effective material law. Based on own preliminary studies, we neglect aggregates on
the fiber scale, meaning the numerical representative volume elements consist only of (ho-
mogenized) concrete matrix and fibers. For this purpose, the carbon fibers are identified in
typical µ-CT volume cutouts. Specifically, the fiber center curves are marked and imported
into the finite element software, where they are cylindrically expanded to the fiber diameter.
The aspect ratio of the carbon fibers and the fact that they are arranged almost parallel
result in long cubic RVEs. Figure 4 shows an RVE of size 950 µm × 950 µm × 3670 µm
obtained from µ-CT data (a) and the reconstructed RVE for CSFRC with fibers of 16.3 µm
diameter and 3.1 mm length (b). The full section from which the RVE was extracted was
3.33 mm× 2.44 mm× 3.97 mm and the volume fraction of fibers was 1.08%. The resolution
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of the µ-CT data is given by the voxel edge length of 1.67 µm, which is sufficient to resolve
the fibers of 16.3 µm diameter.
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Figure 4. Representative volume element of size 950 µm × 950 µm × 3670 µm: (a) from µ-CT data,
(b) reconstructed in COMSOL Multiphysics®. The fibers of the RVE were extracted from µ-CT data
and imported into COMSOL Multiphysics® via LiveLink™ [34].

An essential aspect of models based on computational homogenization approaches is
the determination of RVEs that are as small as possible and yet representative for the entire
material. The efficiency of a numerical model is further influenced by the choice of a mesh
size that is just small enough to resolve all relevant mechanisms.

To determine the macroscopic material parameters, convergence studies were per-
formed for different cutouts (A–F) of the underlying overall geometry shown in Figure 5
with size information of the cut-outs in Table 2. The convergence studies in the linear-
elastic regime were performed with respect to RVE size and resolution (mesh size) in the
framework of a finite element discretization based on quadratic Lagrange elements on
simplicial meshes. The material data are set for 7 µm diameter fibers with elastic modulus
230 GPa and Poisson’s ratio 0.2 and concrete matrix with elastic modulus 20 GPa and
Poisson’s ratio 0.2. At first the optimal mesh size was determined and, in a second step,
the optimal size of the RVE was identified.
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3.2.1. Convergence Studies for Resolution

To determine the optimal mesh size, we compare simulation results with the physics-
controlled meshes provided in COMSOL Multiphysics® [35] with different element sizes
(finer, fine, normal, coarse, coarser and extra coarse) in cutouts B, C, D and E. By this
approach the element size parameters, such as maximum and minimum element size in
the mesh, are automatically adjusted to changed geometry dimensions.

The calculated homogenized elasticity tensors in Voigt notation serve as the ba-
sis for the evaluation. For the calculation of the tensors, periodic boundary conditions
were chosen.

The relative errors in relation to the results with the smallest grid size in each case were
computed and displayed in Figure 6. For all cutouts, a relative error of the homogenized
tensor of less than 0.2% could be achieved with normal element size. Based on this
evaluation, a normal mesh size is sufficient to reproduce the corresponding mechanisms.
The evaluations of the size of the representative volume element which follows are therefore
based on the calculations with normal element size.
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3.2.2. Convergence Study on the Size of the RVE

In the sense of an experimental-virtual Lab, it is desirable to determine a numerical
representative volume element that is as small as possible in order to keep numerical cost
low and yet large enough to be representative.

As before, the homogenized elasticity tensors in Voigt notation serve as the basis for
the calculation. In addition to the relative error of the homogenized tensor with respect to
the largest section F, we consider the relative errors of the first three diagonal elements of
the homogenized tensor in Voigt notation.

The graph for the convergence study in Figure 7 shows that, already from section
D, the relative error of the homogenized tensor and also the individual relative errors of
the diagonal components are in the range of the error obtained in the convergence study
with respect to mesh size. The convergence studies show that, at least in the linear-elastic
range, the microstructure of CSFRC obtained from µ-CT data can be reproduced well with
reasonable numerical effort. For further examination, calculations are continued with
cutout D and normal element size.
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4. Flexural Testing of Miniature Bending Beams Combined with AE

Acoustic emission (AE) can be defined as transient elastic waves caused by the release
of stored energy due to structural alteration in the material [36]. Compared to other
non-destructive monitoring techniques which were developed to examine the structural
condition of materials, the AE method has higher sensitivity. Besides detection of the
instant of the damage initiation, AE analysis provides particularly an idea of different
damage mechanisms, such as matrix cracking, fiber pull-out, or fiber breakage [37–39].
Correlating between certain AE features, such as the emitted energy of the AE signal and
the cumulative number of AE events, it is feasible to monitor the main stages of crack
development with the AE technique [40–43]. Recently, the AE method has proven to be a
meaningful tool for damage evaluation in fiber-reinforced high-performance materials in
experimental studies under different loading regimes [44–46].

This study considers the concurrent application of the AE technique, stress-time curve
analysis and dye penetrant inspection (DP) to assess the damage evolution and fracture
behavior in CSFRC during flexural loading. To monitor AE activity, four small-sized passive
piezoelectric AE sensors VS700-D (150–800 kHz) were coupled to the edges of the miniature
beam specimen (see Figure 8 and Section 2.1) using a hot adhesive. Sensors were connected
to the eight-channel acquisition system Elsys, where signals were recorded and digitalized
at a 20 MHz sampling rate. Figure 8 provides an overview of the experimental setup.

Analysis of the AE activity is based on three aspects: the interpretation of the time
domain features of the signal, the RMSAE value of the signal and the cumulative number
of events. The root-mean-square level of a raw acoustic emission signal, RMSAE, repre-
sents the power of an acoustic signal and can be considered a proxy for the AE energy
magnitude [47,48].

AE signals were localized in linear geometry by comparing the time delay of the elastic
wave between the different sensors. An onset time of AE signal is determined using an
automatic picking algorithm based on the Akaike Information Criterion (AIC) [49]. Figure 9
compares the applied stress with the AE signal’s characteristics RMSAE and normalized
cumulative sum of AE events.
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Figure 8. Overview of the experimental setup for static three-point bending tests on miniature
beam specimens.
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The stress development during static, displacement-controlled loading can be charac-
terized by two successive states: an elastic state, where it increases linearly, and a more
extended strain-hardening state, where stress continues to rise with a reduced rate rela-
tive to the previous period. Failure is very brittle and is characterized by a sudden drop
in stress.

Based on the analysis of the RMSAE and cumulative sum of AE events, two periods of
different AE activity which correlate with the specimen’s mechanical behavior are roughly
distinguishable. The first one, 0–1.2 min, does not have any AE activity matching the linear
elastic behavior in the stress curve, while the second phase, 1.2–7.2 min, has significant,
increasing AE activity. During the initial stage, AE activity was absent, suggesting that no
damage has yet occurred in the specimen. The first acoustic signals become evident, and
the change of the slope of the stress curve marks the onset of microcracking in the concrete
matrix, as 40% of the failure load has been reached. At the beginning of the second stage,
the recorded AE signal is dominated by low and medium amplitude acoustic emissions,
and the normalized cumulative sum of AE events curve increases slowly. With a further
increase of the load, the acoustic signals become more pronounced, and higher RMSAE
peaks start to occur. This stage represents the gradual damage accumulation resulting
from the stable growth of microcracks in the matrix. This is also visible in the normalized
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cumulative AE event’s plot as an increase in the gradient of the cumulative events curve.
The high activity of AE in the last stage reflects the critical crack growth in the localized
zone of maximal stress, ultimately causing the failure of the specimen.

Figure 10 shows the specimen after failure and the spatial distribution of the AE
events. It is evident that the specimen underwent an extensive cracking process before the
final failure occurred. Multiple thin cracks opened up in the central area of the specimen on
the tensile side (bottom). The eventual failure was initiated by the expansion of the crack
located near the centerline of the specimen, slightly closer to the right support region. This
conclusion is based on the agreement between the visual inspection of the damage zone
and the plot of cumulated locations of the AE events. Most of the AE events originate from
the region within 20–40 mm, with the maximum of the events generated near the midpoint
of the specimen in the location of the main crack. The spatial AE event distribution reflects
the damage zone width and the distinct crack’s actual positions.
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Figure 10. (a) Histogram with spatial distribution of the AE events along with the specimen; the y-axis
indicates the number of AE events over the length of the specimen, and the width of the individual
bins correspond to 0.38 mm; the x-axis corresponds to the length of the specimen; (b) shows the crack
pattern visible by dye penetrant inspection on the specimen’s bottom.

5. Tensional Testing of Large Bone-Shaped Specimen Combined with DIC, AE and
Electrical Resistivity Measurement

As flexural testing is a combination of local compression and tension, it is necessary
to investigate the material’s uniaxial behavior as well. In a static flexural analysis, our
team found out that using rectangular cross sections, failure occurs not because of collapse
in compression zone but due to fiber pull-out or rupture which is shown as a loss of
strength in the tensile zone [24]. The fibers in the compression zone are oriented in the
direction of stress, meaning they barely influence the material’s compression strength: in
compression tests, transverse tension is mostly decisive for the specimen’s failure. However,
the fibers are not oriented perpendicular to the transverse tension, so they do not increase
the load transfer for this stress direction. Therefore, the compressive behavior is similar to
unreinforced concrete and is not part of this paper.

For uniaxial tensional tests, macro scaled, bone-shaped specimens (see Figure 11
and Section 2.2) are equipped with various non-destructive measurement methods for
the locally differentiated recording of deformations. This enables the detection of the
damage process in high precision. In addition to the use of displacement transducers
(LVDT) and strain gauges, digital image correlation (DIC) detects strain over a wide area
of the specimen’s surface. A single camera (DALSA Genie Nano M4040) is used for a 2D
measurement. With its high resolution of 12 MPx, the observation of small deformations
and growth of microcracks is possible. The specimens are prepared with white painting
and either a randomly black dot pattern or trembling black lines using a rubber stamp.
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Figure 11. Dimensions of bone-shaped specimen used for the tensile test; the red circles mark the
positions of the acoustic emission sensors (left). Specimen connected to testing machine with applied
sensors (right).

The degree of damage is also visible by using the non-destructive measurement of
electrical resistivity. The high proportion of electrically conductive carbon fibers leads to a
well-measurable change in voltage resulting from the connectivity losses of the fibers. This
procedure, which is already well established for carbon fiber-reinforced plastics (e.g., [50]),
has so far only rarely been applied to concrete specimens [12,51,52]. With the help of a DC
voltage source and a series resistor, acquiring the voltage drop at different locations of the
test specimen is well suited as a damage detection tool showing qualitative relationships to
damaged sections. Depending on the test specimen, the measured resistance values are in
the range of a few hundred ohms to a few kilo-ohms.

Furthermore, eight acoustic emission (AE) sensors, V103-RB Olympus (680–1630 kHz),
were mounted on the specimen, as shown in Figure 11.

As described above for flexural testing, strain hardening occurs. This effect is also
visible in tensional testing, as Figure 12 shows. The strain gauges show linear elastic
behavior for a large range of tension. Once a critical point is reached, the strain significantly
increases while only little further stress can be applied (point d). This point describes the
emergence of microcracks at the end of the linear elastic region. Looking at the integral-
measuring LVDT sensors, they show similar results; however, the two phases of elastic and
plastic deformation cannot be made out as clearly as with strain gauges.

DIC helps to understand the material’s load-bearing behavior: Not only did several
microcracks evolve during the test, but they also extended continuously. Reaching the
maximum stress level at points f and g, Figure 13 reveals a series of densely spaced cracks
across the entire width of the specimen. Therefore, the observed increase in strain capacity
for the specimen during tension is ensured through the pronounced multiple cracking,
which permits the excessive strain energy to be released at failure. One crack spreads out
further than the others, resulting in brittle failure. The widening and lengthening of the
existing cracks can be observed rather than forming new ones.

The strain gauges measure over a length of 3 mm, which is a lot smaller than the
distance between the two cracks visible in Figure 13. They measure at a very specific point
in a region of high stress values. In contrast, the LVDTs span over the specimen’s total
length measuring also parts with lower stress due to the bone shape leading to a smeared
stress–strain relation with smaller overall strain values. The plastic deformations are
visible as the gradient decreases continuously starting between points c and d, concluding
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that microcracks already appear in a region next to the area where the strain gauges
are positioned.
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Figure 13. DIC evaluation at stages (a–g) (see Figure 12) displays strain on the specimen’s surface and shows the formation
of multiple microcracks in a wide-spread area. Additionally, the evolution of the crack leading to failure can be observed in
pictures (d–g). Small-sized local strain maxima (light blue) can be subjected to measuring noise.

Point g marks an instable point where stress decreases while strain still augments.
Figure 13 reveals that the final crack already interpenetrates the whole width of the ob-
served specimen’s side, implying that only the failure-causing crack enlarges. It might be
possible that the non-observed sides of the specimen are not fully departed yet, and fibers
break or are pulled out of the matrix in a zipper principle starting at one point in the cross
section. Rupture occurs when the fibers cannot overstretch the crack and withstand the
load anymore.

Looking at the results of the acoustic emission analysis in Figure 14, it is evident that
the acoustic emission characteristics significantly varied in CSFRC specimens subjected
to different loading conditions. Unlike the three-point bending test, where no acoustic
activity was recorded in the linear-elastic stage, the AE signals started appearing at the
beginning of monitoring at a low level of stress in the tensile test. As can be seen from
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the analysis of the RMSAE, signals do not differ significantly in amplitude throughout the
test. In fact, low-amplitude signals dominated the whole loading process, while strong AE
signals appeared only in the final phase, in the proximity of the ultimate strength.

Materials 2021, 14, x FOR PEER REVIEW 15 of 19 
 

 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

g 

 

 

 
Figure 13. DIC evaluation at stages (a–g) (see Figure 12) displays strain on the specimen’s surface and shows the formation 
of multiple microcracks in a wide-spread area. Additionally, the evolution of the crack leading to failure can be observed 
in pictures (d–g). Small-sized local strain maxima (light blue) can be subjected to measuring noise. 

Looking at the results of the acoustic emission analysis in Figure 14, it is evident that 
the acoustic emission characteristics significantly varied in CSFRC specimens subjected to 
different loading conditions. Unlike the three-point bending test, where no acoustic activ-
ity was recorded in the linear-elastic stage, the AE signals started appearing at the begin-
ning of monitoring at a low level of stress in the tensile test. As can be seen from the anal-
ysis of the RMSAE, signals do not differ significantly in amplitude throughout the test. In 
fact, low-amplitude signals dominated the whole loading process, while strong AE signals 
appeared only in the final phase, in the proximity of the ultimate strength. 

 
Figure 14. AE signal’s characteristics, the normalized cumulative sum of AE events and RMSAE. Red 
circles (a–g) indicate the different stages in Figure 13. 

A small number of AE signals were recorded during the initial linear elastic stage of 
the loading between points a and c, causing a relatively flat growth of the curve of the 
normalized cumulative sum of AE events. As can be seen in Figure 13, the AE signals in 

no
rm

al
iz

ed
 cu

m
m

ul
at

iv
e s

um
 o

f A
E 

ev
en

ts
 [-

]

RM
S A

E  [
V]

Figure 14. AE signal’s characteristics, the normalized cumulative sum of AE events and RMSAE. Red
circles (a–g) indicate the different stages in Figure 13.

A small number of AE signals were recorded during the initial linear elastic stage
of the loading between points a and c, causing a relatively flat growth of the curve of the
normalized cumulative sum of AE events. As can be seen in Figure 13, the AE signals in
the initial stage are associated with the formation of isolated micro-cracks in the gauge
area of the specimen. The acoustic emission method does not discern the formation of
the initial crack at the time of transition from the elastic to the plastic deformation stage
after point d, although it could give some indication of this, namely, a slight increase in
the amplitude and density of the AE signal. With the further increase in the stress, the
formation of new cracks, their coalescence and propagation are continued, accompanied
by moderate acoustic emission activity.

A distinctive feature of the last stage was the strong acoustic emission activity, marked
by the appearance of the high-energy AE signals and a sudden increase in the number of
cumulative AE events at point f. The highest RMSAE peak amplitude is one order larger
than that in previous stages, which coincides with the time of the failure.

Comparable results can also be obtained from electrical resistivity measurement
(Figure 15). The initial specimen’s resistance is about 1070 Ω. While strain grows, the
resistivity barely changes until the end of linear elastic behavior is reached at point d. From
there on, continuous material degradation is detected as resistivity increases exponentially.
Especially after reaching the unstable point g, the gradient becomes extremely high. The
carbon fibers are mainly responsible for good conductivity, concluding that the increase
in resistivity is an indication for fiber destruction. This can either be fiber rupture or fiber
pullout, although it is not possible to distinguish between either one.
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6. Conclusions

Carbon short fiber reinforced concrete shows great promise as a material for use in
civil engineering structures due to its outstanding performance under tensile load. Results
seem very promising regarding both static and dynamic loading. The large amount of
oriented fibers in the direction of principal tensile stresses leads to high tensile and flexural
capabilities. Hereby, the orientation of the fibers can be achieved by processing the concrete
with a 3D printer.

Fiber alignment could successfully be examined using X-ray CT analysis. Several
difficulties had to be overcome to be able to separate fibers from the surrounding concrete
matrix. This could be achieved by employing various filtering techniques developed for
digital image processing and iterating on the result using shape identification algorithms.
After segmentation, the retrieved data was analyzed and quantified in view of the fiber’s
orientation. Approximately 68% of the fibers are oriented within an angle of ±10◦ to the
desired direction, leading to an economic use of carbon fibers and considerable improve-
ment of tensile and flexural strength. The success of this process poses as a promising
starting point for further automation of the as-now still user input-reliant analysis. Further
research into alternative segmentation methods (such as those based on deep learning
methods) seem especially fruitful for the reliable segmentation of carbon fibers with even
smaller diameters.

The CT data are further used for numerical simulation with representative volume
elements. For most realistic calculations, fibers and the surrounding matrix are transferred
to a small FEM-model. A convergence study using different sizes of the RVE itself and also
different mesh sizes shows that in linear-elastic ranges, the material can be represented
very well with reasonable calculation efforts.

The performed static tests are a preliminary stage to the analysis of CSFRC under
fatigue loading to compare multiple measuring techniques. Both flexural and tensile
tests were performed, while the successful combination of acoustic emission analysis,
digital image correlation and electrical resistivity measurement as well as conventional
displacement and strain measurement lead to a very concise description of the material’s
load-bearing behavior. The material shows strain-hardening behavior, which results from
multiple, yet locally restricted and distributed, microcracks arising in combination with
plastic deformation. Unlike conventional steel fiber reinforced concrete, CSFRC is able
to withstand even higher stresses after leaving the linear elastic stage, which classifies
the material as a strain-hardening cement-based composite (SHCC). The starting point
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of matrix degradation was detected comparably by all sensors, though with different
intensities and accuracies. While the processes on the macroscale seem relatively clear,
we aim to obtain a more complete picture of the CSFRC system by further researching
behavior on the single fiber scale. The usage of frequency analyses of acoustic emission
datasets is likely to lead to a better understanding of the processes governing final failure,
especially the question of whether it is governed by fiber rupture or fiber pullout.
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