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Abstract

Non-negative matrix factorization (NMF) has been widely used for the analysis of genomic data to perform feature extrac-
tion and signature identification due to the interpretability of the decomposed signatures. However, running a basic NMF
analysis requires the installation of multiple tools and dependencies, along with a steep learning curve and computing
time. To mitigate such obstacles, we developed ShinyButchR, a novel R/Shiny application that provides a complete NMF-
based analysis workflow, allowing the user to perform matrix decomposition using NMF, feature extraction, interactive vi-
sualization, relevant signature identification, and association to biological and clinical variables. ShinyButchR builds upon
the also novel R package ButchR, which provides new TensorFlow solvers for algorithms of the NMF family, functions for
downstream analysis, a rational method to determine the optimal factorization rank and a novel feature selection strategy.
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Introduction

Extracting relevant biological and clinical information from
genome-scale datasets can be challenging given the size of the
typical datasets. In particular, feature extraction (e.g., relevant
genes, genomic regions) and signature identification (e.g., pat-
terns of gene expression that can be associated with biological
processes) are two of the most important tasks during analysis,
but they require the installation of multiple tools and depen-
dencies. Thus, ready-to-use and interactive software is of great
importance to allow fast data exploration and analysis.

Non-negative matrix factorization (NMF) is a method that
provides a parts-based representation of a non-negative input
matrix, leading to an enhanced interpretability of the extracted
features and identified signatures[1], as well as applicability to
biological data, often shaped by processes with non-negative
contributions [2]. NMF has been used in different settings for
analysis of genomic data, including de novo identification of mu-
tational signatures [3, 4] and meta gene extraction [2, 5, 6].
However, performing an NMF-based analysis requires the deter-
mination of a suitable factorization rank, producing stable and
biologically meaningful signatures, which can be highly time-
consuming for large datasets. In addition, an association
between such signatures and biological variables should be
established to be able to understand their biological
significance.

Several R packages [7] have implemented NMF algorithms 8,
9]; however, performing an NMF-based analysis can be techni-
cally challenging for the nonspecialists, as large datasets might
require extensive computational time and resources. Moreover,
interpretation of the results is nontrivial in the absence of ap-
propriate representation tools. To address these challenges, we
developed ShinyButchR, an R/Shiny application [10] able to per-
form matrix decomposition using NMF, feature extraction, and
to generate rich visualizations.

To efficiently run the matrix decomposition, ShinyButchR
leverages on the novel R package ButchR, available on GitHub.
All NMF algorithms included in ButchR are implemented on
TensorFlow [11], allowing its highly efficient execution under
multiple systems (e.g., CPU, graphical processing units (GPU),
and tensor-processing units (TPU) systems). The analyses and
outputs generated by ShinyButchR are fully compatible with
ButchR, providing a flexible platform to perform an NMF-based
workflow analysis inside the R ecosystem. For users interested
in installing ShinyButchR and ButchR on their own systems, we
provide ready to use Docker images and freely available source
code. To the best of our knowledge, ShinyButchR is the first on-
line tool capable of running NMF, visualizing quality metrics,
exploring the results in an interactive fashion, providing feature
extraction and identifying the biological and clinical relevance
of the inferred signatures.

Here, we present a step-by-step description of the
ShinyButchR workflow, a description of the feature extraction
produce using ButchR, and an example with the application of
the complete workflow on a test case.

Materials and methods
ShinyButchR workflow steps

The aim of ShinyButchR and ButchR is to provide a fast and
scalable NMF framework, allowing the user to decompose an in-
put matrix into a signature matrix W and an exposure matrix H
(Fig. 1a). This results in a low-dimensional representation of the

input dataset, identifying signatures/factors which help to un-
derstand the underlying biological processes and potential dif-
ferences occurring between different samples.

ShinyButchR is built with an intuitive user interface, consist-
ing of two main screens (Fig. 1b).

The setup screen contains the interface to upload data and
change the parameters to run the matrix decomposition, and
the results screen contains a collection of interactive visualiza-
tion, produced from the matrix decomposition results.

ShinyButchR implements a complete genome-scale data
NMF workflow, which starts from uploading the data and run-
ning the matrix decomposition, followed by the selection of the
optimal factorization rank and visualization of the results, fin-
ishing with exporting and saving the results (Fig. 1c).

Step 1: Setup screen

By clicking on the “Data and annotation upload” tab, the “Setup
screen” of the app is shown (Fig. 1b). This screen consists of four
boxes: the “Matrix upload” and “Annotation upload” boxes, pro-
vide handlers to upload data; the “NMF params” box allows the
user to change the NMF parameters, and the “Start NMF” box
starts the analysis after a valid dataset has been uploaded.

Step 2: Matrix upload

The minimum requirement to run the ShinyButchR workflow is
a non-negative matrix with sample identifiers. To upload a new
matrix, click in the “Browse...” button inside of the “Matrix
upload” box, and select an R data serialized (RDS) format or a
comma-separated format (CSV) file containing a non-negative
matrix. Currently, a file size limit of 30 MB is imposed (which
roughly corresponds to an expression matrix with 600 columns
and 5000 genes). If a particular analysis requires a bigger upload
limit, then we suggest using one of the alternatives to run the
app locally.

Alternatively, instead of uploading a new dataset, the app
comes with a publicly available RNA-seq dataset of sorted blood
cell populations, comprising 12 cell populations and 45 samples
[12]. The demo dataset can be loaded by clicking on the “Demo”
button at the bottom the box.

Step 3: Annotation upload

If the uploaded matrix has any associated biological/clinical in-
formation, we suggest uploading it to use the full range of func-
tions provided in the app, and enhance the interpretability of
the output, e.g., identification of signatures related to biological
and clinical features. To upload a new annotation table, click in
the “Browse...” button inside of the “Annotation upload” box,
and select a CSV table or an RDS file containing an R data frame.
The first column of the uploaded annotation table should match
to the column names of the uploaded matrix.

Step 4: Selection of factorization rank range

In ShinyButchR, the matrix decomposition is run across a range
of factorization ranks. The factorization rank range can be
changed in the “Minimum factorization rank” and “Maximum
factorization rank” input boxes inside the “NMF params” box.
The minimum supported factorization rank is 2 and the maxi-
mum factorization rank should be less than the number of col-
umns of the input matrix.

Step 5: Selection of factorization method and number of iterations

To run the matrix decomposition, ShinyButchR can use two of
the NMF algorithms implemented on Butchg, i.e., the NMF algo-
rithm firstly described by Seung and Lee [1]; and the graph
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Figure 1. schematic representation of a ShinyButchR NMF-based workflow. (a) ShinyButchR takes a non-negative matrix as input to perform NMF, decomposing the in-
put matrix into a signature matrix W and an exposure matrix H. (b) Main screens of ShinyButchR user interface. The panel on the left shows the “Setup screen” of the
app, where the user can upload a dataset and associated annotation table, as well as tuning the parameters to run the matrix decomposition. The panel on the right
shows the “Results screen”, where the user can explore the results interactively, e.g., selection of the optimal factorization rank, clustering analysis, association to
known biological and clinical factors and signature stability assessment. (c) Steps performed in the ShinyButchR workflow, the setup steps (i.e., steps 1 to 6) are shown
in red, the results exploration steps (i.e., steps 7-12) are shown in blue, and the final save results step (i.e., step 13) is shown in green.

regularized non-negative matrix factorization with sparse cod-
ing, described by Lin and Pang [13]. The factorization method to
use can be selected in the “Select factorization method” option
inside the “NMF params” box.

In order to find an optimal solution in the stochastic NMF al-
gorithm, the analysis is run over a number of different random
initializations of the H and W matrices. This number can be
changed in the “Number of initializations” parameter inside the
“NMF params” box. We suggest using at least two random initi-
alizations for explorative analysis and more than five for more
consistent results.

To evaluate the convergence of the matrix decomposition,
ShinyButchR uses a novel method implemented on ButchR. In
this method, each sample (i.e., the columns of the input matrix)
is assigned to the signature with the highest exposure at the
end of every iteration. The convergence of the NMF is reached if
all the sample assignments do not change after n iterations (i.e.,
convergence threshold). The threshold can be changed in the
“Convergence threshold” parameter inside the “NMF params”
box. Higher threshold values will increase the computation
time but producing more stable results.

Step 6: Run NMF

After uploading a new dataset and changing the NMF parame-
ters, the matrix decomposition can be run by clicking the
“Submit” button inside the “Start NMF” box. The computation
time will vary depending on the size of the input matrix and the
selected NMF parameters, decomposing a 22 000 x 45 matrix
with k from 5 to 8 with 10 random initializations takes about 1
min.

Step 7: Output results visualization

After the matrix decomposition step is done, the app will show
the “Results screen” (Fig. 1b). This screen contains multiple
boxes to explore the results interactively, e.g., selection of the
optimal factorization rank, clustering analysis, association to
known biological and clinical factors, and signature stability as-
sessment. More visualization options will be available if a valid
annotation file was uploaded alongside the input matrix, e.g.,
displaying annotation with the matrix H heatmap, recovery
analysis, and coloring the cluster analysis according to the
annotation.

Step 8: Selection of optimal factorization rank k

In NMF, the factorization rank is a free parameter. Hence,
ShinyButchR provides a diagnostic plot to determine the opti-
mal factorization rank k, where the Frobenius error, the coeffi-
cient of variation and the mean Amari distance should be
minimized [14], while the silhouette value and the cophenetic
correlation coefficient should be maximized [2]. The diagnostic
plot can be found in the “Optimal factorization rank” box.

Step 9: H matrix heatmap

One of the strengths of the NMF is the possibility of visualizing
the decomposed signatures as a heatmap, alongside with
known biological and clinical associated features. In
ShinyButchR, we provide an interactive heatmap visualization
using the R package ComplexHeatmap [15], including several
options to enhance the visualization result, e.g., selection of the
annotation features to show. The heatmap representation of
the exposure matrix H can be found in the “H Matrix Heatmap”
box.
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Step 10: H matrix uniform manifold approximation and projection
In addition to the soft clustering approach provided by the visu-
alization of the matrix H heatmap, it is also possible to use the
results of the decomposition to identify clusters on the samples,
by applying uniform manifold approximation and projection
(UMAP) [16] on the H matrices. The results of performing UMAP
on the matrix H for a selected factorization rank can be found in
the “H matrix UMAP” box. Besides changing the factorization
rank, it is also possible to color the samples using the annota-
tion provided in step 3 of the workflow.

Step 11: Recovery plots

In ShinyButchR, the association of the NMF signatures with bio-
logical and clinical variables is visualized using a recovery
curve. For every annotation variable, the curve is constructed by
(i) ranking every signature from low to high exposure and (ii) it-
erating over all the signature exposure ranks and increasing
one step in the y-axis if the corresponding sample is annotated
for the evaluated variable.

The recovery curve follows broadly a diagonal line for nonas-
sociated features and a curve with a steep increase for associ-
ated features. The area under the curve (AUC) is computed, and
the significance of the association is evaluated by computing a
p-value after shuffling n times the sample labels, and estimat-
ing the mean and standard deviation of the null distribution of
AUC values. The signature association to biological variables vi-
sualization can be found in the “Recovery plots” box.

Step 12: Riverplot

One of the most important features in ButchR and ShinyButchR
is the possibility of visualizing the stability and hierarchical
relationships between signatures at different factorization
ranks using a riverplot [17]. The riverplot is a tree-like represen-
tation where nodes represent the NMF signatures, and one edge
connects two signatures at different factorization ranks if they
show a higher similarity than a predefined threshold. The edge
strength encodes the cosine similarity between linked signa-
tures. The factorization rank increases from left to right.

The signature stability inspection riverplot plot is found in
the “NMF riverplot” box. A slider to change the cutoff of the dis-
played similarities, and a slider to change the range of factoriza-
tion ranks to use in the visualization are provided.

Step 13: Export results and post processing

The final step in the workflow provided by ShinyButchR is to
save and export the results of the NMF decomposition. All the
results generated by the workflow can be saved as RDS and CSV
files. Clicking on the “Save results” tab, shows the “Save results
screen” of the app. The NMF decomposition results are stored in
an R object of class “ButchR_NMF” by default, which is the main
object used by the package ButchR. We recommend saving
results using the “ButchR_NMF” format when more downstream
analyses are going to be performed using the package ButchR.

Post processing and feature extraction

After performing the matrix decomposition, features with a
high contribution to a specific signature can be extracted using
the following nonparametric procedure: (i) For every feature,
i.e., every row of the matrix W, perform a k-means clustering
with k=2; (ii) extract a binary vector across the signatures indi-
cating to which of the signatures that feature has particularly
high contributions; and (3) signature-specific features can be se-
lected by identifying those features, which contribute highly to

only one single signature. The feature extraction procedure is
implemented on the function “SignatureSpecificFeatures” of
ButchR.

For the evaluated dataset, the gene set enrichment analysis
was done by finding the top 10% of signature-specific genes and
performing an enrichment analysis using the “compareCluster”
function of the R package clusterProfiler [18] against the com-
plete molecular signature collection of the molecular signatures
collection database (MSigDB) [19].

ShinyButchR local deployment and ButchR installation

In case a local instance of ShinyButchR is required, we provide
all the source code to run the app from a local R installation
(Python 3 [20] and TensorFlow > 2.0.0 [11] must be installed).
Also, a Docker image compiled with all the required packages
alongside the app is available in Docker Hub (see code and tool
availability section).

ButchR is also freely available and it can be installed directly
from the GitHub repository or run from the provided Docker im-
age (see code and tool availability section). A detailed explana-
tion of the complete functionality provided by ButchR can be
found in the vignettes included in the package.

Results and discussion
Optimal factorization rank and signature stability

Using the preloaded RNA-seq dataset of different labeled cell
types of the human hematopoietic system [12], we show here
how ShinyButchR can be used to achieve dimensionality reduc-
tion, produce an interactive visualization of results, and extract
cell type-specific features (Fig. 2).

One of the most critical steps while running any NMF algo-
rithm is the selection of a factorization rank k, which can hinder
the results if a nonoptimal factorization rank was used to per-
form the analysis. To address this challenge, ShinyButchR
allows the user to select and run NMF on a wide range of factori-
zation ranks, producing a diagnostic plot to determine the opti-
mal factorization rank k (Fig. 2a), computing the factorization
metrics by running the algorithm multiple times with different
initializing conditions. Three of these metrics should be mini-
mized (Frobenius error, coefficient of variation, and mean
Amari distance), while the other three should be maximized
(sum silhouette width, mean silhouette width, and cophenetic
coefficient). In our case study, we found k=8 to be a good trade-
off, as it has a high silhouette width, a low Frobenius error and
mean Amari distance. However, a good practice is to also in-
spect the exposure values from the H-matrix for alternative val-
ues of k.

The evaluation of the signature stability across the range of
factorization ranks helps to visually inspect the quality of the
decomposition in a certain rank and the robustness of a particu-
lar signature. More robust signatures will be more stable across
multiple factorization ranks, which can be seen as a ribbon of
similar width crossing multiple nodes in the riverplot. In this
case, the riverplot visualization showed a separation of stem
and progenitor cells from differentiated cell types at low factori-
zation ranks, which persists with increasing factorization rank
and resolution (Fig. 2b).

Sample exposure and cluster analysis

For every factorization rank, ShinyButchR provides a heatmap
of the exposure values from the matrix H, allowing the user to
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Figure 2. example of a ShinyButchR analysis based on RNA-seq data of 12 blood cell populations and 45 samples (Corces et al., 2016). (a) NMF decomposition quality
metrics plot. (b) Signature stability and hierarchy assessment by a riverplot representation of the extracted signatures at different factorization ranks. The nodes repre-
sent the signatures, the edge strength encodes cosine similarity between signatures linked by the edges. (c) Heatmap representation of the exposure matrix H showing
the associated annotation features. (d) Cluster identification by running UMAP on the matrix H. (e) Recovery plot analysis to identify enrichment of known biological
variables to the NMF signatures, a significant enrichment relationship is shown in a bold line.

explore different factorizations and customize the annotation
tracks shown with the heatmap. This visualization is helpful to
inspect state transitions and samples/cells associated with mul-
tiple biological processes. The continuum exposure to the mul-
tiple NMF signatures allows to soft cluster samples by ordering
the columns of the matrix H by the similarity between them. In
this example, the continuous exposure value from the H matrix
gave insight into fundamental biological principles. For exam-
ple, one signature (Signature 2) showed a high exposure for the
undifferentiated populations (hematopoietic stem cells (HSC)
and multipotent progenitors (MPP)) and a progressive decrease
in the exposure for populations with increasing differentiation,
and can be interpreted as a hematopoietic differentiation signa-
ture (Fig. 2¢).

Although the soft clustering approach provided by the ma-
trix H is one of the most important features of the NMF, this ma-
trix can also be used to cluster samples using a UMAP
representation [16]. In particular, cases where it is important to
assign a group identity to a sample or cell, the UMAP visualiza-
tion of the matrix H generates clusters that can be associated
with a particular biological state. In our example, the UMAP rep-
resentation showed a clear separation of undifferentiated popu-
lations from more differentiated cell types (Fig. 2d).

Biological annotation enrichment for NMF signatures

Displaying known biological and clinical annotation tracks,
alongside with the heatmap of the matrix H provides a visual
clue to identify if a signature is enriched for a particular annota-
tion variable. On the other hand, a recovery plot also provides a
quantification of the enrichment for every annotation variable.
In ShinyButchR, a recovery curve can be constructed for all the
categorical annotation variables, revealing the significance of
the association. In our test case, we found that most of the cell
types were associated with one or two signatures (Fig. 2e).

Feature extraction and gene set enrichment analysis

As the feature enrichment analysis is highly dependent on the
data type and feature naming scheme, this step is only available

on the package ButchR, where the user can construct its own
collection of reference feature sets. The results of the
ShinyButchR workflow can be exported as an R object of class
“ButchR_NMF” and imported within a local R session to perform
the feature extraction and enrichment analysis using ButchR.

ButchR has a complete suite of functions to identify the dif-
ferential contribution of a feature to every signature, classifying
them into signature-specific features and multisignature fea-
tures (Fig. 3a). In our test case, a visual inspection of the top 10%
of the signature-specific features (i.e., signature-specific genes),
revealed that as expected all these genes showed a particular
high contribution to only one signature (Fig. 3b).

Finally, we performed a gene set enrichment analysis using
the “compareCluster” function of the R package clusterProfiler
[18], to understand the biological processes represented by the
collection of signature-specific features. We used the complete
set of MSigDB [19] as a reference, and performed the enrichment
analysis on the set of the top 10% of the signature-specific fea-
tures (Fig. 3c). We found that the set of signature-specific genes
are an accurate representation of genes enriched in the cell
types defining the NMF signatures. For instance, the signature-
specific genes were able to capture gene sets upregulated in
stem cells [21, 22] for the HSC/MPP signature; gene sets upregu-
lated in committed progenitor cells [23] for the lymphoid-
primed multipotent progenitors (LMPP)/common myeloid
progenitors (CMP)/granulocyte-monocyte progenitors (GMP)/
megakaryocyte-erythrocyte progenitor (MEP) signature; gene
sets upregulated at early stages of progenitor T lymphocyte
maturation [24] and in progenitor cells of B lymphocyte lineage
[25] for the common lymphoid progenitors (CLP) signature, and
similar associated gene set collections for all the decomposed
signatures.

Conclusion

Extracting biological relevant signatures from genome-scale
data can be a challenging task. ShinyButchR provides a fast and
user-friendly tool to decompose an input matrix using NMF, vi-
sualize the results interactively, and export publication-ready
plots. All the analyses performed by the ShinyButchR workflow
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gene set collections.

can also be done in ButchR without using the user interface of
the app. The provided source code and Docker images allow the
integration of an NMF analysis into any existing workflow.
Additionally, the feature extraction and analysis functions pro-
vided by ButchR can be a valuable resource to understand the
biological significance of the signatures produced by NMF.

Code and tool availability

ShinyButchR is publicly hosted at https://hdsu-bioquant.shi
nyapps.io/shinyButchR/, the source code is available at https://
github.com/hdsu-bioquant/shinyButchR, and a Docker image at
https://hub.docker.com/r/hdsu/shinybutchr. ButchR is freely
available at https://github.com/wurst-theke/ButchR under the
GPLv3 license, and a Docker image including test datasets is
available at https://hub.docker.com/r/hdsu/butchr.

Data availability

To reproduce all of the results reported in this study using the
package ButchR, we included the vignette “ButchR hematopoie-
sis Corces” in the ButchR GitHub repository which contains the
required datasets.
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