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Abstract. We investigate the small frequency and momentum structure of the weakly
interacting Bose gas in two dimensions using a functional renormalization group approach.
The flow equations are derived within a derivative approximation of the effective action up to
second order in spatial and temporal variables and investigated numerically. The truncation
we employ is based on the perturbative structure of the theory and is well described as a
renormalization group enhanced perturbation theory. It allows to calculate corrections to the
Bogoliubov spectrum and to investigate the damping of quasiparticles. Our approach allows to
circumvent the divergences which plague the usual perturbative approach.

1. Introduction

The interacting Bose gas is one of the oldest models of quantum field theory. Its excitation
spectrum in three dimensions is qualitatively correctly described by the standard Bogoliubov
approximation. At small wave vectors the quasiparticles have a Goldstone-mode character with
energy linear in momentum while at large wave vectors, where interactions are not dominant, the
dispersion approaches the quadratic dispersion of free bosons. The Bogoliubov approximation is
the simplest one to obey the Hugenholtz-Pines relation [1] which reads Σ11(0, 0)−Σ12(0, 0) = µ,
where Σ11(0, 0) is the normal and Σ12(0, 0) the anomalous part of the self-energy evaluated at
zero energy and momentum and µ is the chemical potential. However, as was shown later by
Nepomnyashchy and Nepomnyashchy [2], the exact self-energy further obeys Σ12(0, 0) = 0. This
relation is violated in the Bogoliubov approximation and also in the Beliaev theory [3]. One
puzzling aspect is that the linear dispersion of the low energy excitations in both approximations
derive from the incorrect assumption of a finite value for Σ12(0, 0). As shown in [4, 5] the
correct structure of the self-energies cannot be obtained from a finite order perturbative analysis.
Quite recently, the renormalization group (RG) technique has been successfully employed to
investigate the small frequency and momentum structure of the self-energy [6] and recovered the
earlier results in [4, 5]. These results have recently been shown to emerge quite naturally also
from the nonperturbative or functional renormalization group (FRG) [7, 8, 9] which is perhaps
the simplest approach which can account both for the vanishing of the anomalous self-energy
and the emergence of the Goldstone-mode. These FRG studies concentrated mainly on the
thermodynamic properties of the Bose gas. The dynamical behavior of the Bose gas, e. g. the
properties of the self-energies away from the asymptotic Goldstone regime, have so far not been
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addressed in a consistent approximation which obeys the Nepomnyashchy relation. Here we
briefly summarize how the FRG approach can be employed for this task and demonstrate how it
can be used to investigate the dynamics at finite frequency and momenta. For details, we refer
to Ref. [10].

The two dimensional situation is perhaps the most interesting case since interaction effects are
stronger than in three dimension (they are even stronger in one dimension but here specialized
techniques such as bosonization can be applied [11]). In the two dimensional situation, the
s-wave scattering length a, which is the usual expansion parameter in the three dimensional
Bose gas, vanishes. This introduces a strong renormalization of the quasiparticle structure [12].
We shall therefore concentrate below on the two dimensional situation at zero temperature [10].
While we have not attempted this yet, in principle our approach can be directly applied also at
finite temperatures. The numerical evaluation would become however more involved.

2. Functional renormalization group equations

The starting point is the usual action of the weakly interacting Bose gas of particles with mass
m at zero temperature

S[ψ†, ψ] =

∫

~x,τ
ψ†

~x,τ

[

∂τ − 1

2m
∂2

~x − µ

]

ψ~x,τ +
u0

2

∫

~x,τ
ψ†

~x,τψ
†
~x,τψ~x,τψ~x,τ , (1)

where
∫

~x,τ =
∫

dτ
∫

dDx. We assume a local contact interaction of strength u0. We shall

assume that the U(1)-invariance of the action (1) is broken in the ground state such that the
fields ψ† and ψ acquire nonvanishing vacuum averages,

〈ψ†
K〉 ≡ 〈ψK〉 = δK,0

√
n

0
.

Here, n0 is the density of the Bose condensate and K = (~k, iω) denotes the D + 1-dimensional
energy-momentum. To apply the FRG formalism, we switch to the generating functional
of irreducible vertices Γ(φ̄, φ) which is related to the Legendre transform of the generating
functional of connected Green functions Gc[j, j̄] with respect to the averaged fields (φ̄, φ)T =
(δj , δj̄)

TGc[j, j̄] and satisfies the exact flow equation [13]

∂ΛΓΛ (Φ) = −1

2
Tr

{

∂ΛRΛ

(

δ2ΓΛ

δΦδΦ
− G

−1

0,Λ

)−1
}

, (2)

where we introduced the vector field Φ = (φ̄, φ)T . The block-diagonal inverse free propagator
matrix has elements [G−1

0,Λ]K,K ′ = δK,K ′

(

±iω − k2/(2m) + µ−RΛ(k)
)

. The dependence of ΓΛ

on the infrared cutoff Λ is generated through the additive regulator R
Λ
(k) which is the matrix

element of block-diagonal matrix RΛ. We choose the Litim regulator which has the form [14]

RΛ (k) = (1 − δk,0) (2mZΛ)−1
(

Λ2 − k2
)

Θ
(

Λ2 − k2
)

, (3)

where ZΛ is the wave function renormalization. It is of advantage to introduce the longitudinal

field φl
K and the transversal field φt

K , which are related to the original fields ψK and ψ†
K through

φl
K = 2−1/2(ψ†

K+ψ−K) and φt
K = 2−1/2i(ψK−ψ†

−K). The new fields are introduced in such a way

that only the longitudinal component has a nonvanishing vacuum average, 〈φl
K〉 = δK,0

√

2n
0

while 〈φt
K〉 = 0. In this basis, and using a lowest order local-potential-approximation [15], one

can now derive in a straightforward manner (we used the formalism developed in Refs.[16, 17])
the flow equations for the order parameter [7, 8]

∂ΛnΛ = −1

2

∫

K

(

Ġtt
Λ(K) + 3Ġll

Λ(K)
)

, (4)
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as well as the flow of both diagonal vertex functions and of the mixed vertex function

∂ΛΓtt(Q) = −uΛ

∫

K

(

Ġll(K) − Ġtt(K)
)

−2nΛu
2
Λ

∫

K

(

Ġll(K)Gtt(Q−K) + Ġtt(K)Gll(Q−K) + 2Ġlt(K)Gtl(Q−K)
)

, (5)

∂ΛΓll(Q) = −uΛ

∫

K

(

Ġtt(K) + 3Ġll(K)
)

−2nΛu
2
Λ

∫

K

(

9Ġll(K)Gll(Q−K) + Ġtt(K)Gtt(Q−K) + 6Ġlt(K)Glt(Q−K)
)

, (6)

∂ΛΓlt(Q) = −nΛu
2
Λ

∫

K

{(

Ġtt(K) + 3Ġll(K)
)

Glt(Q−K)

+ Ġlt(K) (Gtt(Q−K) + 3Gll(Q−K))
}

, (7)

where Gij with i, j = l, t are the matrix elements of the full propagator matrix G and Ġij are
the single scale propagators which represent the matrix elements of the matrix

ĠΛ = −GΛ [∂ΛRΛ] GΛ. (8)

Flow equations for the interaction uΛ and factor ZΛ can be extracted from Eqs.(5-7).

2.1. Calculation of spectral density

The FRG approach was first applied to calculate the full momentum dependence of non-
homogeneous correlation functions in Ref. [18], where a sharp cutoff procedure was employed.
Later approaches [15, 19] proposed different schemes of how correlation functions at finite
momenta can be combined with local-potential-approximation (LPA) type truncations of the
action. We shall follow here an approximation similar to the one used in Ref. [15], which has
the most direct route to the self-energy in the symmetry broken state. It provides a feasible
way to solve the flow of the vertex functions (5-7) and to obtain information about the bosonic
self-energies and the dynamics. Using the analytical continuation technique from Ref. [20], we
can finally compute the spectral density from which we can extract e. g. the quasiparticle
dispersion and damping [10]. The damping arises from quasiparticles which decay into pairs
of quasiparticles (Beliaev damping). In three dimensions the damping is proportional to k5

[21, 22], whereas in two dimension the damping is proportional to k3 [23, 24]. While perturbative
approaches to the self-energy are plagued by divergences (see e.g. [22]), our calculation yields
self-energies which are infrared convergent. Figure (1) shows a representative scan of the spectral
density at a finite momentum. A more detailed discussion can be found in [10].

2.2. Hard core interaction limit: Schick’s results

Let us make a connection of our RG approach to the results obtained by Schick for hard core Bose
particles in two dimension [12]. Solving analytically the initial flow equations for large muΛ ≫ 1
one finds that the coupling constant decreases (initially) like 1/ log(Λ0/Λ), in accordance with
the vanishing of the two dimensional s-wave scattering length [25]. Furthermore, we find that
there is a crossover energy scale which separates the Goldstone regime from the high momentum
regime with quadratic dispersion. This energy scale is given by

µ∗ = −4πn0/[m log(a2n0)] , (9)

where a is the radius of the hard core bosons. Eq. (9) is exactly the result obtained via
diagrammatic resummation by Schick [12]. The hard core limit is thus correctly described
as a limiting case of our model which describes particles with a finite interaction and thus a soft
core.
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Figure 1. Spectral density for a value k/kc = 0.2, 0.3, 0.4, 0.5, 0.6 where kc = 2mc is the
crossover scale of the spectrum and c is the sound velocity of the Bose gas.

3. Conclusions

In summary, we have presented an extension of the FRG approach to the interacting Bose
gas which allows calculations of its dynamical properties. In contrast to the conventional
resummation techniques, our approach yields self-energies which are consistent with the U(1)-
symmetry which impose the constraints on the self-energies at zero momentum and frequency
Σ11(0, 0) = µ and Σ12(0, 0) = 0.
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