
1.  Introduction
Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas (GHG) in terms of long-
term radiative forcing (Myhre et al., 2013) and is the dominant ozone-depleting substance in the strato-
sphere (Ravishankara et al., 2009). Global N2O concentrations are 333 ppb as of April 2020, approximately a 
20 % increase since preindustrial times (MacFarling Meure et al., 2006; NOAA-ESRL, 2020). Anthropogenic 
sources like agriculture and fossil fuel combustion contribute to this trend (Ciais et al., 2013). In recent 
years, those N2O emissions have increased at a higher rate than expected (Thompson et  al.,  2019; Tian 
et  al.,  2020). Agricultural soil management associated with reactive forms of nitrogen (N) (i.e., mineral 
fertilizer, livestock manure additions, and legumes) accounts for half of global N2O emissions (Paustian 

Abstract  The densely farmed U.S. Midwest is a prominent source of nitrous oxide (N2O) but top-
down and bottom-up N2O emission estimates differ significantly. We quantify Midwest N2O emissions 
by combining observations from the Atmospheric Carbon and Transport-America campaign with model 
simulations to scale the Emissions Database for Global Atmospheric Research (EDGAR). In October 
2017, we scaled agricultural EDGAR v4.3.2 and v5.0 emissions by factors of 6.3 and 3.5, respectively, 
resulting in 0.42 nmol m−2 s−1 Midwest N2O emissions. In June/July 2019, a period when extreme flooding 
was occurring in the Midwest, agricultural scaling factors were 11.4 (v4.3.2) and 9.9 (v5.0), resulting in 
1.06 nmol m−2 s−1 Midwest emissions. Uncertainties are on the order of 50 %. Agricultural emissions 
estimated with the process-based model DayCent (Daily version of the CENTURY ecosystem model) were 
larger than in EDGAR but still substantially smaller than our estimates. The complexity of N2O emissions 
demands further studies to fully characterize Midwest emissions.

Plain Language Summary  Nitrous oxide (N2O) is the third most important anthropogenic 
greenhouse gas contributing to the warming of the planet and the dominant man-made ozone-depleting 
substance in the stratosphere. Its atmospheric concentrations have been rising since industrialization 
mainly due to an increase in anthropogenic sources, with agriculture being the dominant source. The 
densely farmed U.S. Midwest plays an important role in the global N2O budget. However, previous 
studies that have collected observations of N2O indicate that estimates of surface emissions in the 
Midwest are substantially underestimating the truth. In this study, we combine unique aircraft-based N2O 
measurements and model simulations to quantify Midwest emissions in October 2017 and June/July 2019. 
Agricultural inventory estimates had to be increased by factors up to 20 to match observations, revealing 
a large underestimation in current inventories. An extreme flooding event in 2019 when the summer 
observations occurred may be responsible for some of this discrepancy. Estimations of soil N2O emissions 
calculated with a state-of-the-art biogeochemical model show less underestimation but are still too low 
compared to the fluxes derived from the aircraft observational data.
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•	 �Within the ACT-America project, we 

gathered a unique airborne in-situ 
N2O data set over the U.S. Midwest 
with enhancements up to 9  ppb

•	 �N2O emissions in the U.S. 
Midwest were on average 0.42 ± 
0.28 nmol m−2 s−1 in October 2017 
and 1.06 ± 0.57 nmol m−2 s−1 in 
June to July 2019

•	 �Bottom-up estimates from EDGAR 
and DayCent underestimate U.S. 
Midwest N2O emissions by factors 
up to 20
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et al., 2016). Analyses of the isotopic composition of N2O indicate that the observed rise in global atmos-
pheric N2O concentrations is mainly caused by the increased application of N-fertilizers (Park et al., 2012).

Bottom-up estimates, such as the Emissions Database for Global Atmospheric Research (EDGAR, 2020), 
use emission factors and activity data to calculate emissions. Agricultural practices (e.g., fertilizer applica-
tion, crop type) as well as meteorological and soil conditions (e.g., precipitation, soil moisture) directly in-
fluence emissions, resulting in large temporal variability in N2O surface fluxes (Stehfest & Bouwman, 2006). 
Process-based models like DayCent (Daily version of the CENTURY ecosystem model) provide a more so-
phisticated approach for estimation of N2O emission by simulating soil processes based on various envi-
ronmental drivers. Nevertheless, fluxes at regional scale are still highly uncertain due to insufficient direct 
observations (Reay et al., 2012).

The U.S. Midwest is one of the most intensively cultivated agricultural regions worldwide (FAO, 2020; US-
DA-NASS, 2020), thus contributing significantly to global anthropogenic N2O emissions (Miller et al., 2012). 
Previous top-down studies indicate that emissions in the Midwest are underestimated by EDGAR, but 
are highly uncertain on the magnitude of this underestimation (Chen et al., 2016; Fu et al., 2017; Griffis 
et al., 2013; Kort et al., 2008; Miller et al., 2012). Kort et al. (2008) showed that EDGAR version 32FT2000 
underestimates emissions in May to June 2003 by a factor of 2.62 over the central U.S. and southern Canada. 
Miller et al. (2012) derived scaling factors of 6.1 and 10.1 for EDGAR version 4 for June 2004 and June 2008, 
respectively. Fu et al. (2017) concluded even higher scaling factors for agricultural EDGAR version 4.2 emis-
sions in the Corn Belt region of the Midwest, with scaling factors of 19.0–28.1 in June 2010. These described 
top-down studies used tall tower measurements, characterized by long time series over several months but 
limited in their spatial coverage. Only Kort et al. (2008) used aircraft-based flask measurements, which pro-
vide some spatial (central U.S. and southern Canada) but limited temporal (May to June 2003) coverage. The 
large range in the quantitative results show that Midwest N2O surface fluxes are underestimated by EDGAR 
inventories, but their true values are highly uncertain.

In this study, we quantify N2O emissions for several flights conducted in parts of the U.S. Midwest in Oc-
tober 2017 and June/July 2019 with a top-down approach. Unlike previous studies which have relied on 
observations with limited spatial coverage, this study uses continuous airborne in-situ measurements of 
N2O. By combining these observations with forward model simulations, we optimize agricultural fluxes 
from EDGAR version 4.3.2 and version 5.0 to quantify Midwest N2O emissions. The employed method was 
already successfully applied in several methane top-down studies (Barkley et al., 2017, 2019a, 2019b). The 
derived emission rates are finally compared to flux estimates of direct soil emissions produced with EDGAR 
and the biogeochemical model DayCent (Del Grosso et al., 2001, 2011; Parton et al., 1998).

2.  Data and Methods
2.1.  Observational Data

We use measurements from the Atmospheric Carbon and Transport-America (ACT-America) campaign. 
During the fall 2017 (October 10–November 13) and summer 2019 (June 17–July 27) field deployments, we 
collected ∼60 h of in-situ data onboard NASA's C-130 with an Aerodyne Quantum Cascade Laser Spectrom-
eter (QCLS) measuring N2O mole fractions (among others) at 2 Hz with an uncertainty of 0.8 ppb (Kostinek 
et al., 2019). Every 3–10 min in-flight calibrations were performed using standards that were cross-calibrat-
ed after the campaign against NOAA/GML standards traceable to the NOAA-2006A scale (Hall et al., 2007). 
Additionally, during each flight 6–12 whole-air flask samples were taken by NOAA/GML and analyzed for 
trace gases including N2O with an uncertainty of 0.4 ppb (Baier et al., 2020; Sweeney et al., 2015, 2018). 
Those were merged into the QCLS time series to fill any data gaps.

For this study, we selected four flights from 2017 (October) and six flights from 2019 (June/July). For each 
flight, the C-130 flew transects well within the planetary boundary layer (PBL) (∼1,000 ft above ground 
level (AGL)) for at least 45 min during which air above the Midwest was sampled. Figure 1a shows the 
selected transects, color-coded with observed N2O dry air mole fractions. Mole fractions up to 341 ppb were 
measured (Figure 1b). We are not aware of comparable continuous N2O measurements spanning most of 
the Midwest across two seasons, highlighting the unique opportunity to quantify Midwest emissions with 
these data.
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2.2.  Model Setup

The Weather Research and Forecasting model with chemistry enabled (Grell et al., 2005) is used to prop-
agate N2O enhancements emitted from emission inventories (Section 2.3) through the atmosphere. Initial 
N2O concentrations and the inflow at the boundaries of the model domain are set to zero. Thus, we sim-
ulate only enhancements caused by emissions within the model domain. We treat N2O as a passive tracer 
due to its long atmospheric lifetime of ∼116 years (Prather et al., 2015). The model domain consists of an 
outer and inner domain with a horizontal resolution of 15 km × 15 km and 3 km × 3 km, respectively. The 
outer domain, centered over the Midwest, covers nearly the whole continental U.S., northern Mexico, and 
southern Canada (Figure 2a), whereas the extent and position of the inner domain is chosen separately for 
each flight so that the PBL transects are spaciously encapsulated. We perform each simulation with three 
different meteorological initial and boundary conditions: The fifth generation atmospheric reanalysis data 
(ERA5, 2017; Hersbach et al., 2020), the North American Regional Reanalysis (NARR, 2005), and the Glob-
al Data Assimilation System Final analysis (GDAS-FNL, 2015). As in Barkley et al. (2019a), we use these 
different simulations to estimate model transport errors (Díaz-Isaac et al., 2018). The SupportingInforma-
tion(SI) provides additional information about the model setup.

2.3.  Emission Inventories

The prior N2O emission estimates for the optimization were obtained from EDGAR version 4.3.2 (ED-
GAR4.3.2, 2017; Janssens-Maenhout et al., 2019) and version 5.0 (Crippa et al., 2020;EDGAR5.0, 2019). For 
this study the different sectors in the inventories were merged into three main sectors: agricultural EAGR, an-
thropogenic nonagricultural EnonAGR, and natural emissions EN (see SI). We assume that these three sectors 
cover all N2O emissions in the model domain. EDGAR4.3.2 and EDGAR5.0 provide monthly resolved N2O 
fluxes from anthropogenic sources (EAGR and EnonAGR) on a 0.1° × 0.1° grid for 2012 and 2015, respectively, 
but do not include fluxes from natural sources. Hence, we supplemented both versions with yearly EN on a 
1° × 1° grid from EDGAR version 2.0 (EDGAR2; Olivier et al., 1996, 1999).

With the process-based, biogeochemical model DayCent we estimated daily direct N2O soil emissions from 
cropland and grassland on a 0.5° × 0.5° grid in the Midwest from 2011 to 2015, which were aggregated to 
a monthly time step. The model simulates fluxes of carbon and nitrogen between the atmosphere, vegeta-
tion, and soil thus deriving N2O emissions. Incorporating several environmental drivers, including weath-
er patterns, agricultural practices, soil characteristics, and crop features, this approach provides a more 
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Figure 1.  (a) Selected PBL transects (at ∼1,000 ft AGL) of the ACT-America campaigns in 2017 and 2019, color-coded with observed N2O dry air mole fractions. 
The Midwest region used for emission estimation in the model is encircled by a thick black line. (b) Time series of N2O dry air mole fraction of the flight on July 
7, 2019 with error bars indicating ±0.8 ppb and coincident NOAA/GML flask measurements of N2O (±0.4 ppb). The corresponding transect in (a) is encircled 
in red and was flown in direction of the red arrow. PBL, planetary boundary layer; AGL, above ground level.
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sophisticated estimate of soil emissions than the emission factor-based EDGAR. The GHG inventory of the 
United States Environmental Protection Agency (EPA, 2020) uses DayCent estimates of direct soil emis-
sions for emission reporting of agricultural soil N2O to the UN Framework Convention on Climate Change. 
DayCent does not calculate emissions from manure management, agricultural waste burning, indirect soil 
emissions, and those associated with minor crops such as vegetables. The EPA inventory quantifies these 
sources with an emission factor approach. We estimate their contribution by employing the yearly, national 
estimates from EPA, calculating their fraction of the EPA direct soil emissions, and adding them to our 
monthly estimates. As a result, our DayCent inventory accounts for the total agricultural emissions, but not 
the spatial distribution of agricultural sources which are not estimated by DayCent. A qualitative compari-
son of EDGAR emission maps supports the underlying assumption that the spatial distribution of soil and 
other agricultural emissions are similar.

2.4.  Optimization Technique

To solve for N2O emissions, we use an approach similar to the optimization described in Barkley et al. (2017). 
First, we calculate the observed N2O enhancements by subtracting a background from the measured abso-
lute mole fraction. For each campaign we derive one background by taking the second percentile of all 
PBL transects of the entire campaign (see SI). The background is defined campaign-wise rather than tran-
sect-wise because during some transects we were not able to measure background mole fractions as we 
started a transect within a plume and did not exit the plume inside of the PBL (Figure 1b).

We then compare modeled N2O enhancements from our prior emissions (EAGR + EnonAGR + EN) to the ob-
served enhancements. Differences between both are then minimized for each flight by scaling agricultural 
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Figure 2.  (a) EDGAR5.0 N2O emissions (plus EDGAR2 EN) within the model domain (gray box). The Midwest is encircled in green. (b) Direct soil emissions 
in July 2015 estimated with DayCent. (c) Monthly Midwest emissions. EnonAGR in EDGAR4.3.2 is almost identical to EDGAR5.0. Total agricultural DayCent 
emissions are estimated utilizing the EPA GHG inventory (Section 2.3).
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emissions EAGR with a factor FAGR thus quantifying emissions. This process relies on the assumption that the 
discrepancy between model and observation is primarily driven by errors in EAGR. As agricultural emissions 
are the dominant N2O source in our flights, we assume that errors in EnonAGR and EN are inconsequential to 
the overall solution. The complexity of N2O soil emissions suggests that EAGR exhibits a much higher uncer-
tainty than other sources (Butterbach-Bahl et al., 2013), supporting the presented approach.

As an equation, this optimization technique is described by calculating FAGR through the minimization of 
the following cost function:

J F A F A A A
AGR obs AGR AGR nonAGR N

Amod FAGR

( ) | .    
  

  
|

� (1)

Aobs and Amod are the time integral along a transect of observed and modeled enhancements, respectively 
(e.g., area below graph in Figure  3a). Amod consists of an agricultural portion AAGR scaleable with FAGR, 
a non-agricultural anthropogenic portion AnonAGR, and a natural portion AN. We compare integrals rather 
than enhancements because we are interested in the amount of N2O emitted to the atmosphere. Neither the 
model transport nor the inventory is perfect and even small uncertainties in either of them could cause a 

ECKL ET AL.

10.1029/2020GL091266

5 of 11

Figure 3.  (a) Sample model optimization for October 10, 2017 with EDGAR5.0 (plus EDGAR2 EN) and NARR initial conditions. The left panel shows the prior 
and optimized modeled N2O enhancements along the flight track together with observed enhancements. The right panel shows a map of optimized modeled 
N2O enhancements (from  opt

AGR nonAGR NE E E ) at 300 m AGL at 17:30 UTC and the flight track color-coded with the observed enhancements. (b) Mean and 
standard deviation of agricultural correction factors FAGR for the investigated research flights resulting from Monte Carlo simulations. (c) EDGAR5.0 Midwest 
N2O emissions with optimized and prior EAGR. AGL, above ground level.
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shift or deformation in the alignment of the modeled plume relative to the observed plume. By minimizing 
the difference in the total N2O enhancements rather than the point-by-point absolute error, we preserve the 
capability to solve for total N2O emissions even when the modeled and observed plumes do not align. Due 
to the linearity between AAGR and the area averaged EAGR (see SI), a FAGR derived with Equation 1 denotes a 
FAGR-folded EAGR.

2.5.  Uncertainty Assessment

We adopted the method of Barkley et al. (2019a) to assess uncertainties in our solutions. FAGR is affected by 
uncertainties in the following variables:

1.	 �observed background mole fraction
2.	 �AnonAGR

3.	 �AN

4.	 �model transport
5.	 �model wind speed and PBL height (PBLH)
6.	 �spatial distribution in EDGAR emissions

We quantify the influence of uncertainties 1–4 with a Monte Carlo approach. For each flight, we repeat the 
optimization 10,000 times with a perturbed background mole fraction, AnonAGR, and AN. For the background 
we add a normal random number with μ = 0 ppb and σ = ± 0.5 ppb for 2017 and σ = ± 0.9 ppb for 2019 to 
the observation derived value. AnonAGR and AN are independently multiplied by a factor drawn from a normal 
distribution with μ = 1.0 and σ = ±0.21 and σ = ±0.42, respectively. To account for the model transport 
error, we randomly select one of the three model runs with different meteorological initial and boundary 
conditions, creating variability in the plume shape. The resulting spread in FAGR is used as its uncertainty. 
Explanations of the used uncertainties are in the SI.

The modeled wind speed and PBLH uncertainty (source 5) cannot be covered by the Monte Carlo sim-
ulation. Errors in these variables cause lower or higher simulated enhancements thus producing biases. 
Following Barkley et al.  (2017), we correct for those biases by applying a correction factor based on the 
differences between the modeled and observed wind speed and PBLH. On average, the modeled wind speed 
and PBLH is 8 % and 3 % higher than observations, respectively. The impact of this correction on our results 
is insignificant (see SI).

Our final source of uncertainty relates to errors in the spatial distribution of the fluxes in the prior inventory 
and is difficult to quantify. However, the mapping of emissions in EDGAR is based on several high-reso-
lution proxy data sets (Janssens-Maenhout et al., 2019). For this reason, we assume its spatial errors to be 
small. Given the insignificant difference between modeled and observed wind speeds and PBLH, the good 
agreement between modeled and measured plume structures support this assumption (see SI). Further-
more, because we quantify large areas and not point sources, slight misplacement in the inventory would 
only marginally affect our results. At the same time, missing or strongly misplaced fluxes would produce 
errors that are not considered in this study.

3.  Results and Discussion
3.1.  Emission Inventory Comparison

Figure 2a shows prior July N2O emissions in the outermost model domain from anthropogenic EDGAR5.0 
and natural EDGAR2 sources. Compared to EDGAR4.3.2 no significant differences in the spatial distri-
bution of emissions is seen, both versions just differ in the strength of the surface fluxes. Largest fluxes 
are concentrated in the Midwest, coinciding with the Corn Belt and its dominant agricultural emissions. 
Figure 2b shows DayCent direct soil emissions in July 2015. Similar to EDGAR, the Midwest is a prominent 
source of N2O. We are not able to perform a detailed comparison of the spatial distributions in EDGAR and 
DayCent as both do not cover the same set of sources. However, in terms of the overall magnitude, DayCent 
estimates much higher surface fluxes compared to EDGAR, despite containing fewer sources (gridded total 
agricultural DayCent emissions are not available; Section 2.3).
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Figure 2c displays the monthly evolution of EAGR, EnonAGR, and EN averaged over the Midwest. Both EDGAR 
versions have an annual average EAGR of ∼0.10 nmol m−2 s−1. However, unlike EDGAR5.0, EDGAR4.3.2 
exhibits a strong seasonal cycle ranging from 0.05 nmol m−2 s−1 in winter up to 0.24 nmol m−2 s−1 in spring. 
In spring, when most N-fertilizer is applied, the amount peaks, followed by a plateau during summer at 
0.09 nmol m−2 s−1. The harvest season in fall features a local peak at 0.11 nmol m−2 s−1. A future update of 
EDGAR5.0 will contain a seasonal cycle for some crop related emissions (Crippa et al., 2020). EnonAGR shows 
no significant change over the year and is on average 0.04 nmol m−2 s−1 in both versions. Natural soil emis-
sions account for 0.02 nmol m−2 s−1 per month.

From 2011 to 2015 DayCent emissions in the Midwest range between 0.23 and 0.35, 0.12–0.21, and 0.06–
0.08 nmol m−2 s−1 in June, July, and October, respectively. June and July emissions are significantly larger 
than in EDGAR, despite excluding manure management, indirect soil, and agricultural waste burning emis-
sions. DayCent's October emissions are within the magnitude of agricultural EDGAR emissions. We esti-
mate total agricultural Midwest emissions from 2011 to 2015 by combining DayCent direct soil emissions 
and the EPA GHG inventory (Section 2.3), resulting in 0.32–0.48, 0.16–0.30, and 0.08–0.11 nmol m−2 s−1 
in June, July, and October, respectively. In June/July this is on average over four/two times higher than 
EDGAR's EAGR. The 2012 emissions are significantly lower than in the other years causing the large range 
across years in the summer months. During this year, the most extensive drought since the 1930s occurred 
across a large swath of the U.S., including most of the Midwest, which lead to widespread harvest failure 
(NOAA-NCEI, 2020). This event might explain the low values and indicates that during an average climato-
logical year DayCent emissions are at the upper end of the range. Furthermore, in contrast to EDGAR4.3.2 
which states constant emissions in June and July, DayCent emissions are much higher in June than in July. 
Sweeney et al. (2015) derived annual N2O climatologies at Midwest sites from NOAA/ESRL Aircraft Net-
work measurements and found highest N2O mole fractions in June, consistent with our DayCent estimates.

3.2.  Model Optimization

Here, we provide an example of the model optimization process for October 10, 2017 (Figure 3a). In the 
eastern part of the Midwest, N2O enhancements up to 7 ppb were observed within the PBL. The below 
background values at the beginning of the time series occurred prior to the PBL transect in the free trop-
osphere. Free tropospheric air might have a different history and hence different background which can 
lead to negative values if we subtract the PBL background. Model simulations with unmodified EDGAR 
emissions show only enhancements up to 1 ppb along the transect. However, by applying a correction factor 
FAGR of 8.3 the model is able to reproduce our measurements. Optimizations of the remaining days can be 
found in the SI.

Figure 3b shows the mean and standard deviation for FAGR of the Monte Carlo simulations of the 10 research 
flights for the two EDGAR versions. As both inventories have a comparable spatial distribution, factors vary 
due to differences in total emissions. EDGAR4.3.2 correction factors are considerably higher for October 
2017 and slightly higher for June/July 2019 than EDGAR5.0. For EDGAR4.3.2, FAGR ranges from 2.9 ± 1.5 
to 11.3 ± 3.8 in 2017, with an average factor of 6.3 ± 4.6. EDGAR5.0 FAGR is calculated to be lower, ranging 
from 1.6 ± 0.8 to 6.8 ± 2.3, with an average factor of 3.5 ± 2.7. For 2019 we modified EDGAR4.3.2 with a 
FAGR between 5.5 ± 2.1 and 20.2 ± 6.3 and EDGAR5.0 between 4.9 ± 1.9 and 17.4 ± 5.5. On average this 
denotes an agricultural correction factor of 11.4 ± 6.6 and 9.9 ± 5.7 for EDGAR4.3.2 and EDGAR5.0, respec-
tively. Altogether, both EDGAR versions exhibit a significant underestimation of agricultural emissions. 
Seasonal differences are likely one cause for the difference in correction factors between 2017 and 2019. 
Additionally, during the 2019 aircraft campaign, an extreme flooding event occurred that likely influenced 
our results (discussed below). Although EDGAR4.3.2 exhibits a seasonal cycle, its agricultural correction 
factor also varies considerably between 2017 and 2019. Hence, the Midwest seasonality is not captured 
in the EDGAR inventory, which appears to be caused by the flooding. Figure 3c displays the EDGAR5.0 
average Midwest emissions for each flight with nonoptimized and optimized agricultural emissions. For 
EDGAR4.3.2, the optimized result is (nearly) the same as both versions differ (nearly) only in their strength 
of EAGR which is adjusted in the course of the optimization. On average, optimized total N2O emissions are 
0.42 ± 0.28 nmol m−2 s−1 during our October 2017 and 1.06 ± 0.57 nmol m−2 s−1 during our June/July 2019 
flights.
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Optimized emissions for June/July 2019 are 2–3 times higher compared to DayCent emissions. Despite this, 
DayCent emissions are closer to our optimized emissions compared to EDGAR during the same period. In 
contrast, DayCent and EDGAR emissions are both too low by a similar magnitude in October compared to 
our optimized results. Hence, as DayCent considers regional characteristics, it performs much better on the 
regional scale in the summer than the emission factor approach that is used in EDGAR. A more quantitative 
evaluation of DayCent would require flux calculations for 2017 and 2019 incorporating the corresponding 
regional conditions like weather, soil conditions, and N-fertilizer application rate and time. DayCent has not 
been applied to estimate emissions specific to 2017 and 2019 so it is not clear if the model would underes-
timate the values for these years although this may be the case given the historical data from 2011 to 2015.

Fu et al. (2017) reported emissions of 3.00–4.38 nmol m−2 s−1 during June 1–20, 2010 for the Corn Belt, 
which is significantly higher than our estimates for June/July 2019. Griffis et al. (2013) estimated the Corn 
Belt emissions to be around 2 and 1 nmol m−2 s−1 in June/July 2010 and 2011, respectively, which is con-
sistent with our findings. Kort et  al.  (2008) and Miller et  al.  (2012) derived scaling factors for the cen-
tral U.S. To be able to compare their results to ours, we estimated the corresponding flux densities for the 
Midwest region using their scaling factors for the respective EDGAR versions. Kort et al.  (2008) derived 
0.54 nmol m−2 s−1 for May/June 2003 and Miller et al. (2012) 0.57/0.25 and 0.94/0.53 nmol m−2 s−1 for June/
July 2004 and 2008, respectively. Both studies show lower values than our estimate. Miller et al.  (2012) 
stated that maximum emissions occurred in June. Our DayCent calculations are also highest in June. This 
could partly explain our lower estimates compared to Fu et al. (2017) as we report for the end of June/be-
ginning of July after the expected emission peak. Moreover, Fu et al. (2017) only scaled Corn Belt emissions 
and kept other regions unmodified which could lead to higher estimates, if they sampled other regions with 
lower emission rates than the Corn Belt. Overall, our estimates are in the range of previous top-down stud-
ies. However, the spread among the studies is large.

The nature of soil N2O fluxes leads to significant temporal variability in the emissions that is not repre-
sented in EDGAR. DayCent is capable of representing those variations to a certain extent. For instance, 
precipitation events may enhance N2O soil emissions (Butterbach-Bahl et al., 2013). DayCent has the po-
tential to simulate such events since it considers meteorology. In October 2017 and June/July 2019, Mid-
west precipitation amounts were above-average, which probably enhanced N2O emissions (see SI and 
NOAA, 2020a). Especially in 2019, weather conditions in the study domain were unusually extreme. During 
the campaign, the U.S. was experiencing its wettest period in 125 years, with severe flooding in the Midwest 
(NOAA, 2020b) forcing the farmers to significantly delay planting in the affected regions (USDA, 2020) and 
postponing the peak emission period. Depending on whether the zenith is shifted closer to or further away 
from our investigated period this event may have either amplified or lowered our emission estimates. Addi-
tionally, the above-average humidity might have enhanced soil N2O emissions leading to higher estimates 
(Butterbach-Bahl et al., 2013). As indirect N2O emissions play an important role in the Midwest (Griffis 
et al., 2013, 2017; Turner et al., 2015), flooding-induced emissions pulses of indirect emissions from streams 
and rivers probably also boosted soil N2O fluxes (see SI). The influence of this flooding event cannot be 
quantified within this study, as this would require more data over longer periods spanning the whole event. 
However, in a follow-up study we plan to use DayCent simulations driven with those flooding conditions to 
gain insights on how soil N2O emissions were affected.

4.  Conclusion
Unique continuous in-situ airborne N2O measurements of 10 research flights were used to quantify N2O 
emissions in the U.S. Midwest using a top-down approach. In October 2017, average emissions were 
0.42 nmol m−2 s−1. The agricultural portion was on average 6.3 times higher than in EDGAR4.3.2 and 3.5 
times higher than in EDGAR5.0. June/July 2019 emissions were on average 1.06 nmol m−2 s−1. For that, 
agricultural EDGAR4.3.2 fluxes have to be scaled by an average factor of 11.4. EDGAR5.0 performs better 
again, but still requires an agricultural scaling factor of 9.9. Uncertainties were on the order of 50 %. Our 
2019 estimates were most likely influenced by an extreme flooding event, which is difficult to capture in 
EDGAR as the inventory uses a climatological average emissions data set. Agricultural soil emissions esti-
mated with DayCent in 2011–2015 were 0.32–0.48, 0.16–0.30, and 0.08–0.11 nmol m−2 s−1 in June, July, and 
October, respectively. These historical emission estimates are higher than nonoptimized EDGAR emissions, 

ECKL ET AL.

10.1029/2020GL091266

8 of 11



Geophysical Research Letters

but still significantly lower than our optimized fluxes. Our findings are in the range of previous top-down 
estimates for the Corn Belt and central U.S. However, a quantitative comparison of those studies shows that 
the range of derived N2O surface fluxes is large, likely due to the temporal complexity of N2O soil emissions.

More studies focusing on N2O are necessary to fully understand the drivers of Midwest N2O emissions and 
the most appropriate modeling methods to estimate emission patterns. To cover the high temporal varia-
bility on various scales, long-term projects with regular airborne measurements spanning wide areas of the 
Midwest are necessary. Combining a process-based model like DayCent capable of simulating the temporal 
and spatial variability of N2O emissions, with extensive airborne and tall tower top-down studies at selected 
spots and times, could be a cost-effective approach that would limit the number of flights needed to produce 
accurate estimates for the region and improve national reporting of emissions (Ogle et al., 2020). As interest 
grows in expanding efforts to reduce N2O emissions (Kanter et al., 2020), improved quantification of N2O 
surface fluxes is mandatory for policy makers to be able to develop effective mitigation strategies.

Data Availability Statement
All ACT-America flask and in situ data used in this manuscript can be found online (at https://daac.ornl.
gov/cgi-bin/dataset_lister.pl?p=37 and https://act-america.larc.nasa.gov/).
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