
Optimal and Probabilistic
Resource and Capability

Analysis for
Network Slice as a Service

Andrea Fendt

Dissertation
for the degree of

Doctor of Natural Sciences (Dr. rer. nat.)

University of Augsburg

Department of Computer Science

Software Methodologies for Distributed Systems

May, 2021

Optimal and Probabilistic Resource and Capability Analysis for Network
Slice as a Service

Supervisor: Prof. Dr. Bernhard Bauer
Department of Computer Science, University of Augsburg, Germany

Advisor: Prof. Dr. Jörg Hähner
Department of Computer Science, University of Augsburg, Germany

Technical Advisors: Dr. Christian Mannweiler and Lars Christoph Schmelz
Bell Labs Research, Nokia, Munich, Germany

Thesis Defense: September 30, 2021

Copyright © Andrea Fendt, Augsburg, May 2021

Abstract

Network Slice as a Service is one of the key concepts of the fifth generation of mobile
networks (5G). 5G supports new use cases, like the Internet of Things (IoT), massive
Machine Type Communication (mMTC) and Ultra-Reliable and Low Latency Com-
munication (URLLC) as well as significant improvements of the conventional Mobile
Broadband (MBB) use case. In addition, safety and security critical use cases move
into focus. These use cases involve diverging requirements, e.g. network reliabil-
ity, latency and throughput. Network virtualization and end-to-end mobile network
slicing are seen as key enablers to handle those differing requirements and providing
mobile network services for the various 5G use cases and between different tenants.
Network slices are isolated, virtualized, end-to-end networks optimized for specific
use cases. But still they share a common physical network infrastructure. Through
logical separation of the network slices on a common end-to-end mobile network
infrastructure, an efficient usage of the underlying physical network infrastructure
provided by multiple Mobile Service Providers (MSPs) in enabled.
Due to the dynamic lifecycle of network slices there is a strong demand for efficient
algorithms for the so-called Network Slice Embedding (NSE) problem. Efficient and
reliable resource provisioning for Network Slicing as a Service, requires resource allo-
cation based on a mapping of virtual network slice elements on the serving physical
mobile network infrastructure. In this thesis, first of all, a formal Network Slice
Instance Admission (NSIA) process is presented, based on the 3GPP standardiza-
tion. This process allows to give fast feedback to a network operator or tenant on
the feasibility of embedding incoming Network Slice Instance Requests (NSI-Rs).
In addition, corresponding services for NSIA and feasibility checking services are
defined in the context of the ETSI ZSM Reference Architecture Framework. In the
main part of this work, a mathematical model for solving the NSE Problem formal-
ized as a standardized Linear Program (LP) is presented. The presented solution
provides a nearly optimal embedding. This includes the optimal subset of Network
Slice Instances (NSIs) to be selected for embedding, in terms of network slice rev-
enue and costs, and the optimal allocation of associated network slice applications,
functions, services and communication links on the 5G end-to-end mobile network
infrastructure. It can be used to solve the online as well as the offline NSIA problem
automatically in different variants.
In particular, low latency network slices require deployment of their services and
applications, including Network Functions (NFs) close to the user, i.e., at the edge
of the mobile network. Since the users of those services might be widely distributed
and mobile, multiple instances of the same application are required to be available
on numerous distributed edge clouds. A holistic approach for tackling the problem
of NSE with edge computing is provided by our so-called Multiple Application In-
stantiation (MAI) variant of the NSE LP solution. It is capable of determining the
optimal number of application instances and their optimal deployment locations on
the edge clouds, even for multiple User Equipment (UE) connectivity scenarios. In
addition to that multi-path, also referred to as path-splitting, scenarios with a la-

iii

tency sensitive objective function, which guarantees the optimal network utilization
as well as minimum latency in the network slice communication, is included.
Resource uncertainty, as well as reuse and overbooking of resources guaranteed by
Service Level Agreements (SLAs) are discussed in this work. There is a consensus
that over-provisioning of mobile communication bands is economically infeasible and
certain risk of network overload is accepted for the majority of the 5G use cases. A
probabilistic variant of the NSE problem with an uncertainty-aware objective func-
tion and a resource availability confidence analysis are presented.
The evaluation shows the advantages and the suitability of the different variants
of the NSE formalization, as well as its scalability and computational limits in a
practical implementation.

iv

Acknowledgments

During the research and development of this dissertation I received great support
from several people.

First of all, I want to thank my supervisor Prof. Dr. Bernhard Bauer for giving
me the opportunity to write this Ph.D. thesis. I want to express my great gratitude
for his continued solution-oriented support in all matters and the excellent guidance
throughout the whole research and writing process. I also want to express my thanks
to Prof. Dr. Jörg Hähner to be the second advisor of my thesis.

Special thanks go to my superiors and colleagues at Nokia Bell Labs. Without this
collaboration and funding this thesis would not have been possible. In particular,
I am very grateful to Dr. Henning Sanneck, Dr. Christan Mannweiler and Lars
Christoph Schmelz for their expert feedback in countless meetings.

I am very grateful to my colleagues and former colleagues at the Software Method-
ologies for Distributed Systems Lab and the friendly and cooperative working atmo-
sphere. I would like to mention in particular Dr. Christoph Frenzel and Dr. Simon
Lohmüller who supported me in the familiarization process and enabled me to have
a quick start into the topic and make fast progress.

Last but not least, a heartfelt thank you to my friends and family who always where
motivating and encouraging me during the last four years.

v

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Problems and Challenges . 5

1.1.1 Network Slice Instance Admission Problem 5
1.1.2 Network Slice Instance Embedding Problem 5
1.1.3 Resource Uncertainty and Overbooking 6

1.2 Objectives, Approach and Contributions 7
1.2.1 Network Slice Instance Admission Management 7
1.2.2 Network Slice Instance Embedding Models and Algorithms . . 8
1.2.3 Network Slice Embedding under Uncertainty 8

1.3 Outline . 9
1.4 Publications . 11

1.4.1 Scientific Publications and Patent Applications 11

2 Foundations 15
2.1 Mobile Networks . 15

2.1.1 NGMN Mobile Network System Description 16
2.1.2 ETSI ZSM Framework Reference Architecture 18

2.2 Network Slicing . 22
2.2.1 Definitions . 22
2.2.2 Network Slice Meta Model . 23
2.2.3 Business Roles . 24
2.2.4 Management of Network Slice Instances 26

2.3 Virtual Network Embedding . 31
2.3.1 Introduction . 31
2.3.2 Typical Parameters . 33
2.3.3 Taxonomy . 34
2.3.4 Metrics and Objectives . 35
2.3.5 Base Algorithms . 37

3 Network Slice Instance Admission 41
3.1 Motivation and Objectives . 41
3.2 3GPP Network Slice Feasibility Analysis 42

3.2.1 Network Slice Feasibility Check 42
3.2.2 Network Slice Subnet Feasibility Check 43

3.3 Process for Automated Network Slice Instance Admission 44
3.4 Network Slice Instance Admission Service in ETSI ZSM 50

4 Optimal Network Slice Embedding 59
4.1 Problem and Motivation . 60

vii

4.2 Goals and Requirements . 63
4.3 Formal Problem Definition . 64

4.3.1 Definitions and Notation . 65
4.3.2 Parameters . 68
4.3.3 Variables . 71
4.3.4 Objective Functions . 72
4.3.5 Network Slice Embedding Models 75

5 Probabilistic Network Slice Embedding 115
5.1 Problem and Motivation . 116
5.2 Goals and Requirements . 116
5.3 Problem Formalization . 117

5.3.1 Parameter . 117
5.3.2 Objective Function . 120
5.3.3 Constraints . 122
5.3.4 Robust NSE Model . 123
5.3.5 Network Slice Instance Acceptance Metrics 124

6 Implementation and Evaluation 137
6.1 Evaluation Setup . 137

6.1.1 Hardware and Implementation 137
6.1.2 Evaluation Scenarios . 140

6.2 Throughput and Path-Splitting Evaluation 150
6.3 Latency and MAI Evaluation . 153
6.4 Combined Path-Splitting and MAI Evaluation 157
6.5 Runtime and Scalability Evaluation 161
6.6 Safety Buffer and Robustness Evaluation 167
6.7 Summary and Discussion . 170

7 Related Work 173
7.1 Virtual Network Embedding . 173
7.2 Network Slice Embedding and Edge Computing 175
7.3 Uncertainty Evaluation and Overbooking 176
7.4 Summary and Discussion . 178

8 Conclusion and Outlook 181
8.1 Conclusion . 181
8.2 Future Work . 182

Bibliography 185

List of Acronyms 193

List of Symbols 197

List of Definitions 201

viii

List of Figures 203

List of Tables 205

List of Models 207

List of Algorithms 209

ix

1
Introduction

Modern society and economics are found on ubiquitous connectivity and omnipresent
information. According to the Cisco VNI Global Mobile Data Traffic Forecast for
2017-2022 [1] in 2017 already 53% of mobile connections where related to smart de-
vices. The term smart device refers to advanced multimedia or computing devices
using 3G connectivity or higher, e.g., smart phones and tablets. The proportion of
smart mobile devices is expected to grow to 73% and is predicted to account for 99%
of mobile data traffic by 2022. This reflects a paradigm shift in mobile communica-
tion from classic voice connections to primarily mobile data usage. This tremendous
change in the utilization of mobile networks has been enabled by new and improved
mobile communication technology as well as recent innovations in micro computing.
On the one hand, today’s mobile communication networks have a huge impact on
modern society and are a huge economic driver. New and improved information and
telecommunication technology, especially 5G, is a door opener for new use cases,
technologies and business models.[2] On the other hand, enhanced mobile network
technology and smart devices induce a vast mobile data traffic growth. Global mo-
bile data traffic increased 17-fold between 2012 and 2017 and grew by 71%, reaching
11.5 billion gigabytes per month. Between 2017 and 2022 still a 7-fold increase
in mobile data traffic is expected. This corresponds to a 46% Compound Annual
Growth Rate (CAGR), resulting in a predicted global data traffic of 77.5 billion
gigabytes per month by 2022, see Figure 1.1. Apart from that, the data transfer
rate is projected to increase from an average of 8.7 Mbps in 2017 more than 3-fold
and reach 28.5 Mbps by 2022.[1]

The 5th generation of mobile networks is designed to meet these increased mobile
broadband requirements as well as enable a wide variety of novel use cases, such as
the Internet of Things (IoT), the Industry 4.0., but also highly safety and security
critical use cases, like autonomous driving, vehicular communication and remote
surgery. The following three use case categories are primarily shaping the require-
ments on future 5G mobile networks:

• enhanced Mobile Broadband (eMBB)
• critical Machine Type Communication (MTC)
• massive MTC

The eMBB use case requires several gigabytes of bandwidth on demand, for instance,
for augmented reality or multimedia applications. This can be achieved by combin-
ing the available licensed and unlicensed radio bands and different Radio Access
Technologies (RATs) with new mmWave bands below 6 GHz. Especially the new

1

1 Introduction

Figure 1.1: Global Mobile Data Traffic Forecast by Region [1]

mmWave bands can provide huge throughput capacities. Due to massive Multiple
Input Multiple Output (MIMO), peak data rates of more than 10 Gbps will be
possible in 5G. Critical MTC, like autonomous driving, often require high reliability
and low latency communication. Radio link latencies below 1 ms are achieved by
using shorter transmission time intervals and dynamic Time Division Duplex (TDD)
in 5G. Reliability is a key design principle of the 5G network architecture as safety
and business-critical use cases will be increasingly run on wireless networks. This
necessitates a transformation from today’s best effort mobile broadband networks to
stringent and predictable service level guarantees and reliable connectivity in terms
of coverage, capacity and service availability. The IoT with smart homes, smart cities
and smart factories, etc., will lead to 10-100 times more devices communicating via
the mobile network. This kind of Machine-to-Machine (M2M) communication typ-
ically aims at low cost and very long device battery life of up to 10 years, e.g., for
smart meters.[1]
The variety of 5G use cases induces a strong diversification in mobile network re-
quirements. Compared to today’s legacy design networks, 5G must provide multiple
capabilities for new Ultra-Reliable and Low Latency Communication (URLLC) and
massive MTC next to eMBB use cases.[2]

In the 4G (LTE) network architecture, hard- and software are tightly coupled form-
ing a monolithic network. This state-of-the-art legacy network architecture is not
scalable and flexible enough to cope with the manifold requirements on 5G mobile
networks. Although it might be possible to create a separate mobile network for
each use case category, this is not efficient in terms of frequency band utilization

2

and therefore not economically viable. Instead, in 5G a radically different, highly
flexible network architecture is deployed. Network slicing is one of its key concepts.
A Network Slice Instance (NSI) is a logical, isolated, end-to-end virtual network
containing all required resources and network functions to fulfill specific service re-
quirements based on fixed Service Level Agreements (SLAs). Usually, several NSIs
share the same physical infrastructure. NSIs might be instantiated, modified or ter-
minated dynamically or on short notice.[3]
By means of network slicing, a system of systems of isolated, virtual networks shar-
ing a common physical network infrastructure is created. The NSIs can be tailored
to the specific requirements of their use cases. In order to allow to accommodate
these diverse NSIs on a shared mobile network infrastructure, network functions
are increasingly decoupled from their underlying hardware. This is called Network
Function Virtualization (NFV). In Software Defined Networks (SDNs) virtualized
network functions can be flexibly deployed on multi-purpose cloud servers, instead
of dedicated devices.[2]

In current legacy networks mobile network planning and deployment of new services
takes several months. This is not feasible for the 5G multi-purpose and multi-
service architecture, as NSIs must be dynamically adapted to customer and user
needs. When modifying an existing NSI, e.g., increasing the throughput in a spe-
cific region, or deploying a new NSI the following tasks must be completed:

Before an NSI can be deployed, its technical requirements have to be defined in
detail or derived from a high-level NSI description made by the customer. Further-
more, its feasibility in the mobile network has to be analyzed and a corresponding
SLA has to be negotiated between the NSI customer or tenant and the Network
Slice Provider (NSP). To enable a short time to market for mobile services, fast
decision making on NSI acceptance is essential. For this purpose, a 5G Network
Slice Customer Portal provided by a Mobile Service Provider (MSP) is envisioned.
This online customer portal allows to easily configure and order new NSIs. Tenants
submit NSI requests via the portal and receive instant feedback on the feasibility
of the request accompanied by an SLA and a cost estimation for the creation and
operation of the requested NSI. If the NSI request is not fully realizable, downgrades
might be proposed to the tenants.

A concept on how to decide whether an incoming NSI request can be accepted is
necessary. To answer this question, the available resources in the network and the
required resources have to be considered. Several NSIs may have been instantiated
and are already running in the mobile network. Therefore, reliable resource demand
predictions for the operational NSIs and the requested NSI as well as resource avail-
ability predictions for the underlying network infrastructure are needed. In addition
to that, efficient Virtual Network Embedding (VNE) algorithms for embedding vir-
tual end-to-end NSIs into substrates with both wired and wireless network elements
are required.

3

1 Introduction

Figure 1.2: Overview over the NSIA Process

Figure 1.2 gives an overview over the NSIA process presented in this thesis. A tenant
intending to set up a new NSI for his or her business or change an existing NSI in-
teracts with the NSP via the online 5G Network Slice Customer Portal. The tenant
can configure and customize the NSI requirements based on predefined NSI tem-
plates for different use case categories. The customer portal is closely linked to the
Network Slice Instance Admission module. The Network Slice Instance Admission
Module collects and evaluates information about available network capacities and
resource demands of current and future NSIs. Therefore, the operative NSIs in the
Virtual Network Layer are analyzed and their future resource demand is estimated.
The network capabilities are derived from the Physical Network Infrastructure Layer
and the expected future resource provisioning is predicted. A profound analysis of
the requested NSI resources and capabilities as well as the residual network resources
and the possibilities of reconfiguration of the operational NSIs is done. Based on
that, a decision on NSI admission is made. The time elapsed between receiving the
NSI request via the customer portal and the decision on the NSI acceptance should
take no longer than a few minutes. If the requested NSI is feasible in the physical
network, the tenant receives a tender for the requested NSI, including an associated
SLA. In case the requested NSI turns out to be infeasible due to missing capabilities
or resources, the tenant receives a proposal of an NSI with downgraded requirements
including the associated SLAs.

4

1.1 Problems and Challenges

1.1 Problems and Challenges
This section describes problems and challenges related to the NSIA from a network
infrastructure and management software vendor point of view. This thesis helps
to tackle these problems in order to pave the way towards automated NSI request
assessment and deployment in 5G mobile networks.

1.1.1 Network Slice Instance Admission Problem

With 5G, the mobile network service landscape is becoming much more diverse and
dynamically changing as new services and applications are developed and replace
older ones. The existing, highly manual processes of network and service planning
and deployment are not flexible enough for the dynamic 5G networks.

Problems The existing network and service creation and deployment times in-
volve manual tasks like network planning and network engineering activities. This
implies long service deployment times of usually several months in current Long
Term Evolution (LTE) mobile networks. However, network slicing requires much
faster mobile network service creation and deployment times. The configuration
and implementation of a new NSI should be realized within only a few minutes. In
order to overcome existing manual gaps and tremendously increase service creation
and deployment times in a sliced mobile network, the following problems must be
solved:

• Available network resources and capabilities from different Management Do-
mains (MDs) must be obtained and updated automatically.

• Up-to-date and accurate predictions of resource utilization for the operational,
modified and new NSI in the network must be provided.

• Network capabilities and residual resources have to be determined in an auto-
mated process.

• Efficient algorithms for resource assignment to NSIs must be provided.

Challenge 1 A substantial reduction of service and NSI feasibility analysis, slice
and service creation as well as deployment times is required to be able to cope with
the dynamically changing service landscape of future 5G mobile networks. Therefore,
manual gaps in service feasibility analysis, creation and deployment must be closed.

1.1.2 Network Slice Instance Embedding Problem

NSIs are virtual networks, sharing the same physical network infrastructure. They
can be permanent, but often they are subject to dynamic instantiation, change
and termination. Therefore, network slicing requires that network functions and
services can be flexibly allocated and configured for the NSIs. Fast decision making
on network resource allocation and quick network slice instantiation is required, to
enable dynamic adaption of network functions, services and resource provisioning to
the customers and users needs.
The best decision on NSIA is based on an optimal embedding of a set of NSIs. That

5

1 Introduction

means, to select the best NSIs with respect to a specific objective function, e.g.,
maximizing the revenue of the service provider. In addition to that, the optimal
resource assignment to the virtual NSI elements must be determined.

Problems A comprehensive mathematical model is required to solve the resource
assignment problem for NSIs in a sliced 5G mobile network, also called the Network
Slice Embedding (NSE) problem in the following. The NSE problem is related to
the well-researched VNE problem. However, there are some major differences, that
change the characteristics of the formalization and solution:

• NSIs can have a predefined lifetime.
• NSE problems can be large, i.e., consist of a large number of NSIs with many

elements to be mapped onto elements of the underlying substrate. Neverthe-
less, the NSE algorithm should be scalable for large problem instances.

• The substrate is a mixed wired and wireless network comprising of several
different MDs.

• The NSE solution should take advantage of the fact that the UE nodes are
the same in the physical as well as the virtual networks.

• The NSE solution must take consumable resources as well as non-consumable
capabilities, like latency, into account.

• The NSE solution must support network function chaining, several-to-one
mappings, path-splitting and Mobile Edge Computing (MEC).

Challenge 2 A formal, mathematical description of the NSE problem that sup-
ports automated resource assignment and provides the foundation for NSIA is needed.
Additionally, an automated, efficient algorithm for calculating the best solution for
the NSE problem is required.

1.1.3 Resource Uncertainty and Overbooking

Mobile communication channels are based on very limited frequency ranges. How-
ever, capacity demands are increasing massively. Hence, an overprovisioning of
mobile throughput resources is infeasible, non-beneficial and contradicts with user
satisfaction. Beyond that, mobile network channels are subject to fluctuations in
data transmission rates. Additionally, in most NSIs the peak resource consumptions
is unlikely to be requested by all NSIs simultaneously. Slight overbooking of mo-
bile communication channels seems to be unavoidable for efficient and fair resource
utilization in mobile networks. However, for many non-critical use cases, careful
resource overbooking on the air interface is acceptable.

Problems Agreed, fixed service guarantees for NSIs must be met, although, for
instance, frequency bands in Radio Access Network (RAN) are very limited and
resource overprovisioning is economically infeasible for mobile communication re-
sources. Furthermore, spectrum efficient Radio Access Network (RAN) subnet slice
isolation is challenging, since mobile data traffic as well as channel capacities are
fluctuating. In addition, user mobility and data traffic are hard to predict.[4]

6

1.2 Objectives, Approach and Contributions

Due to uncertainties in resource availability as well as demand, resource overbooking,
or in the worst-case, resource shortages can occur. In order to avoid SLA violations
of NSIs, the existing uncertainties must be assessed in conjunction with the NSIA.

Challenge 3 Tackle uncertainty and overbooking in mobile networks in the context
of the decision on NSI feasibility and determine the best embedding minimizing the
risk of SLA violation.

1.2 Objectives, Approach and Contributions

In this section, the three main objectives of this thesis are presented. The identified
objectives address the problems and challenges described in Section 1.1. In addition,
the contributions of this thesis to each objective are listed.

1.2.1 Network Slice Instance Admission Management

In this thesis, we focus on efficient NSI feasibility checking. A process and network
management service should be provided enabling automated and quick NSI feasi-
bility checking. This is a contribution to the overall NSI and service creation time
reduction described in Challenge 1.

Objective 1 Develop a process and the required network management services for
automated and quick NSI feasibility analysis.

Approach To fulfill the objective, relevant standards are considered. Several ex-
tensions and implementations of the standard are made in order to enable the needed
automated and quick NSI feasibility analysis by introducing new network manage-
ment services for the NSI lifecycle management. The 3GPP TS 28.530 standard
[5] defines the baseline of NSI management and orchestration. It provides the de-
scription of the NSI lifecycle, the roles of the involved management entities as well
as the description of several use cases. The NSIA is mentioned as one of the fun-
damental use cases. Further details on a top-level provisioning process of an NSI
are standardized in the 3GPP TS 28.531 standard [6]. Our approach utilizes the
high-level service-oriented ETSI ZSM Reference Architecture, defined in the ETSI
GS ZSM 002 V1.1.1 standard [7]. Moreover, it defines a high-level NSI feasibility
check, which is part of the domain orchestration services.

Contributions In order to automate and speed up the NSI feasibility analysis, the
following contributions are made in this thesis:

• An NSI feasibility checking process that enables automated and quick feasi-
bility checking in end-to-end mobile networks is defined.

• The NSI feasibility checking procedure is integrated into the standardized
ETSI ZSM Framework Reference Architecture [7].

7

1 Introduction

1.2.2 Network Slice Instance Embedding Models and
Algorithms

In response to Challenge 2, Objective 2 is set as one of the major objectives of this
thesis.

Objective 2 Develop a formalization and efficient algorithms to solve the NSE
problem.

Approach Defining a Linear Program (LP) formalization of the NSE problem al-
lows to determine a nearly optimal embedding, with respect to a specified objective
function. The NSI feasibility can easily be derived from the nearly optimal embed-
ding. If there are not enough resources in the physical network, some NSIs can not
be embedded into the network. The excluded NSIs are regarded as being infeasible
in the current physical network. The optimal NSI embedding ensures that the best,
i.e., the most beneficial NSIs, are selected for deployment. Furthermore, it provides
a feasible and nearly optimal resource allocation for the embedded NSIs.

Contributions An LP formalization for the NSE problem, solvable with an out-
of-the-box LP solver is defined, implemented and evaluated. In a first step, a basic
model is developed. This first model already allows several-to-one mappings of
virtual services to physical network elements. In addition to that, it takes advantage
of the predefined position of the User Equipments (UEs) in the mobile network.
Furthermore, consumable resources as well as latency in mixed wired and wireless
networks are taken into account in this basic NSE model.
In the second step, the model is enhanced with the possibility of path-splitting as
well as a latency-aware objective function and a cost and revenue objective function.
Finally, the ability for MEC is integrated into the model.
The LP formalization of the NSE problem can be solved and evaluated with common
LP solvers.
The LP is implemented, tested and evaluated individually for each version of the
model. Especially, the runtime and acceptance rates of the embedding algorithms
are determined for each model and compared with each other on a common set of
randomly generated evaluation scenarios.

1.2.3 Network Slice Embedding under Uncertainty

In order to tackle uncertainty and overbooking in mobile networks and providing a
stable network, see Challenge 3, robustness is considered as a key decision factor in
NSIA. Hence, the following objective is derived for this thesis.

Objective 3 Develop a model, algorithm and risk evaluation metric to determine
and assess the best NSE under resource uncertainty.

8

1.3 Outline

Approach The model and algorithm to tackle uncertainty in NSE is built on the LP
defined in Objective 2. The formalization is extended to consider the question of how
uncertainty in resource availability and demand impacts the best NSI embedding
solution. The probabilities of resource availability, i.e., the confidence that resources
are available on demand, are determined for the best NSI embedding. The confidence
in resource availability should be analyzed by the network operator when deciding
on the NSIA.

Contributions In order to achieve Objective 3, a probabilistic model for uncertain
resource availabilities and demands is defined. Furthermore, the LP based NSE so-
lution (see Objective 2) is equipped with safety buffers and an uncertainty-aware
objective function. This way, a nearly optimal embedding of the most beneficial
NSIs is combined with selecting the most reliable elements for the deployment of
the NSIs, i.e., the best network slice embedding, regarding robustness of resource
provisioning is determined. In addition, a metric is provided to determine the confi-
dence in resource availability. The risk of SLA violation for an embedded NSI, i.e.,
the probability of failure to provide the guaranteed resources is analyzed in order to
assess the robustness of a specific NSI embedding. If the robustness is considered
good enough by the decision maker, that means, the probability that the actual
required resources will be available when requested is acceptable, the NSIs can be
deployed according to the proposed embedding. This can include a deliberate, care-
ful overbooking of one or several mobile network resources.

1.3 Outline

Figure 1.3 gives an overview over the chapters of this thesis and the objectives they
are associated with. The first part of this thesis introduces the topic and provides
the necessary background information. The main part consists of Chapters 3 to 6,
covering the four main objectives of this work. Chapter 3 provides an architecture
and process that serves as a framework for the following contributions. The optimal
network slice embedding, described in Chapter 4, is the foundation for the network
slice embedding under uncertainty in Chapter 5. Chapter 6 provides an extensive
evaluation of the presented NSE algorithms and its variants. The thesis ends with
an overall conclusion and outlook for future work.

Chapter 1 Introduction motivates the topic and the key research questions of
this thesis. The problems and challenges of NSIA in a sliced 5G mobile network are
illustrated. Beyond that, the objectives and contributions as well as a list of the
authors publications associated with this thesis are summarized.

Chapter 2 Foundations introduces the required theoretical and technological
background this thesis is based on. An overview over technologies and standard-
ization of network slicing is given. Furthermore, VNE, especially focusing on the
relevant base algorithms, is introduced.

9

1 Introduction

Figure 1.3: Outline of this Thesis

10

1.4 Publications

Chapter 3 Network Slice Admission presents an architecture and process for
NSIA. This chapter provides a framework for the contributions in Chapters 4 to 6.

Chapter 4 Optimal Network Slice Embedding provides an LP formalization of
the NSE problem, which can be solved with an out-of-the-box LP solver. First, a
basic, extensible version of the NSE model is defined. In a modular approach, the
model can be enhanced with further features.

Chapter 5 Network Slice Embedding under Uncertainty builds on the nearly
optimal NSE algorithm, described in Chapter 4. It enhances the model by including
resource uncertainty considerations and provides a method to evaluate the confidence
in resource availability.

Chapter 6 Implementation and Evaluation evaluates the optimal NSE models
and its variants, introduced in Chapter 4 as well as the NSE under uncertainty,
introduced in Chapter 5. The efficiency of these solutions regarding, for instance,
the acceptance rates and the resource availability confidences as well as the runtime
and scalability are analyzed.

Chapter 7 Conclusion and Outlook summarizes the results of this thesis and
draws conclusions with respect to the defined objectives. The thesis is concluded
with an outlook on future research on NSI resource management in the preparation
phase.

1.4 Publications
Parts of this thesis have already been published in previous scientific publications
and patent applications. A list of these publications with a brief summary and their
relevance for this thesis is given below. The ideas, concepts, algorithms and results
published by the author of this thesis are not additionally cited throughout this
thesis.

1.4.1 Scientific Publications and Patent Applications

1. Andrea Fendt, Lars Christoph Schmelz, Wieslawa Wajda, Simon Lohmüller
and Bernhard Bauer. "A Network Slice Resource Allocation Process in 5G
Mobile Networks" In Innovative Mobile and Internet Services in Ubiquitous
Computing (July 2018).[8]
In this paper, the authors provide a vision of an end-to-end NSI resource
allocation process allowing to give fast feedback to a network operator or
tenant on the feasibility of embedding new NSIs. The basic concepts and
ideas have been developed in discussions with the co-authors.
The author of this thesis is the main contributor of the detailed concepts and
the publication itself. This work is primarily integrated in Chapter 3.

11

1 Introduction

2. Andrea Fendt, Simon Lohmüller, Lars Christoph Schmelz and Bernhard Bauer.
"A Network Slice Resource Allocation and Optimization Model for End-to-
End Mobile Networks." In IEEE 1st 5G World Forum (5GWF’18) Conference
Proceedings (July 2018), pp. 262-267.[9]
In this paper, a standardized Integer Linear Program (ILP) for offline mobile
network slice embedding, especially focusing on resource allocation and virtual
node as well as link mapping is presented, implemented and evaluated.
The author of this thesis is the main contributor of the developed model,
solution and evaluation. The results of this paper are integrated in Chapter 4.

3. Andrea Fendt, Christian Mannweiler, Lars Christoph Schmelz and Bernhard
Bauer. "A Formal Optimization Model for 5G Mobile Network Slice Resource
Allocation." In 2018 IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON) (Nov. 2018), pp. 101-
106.[10]
In this paper, a mathematical model for solving the offline Network Slice
Embedding Problem formalized as a standard Mixed Integer Linear Proram
(MILP) is presented. A latency sensitive objective function guarantees the
optimal network utilization as well as minimum latency in the network slice
communication.
The author of this thesis is the main contributor of the developed model,
solution and evaluation. The results of this paper are integrated in Chapter 4.

4. Andrea Fendt, Borislava Gajic, Christian Mannweiler and Lars Christoph
Schmelz. "An Apparatus and Method for Network Slice Instance Feasibility
Checking in Network Slice Instantiation.", Invention and Patent Application
(Apr. 2019).[11]
The author of this thesis, together with three fellow researchers, provides a
method for quick NSI feasibility analysis and robustness evaluation in the NSI
preparation phase. The ideas and concepts as well as the patent application
itself have been developed and written in cooperation with the other authors.
Hence, the invention is the intellectual property of all involved authors in equal
parts. This work is primarily used in Chapter 3 and serves as a basis for the
models in the Chapters 4 and 5.

5. Andrea Fendt, Christian Mannweiler, Lars Christoph Schmelz and Bernhard
Bauer "An Efficient Model for Mobile Network Slice Embedding under Re-
source Uncertainty" In 2019 16th International Symposium on Wireless Com-
munication Systems (ISWCS) (Aug. 2019), pp. 602-606.[12]
In this work, the authors present an uncertainty-aware model and solution for
mobile NSE. The proposed solution allows an informed decision on NSIA.
The decision is based on the guaranteed end-to-end mobile network resources
that have to be provided on the one hand and the capacities and capabilities
of the underlying network infrastructure on the other hand.

12

1.4 Publications

The author of this thesis is the main contributor of the developed model,
solution and evaluation. The results of this paper contribute to Chapter 5.

6. Katja Ludwig, Andrea Fendt and Bernhard Bauer. "An Efficient Online
Heuristic for Mobile Network Slice Embedding." In 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN) (Feb.
2020), pp. 139-143.[13]
The paper presents a heuristic for the NSE problem, which is based on topology-
aware node ranking. Three alternative ranking techniques are introduced and
analyzed.
In this paper the results of Katja Ludwig’s master thesis are published. The
author of this thesis supervised the master thesis and provided the fundamen-
tal ideas and concepts for the master thesis as well as the paper and supervised
and reviewed the paper. The results of this paper are out of scope of this thesis.

7. Andrea Fendt, Christian Mannweiler, Katja Ludwig, Lars Christoph Schmelz
and Bernhard Bauer "End-to-End Mobile Network Slice Embedding Leverag-
ing Edge Computing" In "NOMS 2020 - 2020 IEEE/IFIP Network Operations
and Management Symposium" (April 2020), pp. 1-7.[14]
In this work, the authors propose an ILP-based formulation and nearly op-
timal solution of the NSE problem leveraging edge computing. The optimal
set of NSIs, in terms of revenue and cost, is determined. The presented solu-
tion provides the optimal number of application instances and their optimal
deployment locations on the edge clouds, even for multiple User Equipment
(UE) connectivity scenarios.
The author of this thesis is the main contributor of the developed model,
solution and evaluation. The results of this paper are used in Chapter 4.

13

2
Foundations

The goal of this chapter is to provide the necessary theoretical background and the
used technologies and algorithms this thesis is based on. The basics presented in
this chapter are not exhaustive as they focus on the required foundation and the
background of this thesis.
First, management frameworks and fundamental concepts of current mobile net-
works are introduced especially focusing on network slicing. Subsequently, an over-
view over selected concepts in the prior art of VNE that have been used in Chapter 4
and Chapter 5 is presented.

2.1 Mobile Networks

In this section, the relevant foundations on mobile network management consulting
the Next Generation Mobile Networks (NGMN) as well as the European Standards
Organization (ETSI) Zero touch network and Service Management (ZSM) standards
are introduced.

Standardization of mobile network management focuses on mobile network automa-
tion, which is essential to agile and quick service delivery on the one hand and
to economic sustainability of mobile network provisioning on the other hand. The
introduction of new use cases in the 5th generation of mobile networks induces a
transformation in the mobile network management and orchestration. Increased de-
mands of ubiquitous connectivity and imperceptive latency and seemingly unlimited
communication capacity as well as support for massive Machine Type Communica-
tion (mMTC) require highly flexible and programmable networks.[15]

Network slicing is introduced as a new business model, reinventing the mobile service
creation, orchestration and management as well as improving agility and coopera-
tion across the different network domains. This leads to an increased complexity of
mobile networks intensifying the need for full automation of service delivery. Digi-
tal, fully-automated lifecycle management systems are envisioned that include the
automated service, network, cloud and resource management. The presented ar-
chitectural frameworks are designed to facilitate automated closed-loop control and
machine learning with no or only minor human intervention.[15]

15

2 Foundations

2.1.1 NGMN Mobile Network System Description

The NGMN Alliance proposes a description of the mobile network system environ-
ment leveraging the structural separation of hardware and software in the network
with the target of improving agility and automation of network management and
orchestration. Therefore, network programmability is enhanced enabling flexible
and dynamic as well as automated configuration and reconfiguration of the mobile
network system. The proposed system has a service-based architecture design with
modularized services.[16]

The NGMN 5G System Environment is illustrated in Figure 2.1. It consists of three
layers, the Infrastructure Resource Layer, the Business Enablement Layer and the
Business Application Layer.
The Infrastructure Resource Layer is the lowest layer. It comprises the physical
resources of the mixed wired and wireless mobile network. This includes access
nodes, edge and central cloud nodes, providing processing and storage resources as
well as networking nodes. In addition, the 5G infrastructure provides connection
to external public and private IP networks. Among others, classic UEs (like mobile
phones, smart phones, tablets), IoT devices, sensors, smart homes, Industry 4.0 net-
works and autonomous vehicles are connected via the 5G RAT. The infrastructure
resources are utilized by the higher layers of the architecture, especially the Business
Enablement Layer. In addition, they are exposed via a relevant Application Pro-
gramming Interfaces (APIs) to the End-to-End (E2E) Management & Orchestration
entity.
The E2E Management & Orchestration includes optimization, network slice man-
agement, automation as well as self-organizing functionalities. Network slices for
specified application scenarios are created, managed and decommissioned by the
E2E Management & Orchestration entity. This includes the setup of function chains
of relevant Network Functions (NFs) as well as performance configuration and the
mapping of NFs on infrastructure resources and resource capacity management. Be-
yond that, the E2E Management & Orchestration entity provides interfaces for third
parties to create and manage their network slices themselves.
The Business Enablement Layer provides a library of all functions in particular for
converged fixed-mobile network modular architecture building blocks. The Business
Enablement Layer hosts NFs including Control Plane (CP) and User Plane (UP)
functions as well as a set of configuration parameters, e.g., RAT configurations, and
state information functions. The CP, which is responsible for signaling traffic and
routing, is strictly separated from the UP. The UP, also referred to as the data
plane, is responsible for transmitting user traffic. Required aspects of these func-
tions and capabilities are exposed through relevant APIs towards the orchestration
entity and towards the Business Application Layer. The functions can be provided
with different characteristics, for instance, with higher or lower performance for use
cases with different user mobility characteristics.
The highest layer, the Business Application Layer comprises specific applications
and services of operator, enterprise, verticals or third parties. In virtualized envi-

16

2.1 Mobile Networks

F
ig
ur
e
2.
1:

N
G
M
N

5G
Sy

st
em

E
nv

ir
on

m
en
t
[1
6]

17

2 Foundations

ronments, those applications and services are hosted on Multi-Access Edge Com-
puting (MAEC) hosts or datacenters. The Operator services, the so-called NSP
Applications, refer to regular telecommunication services such as voice, messaging
and internet access. They include NSP differentiating services offered to its own
subscribers. The 5G system provides rapid instantiation, modification and removal
of NSP Applications. In contrast to that, the Enterprise service applications are
NSP Applications offered exclusively to their enterprise customers providing end-
to-end enterprise services. Using the so-called Authorized Over-The-Top (OTT)
and 3rd Party Service Applications, NSPs can host services for other authorized 3rd

party and OTT applications. The 5G system must support instantiation requests as
well as management and monitoring of service applications for OTT players and 3rd

parties. Specific aspects of the Business Application Layer applications and services
are exposed to the E2E Management & Orchestration.[16]

2.1.2 ETSI ZSM Framework Reference Architecture

ETSI contributes to the 5G ecosystem with the Industry Specification Group (ISG)
on ZSM, founded in December 2017. It defines an architectural framework for
scalable full automation of service provisioning and network operation, in particular
the configuration, deployment, assurance and optimization of services and network
tasks and processes.
In the ZSM 002 [7] and 003 [17] the Framework Reference Architecture is provided,
while the specification work is still ongoing.[15]

The proposed framework is compatible with the NGMN 5G system environment,
described in Section 2.1.1 of the NGMN Alliance. Both system descriptions are
service-based and modularized systems based on a physical network infrastructure
layer, enabling services and applications in the layers above them. Moreover, the
Framework Reference Architecture specified in the ZSM 002 and 003 standard docu-
ments complements the 3GPP specifications of Release 15. In particular, the 3GPP
Technical Specification 28.533 [18] defines the management service deployment based
on the ZSM framework.
The ETSI ZSM Framework Reference Architecture is especially focusing on an au-
tomated network and service management in a multi-vendor environment. Thus,
the specified architecture is based on the following main design principles:

1. Modularity
2. Extensibility
3. Scalability
4. Model-driven, open interfaces
5. Closed-loop management automation
6. Support for stateless management functions
7. Resilience
8. Separation of concerns in management
9. Service composability
10. Intent-based interfaces

18

2.1 Mobile Networks

11. Functional abstraction
12. Simplicity
13. Designed for automation

Services in the ETSI ZSM Framework Reference Architecture are modular, i.e.,
they have a clearly defined scope, are self-contained and interact only over well-
defined interfaces. Management services in the ETSI ZSM Framework Reference
Architecture are defined as a mechanism offering capabilities to a service consumer
via a standardized interface, a so-called management service end-point. Besides
modularity, services and capabilities are extensible, that means, new services and
capabilities can be added to the network and MDs without the need to change the
design of the implementation or interaction in the existing network. Beyond that,
services within the Framework Reference Architecture are required to be scalable,
that means, they must be adaptable to increasing as well as decreasing demands. Be-
sides this, vendor-neutral resource management is crucial in the aspired multi-vendor
environment. Therefore, model-driven, open interfaces are another important
design principle. Automation and self-optimization are facilitated by the 5th de-
sign principle of closed-loop management automation. Modularity, reusability
and vendor-neutrality are further improved by the required support for stateless
management functions, which results in a separation of data processing from data
storage. In order to avoid complex monolithic systems, separation of concerns
in management between domain management and end-to-end service management
across domains is required. Moreover, resilience is an important design principle,
the framework should allow degradation of infrastructure and other management
services as well as return to normal operation. Service provisioning in the ETSI
ZSM Framework Reference Architecture is based on modular service structures.
Management services of MDs can be combined to create new management services.
This is called service composability. Through intent-based interfaces vendor-
neutrality and usability is improved, as it allows for an abstraction from technology
and vendor-specific details used in declarative user interfaces. Similarly, the prin-
ciple of functional abstraction, improves the usability of the system. Function
abstractions is defined as generalizing the behavior of related entities. The function
encapsulates different variants and so abstracts from details in different variants.
Last but not least, minimizing complexity to create a network architecture that is
as simple as possible as well as designing a system facilitating automation in net-
work service management are self-evident design principles.[7]

An overview over the ETSI ZSM Framework Reference Architecture is shown in Fig-
ure 2.2. It consists of distributed management functions/services and data services
of different MDs. The MDs administrate individual domain-specific resources, which
can be physical network infrastructure or virtual resources. That means, the domain
infrastructure resources can be Physical Network Functions (PNFs), software-based
Virtualized Network Functions (VNFs) or cloud-based resources. Related manage-
ment and data services, for instance, services using the same set of infrastructure
resources, the same technology or services that are owned by the same infrastructure
or service provider are grouped into one administrative domain. This facilitates the

19

2 Foundations

Figure 2.2: ZSM Framework Reference Architecture [7]

20

2.1 Mobile Networks

separation of concerns between different network domains. For instance, the RAN,
the transport and the core network should be separated into different MDs.
The E2E Service Management Domain represents a special case of a MD, it is located
on a higher level of abstraction. In contrast to the regular MDs, the E2E Service
Management Domain does not directly access infrastructure resources, instead it
manages the services provided by several MDs. Each MD, including the E2E Ser-
vice Management Domain, is equipped with management functions exposing a set of
ZSM management by externally visible service end-points of selected management
services within the MD. ETSI defines management functions as "entities that pro-
duce and/or consume management services."[7, p. 16] The ZSM framework enables
the creation of loosely-coupled management function chains collectively providing
end-to-end or domain-specific capabilities for automated service, network and in-
frastructure management. Service capabilities are uniformly offered by the manage-
ment services. This enables highly automated service consumption and interaction
between different MDs and the infrastructure. Management services can be com-
bined hierarchically creating higher levels of abstractions and management services
with a broader scope. Management service producers might directly interact with
infrastructure resources using their management interfaces or indirectly invoke their
consuming management services.
The MDs have a domain integration fabric, which contains functions controlling ac-
cess as well as internal or cross-domain visibility of the management services provided
by the domain. They provide dedicated data services via the domain integration
fabric. Data services manage data access and provide a consistent data persistence.
Selected data services can be exposed for cross-domain usage or provided to the ZSM
framework consumers via the cross-domain integration fabric. This way, stateless
management functions without their own data persistence can be realized.
The cross-domain integration fabric has well-defined interfaces administrating all
cross-domain communication in the ZSM Framework Reference Architecture. It
provides service capabilities to the accessing end-points. Beyond that, the MDs act
as a consumer of ZSM service capabilities provided by the E2E Service Management
Domain via the cross-domain integration fabric. The integration fabric allows cross-
domain data sharing, communication, service consumption and integration as well
as the integration of 3rd party management systems.
Furthermore, the eE2E Service Management Domain and the MDs provide services
which can be consumed by the so-called ZSM framework consumers, i.e., external
service consumers. Typical ZSM framework consumers are, for instance, the digi-
tal store fronts, Business Support System (BSS) applications, web portals of other
ZSM framework instances or additional user interfaces, for instance, for human users.
Digital store fronts offer products, which are based on E2E services, to external cus-
tomers as well as receive and handle requests from external customers for service
deployment.
The E2E Service Management Domain provides the following management services,
which can be provided as end-user services, towards the ZSM framework consumers:

• E2E service orchestration
• E2E service intelligence

21

2 Foundations

• E2E service analytics
• E2E service data collection

These end-to-end services are composed of services in various MDs, exposed via
one or more end-points within the cross-domain integration fabric. The E2E ser-
vice orchestration services coordinate the configuration, provisioning and lifecycle
management of customer facing end-to-end network services. While the E2E service
intelligence services comprise end-to-end management services responsible for au-
tomated decision making, including, for instance, troubleshooting and fixing issues
across MDs, the E2E service analytics services derive insights in the performance
of the managed services and service-related Key Performance Indicators (KPIs). In
addition, the E2E service data collection services gather all managed service-related
data, for example performance data.[7]

2.2 Network Slicing
Based on the 5G environment and system descriptions presented in Section 2.1 in this
chapter the concepts and management of network slices, as specified by the relevant
telecommunication industry consortia, in particular the NGMN, 3rd Generation
Partnership Project (3GPP) and Groupe Speciale Mobile Association (GSMA), are
introduced.
First, the relevant definitions are introduced, then the information model and the
business roles and instance management of the network slices are presented.

2.2.1 Definitions

Network slicing is one of the key concepts in 5G to enable new use cases with
very diverse requirements and an increased need for ubiquitous and robust mobile
communication. The NGMN Alliance was the first to introduce the term network
slicing for mobile networks in their 5G white paper [19, p. 45 ff.] in February 2015.
Network slices provide virtual private services in end-to-end mobile networks using
isolated, logical networks running on a common mobile network infrastructure. The
3GPP specifications distinguish between network slice templates, a "description of
the structure (and contained components) and configurations of a network slice" [3],
and NSIs, defined as "a set of network functions and the resources for these network
functions which are arranged and configured, forming a complete logical network to
meet certain network characteristics" [3], i.e., network slice templates are blueprints
that can be used to ease the definition of concrete instances of network slices. In con-
trast to that, NSIs are definitions of a concrete implementation of a specific network
slice, which are complete, i.e., contain all required functionalities and resources to
provide the defined communication services for their intended use case. This com-
pleteness implies that NSIs are defined end-to-end, i.e., the communication services
cover all necessary parts of the network. This includes all required parts of the
mobile network, in particular all necessary NFs and physical as well as virtualized
resources in the access, transport and core networks as well as the corresponding
clouds and servers providing the services. It is important to note that network slices

22

2.2 Network Slicing

may comprise virtualized as well as non-virtualized components.
Communication services offered by a network slice can be classified into different con-
nection types or service categories, like eMBB, URLLC and mMTC. New categories
might emerge as new use cases arise. Typical examples for URLLC communication
services are vehicle-to-vehicle (V2V) or vehicle-to-everything (V2X), while Virtual
and Augmented Reality as well as video streaming services are in the class of eMBB.
IoT or smart factory communication services are often associated with the mMTC
communication service category. As a consequence, some endpoint devices and UEs
are connected to only one network slice, for instance, road side sensors and endpoint
devices deployed in automotive vehicles, while other devices, like smart phones or
tablets, could use the services of several connected network slices simultaneously.[3,
16, 20]

2.2.2 Network Slice Meta Model

Figure 2.3: 3GPP Network Slicing Meta Model [3]

The relations between the communication services and network slices is shown in

23

2 Foundations

Figure 2.3. The Figure provides a meta model for the components of network slices.
Usually, a communication service is provided by a single network slice, however
there are specific exceptions for service bundles provided by more than one Packet
Data Unit (PDU) connectivity service. A communication service can be part of
multiple different network slices. Whereas in practice, the service and network slice
definition is done by the MSP. The provider can define, for instance, one network
slice per service category or decide for a more fine-grained network slice definition,
for instance, creating separate NSIs for different communication services or even for
different network slice customers (tenants).
A network slice might contain multiple network slice subnets, which can be nested,
i.e., network slice subnets can be composed of further subordinated network slice
subnets. NSIs provide a complete (end-to-end) service. A Network Slice Subnet
Instance (NSSI) is a logical subnetwork, comprised of configured network services,
that provides only a part of the NFs and resources required for a network slice or
service instance. Network slice subnet templates are used to describe the structure,
components and configuration of a network slice subnet. They allow to assemble
the end-to-end NSI with different NSSIs that contain, for example, the RAN or core
network components, respectively.
Network slice subnets make use of multiple NFs, which can be used in several net-
work slice subnets simultaneously. ETSI NFV 003 [21] defines an NF as a "functional
building block within a network infrastructure, which has well-defined external inter-
faces and a well-defined functional behaviour." [21, p. 5] In practice, an NF often is a
network node or a physical appliance [21]. NFs can be categorized into core NFs and
access NFs. Typical core NFs are, for instance, the Access and Mobility Manage-
ment Function (AMF), the Session Management Function (SMF), the User Plane
Function (UPF) and the Policy Control Function (PCF). Examples for access NFs
are Distributed Units (DUs) as well as the Central Unit - Control Planes (CU-CPs)
and the Central Unit - User Plane (CU-UP) in the 3GPP RAN as well as the Base
Transceiver Stations (BTSs) and the Next Generation Node Base Stations (gNBs).
The term VNF refers to softwareized NFs that are not bound to dedicated hard-
ware.[3, 16, 20, 22]

In the course of service-based mobile network architectures, NSIs are usually offered
in form of predefined telecommunication services, called Network Slice as a Service
(NSaaS). I.e., that an Mobile Network Operators (MNOs) offers a complete network
slice, instead of a communication service, to a tenant allowing the tenant to use the
network slice and deploy its own communication services as well as add new NFs to it.
The tenant can acquire NSSIs to be used as building blocks to form a customized NSI
based on an NSaaS. Tenants might use the obtained NSI to provide communication
services to their end-customers or for their own business operations.[5]

2.2.3 Business Roles

The NSaaS paradigm involves four involved business roles specified, for instance, by
the 5G NORMA Project in [23] and [24]. In Figure 2.4, the business roles of the

24

2.2 Network Slicing

Figure 2.4: High-Level Business Roles [23]

25

2 Foundations

multi-tenancy mobile network and their relationships are depicted. Network Infras-
tructure Provides are the owners of the physical network infrastructure, like antenna
sites, hardware equipment for the antenna or local and central datacenters. They
can be subdivided into Infrastructure Providers (InPs) (e.g., for the RAN or core
network) and Datacenter or Cloud Infrastructure Providers. The Network Infras-
tructure Providers manage their physical infrastructure and virtual resources and
offer them to the MSP. While the Network Infrastructure Providers provide phys-
ical network elements, the Cloud Infrastructure Providers offer virtual computing,
storage and associated networking resources.
MSPs orchestrate and provide telecommunication services to end-users, also referred
to as subscribers, and provide NSaaS to the tenants. Therefore, MSPs lease the re-
quired physical and virtual resources from one or several Network Infrastructure
Provides. The NSaaS provided by an MSP are usually subject to a commercial SLA
between an MSP and a tenant. Tenants use dedicated network slices to provide
services or applications to end-users or use them for their own business operations.
Note that, MSP can act as tenants by obtaining an NSI from another to expand
their own NSaaS and communication service offers. Finally, the MNOs combines
the roles of the MSP and the InP. They are owners and managing entity of the
physical and virtual NFs (VNFs) and communication links.
The roles introduced above do not necessarily have to be assigned to separate busi-
ness entities, instead it is possible that one organization holds several roles. For
instance, a telecommunication service company might act as the InP, the MSP and
as the MNO for a particular communication service.[23, 24]

The 3GPP 28.530 [5] and 28.801 [3] standards specify the functional business roles
for network slicing slightly differently. Tenants and subscribers are subsumed as
Communication Service Consumers, served by Communication Service Providers.
The role of the 3GPP Communication Service Providers does not directly correspond
to the MSPs in the 5G NORMA nomenclature, since the 3GPP role definitions
differentiates between Communication Service Providers, Virtualized Infrastructure
Service Providers and Data Center Service Providers. However, the role of the MNO
as defined by 5G NORMA corresponds to the Network Operator role in the 3GPP
definition.[3, 5, 23, 24]

2.2.4 Management of Network Slice Instances

In this section the most important aspects of network slice instance management,
especially focusing on the network slice preparation, are given.

2.2.4.1 Network Slice Federation

Network slices are logical networks with an end-to-end scope. Therefore, they usually
have to use VNFs, NFs and resources across several InPs from different domains.
This is called resource and service federation. Figure 2.5 provides the big picture
of resource and service federation to provide services in end-to-end network slices in

26

2.2 Network Slicing

a multi-domain 5G mobile network architecture. It shows an example of a service
federation of three network slices. Two of them are owned by verticals from different
business sectors, the third one is owned by an MNO. Network slices 1 and 2 are using
virtualized and non-virtualized NFs of several administrative domains managed by
different InPs, e.g., access and core network as well as datacenters. Of course, cross-
domain interaction between the used NFs is necessary.
Beyond sharing and mixing resource across different providers and domains, it is
important to mention, that resources of an NSIs can be defined statically, partially
dynamically or fully dynamically. Statically defined NSIs are fixed services based on
non-virtualized or virtualized resources. In contrast, dynamic NSI resources provide
on-demand resource allocation and scaling.[16, 20]

2.2.4.2 Network Slice Design

NSIs are described in a standardized way. It comprises the complete set of all re-
quired parameters. The GSMA Generic Network Slice Template [25] specifies a
generic template for network slices, that serves as a blueprint for network slices. It
defines all common slice attributes of a network slice description. Important at-
tributes are, for example, the geographical area of service, the downlink throughput
per network slice and per UE as well as the uplink throughput per network slice and
per UE, the isolation level, the number of connections or terminals as well as the
terminal density, the radio spectrum and the packet delay budget. The geographical
area of service attribute specifies the country and regions where a network slice is
available to be accessed by the local terminals. The coverage area of a network
slice, might be described by a base station coverage model or an artificial geograph-
ical zone or grid partitioning abstracting from physical cell coverage areas. The
downlink throughput per network slice attribute defines the downlink and uplink
data rater of the network slice across all UEs. It specifies the guaranteed down-
link throughput as well as the maximum downlink throughput. The same downlink
throughput attributes exist for each single UE. The uplink throughput per net-
work slice and per UE are defined similarly to the downlink throughput attributes.
The required physical and logical isolation of a particular network slice from other
network slices is described in the isolation level attribute. The physical isolation
on the one hand refers to separation in hardware, processes and threads as well as
isolated memory and network connections. On the other hand, the logical isolation
regards virtual resource isolation, e.g., dedicated Virtual Machines (VMs), isolated
NFs while underlying resource might be shared, or only service isolation between
different tenants, while resources and NFs can be shared. The number of connec-
tions is an attribute that defines the number of concurrent sessions within a network
slice. Instead, the number of terminals using the network slice simultaneously can
be defined. Furthermore, the terminal density, i.e., the number of connected devices
within a particular geographical area, is defined as a network slice attribute. Beyond
that, the radio spectrum of a network slice has to be specified. The so-called packet
delay budget network slice attribute gives an upper bound for the delay of a packet
between the UE and the User Plane Function. Furthermore, related parameters like

27

2 Foundations

F
igure

2.5:N
G
M
N

Inter-D
om

ain
R
esource

Integration
[16]

28

2.2 Network Slicing

mission critical support and slice quality of service parameters, including the packet
error rate, jitter and the maximum packet loss rate, have already been specified by
the GSMA.[25, 26]

An instance of a Generic Network Slice Template (GST) with concrete attribute val-
ues is called a Network Slice Type (NEST). The NEST is a network slice description
using the GST attributes and filling it with concrete values. NESTs are used to de-
fine network slice requests and agree on SLA for an NSI. However, the NEST is
still independent of the network design and the network slice implementation and
deployment. Figure 2.6 gives an overview over the design and further usage of a

Figure 2.6: NEST Definition [26]

NEST. Based on the use case, the service and technical requirements are defined
and represented in the standardized NEST description. From the NEST, the MNO
can derive the required resources and functions for the NSI. NESTs are the basis to
decide upon the feasibility of the NSI requirements in the existing network as well as
for the design of the NSI. Therefore, the GSMA NEST is fed into the 3GPP network
slice preparation phase of the network slice lifecycle (see Section 2.2.4.3).[25, 26]

2.2.4.3 3GPP Network Slice Lifecycle

The 3GPP 28.530 Standard [5] specifies the NSI Management. The NSI Manage-
ment spans the whole lifecycle of an NSI, comprising four phases: Preparation,
Commissioning, Operation and Decommissioning. Figure 2.7 gives an overview over
the management phases of an NSI and shows the high-level tasks required in each
phase.

Before the actual NSI lifecycle starts, the NSI needs to be prepared. In this phase all
preparatory measures required before creating and deploying a new NSI in the net-

29

2 Foundations

Figure 2.7: NSI Lifecycle [5]

30

2.3 Virtual Network Embedding

work are carried out. This involves the design of the network slice, its on-boarding
and the necessary network environment preparation. The network slice design using
the GSMA GST is explained in more details in Section 2.2.4.2. Beyond that, the
network slice preparation phase includes the network slice capacity planning, which
is one of the major problems this thesis is contributing to.
The effective NSI lifecycle starts when the NSI is created in the so-called commis-
sioning phase. This includes resource allocation and NSI configuration with respect
to the network slice requirements. The operation phase of the NSI lifecycle starts
with the activation of the created NSI. The running NSI is supervised and its per-
formance is reported to the network slice customer. During runtime the operator
must keep track of resource utilization of the NSI and monitor the NSI’s perfor-
mance. Manual or automated NSI modifications might be induced as a result of
performance evaluation of the NSI resource usage or incoming new NSI requests.
NSI modification may concern, e.g., capacity as well as topological adjustments.
At the end of the NSI operation it is deactivated, i.e., its communication services
are stopped. The decommissioning of an NSI involves decommissioning of its non-
shared constituents and potentially undoing its NSI-specific configurations on shared
constituents. After termination, the NSI does not exist anymore. [5]

2.3 Virtual Network Embedding

This section covers the foundations of the general VNE problem as well as the exact
VNE algorithms used as a basis for solving the NSE problem in this thesis.

2.3.1 Introduction

Network virtualization and network slicing rely on algorithms capable of virtual net-
work resource allocation and function placement on a substrate network provided
by multiple InPs. These algorithms are commonly referred to as VNE algorithms.
They solve the resource allocation problem in virtualized networks with respect to
different objectives, for instance, Quality of Service (QoS) or Quality of Experi-
ence (QoE) metrics, economical profit of the InPs, security or energy-efficiency. By
using VNE, existing mobile network infrastructure can be used flexibly and ben-
eficially in virtualized mobile networks with dynamically changing virtual network
topologies and fluctuating resource demands. Furthermore, automated and dynamic
self-configuration and re-configuration of virtual mobile networks is crucial to en-
able end-to-end performance guarantees to MSPs as well as end-users. This requires
highly automated resource allocation using reliable runtime and resource efficient
VNE algorithms.[27]

The VNE problem can be split into two sub-problems: the virtual node mapping
and the virtual link mapping problem. Virtual node mapping refers to allocating
virtual nodes on physical nodes providing the demanded resources and capabili-
ties, whereas virtual link mapping is assigning suitable physical paths to the virtual

31

2 Foundations

links. The virtual link mapping requires that the resources, for instance, the re-
quired throughput is available on the physical path, that capability requirements,
like latency demands, are fulfilled and the sources and sinks of the virtual link and
physical path match the virtual to physical node mapping. Figure 2.8 provides a
simple example of a substrate composed of six connected nodes and two virtual
networks. Every virtual node should be allocated on a physical node, plus each
virtual link must be served by a physical path consisting of one or several sequential
physical links. Virtual nodes can be allocated on any substrate node and substrate
nodes can host several virtual nodes. Several virtual links can use the same physical
connection. If path splitting is allowed, several suitable substrate paths can be used
to serve the same virtual link. This way, the resource provisioning can be divided
among several physical links.[27]

Figure 2.8: Virtual Network Embedding Overview

Due to the node and link mapping interdependency, the VNE is computationally
very complex. It even belongs to the class of NP-hard problems. In his often cited
unpublished manuscript [28], Andersen shows that the VNE problem is related to the
NP-hard multi-way separator problem. However, even if a feasible node mapping
is provided, the virtual link to single path allocation problem is still NP-hard, since
it can be reduced to the unsplittable flow problem (see [29]).[27]
Rost et al. provide a systematic analysis of the hardness of the VNE problem and its
variants in [30]. They prove, NP-completeness of the general VNE problem under
any objective. The relaxed problem, allowing the violation of some constraints, e.g.,

32

2.3 Virtual Network Embedding

capacity constraints, is shown to still be NP-complete.[30]
Consequently, an exhaustive search for the optimal solution of a VNE problem
cannot be done in polynomial time and is intractable for large problem instances
[31]. Thus, heuristic and meta-heuristic approaches make up a large share of recent
research in VNE algorithms [27].

2.3.2 Typical Parameters

A feasible mapping of a virtual network on a substrate network must fulfill the re-
source and capability requirements of the virtual nodes and links. The resources
and capabilities addressed in the VNE algorithms are described as parameters of
the VNE problem. The substrate elements provide individual resource capacities
and have certain capabilities, while the virtual network elements have predefined
capability and resource requirements. It can be distinguished between consumable
and non-consumable resources. The first category is referred to as resources in the
following, while the latter is referred to as capabilities. For instance, a link in the
substrate network provides a certain bandwidth, while a virtual communication link
requires a predefined amount of bandwidth resources. In contrast, capabilities are
non-consumable characteristics of a network element, for instance, latency, level of
isolation or reliability. In [32] Fischer et al. present an overview over the most im-
portant VNE parameters and in [33] Stezenbach et al. provide an extensive list of
potential parameters in different categories. The most important link parameters are
the maximum throughput capacity and the communication latency. In literature,
often the bandwidth is used instead of the maximum throughput. Bandwidth is
defined as the theoretical capacity of a communication channel while the maximum
throughput describes the actual maximum data transmission capacity. Latency is
sometimes referred to as propagation delay. It describes the time a data packet
needs to be transferred on a specific communication link. Further relevant physical
parameters of a link in a network are, for instance, the bit error rate, the technology
as well as its geographical location. In addition, reliability and availability param-
eters, like the packet loss probability, the mean time between failure and the mean
time to repair are relevant link parameters. A network node is characterized by its
most important parameters: computation and memory capacities. The computa-
tion capacity, often abbreviated as Central Processing Unit (CPU) capacity, is used
for routing and multiple purpose computations. In addition, the Random Access
Memory (RAM) and hard disk memory capacities are highly relevant parameters
for the VNE. Other relevant parameters are, for instance, the forwarding delay and
capacity as well as the processing delay and the geographical location.[27, 32, 33]

Moreover, it is distinguished between so-called primary and secondary parameters.
Primary parameters are resources and capabilities that can directly be specified in a
virtual network request and are associated with a specific physical or virtual network
element or entity. Secondary parameters are resources and capabilities depending
on primary parameters or on the concrete deployment of a virtual network. Thus,
secondary parameters cannot be specified in advance for a virtual network request.

33

2 Foundations

For example, if a virtual link is mapped on a communication path consisting of
several links in the substrate network, this might induce additional computation
capacities on the passed substrate nodes. Since the selected path is not known in
advance, the additional computation capacities on the intermediary substrate nodes
cannot be directly specified in the virtual network request.[27, 32]
Beyond that, network parameters influenced by the network topology, like jitter
(the variance in packet delay), path bandwidth or delay under changing load, are
parameters in some VNE problems [33].

2.3.3 Taxonomy

VNE algorithms can be categorized, as proposed by Fischer et al. in [27]. Exact as
well as heuristic solutions for solving the online or the offline version of the VNE
problem exist. Online algorithms can be further differentiated between static and
dynamic solutions. Beyond that, coordinated as well as uncoordinated algorithms
exist and the VNE problem can be solved centralized or decentralized. The provided
solution can be redundant or concise. Most of these categories are mutually inde-
pendent. For example, if a VNE algorithm is online, it can still be either centralized
or decentralized.[27]

Exact/Heuristic Exact VNE algorithms target at determining the optimal em-
bedding with respect to a specific objective function, while heuristic algorithms aim
at providing a good, non-necessarily optimal solution, within a short solving time.
For finding the optimal VNE, linear programming can be used. In Section 2.3.5
a performance oriented ILP-based VNE approach is provided. However, since the
VNE problem is NP-hard, see Section 2.3.1, exact algorithms do not scale for large
problem instances. Large problem instances can only be solved quickly by using
heuristic VNE algorithms. Pure heuristic solutions, however, usually suffer from
converging to local optima. Therefore, so-called metaheuristics are frequently used.
Metaheuristics are often able to overcome local optima and improve the accuracy
of the solution. Examples for VNE metaheuristics are approaches based on particle
swarm optimization (see, for instance, Zhang et al. [34], Guo et al. [35] and Ashraf
[36]) or Max-Min Ant Colony (see, e.g., Faijari et al. [37]).[27]

Online/Offline The VNE problem often occurs in form of an online problem in
practice. That means, virtual network requests usually arrive over time, i.e., future
virtual network requests are not known in advance. Moreover, virtual networks can
be active for an arbitrary time frame. Dynamic, online VNE algorithms are capa-
ble of reconfiguring the resource allocation and embedding of operational virtual
networks, aiming at optimizing the resource utilization in the substrate network.
Virtual network reconfiguration might be required due to, for instance, new virtual
network requests as well as changing resource requirements, changing substrate net-
work resource provisioning or resource fragmentation.
In contrast, offline VNE requires complete knowledge of all virtual network requests
and handles all requests at once. Although offline approaches can be operated in

34

2.3 Virtual Network Embedding

an online environment, offline algorithms are static. As such, they do not provide
means for reconfiguration of already deployed virtual networks.[27]

Coordinated/Uncoordinated As already mentioned before, the VNE problem
can be split into two main subproblems, the virtual node and the virtual link map-
ping subproblem. Uncoordinated VNE algorithms solve the virtual node mapping
problem without considering the required communication links between the mapped
nodes in the first step. In the second step the required links are tried to be em-
bedded, given the final node mapping. However, this approach might lead to an
inefficient or even infeasible bandwidth utilization, since neighboring nodes in the
virtual network might be embedded on nodes in the substrate that are far apart from
each other. This results in long communication paths, consuming high bandwidth
resources. Therefore, coordination between the node and link mapping is desirable,
especially for complex VNE problem instances.[27]

Centralized/Decentralized Centralized VNE algorithms are executed on one cen-
tralized management node with global knowledge and complete control over the
whole resource allocation and virtual network embedding. Global knowledge allows
to optimize the embedding globally regarding, for example, the QoS.
In centralized VNE algorithms, the centralized VNE management node is a single
point of failure. This is resolved by distributed VNE approaches. Beyond that,
the decentralization can improve the scalability of the VNE algorithm. Distributed
VNE approaches use several distributed nodes for calculating the virtual network
embedding. Those nodes do not have global knowledge, consequently the resulting
embedding is not necessarily optimal. In addition, coordination between the dis-
tributed management entities is needed.
A special case of a distributed VNE algorithm is using multiple MSPs and InPs,
managing different subnets. Then the overall VNE across the different subnets is
distributed and requires coordination between the different MSPs and InPs.[27]

Concise/Redundant Redundancy in virtual network allocation refers to the reser-
vation of fallback resources for substrate element failures. This is often required for
fault-sensitive virtual networks. Otherwise, if a VNE algorithm does not foresee
fallback elements and resources it is called a concise VNE algorithm.
Beyond that, so-called multi-path or path-splitting VNE algorithms can split the
required bandwidth of a virtual communication link among several physical links
in the substrate. This can be seen as a special case of redundancy, since several
links are available. However, if one physical link fails, it is not guaranteed that
the amount of provided resources on the remaining links is sufficient to satisfy the
resource requirement of the allocated virtual links.[27]

2.3.4 Metrics and Objectives

VNE can pursue different optimization objectives. The degree of fulfillment of these
objectives can be measured with the metrics introduced in this section. The most

35

2 Foundations

common objectives are compliance with QoS requirements, maximizing the revenue
of MSPs and InPs or maximizing the robustness of the embedding.

The QoS of an embedding can be measured by using QoS metrics, for instance,
path length, stress level and utilization. The path length is defined as the average
number of substrate links serving one virtual link. The stress level of a substrate
entity (node or link) refers to the number of virtual elements mapped to it. A more
detailed metric for the element stress level is the utilization of an element. It is
defined as the percentage of occupied resources of a specific resource type on a sub-
strate element.

Maximizing the revenue of the MSPs and InPs is a natural objective for VNE. Usu-
ally maximizing the long-term revenue is perused. This objective coincides with
embedding the most beneficial and as many virtual networks with a positive contri-
bution margin as possible. Effects of the online nature of the problem, e.g., resources
being blocked by less beneficial virtual networks, have to be tackled. The cost (usu-
ally defined as the sum of the prices of all used resources), the revenue (usually
defined as the sum of the prices of all demanded resources by the virtual networks)
and the cost-revenue ratio are obvious metrics. Moreover, the acceptance rate, i.e.,
the number of virtual network requests that have been accepted divided by the total
number of virtual network requests within a certain time-frame, is one of the most
important metrics reflecting the embedding efficiency as well as the economic prof-
itability of a VNE algorithm.

VNE algorithms targeting at robustness or resilience of the mapping are of particular
importance in the area of fault-sensitive, for instance, safety-critical use cases. That
means, the embedding is optimized towards its ability to recover from node or link
failure, by assigning fallback resources on backup nodes and links. If this objective
is combined with the goal of efficient resource utilization it requires a trade-off be-
tween resilience and resource efficiency. Typical metrics are the number of fallback
nodes, the path redundancy ratio and the cost of resilience.[27]

Further important metrics, regardless of the optimization target, are, for instance,
the runtime of the algorithm, the number of required coordination messages and the
number of active substrate nodes.
Apart from that, the VNE algorithms are compared with respect to the time they
need to handle a virtual network request, i.e., the time needed to calculate the em-
bedding or to determine that an embedding is currently infeasible. Runtime is a
crucial factor in scenarios with dynamic virtual networks. However, quick VNE al-
gorithms usually come at the cost of lower accuracy, which leads to lower acceptance
rates and therefore lower revenues.
In distributed approaches, the coordination overhead, measured by the number of
coordination messages, is an important criterion for selecting a suitable VNE algo-
rithm.
Finally, the number of active substrate nodes is an important metric regarding the

36

2.3 Virtual Network Embedding

energy-efficiency of an embedding, since unused mobile network elements can be
switched off.[27]

2.3.5 Base Algorithms

A list of VNE algorithms published until 2013 can be found in the survey of Fischer
et al. [27]. Newer algorithms and heuristics on the VNE problem can be found in
the surveys of Cao et al., see [38] and [39].
The NSE algorithms and heuristics developed in this thesis are based on the VNE
algorithm briefly introduced in the following.

The VNetMapper is an exact algorithm for solving the VNE problem using ILP,
proposed by Despotovic et al. in [31]. Although the resulting ILPs are NP-hard
in general, smaller problem instances can be solved optimally with exact algorithms
using, for instance, branch-and-bound, branch-and-cut or branch-and-price meth-
ods. (See [40] for more details.) However, they are not scalable for large problem
instances with a large number of virtual and physical nodes and links to be mapped.
The proposed approach creates an efficient solution for the VNE problem by us-
ing only binary variables and a simple objective function. The evaluation of the
VNetMapper shows, that VNE problem instances with hundreds of nodes and thou-
sands of links can be solved nearly optimally within only a few seconds. Therefore,
the ILP formulation of the VNetMapper is used as a guideline for creating an ILP
model for the NSE problem that allows to compute a nearly optimal solution as
efficiently and scalable as possible. (See Chapter 4.)

The VNetMapper is formalized as follows: The physical substrate network is mod-
eled as a directed graph GN = (VN , EN) with nN = |VN | physical nodes and
eN = |EN | physical links. N − 1 virtual networks should be embedded into the sub-
strate. They are represented as directed graphs Gk = (Vk, Ek) for k = 1, . . . , N − 1
with nk = |Vk| the number of nodes and ek = |Ek| the number of links in the k-th vir-
tual network. vki and eki are defined as the i-th node/link of the k-th virtual network,
while vNi and eNi denote the nodes and links of the physical network. Furthermore,
Aki for k = 1, . . . , N and i = 1, . . . , nk is defined as the vectors of resource demands
required by the nodes in the virtual networks (for k < N) and the available node
resources in the substrate for k = N . The available and required link resources are
defined similarly as the vectors Ek

i for k = 1, . . . , N and i = 1, . . . , ek. Thus, Akir
denotes the required/offered amount of the r-the node resource on vki , while Ek

jm

specifies the amount of required/offered m-th link resource on ekj . Beyond that, the
VNetMapper uses the following three types of boolean variables.

xkij :=

{
1 if vki is mapped on vNj
0 otherwise

zkij :=

{
1 if eki is mapped on eNj
0 otherwise

37

2 Foundations

yk :=

{
1 if Gk is embedded
0 otherwise

It maximizes the objective function

f(y) =
N−1∑
k=1

wk · yk (2.1)

with wk the weights associated with the virtual networks, under the following con-
straints

N−1∑
k=1

nk∑
i=1

xkijA
k
ir ≤ ANjr ∀j, r (2.2)

N−1∑
k=1

ek∑
i=1

zkijE
k
im ≤ EN

jm ∀j,m (2.3)

nN∑
j=1

xkij = yk ∀k, i (2.4)

nk∑
i=1

xkij ≤ 1 ∀k, j (2.5)

xjp − xip =
∑
t∈pin

zlt −
∑
t∈pout

zlt ∀l, k, p∑
t∈pout

zklt ≤ 1 and
∑
t∈pin

zlt ≤ 1 ∀l, k, p
(2.6)

with pin and pout defined as the sets of the indices of the incoming/outgoing links of
a physical node p ∈ VN .[31]

The objective function in Equation 2.1 aims at maximizing the sum of weights wk
associated with the virtual networks.
The Equations 2.2 and 2.3 specify the node and link resource capacity constraints.
The map-once constraint in Equation 2.4 makes sure that every virtual node is
mapped on exactly one physical node. Mapping several virtual nodes of the same
virtual network on the same substrate node is ruled out by the so-called not-many-
to-one constraints in Equation 2.5. This is a strong restriction which is dropped
for the mobile NSE solution provided in this thesis. Finally, the graph constraints
stated in Equation 2.6 assure that the structure of the virtual network with its in-
terconnected nodes is maintained, i.e., the incoming and outgoing virtual links of
a virtual node are mapped on suitable paths in the physical networks. A physical
path is suitable for a virtual link if it origins from the physical node the source node
of the virtual link is mapped to and ends in the physical node the sink of the virtual
link is mapped to.

38

2.3 Virtual Network Embedding

Even though the ILP formalization is optimized regarding runtime efficiency by using
a simple objective function, boolean variables only and a set of simple constraints,
the algorithm does not scale for embedding a large number of virtual networks si-
multaneously. Hence, only small subgroups of requests should be handled at once
in practical applications.[31]

Standardized LPs, like the formal model of the VNetMapper [31], can be solved with
out-of-the-box optimization software, often simply referred to as solvers. Depend-
ing on the problem instance, the chosen solver and its configuration, the optimal
solution or a solution close to optimality is obtained. LP solvers usually use simplex
or branch-and-cut based methods which allow them to solve even NP-hard prob-
lems in reasonable time. Some of them are capable of parallel and/or distributed
computing, offering an enormous potential for runtime improvement in multi-core
and distributed computing environments. Proprietary as well as open source solvers
exist. Examples for proprietary solvers are, IBM’s famous CPLEX Optimizer [41],
FICO’s Xpress Optimization [42] and Gurobi Optimization [43]. In this thesis, the
open source optimizers GNU Linear Programming Kit (GLPK) [44] and the Solving
Constraint Integer Programs (SCIP) Optimization Suite [45] are used. The most
commonly used solvers are briefly introduced in the following.

IBM ILOG CPLEX Optimization Studio The IBM ILOG CPLEX Optimization
Studio, usually only referred to as CPLEX, has been designed to solve different
mathematical optimization problems, in particular LPs, MILPs and Quadratic Pro-
grams (QPs). CPLEX uses built-in parallel computing utilizing all available cores
of a computer to efficiently solve the optimization problem.[41]

Gurobi Optimization Despotovic et al. use the Gurobi solver [43] for their VNet-
Mapper [31]. Gurobi is a fast proprietary solver for LPs and MILPs using parallel
computing [43].
Some solvers, e.g., Gurobi and CPLEX even supports distributed optimization, that
means, using several distributed machines to solve one optimization problem [46,
47].

GNU Linear Programming Kit The GLPK is a package comprising, for instance,
the primal and dual simplex methods as well as the branch-and-cut method for
solving large-scale LPs, Mixed Integer Programs and related problems [44]. The
documentation of the GLPK is provided in the GLPK Manual [48].

SCIP Optimization Suite The SCIP Optimization Suite is specialized on solving
Mixed Integer Programs (MIPs) using the branch-cut-and-price method. The solver
allows detailed insight in and control of the solving process. The developers claim
that the SCIP Optimization Suite is one of the fastest non-commercial MIP solvers.
Further details on the SCIP Optimization Suite can be found in [49].[45]

39

3
Network Slice Instance Admission

In this chapter, the NSIA problem is analyzed in the context of the ETSI ZSM Ref-
erence Architecture Framework and the newly defined services are integrated into
the framework. A formal process for the NSIA is defined based on prior art in the
3GPP standardization. The proposed process for NSIA allows to decide whether
to accept or to reject an incoming Network Slice Instance Request (NSI-R) taking
the individual business policies and risk tolerance of the mobile service provider into
account. The approach considers careful network resource overbooking as a way of
profitable network operation. The services and process defined in this chapter serve
as a foundation for the NSE algorithms developed in the subsequent Chapters 4 and
5.
This chapter is organized as follows. First of all, the prior art on the Network
Slice Feasibility Check standardized in 3GPP 28.531 [6] is provided. Secondly, an
overview over the NSIA process is given. Finally, the NSIA services are defined and
integrated into the ETSI ZSM Framework Reference Architecture [17].

3.1 Motivation and Objectives

The envisioned 5G Network Slice Customer Portal supporting NSaaS (see Chap-
ter 1) requires full automation of the network slice lifecycle. Especially, the network
slice preparation (including the NSIA), commissioning, operation and decommis-
sioning should be automated.
Automating the NSIA is challenging as it involves embedding virtual NSIs on a
shared mobile network infrastructure with uncertain resources availabilities, e.g.,
varying throughput availabilities and uncertain resource demands of the end-users
of the NSIs. However, full automation of the NSIA is an essential foundation for
providing a customer portal allowing tenants to easily configure and order new NSIs
or reconfigure existing operational NSIs in the context of NSaaS.
The tenants of the 5G Network Slice Customer Portal should receive instant feed-
back, within only a few minutes, on the feasibility of their NSI-Rs accompanied by a
cost estimation for the setup and operation of the requested NSI. In order to achieve
this, manual gaps in the network slice and resource planning, feasibility checking and
resource allocation must be closed. Therefore, the available network resources and
capabilities of different MDs must be determined and predictions for future resource
availability and resource demands must be derived from empirical values, e.g., us-

41

3 Network Slice Instance Admission

ing Machine Learning (ML) techniques and advanced forecasting methods, like time
series forecasting or Hidden Markov Models. Based on that, a feasible as well as
cost and resource efficient NSE, i.e., the deployment and resource allocation of the
new NSI must be determined. In the course of allocating new NSIs, reconfiguring
the embedding an allocation of existing, operational NSIs, in the sense of dynamic
NSE, should be considered.

An automated NSIA process covering the steps of determining the available network
resources and capabilities, defining the requirements of the NSIs and predicting their
resource demands as well as embedding the NSIs into the physical network and al-
locating the required resources is presented in Section 3.3.
Beyond that, the relevant network management services for automated and quick
NSI feasibility analysis in the context of the ETSI ZSM Framework Reference Ar-
chitecture are defined in Section 3.4.

3.2 3GPP Network Slice Feasibility Analysis
In this section, prior art regarding the so-called network slice feasibility check, stan-
dardized by 3GPP, is summarized.
The 3GPP standard 28.531 [6] defines a high-level procedure for checking the fea-
sibility of an NSI and reserving the required resources. The goal of this procedure
is to check the feasibility of an NSI, that means, to determine, whether the net-
work infrastructure can fulfill the requirements of an NSI, i.e., provide the needed
resources and capabilities.
The 3GPP feasibility check is subdivided into the network slice feasibility check
and the network slice subnet feasibility check. Both processes are briefly introduced
below.

3.2.1 Network Slice Feasibility Check

The network slice feasibility check defined in 3GPP [6] has the objective to "check
the feasibility of provisioning a network slice instance to determine whether the net-
work slice instance (NSI) requirements can be satisfied (e.g., in terms of resources)"
[6, p. 18]. It assumes that the NSI requirements have been derived from the NSI-R.

A sequence diagram of the 3GPP network slice feasibility procedure is shown in
Figure 3.1. On a high abstraction level, the 3GPP Technical Specification 28.531
defines four entities involved in the network slice feasibility check and resource reser-
vation procedure. These are the Network Slice Management Service (NSMS) Con-
sumer and the NSMS Provider as well as the Network Slice Subnet Management
Service (NSSMS) Provider and other MSPs.
The NSMS Consumer is, for example, an MSP providing NSaaS. It consumes net-
work slice services, for instance, the network slice feasibility check and resource
reservation service, offered by the so-called NSMS Provider. NSSMS Providers are

42

3.2 3GPP Network Slice Feasibility Analysis

Figure 3.1: 3GPP NSI Feasibility Check and Resource Reservation Procedure [6]

responsible for the management services of the network slice subnet. Beyond that,
3GPP includes further MSPs.

The network slice feasibility check and resource reservation procedure comprises
three major steps. Based on the NSI request the NSMS Provider identifies the
required Network Slice Subnets (NSSs) and sends resource reservation requests to
the according NSSMS Providers. The NSSMS Provides perform a feasibility check.
In case of a positive feasibility check, they reserve the resources. Therefore, the
network constituents are analyzed with respect to the required network slice re-
sources and capabilities. Details on this so-called network slice subnet feasibility
check process are provided in Section 3.2.2. The responses of the NSSMS Provides
are collected and evaluated with regard to NSI feasibility by the NSMS Provider.
If one or several resource reservation requests fail, the NSMS Provider might query
alternative NSSMS Providers. In case the overall NSI remains infeasible, previous
successful resource reservations made for this NSI must be canceled. Finally, the
NSMS Consumer is notified about the feasibility of the requested NSI.[6]

3.2.2 Network Slice Subnet Feasibility Check

The feasibility check on the NSSI level is addressed in the 3GPP 28.531 standard.
The NSSMS Consumer can be, for instance, an NSMS Provider requesting the re-
sources of the NSSI when creating an NSI.
Figure 3.2 provides a sequence diagram for the NSSI feasibility check as defined in
3GPP. The NSSMS Provider receives the NSSI provisioning request including the
NSSI requirements. Typical examples for NSSI requirements are, for instance, the
required coverage area, the number of users and their traffic demands as well as
the isolation level of the NSI. After identifying the potential MSPs, the NSSMS
Provider sends resource reservation requests to the other MSPs, e.g., Management
and Orchestration (MANO), Transport Network (TN) Manager, to determine the

43

3 Network Slice Instance Admission

Figure 3.2: 3GPP NSSI Feasibility Check and Resource Reservation Procedure [6]

availability of the required network constituents, for example NFs or network ser-
vices. The MSPs respond with, among others, information on the availability of the
requested resources. Therefore, the MSPs might evaluate the network performance
information, like the load level and current as well as planned resource utilization
from dedicated management data analytics services. The MSP must guarantee that
existing operational services are not affected by accepting incoming resource reser-
vations. If the NSSI requirements can be satisfied by the reserved resources the
NSSMS Provider sends an acknowledgment of the successful resource reservation to
the NSSMS Consumer. Otherwise, the NSSMS Consumer is informed about the
infeasibility of the NSSI request and the resource reservations are canceled by the
NSSMS Provider.[6]

3.3 Process for Automated Network Slice Instance
Admission

The NSI and NSSI feasibility check and the resource reservation procedure, defined
in 3GPP [6], are extended to a comprehensive process for the NSIA. The NSIA
process is an automated decision-making process. It realizes quick decision-making
on accepting or rejecting incoming NSI-Rs. As such, it is a key component of the
envisioned 5G Network Slice Customer Portal. It is part of the network slice cre-
ation phase in the network slice lifecycle introduced in Section 2.2.4.3. Figure 3.3
provides a flowchart of the NSIA process on a high abstraction level.

The NSIA process starts with the NSI-R Definition step. The NSI-R Definition is
done by the tenant in collaboration with the MSP. This step comprises defining
the requirements of the requested NSI as well as preparing a corresponding SLA.
The NSI-R requirement and SLA definition are based on a predefined GST NEST
template (see Section 2.2.4.2). The GST NEST template provides the basis for a
well-defined, comprehensive and standardized description of network slice require-
ments. For NSaaS, appropriate NEST templates for the different use cases can be

44

3.3 Process for Automated Network Slice Instance Admission

Figure 3.3: Process of NSIA

45

3 Network Slice Instance Admission

used. The tenants usually define the required network slices based on one of the
predefined templates. Individually designed network slices may require to be devel-
oped in close cooperation between the network slice customer and the MSP.
In the second step of the NSIA process, the so-called NSI-R Transformation, the
MSP converts the NSI-R into concrete resource and capability requirements of the
services involved in running the NSI-R. The result is a so-called Network Slice In-
stance Description (NSI-D) for the NSI-R. More details on the NSI-D are provided
in Section 3.4.
These first two steps of the NSIA process, namely the NSI-R Definition and the
NSI-R Transformation, are not covered by prior 3GPP Standardization in the 3GPP
Network Slice Feasibility Checking procedures [6]. Nevertheless, they have to be car-
ried out in advance of the 3GPP Network Slice Feasibility Check.

The next steps of the NSIA decision process are the Qualitative and Quantitative
Feasibility Checks. They correspond with the 3GPP Network Slice and Network
Slice Subnet Feasibility Check. The 3GPP feasibility checks subdivide the problem
into network slices and their contained network slice subnets. However, the NSIA
uses another method of division which is orthogonal to the 3GPP approach. It
divides the network slice feasibility analysis into the following three sub-analysis:

• Qualitative Feasibility Check
• Quantitative Feasibility Check
• Resource Uncertainty Evaluation

This subdivision of the feasibility analysis enables a runtime-efficient, step-by-step
approach.

The Qualitative Feasibility Check verifies the technical feasibility of an NSI de-
ployment. Only the technology and network capability requirements of the NSI
without considering the resources are evaluated. These technological and capability
requirements regard, for example, the required RAN technology (for instance 5G),
the maximum end-to-end latency or packet loss tolerance. The Qualitative Feasi-
bility Check compares the required and provided capabilities. It can be executed
very quickly without the need to consider the already running NSIs. If one or sev-
eral required capabilities cannot be fulfilled by the underlying physical network, the
Qualitative Feasibility Check returns a "no"-answer. If the Qualitative Feasibility
Check is successful, it returns a "yes"-answer. In this case, the Quantitative Fea-
sibility Check is executed. The preliminary Qualitative Feasibility Check of a new
NSI-R allows a quick reaction to requests which are infeasible with respect to tech-
nological and network capability requirements. This improves the runtime-efficiency
of the NSIA of the cases in question, since qualitative capability gaps hindering the
NSI acceptance are identified quickly.

Given qualitative feasibility, the available resources in the mobile network domains as
well as the required resources of the active NSIs and the estimated required resources
of the new NSI-R are evaluated by the so-called Quantitative Feasibility Check. The
Quantitative Feasibility Check compares the available residual resources, e.g., the

46

3.3 Process for Automated Network Slice Instance Admission

unoccupied throughput on the communication links, with the resource requirements
of the NSI-D.
The Qualitative as well as the Quantitative Feasibility Checks are based on the
assumption that the available mobile network infrastructure and its current and
planned load can be predicted with reasonable certainty. That means, the feasibil-
ity checks of the NSIA process rely on the prerequisite that the deployed NSIs with
their individual SLAs, configurations, resource demands and capability requirements
as well as their actual resource utilization and capability requirements are sufficiently
well known. Nevertheless, uncertainty in the resource provisioning and demand can
be represented in the respective resource demand and provisioning models.

For uncertain or fluctuating resource provisioning and demands, for instance, vary-
ing resource utilization of operational NSIs in the network, the Resource Uncertainty
Evaluation is executed. It identifies and quantifies the risk of SLA violation for the
already running, operational as well as the new NSI-R.

If the Qualitative Feasibility Check provides a negative result, the capability gaps
are identified. The shortcomings to be identified can regard, for instance, a miss-
ing service, an unavailable technology, missing coverage or a too high latency in
the physical mobile network infrastructure. The identified gaps serve two different
purposes. The primary intend of the capability gap identification is recognizing the
causes of the NSI-R infeasibility. There might be several capabilities that would re-
solve the infeasibility of the NSI-R if they were enhanced or the requirements would
be reduced. This knowledge, about the capability gaps can be used to renegotiate
the infeasible NSI-R with the tenant and propose a mitigated, feasible version of the
NSI-R and its corresponding SLA to the tenant. The second intent, of identifying
capability gaps of infeasible NSI-Rs regards network planning and expansion. The
identified gaps should be considered in the future network infrastructure planning
and network development process of the InPs of the relevant network domains. They
can serve as indicators for mid- and long-term network planning as well as mobile
network infrastructure expansion. However, the identification of the capability gaps
for the requested NSI-R is not always straightforward, since it often depends on
the specific embedding of the virtual network slices in the physical mobile network
infrastructure. Different deployments might lead to different capability gaps, for
instance, one deployment might result in unsatisfiable latency constraints, while
another alternative violates service availability in some areas.
If an NSI-R is qualitatively feasible, the Quantitative Feasibility Check is executed.
One of the most crucial resources in end-to-end mobile networks is the through-
put on the wired and wireless communication links of the physical network and on
the virtual communication links of the NSIs. Throughput is defined as the actual
data-rate provided by a physical communication link and utilized by a virtual com-
munication link in the NSI. The particular importance of the throughput resource
in the NSE problem derives from the fact that the throughput capacity restricts
the amount of data that can be transferred between communication participants.
For wired communication links the throughput capacity directly depends on the

47

3 Network Slice Instance Admission

bandwidth. However, for radio links the provided data rate on communication con-
nections highly depends on the signal quality received by the mobile users, measured
by, for instance, the Signal-to-Noise-plus-Interference Ratio (SNIR). The SNIR and
thus the actual throughput are subject to, among others, UE positioning and speed
as well as interferences and shadowing. The throughput utilization of an NSI de-
pends on the data traffic of its users.

It is essential to carefully evaluate the expected available resources in the RAN,
transport and core network. Past network performance, known changes in the net-
work infrastructure, like the deployment of new antennas or BTSs can be used as
a basis for the resource availability forecasting. Beyond that, the expected resource
utilization of the already running, also referred to as operational, NSIs has to be
analyzed in order to determine the unoccupied network resources.
The simplest variant of resource usage prediction for the incoming NSI-R is to use
the amount of resources reserved for it. That means, using this estimation docu-
mented in the NSI-D, produced in the second step of the NSIA process. If empirical
data on expected resource utilization is available for this particular type of NSI-R,
a more precise prediction can be made.
In order to obtain better predictions, it is promising to classify NSIs and accumulate
their past resource requirement data. This accumulation can be done, for instance,
on an NSI use case or on a per UE basis. Accumulated and aggregated data for
different NSI use cases can be used as a data basis for predicting the resource re-
quirements of the new NSI-R or recently deployed NSIs. Moreover, predictions of
the future demands of NSIs can be based on insider knowledge, for example, the
information, that a particular NSI has been set up very recently and is currently in
the ramp-up phase. Although its current and past resource utilization is only a small
share of the booked resources it can be expected to grow considerably in the near
future. These and other factors have to be taken into account to get a prediction
of the remaining resources in the network that is as accurate and reliable as possible.

Once the expected resource availability on the on hand as well as the expected re-
source requirements on the other hand have been estimated, the virtual network
slice elements must be allocated on the physical network elements. This is done
by means of a VNE algorithms adapted to the particular conditions of the NSE
problem. More details on the NSE algorithms are provided in Chapter 4. Of course
the NSI embedding must respect the NSI capability as well as the NSI resource
requirements. If the NSE algorithm can find a feasible embedding, the Quantitative
Feasibility Check provides a positive response, i.e., a "yes"-answer. Otherwise, it
returns a "no"-answer.

As already indicated above, available resources in end-to-end mobile networks as
well as the required resources of NSIs are subject to uncertainty. Especially re-
sources in wireless communication can be affected by fluctuations and disturbances
that are hard to predict. Furthermore, radio resources, like the throughput via the
so-called air-interface, are scarce resources, since frequency are limited. On that

48

3.3 Process for Automated Network Slice Instance Admission

account, these resources are expensive. Thus, overprovisioning is economically in-
efficient. On the one hand, some use cases, for instance, URLLC, require a high
network availability and reliability and network performance fluctuations might im-
ply contracted penalty payments by the MSP or the InP and on the other hand
overprovisioning of scarce resources, like RAN resources, is costly. Thus, a tradeoff
between resource availability and efficient resource utilization should be perused.
That means, despite possible impending penalties, an overprovisioning of RAN re-
source in mobile networks is economically inefficient in many cases, since mobile
communication channels are very limited and the demand for mobile communica-
tion continues to grow ever more, as seen in Chapter 1. To remain profitable,
overbooking of reserved, but unused network resources seems to be unavoidable, for
the MSP and infrastructure provides. But such overbookings must be carefully eval-
uated in advance of NSI deployment, since they entail the risk of an SLA violation.
The decision, whether or not a specific resource overbooking is acceptable, highly
depends on the underlying business policies of the MNO.

The three most important resources for the NSIA, throughput, computation and
memory capacity, are affected by the following parameters and stochastic character-
istics.
The throughput provided in the RAN is subject to, among others, the available
bandwidth, the used frequency bands and multiplexing technology (e.g. Time Di-
vision Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA)).
Beyond that, numerous environmental influences impact the signal quality and thus
the provided throughput of a communication channel, for example, air temperature,
foliage, rainfall, shadowing by obstacles and interference between antennas using the
same frequency bands. Therefore, the provided throughput is volatile and hard to
predict.
The computation power and data storage resources on the cloud servers are assumed
to be constantly available, since they are provided by corresponding hardware de-
ployed, for instance, in a data center or at the edge of the mobile networks. In
contrast, the actual utilization of the computation, storage and communication re-
sources of the deployed NSIs as well as the new NSI-R underlie variabilities due
to user behavior and movement. Details on the probabilistic NSE are presented in
Chapter 5.

An NSI-R might be rejected during the NSIA process due to two main reasons.
The NSI-R is either qualitatively or quantitatively infeasible. In the first case, the
qualitative infeasibility, the capability gaps are identified, the NSI-R in its current
form is rejected. The request can be renegotiated, that means, a feasible version
of the NSI-R can be offered to the tenant. This amended version of the original
infeasible NSI-R has reduced requirements, which make it feasible for deployment
in the network alongside with the operational NSIs. As already mentioned before,
there might be several different options for fixing an infeasibility. Consequently,
several different options might be presented to the customer. In the second case,
the NSI-R turns out to be infeasible with regard to the quantitative feasibility check.

49

3 Network Slice Instance Admission

That means, the required resources are not available in the network. In analogy to
the capability gap identification the resource gaps should be identified. If resources
are short, an overbooking can be taken into consideration. In case the overbooking
is acceptable, the NSI-R is accepted. Otherwise it is renegotiated or rejected. In
both cases, the NSIA process ends with a decision on the NSI-R admission.

3.4 Network Slice Instance Admission Service in
ETSI ZSM

The NSIA services offer the capabilities of the NSIA process introduced in Section
3.3. They address the problem of performing a time-restricted feasibility check for
a requested additional NSI and constituent NSSIs. A decision on whether or not
there are enough resources in the subnet domains should be made automatically
within only a few minutes. Idle resources can then be used to deploy an additional
NSSI or modify and reuse existing NSSIs. This decision must respect the SLAs and
the QoS requirements of the operational and the additional or modified NSIs. The
required short response time does not allow for querying the different potential NSSI
providers for their current resource availability on demand.
In addition, the future resource availability is uncertain, especially for the RAN
NSSIs. Therefore, accurate predictions on the future resource availability and QoS
parameters are required to be able to decide on the feasibility of deploying addi-
tional NSIs. However, it is even more important to provide confidence values for the
resource availability and the risk of SLA violation for the operational as well as the
new NSIs.

The NSIA services presented in this section are based on the 3GPP standardization
of the NSI Feasibility Check, see Section 3.2. The NSIA process is embedded into
the multi-domain network and Service Management Reference Architecture Frame-
work of ETSI ZSM, see Section 2.1.2.
The ETSI ZSM Reference Architecture defines an E2E Service Management Domain
and several domain management areas targeting at specific network or technology
domains [7]. The NSIA process comprises several services in the E2E Service Man-
agement Domain, including the main service, the so-called Network Slice Instance
Feasibility Checker (NSI-FC). Figure 3.4 provides a high-level overview over the
ETSI ZSM service-based network reference architecture and the integration of the
NSIA services. The NSIA services, objects and roles are colored in gray, while the
ETSI ZSM Reference Architecture is colored in blue.
The NSI-FC covers the three major procedures of the NSIA process, see Section 3.3.
The NSI-FC comprises the Qualitative Feasibility Check, the Quantitative Feasibil-
ity Check and the Resource Uncertainty Evaluation based on an NSI-R.
While the Qualitative Feasibility Check verifies, for instance, the available tech-
nologies and network parameter configurations, the Resource Feasibility Check is
responsible for evaluating the resource volume and availability in the MDs. The
Resource Uncertainty Evaluation comprises a deeper stochastic risk analysis of the

50

3.4 Network Slice Instance Admission Service in ETSI ZSM

Figure 3.4: Components and Interfaces of NSIA

expected available and required resources. See Section 3.3 for more details.

From an architectural point of view, an NSI-R is submitted via the 5G Network Slice
Customer Portal (see Figure 1.2 in Chapter 1) of the Digital Storefront, where the
Network Slice Instance Provider (NSI-P) has the chance to review and potentially
adapt the NSI-R in cooperation with the NSI requester, see Figure 3.4. Usually, the
role of the NSI-P is carried out by the MNO.
Then the final NSI-R is passed on to the NSI-FC service that is provided by the E2E
Service Management Domain. The NSI-FC takes the NSI-R as an input and derives
the MD specific resources, features and configuration parameters for the required
NSSI from each MD and compares them with the current resource utilization and
the network performance status information provided by the respective MDs from
the marketplace. Combining the information from each MD, the NSI-FC computes
a detailed Evaluation Result (EVR) and returns a simplified EVR to the NSI Re-
quester.
The Detailed EVR contains detailed information on the feasibility of deploying the
requested, additional NSI in a collection of the available MDs offered in the Network
Slice Subnet Marketplaces (both internal and external ones) as well as information
on potential resource overbookings and confidences (in form of the probability) in
the availability of the required resources and services. It contains a confidence value
for being able to fulfill the resource and QoS requirements for the NSI-R. The
confidence values are available at different granularity levels, for instance, on QoS
parameter, resource, and network element level.
Based on the Detailed EVR, the NSI-P decides on the acceptance of the NSI-R and
submits a Simplified EVR to the NSI Requester. The Simplified EVR only contains

51

3 Network Slice Instance Admission

reduced (e.g., aggregated) information about the feasibility of the NSI-R.

Figure 3.5 provides a detailed view on the NSI-FC and its integration in the ETSI
ZSM Reference Architecture Framework.
Each MD exposes services for parameter, configuration and resource data provision-
ing, the MD Parameter & Configuration Provisioning Service and the MD Resource
Data Provisioning Service towards the Intra-domain Integration Fabric. Exemplary
domains include RAN, Transport and Core Network. A subset of the services can
be exposed to the ETSI ZSM Inter-domain Integration Fabric. Administratively,
the MDs can belong to the Network Operator (Operator’s Internal Network Slice
Subnet Marketplace) or to external organizations (“External/Public” Network Slice
Subnet Marketplace). Each MD manages one or several NSSIs and has its own
Intra-domain Integration Fabric for service registration, discovery, access control,
and data exchange. Performance and resource availability data as well as the Param-
eters and Configuration of the MDs are separately stored in two dedicated databases
for each MD. As for the other MD services, the databases can be accessed via the
“Intra-domain Integration Fabric” and are partially exposed to the Inter-domain In-
tegration Fabric.

The E2E Service Management Domain, which is, among others, responsible for
the NSI Lifecycle Management, includes the NSI-FC, as depicted in Figure 3.5.
The NSI-FC is called after an NSI-R has been received via the ETSI ZSM Digital
Storefront. The NSI-FC manages the whole NSI embedding and feasibility check
procedure by calling the other processes of the E2E Service Management Domain
and requesting the required data from the services and databases in the MDs via the
Inter-domain Integration Fabric. Note that, the Inter-domain Integration Fabric as
well as the ETSI ZSM Digital Storefront are a set of functions and interfaces defined
in the ETSI ZSM Reference Architecture.

Figure 3.6 shows the sequence diagram of the NSI request and feasibility check pro-
cedure. It explains the communication between the services.
First of all, in 1, the NSI-FC Service Consumer, in this case the NSI Requester,
sends the NSI-R to the NSI-FC Provisioning Service. An NSI-R contains the fol-
lowing typical SLA parameters, for instance, latency, coverage, bandwidth (traffic
profile), performance reliability and mobility. Additional parameters are defined
in the GSMA GST (Generic Network Slicing Template) [25]. In 2, the NSI-FC
Provisioning Service queries the NSI-D for the requested additional NSI from the
NSI Resource and Parameter Estimation Provisioning Service, providing the NSI-R
from 1. The NSI-D is a technical description of the NSI-R, based on GSMA GST.
It specifies all requirements regarding resource and network capabilities. Typical
Parameters are, for example, latency, throughput, computation power, memory ca-
pacities, availability and reliability. The NSI Resource and Parameter Estimation
Provisioning Service responds with the NSI-D for the requested NSI to the NSI-FC
Provisioning Service in 3. Then, in step 4, the NSI-FC Provisioning Service queries
the Network Parameters from the Network Capability Provisioning Service. The

52

3.4 Network Slice Instance Admission Service in ETSI ZSM

F
ig
ur
e
3.
5:

N
SI
-F
C

an
d
R
eq
ui
re
d
Se
rv
ic
es

w
it
hi
n
th
e
E
T
SI

ZS
M

A
rc
hi
te
ct
ur
e
Fr
am

ew
or
k

53

3 Network Slice Instance Admission

F
igure

3.6:F
low

chart
-
E
xecution

ofN
SI-FC

P
rovisioning

Service

54

3.4 Network Slice Instance Admission Service in ETSI ZSM

Network Parameters are selected features and configuration parameters of the Net-
work Slice Subnet (NSS) domains, e.g., RAN technology, coverage, edge cloud avail-
ability, security features (like access control and encryption) and service and session
continuity (e.g. seamless handover). In step 5, the Network Capability Provisioning
Service responds with the Network Parameters to the NSI-FC Provisioning Service.
Then the NSI-FC Provisioning Service triggers the Qualitative Feasibility Checker
Service, providing the NSI-D as well as the Network Parameters from 3 and 5. In
7, the Qualitative Feasibility Checker Service responds to the NSI-FC Provisioning
Service with “yes” or “no” and potential identified gaps to NSI requirements. If
the Qualitative Feasibility Checker Service answers “no”, the process ends and the
simplified EVR is returned to the NSI-FC Service Consumer, otherwise the NSI-FC
Provisioning Service continues with the quantitative resource evaluation. The Sim-
plified EVR is a “yes” or ”no” feasibility answers and other selected excerpts of the
Detailed EVR. The Detailed EVR is defined as a “yes” or ”no” feasibility answer,
plus the overall confidence in SLA fulfillment or the overall risk of SLA violation. For
each resource, the absolute value of the expected overbooking as well as a probabilis-
tic model for each resource is referred to as the Confidence and Risk Levels. In 8, the
NSI-FC Provisioning Service queries the Remaining Resources from the Available
Network Resource Estimation Service. The Available Network Resource Estimation
Service reports the Remaining Resources to the NSI-FC Provisioning Service in 9.
The Remaining Resources are a probabilistic model of the remaining capacity (for
each consumable resource in the NSI-D) for the overall network combining the idle
NSSs, when all operational NSIs are considered. Then the NSI-FC Provisioning
Service triggers the Resource Feasibility Checker Service, providing the Remaining
Resources from 9. In step 11, the Resource Feasibility Checker Service responds to
the NSI-FC Provisioning Service with “yes” or “no” and a list of potential overbook-
ings per resource category. The “yes” or “no” answer describes the so-called Resource
Feasibility. Beyond that, the potential overbooking is provided. It is defined for each
consumable resource in the NSI-D as the absolute value of the expected overbooking,
as well as a probabilistic model for each resource. In the twelfth step, the NSI-FC
Provisioning Service triggers the Confidence and Risk Evaluation Service, providing
the Remaining Resources from 9 and the Overbooking Results from 11. Depend-
ing on its implementation, the Confidence and Risk Evaluation Service responds to
the NSI-FC Provisioning Service with a Detailed EVR or only the Confidence and
Risk Levels in step 13. In the last step, the NSI-FC Provisioning Service provides
the Simplified EVR to the NSI-FC Service Consumer, in this case the NSI Requester.

Figure 3.7 depicts the regular queries of the subnet capabilities and NSI require-
ments of the already deployed NSIs.

The Available Network Resource Estimation Service queries the Network Capability
Provisioning Service and the NSI Requirement Provisioning Service on a regular
basis, executing the following process.
First, the Available Network Resource Estimation Service queries the Network Ca-
pacity from the Network Capability Provisioning Service. Secondly, the Network

55

3 Network Slice Instance Admission

Figure 3.7: NSIA Sub-Process

Capability Provisioning Service provides the Network Capacity Data to the Avail-
able Network Resource Estimation Service. The Network Capacity consists of a
technical description of the overall capacity of the network (combining the idle NSSs)
as well as the network capabilities, features and probabilistic models of the resource
availability for all consumable resources. In step 3, the Available Network Resource
Estimation Service queries the Operational NSIs Resource Utilization from the NSI
Requirement Provisioning Service. In the last step, the NSI Requirement Provision-
ing Service answers to the Available Network Resource Estimation Service with the
Operational NSIs Resource Utilization. The operational NSIs Resource Utilization
is defined as a probabilistic model of the resource utilization (for instance a proba-
bility distribution) for all consumable resources.

Figure 3.8: Sub-Process Ref. B

Figure 3.8 illustrates the sub-process, called Ref. B in Figure 3.7. The Available

56

3.4 Network Slice Instance Admission Service in ETSI ZSM

Network Resource Estimation Service queries the Network Capability Provisioning
Service as well as the NSI Requirement Provisioning Service on a regular basis to be
able to quickly provide current network resource estimations and predictions when-
ever an NSI-R arrives.
Therefore, in the first step, the Parameter & Resource Data Consumer Service, in
this case either the Network Capability Provisioning Service or the NSI Require-
ment Provisioning Service, requests the MD Parameters & Configurations from all
applicable MDs. In the second step, for each queried MD, the MD Parameter &
Configuration Provisioning Service responds to the Parameter & Resource Data
Consumer Service with the MD Parameters & Configurations. The MD Parameter
& Configurations are defined as parameters and configuration of operational NSSIs
as well as the configuration possibilities of the overall MD. Typical parameters are:
RAN technology, coverage, edge cloud availability, security features (like access con-
trol, encryption), service and session continuity (e.g. seamless handover), maximum
number of UEs, coverage area, latency, UE mobility level and resource sharing level.
In step 3, the Parameter & Resource Data Consumer Service, in this case either
the Network Capability Provisioning Service or the NSI Requirement Provisioning
Service, requests the MD Resource Data from all applicable MDs. Lastly, the MD
Resource Data Provisioning Service responds to the Parameter & Resource Data
Consumer Service with the MD Resource Data. The MD Resource Data is defined
as the resource allocation and utilization of the operational NSSIs as well as the re-
maining capacity of the entire MD. It contains the collected data of actual resource
availability for all consumable resources defined in the NSI-D for the operational
NSSIs as well as idle capacity and collected data of the actual resource utilization
for all consumable resources defined in the NSI-D for the operational NSSs.

57

4
Optimal Network Slice Embedding

This chapter introduces the models and implementation of the optimal NSE algo-
rithm. First, the problem and motivation as well as the objectives are described.
Then the formal problem definition and implementation are presented in detail and
illustrated by brief, comprehensible examples.
The formalization first introduces the definitions, parameters and variables used
throughout the models. Secondly, three different objective functions are presented.
Finally, the three model variants of the optimal NSE are defined.
Figure 4.1 provides an overview over the variants of the NSE model. The basic NSE
model serves as the foundation of the advanced path-splitting, Multiple Application
Instantiation (MAI) as well as the combined NSE model.
The basic model is the simplest version, a single-path mapping approach already
considering network function changing and several-to-one mappings. In the second
version of the optimal NSE model path-splitting is introduced. The third variant of
the optimal NSE model facilitates MEC by introducing an automated optimization
for creating and allocating multiple instances of virtual network functions (referred
to as applications). In the final variant both features, path-splitting and MAI, are
integrated in a combined NSE model.
The objective functions specified in this chapter can be used for the model variants
as visualized by the dashed lines in Figure 4.1. The simple objective function is
only useful for the basic NSE model. The more sophisticated latency-aware objec-
tive function as well as the cost and revenue objective function are applicable to all
model variants.

Figure 4.1: Big Picture of the Optimal NSE Model Variants

59

4 Optimal Network Slice Embedding

4.1 Problem and Motivation

As already explained in Chapter 1, the fifth generation of mobile networks (5G) cov-
ers a wide variety of novel use cases, such as the IoT and the industry of the future
(Industry 4.0), requiring mMTC. Furthermore, highly safety and security critical
use cases, like autonomous driving and vehicular communication, require URLLC.
But also traditional eMBB applications like HD video streaming and augmented
reality must be considered. These diverse use cases introduce several radically dif-
ferent requirements on mobile networks. Network slicing is seen as the key concept
of future 5G mobile networks, which aims at making shared networks flexible enough
to cope with those divergent requirements by dissolving the traditional concept of
one monolithic mobile network serving all purposes [2]. Since, network slices might
be instantiated, modified or terminated dynamically or on short notice, a 5G Net-
work Slice Customer Portal provided by a mobile service provider allowing tenants
to easily configure and order new network slices is envisioned, see Chapter 1. The
tenant should receive quick feedback on the feasibility of an NSI-R within only a
few minutes.[3]

This chapter provides a full NSE solution for a set of NSI-Rs. It implements the
quantitative and qualitative feasibility check of the NSE process, see Section 3.3.
The evaluated set of NSI-Rs might include several already deployed NSIs and one
or several new NSI-Rs. The NSE provides a nearly optimal allocation of the new
NSI-Rs as well as a nearly optimal reallocation of the already running NSIs. If there
are not enough resources to embed the new NSI-Rs, but the new ones are more prof-
itable regarding the objective function, then the least profitable NSIs are removed
in favor of the new, more profitable NSI-Rs.
If the embedding and allocation of some of the already running NSIs must remain un-
changed, the occupied resource as well as the affected immutable NSIs are removed
from the NSE optimization problem. This way, it is assured that the resources of
the immutable NSIs remain untouched, while the already running NSIs allowing
reallocation as well as the new NSI-Rs embeddings are optimized.

In order to solve the NSE problem using an LP, the physical network resources as
well as the NSI resource demands are modeled as undirected graphs. The undirected
graphs representing the physical network as well as the NSIs consist of nodes and
edges.
For the substrate networks the nodes represent different kinds of network elements,
especially groups of UEs, core-network node as well as servers and cloud computers.
The UE groups are defined as sets of UEs which are connected to the same cell.
The undirected edges of the substrate network graph model the communication
connections between the network nodes. These can be RAN, transport links as well
as core network links. Both, wired and wireless network elements are considered.
However, the RAN and WiFi hot-spot resources in an end-to-end communication
system is the most demanding part of the overall NSE task, since the backbone of
each cell usually provides enough resources for the data transport and therefore is

60

4.1 Problem and Motivation

usually not the primary bottleneck [50]. Network elements included in one substrate
might be owned by different mobile network providers and belong to different MDs.
This has the advantage that resources can be shared cross-domain and services of
different network providers can be combined. This facilitates efficient utilization
of all available mobile network infrastructure resources and can avoid expensive
overprovisioning.
Fig. 4.2 shows a simplified end-to-end mobile network infrastructure (substrate
network). The UE groups establish a radio connection to one of the radio heads or
antennas. Those antennas either have their own base station or are connected to a
base station via an optical or directional radio transport link (remote radio heads).
Each base station can have an edge cloud. The base stations are connected to the
core network by the so-called backhaul. The core network provides access to the
central or main cloud. In contrast to the edge clouds, the main cloud has a large
capacity for running applications and providing services.

Figure 4.2: Simplified End-to-End Mobile Network Infrastructure

The graphs representing the end-to-end NSIs consist of the UE groups subscribing
the services of the NSI as well as the services provided by the NSI. Those services
include communication channels as well as network functions and high-level appli-
cations as defined in the NSI description. Application nodes are mobile network
services like telecommunication services, establishing a connection to another end-
user device or providing a service like video streaming or a virtual reality service.
In comparison with the model of the physical network infrastructure the model of
the NSIs is pretty simple. It only specifies the UE groups connected to the required

61

4 Optimal Network Slice Embedding

applications. Figure 4.3 gives an example for a basic NSI with three UE groups and
three applications.

Figure 4.3: Simple End-to-End NSI

For example, in a car-to-x network slice the vehicles, the roadside-infrastructure as
well as services providing, for example, information on current road and weather
conditions are the application nodes of the communication network. However, mod-
eling every single potential end-to-end connection within an NSI is not possible for
most NSIs. Therefore, mobile UE connections are aggregated on cell level, i.e.,
several UEs connected to the same cell and using the same service are aggregated
to one end-to-end connection. Obviously, the UE group nodes of the NSIs can be
directly mapped onto their according representation in the substrate network. The
NSI model would usually not predefine a routing for voice and data between two
nodes of the virtual network in the substrate. The mapping of all links in the virtual
network on the paths of the substrate has to be made by an NSE algorithm regarding
the resources each link and node element of the physical network provides and the
expected resource utilization of the NSIs. This also applies to so-called end-to-end
connections between two UE group nodes.
Besides the mobile network and NSI topology, the provided and required resources
are crucial for solving the NSE model. The most important resources and capabil-
ities are included in the model. Nevertheless, additional resources, capabilities and
restrictions can be seamlessly integrated into the model.

The most important parameters of the NSE problem are the required throughput
and latency of the communication links of the physical network. But also the re-
quired CPU power and memory capacity of the cloud and mobile edge computing
services. Furthermore, the reliability guarantees of the network elements are exam-
ined.
The models abstract from resource isolation and resource sharing which could be
done by using, e.g., TDMA or FDMA and considers, for instance, the throughput
available on a specific physical communication link as a resource to be shared among
several tenants, instead.
Furthermore, it does not consider uncertainties in resource demands and resource
provisioning. Throughout this chapter, it is assumed that the resources provided by
the physical network as well as the resource demands of the NSIs remain constant
over time. However, the signal quality of mobile communication is affected by nu-
merous environmental influences. For instance, the available throughput resources

62

4.2 Goals and Requirements

depend on the channel quality and the SNIR a UE experiences, which is affected
by the distance between the transmitter and receiver as well as obstacles like build-
ings, hills or vegetation. In addition, the weather conditions as well as interferences
with other antennas influence the channel quality. As a consequence, the available
throughput resources vary over time in practices.
Apart from that, the actual resources utilization of the users of the network slices
is time dependent. For example, the data traffic volume at daytime is very differ-
ent from the data traffic volume during the night. Since the network resources can
have a high variability it is helpful to annotate the graph not only with the aver-
age expected values of the resources to be allocated, but with a whole probability
distribution of the resource availability. A robust solution for the NSE problem un-
der uncertainty is presented in Chapter 5. Throughout Chapter 4, exact knowledge
of the requirements, demands and capacities is assumed for all considered resource
types. Beyond that, the resource requirements and resource demands are assumed
to be static.
In addition, the data packet latency is simplified. The minimum time a data packet
needs to be transported from the sender to the receiver is called the end-to-end
latency. It depends on the used technologies and the network infrastructure hard-
ware. The delay is the extra time a packet needs if the channels are crowded and
the optimal latency cannot be achieved. The end-to-end latency plus the delay,
i.e., the actual time a data packet needs to be transported from the sender to the
receiver, is also referred to as latency. In this thesis a worst-case latency is assumed,
which is reached when the links are on full load but not overloaded, that means, it
is assumed that there is no additional delay due to congestion of the communication
channels. This is a valid assumption, since overloading of the communication links
is prevented by the NSE algorithm.
For simplicity, it is assumed that every application node can be deployed on an
arbitrary cloud server as long as the server provides enough computation power
and memory resources. In a practical context, additional restrictions might be re-
quired. The presented NSE model can handle such additional restrictions in form
of dedicated constraints.

4.2 Goals and Requirements

This chapter addresses Objective 2, the development of a formalization and an effi-
cient algorithm to solve the NSE problem under the assumption of certain resource
and capability requirements and demands.

The NSE problem is a special case of the VNE problem, introduced in Section 2.3.
However, NSE in end-to-end mobile networks has specific challenges. Compared to
the general VNE problem, the nodes and links of the substrate network graph in the
NSE problem are associated with several different and additional resource and ca-
pability parameters and other restrictions. For instance, the presented NSE models
should consider network function chaining, several-to-one mappings, path-splitting

63

4 Optimal Network Slice Embedding

and MAI.
The vision of a 5G Network Slice Customer Portal allowing a tenant to configure
new NSI-Rs and receive instant feedback on the feasibility of the requests requires
a fast and efficient solution of the NSE problem. Thus, an automated and efficient
NSE algorithm is needed.

This chapter aims at automating the NSIA process by modeling the NSE using
an LP, which then can be solved with an out-of-the-box LP solver. The focus of
the proposed model lies on resources assignment and on the allocation of network
functions, user applications and services on multi-purpose cloud servers. A nearly
optimal NSE on a shared physical network is determined for an arbitrary mobile
network infrastructure and arbitrary NSIs.
The NSE model and algorithm presented in this chapter includes answering the
following questions.

1. Are there enough resources in the physical network to embed all NSI-Rs?
2. Which NSIs should be chosen for deployment, when there are not enough

resources?
3. Which cloud servers should the applications be deployed on?
4. Which communication links should be used, if there are several alternative

paths?
I.e., the nearly optimal embedding answers the questions whether or not the physical
network provides enough resources to serve the NSIs in its current configuration as
well as which and how the NSIs should be deployed regarding the defined objectives
or business goals.

4.3 Formal Problem Definition

In this section, the NSE Problem is defined mathematically. The ILP model is in-
spired by the VNetMapper [31], see 2.3.5. We follow the design guidelines for ILPs
proposed by Despotovic et al. in [31]. The authors of [31] present a scalable algo-
rithm for the VNE problem, the so-called VNetMapper. Their problem formulation
allows to solve a VNE with hundreds of nodes and thousands of links within a few
seconds. The VNetMapper is not optimized for end-to-end mobile networks. It only
considers consumable resources, e.g., throughput or memory. Constraints for non-
consumable resources like latency are not formalized by the approach. Beyond that,
the VNetMapper does not allow to map several virtual nodes on the same physical
node as well as several virtual links on the same edge of the substrate. This is not
sufficient to represent an NSE, since resource sharing is one of the most important
intentions of network slicing in 5G. In contrast to that, the formal model presented
in this section is tailored to end-to-end mobile network slicing. It considers link
latency constraints and allows several-to-one mappings. Furthermore, this approach
takes advantage of the fact that the UE group nodes are the same in the physical
as well as the virtual networks, i.e., the NSIs.

64

4.3 Formal Problem Definition

4.3.1 Definitions and Notation

The definitions and notation used throughout this thesis are defined in the following.
A comprehensive list of the defined symbols, the List of Symbols, is attached at the
end of this thesis.

4.3.1.1 General Definitions

The NSE model uses the following graph-theoretical definitions from Diestel et al.
[51]. Graphs are formed by vertices and edges. This work uses undirected graphs
to model the communication within physical and virtual mobile networks, since
bidirectional communication is assumed on the communication links.

Definition 1 (Undirected Graph)
An undirected graph G is an ordered pair G = (V , E) comprising a set of n ∈ N
vertices V = {v1, v2, . . . , vn} and a set of m ∈ N edges E = {e1, e2, . . . , em}.
Every edge ek for k = 1, . . . ,m is associated with two ends, vi ∈ V and vj ∈ V for
i, j = 1, . . . , n. Edges can be denoted as ek := {vi, vj} or as ek := vivj.
In undirected graphs, edges do not have a direction, i.e., vivj = vjvi.

A path in an undirected graph is itself a special case of an undirected graph where
a set of edges forms a cycle-free sequence through all vertices of the graph.

Definition 2 (Path)
A path of length n ∈ N is an undirected graph P = (V , E) such that V = {v1, v2, . . . , vn}
is a set of pairwise different vertices vi, i = 1, . . . , n and E is a set of edges
E = {v1v2, v2v3, . . . vn−1vn}.
v1 and vn are called end-nodes of P .
An edge ej is element of a path P , denoted as ej ∈ P , if ej ∈ E.
P is well defined by its edges P := E.

The following work frequently refers to the set of all paths between two specific
vertices. For convenience, we define:

Definition 3 (Set of Paths)
Pvi,vj denotes the set of all paths in an undirected Graph G = (V , E) with end-nodes
vi, vj ∈ V, with i, j = 1, . . . , n, n ∈ N and i 6= j.
Note that Pvi,vj = Pvj ,vi.

4.3.1.2 Mobile Network-Specific Definitions

The physical mobile network infrastructure, also referred to as the substrate in this
thesis, is defined as a so-called substrate graph.

Definition 4 (Substrate Graph)
A substrate graph N = (U , C, E) is defined as an undirected Graph G = (V , E) with
V := U ∪ C. N consists of a set of UEs (User Equipments) U := {u1, . . . , un}
with n ∈ N, a set of cloud nodes C := {c1, . . . , cm} with m ∈ N and a set of edges
E := {e1, e2, . . . , er}, r ∈ N.

65

4 Optimal Network Slice Embedding

The vertices of the network graph are of two different types, UE groups ui ∈ U and
cloud nodes cv ∈ C (which include edge clouds as well as central and aggregation
clouds). Due to the end-to-end mobile network topology, the communication links
ej ∈ E in the network can be defined between a UE group and a cloud node or
between two cloud nodes E ⊆ {uicv, cvcw} for all i = 1, . . . n and v, w = 1, . . . ,m.

The same applies to communication paths. We define:

Definition 5 (Physical Communication Path)
A physical communication path P is defined as an undirected graph P = (V , E) in
a substrate Graph N such that V = {d, c1, c2, . . . , cn} with d ∈ U ∪ C and pairwise
different nodes cv, cw ∈ C: d 6= cv and cv 6= cw for v, w = 1, . . . , n and
E = {dc1, c1c2, c2c3, . . . , cn−1cn}.
P can be described as its consecutive edges: P = {dc1, c1c2, c2c3, . . . , cn−1cn}.
d and cn are referred to as the end-nodes of the physical communication path.
P is an element of the set of paths connecting d and cn, denoted as P ∈ Pd,cn or
P ∈ Pcn,d.
Without loss of generality d can be referred to as the start-node, while cn can be
referred to as the end-node of P .
P is defined as the set of all communication paths in a network graph N .
Each communication path in the substrate network is assigned with a unique identi-
fier r ∈ N. Thus, Pr ∈ P for a unique r ∈ N.

As defined above, physical communication paths are restricted to connections be-
tween a UE group and a cloud node or between two cloud nodes, but not between
two UE groups. In addition, no path connects two UE groups. Therefore, at most
one UE group node can be part of a physical communication path in a substrate
graph.

In addition, we define the so-called free-self-links from every cloud node to itself.

Definition 6 (Free-Self-Link)
A free-self-link in a Network Graph N = (U , C, E) is defined as an edge e ∈ E which
forms a self-loop for a cloud node c ∈ C, i.e., e := cc.

These links are used as paths to connect virtual applications mapped on the same
physical cloud node.

Definition 7 (Free-Self-Path)
A free-self-path P free

cv is defined as a Graph P = (V , E) in a substrate Graph N , such
that V = {cv} for a cv ∈ C and E = {cvcv}.
The set of free-self-paths in N is denoted as Pfree.

The free-self-paths are used to accommodate the communication between virtual
nodes mapped on the same physical node.

66

4.3 Formal Problem Definition

NSI-Rs that should be embedded into the mobile network infrastructure are received
over time via the 5G Network Slice Customer Portal. The NSI-Rs are numbered in
ascending order as they arrive, with a k = 1, . . . , n with n ∈ N. If two or several
NSI-Rs arrive concurrently, they are sorted randomly to receive a unique NSI-R
number. An NSI-R is formally defined as follows.

Definition 8 (Network Slice Instance)
The k-th NSI for a k = 1, . . . , n with n ∈ N is defined as an undirected Graph
G = (V , E) with V := Uk ∪ Ak and E = Lk.
Nk is associated with a weight ωk > 0 and defined as a network graph Nk =
(Uk,Ak,Lk) for k = 1, .., n with Uk ⊆ U , Ak = {ak1, ak2, . . . , akmk}, mk ∈ N the
applications and Lk = {lk1 , lk2 , . . . , lkrk}, rk ∈ N the virtual communication links.

The NSIs are modeled as virtual network graphs Nk = (Uk,Ak,Lk) for k = 1, .., n
with Uk ⊆ U , that means, the UE groups are already embedded in the physical
network by definition.
To compare the importance of the NSIs relative to each other, for instance, the
utility of the NSIs or their revenue for the InP, weights ωk are assigned to them.
Ak is the set of application nodes of the k-th NSI, with akm ∈ Ak defined as the m-th
application node of Nk. To guarantee NSI isolation, NSIs never share application
instances. Even if they require the same type of application, distinct instances of
the same application are defined for the NSIs.
The virtual communication links connecting UE groups and application nodes, are
defined as lki ∈ Lk for the k-th NSI. In the NSI no direct UE group to UE group con-
nections are allowed. A communication connection, like a phone call, between two
UE groups is modeled as two connections, one for each UE group towards a common
application. Without loss of generality, every lki can be written as lki = {uv, akm} if
it is a UE group to application connection or as lki = {akq , akm} if it is an application
to application connection for distinct applications with q 6= m.

Virtual communication paths are the equivalent of physical communication paths in
a virtual network graph or network slice. They are defined as follows:

Definition 9 (Virtual Communication Path)
A virtual communication path P k is defined as an undirected graph P k = (V , E)
in an NSI Nk such that V = {d, a1, a2, . . . , an} with d ∈ Uk ∪ Ak and pairwise
different nodes am ∈ A: d 6= am and am 6= aq for m, q = 1, . . . , n and E =
{da1, a1a2, a2a3, . . . , an−1an}.
d and an are referred to as the end-nodes of the virtual communication path.
P k can be described as its consecutive edges: P = {da1, a1a2, a2a3, . . . , an−1an}.
P k is an element of the set of paths connecting d and an, denoted as P k ∈ P k

d,an
or

P k ∈ P k
an,d

.
Without loss of generality d can be referred to as the start-node, while an can be
referred to as the end-node of P k.
P is defined as the set of all communication paths in an NSI Nk.
Each communication path in the NSI is assigned with a unique identifier r ∈ N.
Thus, P k

d,an
= P k

an,d
can also be referred to as P k

r for a unique r ∈ N.

67

4 Optimal Network Slice Embedding

4.3.2 Parameters

NSI acceptance implies a feasible NSI embedding and resource assignment. The
most important resources and capabilities, identified in Section 4.1, are considered
in the ILP formalization.
Throughout this thesis, we distinguish between node and link resources and capa-
bilities. Resources are consumable capacities provided by a network element, while
capabilities are non-consumable characteristics of the network elements.
The most important resources provided by the physical network nodes (edge, aggre-
gation and central clouds) are computation power and memory. Furthermore, the
node reliability is taken into account as a node capability. The virtual link mapping
is, among others, restricted by throughput resources as well as the link latency and
reliability.
Only the most important resources and capabilities of the nodes and links in the
network are considered in this work. However, adding further resources and capa-
bilities is straightforward, since the following model includes generalized constraints
which can be used as templates for additional parameters.

4.3.2.1 Node Resources and Capabilities

The edge, aggregation and central cloud servers provide resources and capabilities
which can be assigned to applications of the NSIs. A general resource of a node
cw ∈ C in the substrate network is denoted as Ow. I.e., Ow represents an arbitrary
node resource. Concrete instances of provided physical node resources considered in
this thesis are: The computation and memory capacity of a cloud node cw, defined
as Dw and Mw respectively. The general notation for capabilities provided by a
substrate node cw is Ww. We use the node reliability as an example for a node
capability. It is denoted as Bw in the following.
Complementary to the resources and capabilities provided by the physical mobile
network (substrate), the NSIs come with resource and capability requirements that
should be fulfilled by the physical network elements. The required resources of an
application node akm of the NSI Nk is defined as Ok

m. Ok
m can represent either the

required computation power Dk
m or the required memory capacity Mk

m of akm. In
general, the capability requirements of a node akm in an NSI Nk is denoted as W k

w.
The required reliability Bk

m, defined for the hardware the application akm is deployed
on, serves as a concrete example for a node capability requirement.
Table 4.1 provides an overview over the previously introduced notation regarding
the node parameters, used throughout this thesis.

4.3.2.2 Link Resources and Capabilities

The link resources are similarly defined. On the one hand, there are the substrate
resources and capabilities, on the other hand we have the resources and capabilities
demanded by the NSI-Rs. In a general notation, the provided link resources are
referred to as Rj for a physical edge ej while the required link resources are called

68

4.3 Formal Problem Definition

Table 4.1: Node Resources and Capabilities

Def. Type Description

Ow General Resource Provided resource of substrate node cw
Dw Specific Resource Provided computation capacity of substrate node cw
Mw Specific Resource Provided memory capacity of substrate node cw
Ww General Capability Provided capability of substrate node cw
Bw Specific Capability Provided reliability of substrate node cw

Ok
m General Resource Required resource of node akm in Nk

Dk
m Specific Resource Required computation capacity of node akm in Nk

Mk
m Specific Resource Required memory capacity of node akm in Nk

W k
m General Capability Required capability of node akm in Nk

Bk
m Specific Capability Required reliability of node akm in Nk

Rk
i for a virtual link lki which belongs to an NSI request Nk. Similarly, an arbitrary

capability provided by a physical edge ej is referred to as Qj while its network slice
counterpart is called Qk

i for a link lki .
Specific link resource capacities and demands of end-to-end mobile networks con-
sidered in this model are the provided and demanded throughput Ti for a physical
communication link ej and T ki for a virtual communication link lki in an NSI request
Nk, as well as the link latency and reliability. Table 4.2 summarizes further details
on these parameters. The available throughput is defined as the maximum possible

Table 4.2: Link Resources and Capabilities

Def. Type Description

Rj General Resource Provided resource of substrate edge ej
Tj Specific Resource Provided throughput of substrate edge ej
Qj General Capability Provided capability of substrate edge ej
Lj Specific Capability Latency on substrate edge ej
Aj Specific Capability Reliability of substrate edge ej

Rk
i General Resource Required resource of link lki in Nk

T ki Specific Resource Required throughput of link lki in Nk

Qk
i General Capability Required capability of link lki in Nk

Lki Specific Capability Required latency of link lki in Nk

Aki Specific Capability Required reliability of link lki in Nk

throughput on the wired or wireless communication link ej ∈ E of the network in-
frastructure. To keep the model simple, uplink and downlink are not distinguished.

69

4 Optimal Network Slice Embedding

For RAN connections an expected Channel Quality Index (CQI) has to be defined
in advance in order to determine the maximum throughput based on the frequency
bandwidth.
For simplicity, the maximum latency is modeled as an upper bound for the data
transmission time if the link is on full load, but not overloaded.

Finally, the resources and capabilities of the free-self-links (see Definition 6) are
specified. As the free-self-links represent node-internal communication between ap-
plications, the resources and capabilities of these imaginary links are unlimited by
definition.

Definition 10 (Free-Self-Link Parameters)
Free-self-links provide unlimited resources and perfect capabilities.

Thus, free-self-links do not cause bottlenecks. For a free-self-link ej in the substrate
we define for our specific parameters, as introduced above: The throughput of a
free-self-link ej is unlimited: Tj := ∞, its latency is zero Lj := 0 and its reliability
is 100% Aj := 1.
Consequently, the free-self-paths (see Definition 7) can be used without limitations
and costs. However, if the internal communication on a cloud node is subject to
restrictions or constraints, i.e., due to the internal bus-system, restricted instead
of free links can be used by setting the parameters to the respective limits. Node-
internal communication restrictions are however out of the scope of this thesis.

Table 4.3: Path Resources and Capabilities

Def. Type Description

RPr General Resource Provided resource of substrate path Pr
TPr Specific Resource Provided throughput of substrate path Pr
QPr General Capability Provided capability of substrate path Pr
LPr Specific Capability Latency on substrate path Pr
APr Specific Capability Reliability of substrate path Pr

The link resources and capabilities, defined in Table 4.2, are extended on paths, see
Table 4.3. The aggregation of the resources and capabilities on path level depends
on the characteristics of the resources and capabilities.
For example, the throughput of a path Pr with E = {e0, e1, . . . , em} is defined as the
minimum throughput of the involved edges:

TPr := min
j=0,...,m

Tj

The aggregated latency LPr of Pr is defined as the sum of the latency of its edges:

LPr :=
m∑
j=0

Lj

70

4.3 Formal Problem Definition

Finally, the reliability of a path is defined as the minimum reliability of its edges:

APr := min
j=0,...,m

Aj

4.3.3 Variables

The NSE problem is based on three variable types. The first type of variables are
the embedding variables yk, one for each NSI.

Definition 11 (Embedding Variables)
We define n ∈ N embedding variables yk, for k = 1, . . . n, one for each NSI-R as

yk :=

{
1 if Nk is embedded in N
0 otherwise

yk is set to 1 if Nk is accepted and embedded into the substrate. Otherwise, yk = 0
if the k-th NSI-R is rejected.
Thus, yk is a binary variable.

The second and third types of variables mapping variables. It is distinguished be-
tween node and link mapping variables.

Definition 12 (Node Mapping Variables)
We define an application (NSI application node) to cloud (substrate node) mapping
a2ckmw variable for every substrate node and every application node in all NSI-Rs as

a2ckm,w :=

{
1 if akm is mapped on cw
0 otherwise

The node mapping variable a2ckm,w = 1 if and only if the virtual application node
akm is mapped on the physical cloud node cw. a2ckm,w is also a binary variable.

Definition 13 (Binary Link Mapping Variables)
We define the virtual link (link in NSI) to communication path mappings l2pki,r for
every virtual link in the NSIs and communication path in the substrate Pr as:

l2pki,r :=

{
1 if lki is mapped on Pr
0 otherwise

The link mapping variables l2pki,r describe the mapping of virtual links lki on physical
substrate paths Pr. If the link lki is mapped on the path Pr, then l2pki,r = 1, otherwise,
the mapping variable is set to 0.
Since the basic elements of the substrate network model are nodes and edges, we
also define the physical path to edge mapping.

71

4 Optimal Network Slice Embedding

Definition 14 (Path to Edge Mapping)
We define the substrate communication path Pr to substrate edge mapping as:

p2er,j :=

{
1 if ej is used in Pr
0 otherwise

This mapping is constant and can be derived directly from the substrate paths.
p2er,j = 1 if and only if the physical path with ID r includes the physical link ej,
p2er,j = 0 otherwise.
Together with the l2p mapping variables, the l2e mapping can be derived without
creating any additional variables. The l2e mapping is not necessary for the model.
However, it supports a better understanding of some relations and constraints used
in the following.

Definition 15 (Link to Edge Mapping)
We define the NSI link to substrate edge mapping as

l2eki,j :=
∑
∀r

(
l2pki,r · p2er,j

)

The l2eki,j mapping is 1 if and only if the l2pki,r = 1 and p2er,j = 1, that means, if lki
is mapped on Pr and Pr includes ej. Otherwise, l2eki,j is 0.

In the basic version of the NSE problem formalization without using multi-path
methods all variables are binary. Thus, the NSE can be modeled as an ILP, i.e., an
LP with integer variables only.

4.3.4 Objective Functions

The utility of an NSE is measured with regard to an objective function. In this
section, three specific objective functions are introduced.

4.3.4.1 Simple Objective Function

The basic objective function is the so-called simple objective function (see [31]).

Definition 16 (Simple Objective Function)
The simple objective function is defined as

max
yk

(∑
∀k

yk
ωk
φ

)

with the normalization factor
φ :=

∑
∀k

ωk

72

4.3 Formal Problem Definition

The simple objective function, as defined above, maximizes the sum of weights ωk
of the embedded NSIs. The weights ωk are normalized by the constant φ, such that
the weights sum up to 1.
The NSI weights ωk allow a great degree of freedom. In the simplest version, equal
weights of 1 are assigned to all NSIs. In this case, the algorithm simply targets at
embedding as many NSI-Rs as possible, without prioritizing them.
The NSI weights can be used to prioritize the NSIs, for instance, the revenue of the
NSI for the MSP. Higher NSI weights mean a higher priority of the associated NSI-R.

4.3.4.2 Latency-Aware Objective Function

The latency-aware objective function is an enhancement of the simple objective
function introduced in Section 4.3.4.1.

Definition 17 (Latency-Aware Objective Function)
The latency-aware objective function is defined as

max
yk,l2p

k
i,r


∑
∀k

yk
ωk

min
k
ωk

−

∑
∀k,i,r

l2pki,r · LPr∑
∀k,i,r

l2p′ki,r · LPr




with

l2p′
k
i,r := 1, ∀i, r, k

The latency-aware objective function comprises two terms. The first term is similar
to the simple objective function (see Definition 16), but not normalized to 1. How-
ever, it is still responsible from embedding as many NSIs as feasible taking their
priorities into account. The NSI priorities are modeled by the NSI weights. I.e.,
the first term of the latency-aware objective function is responsible for maximizing
the sum of the weights of the embedded NSIs. Instead of the normalization used
in Definition 16, the weights ωk are scaled so that the smallest weight is 1 and the
other weights respect the relative importance given by the original weights. For
example, if the weights are ω0 = 2, ω1 = 4 and ω2 = 5 then the weights are scaled
by the factor 1

min
k
ωk

= 1
2
. Thus, the scaled weights are ω′0 = 1, ω′1 = 2 and ω2 = 2.5.

As a result, each embedded NSI adds a benefit of at least 1 to the latency-aware
objective function.
This embedding objective is augmented by a second, latency-aware term. The sum
of all latencies on the used substrate links is minimized. Minimization is achieved by
the factor −1 multiplied to the term, since latencies and the mapping variables are
positive values. In the numerator of the second term of the latency-aware objective
function all latencies of the used physical links are summed up. The denominator
normalizes the sum of the latency-cost factors to 1. The set of parameters l2p′ki.r := 1
for all i, r and k is defined for the notation of the sum only.
As a result, the utility of embedding any NSI is always at least as high (normalized

73

4 Optimal Network Slice Embedding

weight of 1) as all latency costs for all NSI embeddings together (sum of weights is 1).

4.3.4.3 Cost and Revenue Objective Function

Approaching the NSE problem from a business perspective, a cost and revenue op-
timization is often required.
NSI-R acceptance underlies technical as well as economic considerations. That
means, NSI-Rs must be technically feasible, but also economically beneficial to be
accepted by the MSPs and deployed in the mobile network. However, the true costs
of mobile network usage are often unclear, as the operation of a network naturally
entails a high proportion of fixed costs, like costs for capital, rent of BTS sites and
personnel costs. Since the allocation of these costs to a specific network usage or an
NSI is not straightforward, the following cost and revenue objective function, which
is based on relative revenue and costs, is used in this thesis.

Definition 18 (Cost and Revenue Objective Function)
The cost and revenue objective function is defined as

max
yk,a2ckm,w,l2p

k
i,r

((∑
∀k

yk
ωk

min
k
ωk

)
−

1

ψ
·

(∑
∀k,m,w

a2ckm,w ·
Dk
m

Dw

+
∑
∀k,m,w

a2ckm,w ·
Mk

m

Mw

+
∑
∀k,i,j

l2eki,j ·
T ki
Tj

))
with ψ the cost normalization factor

ψ :=
∑
∀k,m,w

Dk
m

Dw

+
∑
∀k,m,w

Mk
m

Mw

+
∑
∀k,i,j

T ki
Tj

The cost and revenue objective function maximizes an abstract representation of the
revenue minus costs of the set of embedded NSIs. The revenue of the embedded NSIs
is modeled as the sum of NSI weights as already used in the latency-aware objective
function in Definition 17. The costs of network resource usage are represented by the
the overall percentage usage of the resources. Consequently, if a resource is scarce,
its percentage of utilization is higher than for an abundant resource. As a result,
scarce resources are more expensive than abundant ones.
In this thesis, the cloud resources computation power D and memory M as well
as the throughput T on the links are considered. The throughput costs for using
substrate paths are a special case, since they have to be accounted per physical link
included in the path. The percentage load of a virtual link on a substrate edge is
added up on a per physical communication path basis.
When transforming the throughput term of the cost and revenue objective function
using Definition 15, we get its l2p notation:∑

∀k,i,j

l2eki,j ·
T ki
Tj

74

4.3 Formal Problem Definition

⇔∑
∀k,i,j

(∑
∀r

(l2pki,r · p2er,j)

)
· T

k
i

Tj

Note that, free-self-links are omitted, since they do not cause costs by definition.

The resource costs are compared only relative to each other, since absolute values
are often unavailable. The costs are normalized to 1 in order to not exceed the
revenue of embedding any of the NSIs in the cost and revenue objective function.
For simplicity, it is assumed that embedding an NSI always provides a positive con-
tribution margin. That means, at least the variable costs are compensated by the
revenue of the NSI. As a consequence, embedding an additional NSI-R provides
a positive financial gain for the MSP. As long as the NSI provisioning is priced
reasonably, this is a realistic assumption because of the high share of fixed costs for
the mobile network infrastructure and service provisioning.

4.3.4.4 Selecting the Objective Function

Selecting a suitable objective function is a crucial decision for the NSE. It does
not only highly impact the selection of NSI-Rs that are accepted, but also their
QoS and other parameters, for instance, the link latency, the resource costs and the
profit of the MSPs and InPs. Beyond that, it impacts the runtime of solving the
NSE problem.
Despotovic et al. show in [31] that the complexity of the objective function has
a high impact on the runtime efficiency of the VNE problem. Choosing an ap-
propriate objective function for a specific embedding problem is always a tradeoff
between the accuracy of the implementation of the relevant objectives and the com-
plexity of the objective function. Often, customized objective functions addressing
the respective needs of the NSE problem at hand are needed. This might involve
addressing additional goals beyond latency as well as cost and revenue optimization.
Such objectives might regard, for instance, energy consumption or robustness of the
resource provisioning. For instance, minimizing the energy consumption (this natu-
rally induces energy cost reduction) is achieved by sharing physical resource among
several virtual elements, for instance, several NSI applications might be deployed on
the same cloud server instead of being distributed on several clouds. Then, unused
network elements can be shut down in order to save electricity.
Moreover, a comprehensive approach for a robust, nearly optimal NSE is presented
in Chapter 5.

4.3.5 Network Slice Embedding Models

Embedding an NSI into the mobile network infrastructure means to map every ap-
plication node akm on at least one cloud node cw such that each virtual link lki can
be mapped on a suitable path Pr in the substrate and all resource requirements and

75

4 Optimal Network Slice Embedding

network capabilities are fulfilled.

This section introduces three variants of the NSE Model, starting with the most
basic one. The basic model is then extended to support path-splitting and MAI.

4.3.5.1 Basic Model

The basic NSE model is the simplest version of the nearly optimal NSE with ILP
presented in this thesis.

Formalization The basic NSE model is an ILP formalization of the NSE embed-
ding problem. It can be solved nearly optimally with an out-of-the-box solver. It
considers end-to-end communication latency as well as link reliability and the most
important link and node resources introduced in Section 4.3.2.
In addition, it allows so-called many-to-one mappings, i.e., several applications of
the same or different network slices can be deployed on the same substrate node, if
there are enough resources. The same applies to virtual link deployment. Several
NSI communication links, regardless of their affiliation to the same or different NSIs
can be deployed on the same substrate communication path.

The basic NSE model uses the simple objective function as defined in Definition 16.
Nevertheless, a different objective function, especially one of the objective functions
described in Section 4.3.4 can be used without the need to modify the remaining
problem definition.
The objective function, in this case the simple objective function, is optimized under
the following constraints, which describe the basic NSE problem as a standardized,
mathematical ILP.
Four main classes of constraints can be distinguished:

• Capacity constraints
• Capability constraints
• Map-once constraints
• Graph constraints

Capacity constraints apply to node resources on the one hand and to link resources
on the other hand. They ensure that the virtual elements of the NSIs can be mapped
only on substrate elements which provide a sufficient amount of resources. The
capacity constraints are defined similarly to the formalization proposed in [31].
For an arbitrary link resource R, we define the following set of constraints:

Definition 19 (General Link Resource Constraints)
The link resource constraints in the basic NSE model are defined as∑

∀k,i

l2eki,j ·Rk
i ≤ Rj, ∀j

The total required resources on all virtual links embedded on a substrate edge ej
must not exceed the provided resources of ej.

76

4.3 Formal Problem Definition

With Definition 15, this translates to the following l2p mapping constraints.

∑
∀k,i

(∑
∀r

l2pki,r · p2erj

)
·Rk

i ≤ Rj, ∀j

Note that, free-self-links are not considered in the link resource constraints, since
they do not consume any resources.
The link resource considered in this thesis is throughput only. Uplink and downlink
resources are not distinguished. Beyond that, it is assumed that the provided as
well as required throughput resources are constant for the basic NSE model.
Accordingly, the throughput resource constraints in the basic NSE model can be
formalized as the throughput constraints:

Definition 20 (Throughput Constraints)
The throughput constraints in the basic NSE model are defined as∑

∀k,i

l2eki,j · T ki ≤ Tj, ∀j

The capacity constraints state that the total throughput capacity of each link in the
substrate network must not be exceeded by the sum of throughput requirements of
all virtual links of the different NSIs mapped to it. This results in one constraint
per physical link.
Transforming the above l2e based throughput constraints into l2p based constraints,
using Definition 15, leads to the following set of constraints.

∑
∀k,i

(∑
∀r

l2pki,r · p2er,j

)
· T ki ≤ Tj, ∀j

Other possible link resources could be added to the model. In addition, uplink and
downlink throughput could be distinguished.

Besides the link resources, node resources are taken into consideration. For an
arbitrary node resource O we define the following set of constraints:

Definition 21 (General Node Resource Constraints)
The node resource constraints in the basic NSE model are defined as∑

∀k,m

a2ckm,w ·Ok
m ≤ Ow, ∀w

For every NSI and every network slice link mapped on a cloud node cw the required
resources of the type O are summed up. The constraints ensure that the total
amount of required resources must be smaller or equal than the provided resources
on a per cloud node basis.
In this work, we consider computation power D and memory M resources. This
results in the following sets of constraints.

77

4 Optimal Network Slice Embedding

Definition 22 (CPU Constraints)
The CPU constraints in the basic NSE model are defined as∑

∀k,m

a2ckm,w ·Dk
m ≤ Dw, ∀w

The available computation power on the physical cloud nodes must not be exceeded
by resource requirements of the assigned virtual application nodes.

Definition 23 (Memory Constraints)
The memory constraints in the basic NSE model are defined as∑

∀k,m

a2ckm,w ·Mk
m ≤Mw, ∀w

The same applies to the memory resources of the cloud and application nodes.

Beyond the capacity constraints, the NSE is subject to capability constraints re-
garding, for instance, the end-to-end latency as well as the node and link reliability.

We define a latency constraint for every embedded network slice link:

Definition 24 (Latency Constraints)
The end-to-end latency constraints in the basic NSE model are defined as

l2pki,r · LPr ≤ Lki , ∀k, i, r

The allowed latency of each virtual link in any of the NSIs must be greater or equal
to the sum of the actual latencies of all physical edges contained in the path mapped
to this virtual link.
Broken down to l2e mappings, using Definition 15, the latency constraints can be
denoted as: ∑

∀j

l2eki,j · p2er,j · Lj ≤ Lki , ∀k, i, r

In this basic NSE model, latency is assumed to be constant. If the communication
links are not overloaded it is feasible to define an upper bound for the actual latency
on a physical link.

The capability constraints include the so-called quality constraints for the links and
nodes. The binary and qualitative link quality constraints are defined as follows.

Definition 25 (Network Link Quality Constraints)
The link quality constraints in the basic NSE model are defined as

l2eki,j ·Qk
i ≤ Qj, ∀k, i, j

If Q is binary, then the constraints are called binary link quality constraints.
If Q has an infinite value range, then the constraints are called quantitative link
quality constraints.

78

4.3 Formal Problem Definition

The constraints verify if a specific required capability Q is available on the physi-
cal link the virtual link has been mapped on. There is one constraint for each l2e
variable, that means, for each combination of a virtual and a physical link across all
NSIs. This can be applied to binary parameters as well as parameter with continu-
ous values.
An example for a binary constraint is restricting a virtual communication link in
the RAN to a specified RAN technology, like LTE only. In this case, Qk

i is set to
1 if and only if the associated i-th link of the k-th network slice lki requires LTE.
Otherwise Qk

i is set to 0. Similarly, Qj is set to 1 if and only if the associated j-th
edge of the substrate network is an LTE connection. Otherwise Qj is set to 0. The
constraints ensure that lki can only be mapped on an edge ej if Qk

i is smaller or equal
Qj. That means, if LTE is required, it has to be provided on the allocated link. If
LTE is not required, it does not have to be provided by the used link.
Quantitative constraints use infinite value ranges for Q, for instance, the reliability
of a communication link represented by a percentage. Q can take values from the
interval [0, 1]. The quantitative link quality constraint checks, whether or not the
required reliability is provided by the physical communication link a network slice
link is mapped on.

From an l2p mapping perspective, the general link quality constraints can be for-
malized as follows.

l2pki,r ·Qk
i ≤ QPr , ∀k, i, r

I.e., the minimum quality aggregated with respect to the physical path Pr must
fulfill the requirement of the virtual link lki mapped on it.

For the basic NSE model, only the link reliability constraints are included. They
are modeled as follows.

Definition 26 (Link Reliability Constraints)
The link reliability constraints in the basic NSE model are defined as

l2eki,j · Aki ≤ Aj, ∀k, i, j

For the required reliability of the virtual links, the actual reliability of all physical
links ej used in a path mapped to a virtual link lki must fulfill the requirements of
the link. However, the reliability restrictions for link mappings do only consider the
reliability of the physical edges on the path, but not of the cloud server nodes visited
on that path.
The link reliability constraints in Definition 26 transferred into the l2p mapping
notation are similar to the general link quality constraints and look as follows.

l2pki,r · Aki ≤ APr , ∀k, i, r

Binary and quantitative node quality constraints are similarly defined for the vertices
or nodes in the NSE problem.

79

4 Optimal Network Slice Embedding

Definition 27 (Network Node Quality Constraints)
The node quality constraints in the basic NSE model are defined as

a2ckm,w ·W k
m ≤ Ww, ∀k,m,w

If W is binary, then the constraints are called binary node quality constraints.
If W has a continuous value range, then the constraints are called quantitative node
quality constraints.

The node mapping must comply with the required quality attributes. For instance,
virtual applications can only be mapped on physical could servers which comply
with their minimum reliability.

Definition 28 (Network Node Reliability Constraints)
The node reliability constraints in the basic NSE model are defined as

a2ckm,w ·Bk
m ≤ Bw, ∀k,m,w

There is one network node reliability constraint for each application to cloud node
mapping.

Furthermore, the basic NSE model specifies the following so-called map nodes once
constraints. They are responsible for ensuring that every virtual application node
is deployed exactly once in the substrate.

Definition 29 (Map Nodes Once Constraints)
The map nodes once constraints in the basic NSE model are defined as∑

∀w

a2ckm,w = yk, ∀k,m

The map nodes once constraints are similarly defined as in the ILP formulation
of the VNetMapper in [31]. There is one constraint for each application node in
each network slice. If the k-th NSI-R is accepted, then yk = 1 and all applica-
tion nodes akm of the k-th NSI-R must be embedded exactly once in the substrate
network. The left-hand side of the map-once constraints sums up the values of all
a2ckm,w variables for all cloud nodes cw in the substrate, for a fixed k and a fixed m.
That means, for a specific application node akm. Thus, this sum reflects the number
of embeddings of the m-th application of the k-th network slice in the substrate.
It must be equal to 1 if the NSI-R is accepted and equal to 0 if the NSI-R is rejected.

The NSE model requires, that each virtual link is mapped exactly once.

Definition 30 (Map Links Once Constraints)
The map links once constraints in the basic NSE model are defined as∑

∀r

l2pki,r = yk, ∀k, i

80

4.3 Formal Problem Definition

If the k-th NSI-R is accepted, that means, if yk = 1, then every virtual link lki of this
NSI must be mapped on exactly one physical communication path Pr. Otherwise, if
the k-th NSI-R is not embedded, then none of its associated virtual links is mapped
on a physical communication path in the substrate.

In addition, two types of graph constraints regarding the link mapping are needed
in the basic NSE model. They ensure, that the virtual links are mapped on physical
paths that connect the two cloud nodes, its adjacent applications are mapped on,
or the connected UE, respectively. This is achieved by the link mapping constraints
in the Definitions 31 and 32.

Definition 31 (Map Adjacent Links Constraints)
The map adjacent links constraints in the basic NSE model are defined as∑

∀Pr∈Pcvcw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb}

If an NSI application akm is mapped on a cloud node cw in the substrate network,
then every link connected to akm in the NSI specification must be mapped on at least
one path Pr with Pr ∈ Pcvcw with Pcvcw = Pcwcv , that means, a path which has cw
as one of its end-nodes.
The set of equations defined in Definition 31 also excludes any link to path mappings
that are not matching the node mapping, as long as two applications are connected.
The same is achieved for the UE group to application links with the equations in
definition Definition 32.

Definition 32 (Map UE Links Constraints)
The map UE links constraints in the basic NSE model are defined as∑

∀Pr∈Puvcw

l2pki,r = yk ,∀k, i if lki = {uv, akb}

If the k-th NSI-R is accepted for deployment in the physical network infrastructure,
i.e., if yk = 1, then for every link lki with an adjacent UE node uv exactly one link to
path mapping l2pki,r on a path with uv as one of its end-nodes must exist. Otherwise,
if the k-th NSI-R is not mapped, no such mapping must exist.

In addition, the links connecting the UEs and the applications, must be mapped
corresponding to the application node mapping in the substrate network.
This is achieved by the following set of constraints:

Definition 33 (UE to Application Links Graph Constraints)
The UE to application links graph constraints in the basic NSE model are defined as

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw

81

4 Optimal Network Slice Embedding

If lki = {uv, akm} and lki is mapped on Pr ∈ Pcv ,cw with Pcv ,cw = Pcw,cv with the adja-
cent nodes uv and cw, then akm must be mapped on cw. Nevertheless, it is possible
that akm is mapped on cw, i.e., a2ckm,w = 1 but lki has not been assigned to the path
Pr ∈ Pcv ,cw .

Further restrictions are required to ensure that only feasible combinations of node
and link mappings are accepted. Incoming and outgoing links must be suitable.
This is achieved with the map adjacent nodes constraints in Definition 34.

Definition 34 (Map Adjacent Nodes Constraints)
The map adjacent nodes constraints in the basic NSE model are defined as

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
and

a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
if both ends of the path are cloud nodes, or

a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw
if one end of the path is a UE group node, or

a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

and
a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

if Pr is a free-self-path.

The set of inequations in Definition 34 concern the link mapping, if lki = {akm, akq}
and lki is mapped on Pr ∈ Pcv ,cw with Pcv ,cw = Pcw,cv and with the cloud nodes
cv and cw as its end-nodes, then akm must be mapped on cw or cv and akq must be
mapped on cv or cw or vice versa.
Note that, the inequations in Definition 34 do not exclude that both ends of the
virtual link akm and akq are mapped on the same physical end-node of Pr. That
means, both could be mapped on cw or both on cv. However, this is prevented by
the inequations in Definition 31.
If lki = {uv, akq} = {akq , uv} is mapped on a path Pr ∈ Puv ,cw with Puv ,cw = Pcw,uv ,
i.e., on a path with a UE group node as one of its end-nodes, then akq must be
mapped on cw.
Another special case is, when a virtual link lki = {akm, akq} is mapped on a free-self-
path Pr = P free

cv . Then akm as well as akq have to be mapped on cv.

This model allows to share the same cloud node among chained applications. This
is achieved by allowing paths to start in an arbitrary cloud server node (not only in
a UE node) and by adding paths that only consist of one free-self link, as defined
in Definition 6), i.e., for every cloud node cw ∈ C of the substrate network a path
is defined which only consists of the free-self-link of cw. Similarly to the underlying
free-self-links, these free-self-paths have zero latency, infinite throughput resources
and a reliability of 1.

82

4.3 Formal Problem Definition

Summary of the Basic NSE Model When the components introduced above are
combined, the basic NSE model can be summarized as follows.

Model 1 (Basic NSE Model)

max
yk

∑
∀k

yk
ωk∑
∀k
ωk


under

1. Throughput Constraints: ∑
∀k,i

l2eki,j · T ki ≤ Tj, ∀j

2. CPU Constraints: ∑
∀k,m

a2ckm,w ·Dk
m ≤ Dw, ∀w

3. Memory Constraints: ∑
∀k,m

a2ckm,w ·Mk
m ≤Mw, ∀w

4. Latency Constraints:
l2pki,r · LPr ≤ Lki , ∀k, i, r

5. Link Reliability Constraints:

l2eki,j · Aki ≤ Aj, ∀k, i, j

6. Network Node Reliability Constraints:

a2ckm,w ·Bk
m ≤ Bw, ∀k,m,w

7. Map Nodes Once Constraints:∑
∀w

a2ckm,w = yk, ∀k,m

8. Map Links Once Constraints:∑
∀r

l2pki,r = yk, ∀k, i

9. Map Adjacent Links Constraints:∑
∀Pr∈Pcv,cw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb}

83

4 Optimal Network Slice Embedding

10. Map UE Links Constraints:∑
∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i, if lki = {uv, akb}

11. UE to Application Links Graph Constraints:

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw

12. Map Adjacent Nodes Constraints:
a) for Cloud Node to Cloud Node Paths:

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw and

a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
b) for UE Group Node to Cloud Node Paths:

a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw

c) for Free-Self-Paths:

a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv and

a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

The simple objective function used in the description of the basic NSE model can
be replaced by any of the objective function described in Section 4.3.4 without
modification of the constraints.

Algorithmic Details The basic NSE model requires to determine all cycle-free
physical communication paths as defined in Definition 5. These paths are detected
by running a recursive search.
The physical communication path finder (see Algorithm 1) creates a list of physical
cycle-free communication paths. For every UE group and cloud node in the sub-
strate network, the according free-self path is added to the list of physical cycle-free
paths. Then the recursive depth first search method in Algorithm 2 is executed on
every node.
Algorithm 2 takes the current node (in the beginning this is the initial UE group
node), the list of already created (finished) paths Pf (which is empty in the be-
ginning) as well as the unfinished path P , that is currently created (which has no
elements in the first execution of the method). Then a depth-first search starting
from the current node is executed. Every outgoing edge is analyzed and according
paths are added to the list of finished paths, if these paths are not in the list (also
not in reverse order) and the added link does not close a cycle. Furthermore, free-
self-links are excluded (see line 3). In addition to that, the algorithm does not add
paths which include more than one UE group node. UE group nodes are not used as
relays in paths. When a new cloud node has been reached in the graph, the depth

84

4.3 Formal Problem Definition

Algorithm 1 Physical Communication Path Finder
1: create an empty list of finished paths Pf
2: for each node d ∈ U ∪ C do
3: add free-self path P free

d to Pf
4: create empty unfinished path P
5: Depth First Search(d, Pf , P)
6: end for

Algorithm 2 Depth First Search
1: Input: current node d0, list of finished paths Pf , current unfinished path P
2: for each edge e = d0d1 adjacent to d0 do
3: if d0 6= d1 then
4: append e to P
5: if P is not a cycle then
6: if not both end-nodes of P are UE nodes then
7: add P to Pf
8: if d1 is a cloud node then
9: Depth First Search(d1, Pf , P)

10: end if
11: end if
12: end if
13: end if
14: if e has been appended to P then
15: remove e from P
16: end if
17: end for

85

4 Optimal Network Slice Embedding

first search algorithm is recursively executed with this new node d1, the current list
of finished paths and the current unfinished Path P . A further recursive search is
prevented by the if-statement in line 8, once a UE group node is reached. Lines
14 and 15 reset the currently created physical communication path P for the next
iteration of the for-loop, starting in line 2.
The structure of the substrate network as well as the NSIs brings about, that not
all l2p mappings are feasible. If the virtual link lki connects a UE group with an
application node, then this link can only be mapped on physical paths which have
this UE group as one of its end-nodes. In reverse, if a physical path has a UE group
as one of its end-nodes, this UE group must be adjacent to the associated virtual
link. This implies, that an l2p mapping is infeasible, if the virtual link is adjacent to
a UE group which is not an end-node of the physical link and vice versa. These l2p
mapping variables cannot take a value different to zero. Therefore, these variables
are omitted in the practical implementation. This reduces the set of variables of the
NSE Model to the feasible set of variables, which can improve the runtime efficiency
of the solver.

Example - Basic Model A simple example is used to demonstrate the NSE Mod-
els. The substrate network (see Figure 4.4) comprises two UE groups connected to
an edge cloud c0 and a central cloud node c1.

u0

u1

c0 c1

e0

e1

e2

e3 e4

Figure 4.4: Model Example - Substrate Network

In addition, two NSI-Rs, depicted in Figures 4.5 and 4.6, are given.

u0 a00 a01
l00 l01

Figure 4.5: Model Example - Network Slice 0

The resources and capabilities provided by the substrate elements and required by
the NSI-Rs elements are summarized in the Tables 4.4 and 4.5.
This graphically represented NSE problem is now formalized as an ILP using the
basic NSE model.
First of all, the variables are defined.
One binary embedding variable for each NSI-R is defined, i.e., y0 and y1.
In addition, for each NSI the binary application to cloud node mapping variables
are defined (all possible combinations), see Table 4.6.

86

4.3 Formal Problem Definition

u0

u1

a10

l10

l11

Figure 4.6: Model Example - Network Slice 1

Table 4.4: Model Example - Network Node Parameters

Node CPU Memory Reliability

c0 12 10 0.95
c1 80 100 0.99

a00 5 7 0.92
a01 7 2 0.93

a10 4 2 0.94

Table 4.5: Model Example - Network Link Parameters

Link Throughput Latency Reliability

e0 5 1 0.95
e1 5 2 0.95
e2 10 1 0.95
e3 ∞ 0 1.00
e4 ∞ 0 1.00

l00 2 1 0.90
l01 2 1 0.90

l10 1 3 0.90
l11 1 3 0.90

Table 4.6: Model Example - Application to Cloud Node Mapping Variables

a00 a01 a10

c0 a2c00,0 a2c01,0 a2c10,0
c1 a2c00,1 a2c01,1 a2c10,1

87

4 Optimal Network Slice Embedding

For example, the value of a2c00,0 determines whether the application a00 is mapped
on the cloud node c0 or not.
In the substrate network, the follow physical communication paths are defined:

P0 := {e0}
P1 := {e0, e2}
P2 := {e1}
P3 := {e1, e2}
P4 := P free

c0
= {e3}

P5 := {e2}
P6 := P free

c1
= {e4}

These paths are determined by running a recursive search starting with the list of
all substrate nodes (UE group nodes and cloud nodes), see Algorithm 1. For every
cloud node, the corresponding free-self-path is created. From UE u0, the vertex e0
is detected, forming the first path P0. c0 is added to the node list and P4 = P free

c0
is

created. The Depth-First-Search also detects e2 and creates the path P1. Then c1
is added to the node list and P6 = P free

c1
is created. Starting from u1, the paths P2

and P3 are detected. From c0 there is only one undetected path, consisting of the
link e2, left. It is named P5. At c1 no new paths are found.

Furthermore, the link to path mapping variables shown in Table 4.7 are defined.

Table 4.7: Model Example - Link to Path Mapping Variables

l00 l01 l10 l11

P0 l2p00,0 - l2p10,0 -
P1 l2p00,1 - l2p10,1 -
P2 - - - l2p11,2
P3 - - - l2p11,3
P4 - l2p01,4 - -
P5 - l2p01,5 - -
P6 - l2p01,6 - -

Without loss of generality, only feasible l2p mappings are used in the actual imple-
mentation of the NSE algorithms. I.e., only the l2p variables with suitable end-nodes
are used. For instance, the path P1 consists of the edges e0, e1 and the end-nodes u0
and c1. Therefore, only the links l00 and l10 can be feasibly mapped on P0, since they
are the only virtual communication links adjacent to u0 in the two NSIs. Another
interesting example is the path P5 which consists of e2 with the end-nodes c0 and
c1. Consequently, only virtual links connecting two application nodes (no UE group
nodes) can be mapped on P5. In this example, only l01 is such a feasible candidate.

88

4.3 Formal Problem Definition

Secondly, the simple objective-function for the basic NSE model is created. Note
that, in this practical implementation only the variables that have a feasible non-zero
value are considered in the objective function and the constraints. This improves
the runtime-efficiency of the algorithm, without loss of generality.
Since the NSI weights are defined equally as ω0 = ω1 = 1, the simple objective
function in this example reduces to:

max
yk

1 · y0 + 1 · y1
1 + 1
⇐⇒

max
yk

(0.5 · y0 + 0.5 · y1)

Third, the constraints for this simple example are listed below. Only the feasible
embeddings are considered in this implementation.

1. Throughput Constraints:
One throughput capacity constraint for each edge in the substrate network is defined.

• Throughput capacity constraint for e0:

2 · l2p00,0 + 2 · l2p00,1 + 1 · l2p10,0 + 1 · l2p10,1+ ≤ 5

• Throughput capacity constraint for e1:

1 · l2p11,2 + 1 · l2p11,3 ≤ 5

• Throughput capacity constraint for e2:

2 · l2p00,1 + 1 · l2p10,1 + 1 · l2p11,3 + 2 · l2p01,5 ≤ 10

The node resource constraints are defined for the CPU as well as the memory ca-
pacity of each substrate node.

2. CPU Constraints:
• CPU capacity constraint for cloud node c0:

5 · a2c00,0 + 7 · a2c01,0 + 4 · a2c10,0 ≤ 12

• CPU capacity constraint for cloud node c1:

5 · a2c00,1 + 7 · a2c01,1 + 4 · a2c10,1 ≤ 80

3. Memory Constraints:
• Memory capacity constraint for cloud node c0:

7 · a2c00,0 + 2 · a2c01,0 + 2 · a2c10,0 ≤ 10

89

4 Optimal Network Slice Embedding

• Memory capacity constraint for cloud node c1:

7 · a2c00,1 + 2 · a2c01,1 + 2 · a2c10,1 ≤ 100

4. Latency Constraints:
The communication latency of every path (sum of latencies of the elements of the
physical path) must not exceed the allowed latency of the virtual link. That means,
the sum of the latencies of the used edges in the path must be less or equal to the
virtual link latency.

• Link latency constraint for virtual link l00 and:

P0: 1 · l2p00,0 ≤ 1⇔ 1 · l2e00,0 ≤ 1

P1: 2 · l2p00,1 ≤ 1⇔ 1 · l2e00,0 + 1 · l2e00,2 ≤ 1

• Link latency constraint for virtual link l01 and:

P4: 0 · l2p01,4 ≤ 1⇔ 0 · l2e01,3 ≤ 1

P5: 1 · l2p01,5 ≤ 1⇔ 1 · l2e01,2 ≤ 1

P6: 0 · l2p01,6 ≤ 1⇔ 0 · l2e01,4 ≤ 1

• Link latency constraint for virtual link l10 and:

P0: 1 · l2p10,0 ≤ 3⇔ 1 · l2e10,0 ≤ 3

P1: 2 · l2p10,1 ≤ 3⇔ 1 · l2e10,0 + 1 · l2e10,2 ≤ 3

• Link latency constraint for virtual link l11 and:

P2: 2 · l2p11,2 ≤ 3⇔ 2 · l2e11,1 ≤ 3

P3: 3 · l2p11,3 ≤ 3⇔ 2 · l2e11,1 + 1 · l2e11,2 ≤ 3

5. Link Reliability Constraints:
A virtual link can only be mapped on a suitable physical path, if the path fulfills its
reliability requirements.

• Link reliability constraint for virtual link l00 and:

P0: 0.9 · l2p00,0 ≤ 0.95⇔ 0.9 · l2e00,0 ≤ 0.95

P1: 0.9 · l2p00,1 ≤ 0.95⇔ (0.9 · l2e00,0 ≤ 0.95) ∧ (0.9 · l2e00,2 ≤ 0.95)

90

4.3 Formal Problem Definition

• Link reliability constraint for virtual link l01 and:

P4: 0.9 · l2p01,4 ≤ 0.95⇔ 0.9 · l2e01,3 ≤ 0.95

P5: 0.9 · l2p01,5 ≤ 0.95⇔ 0.9 · l2e01,2 ≤ 0.95

P6: 0.9 · l2p01,6 ≤ 0.95⇔ 0.9 · l2e01,4 ≤ 0.95

• Link reliability constraint for virtual link l10 and:

P0: 0.9 · l2p10,0 ≤ 0.95⇔ 0.9 · l2e10,0 ≤ 0.95

P1: 0.9 · l2p10,1 ≤ 0.95⇔ (0.9 · l2e10,0 ≤ 0.95) ∧ (0.9 · l2e10,2 ≤ 0.95)

• Link reliability constraint for virtual link l11 and:

P2: 0.9 · l2p11,2 ≤ 0.95⇔ 0.9 · l2e11,1 ≤ 0.95

P3: 0.9 · l2p11,3 ≤ 0.95⇔ (0.9 · l2e11,1 ≤ 0.95) ∧ (0.9 · l2e11,2 ≤ 0.95)

6. Network Node Reliability Constraints:
An application can only be mapped on a cloud node, if the cloud node fulfills its
reliability requirements.

a2c00,0 · 0.92 ≤ 0.95

a2c01,0 · 0.93 ≤ 0.95

a2c10,0 · 0.94 ≤ 0.95

a2c00,1 · 0.92 ≤ 0.99

a2c01,1 · 0.93 ≤ 0.99

a2c10,1 · 0.94 ≤ 0.99

7. Map Nodes Once Constraints:
Each application is embedded exactly once into the substrate network.

a00: a2c00,0 + a2c00,1 = y0

a01: a2c01,0 + a2c01,1 = y0

91

4 Optimal Network Slice Embedding

a10: a2c10,0 + a2c10,1 = y1

8. Map Links Once Constraints:
Every virtual link is embedded exactly once into the substrate network.

l00: l2p00,0 + l2p00,1 = y0

l01: l2p01,4 + l2p01,5 + l2p01,6 = y0

l10: l2p10,0 + l2p10,1 = y1

l11: l2p11,3 + l2p11,2 = y1

9. Map Adjacent Links Constraints:
All virtual links connecting two applications must be mapped on a suitable path
with regard to the application to cloud node mapping. In this simple example the
only affected link is l01.

l2p01,4 + l2p01,5 ≥ a2c00,0

l2p01,6 + l2p01,5 ≥ a2c00,1

l2p01,4 + l2p01,5 ≥ a2c01,0

l2p01,6 + l2p01,5 ≥ a2c01,1

10. Map UE Links Constraints:
If a network slice is embedded all outgoing links of the UE group must be mapped
on a suitable physical path.

l00: l2p00,0 + l2p00,1 = y0

l10: l2p10,0 + l2p10,1 = y1

l11: l2p11,2 + l2p11,3 = y1

11. UE to Application Links Graph Constraints:
All virtual links must be mapped suitably.

l00: a2c00,0 ≥ l2p00,0 and a2c00,1 ≥ l2p00,1

l10: a2c10,0 ≥ l2p10,0 and a2c10,1 ≥ l2p10,1

92

4.3 Formal Problem Definition

l11: a2c10,0 ≥ l2p11,2 and a2c10,1 ≥ l2p11,3

12. Map Adjacent Nodes Constraints:
The application node mapping must fit to the virtual link mapping.

For the start-node mapping:

Start-node of path P4 if mapped on l01: a2c00,0 ≥ l2p01,4

Start-node of path P5 if mapped on l01: a2c00,0 + a2c00,1 ≥ l2p01,5

Start-node of path P6 if mapped on l01: a2c00,1 ≥ l2p01,6

For the end-node mapping:

End of path P0 if mapped on l00: a2c00,0 ≥ l2p00,0

End-node of path P1 if mapped on l00: a2c00,1 ≥ l2p00,1

End-node of path P4 if mapped on l01: a2c01,0 ≥ l2p01,4

End-node of path P5 if mapped on l01: a2c01,0 + a2c01,1 ≥ l2p015

End-node of path P6 if mapped on l01: a2c01,1 ≥ l2p01,6

End-node of path P0 if mapped on l10: a2c10,0 ≥ l2p10,0

End-node of path P1 if mapped on l10: a2c10,1 ≥ l2p10,1

End-node of path P2 if mapped on l11: a2c10,0 ≥ l2p11,2

End-node of path P3 if mapped on l11: a2c10,1 ≥ l2p11,3

This ILP can be solved with an out-of-the-box solver using the model introduced in
Section 2.3.5.
The result is the variable assignment which maximizes the objective function and
respects all constraints. Note that the solvers do not always provide the optimal
solutions, but only a nearly optimal solution, since they apply heuristics.

In the best solution of the simple NSE example, the following variables are set to
the value 1. All other variables, not explicitly mentioned here take the value 0.

y0 = 1 a2c00,0 = 1 l2p00,0 = 1
y1 = 1 a2c01,0 = 1 l2p01,4 = 1

a2c10,1 = 1 l2p10,1 = 1
l2p11,3 = 1

93

4 Optimal Network Slice Embedding

Finally, this variable assignment is translated back into an NSI embedding and
resource allocation solution. Since y0 = y1 = 1 both NSI-Rs are accepted and em-
bedded into the substrate network. The nodes and links are mapped as illustrated
in Figure 4.7.

u0

u1

c0 c1

e0

e1

e2

e3 e4

a00

a01

l00
l01

a10
l10

l11

Figure 4.7: Basic Model Example - Simple Optimization

The physical nodes c0 has a CPU capacity of 12 entities and a memory capacity of
10 entities, while its reliability is given with 95%. This allows to map an arbitrary
combination of two of the three virtual application nodes from the two NSI-Rs.
Beyond that, the virtual link l00 has a maximum latency of 1 and therefore it can only
be deployed on the path P0. Consequently, a00 must be mapped on c0. The through-
put and link reliability constraints of l00 are fulfilled by P0. The second virtual link
of NSI 0 l01 can either be allocated on the free-self-path P4 or on P5. Both paths
provide the required resources and capabilities on the link and both cloud nodes
(c0 and c1) can accommodate a01. The basic NSE model with the simple objective
function makes a random choice for the mapping of l01 together with the associated
allocation of a01. Similarly, a10 can be mapped on both cloud nodes. The required
link resources and capabilities for the corresponding link mapping are available.

The objective function used for the basic NSE model can be easily exchanged. In
the following the simple NSE example is solved with the latency-aware as well as
the cost and revenue objective function.

The latency-aware objective function for the simple NSE example is determined as
follows.

max
yk,l2p

k
ir

(
1 · y0 + 1 · y1

min{1, 1}

−
l2p00,0 · LP0 + l2p00,1 · LP1 + l2p01,4 · LP4 + l2p01,5 · LP5 + l2p01,6 · LP6+

LP0 + LP1 + LP4 + LP5 + LP6+
...

94

4.3 Formal Problem Definition

...
l2p10,0 · LP0 + l2p10,1 · LP1 + l2p11,2 · LP2 + l2p11,3 · LP3

LP0 + LP1 + LP2 + LP3

)
⇔

max
yk,l2p

k
ir

(
1 · y0 + 1 · y1

1
−

l2p00,0 · 1 + l2p00,1 · 2 + l2p01,5 · 1 + l2p10,0 · 1 + l2p10,1 · 2 + l2p11,2 · 2 + l2p11,3 · 3
12

)
with
LP0 = L0 = 1
LP1 = L0 + L2 = 1 + 1 = 2
LP2 = L1 = 2
LP3 = L1 + L2 = 2 + 1 = 3
LP4 = L3 = 0
LP5 = L2 = 1
LP6 = L4 = 0

max
yk,l2p

k
ir

(1.0 · y0 + 1.0 · y1

−0.0833 · l2p00,0 − 0.1667 · l2p00,1 − 0.0833 · l2p01,5 − 0 · l2p01,6 − 0 · l2p01,4
−0.0833 · l2p10,0 − 0.1667 · l2p10,1 − 0.1667 · l2p11,2 − 0.2500 · l2p11,3)

All constraints remain unchanged.
The best solution, with regard to latency optimization is:

y0 = 1.0 a2c00,0 = 1.0 l2p00,0 = 1.0
y1 = 1.0 a2c01,1 = 1.0 l2p01,5 = 1.0

a2c10,0 = 1.0 l2p10,0 = 1.0
l2p11,2 = 1.0

All other variables take the value 0. The graphical interpretation of this solution is
shown in Figure 4.8.
The latency-aware optimization function tries to map the application nodes as close
to the UE group nodes as possible, using the physical path with the smallest latency.
Since not all three application nodes can be deployed on c0, due to its limited CPU
capacity, one application node must be mapped on c1.
It would not be efficient to map a00 on c1, because then a01 would also have to be
mapped on c1. Otherwise, the latency penalty would be increased even more. Thus,
either, a01 or a10 must be allocated on c1 with its higher latency cost. If a10 is mapped
on c1 then the increased latency caused by using the physical edge e2 affects both,
the virtual link l10 and l11, while allocating a01 on c1 only increase the latency penalty
for l01 by the latency cost of e2, which is 0.0833 in the objective function for l2p01,5
compared to a latency cost of 0 for the free-self-path from and to c0: P4. The latency
penalty when mapping l10 on P0 and l11 on P2 is 0.0833 + 0.1667 = 0.2500 instead of

95

4 Optimal Network Slice Embedding

u0

u1

c0 c1

e0

e1

e2

e3 e4

a00 a01

l00 l01

a10

l10

l11

Figure 4.8: Basic Model Example - Latency Optimization

0.1667 + 0.2500 = 0.4167 when mapping l10 on P1 and l11 on P3. For this reason, a01
is mapped on c1 while the other two application nodes can be mapped on c0.

Instead of the latency-aware objective function the cost and revenue objective func-
tion can be used. The cost and revenue objective function for the simple NSE
example is determined as follows.

max
yk,a2ckm,w,l2p

k
i,r

(
1 · y0 + 1 · y1

min{1, 1}
+

− 1

ψ
·
(
a2c00,0 ·

5

12
+ a2c01,0 ·

7

12
+ a2c10,0 ·

4

12
+ a2c00,1 ·

5

80
+ a2c01,1 ·

7

80
+ a2c10,1 ·

4

80

)
− 1

ψ
·
(
a2c00,0 ·

7

10
+ a2c01,0 ·

2

10
+ a2c10,0 ·

2

10
+ a2c00,1 ·

7

100
+ a2c01,1 ·

2

100
+ a2c10,1 ·

2

100

)
− 1

ψ
·
(
l2p00,0 ·

2

5
+ l2p00,1 ·

(
2

5
+

2

10

)
+ l2p01,5 ·

2

10

)

− 1

ψ
·
(
l2p10,0 ·

1

5
+ l2p10,1 ·

(
1

5
+

1

10

)
+ l2p11,2 ·

1

5
+ l2p11,3 ·

(
1

5
+

1

10

)))
with

ψ =
5

12
+

7

12
+

4

12
+

5

80
+

7

80
+

4

80
+

7

10
+

2

10
+

2

10
+

7

100
+

2

100
+

2

100

+
2

5
+

2

5
+

2

10
+

2

10
+

1

5
+

1

5
+

1

10
+

1

5
+

1

5
+

1

10

≈ 4.94333

max
yk,a2ckm,w,l2p

k
i,r

(1 · y0 + 1 · y1

−0.22589 · a2c00,0 − 0.15846 · a2c01,0 − 0.10789 · a2c10,0

96

4.3 Formal Problem Definition

−0.02680 · a2c00,1 − 0.02175 · a2c01,1 − 0.01416 · a2c10,1

−0.08092 · l2p00,0 − 0.12138 · l2p00,1 − 0.04046 · l2p01,5

−0.04046 · l2p10,0 − 0.06069 · l2p10,1 − 0.04046 · l2p11,2 − 0.06069 · l2p11,3)

The best solution regarding revenue minus cost is represented by the following vari-
able assignment. The variables not explicitly mentioned here take the value 0.

y0 = 1.0 a2c00,0 = 1.0 l2p00,0 = 1.0
y1 = 1.0 a2c01,1 = 1.0 l2p01,5 = 1.0

a2c10,1 = 1.0 l2p10,1 = 1.0
l2p11,3 = 1.0

Figure 4.9 shows a graphical representation of this embedding solution.

u0

u1

c0 c1

e0

e1

e2

e3 e4

a00 a01

l00 l01

a10
l10

l11

Figure 4.9: Basic Model Example - Cost Optimization

This time, the cost of the used resource, throughput, CPU and memory should be
minimized, while embedding as many NSI-Rs as feasible. This leads to the effect,
that a10 is allocated on c1, since the node resources costs predominate the throughput
costs here. The node resource cost of mapping a10 on c0 would have been 0.10789,
while they are 0.01416 on c1 only. Linking a10 when mapped on c0 has costs of 0.04046
for l2p10,0 and 0.04046 for l2p11,2. Compared to that, linking a10, when mapped on c1
has costs of 0.06069 for l2p10,1 and 0.06069 for l2p11,3. Hence, it is cheaper to map a10
on c1, with total costs of 0.13548, than on c0, with total costs 0.18881. This does
not affect the allocation of the nodes and links from NSI 0, since c0 and its physical
communication links have enough resources to accommodate all applications simul-
taneously.
For NSI 0, a tradeoff between throughput and node resource costs is made by al-
locating a00 on c0 and a01 on c1. Allocating a00 on c1 would be cheaper than on c0,
including the throughput costs, but this would violate the latency constraint of l00.

97

4 Optimal Network Slice Embedding

4.3.5.2 Path-Splitting

In this section, the above basic NSE model is enhanced with path-splitting, also
referred to as the multi-path approach. That means, the solution considers the
possibility to use several paths in the physical network to serve a single link.
The idea of path-splitting is illustrated by the example, presented in Figures 4.10
and 4.11. If a00 is mapped on c0, then the virtual link l00 can be split among the paths
consisting only of e0 and the path consisting only of e1. The allocation on e0 and e1
must sum up to 1. For instance, 40% of the resources (in our case only throughput)
can be provided by e0 while the remaining 60% of the resources are provided by e1.

Formalization The model introduced above is very flexible. In order to enable
path-splitting only small modifications are needed. First of all, the variable type
of the l2p variables has to be modified. Those variables are no longer binary, but
continuous values ranging from 0 to 1. I.e., a virtual link lki of a network slice k can
be mapped fully, partially or not at all on a physical path Pr:

• if l2pki,r = 1, then lki is fully mapped on Pr
• if l2pki,r = 0, then lki is not mapped on Pr
• if l2pki,r = x with x ∈ (0, 1), then Pr provides a share of x of the required
capacity of lki

Definition 35 (Continuous Link Mapping Variables)
We define the continuous virtual link to communication path mapping l2pki,r for a
virtual link lki in the NSIs and a communication path Pr in the substrate as:

l2pki,r ∈ [0, 1] share of assignment of lki on Pr ∈ P

This new definition of the continuous link mapping variables replaces the previous
definition of the binary link mapping variables in Definition 13. The small mod-
ification of the model has a considerable impact on the solution space, which is
largely extended. The acceptance rate for NSI-Rs can be improved, because the
path-splitting option can make additional embeddings possible.
Beyond that, the modification of the link to path mapping variables affects the link
to edge mapping. While the path to edge mapping in Definition 14 remains unmod-
ified, the link to edge mapping as a product of the new continuously defined link
to path mapping and the old path to edge mapping now takes continuous values.
The values of the link to edge mappings are to be understood similarly to the values
of the l2p variables. Note that the l2e mappings are no new variables, but only a
convenient notation for deriving the link to edge mapping from the l2p variables and
the fixed p2e parameters.
The other variables (Definition 11 and Definition 12) as well as the parameters of
the model remain unchanged.

The latency-aware objective function defined in Definition 17 is a simple mean of
achieving that the optimization algorithm prefers mapping the virtual links on sub-
strate links with lower latencies. If path-splitting is activated, the l2e variables are

98

4.3 Formal Problem Definition

continuous variables with l2e ∈ [0, 1], while they are binary l2e ∈ {0, 1} in the
single-path scenario. That means, the latencies of the edges of the physical network
are weighted with the share of usage of this edge by the links of the accepted NSI-Rs.
Therefore, the latency-aware objective function can be used in both scenarios, the
path-splitting as well as the single-path scenario. The same applies to the simple as
well as the cost and revenue objective function.

In the following the constraints introduced in Section 4.3.5.1 are analyzed towards
their transferability to the path-splitting model:

1. Throughput Constraints:
The throughput constraints do not have to be modified, although the l2eki,j variables
have been changed from binary variables to continuous variables taking values from
the interval [0, 1]. ∑

∀k,i

l2eki,j · T ki ≤ Tj, ∀j

If the resource requirements (in this case the throughput) of the link lki is distributed
across several physical paths, i.e., several sets of consecutive edges in the substrate,
then l2eki,j ∈ (0, 1). Then only the proportionally reserved resources are considered
in the constraint. Those are summed up across all links using the respective physical
edge.

2. CPU Constraints and 3. Memory Constraints:
The node related constraints, that means, the CPU constraints and the memory
constraints are not affected by introducing path splitting. They can be copied from
the basic NSE embedding model, see Definitions 22 and 23.

4. Latency Constraints:
The latency constraints of the previous model, from Definition 24

l2pki,r · LkPr ≤ Li, ∀k, i, r

must be adapted, since the binary l2p mappings result in summing up the full
latencies of all physical edges, a specific virtual link has been mapped on. In case
of path-splitting, these mappings would only be counted proportionally to the split
mappings. This would lead to a proportional consideration of the latency, which
would be incorrect. However, this can be fixed, by introducing a correction factor
on the right side of the inequation.

Definition 36 (Latency Constraints in Path-Splitting Model)
The latency constraints in the path-splitting NSE model are defined as

l2pki,r · LPr ≤ l2pki,r · Lki , ∀k, i, r

The latency constraints for the path-splitting model state that no virtual link can
be mapped on a path in the substrate network which has an overall latency that is

99

4 Optimal Network Slice Embedding

higher than the allowed latency of the virtual link. Definition 36 defines one con-
straint for each virtual link and physical path combination. Two cases need to be
considered when evaluating the inequation in Definition 36.
In the first case, it is assumed that a certain lki is mapped on a path Pr with a rate of
α ∈]0, 1). The latency LPr of this path is multiplied by α. However, not the latency
weighted by the proportion of link usage should be considered, but rather the sum
of latencies of the used edges should be compared with the allowed latency for this
link. For instance, if a virtual link l00 is mapped by 40% on a path P0 := {e0} and by
60% on a path P1 := {e1}, then l2p00,0 = 0.4 and l2p00,1 = 0.4. Let’s further assume,
that the latencies of the edges are: L0 = 5 and L1 = 10 and the allowed latency of
the virtual link is L0

0 = 8, then the previous constraints would be 0.4 · 10 ≤ 8 and
0.6 · 5 ≤ 8 This does not reflect the true constraint, which should be 1 · 10 ≤ 8 and
1 · 5 ≤ 8. Thus, we scale the right-hand side of the inequation with l2pki,r = α.
In the second case, when lki is not mapped on the considered path Pr, the proportion
α = l2pki,r is zero, therefore the left-hand side of the inequation in Definition 36 is
zero, which is always smaller or equal to the right-hand side of the inequation, since
the right side cannot become negative.

5. Link Reliability Constraints:
The link reliability constraints which are defined as

l2eki,j · Aki ≤ Aj, ∀k, i, j

for the basic NSE embedding model in Definition 26 have to be undertaken the same
modifications. Like already seen for the latency constraints, the scaling introduced
by path splitting on the left-hand side of the inequation must be neutralized by
applying the same factor to the right-hand side.

Definition 37 (Link Reliability Constraints in Path-Splitting Model)
The link reliability constraints in the path-splitting NSE model are defined as

l2eki,j · Aki ≤ l2eki,j · Aj, ∀k, i, j

The corresponding l2p mapping link reliability constraints are:

l2pki,r · Aki ≤ l2pki,r · APr , ∀k, i, r

6. Network Node Reliability Constraints:
The node reliability constraints are not affected by path-splitting. Definition 28
from the basic NSE model is used.

7. Map Nodes Once Constraints:
The map nodes once constraints are also not affected. Definition 29 is used without
modifications.

8. Map Links Once Constraints:
The map links once constraints (see Definition 30) are valid for the continuously

100

4.3 Formal Problem Definition

defined l2p, variables. The mappings still have to sum up to one, if the NSI-R is
embedded, or to zero otherwise.∑

∀r

l2pki,r = yk, ∀k, i

9. Map Adjacent Links Constraints:
The map adjacent links constraints can be taken over from the simple NSE model,
see Definition 31. If a virtual link lki distributes its resource usage across several
physical paths, the constraints∑

∀Pr∈Pcv,cw

l2pki,r = a2ckm,w , ∀k, i, w,m if lki = {akm, akb}

with Pcv ,cw

ensure that the split occupancies of the physical paths sum up to 1, that means,
100% of the virtual link’s resource requirements are provided. On the left-hand side,
all (partial) resource allocations are summed up. This sum is required to be equal
to 1, if the corresponding node mapping of an adjacent application node is applicable.

10. Map UE Links Constraints:
Similarly, the UE links constraints from Definition 32 can be transferred to the path-
splitting model.
The map UE links constraints in the basic NSE model are defined as∑

∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i if lki = {uv, akb}

with Puv ,cw = Pcw,uv

It requires that all virtual links connected with a UE node are mapped on suitable
substrate paths, such that the sum of the mapping variables is equal to yk. Remem-
ber that yk = 1 if the k-th NSI is accepted and embedded into the mobile network
and yk = 0 otherwise.

11. UE to Application Links Graph Constraints:
The UE to application links graph constraints (see Definition 33) is subjected to a
detailed examination. The UE to application links graph constraints in the basic
NSE model are defined as

a2ckm,w ≥ l2pki,r,

∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw with Pcv ,cw
On the one hand, a2c is a set of binary variables, which can take the values 0 and
1, l2p on the other hand is a set of continuous variables which takes values from
the interval [0, 1]. I.e., if a link lki = {uv, akm} is fully or partially mapped on a path
Pr ∈ Pcv ,cw with a share α ∈ (0, 1], then akm must be mapped on cw. In other words,

101

4 Optimal Network Slice Embedding

if the link to path mapping l2pki,r takes a positive value, a2ckm,w must be set to 1.

12. Map Adjacent Nodes Constraints:
The map adjacent nodes constraints from the basic NSE model in Definition 34 are
path-splitting agnostic.

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw

a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw
a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

Changing the formerly binary l2p variables, to continuous variables with a value
range from 0 to 1 does not alter the validity of the constraints. Once the l2p
mapping on the right-hand side of one of the inequation is greater than zero the
corresponding application mappings are triggered. Yet, it is irrelevant whether l2p
takes the value 1 as the only option greater than zero in the basic NSE model or
any other positive value in the path-splitting NSE model.

Summary of the Path-Splitting NSE Model In the following, the condensed
path-splitting model considering the modifications proposed above is provided. The
modifications are highlighted in blue color.
Note that the latency-aware objective function is interchangeable with the objective
functions introduced in Section 4.3.4.

Model 2 (Path-Splitting NSE Model)

max
yk,l2p

k
i,r


∑
∀k

yk
ωk

min
k
ωk

−

∑
∀k,i,r

l2pki,r · LPr∑
∀k,i,r

l2p′ki,r · LPr




under

1. Throughput Constraints: ∑
∀k,i

l2eki,j · T ki ≤ Tj, ∀j

2. CPU Constraints: ∑
∀k,m

a2ckm,w ·Dk
m ≤ Dw, ∀w

3. Memory Constraints: ∑
∀k,m

a2ckm,w ·Mk
m ≤Mw, ∀w

102

4.3 Formal Problem Definition

4. Latency Constraints:

l2pki,r · LPr ≤ l2pki,r·Lki , ∀k, i, r

5. Link Reliability Constraints:

l2eki,j · Aki ≤ l2eki,j·Aj, ∀k, i, j

6. Network Node Reliability Constraints:

a2ckm,w ·Bk
m ≤ Bw, ∀k,m,w

7. Map Nodes Once Constraints:∑
∀w

a2ckm,w = yk, ∀k,m

8. Map Links Once Constraints:∑
∀r

l2pki,r = yk, ∀k, i

9. Map Adjacent Links Constraints:∑
∀Pr∈Pcv,cw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb} or lki = {akb , akm}

10. Map UE Links Constraints:∑
∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i, if lki = {uv, akb}

11. UE to Application Links Graph Constraints:

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw

12. Map Adjacent Nodes Constraints:
a) for Cloud Node to Cloud Node Paths:

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw and

a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
b) for UE Group Node to Cloud Node Paths:

a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw

c) for Free-Self Paths:

a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv and

a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

103

4 Optimal Network Slice Embedding

u0 c0

e0

e1

e2

Figure 4.10: Path-Splitting Example - Substrate Network

u0 a00
l00

Figure 4.11: Path-Splitting Example - Network Slice 0

Table 4.8: Path-Splitting Example - Network Node Parameters

Node CPU Memory Reliability

c0 20 10 1.00

a00 18 9 0.90

Table 4.9: Path-Splitting Example - Network Link Parameters

Link Throughput Latency Reliability

e0 20 1 1.00
e1 20 2 1.00
e2 ∞ 0 1.00

l00 25 5 0.90

104

4.3 Formal Problem Definition

Example The following basic example is used to demonstrate the concept and
solution of the path-splitting NSE model.
The substrate in Figure 4.10 comprises only one cloud node which is connected to
one UE group with two alternative physical links.
Only one NSI-R with weight ω0 := 1 is defined for this minimal path-splitting
example, see Figure 4.11.
The associated resources and capabilities are shown in the Tables 4.8 and 4.9.
When formalizing this small path-splitting example as an MILP as explained above,
the following physical paths and variables are defined.

P0 := {e1}
P1 := {e0}
P2 := P free

c0
= {e2}

The binary mapping variables y0 and a00,0 are defined. Beyond that, the continuous
l2p mapping variables l00,0 and l00,1 are defined. Note that, l00,2 is not a variable, since
e2 is not adjacent to u0.

The latency-aware objective function looks as follows for this example:

max
yk,l2p

k
i,r

(
y0 −

2 · l2p00,0 + 1 · l2p00,1
2 + 1

)
⇔

max
yk,l2p

k
i,r

(
y0 −

2

3
· l2p00,0 −

1

3
· l2p00,1

)

The most insightful constraints in this example are the throughput constraints. They
are defined as:

Throughput constraints for e0: 25 · l2p00,0 ≤ 20

Throughput constraints for e1: 25 · l2p00,1 ≤ 20

Both throughput constraints have in common, that they can only be fulfilled when
the value of the respective l2p variable is smaller or equal 0.8. Since the latency cost
of l2p00,0 is higher than the latency cost of l2p00,1 we get the following result when
solving the MILP with an appropriate out-of-the-box solver.

y0 = 1 a2c00,0 = 1 l2p00,0 = 0.2
l2p00,1 = 0.8

That means, the virtual link l00 is split on the two available physical paths P0 and
P1. P1 provides 80% of the required throughput resources, while P0 provides the
remaining 20%.

105

4 Optimal Network Slice Embedding

u0 c0

e0

e1
e3 a00

l00

l00

Figure 4.12: Path-Splitting Example - Latency-Aware Optimization

4.3.5.3 Multiple Application Instantiation NSE Model

Edge computing is seen as a key feature of 5G to enable local communication, with
a very low latency and high throughput, while at the same time improving data
security and reducing transmission costs. It provides computation power and data
storage close to the mobile users, within the 5G RAN, at the so-called edge of the
mobile network. Edge clouds are typically deployed on 5G gNodeBs, i.e., macro base
stations or the multi-Radio Access Technology cell aggregation sites, instead of cen-
tralized core nodes. This leverages location-based services, like the communication
between co-located devices in car-to-x and smart factory applications as well as, for
instance, augmented reality services. By using edge computing the latency and vol-
ume of the transferred data is reduced. Hence, the available bandwidth can be used
more efficiently. Additionally, edge clouds can be used for computation offloading,
enabling services that cannot be performed by most mobile device, e.g., Artificial
Intelligence (AI) based services. Furthermore, a better QoE and a lower battery
consumption of the UEs can be provided by edge computing. However, edge clouds
come at high Operating Expenditures (OPEX). Therefore, edge cloud resources are
limited, while their applications are constantly increasing.[52]

Allocating edge cloud resources is not considered in conventional VNE solutions.
Deploying a service close to its users on an edge cloud often means that the same
service has to be provided at different locations, i.e., for one application in an NSI
several instances might have to be deployed in the substrate network. In this section,
a formal, mathematical model of the NSE problem leveraging edge computing is
provided.

Formalization The MAI NSE model does not necessitate any modifications of the
variables and parameters. However, the MAI NSE model requires, that an appli-
cation akm from the k-th network slice can be embedded several times on different
cloud nodes in the substrate network. If the k-th network slice is accepted, every
application has to be instantiated at least once. In the Definition of the basic NSE
model (see Section 4.3.5.1) every application of an accepted network slice is mapped
exactly once, as defined in Definition 29:∑

∀w

a2ckm,w = yk, ∀k,m

106

4.3 Formal Problem Definition

In order to enable MAI, it is changed to the following definition.

Definition 38 (Map Nodes Constraints in MAI NSE Model)
The map nodes constraints in the MAI NSE model are defined as∑

∀w

a2ckm,w ≥ yk, ∀k,m

In the previous models, every virtual link is mapped in the substrate network exactly
once, if the network slice is embedded. However, in the MAI NSE model, several
instances of one virtual application node might have been created. Those have to
be connected with their adjacent links. Thus, several instances of the same virtual
link might be needed in the mapping. Therefore, Definition 30∑

∀r

l2pki,r = yk, ∀k, i

is modified as follows.

Definition 39 (Map Links Constraints in MAI NSE Model)
The map links constraints in the MAI NSE model are defined as∑

∀r

l2pki,r ≥ yk, ∀k, i

The same applies to the map adjacent links constraints as well as the map UE links
constraints. Since in the MAI NSE model several instances of the same application
might have been created for different UE groups, those have to be connected with
their adjacent link mappings. The map adjacent links constraints from the basic NSE
model (see Definition 31) as well as the map UE links constraints (see Definition 32)
do not have to be modified.∑

∀Pr∈Pcv,cw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb}

and ∑
∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i if lki = {uv, akb}

If two applications are connected and one of these two or both are instantiated
multiple times, then the adjacent links, must be mapped multiple times. Thus, the
number of l2p mappings must be greater or equal than the number of a2c mappings.
However, each UE group is connected to exactly one instance of each adjacent ap-
plication. Since a UE does not need to be connected to more than one instance of
a directly connected application, the map UE links constraints from Definition 32
remains unchanged.

The UE to application links graph constraints, specified in Definition 33, are not
affected by the MAI model. The constraints

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw

107

4 Optimal Network Slice Embedding

are still valid if the respective application akm is instantiated on several cloud nodes.

Moreover, the map adjacent nodes constraints specified in Definition 34 have been
created to be applicable to the basic, path-splitting as well as the MAI model. They
ensure a valid combination of the link and path mappings in the solution, such that
the embedded nodes are physically connected as defined in the NSI-R. Independent
of the number of instances created for an application in the substrate network the
adjacent physical links must be embedded on suitable physical communication paths.
The remaining constraints defined by the basic NSE model in Section 4.3.5.1, namely
the throughput constraints, the CPU constraints, the memory constraints, the la-
tency constraints, the link reliability constraints and the network node reliability
constraints remain unchanged.

Summary of the MAI NSE Model This results in the following full MAI NSE
Model.

Model 3 (MAI NSE Model)

max
yk,a2ckm,w,l2p

k
i,r

((∑
∀k

yk
ωk

min
k
ωk

)
−

∑
∀k,m,w a2ckm,w ·

Dkm
Dw

+
∑
∀k,m,w a2ckm,w ·

Mk
m

Mw
+
∑
∀k,i,j l2e

k
i,j ·

Tki
Tj∑

∀k,m,w
Dkm
Dw

+
∑
∀k,m,w

Mk
m

Mw
+
∑
∀k,i,j

Tki
Tj

)

under

1. Throughput Constraints: ∑
∀k,i

l2eki,j · T ki ≤ Tj, ∀j

2. CPU Constraints: ∑
∀k,m

a2ckm,w ·Dk
m ≤ Dw, ∀w

3. Memory Constraints: ∑
∀k,m

a2ckm,w ·Mk
m ≤Mw, ∀w

4. Latency Constraints:
l2pki,r · LPr ≤ Lki , ∀k, i, r

5. Link Reliability Constraints:

l2eki,j · Aki ≤ Aj, ∀k, i, j

108

4.3 Formal Problem Definition

6. Network Node Reliability Constraints:

a2ckm,w ·Bk
m ≤ Bw, ∀k,m,w

7. Map Nodes Constraints: ∑
∀w

a2ckm,w ≥ yk, ∀k,m

8. Map Links Constraints: ∑
∀r

l2pki,r ≥ yk, ∀k, i

9. Map Adjacent Links Constraints:∑
∀Pr∈Pcv,cw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb}

10. Map UE Links Constraints:∑
∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i, if lki = {uv, akb}

11. UE to Application Links Graph Constraints:

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw
12. Map Adjacent Nodes Constraints:

a) for Cloud Node to Cloud Node Paths:

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw and

a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
b) for UE Group Node to Cloud Node Paths:

a2ckq,w ≥ l2pkir, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw
c) for Free-Self-Paths:

a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv and

a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

Implementation Details The MAI model allows to create several instances of
the same application. If the simple or latency-aware objective function is used, the
embedding result might be inefficient regarding the number of application instances,
since node resource minimization is not part of those objective functions. Therefore,
the cost and revenue objective function should be used.
In addition, dispensable mappings on free-self paths might occur. This is resolved by
the following implementation: When using the cost and revenue objective function,
one wants an embedding of the network slices which uses the minimum amount of
resources and is free for dispensable mappings, especially unnecessary free-self path
mappings. In order to achieve this, in this implementation the link to free-self path
mapping variables are assigned with a tiny cost of 1·10−1. This prevents dispensable
free-self path mappings without modifying the NSE otherwise.

109

4 Optimal Network Slice Embedding

Example This example illustrates the characteristics and solution of the MAI NSE
model. The substrate and one NSI-R are shown in the Figures 4.13 and 4.14.

u0

u1

c0

c1

c2

e0

e1

e2

e3

e4

e5

e6

Figure 4.13: MAI Example - Substrate Network

u0

u1

a00 a01

l00

l01

l02

Figure 4.14: MAI Example - Network Slice 0

The provided resources and capabilities of the substrate as well as the required re-
sources and capabilities of the NSI-R are compiled in the Tables 4.10 and 4.11.

Table 4.10: MAI Example - Network Node Parameters

Node CPU Memory Reliability

c0 10 10 0.93
c1 10 10 0.93
c2 10 10 0.93

a00 10 10 0.90
a01 10 10 0.90

110

4.3 Formal Problem Definition

Table 4.11: MAI Example - Network Link Parameters

Link Throughput Latency Reliability

e0 100 1 0.80
e1 100 1 0.80
e2 100 1 0.80
e3 100 1 0.80
e4 ∞ 0 1.00
e5 ∞ 0 1.00
e6 ∞ 0 1.00

l00 100 1.5 0.80
l01 100 1.5 0.80
l02 100 1.5 0.80

The physical paths of the substrate in this example are defined as follows:

P0 := {e0}
P1 := {e0, e2}
P2 := {e0, e2, e3}
P3 := {e1}
P4 := {e1, e3}
P5 := {e1, e3, e2}
P6 := P free

c0
= {e4}

P7 := {e2}
P8 := {e2, e3}
P9 := P free

c1
= {e5}

P10 := {e3}
P11 := P free

c2
= {e6}

The ILP model for solving the NSE problem with MAI defines the binary variable y0
as well as the binary a2c variables shown in Table 4.12 and the l2p variables shown
in Table 4.13. The binary l2p variables are based on the feasible combinations of
virtual link to physical path mappings.

Table 4.12: MAI Example - Application to Cloud Node Mapping Variables

a00 a01

c0 a2c00,0 a2c01,0
c1 a2c00,1 a2c01,1
c2 a2c00,2 a2c01,2

111

4 Optimal Network Slice Embedding

Table 4.13: MAI Example - Link to Path Mapping Variables

l00 l01 l02

P0 l2p00,0 - -
P1 l2p00,1 - -
P2 l2p00,2 - -
P3 - l2p01,3 -
P4 - l2p01,4 -
P5 - l2p01,5 -
P6 - - l2p02,6
P7 - - l2p02,7
P8 - - l2p02,8
P9 - - l2p02,9
P10 - - l2p02,10
P11 - - l2p02,11

There is no possibility to embed the application a00 into the substrate network such
that both UE groups can reach it with the required latency. If a00 is embedded on c0
the required latency of the connection between u1 and a00 cannot be fulfilled. If it is
mapped on c1 the required latency for the connection with u0 is violated and when
it is mapped on c2 the latency requirements of both UE groups cannot be fulfilled.
To solve this problem, two instances of a00 are created in the MAI NSE solution. The
first instance of a00 is mapped on c0 to serve u0 and the second instance is mapped
on c1 to serve u1.

The full solution is provided by the following variable assignment. All variables
which are not mentioned here have the value zero.

y0 = 1 a2c00,0 = 1 l2p00,0 = 1
a2c00,1 = 1 l2p01,3 = 1
a2c01,2 = 1 l2p02,7 = 1

l2p02,10 = 1

Figure 4.15 illustrates the embedding solution with the two instances of the appli-
cation a00.

112

4.3 Formal Problem Definition

u0

u1

c0

c1

c2

e0

e1

e2

e3

e4

e5

e6

a00

a00

a01

l01

l00

l02

l02

Figure 4.15: MAI Example - Cost Optimization

4.3.5.4 Combined Path-Splitting and Multiple Application Instantiation
NSE Model

The two variations of the NSE model introduced above providing the capabilities of
path-splitting and MAI can be combined. This way, path-splitting as well as MAI
can be enabled concurrently.
In this implementation the cost and revenue objective function is used, since it
avoids unnecessary free-self-path mappings when MAI is active.

Model 4 (Combined Path-Splitting and MAI NSE Model)

max
yk,a2ckm,w,l2p

k
i,r

((∑
∀k

yk
ωk

min
k
ωk

)
−

∑
∀k,m,w a2ckm,w ·

Dkm
Dw

+
∑
∀k,m,w a2ckm,w ·

Mk
m

Mw
+
∑
∀k,i,j l2e

k
i,j ·

Tki
Tj∑

∀k,m,w
Dkm
Dw

+
∑
∀k,m,w

Mk
m

Mw
+
∑
∀k,i,j

Tki
Tj

)

under

1. Throughput Constraints: ∑
∀k,i

l2eki,j · T ki ≤ Tj, ∀j

2. CPU Constraints: ∑
∀k,m

a2ckm,w ·Dk
m ≤ Dw, ∀w

113

4 Optimal Network Slice Embedding

3. Memory Constraints: ∑
∀k,m

a2ckm,w ·Mk
m ≤Mw, ∀w

4. Latency Constraints:

l2pki,r · LPr ≤ l2pki,r·Lki , ∀k, i, r

5. Link Reliability Constraints:

l2eki,j · Aki ≤ l2eki,j·Aj, ∀k, i, j

6. Network Node Reliability Constraints:

a2ckm,w ·Bk
m ≤ Bw, ∀k,m,w

7. Map Nodes Constraints: ∑
∀w

a2ckm,w ≥ yk, ∀k,m

8. Map Links Constraints: ∑
∀r

l2pki,r ≥ yk, ∀k, i

9. Map Adjacent Links Constraints:∑
∀Pr∈Pcv,cw

l2pki,r ≥ a2ckm,w ,∀k, i, w,m if lki = {akm, akb}

10. Map UE Links Constraints:∑
∀Pr∈Puv,cw

l2pki,r = yk ,∀k, i, if lki = {uv, akb}

11. UE to Application Links Graph Constraints:

a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akm} and Pr ∈ Pcv ,cw
12. Map Adjacent Nodes Constraints:

a) for Cloud Node to Cloud Node Paths:

a2ckm,v + a2ckm,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw and

a2ckq,v + a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr ∈ Pcv ,cw
b) for UE Group Node to Cloud Node Paths:

a2ckq,w ≥ l2pki,r, ∀k, i, r with lki = {uv, akq} and Pr ∈ Puv ,cw
c) for Free-Self-Paths:

a2ckm,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv and

a2ckq,v ≥ l2pki,r, ∀k, i, r with lki = {akm, akq} and Pr = Pfreecv

114

5
Probabilistic Network Slice

Embedding

This chapter analyzes the probabilistic NSE, also referred to as NSE under un-
certainty. The main assumption made in Chapter 4 is that the resources of the
substrate network are constantly provided, while there is also no fluctuation in the
resource demands of the NSIs. In this section, a more realistic model is presented,
analyzing the resource allocation problem under uncertain resources and demands.
The so-called probabilistic NSE model is based on the optimal NSE model variants
specified in Chapter 4. All model variants can serve as a basis for the probabilistic
NSE model. A new uncertainty-aware objective function is defined for the probabilis-
tic NSE model. Figure 5.1 provides an overview over the optimal and probabilistic
NSE model variants.

Figure 5.1: Big Picture of the Optimal and Probabilistic NSE Model Variants

In this chapter, first of all the problem and motivation as well as the goals and
requirements of NSE under uncertainty are described. Then the probabilistic NSE
model is defined formally. Moreover, important uncertainty metrics are analyzed.
This includes the so-called Probability of Feasibility (POF) and the safety buffers.
Finally, the approach is illustrated by a comprehensible example.

115

5 Probabilistic Network Slice Embedding

5.1 Problem and Motivation

The fifth generation (5G) of mobile networks support several new use cases, like the
IoT, mMTC and URLLC as well as significant improvements of the conventional
Mobile Broadband (MBB) use case. The virtual separation of network slices on a
common end-to-end mobile network infrastructure enables an efficient usage of the
underlying network resources and provides means for security and safety related
isolation of the defined logical networks. A much-discussed challenge is the over-
booking of resources guaranteed by contract.
For an efficient and beneficial spectrum use, especially in the RAN, moderate phys-
ical network resource overbooking is indispensable, since the peak NSI resource
requirements are unlikely to be requested by all NSIs simultaneously in most use
cases. Thus, for scarce resources, like mobile network frequency bands, the expected
rather than the worst-case network resource availability should be assumed.
Careful resource overbooking is acceptable for the majority of the 5G mobile network
use cases and it is unavoidable for efficient and fair resource utilization in future 5G
mobile networks.[4]

5.2 Goals and Requirements

In this chapter, an efficient model for probabilistic NSE is presented which enables
an informed decision on NSIA under uncertainty. It is based on the guaranteed
end-to-end mobile network resources that have to be provided to the NSIs on the
one hand and the uncertain capacities and capabilities of the underlying network
infrastructure on the other hand.

A two-step approach is proposed. In the first step, the best NSE with respect to
robust resource provisioning is determined. In the second step, the degree of ro-
bustness, or the risk of SLA violation for an embedded NSI (i.e., the probability
of failure to provide the guaranteed resources) is analyzed. If the decision-maker
considers the robustness as good enough, i.e., if the probability that the actual re-
quired resources will be available to the NSI when requested is acceptable, then the
NSIs can be deployed according to the embedding determined in the first step. This
might imply an overbooking of the physical network resources.

In order to maintain an LP that can be solved efficiently, the uncertainty in the
resource availability and utilization are addressed in the objective function only.
The linear constraints of the NSE optimization problem use the expected values
(means) for the resource availability and utilization. The objective function ensures
that as many NSIs are embedded as possible, the allocation minimizes uncertainty
and the most beneficial NSIs are selected if the network infrastructure does not
provide enough resources.

116

5.3 Problem Formalization

5.3 Problem Formalization

This model is based on the previous model presented in Chapter 4, which assumes
full and exact knowledge on the available resources. End-to-end mobile network
resources, like the throughput of the communication links as well as the computa-
tion power and memory on the cloud servers, underlie fluctuations and cannot be
predicted accurately.
Therefore, the model proposed in Chapter 4 is enhanced to reflect these uncertain-
ties and find robust NSE solutions. For robust NSE the expected resource demands,
plus a safety buffer and the expected available resources minus a safety buffer are
used. The uncertainty-aware objective function guarantees a beneficial NSI embed-
ding while controlling uncertainties and potential overbookings.

5.3.1 Parameter

The notation introduced in Chapter 4 is used for the NSE under uncertainty model.
The uncertainty of the resource parameters is modeled with an arbitrary stochastic
distribution function.

In this thesis, normal distributions are used to describe uncertain demands. N (µ, σ)
denotes a normal distribution with the mean µ and the Standard Deviation (STD)
σ. The normal distribution is also referred to as Gaussian distribution. N (0, 1) is
the so-called standard-normal distribution. The probability density function of the
normal distribution is defined as:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Figure 5.2 shows the probability density function of the Gaussian distribution.

Figure 5.2: Normal Distribution Density Function

The cumulative distribution function of the standard normal distribution is

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt

117

5 Probabilistic Network Slice Embedding

For other µ and σ the cumulative normal distribution is

F (x) = Φ(
x− µ
σ

)

Using Gaussian distributions for the resource availability and demands is a simplifi-
cation which assumes that, there is an expected value for the amount of a provided or
requested resource and values close to this mean are realized with a higher probabil-
ity, than values further away from the mean value. Each resource on every network
elements has its specific mean and STD.

Note that the Robust NSE Model is applicable for any arbitrary stochastic distri-
bution function, to be used for the uncertain resources and demands. Solving the
NSE problem as described in the following is independent of any specific distribu-
tion functions underlying its parameter. Naturally, the calculation of the POFs are
based on the concrete distribution function.

Every resource, capability, demand or requirement within the NSE model can under-
lie uncertainty. Throughout this thesis, we assume, that the provided node resources
and capabilities in general do not underlie uncertainty. Therefore, we model them
similarly to Section 4.3.2 as Ow, Dw, Mw, Ww and Bw, as summarized in Table 5.1
for the node resource. The resource requirements of the virtual nodes in the NSIs
are uncertain. Therefore, their mean and STD are defined in Table 5.1.

Table 5.1: Certain and Uncertain Node Resources and Capabilities

Def. Type Description

Ow GCR Provided resource of substrate node cw
Dw SCR Provided computation capacity of substrate node cw
Mw SCR Provided memory capacity of substrate node cw
Ww GCQ Provided capability of substrate node cw
Bw SCQ Provided reliability of substrate node cw

µOkm , σOkm GUR Mean, STD of required resource of akm in Nk

µDkm , σDkm SUR Mean, STD of required computation capacity of akm in Nk

µMk
m
, σMk

m
SUR Mean, STD of required memory capacity of akm in Nk

W k
m GCQ Required capability of akm in Nk

Bk
m SCQ Required reliability of akm in Nk

The Tables 5.1 and 5.2 use the following abbreviations to categorize the parameters:
• G for general versus S for specific
• C for certain versus U for uncertain
• R for resource versus Q for capability (or quality)

118

5.3 Problem Formalization

This results in a three-letter acronym for the classification of each parameter, for
instance, GCR for a general certain resource.

Table 5.2: Certain and Uncertain Link Resources and Capabilities

Def. Type Description

µRj , σRj GUR Mean, STD of provided resource of substrate edge ej
µTj , σTj SUR Mean, STD of provided throughput of substrate edge ej
Qj GCQ Provided capability of substrate edge ej
Lj SCQ Latency on substrate edge ej
Aj SCQ Reliability of substrate edge ej

µRki , σRki GUR Mean, STD of required resource of link lki in Nk

µTki , σTki SUR Mean, STD of required throughput of link lki in Nk

Qk
i GCQ Required capability of link lki in Nk

Lki SCQ Required latency of link lki in Nk

Aki SCQ Required reliability of link lki in Nk

The robust NSE is subject to numerous quality of service constraints, for instance,
the throughput and reliability of the communication links and the computation
power and memory of the cloud nodes.
The expected available throughput of an edge ej in the substrate is represented by
a normal distribution with a mean µTj and an STD σTj . For simplicity, the uplink
and downlink data traffic is combined to one throughput parameter in this model.
The probability distribution accounts for fluctuations in the signal quality, which
results in a varying available throughput. For example, the SNIR and therefore
the channel quality as well as the actual throughput in the RAN highly depend on,
e.g., the distance and obstacles between the UE and the antenna as well as weather
conditions and interferences.
The link latency Lj of ej is assumed to be constant. However, in practice the link la-
tency only remains constant as long as the link throughput capacity is not exceeded
and a congestion in data traffic causes an additional delay.
Furthermore, the cloud servers cw ∈ C in the substrate have a constant computation
power Dw and memory capacity Mw. In addition, the edges ej as well as the nodes
cw have specific reliabilities Aj and Bw.
The NSIs require a specific maximum latency Lki for each communication link lki .
The required throughput, however, is uncertain and therefore modeled as a normal
distribution N (µTki , σTki) for each link lki ∈ Lk. Note that an STD of zero represents
the special case of resource certainty.
The required computation power and the memory capacity for the applications are
also defined as normal distributions N (µDkm , σDkm) and N (µMk

m
, σMk

m
).

Finally, the mapping of the NSIs must respect a predefined link reliability Aki as well

119

5 Probabilistic Network Slice Embedding

as a node reliability Bk
m.

The free-self-links, see Definition 6, as well as the free-self-paths, see Definition 7,
provide unlimited resources and perfect capabilities without uncertainties. That
means, the POF of a virtual communication link mapped on a free-self-path is al-
ways equal to 1.

5.3.2 Objective Function

The uncertainty-aware objective function is a key-component of the robust NSE
model.

Definition 40 (Uncertainty-Aware Objective Function)
The robust NSE objective function is defined as

max
yk,a2ckm,w,l2e

k
i,j

(frev (yk) + ρ1 · fthr
(
l2eki,j

)
+ ρ2 · fcpu

(
a2ckm,w

)
+ ρ3 · fmem

(
a2ckm,w

)
)

with
frev (yk) :=

∑
∀k

yk
ωk

min
k
ωk

fthr
(
l2eki,j

)
:= −

∑
∀k,i,j

l2eki,j ·
µTki + σTki

max
(
µTj − σTj , ε

)
· βthr

fcpu
(
a2ckm,w

)
:= −

∑
∀k,m,w

a2ckm,w ·
µDkm + σDkm
Dw · βcpu

fmem
(
a2ckm,w

)
:= −

∑
∀k,m,w

a2ckm,w ·
µMk

m
+ σMk

m

Mw · βmem

and

βthr :=
∑
∀k,i,j

µTki + σTki
max

(
µTj − σTj , ε

)
βcpu :=

∑
∀k,m,w

µDkm + σDkm
Dw

βmem :=
∑
∀k,m,w

µMk
m

+ σMk
m

Mw

ε := 1 · 10−10

ρ1 + ρ2 + ρ3 = 1

120

5.3 Problem Formalization

The uncertainty-aware objective function assumes that every embedded NSI-R con-
tributes a positive revenue. Thus, the first priority of the uncertainty-aware objec-
tive function is to embed as many NSI-Rs as possible without violating the required
capabilities, resource requirements and safety buffers. If there are not enough re-
sources to accept all NSI-Rs, NSI-Rs with higher revenues are preferred over NSI-Rs
with lower revenues. This is achieved by using the simple objective function from
Definition 16 as the first term of the uncertainty-aware objective function. Since frev
uses the normalization term 1

min
k
ωk
, the revenue of the least beneficial NSI is scaled

to 1 and the other weights respect the relative importances given by the original
weights. Consequently, every embedded NSI makes a contribution of at least 1 to
the objective value.
The frev-term selects the NSI-Rs to be embedded into the substrate network. The
remaining three terms are responsible for optimizing the mapping of the elements
of the embedded NSI-Rs on the elements of the substrate network with respect to
minimizing uncertainty.
In the fthr, fcpu and fmem terms the uncertainty of the availability of the respective
resources on the allocated physical network elements is minimized. This is achieved
by subtracting a relatively small penalty from frev depending on the uncertainty
resulting from each mapping. This way, the optimization algorithm minimizes the
overall uncertainty.
fthr minimizes the sum of relative throughput utilizations, including the STDs. If
the mean throughput of a physical link is smaller than or equal to its STD, then a
small ε is used to prevent dividing by zero or by negative values. ε > 0 is defined
as a very small positive double value. ε = 1 · 10−10 has been used in the evaluation
of this thesis. The term fthr is normalized by the factor βthr. Since, the overall
optimization problem is formalized as a maximization problem, fthr is subtracted in
the uncertainty-aware objective function.
Similarly, the terms fcpu and fmem are responsible for minimizing the shares of the
allocated computation power and memory, plus the respective STDs.
The weights ρ1, ρ2 and ρ3 ∈ (0, 1) associated with the three penalty-terms sum up
to one. Consequently, the normalized penalties for uncertainty cannot exceed the
revenue of 1 of embedding the least beneficial NSI. Thus, accepting as many NSI-Rs
as feasible dominates the requirement of minimizing uncertainty in the objective
function.
Throughout this thesis, equal importance of the uncertain resources is assumed.
Therefore, the weights are set to ρ1 = ρ2 = ρ3 = 1

3
.

Referring to Definition 15, the l2e variables in the uncertainty-aware objective func-
tion in Definition 40 are transformed into the corresponding l2p variables.

max
yk,a2ckm,w,l2p

k
i,r

(frev (yk) + ρ1 · fthr
(
l2pki,r

)
+ ρ2 · fcpu

(
a2ckm,w

)
+ ρ3 · fmem

(
a2ckm,w

)
)

with

121

5 Probabilistic Network Slice Embedding

fthr
(
l2pki,r

)
:= −

∑
∀k,i,j

(∑
∀r

l2pki,r · p2er,j

)
·

µTki + σTki
max

(
µTj − σTj , ε

)
· βthr

βthr, fcpu and fmem remain unchanged, as in Definition 40.

5.3.3 Constraints

Based on one of the four NSE models, presented in Chapter 4, the robust NSE
model is developed. Besides the uncertainty-aware objective functions, only the
constraints regarding uncertain resources and capabilities have to be modified. All
other constraints remain the same. This allows the application of the robust NSE
on the basic, path-splitting, MAI and combined NSE model.

The general link resource constraint for an uncertain link resource R is defined as:

Definition 41 (General Uncertain Link Resource Constraints)
The uncertain link resource constraints in the robust NSE model are defined as∑

∀k,i

l2eki,j · (µRki + γ · σRki) ≤ (µRj − γ · σRj), ∀j

The general uncertain link resource constraints require that the sum of all expected
demands of this resources increased by a safety buffer must not exceed the expected
resource provisioning minus a safety discount. The safety discount/buffer is de-
fined as a factor γ multiplied with the STD of the respective resource availability or
demand probability distribution. A high γ can improve the robustness of the em-
bedding, whereas a low γ might result in a higher benefit for the network operator,
but requires a higher risk tolerance. If γ = 1, then the resources buffer equals the
expected deviation in resource demand or provisioning respectively, that means, the
STD. A higher γ provides a higher robustness. In the following evaluation γ is set
to 1.5. A detailed analysis of the resulting POF with respect to the selection of the
factor γ is provided in Section 5.3.5.

The general link resource constraints for uncertain link resources can be transformed
to the context of an l2p mapping by using Definition 15.∑

∀k,i

(∑
∀r

l2pki,r · p2er,j

)
· (µRki + γ · σRki) ≤

(
µRj − γ · σRj

)
, ∀j

The specific example for a link resource analyzed in this thesis is the throughput.
The throughput constraints in the robust NSE are defined as follows.

Definition 42 (Uncertain Throughput Constraints)
The uncertain throughput constraints in the robust NSE model are defined as∑

∀k,i

l2eki,j · (µTki + γ · σTki) ≤ (µTj − γ · σTj), ∀j

122

5.3 Problem Formalization

The uncertain throughput constraints require, that the demanded throughput of the
virtual links assigned to a physical edge plus the safety buffer must not exceed the
provided resources minus a safety discount.

These constraints can be broken down to the associated link to path mappings, by
doing the above explained transformation with Definition 15.

∑
∀k,i

 ∑
∀r with ej∈Pr

l2pki,r

 · (µTki + σTki) ≤ (µTj − γ · σTj), ∀j

Similarly, the node resource constraints are adapted for the robust NSE model. For
an arbitrary uncertain node resource O we define the following set of constraints.

Definition 43 (General Uncertain Node Resource Constraints)
The uncertain node resource constraints in the robust NSE model are defined as∑

∀k,m

a2ckm,w · (µOkm + γ · σOkm) ≤ Ow, ∀w

For the node resources it is assumed that the provided resources are certain, i.e.,
they do not underlie uncertainty. Therefore, only a safety buffer is added to the
resource demands. The sum of these demands increased by the safety buffer γ · σOkm
must not exceed the provided resources of the physical node they are mapped on.

The CPU and memory resource constraints are derived from Definition 43.

Definition 44 (Uncertain CPU Constraints)
The uncertain CPU constraints in the robust NSE model are defined as∑

∀k,m

a2ckm,w · (µDkm + γ · σDkm) ≤ Dw, ∀w

Definition 45 (Uncertain Memory Constraints)
The uncertain memory constraints in the robust NSE model are defined as∑

∀k.m

a2ckm,w · (µMk
m

+ γ · σMk
m

) ≤Mw, ∀w

5.3.4 Robust NSE Model

This subsection provides an overview over the robust NSE model.
The new constraints of the robust NSE model are summarized. The remaining
constraints number 4 to 12 are taken from one of the models from Chapter 4, either
the basic, path-splitting, MAI or combined NSE model.

123

5 Probabilistic Network Slice Embedding

Model 5 (Robust NSE Model)

max
yk,a2ckm,w,l2e

k
i,j

(∑
∀k

yk
ωk

min
k
ωk
− ρ1 ·

∑
∀k,i,j

l2eki,j ·
µTki + σTki

max
(
µTj − σTj , ε

)
· βthr

−ρ2 ·
∑
∀k,m,w

a2ckm,w ·
µDkm + σDkm
Dw · βcpu

− ρ3 ·
∑
∀k,m,w

a2ckm,w ·
µMk

m
+ σMk

m

Mw · βmem

)
under

1. Uncertain Throughput Constraints:∑
∀k,i

l2eki,j · (µTki + γ · σTki) ≤ (µTj − γ · σTj), ∀j

2. Uncertain CPU Constraints:∑
∀k,m

a2ckm,w · (µDkm + γ · σDkm) ≤ Dw, ∀w

3. Uncertain Memory Constraints:∑
∀k,m

a2ckm,w · (µMk
m

+ γ · σMk
m

) ≤Mw, ∀w

The constraints number 4 to 12 are taken from the basic, path-splitting, MAI or
combined path-splitting and MAI NSE model.

5.3.5 Network Slice Instance Acceptance Metrics

The model as described above is used to determine a nearly optimal NSE using the
most reliable network resources.
Using the worst-case resource demands and availabilities is not beneficial, since it
would require a significant resource overprovisioning of scarce resources, like RAN
throughput. In order to provide a beneficial solution, the expected resource demands
and provisioning are used as a basis for the robust NSE embedding. This can lead
to a resource overbooking and resource availability violations can occur.
In this section, metrics for the resource availability and overbooking analysis are
presented.

Probability of Resource Feasibility The probability of meeting the resource con-
straints is calculated to assess the probability of SLA compliance, or the risk of SLA
violation respectively. This evaluation is done for each uncertain resource, while the
node and link resources are distinguished.
As mentioned before, the provided node resources are fixed and do not underlie

124

5.3 Problem Formalization

uncertainty, while the node resource demands are assumed to be uncertain and un-
derlie a normal distribution. That means, it is expected that the actually provided
amount of resources is probably close to the expected value.
The following metrics can also be applied on uncertain resources with different dis-
tributions, other than the normal distribution. Any closed or discrete probabilistic
distribution function can be used. Non the less, some mathematical conversions in
the following calculation are tailored to Gaussian distributed uncertain resources.

A fixed node resource Ow, provided by a specific substrate node cw, as well as uncer-
tain resource demands of virtual application nodes akm with Gaussian distributions
N (µOkm , σOkm) are given. The overall demand of the general node resource O is the
sum of the normal distributed density functions. By convolution of the normal
distributions the result is again a normal distribution.

N

∑
∀k,m

a2ckm,w · µOkm ,
√∑
∀k,m

a2ckm,w · (σOkm)2


The stochastic resource demand of an application akm is only considered in the sum of
the demands on a specific physical node cw, if akm is mapped on cw, i.e., if a2ckm,w = 1.

The residual resources of cw can be calculated by convolution of the normal distri-
butions.

N

Ow −
∑
∀k,m

a2ckm,w · µOkm ,
√∑
∀k,m

a2ckm,w · (σOkm)2


This is the probability density function of the residual resources on the cloud node
cw in the substrate network, considering the allocated virtual application nodes with
their uncertain resource demands.

Regarding the assessment of the probability of SLA compliance, we define the so-
called POF of general cloud node resources.

Definition 46 (POF of General Node Resources)
The POF of a general, uncertain cloud node resources O for a cloud node cw is
defined as

POFOw :=

∫ ∞
0

N

Ow −
∑
∀k,m

a2ckm,w · µOkm ,
√∑
∀k,m

a2ckm,w · (σOkm)2

 dx

I.e., the POF for meeting the constraint requirements for the general node resource
O for the embedded NSI-Rs is represented by the probability that the residual re-
sources are greater or equal to zero.

Based on this general node resource assessment, the CPU and memory resources are
assessed on a per physical node basis. The respective POFs are defined as follows.

125

5 Probabilistic Network Slice Embedding

Definition 47 (POF of CPU Node Resources)
The POF of the uncertain CPU resources D for a cloud node cw is defined as

POFDw :=

∫ ∞
0

N

Dw −
∑
∀k,m

a2ckm,w · µDkm ,
√∑
∀k,m

a2ckm,w · (σDkm)2

 dx

Definition 48 (POF of Memory Node Resources)
The POF of the uncertain memory resources M for a cloud node cw is defined as

POFMw :=

∫ ∞
0

N

Mw −
∑
∀k,m

a2ckm,w · µMk
m
,

√∑
∀k,m

a2ckm,w · (σMk
m

)2

 dx

The POFDw and POFMw are determined for every cloud node cw.

For the link resources we assume that both, the provided resources as well as the
required resources, can be subject to uncertainty. For modeling the provided general
link resources on the physical links we use a normal distributed with N

(
µRj , σRj

)
).

The general link resource required by a virtual link Rk
i are assumed to be normal dis-

tributed with N
(
µRki , σRki

)
. By convolution of the normal distributions we receive

the sum of demands on a per physical link basis.

N

∑
∀k,i

l2eki,j · µRki ,
√∑
∀k,i

l2eki,j · (σRki)
2


When a virtual link lki is mapped on a physical edge ej, i.e., when l2eki,j > 0, then
it is considered in the sum of the demands. If path-splitting is enabled the NSE
algorithm determines an l2eki,j ∈ [0, 1]. Then the expected resource utilization for lki
is weighted with the proportion of the usage of l2eki,j before being considered in the
sum of resource demands.

The probability density function of the residual general link resources is

N

µRj −∑
∀k,i

l2eki,j · µRki ,
√

(σRj)
2 +

∑
∀k,i

l2eki,j · (σRki)
2


The POF of the general link resource is defined as follows.

Definition 49 (POF of General Link Resources)
The POF of a general, uncertain communication link resources R for a physical edge
ej is defined as

POFRj :=

∫ ∞
0

N

µRj −∑
∀k,i

l2eki,j · µRki ,
√

(σRj)
2 +

∑
∀k,i

l2eki,j · (σRki)
2

 dx

126

5.3 Problem Formalization

This is applied to the throughput resources.

Definition 50 (POF of Throughput Resources)
The POF of the uncertain throughput resources T for a physical edge ej is defined
as

POFTj :=

∫ ∞
0

N

µTj −∑
∀k,i

l2eki,j · µTki ,
√

(σTj)
2 +

∑
∀k,i

l2eki,j · (σTki)2

 dx

When analyzing the overall confidence of a resource type within an NSI-R as well as
the overall POF of an NSI, stochastic independence is assumed. Then the POFs of
the elements can simply be multiplied to determine the overall POF of each resource
and a whole NSI. I.e., it is assumed that an overload on an element of the physical
network is independent of an overload on other elements. In reality, these incidents
are often dependent on each other. However, assuming stochastic independence
is assuming the worst-case scenario, since dependent overload on several elements
would increase the overall POF.

The combined POFs of the resources are specified in the Definitions 51, 52 and 53.

Definition 51 (Combined POF of Throughput Resources)
The overall POF of the uncertain throughput resources T across all links in an NSI-R
is defined as

POF k
T :=

∏
∀i,j with l2eki,j>0

POFTj , ∀k

Definition 52 (Combined POF of CPU Resources)
The overall POF of the uncertain CPU resources D across all nodes in an NSI-R is
defined as

POF k
D :=

∏
∀m,w with a2ckm,w=1

POFDw , ∀k

Definition 53 (Combined POF of Memory Resources)
The overall POF of the uncertain memory resources M across all nodes in an NSI-R
is defined as

POF k
M :=

∏
∀m,w with a2ckm,w=1

POFMw , ∀k

Finally, the overall confidence in the resource availability is determined. Under the
assumption of stochastic independence of the different resource types, the POF is
accumulated per NSI-R by multiplication of the resource POF of the NSI.

Definition 54 (Combined POF of NSI-R)
The overall POF of the uncertain resources of an NSI-R is defined as

POF k := POF k
T · POF k

D · POF k
M , ∀k

Since Definition 54 is based on the assumption of stochastic independence of overload
of different resources POF k is the worst-case POF.

127

5 Probabilistic Network Slice Embedding

Safety Buffer The safety buffer γ directly impacts the NSI-R feasibility. Using a
higher γ improves the POFs of the accepted NSI-Rs on the one hand, but on the
other hand sets higher requirements on the feasibility of an NSI-R. The numerical
dependency between the γ and the POF of the accepted NSIs is set out below.

When considering a single resource, the POF is dependent on γ. For instance, for
the general link resource constraint for a physical link ej, the following equation
from Definition 41 applies.∑

∀k,i

l2ekij · (µRki + γ · σRki) ≤ (µRj − γ · σRj)

⇔

(µRj − γ · σRj)−

(∑
∀k,i

l2eki,j · (µRki + γ · σRki)

)
≥ 0

⇔(
µRj −

∑
∀k,i

l2eki,j · µRki

)
− γ ·

(
σRj +

∑
∀k,i

l2eki,j · σRki

)
≥ 0

⇔
µRj −

∑
∀k,i l2e

k
i,j · µRki

σRj +
∑
∀k,i l2e

k
i,j · σRki

≥ γ

The nominator of this inequation is the expected amount of residual resources, while
the denominator represents the cumulated expected deviations from the mean of the
provided as well as demanded resources. The safety buffer γ provides a lower bound
for the ratio of the expected free resources and the expected deviation. For instance,
if γ = 1.5, then 50% more resources than the expected deviation in demand and
provisioning are reserved as a resource buffer. A γ of 1 means that the residual
resources must at least be equal to the accumulated expected deviations.
This can be transferred one-to-one to throughput and other similar link resources.

For the general node resources, the following equation from Definition 43 applies.
The following inequation can be transferred one-to-one to the CPU, memory as wells
other similar node resources for a cloud node cw.∑

∀k,m

a2ckm,w · (µOkm + γ · σOkm) ≤ Ow

⇔
Ow −

∑
∀k,m a2ckm,w · µOkm∑

∀k,m a2ckm,w · σOkm
≥ γ

Thus, the worst-case POF of a link or node resource can be directly controlled by
the selection of γ.

For better readability, we define the following notations.

128

5.3 Problem Formalization

Definition 55 (Residual Mean and STD of Link Resources)
For the general link resource R, we define the residual mean and STD as

µresL := µRj −
∑
∀k,i

l2eki,j · µRki

σresL := σRj +
∑
∀k,i

l2eki,j · σRki

Definition 56 (Residual Mean and STD of Node Resources)
For the general node resource O, we define the residual mean and STD as

µresN := Ow −
∑
∀k,m

a2ckm,w · µOkm

σresN :=
∑
∀k,m

a2ckm,w · σOkm

With Definition 55 the link resource constraints (see Definition 41) can be simplified
to

µresL ≥ γ · σresL
and with Definition 56 the node resource constraints (see Definition 43) can be
written as

µresN ≥ γ · σresN
That means, the residual link and node resources must be equal to or higher than
the assoicated accumulated required resource buffers.

With these definitions, the worst-case POFs of the general link resources Rj can be
written as

POFRj ≤ 1− Φ(γ) = 1−
(

1√
2π

∫ γ

−∞
e−

1
2
x2dx

)
The same applies to the node resource POFs.

POFOw ≤ 1− Φ(γ)

Figure 5.3 provides a graphical illustration of the worst-case POF and its interde-
pendency with γ. The gray space under the blue density function of the normal
distribution represents the POF of a mapping with the highest allowed uncertainty.
The mean of the convoluted normal distributions is equal to γ · σresL or γ · σresN
respectively. The space under the normal distribution on the right-hand side of the
mean equals 0.5 or 50%.

The worst-case POF is independent of the residual mean and STDs, it only depends
on γ. The worst-case POF of single elements and common values for γ can be
derived from the Table 5.3. They are to be interpreted as the worst possible POF
of any of the link or node mappings. The aggregated POF of a resource type or for
an NSI can drop below these values, due to multiplication of the individual POF
values. However, in most practical cases, the actual POFs exceed the worst-case
values.

129

5 Probabilistic Network Slice Embedding

Figure 5.3: Worst-Case POF

Table 5.3: Safety Discount and Worst-Case POF

γ Worst-Case POF γ Worst-Case POF γ Worst-Case POF

0.0 50.00000 1.0 84.13447 2.0 97.72499
0.1 53.98278 1.1 86.43339 2.1 98.21356
0.2 57.92597 1.2 88.49303 2.2 98.60966
0.3 61.79114 1.3 90.31995 2.3 98.92759
0.4 65.54217 1.4 91.92433 2.4 99.18025
0.5 69.14625 1.5 93.31928 2.5 99.37903
0.6 72.57469 1.6 94.52007 2.6 99.53388
0.7 75.80363 1.7 95.54345 2.7 99.65330
0.8 78.81446 1.8 96.40697 2.8 99.74449
0.9 81.59399 1.9 97.12834 2.9 99.81342

3.0 99.86501 4.0 99.99683 5.0 99.99997

130

5.3 Problem Formalization

Example In the following, NSE under uncertainty is illustrated by means of a sim-
ple example.
Given a small substrate network with only one UE group and two connected cloud
nodes, two minimal NSI-Rs should be embedded considering uncertainties in re-
source provisioning and demands. The NSI weights are equal for the two NSI-Rs:
ω0 = 1 and ω1 = 1.
Figure 5.4 provides a graphical representation of the substrate network and Fig-
ure 5.5 as well as Figure 5.6 illustrate the NSI-Rs.

u0

c0

c1

e0

e1

e2

e3

Figure 5.4: Uncertain Example - Substrate Network

u0 a00
l00

Figure 5.5: Uncertain Example - Network Slice 0

u0 a10
l10

Figure 5.6: Uncertain Example - Network Slice 1

The provided and required resources are summarized in the Tables 5.4, 5.5 and 5.6.

Table 5.4: Uncertain Example - Network Node Parameters Substrate

Node D M A

c0 11.5 20 0.95
c1 15 15 0.95

This NSE problem is solved in its basic form (no path-splitting and no MAI).
The penalty weights for the throughput, CPU and memory resources are set to
ρ1 = ρ2 = ρ3 = 1

3
.

131

5 Probabilistic Network Slice Embedding

Table 5.5: Uncertain Example - Network Node Parameters NSIs

Node µD σD µM σM A

a00 10 1 10 1 0.95
a10 10 1 10 1 0.95

Table 5.6: Uncertain Example - Network Link Parameters

Link µT σT L A

e0 9 2 1 0.95
e1 10 2 1 0.95
e2 ∞ 0 0 1.00
e3 ∞ 0 0 1.00

l00 2 2 1 0.95
l10 3 2 1 0.95

The binary NSI mapping variables y0 and y1 are defined. Additionally, the binary a2c
variables are listed in Table 5.7 and the binary l2p variables are listed in Table 5.8.

Table 5.7: Uncertain Example - Application to Cloud Node Mapping Variables

a00 a10

c0 a2c00,0 a2c10,0
c1 a2c00,1 a2c10,1

The l2p mappings are based on the following path definitions:

P0 := {e1}
P1 := {e0}
P2 := P free

c0
= {e2}

P3 := P free
c1

= {e3}

Table 5.8: Uncertain Example - Link to Path Mapping Variables

l00 l10

P0 l2p00,0 l2p10,0
P1 l2p00,1 l2p10,1
P2 - -
P3 - -

132

5.3 Problem Formalization

Note that the free-self paths are not feasible for any mapping since there is no ap-
plication to application link in the NSIs.
The safety-buffer γ is set to 1.5 for this example.

Then, the uncertain resource constraints can be written as follows.

1. Throughput Constraints:
The throughput demands as well as the throughput provisioning are subject to
uncertainty. Safety buffers are used, to improve the resource confidence of the em-
bedding solution.

• Throughput capacity constraint for e0:

(3 + 1.5 · 2) · l2p10,1 + (2 + 1.5 · 2) · l2p00,1 ≤ 9− 1.5 · 2
⇔ 6 · l2p101 + 5 · l2p001 ≤ 6

• Throughput capacity constraint for e1:

(3 + 1.5 · 2) · l2p100 + (2 + 1.5 · 2) · l2p000 ≤ 10− 1.5 · 2
⇔ 6 · l2p10,0 + 5 · l2p00,0 ≤ 7

The throughput constraints allow exactly one virtual link to be mapped on every
physical path in this example. Which virtual link is mapped on which physical path
is subject to optimization.

The CPU as well as the memory capacity constraints are defined for each physical
cloud node. The node resource demands are subject to uncertainty, while the re-
source provisioning is assumed to be certain.

2. CPU Constraints:
• CPU capacity constraint for c0:

(10 + 1.5 · 1) · a2c10,0 + (10 + 1.5 · 1) · a2c00,0 ≤ 11.5
⇔ 11.5 · a2c10,0 + 11.5 · a2c00,0 ≤ 11.5

• CPU capacity constraint for c1:

(10 + 1.5 · 1) · a2c10,1 + (10 + 1.5 · 1) · a2c00,1 ≤ 15
⇔ 11.5 · a2c10,1 + 11.5 · a2c00,1 ≤ 15

3. Memory Constraints:
• Memory capacity constraint for c0:

(10 + 1.5 · 1) · a2c10,0 + (10 + 1.5 · 1) · a2c00,0 ≤ 20
⇔ 11.5 · a2c10,0 + 11.5 · a2c00,0 ≤ 20

133

5 Probabilistic Network Slice Embedding

• Memory capacity constraint for c1:

(10 + 1.5 · 1) · a2c10,1 + (10 + 1.5 · 1) · a2c00,1 ≤ 15
⇔ 11.5 · a2c10,1 + 11.5 · a2c00,1 ≤ 15

The node mappings are restricted by the CPU and Memory resource such that only
one virtual node (application) can be mapped on a physical node (cloud node).
Overall there are enough resource to embed both NSIs. However, only the two op-
tion of mapping a00 on c0 and a10 on c1 or the other way around are feasible solutions
for embedding both NSIs.

The optimal allocation minimizes the uncertainty. The uncertainty objective func-
tion provides insight into the optimization problem. The revenue term is as simple
as:

frev(yk) = 1 · y0 + 1 · y1
while the uncertainty penalties are defined as follows:

fthr(l2e
k
i,j) = − 2 + 2

max(9− 2, ε) · βthr
· l2e00,0 −

3 + 2

max(9− 2, ε) · βthr
· l2e10,0

− 2 + 2

max(10− 2, ε) · βthr
· l2e00,1 −

3 + 2

max(10− 2, ε) · βthr
· l2e10,1

= − 4

7 · βthr
· l2e00,0 −

5

7 · βthr
· l2e10,0 −

4

8 · βthr
· l2e00,1 −

5

8 · βthr
· l2e10,1

with
βthr =

4

7
+

5

7
+

4

8
+

5

8
=

135

56
and

fcpu(a2ckm,w) = − 10 + 1

11.5 · βcpu
·a2c00,0−

10 + 1

15 · βcpu
·a2c00,1−

10 + 1

11.5 · βcpu
·a2c10,0−

10 + 1

15 · βcpu
·a2c10,1

= − 11

11.5 · βcpu
· a2c00,0 −

11

15 · βcpu
· a2c00,1 −

11

11.5 · βcpu
· a2c10,0 −

11

15 · βcpu
· a2c10,1

with
βcpu =

11

11.5
+

11

15
+

11

11.5
+

11

15
=

1166

345
and

fmem(a2ckm,w) =
10 + 1

20 · βmem
·a2c00,0−

10 + 1

15 · βmem
·a2c00,1−

10 + 1

20 · βmem
·a2c10,0−

10 + 1

15 · βmem
·a2c10,1

= − 11

20 · βmem
· a2c00,0 −

11

15 · βmem
· a2c00,1 −

11

20 · βmem
· a2c10,0 −

11

15 · βmem
· a2c10,1

with
βmem =

11

20
+

11

15
+

11

20
+

11

15
=

77

30

134

5.3 Problem Formalization

The complete uncertainty-aware objective function, including the penalty weights
ρ1, ρ2 and ρ3, is transformed from the l2e to the l2p mapping.

max
yk,a2ckm,w,l2p

k
i,r

(1·y0+1·y1−0.16577·a2c00,0−0.16577·a2c10,0−0.16757·a2c00,1−0.16757·a2c10,1

−0.06914 · l2p00,0 − 0.08642 · l2p10,0 − 0.07901 · l2p00,1 − 0.09877 · l2p10,1)
Considering the resource constraints, the first option of mapping both NSIs is to
map a00 on c0 and a10 and c1. This causes a penalty of 0.16577 for a2c00,0 and 0.16757
for a10,1. The corresponding link mapping uncertainty penalties are 0.07901 for l2p00,1
and 0.08642 for l2p10,0.
The second alternative allocation is mapping a00 on c1 and a10 and c0. The penalties
for the uncertainties are 0.16757 for a2c00,1, 0.16577 for a2c10,0, 0.06914 for l2p00,0 and
0.09877 for l2p10,1.
Since the node resource requirements of the two application are the same, the ac-
cumulated node uncertainty penalties are equal. However, the accumulated link
uncertainty penalties are smaller for the first alternative. Mapping a00 on c0 and a10
and c1 has an overall uncertainty penalty of 0.49877, while mapping a00 on c1 and a10
and c0 has a higher overall uncertainty penalty of 0.50125.
Thus, the best solution is the first mapping alternative. It is represented by the
following non-zero variable assignments.

y0 = 1 a2c00,0 = 1 l2p00,1 = 1
y1 = 1 a2c10,1 = 1 l2p10,0 = 1

A graphical representation of this allocation is provided in Figure 5.7.

u0

c0

c1

e0

e1

e2

e3

a00
l00

a10

l10

Figure 5.7: Uncertain Example - Uncertainty-Aware Optimization

For the confidence analysis of this simple example the POFs are calculated. The
POFs of the substrate network elements and every resource, given the above NSI
allocations, are:

135

5 Probabilistic Network Slice Embedding

• POFs of c0:

POFD0 =

∫ ∞
0

N (11.5− 10, 1) ≈ 0.93319

POFM0 =

∫ ∞
0

N (20− 10, 1) ≈ 1.0

• POFs of c1:

POFD1 =

∫ ∞
0

N (15− 10, 1) ≈ 0.9999997

POFM1 =

∫ ∞
0

N (15− 10, 1) ≈ 0.9999997

• POFs of e0:

POFT0 =

∫ ∞
0

N
(

9− 2,
√

22 + 22
)
≈ 0.99334

• POFs of e1:

POFT1 =

∫ ∞
0

N
(

10− 3,
√

22 + 22
)
≈ 0.99334

Every virtual element mapped on these physical network elements has the associated
POF. There is only one virtual link and one application involved per NSI and the
throughput, CPU and memory POFs per NSI are easy to determine.

POF 0
D ≈ 0.93319

POF 0
M ≈ 1.0

POF 0
T ≈ 0.99334

POF 1
D ≈ 0.9999997

POF 1
M ≈ 0.9999997

POF 1
T ≈ 0.99334

The combined POF per NSI-R is then:

POF 0 ≈ 0.93319 · 1.0 · 0.99334 ≈ 0.92697

POF 1 ≈ 0.9999997 · 0.9999997 · 0.99334 ≈ 0.99333

That means, the combined confidence, that the required resources of NSI-R 0 are
available on request is approximately 92.697%. I.e., in 7.303% of the cases the
resources are overbooked. The second NSI-R has a better POF of 99.333% and an
expected overbooking rate of only approximately 0.667%.

136

6
Implementation and Evaluation

This chapter presents a comprehensive evaluation of the NSE solution and its vari-
ants, proposed in Chapters 4 and 5.
First of all, the evaluation setup is introduced. Secondly, the implementation and
configuration used for this evaluation is described. In the third section, the effective-
ness of path-splitting is evaluated. The subsequent section works out the dependency
between the allowed latency of the NSIs and the use of MAI. Then, the combined
path-splitting and MAI model is analyzed towards its runtime and effectiveness.
Subsequently, the robust NSE is evaluated with regard to different safety buffers.
Then, the runtime of the different variants of the NSE problem are compared and
analyzed. Furthermore, their scalability is analyzed on NSE problems of different
sizes. The final section of this chapter provides a summary and discussion of this
evaluation.

6.1 Evaluation Setup

In this introductory section, the hardware used for this evaluation is explained. In
addition, an overview over the prototypical implementation of the NSI Admission
and Confidence Analysis Program, developed for this thesis, is provided. Finally,
the evaluation scenarios are described in detail.

6.1.1 Hardware and Implementation

A prototypical implementation of the LP-based, nearly optimal NSE algorithms,
introduced in this thesis, is used for this evaluation. The NSE algorithms as well as
the scenario generation are implemented in form of a dedicated Java program. The
software implements the models and algorithms proposed in the Chapters 4 and 5.
The prototype of the so-called NSI Admission and Confidence Analysis Program
consists of over 20 thousand lines of code, structured as shown in Figure 6.1. For
solving the ILP the SCIP Optimization Suite 6.0 [49] is used.
The evaluation is executed on a normal notebook, a Mac Book Pro 2015 with a 3,1
GHz Intel Core i7 and a 16 GB 1867 MHz DDR3.

The NSI Admission and Confidence Analysis Program consists of three internal
components: the NSE Test-Case Generator, the NSE-2-LP Converter and the Post-
Processing.

137

6 Implementation and Evaluation

Figure 6.1: NSI Admission and Confidence Analysis Program

138

6.1 Evaluation Setup

The NSE Test-Case Generator creates an NSE Configuration consisting of the Sub-
strate Model and the NSI Models. For this purpose, a Substrate and an NSI-R
Generator Configuration File is provided. These files are human-readable lists of
configuration parameters with their values. More details on these configuration files
are given in the following Section 6.1.2.
The NSE configuration is then transformed into the so-called NSE LP Model by the
NSE-2-LP Converter. Hereby, the linear constraints as well as the objective func-
tion of the NSE problem are determined. The NSE problem is transformed into a
generic ILP or MILP, when path-splitting is activated. This generic problem is then
solved by an out-of-the-box solver. In this evaluation, the open source SCIP solver
by Gleixner et al. [49] is used. Due to the modular structure of the program, the
solver can easily be exchanged with a different one. For instance, an interface for
the GLPK solver is part of the NSI Admission and Confidence Analysis Program.
However, the GLPK is not efficient in finding solutions that are close to optimality
for medium sized and big NSE problem, when path-splitting is allowed. The SCIP
solver on the other hand is specialized on solving integer programs and mixed integer
programs runtime efficiently. It is capable of finding the best solution in the basic,
path-splitting as well as MAI and combined NSE problems.
The best solution calculated by the LP is interpreted by the Post-Processing module.
Additionally, the confidence-analysis is executed in this module. The NSI Embed-
ding and Resource Allocation as well as the NSI-R Admission and Confidence Report
are the outputs of the NSI Admission and Confidence Analysis Program.

The Java interface of the SCIP solver provides two options for reading the constraints
of the NSE LP Model. Either, all constraints can be provided in form of a vector of
variables and a matrix of their parameter values, or in form of a vector of variables
and the vectors of the single constraints. However, since the number of variables
and constraints grows exponentially with the number of elements in the substrate
network and in the NSIs, the required double-value parameter matrix exceeds the
available main memory capacity by an order of magnitude, even for medium sized
instances of the NSE problem. Although, most of the matrix entries are zero, since
most constraints only concern a small share of the variables, all entries of the matrix
have to be filled. Even using a more memory-efficient data-type for storing the
matrix parameters cannot cope with the exponential growth of the matrix size for
bigger instances of the NSE problem.
Thus, the linear constraints have to be inserted into the SCIP solver constraint by
constraint, due to the memory restrictions of the hardware and the Java API of
the SCIP solver. The same issue accounts for the GLPK solver as well. Thereby,
transferring the constraints of the NSE LP model in the Java program to one of
the solvers is very time consuming. The issue could be fixed with more efficient
interfaces of the solvers.
Because of this, the runtime evaluation distinguishes between the preparation time
and the time the solver takes to find the best solution, once prepared with the input
data. This is referred to as the so-called embedding time.

139

6 Implementation and Evaluation

6.1.2 Evaluation Scenarios

The evaluation scenarios used for this evaluation are randomly generated NSE prob-
lems, consisting of a substrate network with a star-topology with configurable size,
resources and capabilities and a set of NSI-Rs with configurable parameters.

For the evaluation scenario generation two configuration files are created. The first
configuration file describes the topology and characteristics of the substrate network.
The second configuration file describes the number as well as the characteristics of
the NSIs.

6.1.2.1 Physical Network

The substrate is generated randomly with the so-called Substrate Generator Con-
figuration File. This file defines all necessary parameters for creating a new random
physical network with a configurable size and topology as well as configurable charac-
teristics, resources and capabilities. The file comprises the parameters, summarized
in Table 6.1. Table 6.2 provides the associated default parameter values.

Table 6.1: Substrate Generator Configuration File Parameters
Parameter Type Value Range

numberOfUEs Integer > 0 and ≥ maxNumberOfUEs in NSI-Rs
minNumberOfLinksPerUE Integer > 0 and ≤ maxNumberOfLinksPerUE
maxNumberOfLinksPerUE Integer ≥ minNumberOfLinksPerUE

numberOfEdgeClouds Integer > 0 and ≤ numberOfUEs
minNumberOfTransLinks Integer > 0 and ≤ maxNumberOfTransLinks
maxNumberOfTransLinks Integer ≥ minNumberOfTransLinks

and ≤ numberOfAggClouds
minCpuEdge Integer ≥ 0 and ≤ maxCpuEdge
maxCpuEdge Integer ≥ minCpuEdge
minMemoryEdge Integer ≥ 0 and ≤ maxMemoryEdge
maxMemoryEdge Integer ≥ minMemoryEdge
minEdgeReliability Double ≥ 0 and ≤ maxEdgeReliability
maxEdgeReliability Double ≥ minEdgeReliability

numberOfAggClouds Integer > 0 and ≤ numberOfEdgeClouds
minNumberOfCoreLinks Integer > 0 and ≤ maxNumberOfCoreLinks
maxNumberOfCoreLinks Integer ≥ minNumberOfCoreLinks

and ≤ numberOfMainClouds
minCpuAgg Integer ≥ 0 and ≤ maxCpuAgg
maxCpuAgg Integer ≥ minCpuAgg
minMemoryAgg Integer ≥ 0 and ≤ maxMemoryAgg
maxMemoryAgg Integer ≥ minMemoryAgg
minAggReliability Double ≥ 0 and ≤ maxAggReliability
maxAggReliability Double ≥ minAggReliability

140

6.1 Evaluation Setup

Parameter Type Value Range

numberOfMainClouds Integer > 0 and ≤ numberOfAggClouds
minCpuMain Integer ≥ 0 and ≤ maxCpuMain
maxCpuMain Integer ≥ minCpuMain
minMemoryMain Integer ≥ 0 and ≤ maxMemoryMain
maxMemoryMain Integer ≥ minMemoryMain
minMainReliability Double ≥ 0 and ≤ maxMainReliability
maxMainReliability Double ≥ minMainReliability

minThroughputRanMean Integer ≥ 0 and ≤ maxThroughputRanMean
maxThroughputRanMean Integer ≥ minThroughputRanMean
minThroughputRanStdDev Double ≥ 0 and ≤ maxThroughputRanStdDev
maxThroughputRanStdDev Double ≥ minThroughputRanStdDev

minThroughputTransMean Integer ≥ 0 and ≤ maxThroughputTransMean
maxThroughputTransMean Integer ≥ minThroughputTransMean
minThroughputTransStdDev Double ≥ 0 and ≤ maxThroughputTransStdDev
maxThroughputTransStdDev Double ≥ minThroughputTransStdDev

minThroughputCoreMean Integer ≥ 0 and ≤ maxThroughputCoreMean
maxThroughputCoreMean Integer ≥ minThroughputCoreMean
minThroughputCoreStdDev Double ≥ 0 and ≤ maxThroughputCoreStdDev
maxThroughputCoreStdDev Double ≥ minThroughputCoreStdDev

minLinkLatencyRan Integer ≥ 0 and ≤ maxLinkLatencyRan
maxLinkLatencyRan Integer ≥ minLinkLatencyRan
minLinkLatencyTrans Integer ≥ 0 and ≤ maxLinkLatencyTrans
maxLinkLatencyTrans Integer ≥ minLinkLatencyTrans
minLinkLatencyCore Integer ≥ 0 and ≤ maxLinkLatencyCore
maxLinkLatencyCore Integer ≥ minLinkLatencyCore

minRanReliability Double ≥ 0 and ≤ maxRanReliability
maxRanReliability Double ≥ minRanReliability and ≤ 1
minTransReliability Double ≥ 0 and ≤ maxTransReliability
maxTransReliability Double ≥ minTransReliability and ≤ 1
minCoreReliability Double ≥ 0 and ≤ maxCoreReliability
maxCoreReliability Double ≥ minCoreReliability and ≤ 1

Table 6.2: Substrate Generator Configuration File Parameters Default Values
Parameter Default Value

numberOfUEs 50
minNumberOfLinksPerUE 1
maxNumberOfLinksPerUE 1

141

6 Implementation and Evaluation

Parameter Default Value

numberOfEdgeClouds 12
minNumberOfTransLinks 1
maxNumberOfTransLinks 1
minCpuEdge 40
maxCpuEdge 50
minMemoryEdge 40
maxMemoryEdge 50
minEdgeReliability 0.98
maxEdgeReliability 1

numberOfAggClouds 5
minNumberOfCoreLinks 1
maxNumberOfCoreLinks 1
minCpuAgg 50
maxCpuAgg 100
minMemoryAgg 50
maxMemoryAgg 100
minAggReliability 0.98
maxAggReliability 1

numberOfMainClouds 1
minCpuMain 2000
maxCpuMain 2000
minMemoryMain 2000
maxMemoryMain 2000
minMainReliability 0.99
maxMainReliability 1

minThroughputRanMean 50
maxThroughputRanMean 100
minThroughputRanStdDev 10
maxThroughputRanStdDev 20

minThroughputTransMean 100
maxThroughputTransMean 400
minThroughputTransStdDev 10
maxThroughputTransStdDev 40

minThroughputCoreMean 500
maxThroughputCoreMean 1000
minThroughputCoreStdDev 50
maxThroughputCoreStdDev 100

minLinkLatencyRan 1
maxLinkLatencyRan 1
minLinkLatencyTrans 1

142

6.1 Evaluation Setup

Parameter Default Value

maxLinkLatencyTrans 1
minLinkLatencyCore 1
maxLinkLatencyCore 1

minRanReliability 0.98
maxRanReliability 0.99
minTransReliability 0.99
maxTransReliability 1
minCoreReliability 0.99
maxCoreReliability 1

The random substrate generator uses the parameters specified in Table 6.1.
The numberOfUEs is the predefined, fixed number of UE groups in the substrate
network. It is a positive integer value and must be greater than or equal to the max-
imum number of UE groups in the NSI-Rs of the generated NSE problem instance.

When generating a random substrate instance based on such a substrate generator
configuration file, first the required number of UE groups is created and added to
the substrate network.
Then the connections of the UE groups are handled. The generation algorithm iter-
ates through the UE groups and generates a new edge cloud node for every required
connection between a UE group and an edge cloud node as long as the defined num-
ber of edge cloud nodes is not reached. The associated edge clouds are connected
to the UE groups with an edge. The number of the connections between the UEs
and the cloud nodes is randomly drawn from the interval

[minNumberOfLinksPerUE,maxNumberOfLinksPerUE]
using an equal distribution. In this thesis we use minNumberOfLinksPerUE = 1
and maxNumberOfLinksPerUE = 1, i.e., the range [1, 1]. Thus, every UE group
is connected to exactly one edge cloud in the generated substrate network. That
means, single-connectivity is assumed in this evaluation. This reflects the current
structure of mobile networks where the majority of devices and contracts are not
capable of multi-connectivity. However, a multi-connectivity scenario can be easily
created with the given NSE Test-Case Generator by setting the minNumberOfLinks-
PerUE and the maxNumberOfLinksPerUE parameters accordingly.

Figure 6.2 shows the single-connectivity of the UE groups with the edge clouds for a
minimal example of a generated substrate network with 8 UE groups (numberOf -
UEs = 8), 3 edge cloud nodes c0, c1 and c2 (numberOfEdgeClouds = 3), 2 ag-
gregation clouds c3 and c4 (numberOfAggClouds = 2) and one main cloud c5
(numberOfMainClouds = 1).
In this minimal example as well as the default configuration, single-connectivity is
applied to the cloud node connections. I.e., the following parameters are set to one:

minNumberOfTransLink = 1, maxNumberOfTransLinks = 1,
minNumberOfCoreLinks = 1 and maxNumberOfCoreLinks = 1.

143

6 Implementation and Evaluation

u0

u7

u1

u5

u6

u2

u3

u4

c2

c1

c0

c4

c3

c5

e0

e1

e2

e8

e9 e12

e11

e13

e14

e15

e16

e17

e18

e7

e5

e6

e3

e4

e10

Figure 6.2: Randomly Generated Substrate - Minimal Examle

144

6.1 Evaluation Setup

Some connections are non-deterministic. These randomly defined edges are high-
lighted in blue color in Figure 6.2. Three edge cloud nodes are created and con-
nected to the first three UE group nodes. The remaining UE groups are connected
to random edge clouds. I.e., the UE groups u3 to u7 are connected randomly in the
minimal example. The aggregation clouds and their connections to the edge clouds
are created in the same manner. Two aggregation clouds are created in the example
shown in Figure 6.2. The number of connected aggregation clouds is selected ran-
domly from the predefined interval. Due to single-connectivity, the first edge cloud
c1 is connected to the newly created aggregation cloud c3 and the edge cloud c1 is
connected to the new aggregation cloud c4. The left-over edge cloud c2 is randomly
connected to one of the two available aggregation clouds. In this example, c4 is used.
Subsequently, all aggregation cloud nodes are connected to the main cloud node c5.
Finally, the free-self-links e13 to e18 are added to the cloud nodes.
Analogous to this minimal example, the tiny, small, medium and big substrate net-
work instances are generated.

For every cloud node type, the provided CPU and memory capacities as well as the
node reliabilities are randomly chosen from a predefined interval with an equal dis-
tribution. For each type of cloud node (edge, aggregation and main cloud) specific
resource and capability intervals are defined. For instance, the amount of provided
CPU resources of one edge cloud is a random (equally distributed) value from the
interval [minCpuEdge,maxCpuEdge], while its memory resources are randomly
chosen from the interval [minMemoryEdge,maxMemoryEdge] and the reliability
of the edge node is between [minEdgeReliability,maxEdgeReliability]. The same
is applied to the aggregation and main clouds with their specific CPU and memory
resource as well as reliability ranges.

The links connecting the UE groups with the edge clouds are referred to as RAN
links. The edge to aggregation cloud links are called transport links and the ag-
gregation cloud to main cloud links are named core links. For each type of link a
minimum and maximum throughput mean and STD as well as a link latency and
link reliability are defined. For example, the RAN links are parametrized with the
minThroughputRanMean and the maxThrouhgputRanMean. I.e., the mean pro-
vided throughput is randomly chosen from the interval

[minThroughputRanMean,maxThrouhgputRanMean]
with an equal distribution. For NSE without uncertainty, the associated STD, spec-
ified by the interval

[minThroughputRanStdDev,maxThroughputRanStdDev]
is set to [0, 0].
The link reliability of the RAN connections is drawn from the interval

[minRanReliability,maxRanReliability]

145

6 Implementation and Evaluation

6.1.2.2 Network Slice Instance Requests

The NSI-Rs are randomly created for this evaluation as well. The parameters of the
NSI-R Generator Configuration File specify the configuration of the NSI-R Genera-
tor. Table 6.3 displays the list of parameters, their type and characteristics. Table
6.4 provides the associated default parameter values.

Table 6.3: NSI-R Generator Configuration File Parameters
Parameter Type Value Range

numberOfSlices Integer > 0
minSliceWeight Double > 0 and ≤ maxSliceWeight
maxSliceWeight Double ≥ minSliceWeight

minNumberOfAppChains Integer > 0 and ≤ maxNumberOfAppChains
maxNumberOfAppChains Integer ≥ minNumberOfAppChains
minNumberOfAppsPerChain Integer > 0 and ≤ maxNumberOfAppsPerChain
maxNumberOfAppsPerChain Integer ≥ minNumberOfAppsPerChain

minNumberOfUEs Integer > 0 and ≤ maxNumberOfUEs
maxNumberOfUEs Integer ≥ minNumberOfUEs and

≤ numberOfUEs in Substrate
minNumberOfAppChainsPerUE Integer > 0 and ≤ maxNumberOfAppChainsPerUE
maxNumberOfAppChainsPerUE Integer ≥ minNumberOfAppChainsPerUE

minAppCpuMean Integer ≥ 0 and ≤ maxAppCpuMean
maxAppCpuMean Integer ≥ minAppCpuMean
minAppCpuStdDev Double ≥ 0 and ≤ maxAppCpuStdDev
maxAppCpuStdDev Double ≥ minAppCpuStdDev
minAppMemoryMean Integer ≥ 0 and ≤ maxAppMemoryMean
maxAppMemoryMean Integer ≥ minAppMemoryMean
minAppMemoryStdDev Double ≥ 0 and ≤ maxAppMemoryStdDev
maxAppMemoryStdDev Double ≥ minAppMemoryStdDev
minAppReliability Double ≥ 0 and ≤ maxAppReliability
maxAppReliability Double ≥ minAppReliability and ≤ 1

minReqThroughputMean Integer ≥ 0 and ≤ maxReqThroughputMean
maxReqThroughputMean Integer ≥ minReqThroughputMean
minReqThroughputStdDev Double ≥ 0 and ≤ maxReqThroughputStdDev
maxReqThroughputStdDev Double ≥ minReqThroughputStdDev
minReqLatency Integer ≥ 0 and ≤ maxReqLatency
maxReqLatency Integer ≥ minReqLatency
minReqLinkReliability Double ≥ 0 and ≤ maxReqLinkReliability
maxReqLinkReliability Double ≥ minReqLinkReliability and ≤ 1

146

6.1 Evaluation Setup

Table 6.4: NSI-R Generator Configuration File Parameters Default Values
Parameter Default Value

numberOfSlices 20
minSliceWeight 1
maxSliceWeight 5

minNumberOfAppChains 1
maxNumberOfAppChains 1
minNumberOfAppsPerChain 1
maxNumberOfAppsPerChain 5

minNumberOfUEs 5
maxNumberOfUEs 10
minNumberOfAppChainsPerUE 1
maxNumberOfAppChainsPerUE 1

minAppCpuMean 25
maxAppCpuMean 50
minAppCpuStdDev 5
maxAppCpuStdDev 10
minAppMemoryMean 25
maxAppMemoryMean 50
minAppMemoryStdDev 5
maxAppMemoryStdDev 10
minAppReliability 0.95
maxAppReliability 0.991

minReqThroughputMean 5
maxReqThroughputMean 10
minReqThroughputStdDev 0.5
maxReqThroughputStdDev 1
minReqLatency 5
maxReqLatency 20
minReqLinkReliability 0.95
maxReqLinkReliability 0.991

For every random NSE problem instance a new set of NSI-Rs is created. The num-
ber of NSI-Rs is specified by the numberOfSlices parameter. The slices weights vary
between the minSliceWeight and the maxSliceWeight, which are randomly selected
with an equal distribution from this interval for each NSI-R.

The NSI-Rs are organized in so-called application chains. This is a consecutively
connected set of applications. The number of application chains per NSI-R lies in
the interval [minNumberOfAppChains,maxNumberOfAppChains]. For simplic-
ity, exactly one application chain per NSI-R is used in this evaluation. However, the
NSI-R generator provides the possibility to create NSI-Rs with a random number of

147

6 Implementation and Evaluation

application chains. For this evaluation one application chain per NSI-R is sufficient,
since more NSI-Rs are used to increase the size and complexity of the problem in-
stances under evaluation, instead of using several application chains per NSI-R.
Each application chain comprises one or several applications connected subsequently.
A minimal example of an NSI with one application chain consisting of the applica-
tions a00, a01, a02, a03 and a04 is displayed in Figure 6.3.
The number of applications within one application chain is a random integer value
between minNumberOfAppsPerChain and maxNumberOfAppsPerChain.

The number of UE groups associated with an NSI-R must not exceed the number
of UE groups defined in the substrate network, since it is a random subset of the
UE groups in the corresponding substrate network.
The number of UE groups assigned to an NSI-R is randomly drawn from the interval
[minNumberOfUEs,maxNumberOfUEs].
Every UE group is then connected to a random number of applications chains be-
tween minNumberOfAppChainsPerUE and maxNumberOfAppChainsPerUE.
In this evaluation all UE groups are connected to the only defined application chain.

The required resources and capabilities of the nodes and links of the generated
NSI-Rs are based on the resource and capability parameters specified in the NSI-R
Generator Configuration File.
Each application is characterized by its required CPU and memory resources as well
as its required reliability. If uncertainty in resource demands is considered, then
for every node resource a mean and a STD value is specified. In this evaluation
the NSI-Rs are randomly generated. The mean and STD values are drawn with an
equal distribution from the specified intervals. For instance, the mean application
CPU is randomly drawn from the interval [minAppCpuMean,maxAppCpuMean].
For all communication links in the NSI-R the mean and STD of the required through-
put as well as the required latency and the required link reliability are randomly
selected from the specified intervals. In the certain case, the STD intervals are set
to [0, 0] and the mean values are used as the resource demands.

148

6.1 Evaluation Setup

u0

u1

u2

u3

u4

u5

u6

u7

a00 a01 a02 a03 a04

l00

l01

l02

l03

l04

l05

l06

l07

l08 l09 l010 l011

Figure 6.3: Randomly Generated NSI-R - Minimal Example

149

6 Implementation and Evaluation

6.2 Throughput and Path-Splitting Evaluation
This section evaluates the path-splitting variant of the NSE model, introduced in
Section 4.3.5.2. The effectiveness of path-splitting is analyzed. Therefore, the accep-
tance rate, i.e., the percentage of accepted NSI-Rs is analyzed for different ranges of
throughput requirements. Additionally, the runtime of the nearly optimal LP-based
algorithms are evaluated.

The default configuration introduced in the previous Section 6.1.2 is used as a base-
line for this evaluation. However, some modifications are made.
First of all, the maxNumberOfLinksPerUE is set to 3 instead of the default value
1. I.e., in the default configuration each UE is connected to exactly 1 edge cloud.
In the configuration for the throughput and path-splitting scenario, every UE is
connected to between 1 and 3 randomly selected edge clouds. The actual number
of links per UE is randomly selected during the generation of the random examples.
It is randomly drawn from the set {1, 2, 3} with an equal distribution. This resolves
the tree structure of the default substrate network and ensures there are several
possible paths between the UEs and the connected cloud servers. This is important
for path-splitting to show its advantages.
Secondly, the number of UE groups per NSI is reduced to range from 2 to 4 (instead
of 5 to 10). This is important since MAI is deactivated in this evaluation scenario.
If many UEs are connected to different applications in different NSIs, these appli-
cations must be made available to all the, potentially distributed, UEs, i.e., UEs
connected with different edge and aggregation cloud servers. Only the main cloud
server can serve all UEs concurrently. However, this clashes with the latency restric-
tions of the virtual communication links on the one hand and the CPU and memory
resources of the main cloud server on the other hand. An overall number of 50 UEs
in the substrate networks is distributed to 20 NSIs with 2 to 4 UEs each, i.e., 3
UE groups per NSI in average. The generator assures that the UEs are assigned to
nearly equal numbers of NSIs. Thus, in average each UE is included in 3·20

50
= 1.2

NSIs in this scenario configuration.
Thirdly, the required mean throughputs on the virtual links in the NSIs are modi-
fied. Table 6.5 displays an overview of the minimum and maximum required virtual
link throughput used in the path-splitting configuration scenarios with low, medium
and high throughput requirements.

Table 6.5: NSI-R Path-Splitting Throughput Parameterization

Parameters low medium high

minReqThroughputMean 10 30 80

maxReqThroughputMean 30 80 150

For each set of configurations of the minimum and maximum mean throughput
parameters 50 instances of the NSE problem with the default configuration and

150

6.2 Throughput and Path-Splitting Evaluation

the modifications explained above are randomly generated for the throughput and
path-splitting evaluation. Each configuration is solved with a simple objective func-
tion, with MAI and safety-buffers deactivated. The tests are executed once with
path-splitting, then the same tests are repeated without the path-splitting option.
Figure 6.4 summarized the results. Table 6.6 lists the average acceptance rate as
well as the average preparation time and solver time for the evaluated scenarios.

Table 6.6: NSI-R Path-Splitting Evaluation Results

Path-Splitting Throuhput Accept. R. Prep. T. Solver T.

off low 0.7620 14.6 s 132.6 s
on low 0.8030 14.5 s 59.1 s
off medium 0.2460 15.1 s 41.1 s
on medium 0.3150 15.0 s 78.0 s
off high 0.0000 14.3 s 0.3 s
on high 0.0380 14.3 s 6.5 s

As expected, the average preparation time of the NSE scenarios with and without
activated path-splitting as wells as for the different intensity of throughput require-
ments of the links in the NSI-Rs are pretty constant. They only show some noise due
to the different randomly created problem instances as well as small fluctuations in
computation time. This is expected, since the number of variables and constraints
is not affected by the path-splitting option.
The solver time, does not differ much for the different problem instances. For
medium and high throughput requirements the solver takes slightly longer when
path-splitting is enabled. However, this is not the case for low throughput scenar-
ios.
NSE with path-splitting clearly outperforms NSE without path-splitting in terms
of the acceptance rate. For low throughput requirements 76.2% of the NSI-Rs are
accepted in average without path-splitting. This improves to 80.3% for the same
NSE problem instances, when path-splitting is activated. An even more significant
improvement is achieved for the medium and high throughput requirement scenar-
ios. For medium throughput requirements the acceptance rate is improved from an
average of 24.6% to an average of 31.5%. In the high throughput scenarios, no NSI-R
is feasible when path-splitting is deactivated. Activating path-splitting enables the
embedding of at least 0.38% of these extremely demanding NSI-Rs.

Conclusion To sum up, activating path-splitting when using the simple objective
function with MAI and safety-buffers deactivated can improve the acceptance rate,
especially if the throughput requirements are high. That means, the share of ac-
cepted NSIs is improved, since path-splitting enables new possibilities of embedding

151

6 Implementation and Evaluation

(a) Preparation Time

(b) Solver Time

(c) Acceptance Rate

Figure 6.4: Throughput and Path-Splitting Evaluation
152

6.3 Latency and MAI Evaluation

NSIs. Especially for high throughput requirements using multiple physical paths to
serve one high throughput virtual path is useful.
If and how much improvement path-splitting achieves in terms of the acceptance
rate, is highly dependent on the concrete characteristic of the physical network and
the NSI-R requirements. The improvement is higher for higher throughput require-
ments. This is due to more flexibility in allocating several physical paths to serve
one virtual communication link.
Although path-splitting can increase the solver time of the NSE, the impact can be
neglected regarding the expected benefits.

6.3 Latency and MAI Evaluation
The latency and MAI evaluation refers to the model described in Section 4.3.5.3.
The evaluation shows the effects of MAI on the NSI acceptance rate for different
levels of latency requirements. Furthermore, the results are compared with the so-
lution when MAI is deactivated. Additionally, the effect of MAI on the runtime of
the NSE algorithm is analyzed.

The evaluation scenario configuration uses the default substrate configuration, as
presented in Section 6.1.2. In the NSI configurations only the required latency is
modified. Table 6.7 shows the used latency parameters.

Table 6.7: NSI-R MAI Latency Parameterization

Parameters very low low medium high

minReqLatency 1 1 1 5

maxReqLatency 2 5 10 20

For each configuration, 50 randomly generated test-cases based on the default sce-
nario are created. The NSE problems are optimized using the cost and revenue
objective function with the activated MAI option compared to deactivated MAI.
The results are provided in Figure 6.5 as well as Tables 6.9 and 6.8.

Figure 6.5 (a) presents the number of constraints of the NSE problem instances an-
alyzed in this evaluation. As expected, the number of constraints does not change
when MAI is active. Consequently, the preparation time, which is mainly dependent
on the number of constraints, is not significantly affected by the MAI option. As
Table 6.8 shows, the average preparation time per constraint is relatively constant
for the different scenarios.
The solver time decreases with increasing latency requirements, that means, NSI-Rs
which require low latency are embedded or rejected more quickly than NSI-Rs with
less restrictive latency requirements (high latency).
The acceptance rates indicate that the low latency NSI-Rs are often rejected. This

153

6 Implementation and Evaluation

explains, why they are handled more quickly by the solver. Figure 6.5 (d) shows
that NSE with MAI is clearly superior over the basic NSE without MAI for the
evaluated scenarios with regard to NSI acceptance rates.
As anticipated, the number of application instances created in average for one NSI
application declines with relaxed latency requirements, because it becomes more
likely that an application used by several distributed UE groups can be deployed on
an aggregation or main cloud node.
The objective values are not evaluated here since, the true revenues and costs are
subject to the specific practical scenarios, which are out of the scope of this thesis.

Table 6.8: NSI-R MAI Evaluation Results - Runtime

MAI Lat. No. Constr. Prep. T. Prep. T./Constr. Solver T.

off very low 50401.5 18.5 s 0.000368 0.3 s
on very low 50401.5 18.5 s 0.000367 2.7 s
off low 47624.3 16.7 s 0.000350 0.3 s
on low 47624.3 16.7 s 0.000351 7.6 s
off medium 49185.6 17.6 s 0.000357 0.7 s
on medium 49185.6 17.6 s 0.000358 11.9 s
off high 50598.7 18.1 s 0.000357 49.3 s
on high 50598.7 18.2 s 0.000359 37.8 s

Table 6.9: NSI-R MAI Evaluation Results - Efficiency Improvement

MAI Lat. Accept. R. No. App Instances

off very low 0.000 1.00
on very low 0.050 3.53
off low 0.004 1.00
on low 0.165 2.08
off medium 0.093 1.00
on medium 0.335 1.55
off high 0.670 1.00
on high 0.706 1.04

Conclusion In summary, the NSE algorithm with MAI is clearly superior over the
basic NSE algorithm without MAI in terms of NSI acceptance rates. The solver
time decreases with increasing latency requirements, since NSIs which require low

154

6.3 Latency and MAI Evaluation

(a) Number of Constraints

(b) Preparation Time

(c) Solver Time

Figure 6.5: Latency and MAI Evaluation 1/2

155

6 Implementation and Evaluation

(d) Acceptance Rate

(e) Average Number of Application Instances

Figure 6.5: Latency and MAI Evaluation 2/2

156

6.4 Combined Path-Splitting and MAI Evaluation

latency are embedded or rejected more quickly than NSIs with less restrictive latency
requirements (high latency). Furthermore, a smaller number of instances of the same
application is created in average, when the latency requirements are relaxed.

6.4 Combined Path-Splitting and MAI Evaluation

The combined model using both, the path-splitting as well as the MAI option is eval-
uated in this section. It is compared with the basic model, without path-splitting
and MAI and the models with either only path-splitting or MAI activated. For all
versions, the cost and revenue objective function is used. 50 randomly generated
problem instances are created. The problem generator uses the default configuration
except for the modified parameters listed below.
In order to generate more options for path-splitting the maxNumberOfLinksPerUE
in the substrate network is increased from 1 in the default configuration to 2 in the
configuration for the combined path-splitting and MAI evaluation.
The number of NSI-Rs is increased to 30, since the higher flexibility in embedding,
introduced by path-splitting and MAI improves the acceptance rate, a more chal-
lenging scenario with more NSI-Rs is used in this evaluation. For throughput, the
high throughput configuration of the path-splitting evaluation is used, with minRe-
qThroughputMean = 80 and maxReqThroughputMean = 150. Challenging latency
requirements (between the very low and the low latency scenario) are used, by set-
ting minReqLatency = 1 and maxReqLatency = 3.

The results of this evaluation are summarized in Figure 6.6 as well as Tables 6.10 and
6.11. The average preparation times of the 50 randomly generated NSE instances
are not significantly affected by activating path-splitting, MAI or both options. It
is around 59s in average for all model variants. The solver time however, decreases
for the path-splitting and combined model. When path-splitting is deactivated and
MAI is activated, the solver time shows bigger deviations. It strongly dependents
on the concrete example. The combined model provides the most efficient solver
times. It reduces from an average of 245.7s for the basic model variant to 88.2s for
the combined model.
Naturally, the average number of application instances is 1, if MAI is deactivated.
Expectedly, it slightly decreases for the combined model compared to the MAI
model.
Considering the objective function values of the cost and revenue objective function
for the four different scenarios, the average efficiency increases with every activated
feature. This evaluation shows that the combined method is more efficient than
the basic, path-splitting and MAI variants. Compared to the basic model variant,
path-splitting achieves an average improvement of the cost and revenue objective
function value of 1.24%. MAI is even better, with an average improvement of 1.71%.
When activating both features, an average improvement in the objective function of
3.98% is reached.
Finally, the deviation of the acceptance rate in percent is analyzed for the four dif-

157

6 Implementation and Evaluation

ferent model variants. The evaluation results show, that the average acceptance
rate improves by 1.11% in average, when the path-splitting feature is activated and
by 2.14% when the MAI feature is activated, instead. When both features are ac-
tivated, the acceptance rate improves by 4.84% in average, compared to the basic
model variant.

Table 6.10: NSI-R Combined Model Evaluation Results - Runtime

Type Prep. T. Solver T. No. App Instances

basic 59.1 s 245.7 s 1.00
path-splitting 59.2 s 157.6 s 1.00
multi-app 58.9 s 259.2 s 1.05
combined 59.1 s 88.2 s 1.04

Table 6.11: NSI-R Combined Model Evaluation Results - Efficiency Improvement

Type Diff. Objectve F. Diff. Accept. R.

path-splitting 1.24 % 1.11 %
multi-app 1.71 % 2.14 %
combined 3.98 % 4.84 %

Conclusion The utility of the cost and revenue objective function increases with
the activation of the path-splitting and the MAI feature in the NSE algorithm. I.e.,
more economically beneficial solutions are determined. This goes along with an
improved acceptance rate, which increases when the path-splitting, MAI or both
features are active. Beyond that, the solver time decreases when using the path-
splitting or the combined model.

158

6.4 Combined Path-Splitting and MAI Evaluation

(a) Preparation Time

(b) Solver Time

(c) Average Number of Application Instances

Figure 6.6: Combined Model Evaluation 1/2

159

6 Implementation and Evaluation

(d) Deviation of Objective Function Value

(e) Deviation of Acceptance Rate

Figure 6.6: Combined Model Evaluation 2/2

160

6.5 Runtime and Scalability Evaluation

6.5 Runtime and Scalability Evaluation

For this runtime and scalability evaluation of the NSE problem randomly generated
substrate networks of different sizes, i.e., with different numbers of elements in the
substrate network and the NSIs as well as different numbers of NSIs are analyzed.
By default, the simple objective function is used. In all test runs, MAI is active
while, path-splitting is deactivated.

Scalability Evaluation Table 6.12 provides an overview over the number of node
elements defined for these substrate sizes, the number of NSIs as well as the number
of evaluated scenarios for each size.
Due to the long runtimes of the big scenarios, fewer random examples are solved.

Table 6.12: Substrate and NSI Size Parameterization

Parameters Tiny Small Medium Big

numberOfUEs 20 50 75 100

numberOfEdgeClouds 8 12 16 20

numberOfAggClouds 3 5 5 5

numberOfMainClouds 1 1 1 1

numberOfSlices 10 20 30 40

Nb. of Substrate Nodes 32 68 97 126
Avg. Nb. of Slice Nodes 75 75 75 75
Avg. Nb. of Scenario Nodes 107 143 172 201

Nb. of Scenarios 50 50 50 10

A nearly optimal solution for the NP-hard NSE problem is needed. The configu-
ration of the SCIP solver as well as the particular problem instance influences the
accuracy of the solution.
The SCIP solver is configured with a limit for the optimization runtime. The follow-
ing setting has proven to be a good trade-off between accuracy and calculation time.
The so-called limits/gap parameter is set to 0.01, that means, when a solution has
been found for which the relative gap between the primal and dual solution is be-
low 0.01%, then the optimization is terminated. Otherwise, if 30 branch-and-bound
nodes have been processed, since the last improvement of the primal solution hast
been seen, the optimization is also terminated. For all other parameters the default
configuration of the SCIP solver is used.[53]

161

6 Implementation and Evaluation

Figure 6.7 together with Tables 6.13 and 6.14 provide an overview over the results
of the scalability analysis.
When increasing the number of elements in the NSE problem, as defined above for
the tiny, small, medium and big scenarios, the average number of constraints in-
creases exponentially, e.g., for an overall number of 32 nodes in the tiny scenarios,
the number of constraints is 13, 914.16 in average, while it increases to an average
of 171, 925.4 for the big scenarios with an overall average number of 201 scenario
nodes. The scenario nodes are the sum of all nodes in the substrate network as well
as all NSIs. I.e. the sum of all UE group nodes and cloud nodes in the substrate
network as well as the UE group nodes and the application nodes in the NSIs. For
simplicity, the communication links are not considered here.
The preparation time also does not scale well, it increases exponentially with the
number of nodes in the NSE problem. The preparation time per constraint increases
exponentially, this can be explained with the fact that the number of variables, which
are part of the constraints, grows exponentially too.
The exponential increase in runtime is most clear when looking at the solver times
in Table 6.14. While solving an instance of a tiny scenario only takes a bit more then
3 seconds in average, the solver time of a small scenario is already 10-times more,
close to 30 seconds in average. For, medium sized problem instances, the solving
time is 10-times more than for the small size, about 333 seconds in average, i.e.,
nearly 6 minutes. Finally, solving a big scenario takes nearly 27 minutes in average.
Thus, only 10 randomly created instances of the big scenario, instead of 50 instances
for all other scenarios, where considered in this evaluation.

The accuracy of the solutions is measured by the relative duality gap. It lies between
an average of 0.174% for the small and 3.7111% for the big scenarios. For linear
problems, like the NSE LP formalization, the optimal solution reaches a duality gap
of 0%. Although all solutions are close to optimality, the accuracy of the solutions
decreases with the size of the problem instances. The decreasing accuracy is due
to the solver configuration, since the maximum number of branch-and-bound nodes
visited without an improvement of the solution is reached earlier, i.e., at a higher
duality gap, for bigger problem instances.

Table 6.13: NSE Preparation Runtime Evaluation

Size No. Constr. Prep. T. Prep. T./Constr.

tiny 13914.16 1.79200 s 0.000128790 s
small 50224.64 18.65158 s 0.000371363 s
medium 102640.88 77.47836 s 0.000754849 s
big 171925.40 227.50730 s 0.001323291 s

162

6.5 Runtime and Scalability Evaluation

(a) Number of Constraints

(b) Preparation Time

(c) Solver Time

Figure 6.7: Scalability Evaluation 1/2

163

6 Implementation and Evaluation

(d) Duality Gap

Figure 6.7: Scalability Evaluation 2/2

Table 6.14: NSE Solver Runtime Evaluation

Size Solver T. Duality Gap

tiny 3.08022 s 0.1740 %
small 29.58678 s 0.6176 %
medium 332.66844 s 1.9860 %
big 1601.4383 s 3.7111 %

Objective Function Runtime Evaluation For the small scenarios, the impact of
different objective functions, as far as not analyzed in the sections above, is eval-
uated. Therefore, the 50 randomly generated small scenarios are solved with the
simple, latency-aware and cost and revenue objective functions. Then the prepara-
tion and the embedding times as well as the acceptance rates are compared relative
to each other.

Figure 6.8 and Table 6.15 show the results of the analysis of the runtime and ac-
ceptance rates, when the different objective functions introduced in Chapter 4 are
used.
Since the preparation time mainly depends on the number of constraints it is not
noticeably affected by changing the objective function. However, the average solver
time reduces significantly for the latency-aware as well as the cost and revenue ob-
jective function compared to the simple objective function. The latency-aware as
well as the cost and revenue objective functions practice a much more precise con-
trol on the solution of the NSE problem. While the simple objective function only
maximizes the sum of embedded NSI weights, the latency-aware as well as cost and
revenue objective function additionally perform a fine-tuning of the particular em-

164

6.5 Runtime and Scalability Evaluation

bedding of the elements with the objective of latency or cost minimization. Empiric
evaluation shows, that the more complex objective functions improve the runtime
with the SCIP solver.

As expected, the acceptance rate cannot be improved significantly since all objec-
tive functions have the component of trying to embed as many NSIs as possible.
Nevertheless, empirically, the deviation of the quality of the results reduces with
the more complex latency-aware as well as cost and revenue objective functions.
This leads to the conclusion, that the simple objective function does not offer an
advantage for solving the NSE problem, except for being easy to understand. Thus,
the more complex objective functions should be chosen for further research as well
as for practical applications.

Table 6.15: Objective Function Runtime Evaluation

Objective F. Prep. T. Solver T. Accept. R.

simple 17.9 s 200.7 s 0.685
latency-aware 18 s 35.4 s 0.695
cost and revenue 18 s 33.1 s 0.691

Conclusion The runtime and scalability evaluation shows that the number of con-
straints and thus the preparation time, which regards the creation and transfor-
mation of the variables and constraints, increases exponentially. In addition, the
solving times increase exponentially with the number of overall nodes in the sce-
narios. While the tiny problem instances only take about 3 seconds to be solved
in average, the big scenarios are solved in 27 minutes in average. Moreover, the
accuracy of the solutions decrease slightly for bigger problem instances.
The comparison of the of the NSE algorithms with different objections functions
shows that the acceptance rates are similar for all objective functions, since all have
the component of trying to embed as many NSIs as possible. But, the average solver
time reduces significantly for the latency-aware as well as the cost and revenue ob-
jective function compared to the simple objective function. This is due to much
more precise control of the solution.

165

6 Implementation and Evaluation

(a) Preparation Time

(b) Solver Time

(c) Acceptance Rate

Figure 6.8: Objective Function Runtime Evaluation

166

6.6 Safety Buffer and Robustness Evaluation

6.6 Safety Buffer and Robustness Evaluation
For the robustness evaluation, the default configuration as presented in Section 6.1.2
is used. The model described in Chapter 5 is analyzed for different safety buffers
γ. The MAI option is activated, while path-splitting is deactivated for all evaluated
NSE scenarios. The 50 randomly generated default NSE scenarios are solved for
each value of γ with the uncertainty-aware NSE objective function as well as for the
simple objective function and the cost and revenue objective function.
The confidences in resource availability are compared for the different values of γ.
Additionally, the runtime of the simple variant and the robust NSE is compared
in order to identify the impact of the robustness optimization on the runtime and
scalability of the NSE problem.

Table 6.16: Robustness Evaluation Results

Type Prep. T. Solver T. Accept. R. Confidence

simple 17.8 s 204.4 s 0.692 49.70 %
cost 17.7 s 26.2 s 0.705 63.00 %
uncertain 1 18.5 s 25.3 s 0.519 93.76 %
uncertain 1.5 18.5 s 20.6 s 0.401 97.73 %
uncertain 2 18.5 s 14.7 s 0.284 99.33 %
uncertain 3 18.5 s 1.8 s 0.072 99.96 %

Figure 6.9 as well as Table 6.16 summarize the results of this robustness optimiza-
tion evaluation.
The average preparation time of the NSE problem is quite similar for the NSE prob-
lem under uncertainty compared to the NSE model with MAI.
In contrast, the solver time is reduced by the cost and revenue objective function
in comparison with the simple objective function. This is analyzed in the previous
Section 6.5. The uncertainty-aware objective function shows similar solver times as
the cost and revenue objective function for small values of γ. Increasing the safety
buffer γ reduces the amount of usable resources, thus the NSI-Rs acceptance be-
comes more restrictive. This leads to faster solver times. Overall, empirical analysis
shows that NSEs problem instances with stronger restrictions and low acceptance
rates can be solved faster with the SCIP solver.

As expected, the acceptance rate is reduced, when robust NSE is used instead of the
basic MAI NSE without safety buffers. The higher the safety buffer, the less NSI-Rs
can be accepted in average, because additional resources are reserved in order to
buffer fluctuations in resource availability and resource demands.
The evaluation shows, that the average NSI confidence of the accepted NSIs is
remarkably improved by robust NSE. For the simple objective function and the
basic MAI NSE an average NSI confidence of only 49.7% is reached. That means,

167

6 Implementation and Evaluation

(a) Preparation Time

(b) Solver Time

Figure 6.9: Robustness Evaluation 1/2

168

6.6 Safety Buffer and Robustness Evaluation

(c) Acceptance Rate

(d) Slice Confidence

Figure 6.9: Robustness Evaluation 2/2

169

6 Implementation and Evaluation

the probability that all resources of the average NSI are available when required is
about 50% for the given probability distributions. When using the cost and revenue
objective function this improves to 63%, because in the evaluated scenarios, the
elements closer to the core provide more resources and are therefore cheaper on the
one hand, but also naturally are more likely to provide a higher resource buffer
on the other hand. However, for both, the simple as well as the cost and revenue
objective function without safety buffers, the NSI confidence is highly volatile.
When using the robust NSE optimization, the confidence values are dependent on
how the safety buffer γ is set. For γ = 1 the average NSI confidence is already up
at 93.76%, but also the STD of the NSI confidences is reduced tremendously, this
however comes at the cost of a lower acceptance rate. The acceptance rate declines
by 18.6 percentage points, from 70.5% to 51.9%. A further increase of the average
NSI confidence is achieved with the higher safety buffers.
Thus, when adjusting γ, a trade-off between the NSI confidence and the acceptance
rate has to be made. The configuration of γ depends on the reliability requirements
of the NSIs and the available resources or the acceptable costs for overprovisioning.

Conclusion The robust NSE algorithm strongly improves the confidence in re-
source availability. Reserving a resource buffer which is equal to the STD of the
uncertain resources and demands (γ = 1) already provides an average overall NSI
confidence of over 97%. This can be further improved by increasing the safety buffer
γ. However, the safety buffers reserve additional resources which are then unavail-
able for further NSI embeddings. Consequently, the acceptance rate and objective
function utilities decline with higher safety buffers and NSI confidences.

6.7 Summary and Discussion

The different variants of the NSE model is analyzed with a dedicated Java imple-
mentation, utilizing the SCIP as a solver for LPs. Due to restrictions of the solver
interface, the transformation of the object-based representation of an instance of
the NSE model is time consuming. Therefore, the runtime efficiency analysis distin-
guishes between the so-called preparation time of the NSE problem and the solver
time. The preparation time comprises setting up the object-based Java constraints
as well as the transformation into the LP representation. The solution time regards
the pure runtime of the solver.
A default scenario is used and adapted to create different challenges. Usually 50
randomly generated examples are created and solved for each scenario in order to
get a clear picture of the behavior of the respective algorithms.
The evaluation analyzes the presented variants of the NSE problem provided in
Chapter 4. Especially, the acceptance rate as well as the runtime of the NSE algo-
rithm are considered. Beyond that, the robust NSE, as introduced in Chapter 5, is
analyzed. The confidences in resource availability are especially in focus.
Five different evaluation scenarios are analyzed. First, for the evaluation of the

170

6.7 Summary and Discussion

path-splitting model, three different scenarios are used, a scenario for low, medium
as well as high throughput requirements of the NSIs. It can be shown, that path-
splitting improves the average acceptance rates for all scenarios. Especially in the
high-throughput scenario, when the basic NSE model was unable to embed any NSIs
in any of the randomly generated instances, with path-splitting it was possible to
embed at least a very small percentage of 3.8% of the NSI-Rs.
In the second part of the evaluation, the MAI NSE model is evaluated similarly to
the path-splitting model. Four different scenarios, with very low, low, medium and
high link latency requirements in the NSI-Rs are used. When MAI is activated for
the NSE model the average acceptance rate is massively improved compared to the
basic NSE problem.
Thirdly, the runtime, objective functions values and acceptance rates are compared,
when path-splitting, MAI or both are activated or deactivated respectively. With
each activated feature, the objective function values as well as the acceptance rate
improve significantly.
Then, in a dedicated runtime evaluation for the NSE problem four scenarios with
different sizes, tiny, small, medium and big are created. The number of elements
grows less than linearly for the four different scenarios, nevertheless the number
of constraints required in average for the randomly generated examples for each
category increases exponentially. The preparation and solver times also increase
exponentially. This leads to the conclusion that further measures are required for
solving large instances of the NSE problem in its different variants with a short
runtime.
As a part of the scalability analysis, the accuracy of the solutions is evaluated. The
results show that the NSE solutions are close to optimality.
The different objective functions of the NSE problem are compared to each other.
The solver time for the latency-aware and cost and revenue objective function com-
pared to the simple objective function are significantly better in average, while the
average preparation time as well as the average acceptance rates remain quite con-
stant.
Finally, the evaluation of the robust NSE model shows that the NSI confidence can
be significantly improved. Beyond that, the parameter γ provides an effective tool
to manage the trade-off between the confidence in resource availability and the re-
source utilization. The resource utilization is important for the costs of an NSI as
well as the acceptance rate of the overall NSE problem.

171

7
Related Work

This chapter provides an overview and discussion of the related work of this thesis.
In the first section, an overview over literature on VNE and NSE is given and
discussed. The second section summarizes and discusses recent scientific literature
on NSE in conjunction with Edge Computing. The third section especially focuses
on research on VNE under uncertainty, resource overbooking and robust algorithms
for the VNE problem under uncertainty. The chapter is concluded by a summary
and a consideration of the similarities and differences between the NSIA approach
presented in this thesis and the related work in literature.

7.1 Virtual Network Embedding

The NSE problem is a special case of the well-researched VNE problem. The VNE
problem belongs to the class of NP-hard problems, first proved in [28], see also [30].
It is a well-researched and understood mathematical problem. In literature, various
algorithms and heuristics for the VNE exist, including optimal solutions using ILP.
The VNE problem is getting increased attention in practice. Amongst others, the
telecommunication industry is adopting network virtualization techniques. How-
ever, there is a lack of concepts for embedding virtual end-to-end networks onto a
common mixed wired and wireless physical network.
Fixed network embedding is very well-researched. Fischer et al. provided a survey
on VNE, focusing on fixed networks in 2013, see [27]. But the advancements in VNE
are also evaluated for wireless networks, see for example the papers of Riggio et al.
[54] and Tsompanidis et al. [55]. Moreover, Richard et al. [4] published a survey
on recent work in mobile network slice embedding. For example, Esposito et al.
propose a distributed approach for the NP-hard network slice resource allocation
problem in form of a consensus-based auction mechanism [56]. Two possible policy
configurations are analyzed. In the Single Allocation Distributed slice embedding
only one bid on one virtual node can be made per auction round. In contrast to
that, the Multiple Allocation Distributed slice embedding allows to bid on several
virtual nodes simultaneously. While Multiple Allocation Distributed has a lower
convergence time, Single Allocation Distributed results in a better load balancing
and is faster in deciding on the feasibility of a network slice embedding. The virtual
links are embedded in the next step, after the virtual nodes have been assigned
completely. Yang et al. [57] use a karnaugh-map based heuristic for an efficient vir-
tual network embedding. In a first step, the wireless resources are divided by, e.g.,

173

7 Related Work

TDMA or FDMA into resource blocks. In the second step, the virtual networks are
assigned to the resource blocks using a karnaugh-map based concept. The authors
show that this is a feasible and efficient way of wireless virtual network embedding.
However, in both approaches the actual available throughput provided to a network
slice, depending on varying channel conditions, as well as important capabilities,
like latency and accessibility are not considered. Moreover, they do not allow to
analyze possible resource overbookings and assume stable resource provisioning and
utilization. These approaches have in common that they deal with network slice
resource allocation at runtime, i.e., focus on resource partitioning and sharing as
well as on network slice isolation. Network slice isolation refers to the problem of
assuring that the slice specification is not violated because of changes in another
slice. The authors of [4] criticize that the evaluated algorithms are described very
vague and that they are based on assigning a certain number of Physical Resource
Blocks (PRBs). This way no performance guarantees can be given. Varying chancel
conditions make it hard to determine a suitable number of PRBs. Richard et al. [4]
state that higher-level variables, such as a percentage of the total resources, should
be used instead of PRBs. However, this comes at the cost of hardly being able to
give guarantees on the amount of resources provided to the owner of the network
slice.
In contrast to these activities, the model proposed in this thesis does
not cover network slice deployment and issues like network slice isolation
and PRBs assignment during runtime. Taking the results of Richart et
al. into account, this work abstracts from PRBs and directly draws on
network performance parameters, like throughput and latency.

Zhang et al. [58] present an approach for runtime optimization of throughput re-
sources for NSEs. Wang et al. [59] are aiming at resource price balancing, con-
sidering dynamic offer and demand of NSI resources and Jiang et al. [60] use UE
admission control to avoid network overloading at runtime. Vassilaras et al. sum-
marize the algorithmic challenges of efficient NSE in their paper [61]. They propose
an ILP model for finding an optimal solution for a simplified network slice embed-
ding problem and state that the solution with ILP would take tens of minutes. In
order to achieve faster run times, an efficient heuristic targeting at a nearly optimal
solution is required. However, developing such a heuristic remains an open research
question. In addition to that, Vassilaras et al. mainly focus on problems related to
network slicing at run time, for instance, the authors shed light on the challenges re-
garding end-to-end latency constraints, heterogeneous networks, multi-tenancy and
slice fairness as well as the issue of dynamic network slicing and online optimization.
NSI deployment and resource management at runtime are not covered
by this thesis. This work focuses on finding a nearly optimal utilization
of the NSI resources in a mixed wired and wireless end-to-end network
during the NSI preparation phase.

Despotovic et al. [31] propose a scalable algorithm for solving the VNE problem
optimally and efficiently. Their problem formulation, the so-called VNetMapper,

174

7.2 Network Slice Embedding and Edge Computing

allows to solve a VNE with hundreds of nodes and thousands of links within a
few seconds. However, the VNetMapper is not optimized for end-to-end mobile
networks. It only considers consumable resources, e.g., throughput and memory.
Moreover, it does not apply for end-to-end mobile NSIs, since it does not consider
network quality parameters, like link latency, availability and reliability. Constraints
for such non-consumable capabilities are not formalized by the approach. Beyond
that, the VNetMapper, proposed in [31] is only capable of a one-to-one mapping of
virtual to physical nodes and links. That means, it is not possible to map several
virtual nodes or links on one physical node or link of the substrate. This is not
a feasible constraint for the NSE problem, since the network infrastructure, e.g.,
antennas, base stations and transport links, must be shared among several NSIs.
In contrast to that, this thesis presents an approach that analyses the
available resources of mixed wired and wireless end-to-end mobile net-
works and provides a nearly optimal embedding of mobile NSIs into this
shared physical network.
Usually, ILP solutions for VNE only perform reasonably well on small
networks. However, NSE is associated with large problem instance, nu-
merous parameters and constraints. Thus, the approach of this thesis
uses the design guidelines for Integer Programming proposed by Despo-
tovic et al. [31] for efficient and scalable, nearly optimal VNE models.
The model proposed in this thesis is tailored to end-to-end mobile net-
work slicing. It takes latency and reliability constraints into account and
optimizes the latency of the embedded NSIs. Furthermore, it is capable
of many-to-one mappings and the embedding of network functions chains
and takes advantage of the fact that the UE nodes are the same in the
physical as well as the virtual networks.

7.2 Network Slice Embedding and Edge Computing

The challenges of NSE in conjunction with edge computing are currently under in-
tense discussion. One related publication is the paper of Sanguanpuak et al. [62].
The authors model the scenario of network slice allocation to multiple MNOs. The
allocation problem is solved with the generic Markov Chain Monte Carlo Method.
The method considers latency constraints and targets at minimizing infrastructure
costs. The optimal mapping solution is calculated with the greedy fractional knap-
sack algorithm. This algorithm focuses on determining the best network slice to
MNO resource mapping for co-located resources.
Xian et al. present a Mixed Integer Nonlinear Problem formulation of resource al-
location with edge computing in [63]. The proposed optimization algorithm takes
the link and server capacities as well as latency restrictions into account. Sequential
Fixing is used to efficiently compute nearly optimal solutions for the mobile edge
resource allocation problem.
In contrast to the publications [62] and [63], this thesis provides an end-
to-end NSE solution with distributed UEs using a common network slice.

175

7 Related Work

The number of required instances of a specific application within a net-
work slice is determined automatically, depending on the topology of the
network, the end-to-end latency, throughput as well as CPU and memory
requirements of the respective application. The approaches mentioned
above focus on choosing the optimal edge cloud for a predefined applica-
tion instance associated with a specific UE group at a specific location.
However, they do not provide an automated optimization of MAI for ge-
ographically distributed UEs in consideration of latency requirements.

Another publication in this area is the work of Song et al. [64]. The authors of this
paper propose a method of allocating VNFs in slicing-enabled 5G networks using an
edge computing infrastructure in order to reduce network service latencies. There-
fore, the required number of instances of the VNFs are determined. The approach
also integrates network function chaining.
But, in comparison to this thesis, the presented approach is not inte-
grated with solving the NSE problem.

Further approaches focus on the allocation of computation tasks on distributed
clouds during runtime. For example, Alicherry et al. [65] present an efficient ap-
proximation algorithm for allocating computation tasks on a distributed cloud with
the objective of minimizing communication costs and latencies. Hao et al. [66]
provide online heuristics for the resource allocation problem for geographically di-
versified cloud servers. Both papers are providing algorithms for solving the NSE
problem. They are both taking latency and throughput restrictions as well as the
network topology into account. However, they are not tackling the challenges of
edge computing in conjunction with the NSE problem. Beyond that, for instance,
Akhatar et al. [67] present an ILP-based solution for the virtual function placement
and traffic steering in 5G networks under the assumption, that every service instance
is deployed exactly once.
In contrast to that, the algorithm presented in this paper optimizes the
number of application instances and their placement in the physical net-
work. Thereby, throughput and latency on the links as well as the net-
work topology and the NSE problem are considered. To the best of
the authors knowledge, none of the approaches in literature is tailored
to end-to-end NSE leveraging MAI and edge computing at the same time.

7.3 Uncertainty Evaluation and Overbooking

Various approaches on assigning and overbooking network resources can be found
in literature. In [68] the authors show that careful network overbooking can save
costs for the user, while concurrently increasing the revenue of the network service
provider. In this paper, a game theoretical approach is used. Like most publica-
tion on virtual network overbooking (see for instance [69, 70, 71, 72, 73, 74]) it

176

7.3 Uncertainty Evaluation and Overbooking

only focuses on the overbooking of a single resource without considering potential
interdependent other resources. That means, these publications do not pro-
vide a comprehensive solution for the VNE and overbooking problem as
it is proposed in this thesis. For example, Fiedler [69] provides an approach
for careful virtual network overbooking focusing on the availability of one resource
shared by several users. It is based on a per user embedding with an artificial traffic
model. This concept cannot be directly transferred to NSE in end-to-end
mobile networks. In contrast to this thesis, it also does not include the
optimization of the resource allocation.
Several publications, for instance, Ball et al. in [75] and Liu et al. in [76] propose
an optimal communication link overbooking ratio calculation for telecommunication
networks maintaining a predefined Quality of Service (QoS) level. Sadreddini et al.
[77] provide a framework for cognitive radio networks for finding the optimal com-
pensation rate for network overbooking using Particle Swarm Optimization.
In contrast, this thesis aims to embed as many NSIs as feasible, while al-
lowing a careful overbooking of several partly interdependent resources,
combined with numerous further qualitative and quantitative feasibility
constraints. Furthermore, the confidence in resource availability for the
elements, resources and NSIs are determined.

In addition, several promising approaches on assigning virtual network resources,
allowing overbooking, can be found in literature.
In [78], Marotta and Kassler present a robust VNF placement algorithm which is
based on Γ-robust optimization to protect the solution against data uncertainty. Γ-
robust optimization is a special case of robust optimization. Robust optimization is
linear optimization under uncertainty. In contrast to stochastic optimization, robust
optimization is not based on a known probability distribution, instead it optimizes
the objective function over a specific parameter space, the so-called uncertainty set.
Γ-robust optimization is used when the objective function parameter as well as the
right side of the constraints, e.g., the amount of provided resources, are assumed
to be certain and a predefined number Γ of the uncertain parameters can deviate
from their nominal value. The Γ-robustness optimization models are LPs. Thus, the
proposed model provides an efficient node and link mapping for the optimization of
the energy efficiency on an adjustable protection level.
Beyond that, Marotta et al. propose an even faster three-step heuristic, which also
considers latency constraints, in [79].
In this thesis, a different effective approach to achieve robust solutions
of the NSE problem under uncertainty with an LP is presented.

Blanco et al. [80] present a robust VNF placement optimization model for optimiz-
ing the power consumption in 5G mobile networks which mitigates service demand
uncertainty, while Altın et al. [81] provide a robust VNE algorithm considering com-
munication traffic patterns. Chochlidakis et al. [82] focus on an adjustable tradeoff
between robustness and resource utilization of the embedding, taking user mobility
into account. Reddy and Baumgartner et al. propose a similar approach in [83]. In

177

7 Related Work

order to increase profits by network overbooking while providing a high probability
of feasibility they use Γ-robustness optimization with a mixed integer linear program
to handle, for instance, unpredictable short-term mobile traffic increase, e.g., flash
crowd events, see [84].
Coniglio et al. provide an exact as well as a heuristic solution for the offline version
of the VNE problem based on MILP and Γ-robustness optimization in [85]. Build-
ing on this, they developed a chance-constraint formalization of the general VNE
problem without latency constraints in [86].
These approaches have in common, that the probability distributions of the un-
certain parameters are unknown. Thus, they need to protect the solution against
possible variations within a predefined uncertainty budget. However, this leads to a
less beneficial solution, since the objective of resource efficiency has to be balanced
with the protection against resource uncertainty.
This thesis, however, assumes that the data history on mobile network
resource availability as well as resource utilization of the deployed and
running NSIs is available. The data can be used to determine an esti-
mated probability distribution for the resource availability and resource
utilization. For new NSIs, that have not been deployed before, an es-
timation of the resource requirements can be made based on the SLA
requirements, the type of network slice and the resource utilization data
of similar, already deployed NSIs.

The work of Trinh et al. [87] proposes an overbooking mechanism for virtual net-
works. Their work is based on soft-guaranteed service levels providing a percentage
of time with full bandwidth or service availability and a reduction factor for the
limited availability. The main focus is on calculating the price reduction which can
be offered per user to network slice tenants that are willing to accept a predefined
limitation of service quality for a single resource, like bandwidth.
This thesis pursuits the opposite approach, for given NSI requirements
with specific resource and capability demands the best NSE is calculated
and the risk of violating the SLAs of the NSIs is determined for this em-
bedding.

7.4 Summary and Discussion

There is little literature on models and algorithms for feasibility and robustness
analysis in the NSI preparation phase. However, when expanding the scope of the
related work, one can find a lot of publications on solving the general VNE prob-
lem as well as many publications on resource allocation for network slicing during
runtime. But, most VNE algorithms focus on fixed networks. Beyond that, usu-
ally assumptions are made which are unsuitable for the NSE problem in 5G mobile
networks. For instance, the one-to-one mapping is a very typical assumption for
the VNE problem. That means, only one virtual node can be mapped on a physical

178

7.4 Summary and Discussion

node and every virtual node can only be mapped once. Furthermore, UEs with their
specific characteristic in the embedding model are usually not considered.
When it comes to publications on NSE, there is a lot of related work on NSI allo-
cation during runtime. However, little research on the NSI feasibility analysis and
resource allocation in the preparation phase can be found in literature. Neverthe-
less, the NSI feasibility analysis and resource allocation in the preparation phase is
crucial in order to enable quick NSI acceptance via an automated 5G Network Slice
Customer Portal.

Several approaches towards resource allocation in mobile networks with edge com-
puting have been published. However, prior art lacks a holistic solution for NSE
in conjunction with MAI. None of the related publications considers the allocation
of services on distributed clouds and solves it together with the NSE problem. A
comprehensive consideration of cloud computing with MAI and NSI-R feasibility
analysis is to the best of the authors knowledge not part of previous literature.

Regarding NSE under uncertainty, various related approaches can be found in lit-
erature. Some of them focus on determining the cost-optimal network resource
overbooking level or the compensation rate for a single resource. Moreover, several
approaches on assigning virtual network resources to potentially overbooked physical
resources are presented in the prior art. These solutions are based on other concepts
than the ILP-based comprehensive robust embedding LP approach provided in this
thesis. Most solutions either focus on VNF placement only or consider the general
VNE problem without latency constraints and UEs. In addition, the approaches
provided in literature usually assume that the probability distributions of the un-
certain parameters are unknown. However, this thesis is based on historical data on
resource utilization of already running NSIs and estimations for new NSI-Rs. This
data is used to determine the probability distributions of the parameters. To the
best of the authors knowledge, none of concepts in literature considers the provi-
sioning of the confidence in resource availability and the risk of violation of SLAs
for network slicing in end-to-end mobile networks, taking the RAN, fixed networks
and cloud server resources into account.

179

8
Conclusion and Outlook

In the previous chapters, the NSIA process standardization and models have been
presented. Moreover, the prototypical implementation allows a comprehensive eval-
uation of the different model variants and objective functions as well as the robust
NSE.
In this chapter, this work is summarized and concluded. Lastly, some ideas on future
improvements and extension of the NSIA algorithms are briefly presented.

8.1 Conclusion

NSaaS in 5G mobile networks requires reliable and runtime- as well as resource-
efficient NSE algorithms to enable a quick network slice feasibility analysis and
on-demand resource allocation via a customer portal. This thesis provides an NSIA
process description. The NSIA process allows to decide whether to accept or to
reject an incoming NSI-R taking the individual business policies and risk tolerance
of the MSP into account. In addition, the corresponding NSIA and subordinated
feasibility checking services in the context of the ETSI ZSM Reference Architecture
Framework are developed. Through this thesis, network resource overbooking as a
necessity for profitable network operation in an uncertain environment is considered.

Based on the NSIA process and the feasibility checking service standardization, a
formal model of the NSE problem is presented in this work. The model allows to
solve the NSE problem nearly optimally using an out-of-the-box LP solver. The
mathematical NSE model has a modular structure and can be executed in several
different variants. These variants enable, many-to-one mappings, network function
chaining, path-splitting and MAI as well as different objective functions. With the
ability to realize many-to-one mappings, that means, mapping several virtual appli-
cations or network functions, belonging to the same or different NSIs, on the same
physical element (server or cloud node) and the possibility of defining and embed-
ding NSIs with network function chains, the proposed NSE algorithm is suitable
to perform the resource feasibility check as well as the NSIA and the embedding
process for NSaaS.
Optionally, path-splitting and MAI can be activated. Path-splitting enables more
flexibility for the virtual link embedding, since it allows to combine several physical
communication paths to serve one virtual communication link.
MAI particularly enables processing low-latency requirements in conjunction with

181

8 Conclusion and Outlook

edge computing. Using the build-in optimization, the presented algorithm deter-
mines the nearly optimal number of application instances required to serve dis-
tributed UEs requiring a low-latency connection with an application in an NSI.
The NSE in its different variants can be optimized towards cost and revenue, latency
or robustness by using the corresponding objective functions provided in this thesis.
The objective functions optimize the overall utility of the embedded NSIs in first
priority and propose an embedding with maximum revenue minus cost, minimum
latency or maximum robustness in the second priority.

Beyond that, an efficient model and algorithm for NSE under resource uncertainty
taking strict latency and real-time communication constraints into account are pro-
vided. The resource allocation is sensitive to resource uncertainties and optimizes
the solution towards maximum resource confidences. It helps finding an NSE with
the best balance between resource efficiency and robustness towards resource and
demand fluctuations. The resource confidences of the calculated NSE solution are
determined and can be assessed with regard to business policies.

A dedicated Java implementation of the developed NSE algorithms has been devel-
oped for the evaluation. The evaluation results show, that the proposed approach
is a reliable mechanism for NSIA which can be applied to NSaaS. The presented
solution is able to determine the feasibility of a new NSI-R received via the 5G
Network Slice Customer Portal. Beyond that, it proposes a feasible, nearly optimal
embedding of a single or a set of NSI-Rs. Furthermore, the resource and NSI confi-
dences can be determined automatically by the software.
Small and medium sized problem instance can be solved within seconds or minutes
on a regular notebook. In order to provide the best possible runtime performance,
a linear objective function and linear constraints are used. In addition, the vari-
ables are boolean, except for link-to-path mapping variables in the path-splitting
variant. Nevertheless, the complexity and scalability of the NSE problem remains
challenging for large problem instances. The number of variables and constraints
grows exponentially with the number of elements (nodes and links) in the physical
network and the NSIs.

8.2 Future Work

The NSIA process as well as the presented models and algorithms for the NSE prob-
lem are based on accurate knowledge of the resources and capabilities provided by
the mobile network and on the resource and capability requirements of the NSIs.
Accurate and practically applicable methods for creating probabilistic models for
the resource availability as well as the resource demand predictions for the opera-
tional as well as new NSIs are needed. However, this is out of scope of this thesis
and should be addressed in future work.
This thesis focuses on modeling and solving the NSE problem. When advancing
into practical applications of the NSIA, additional resources and capabilities might

182

8.2 Future Work

be needed. Moreover, the size of the underlying network infrastructure and the
number of NSIs might increase. The number of variables in the LP model grows
over-proportionally, when the number of elements in the substrate and NSIs increase.
Beyond that, the additional resources and capabilities lead to further constraints be-
ing added to the model. The preparation time of the model as well as the model
solution time does not scale for large problem instances and the nearly optimal NSE
algorithm cannot be completed in reasonable time for large problem instances, even
on a high-performance computer. Thus, in future work, heuristics and preprocess-
ing for making the NSE problem scalable for large problem instances and solving
smaller ones even more efficiently should be evaluated.
One potential approach is splitting large problem instances into smaller subprob-
lems. Either the problem can be split into local subproblem, or clusters of subnets
can be abstracted and their resources can be aggregated. The first alternative can
be implemented by splitting the substrate and the NSIs into subproblems corre-
sponding to geographical areas. Solving all subproblems can be done in a fraction of
the time needed for solving the full NSE problem. However, some central substrate
nodes have to be shared among the subproblems. The second alternative requires a
logical clustering and aggregation of resources, for instance, into subnets. The NSE
problem can then be solved on a higher level of abstraction in the first solution step.
In the second solution step, the details of the embedding within the clusters are
determined. However, the resulting overall embedding might not be optimal due to
the reduction of the assignment of the resource to the cluster or subnets in the first
solution step.
Another potential approach to improve the runtime efficiency for large problem in-
stances is to embed the NSIs in small groups or one after another. This highly
reduces the number of constraints and embedding variables. However, this method
requires to define an order in which the NSIs are embedded. The NSIs which are
tried to be embedded first have a higher chance of being accepted. The NSI weights
might be used to determine a good order for the NSIs. Nevertheless, it cannot be
guaranteed that a nearly optimal solution is found.
Beyond that, promising heuristic approaches, that can be adjusted for the NSE
problem are presented in literature. For instance, node-ranking based approaches,
like [88] and the ViNE-Algorithm [89]. The accuracy, e.g., the achieved acceptance
rates, of the heuristic solutions should be evaluated and compared to the accuracy
of the nearly optimal algorithms presented in this thesis.

Another aspect of NSaaS not discussed in this works is that NSIs are often dynamic,
i.e., they are deployed, run and terminated dynamically. Apart from that, NSIs can
be activated during repeating time periods, for instance, every day during a spec-
ified time-window. Beyond that, the underlying physical network infrastructure is
subject to persistent modification and change. This gives the resource allocation
and planning performed with the proposed NSE algorithms an additional time di-
mension. The approach presented in this thesis can be enhanced to handle such
dynamic NSE problems. A straightforward way to achieve this is to solve the NSE
problem as described in this thesis for every time frame, i.e., after each change in

183

8 Conclusion and Outlook

the substrate network or in the set of NSIs. Certainly, this leads to a computational
overhead for the NSE algorithm. A dynamic online reconfiguration of the resource
allocation without the need to perform a full recalculation of the NSE algorithm is
desirable.

Lastly, an even deeper analysis of resource overbooking should be done in order to
improve the optimization towards the best balance between resource efficiency and
robustness. One possibility for this is allowing fuzziness in the resource constraint
fulfillment. In addition, customized probability distributions can be used for the
different resources, for instance, gamma distributions, bounded normal distributions
or customized discrete distributions.

184

Bibliography

[1] Cisco and affiliates. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2017–2022. White Paper. Cisco and affiliates, Feb. 2019.

[2] Nokia Networks. 5G Masterplan – Five keys to create the new communications
era. White Paper. Nokia Networks, 2016.

[3] 3GPP. Study on management and orchestration of network slicing for next
generation network. TR 28.801 V15.1.0. 3GPP, 3rd Generation Partner-
ship Project, Technical Specification Group Services and System Aspects. Jan.
2018.

[4] Matias Richart et al. “Resource Slicing in Virtual Wireless Networks: A Sur-
vey”. In: IEEE Transactions on Network and Service Management 13.3 (Sept.
2016), pp. 462–476.

[5] 3GPP. Management and orchestration of 5G networks: Concepts, use cases
and requirements. TS 28.530 V16.0.0. 3GPP, 3rd Generation Partnership
Project, Technical Specification Group Services and System Aspects. Sept.
2019.

[6] 3GPP. Management and orchestration of 5G networks; Provisioning. TS
28.531 V16.3.0. 3GPP, 3rd Generation Partnership Project, Technical Speci-
fication Group Services and System Aspects. Sept. 2019.

[7] ETSI. GS ZSM 002, Zero-touch network and Service Management (ZSM);
Reference Architecture. V1.1.1. Aug. 2019.

[8] Andrea Fendt et al. “A Network Slice Resource Allocation Process in 5G
Mobile Networks”. In: Innovative Mobile and Internet Services in Ubiquitous
Computing. July 2018.

[9] Andrea Fendt et al. “A Network Slice Resource Allocation and Optimization
Model for End-to-End Mobile Networks”. In: 2018 IEEE 5G World Forum
(5GWF). July 2018, pp. 262–267.

[10] Andrea Fendt et al. “A Formal Optimization Model for 5G Mobile Network
Slice Resource Allocation”. In: 2018 IEEE 9th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON). Nov. 2018,
pp. 101–106.

[11] Andrea Fendt et al. An Apparatus and Method for Network Slice Instance
Feasibility Checking in Network Slice Instantiation. Nokia Bell Labs. Apr.
2019.

[12] Andrea Fendt et al. “An Efficient Model for Mobile Network Slice Embed-
ding under Resource Uncertainty”. In: 2019 16th International Symposium on
Wireless Communication Systems (ISWCS). 2019, pp. 602–606.

185

Bibliography

[13] Katha Ludwig, Andrea Fendt, and Bernhard Bauer. “An Efficient Online
Heuristic for Mobile Network Slice Embedding”. In: 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN). 2020,
pp. 139–143.

[14] Andrea Fendt et al. “End-to-End Mobile Network Slice Embedding Leveraging
Edge Computing”. In: NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium. 2020, pp. 1–7.

[15] ETSI ZSM Nurit Sprecher. “ETSI ZSM Architectural Framework for End-
to-End Service and Network Automation”. In: IEEE.org, Software Defined
Networks (Nov. 2018).

[16] NGMN - Next Generation Mobile Networks Alliance. 5G End-to-End Archi-
tecture Framework. Version 2.0.0. NGMN Alliance. Feb. 2018.

[17] ETSI. GS ZSM 003, Zero-touch Network and Service Management (ZSM);
End to end management and orchestration of network slicing. V0.11.1. Oct.
2019.

[18] 3GPP. Management and orchestration; Architecture framework. TS 28.533
V16.1.0. 3GPP, 3rd Generation Partnership Project, Technical Specification
Group Services and System Aspects. Sept. 2019.

[19] NGMN - Next Generation Mobile Networks Alliance. 5G White Paper. Version
1.0. NGMN Alliance. Feb. 2015.

[20] NGMN - Next Generation Mobile Networks Alliance. Description of Network
Slicing Concept. Version 1.0.8 (draft). NGMN 5G P1 Requirements & Archi-
tecture Work Stream End-to-End Architecture. Sept. 2016.

[21] ETSI. GS NFV 003, Network Functions Virtualisation (NFV); Terminology
for Main Concepts in NFV. V1.1.1. Oct. 2013.

[22] 3GPP. System Architecture for the 5G System (5GS), Stage 2. TS 23.501
V16.2.0. 3GPP, 3rd Generation Partnership Project, Technical Specification
Group Services and System Aspects. Sept. 2019.

[23] 5G Novel Radio Multiservice adaptive network Architecture. Deliverable D3.2,
5G NORMA network architecture - Intermediate report. Version 1.0. 5G
NORMA. Jan. 2017.

[24] 5G Novel Radio Multiservice adaptive network Architecture. Deliverable D3.3,
5G NORMA network architecture - Final report. Version 1.0. 5G NORMA.
Oct. 2017.

[25] GSM Association. Generic Network Slice Template. Version 2.0. Oct. 2019.
[26] GSM Association. From Vertical Industry Requirements to Network Slice

Characteristics. Aug. 2018.
[27] Andreas Fischer et al. “Virtual Network Embedding: A Survey”. In: IEEE

Communications Surveys & Tutorials 15.4 (2013), pp. 1888–1906.
[28] David G. Andersen. Theoretical Approaches to Node Assignment. unpublished.

Dec. 2002.

186

Bibliography

[29] S. G. Kolliopoulos and C. Stein. “Improved approximation algorithms for un-
splittable flow problems”. In: Proceedings 38th Annual Symposium on Foun-
dations of Computer Science. Miami Beach, FL, USA: IEEE Comput. Soc,
1997, pp. 426–436.

[30] Matthias Rost and Stefan Schmid. “NP-Completeness and Inapproximability
of the Virtual Network Embedding Problem and Its Variants”. In: Cornell
University arXiv.og, 1801.03162 (Mar. 28, 2018).

[31] Zoran Despotovic et al. “VNetMapper: A fast and scalable approach to virtual
networks embedding”. In: Proceedings - International Conference on Computer
Communications and Networks, ICCCN. Aug. 2014, pp. 1–6.

[32] Andreas Fischer et al. “ALEVIN - A Framework to Develop, Compare, and
Analyze Virtual Network Embedding Algorithms”. In: Electron. Commun.
Eur. Assoc. Softw. Sci. Technol. 37 (2011), p. 13.

[33] David Stezenbach, Matthias Hartmann, and Kurt Tutschku. “Parameters and
challenges for Virtual Network embedding in the Future Internet”. In: 2012
IEEE Network Operations and Management Symposium. 2012 IEEE/IFIP
Network Operations and Management Symposium (NOMS 2012). Maui, HI:
IEEE, Apr. 2012, pp. 1272–1278.

[34] Zhongbao Zhang et al. “A unified enhanced particle swarm optimization-
based virtual network embedding algorithm”. In: International Journal of
Communication Systems 26.8 (Aug. 2013), pp. 1054–1073.

[35] Kailing Guo et al. “Particle swarm optimization based multi-domain virtual
network embedding”. In: 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM). Ottawa, ON, Canada: IEEE, May 2015,
pp. 798–801.

[36] Ashraf A. “Memetic Multi-Objective Particle Swarm Optimization-Based
Energy-Aware Virtual Network Embedding”. In: International Journal of Ad-
vanced Computer Science and Applications 6.4 (2015).

[37] Ilhem Fajjari et al. “VNE-AC: Virtual Network Embedding Algorithm Based
on Ant Colony Metaheuristic”. In: 2011 IEEE International Conference on
Communications (ICC). Kyoto: IEEE, June 2011, pp. 1–6.

[38] Haotong Cao et al. “Exact solutions of VNE: A survey”. In: China Commu-
nications 13.6 (June 2016), pp. 48–62.

[39] Haotong Cao et al. “Heuristic solutions of virtual network embedding: A
survey”. In: China Communications 15.3 (Mar. 2018), pp. 186–219.

[40] Laurence A. Wolsey. Integer Programming. Wiley & Sons, 1998.

[41] CPLEX Optimizer. url: https://www.ibm.com/uk-en/analytics/cplex-
optimizer (visited on 01/15/2021).

[42] FICO Xpress Optimization. 2019. url: https : / / www . fico . com / de /
products/fico-xpress-optimization (visited on 01/15/2021).

187

https://www.ibm.com/uk-en/analytics/cplex-optimizer
https://www.ibm.com/uk-en/analytics/cplex-optimizer
https://www.fico.com/de/products/fico-xpress-optimization
https://www.fico.com/de/products/fico-xpress-optimization

Bibliography

[43] Gurobi Optimization. url: https://www.gurobi.com/products/gurobi-
optimizer/ (visited on 01/15/2021).

[44] GLPK (GNU Linear Programming Kit). 2012. url: https://www.gnu.org/
software/glpk/glpk.html (visited on 01/15/2021).

[45] Sebastian Pokutta et al. SCIP Solving Constraint Integer Programs. 2019.
url: https://scip.zib.de (visited on 01/15/2021).

[46] Parallel and Distributed Optimization with Gurobi. url: https : / / www .
gurobi.com/resource/parallel-and-distributed-optimization/ (vis-
ited on 01/15/2021).

[47] IBM Knowledge Center, Remote object for distributed parallel optimization.
url: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/
ilog.odms.cplex.help/CPLEX/UsrMan/topics/parallel_optim/remote_
obj/00_remote_obj_synopsis.html (visited on 01/15/2021).

[48] GNU. GNU Linear Programming Kit, Reference Manuual. Version for GLPK
Version 4.64. Nov. 2017.

[49] Ambros Gleixner et al. The SCIP Optimization Suite 6.0. Technical Report.
Optimization Online, July 2018. url: http://www.optimization-online.
org/DB_HTML/2018/07/6692.html.

[50] Matias Richart et al. “Resource Slicing in Virtual Wireless Networks: A Sur-
vey”. In: IEEE Transactions on Network and Service Management 13.3 (Sept.
2016), pp. 462–476.

[51] Reinhard Diestel. Graphentheorie. 3., neu bearb. und erw. Aufl. Berlin:
Springer, 2006.

[52] Sami Kekki et al. “MEC in 5G networks”. In: ETSI White Paper No. 28 (June
2018).

[53] Sebastian Pokutta et al. SCIP Solving Constraint Integer Programs. 2020.
url: %7Bhttps://scipopt.org/doc/html/PARAMETERS.php%7D (visited on
01/15/2021).

[54] Roberto Riggio et al. “Scheduling Wireless Virtual Networks Functions”. In:
IEEE Transactions on Network and Service Management 13.2 (June 2016),
pp. 240–252.

[55] Ilias Tsompanidis, Ahmed H. Zahran, and Cormac J. Sreenan. “A Utility-
Based Resource and Network Assignment Framework for Heterogeneous Mo-
bile Networks”. In: 2015 IEEE Global Communications Conference (GLOBE-
COM). 2015, pp. 1–6.

[56] Flavio Esposito, Donato Di Paola, and Ibrahim Matta. “A general distributed
approach to slice embedding with guarantees”. In: 2013 IFIP Networking
Conference, IFIP Networking 2013. Jan. 2013, pp. 1–9.

[57] Mao Yang et al. “Karnaugh-map like online embedding algorithm of wireless
virtualization”. In: The 15th International Symposium on Wireless Personal
Multimedia Communications. 2012, pp. 594–598.

188

https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gnu.org/software/glpk/glpk.html
https://www.gnu.org/software/glpk/glpk.html
https://scip.zib.de
https://www.gurobi.com/resource/parallel-and-distributed-optimization/
https://www.gurobi.com/resource/parallel-and-distributed-optimization/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/parallel_optim/remote_obj/00_remote_obj_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/parallel_optim/remote_obj/00_remote_obj_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/parallel_optim/remote_obj/00_remote_obj_synopsis.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
%7Bhttps://scipopt.org/doc/html/PARAMETERS.php%7D

Bibliography

[58] Haijun Zhang et al. “Network Slicing Based 5G and Future Mobile Networks:
Mobility, Resource Management, and Challenges”. In: IEEE Communications
Magazine 55.8 (2017), pp. 138–145.

[59] Gang Wang et al. “Resource Allocation for Network Slices in 5G with Network
Resource Pricing”. In: GLOBECOM 2017 - 2017 IEEE Global Communica-
tions Conference. 2017, pp. 1–6.

[60] Menglan Jiang, Massimo Condoluci, and Toktam Mahmoodi. “Network slicing
management prioritization in 5G mobile systems”. In: European Wireless 2016;
22th European Wireless Conference. 2016, pp. 1–6.

[61] Spyridon Vassilaras et al. “The Algorithmic Aspects of Network Slicing”. In:
IEEE Communications Magazine 55.8 (Aug. 2017), pp. 112–119.

[62] Tachporn Sanguanpuak et al. “Network Slicing with Mobile Edge Computing
for Micro-Operator Networks in Beyond 5G”. In: 2018 21st International Sym-
posium on Wireless Personal Multimedia Communications (WPMC). Chiang
Rai, Thailand: IEEE, Nov. 2018, pp. 352–357.

[63] Bin Xiang et al. “Joint Network Slicing and Mobile Edge Computing in 5G
Networks”. In: ICC 2019 - 2019 IEEE International Conference on Commu-
nications (ICC). Shanghai, China: IEEE, May 2019, pp. 1–7.

[64] Sooeun Song and Jong-Moon Chung. “Sliced NFV service chaining in mobile
edge clouds”. In: 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS). Sept. 2017, pp. 292–294.

[65] Mansoor Alicherry and T.V. Lakshman. “Network aware resource allocation in
distributed clouds”. In: 2012 Proceedings IEEE INFOCOM. IEEE INFOCOM
2012 - IEEE Conference on Computer Communications. Mar. 2012, pp. 963–
971.

[66] Fang Hao et al. “Online Allocation of Virtual Machines in a Distributed
Cloud”. In: IEEE/ACM Transactions on Networking 25 (July 2016), pp. 1–
12.

[67] Nabeel Akhtar et al. “Virtual Function Placement and Traffic Steering over
5G Multi-Technology Networks”. In: 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). Montreal, QC: IEEE, June 2018,
pp. 114–122.

[68] Weisheng Xie et al. “Network virtualization with dynamic resource pooling
and trading mechanism”. In: 2014 IEEE Global Communications Conference.
Dec. 2014, pp. 1829–1835.

[69] Markus Fiedler. “On Resource Sharing and Careful Overbooking for Network
Virtualization”. In: 20th ITC Specialist Seminar (May 2009).

[70] Faruk Çağlar and Aniruddha Gokhale. “iOverbook: Intelligent Resource-
Overbooking to Support Soft Real-Time Applications in the Cloud”. In: 2014
IEEE 7th International Conference on Cloud Computing. 2014 IEEE 7th In-
ternational Conference on Cloud Computing. June 2014, pp. 538–545.

189

Bibliography

[71] Luis Tomás and Johan Tordsson. “Cloud Service Differentiation in Overbooked
Data Centers”. In: 2014 IEEE/ACM 7th International Conference on Utility
and Cloud Computing. Dec. 2014, pp. 541–546.

[72] TianyuWo et al. “Overbooking-Based Resource Allocation in Virtualized Data
Center”. In: 2012 IEEE 15th International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing Workshops. Apr. 2012,
pp. 142–149.

[73] David Hoeflin and Paul Reeser. “Quantifying the performance impact of over-
booking virtualized resources”. In: 2012 IEEE International Conference on
Communications (ICC). June 2012, pp. 5523–5527.

[74] Jungmin Son et al. “SLA-Aware and Energy-Efficient Dynamic Overbooking
in SDN-Based Cloud Data Centers”. In: IEEE Transactions on Sustainable
Computing 2.2 (Apr. 2017), pp. 76–89.

[75] Robert Ball et al. “Aggressive telecommunications overbooking ratios”. In:
IEEE International Conference on Performance, Computing, and Communi-
cations, 2004. Apr. 2004, pp. 31–38.

[76] Jianming Liu, Xiaohong Jiang, and Susumu Horiguchi. “Opportunistic link
overbooking for resource efficiency under per-flow service guarantee”. In: IEEE
Transactions on Communications 58.6 (June 2010), pp. 1769–1781.

[77] Zhaleh Sadreddini, Erkan Guler, and Tuğrul Çavdar. “PSO-optimized Instant
Overbooking Framework for cognitive radio networks”. In: 2015 38th Interna-
tional Conference on Telecommunications and Signal Processing (TSP). July
2015, pp. 49–53.

[78] Antonio Marotta and Andreas Kassler. “A Power Efficient and Robust Virtual
Network Functions Placement Problem”. In: 2016 28th International Teletraf-
fic Congress (ITC 28). Würzburg, Germany: IEEE, Sept. 2016, pp. 331–339.

[79] Antonio Marotta et al. “A fast robust optimization-based heuristic for the
deployment of green virtual network functions”. In: Journal of Network and
Computer Applications 95 (Oct. 2017), pp. 42–53.

[80] Bego Blanco et al. “A Robust Optimization Based Energy-Aware Virtual
Network Function Placement Proposal for Small Cell 5G Networks with Mobile
Edge Computing Capabilities”. In: Mobile Information Systems 2017 (2017),
pp. 1–14.

[81] Ayşegül Altın et al. “Provisioning virtual private networks under traffic un-
certainty”. In: Networks 49 (Jan. 2007), pp. 100–115.

[82] Giorgos Chochlidakis and Vasilis Friderikos. “Robust virtual network embed-
ding for mobile networks”. In: 2015 IEEE 26th Annual International Sym-
posium on Personal, Indoor, and Mobile Radio Communications (PIMRC).
Sept. 2015, pp. 1867–1871.

190

Bibliography

[83] Varun Reddy, Andreas Baumgartner, and Thomas Bauschert. “Robust embed-
ding of VNF/service chains with delay bounds”. In: 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN).
Nov. 2016, pp. 93–99.

[84] Andreas Baumgartner et al. “Network slice embedding under traffic uncer-
tainties - A light robust approach”. In: 2017 13th International Conference on
Network and Service Management (CNSM). Tokyo: IEEE, Nov. 2017, pp. 1–5.

[85] Stefano Coniglio, Arie Koster, and Martin Tieves. “Virtual network embed-
ding under uncertainty: Exact and heuristic approaches”. In: 2015 11th In-
ternational Conference on the Design of Reliable Communication Networks
(DRCN). Mar. 2015, pp. 1–8.

[86] Stefano Coniglio, Arie Koster, and Martin Tieves. “Data Uncertainty in Vir-
tual Network Embedding: Robust Optimization and Protection Levels”. In:
Journal of Network and Systems Management 24 (July 2016), pp. 681–710.

[87] Tri Trinh, Hiroshi Esaki, and Chaodit Aswakul. “Quality of service using
careful overbooking for optimal virtual network resource allocation”. In: The
8th Electrical Engineering/ Electronics, Computer, Telecommunications and
Information Technology (ECTI) Association of Thailand - Conference 2011.
2011, pp. 296–299.

[88] Xiang Cheng et al. “Virtual network embedding through topology-aware
node ranking”. In: ACM SIGCOMM Computer Communication Review 41.2
(Apr. 15, 2011), p. 38.

[89] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. “ViNE-
Yard: Virtual Network Embedding Algorithms With Coordinated Node and
Link Mapping”. In: IEEE/ACM Transactions on Networking 20.1 (2012),
pp. 206–219.

191

List of Acronyms

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

BSS Business Support System

BTS Base Transceiver Station

CAGR Compound Annual Growth Rate

CP Control Plane

CPU Central Processing Unit

CQI Channel Quality Index

CU-CP Central Unit - Control Plane

CU-UP Central Unit - User Plane

DU Distributed Unit

E2E End-to-End

eMBB enhanced Mobile Broadband

ETSI European Standards Organization

EVR Evaluation Result

FDMA Frequency Division Multiple Access

GLPK GNU Linear Programming Kit

gNB Next Generation Node Base Station

GSMA Groupe Speciale Mobile Association

GST Generic Network Slice Template

ILP Integer Linear Program

ISG Industry Specification Group

InP Infrastructure Provider

193

List of Acronyms

IoT Internet of Things

KPI Key Performance Indicator

LP Linear Program

LTE Long Term Evolution

M2M Machine-to-Machine

MANO Management and Orchestration

MBB Mobile Broadband

MD Management Domain

MILP Mixed Integer Linear Proram

MIP Mixed Integer Program

MAI Multiple Application Instantiation

MEC Mobile Edge Computing

MAEC Multi-Access Edge Computing

MIMO Multiple Input Multiple Output

ML Machine Learning

MSP Mobile Service Provider

MNO Mobile Network Operator

mMTC massive Machine Type Communication

MTC Machine Type Communication

NEST Network Slice Type

NF Network Function

NFV Network Function Virtualization

NGMN Next Generation Mobile Networks

NSaaS Network Slice as a Service

NSE Network Slice Embedding

NSI Network Slice Instance

NSIA Network Slice Instance Admission

194

List of Acronyms

NSI-D Network Slice Instance Description

NSI-FC Network Slice Instance Feasibility Checker

NSI-P Network Slice Instance Provider

NSI-R Network Slice Instance Request

NSMS Network Slice Management Service

NSP Network Slice Provider

NSS Network Slice Subnet

NSSI Network Slice Subnet Instance

NSSMS Network Slice Subnet Management Service

OPEX Operating Expenditures

OTT Over-The-Top

RAT Radio Access Technology

PCF Policy Control Function

PDU Packet Data Unit

PNF Physical Network Function

POF Probability of Feasibility

PRB Physical Resource Block

QoE Quality of Experience

QoS Quality of Service

QP Quadratic Program

RAM Random Access Memory

RAN Radio Access Network

SCIP Solving Constraint Integer Programs

SDN Software Defined Network

SLA Service Level Agreement

SMF Session Management Function

SNIR Signal-to-Noise-plus-Interference Ratio

195

List of Acronyms

STD Standard Deviation

TDD Time Division Duplex

TDMA Time Division Multiple Access

TN Transport Network

UE User Equipment

UP User Plane

UPF User Plane Function

URLLC Ultra-Reliable and Low Latency Communication

V2V vehicle-to-vehicle

V2X vehicle-to-everything

VNE Virtual Network Embedding

VM Virtual Machine

VNF Virtualized Network Function

ZSM Zero touch network and Service Management

196

List of Symbols

G Undirected graph

V Set of vertices/nodes

v Vertex/node

E Set of links/edges

e Link/edge

P Path in a graph

P Set of communication paths

Pvi,vj Set of paths connecting two vertices vi, vj

N Substrate network graph

Nk k-th network slice

U Set of UE groups

u UE group

C Set of cloud/server/router nodes

c Cloud/server/router node

A Set of applications/NFs/services

a Application/NF/service node/vertex in network slice

L Set of links/edges in network slice

l Link/edge in network slice

Ow Provided node resource on w-th node in the substrate

Dw Provided computation capacity on w-th node in the substrate

197

List of Symbols

Mw Provided memory capacity on w-th node in the substrate

Ww Provided capability on the w-th node in the substrate

Bw Provided reliability on the w-the node in the substrate

Ok
m Required node resource on m-th node in the k-th network slice

Dk
m Required computation capacity of m-th node in k-th network slice

Mk
m Required memory capacity of m-th node in k-th network slice

W k
m Required capability of the m-th node in the k-th network slice

Bk
m Required reliability of the m-th node in the k-th network slice

Rj Provided link resource on j-th link in the substrate

Tj Provided throughput capacity on j-th link in the substrate

Qj Provided capability of the j-the edge in the substrate

Lj Maximum latency on j-the edge in the substrate

Aj Availability of j-th edge in the substrate

Rk
i Required link resource on i-th link of the k-th network slice

T ki Required throughput of i-th link of the k-th network slice

Qk
i Required capability of the i-the link of the k-th network slice

Lki Allowed latency on i-th link of the k-the network slice

Aki Required reliability of i-th link of the k-th network slice

RPr Provided resource of substrate path Pr

TPr Provided throughput of substrate path Pr

QPr Provided capability of substrate path Pr

LPr Latency on substrate path Pr

APr Reliability of substrate path Pr

198

List of Symbols

µOkm Mean of required resource of akm in Nk

σOkm STD of required resource of akm in Nk

µDkm Mean of required computation capacity of akm in Nk

σDkm STD of required computation capacity of akm in Nk

µMk
m

Mean required memory capacity of akm in Nk

σMk
m

STD of required memory capacity of akm in Nk

µRj Mean of provided resource of substrate edge ej

σRj STD of provided resource of substrate edge ej

µTj Mean of provided throughput of substrate edge ej

σTj Mean, STD of provided throughput of substrate edge ej

µRki Mean of required resource of link lki in Nk

σRki STD of required resource of link lki in Nk

µTki STD of required throughput of link lki in Nk

σTki Mean, STD of required throughput of link lki in Nk

POFOw POF for general node resource Ow

POFDw POF for CPU node resource Dw

POFMw POF for memory node resource Mw

POFRj POF for general link resource Rj

POFTj POF for throughput link resource Tj

POF k
D Combined POF for all CPU node resources of Nk

POF k
M Combined POF for all memory node resources of Nk

POF k
T Combined POF for all throughput link resources of Nk

POF k Combined POF for all CPU node resources of Nk

199

List of Symbols

yk Binary variables of embedding k-th network slice into the substrate

a2ckm,w Binary variables of embedding m-th application node of k-th net-
work slice onto the w-th cloud node in the substrate

l2pki,r Variables of embedding the i-th link of the k-th network slice on
the r-th path in the substrate

p2er,j Binary parameters of the association between the r-th communica-
tion path in the substrate and the j-th edge in the substrate

l2eki,j Derived binary variable of containment of the j-th edge in the sub-
strate in a path, which the i-th link of the k-th network slice is
mapped to

ω Network slice weight/relative importance

φ NSI revenue normalization factor

ψ NSI cost normalization factor

ρ Weighting factor in ILP objective functions

γ Safety buffer in NSE under uncertainty

200

List of Definitions

1 Definition: Undirected Graph . 65
2 Definition: Path . 65
3 Definition: Set of Paths . 65
4 Definition: Substrate Graph . 65
5 Definition: Physical Communication Path 66
6 Definition: Free-Self-Link . 66
7 Definition: Free-Self-Path . 66
8 Definition: Network Slice Instance . 67
9 Definition: Virtual Communication Path 67
10 Definition: Free-Self-Link Parameters 70
11 Definition: Embedding Variables . 71
12 Definition: Node Mapping Variables 71
13 Definition: Binary Link Mapping Variables 71
14 Definition: Path to Edge Mapping . 72
15 Definition: Link to Edge Mapping . 72
16 Definition: Simple Objective Function 72
17 Definition: Latency-Aware Objective Function 73
18 Definition: Cost and Revenue Objective Function 74
19 Definition: General Link Resource Constraints 76
20 Definition: Throughput Constraints 77
21 Definition: General Node Resource Constraints 77
22 Definition: CPU Constraints . 78
23 Definition: Memory Constraints . 78
24 Definition: Latency Constraints . 78
25 Definition: Network Link Quality Constraints 78
26 Definition: Link Reliability Constraints 79
27 Definition: Network Node Quality Constraints 80
28 Definition: Network Node Reliability Constraints 80
29 Definition: Map Nodes Once Constraints 80
30 Definition: Map Links Once Constraints 80
31 Definition: Map Adjacent Links Constraints 81
32 Definition: Map UE Links Constraints 81
33 Definition: UE to Application Links Graph Constraints 81
34 Definition: Map Adjacent Nodes Constraints 82
35 Definition: Continuous Link Mapping Variables 98
36 Definition: Latency Constraints in Path-Splitting Model 99
37 Definition: Link Reliability Constraints in Path-Splitting Model . . . 100
38 Definition: Map Nodes Constraints in MAI NSE Model 107
39 Definition: Map Links Constraints in MAI NSE Model 107

40 Definition: Uncertainty-Aware Objective Function 120
41 Definition: General Uncertain Link Resource Constraints 122

201

List of Definitions

42 Definition: Uncertain Throughput Constraints 122
43 Definition: General Uncertain Node Resource Constraints 123
44 Definition: Uncertain CPU Constraints 123
45 Definition: Uncertain Memory Constraints 123
46 Definition: POF of General Node Resources 125
47 Definition: POF of CPU Node Resources 126
48 Definition: POF of Memory Node Resources 126
49 Definition: POF of General Link Resources 126
50 Definition: POF of Throughput Resources 127
51 Definition: Combined POF of Throughput Resources 127
52 Definition: Combined POF of CPU Resources 127
53 Definition: Combined POF of Memory Resources 127
54 Definition: Combined POF of NSI-R 127
55 Definition: Residual Mean and STD of Link Resources 129
56 Definition: Residual Mean and STD of Node Resources 129

202

List of Figures

1.1 Global Mobile Data Traffic Forecast by Region [1] 2
1.2 Overview over the NSIA Process . 4
1.3 Outline of this Thesis . 10

2.1 NGMN 5G System Environment [16] 17
2.2 ZSM Framework Reference Architecture [7] 20
2.3 3GPP Network Slicing Meta Model [3] 23
2.4 High-Level Business Roles [23] . 25
2.5 NGMN Inter-Domain Resource Integration [16] 28
2.6 NEST Definition [26] . 29
2.7 NSI Lifecycle [5] . 30
2.8 Virtual Network Embedding Overview 32

3.1 3GPP NSI Feasibility Check and Resource Reservation Procedure [6] 43
3.2 3GPP NSSI Feasibility Check and Resource Reservation Procedure [6] 44
3.3 Process of NSIA . 45
3.4 Components and Interfaces of NSIA 51
3.5 NSI-FC and Required Services within the ETSI ZSM Architecture

Framework . 53
3.6 Flowchart - Execution of NSI-FC Provisioning Service 54
3.7 NSIA Sub-Process . 56
3.8 Sub-Process Ref. B . 56

4.1 Big Picture of the Optimal NSE Model Variants 59
4.2 Simplified End-to-End Mobile Network Infrastructure 61
4.3 Simple End-to-End NSI . 62
4.4 Model Example - Substrate Network 86
4.5 Model Example - Network Slice 0 . 86
4.6 Model Example - Network Slice 1 . 87
4.7 Basic Model Example - Simple Optimization 94
4.8 Basic Model Example - Latency Optimization 96
4.9 Basic Model Example - Cost Optimization 97
4.10 Path-Splitting Example - Substrate Network 104
4.11 Path-Splitting Example - Network Slice 0 104
4.12 Path-Splitting Example - Latency-Aware Optimization 106
4.13 MAI Example - Substrate Network 110
4.14 MAI Example - Network Slice 0 . 110
4.15 MAI Example - Cost Optimization 113

5.1 Big Picture of the Optimal and Probabilistic NSE Model Variants . . 115
5.2 Normal Distribution Density Function 117
5.3 Worst-Case POF . 130
5.4 Uncertain Example - Substrate Network 131

203

List of Figures

5.5 Uncertain Example - Network Slice 0 131
5.6 Uncertain Example - Network Slice 1 131
5.7 Uncertain Example - Uncertainty-Aware Optimization 135

6.1 NSI Admission and Confidence Analysis Program 138
6.2 Randomly Generated Substrate - Minimal Examle 144
6.3 Randomly Generated NSI-R - Minimal Example 149
6.4 Throughput and Path-Splitting Evaluation 152
6.5 Latency and MAI Evaluation 1/2 . 155
6.5 Latency and MAI Evaluation 2/2 . 156
6.6 Combined Model Evaluation 1/2 . 159
6.6 Combined Model Evaluation 2/2 . 160
6.7 Scalability Evaluation 1/2 . 163
6.7 Scalability Evaluation 2/2 . 164
6.8 Objective Function Runtime Evaluation 166
6.9 Robustness Evaluation 1/2 . 168
6.9 Robustness Evaluation 2/2 . 169

204

List of Tables

4.1 Node Resources and Capabilities . 69
4.2 Link Resources and Capabilities . 69
4.3 Path Resources and Capabilities . 70
4.4 Model Example - Network Node Parameters 87
4.5 Model Example - Network Link Parameters 87
4.6 Model Example - Application to Cloud Node Mapping Variables . . . 87
4.7 Model Example - Link to Path Mapping Variables 88
4.8 Path-Splitting Example - Network Node Parameters 104
4.9 Path-Splitting Example - Network Link Parameters 104
4.10 MAI Example - Network Node Parameters 110
4.11 MAI Example - Network Link Parameters 111
4.12 MAI Example - Application to Cloud Node Mapping Variables 111
4.13 MAI Example - Link to Path Mapping Variables 112

5.1 Certain and Uncertain Node Resources and Capabilities 118
5.2 Certain and Uncertain Link Resources and Capabilities 119
5.3 Safety Discount and Worst-Case POF 130
5.4 Uncertain Example - Network Node Parameters Substrate 131
5.5 Uncertain Example - Network Node Parameters NSIs 132
5.6 Uncertain Example - Network Link Parameters 132
5.7 Uncertain Example - Application to Cloud Node Mapping Variables . 132
5.8 Uncertain Example - Link to Path Mapping Variables 132

6.1 Substrate Generator Configuration File Parameters 140
6.2 Substrate Generator Configuration File Parameters Default Values . . 141
6.3 NSI-R Generator Configuration File Parameters 146
6.4 NSI-R Generator Configuration File Parameters Default Values . . . 147
6.5 NSI-R Path-Splitting Throughput Parameterization 150
6.6 NSI-R Path-Splitting Evaluation Results 151
6.7 NSI-R MAI Latency Parameterization 153
6.8 NSI-R MAI Evaluation Results - Runtime 154
6.9 NSI-R MAI Evaluation Results - Efficiency Improvement 154
6.10 NSI-R Combined Model Evaluation Results - Runtime 158
6.11 NSI-R Combined Model Evaluation Results - Efficiency Improvement 158
6.12 Substrate and NSI Size Parameterization 161
6.13 NSE Preparation Runtime Evaluation 162
6.14 NSE Solver Runtime Evaluation . 164
6.15 Objective Function Runtime Evaluation 165
6.16 Robustness Evaluation Results . 167

205

List of Models

1 Model: Basic NSE Model . 83
2 Model: Path-Splitting NSE Model . 102
3 Model: MAI NSE Model . 108
4 Model: Combined Path-Splitting and MAI NSE Model 113

5 Model: Robust NSE Model . 124

207

List of Algorithms

1 Physical Communication Path Finder 85
2 Depth First Search . 85

209

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Problems and Challenges
	1.1.1 Network Slice Instance Admission Problem
	Problems

	1.1.2 Network Slice Instance Embedding Problem
	Problems

	1.1.3 Resource Uncertainty and Overbooking
	Problems

	1.2 Objectives, Approach and Contributions
	1.2.1 Network Slice Instance Admission Management
	Approach
	Contributions

	1.2.2 Network Slice Instance Embedding Models and Algorithms
	Approach
	Contributions

	1.2.3 Network Slice Embedding under Uncertainty
	Approach
	Contributions

	1.3 Outline
	Chapter 1 Introduction
	Chapter 2 Foundations
	Chapter 3 Network Slice Admission
	Chapter 4 Optimal Network Slice Embedding
	Chapter 5 Network Slice Embedding under Uncertainty
	Chapter 6 Implementation and Evaluation
	Chapter 7 Conclusion and Outlook

	1.4 Publications
	1.4.1 Scientific Publications and Patent Applications

	2 Foundations
	2.1 Mobile Networks
	2.1.1 NGMN Mobile Network System Description
	2.1.2 ETSI ZSM Framework Reference Architecture

	2.2 Network Slicing
	2.2.1 Definitions
	2.2.2 Network Slice Meta Model
	2.2.3 Business Roles
	2.2.4 Management of Network Slice Instances
	2.2.4.1 Network Slice Federation
	2.2.4.2 Network Slice Design
	2.2.4.3 3GPP Network Slice Lifecycle

	2.3 Virtual Network Embedding
	2.3.1 Introduction
	2.3.2 Typical Parameters
	2.3.3 Taxonomy
	Exact/Heuristic
	Online/Offline
	Coordinated/Uncoordinated
	Centralized/Decentralized
	Concise/Redundant

	2.3.4 Metrics and Objectives
	2.3.5 Base Algorithms
	IBM ILOG CPLEX Optimization Studio
	Gurobi Optimization
	GNU Linear Programming Kit
	SCIP Optimization Suite

	3 Network Slice Instance Admission
	3.1 Motivation and Objectives
	3.2 3GPP Network Slice Feasibility Analysis
	3.2.1 Network Slice Feasibility Check
	3.2.2 Network Slice Subnet Feasibility Check

	3.3 Process for Automated Network Slice Instance Admission
	3.4 Network Slice Instance Admission Service in ETSI ZSM

	4 Optimal Network Slice Embedding
	4.1 Problem and Motivation
	4.2 Goals and Requirements
	4.3 Formal Problem Definition
	4.3.1 Definitions and Notation
	4.3.1.1 General Definitions
	4.3.1.2 Mobile Network-Specific Definitions

	4.3.2 Parameters
	4.3.2.1 Node Resources and Capabilities
	4.3.2.2 Link Resources and Capabilities

	4.3.3 Variables
	4.3.4 Objective Functions
	4.3.4.1 Simple Objective Function
	4.3.4.2 Latency-Aware Objective Function
	4.3.4.3 Cost and Revenue Objective Function
	4.3.4.4 Selecting the Objective Function

	4.3.5 Network Slice Embedding Models
	4.3.5.1 Basic Model
	Formalization
	Summary of the Basic NSE Model
	Algorithmic Details
	Example - Basic Model

	4.3.5.2 Path-Splitting
	Formalization
	Summary of the Path-Splitting NSE Model
	Example

	4.3.5.3 Multiple Application Instantiation NSE Model
	Formalization
	Summary of the MAI NSE Model
	Implementation Details
	Example

	4.3.5.4 Combined Path-Splitting and Multiple Application Instantiation NSE Model

	5 Probabilistic Network Slice Embedding
	5.1 Problem and Motivation
	5.2 Goals and Requirements
	5.3 Problem Formalization
	5.3.1 Parameter
	5.3.2 Objective Function
	5.3.3 Constraints
	5.3.4 Robust NSE Model
	5.3.5 Network Slice Instance Acceptance Metrics
	Probability of Resource Feasibility
	Safety Buffer
	Example

	6 Implementation and Evaluation
	6.1 Evaluation Setup
	6.1.1 Hardware and Implementation
	6.1.2 Evaluation Scenarios
	6.1.2.1 Physical Network
	6.1.2.2 Network Slice Instance Requests

	6.2 Throughput and Path-Splitting Evaluation
	Conclusion

	6.3 Latency and MAI Evaluation
	Conclusion

	6.4 Combined Path-Splitting and MAI Evaluation
	Conclusion

	6.5 Runtime and Scalability Evaluation
	Scalability Evaluation
	Objective Function Runtime Evaluation
	Conclusion

	6.6 Safety Buffer and Robustness Evaluation
	Conclusion

	6.7 Summary and Discussion

	7 Related Work
	7.1 Virtual Network Embedding
	7.2 Network Slice Embedding and Edge Computing
	7.3 Uncertainty Evaluation and Overbooking
	7.4 Summary and Discussion

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Future Work

	Bibliography
	List of Acronyms
	List of Symbols
	List of Definitions
	List of Figures
	List of Tables
	List of Models
	List of Algorithms

