
ar
X

iv
:2

10
6.

06
47

0v
1 

 [
m

at
h.

A
P]

  1
1 

Ju
n 

20
21

Eigendamage: an Eigendeformation model
for the variational approximation of

cohesive fracture – a one-dimensional case study

Veronika Auer-Volkmann∗1, Lisa Beck∗2, and Bernd Schmidt∗3

June 14, 2021

Abstract

We study an approximation scheme for a variational theory of cohesive fracture in
a one-dimensional setting. Here, the energy functional is approximated by a family
of functionals depending on a small parameter 0 < ε ≪ 1 and on two fields: the
elastic part of the displacement field and an eigendeformation field that describes the
inelastic response of the material beyond the elastic regime. We measure the inelastic
contributions of the latter in terms of a non-local energy functional. Our main result
shows that, as ε → 0, the approximate functionals Γ-converge to a cohesive zone
model.
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1 Introduction

A tension test on a bar will typically show that small deformations are completely re-
versible (elastic regime) while large deformations lead to complete failure (fracture regime).
Only for very brittle materials one observes a sharp transition between these two regimes
(brittle fracture). By way of contrast, many materials exhibit an intermediate cohesive
zone (damage regime) in which plastic flow occurs and a body shows gradually increasing
damage before eventual rupture (ductile fracture). A tension test on a bar will typically
show that small deformations are completely reversible (elastic regime) while large defor-
mations lead to complete failure (fracture regime). Only for very brittle materials one
observes a sharp transition between these two regimes (brittle fracture). By way of con-
trast, many materials exhibit an intermediate cohesive zone (damage regime) in which
plastic flow occurs and a body shows gradually increasing damage before eventual rupture
(ductile fracture).

Variational models have been extremely successfully applied to problems in fracture
mechanics, cf., e.g., [2, 7, 8, 18] and the references therein including, in particular, the sem-
inal contribution of Francfort and Marigo [23]. Here energy functionals are considered that
act on deformations in the class of functions of bounded variation (or deformation). The
derivatives of these functions are merely measures, and the singular part of such a measure
is directly related to the inelastic behavior of the bar. The resulting variational problems
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are of free discontinuity type allowing for solutions with jump discontinuity (macroscopic
cracks). Moreover, within a damage regime the strain can contain a diffuse singular part
describing continuous deformations beyond the elastic regime that can be related to the
occurrence of microcracks, see e.g. [1, 12, 19, 21, 22, 24, 25, 35]. In fact, when considering
variational problems with stored energy functions of linear growth at infinity and surface
energy contributions that scale linearly for small crack openings, all these contributions
to the total strain interact, cp. [6], which renders the problem challenging, both from a
theoretical and a computational point of view.

As free discontinuity problems are of great interest not only in fracture mechanics
but also in image processing, several approximation schemes have been proposed with the
aim to devise efficient numerical approaches to simulations. Most notably, the Ambrosio-
Tortorelli approximation [3, 4] has triggered a still continuing interest in phase field models
in which a second field (the ‘phase field’) is introduced that can be interpreted as a damage
indicator and whose value influences the elastic response of the material.

With a particular focus on cohesive zone damage models we refer to, e.g., [13, 15–
17, 26]. A small parameter ε is introduced in such models that corresponds to an intrinsic
length scale over which sharp interfaces of the phase field variable are smeared out. A
different approach has been initiated by Braides and Dal Maso for the Mumford Shah
functional, and then extended to various generalized settings in, e.g., [8, 11, 14, 27–30, 32]
which involves a nonlocal approximation of the original field u in terms of convolution
kernels with intrinsic length scale ε≪ 1.

Our main motivation comes from the Eigenfracture approach to brittle materials that
has been developed in [37] and further considered in [33, 34, 36]. Our main aim is to extend
this model to a ductile fracture regime with a significant damage zone. The variables of
the model are the deformation field uε and an eigendeformation field gε, which induces a
decomposition of the strain u′ε = (u′ε − gε) + gε into an elastic and an inelastic part, the
latter describing deformation modes that cost no local elastic energy. (We refer to [31] for
more details on the concept of eigendeformations to describe nonelastic deformations and,
in particular, plastic deformations.) The energy associated to the formation and increase
of damage is accordingly modeled in terms of a nonlocal functional acting on gε, which
replaces the nonlocal contribution defined in terms of a simple ε-neighborhood of the
crack set in the original Eigenfracture model by a more general (and softer) convolution
approximation.

We would like to point out that our set-up thus introduces a novel modeling aspect to
damage functionals. Instead of an explicit dependence of the stored energy function on
the damage as being encoded in a phase field, in our model the constitutive laws, i.e., the
linear elastic energy | · |2 and fracture contribution f (see below) remain unchanged. An
increase of damage is rather related to a transition from the elastic deformation field to
the eigendeformation field. In particular, plastic deformations at the onset of the inelastic
regime need not immediately lead to softening of the material. With respect to nonlocal
convolution approximation schemes of the deformation field u we remark that in our model
such nonlocal contributions need to be evaluated only near the support of gε but not on
purely elastic regions.

In the present contribution we focus on the one dimensional case. In this setting
our analysis will benefit from the corresponding study of Lussardi and Vitali for pure
convolution functionals [29]. Indeed we will follow along the same path in order to adapt
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and extend their methods to our two field set-up. There are, however, a number of
notable differences in our analysis which lead us, also in view of later extensions to higher
dimensions [5], to provide a self-contained account of our results. A main difficulty stems
from the fact that there is no pre-assigned functional relation between the eigendeformation
fields gε and the strain fields u′ε. Rather these quantities are merely ‘coupled by regularity’
in the sense that u′ε − gε ∈ L2. As the limit of gε needs to be studied in a rather weak
space, this leads to technical difficulties when transferring asymptotic properties from uε
to gε.

Our results also constitute the first step towards higher dimensional models. In partic-
ular, the case of antiplane shear will be addressed in a forthcoming contribution [5]. Here
the lack of a direct relation between gε and ∇uε and hence the absence of an underlying
gradient structure will pose severe additional challenges.

Outline

We start by describing the setting of the problem and by stating the main results in
Section 2. In Section 3 we remind some facts on functions of bounded variation and the
flat topology. Section 4 is devoted to a compactness result. The Γ-lower limit for the
eigendamage model is established in Section 5. To this end, we first derive the estimate
from below of the jump part, subsequently the estimate from below of the volume term and
the Cantor term, and the proof of the Γ- lim inf-inequality is then completed by combining
the previous results. In Section 6 we then address the estimate from above of the Γ-upper
limit. Finally, in Section 7 the asymptotic behavior of the minimal energies with respect
to the second variable γ is studied.

2 Setting of the problem and main result

Suppose that a beam occupies the region (a, b) with 0 < a < b < +∞ and that a
displacement u : (a, b) → R affects the beam. As cohesive energy associated with u we
shall consider

F (u) =

∫ b

a

ψ(|u′|) dx+ 2
∑

x∈Ju

f

(
1

2
|[u](x)|

)
+ c0|D

cu|(a, b), (1)

where c0 is a fixed positive constant, and ψ, f : [0,∞) → [0,∞) are functions defined via

ψ(t) =

{
t2 if t < c0

2 ,

c0 t−
c20
4 if t ≥ c0

2 ,

and

f(t) =

{
c0 t if t < 1,

c0 if t ≥ 1.
. t

1

c0
f

ψ

Note that f is the simplest continuous function such that f(0) = 0,

lim
t→0+

f(t)

t
= c0 and lim

t→∞
f(t) = c0.
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The main ingredients in the energy (1) are a volume term, depending on the strain
of the beam u′ and corresponding to the stored energy, a surface term, depending on the
crack opening [u] := u(·+) − u(· −) on the jump set Ju and modeling the energy caused
by cracks, and finally a diffuse damage term, depending on the Cantor derivative Dcu and
corresponding to the energy caused by microcracks.

The natural function space in order to study such functionals in one dimension is the
space BV (a, b) of functions of bounded variation on (a, b). Notice that the distributional
derivative of each function u ∈ BV (a, b) allows for a decomposition Du = u′L1+Dsu into
the absolutely continuous and the singular part with respect to the Lebesgue measure,
and the singular part Dsu = [u]H0 Ju +Dcu in turn into the jump part and the Cantor
part, which we have used in (1).

We next introduce a functional depending on two fields u ∈ L1(a, b) and γ ∈ M(a, b)
with a non-local approximation of the the second variable γ, given as

Eε(u, γ) :=





∫ b

a
|u′ − g|2 dx if u ∈W 1,1(a, b), ‖u‖L∞(a,b) ≤ K,

+1
ε

∫ b

a
f
(
ε−
∫
Iε(x)∩(a,b)

|g| dt
)
dx and γ = gL1, g ∈ L1(a, b)

∞ otherwise,

with ε > 0, Iε(x) := {y ∈ R : |y − x| < ε}, and a fixed constant K > 0. We notice
that Eε(u, γ) can only be finite if γ is absolutely continuous with respect to the Lebesgue
measure, with density in L1(a, b). In this case u′ represents the strain of the beam and γ
is intended to compensate u′ in regions where u′ is above a certain strain level. Hence,
u′−g is the elastic strain of the material, while γ describes the deformation of the material
beyond the elastic regime, indicating that a permanent deformation is exhibited if γ 6= 0.
In what follows, we are interested into the asymptotic behavior of the functionals {Eε}ε>0

as ε ց 0 (in the sense of Γ-convergence). It will be described by the energy functional E
which for (u, γ) ∈ L1(a, b) ×M(a, b) is defined as

E(u, γ) :=





∫ b

a
|u′ − g|2 dx+ c0

∫ b

a
|g|dx if u ∈ BV (a, b), ‖u‖L∞(a,b) ≤ K,

+2
∑

x∈Ju
f
(
1
2 |[u](x)|

)
γ = Dsu+ gL1,

+c0|D
cu|(a, b) u′ − g ∈ L2(a, b),

∞ otherwise.

Let us notice that for a finite energy E(u, γ), the displacement field u and the eigende-
formation field γ need to be linked in a very particular way. The singular part γs of
the measure γ with respect to the Lebesgue measure needs to coincide with the singular
part Dsu of the distributional derivative of u. The absolutely continuous part gL1 of γ in-
stead is not completely determined by the function u, but only the integrability restriction
u′−g ∈ L2(a, b) is required. A particularly interesting choice of g for a given u ∈ BV (a, b)
constitutes the unique minimizer g∗ of the optimization problem

to minimize

∫ b

a

|u′ − g|2 dx+

∫ b

a

c0|g|dx among all g ∈ L1(a, b). (2)

By a pointwise minimization of the integrand, the minimizer g∗ is explicitly given as

g∗ =

{
u′ − sign(u′) c02 if |u′| > c0

2 ,

0 if |u′| ≤ c0
2 .

(3)
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For later purposes we notice that the eigendeformation field γ is completely described in
terms of the function u as

γopt := Dsu+ g∗L1.

Moreover, the corresponding energy functional E(u, γopt) reduces to a one-field functional
depending only on the displacement u ∈ BV (a, b), which under the additional restriction
‖u‖L∞(a,b) ≤ K is precisely given by the energy F (u) introduced in (1).

In order to state our Γ-convergence result we need to endow L1(a, b) × M(a, b) with
a topology. A natural choice for the first component is the strong topology on L1(a, b).
One appropriate choice for the second component is the flat topology, that is the norm
topology on the dual of the space of Lipschitz continuous functions with compact support,
while an alternative choice is the topology induced by suitable negative W−1,q-Sobolev
norms, see Section 3 for more details. Our main result is the following:

Theorem 2.1. Let L1(a, b) be equipped with the strong topology and M(a, b) be equipped
with the flat topology. Then the family {Eε}ε>0 Γ-converges to E in L1(a, b) ×M(a, b),
i.e., we have

(i) (lim inf-inequality) For every sequence {(uε, γε)}ε in L1(a, b) × M(a, b) converging
to (u, γ) ∈ L1(a, b) ×M(a, b), i.e., uε → u in L1(a, b) and γε → γ in the flat norm
we have

lim inf
ε→0

Eε(uε, γε) ≥ E(u, γ).

(ii) (lim sup-inequality) For every (u, γ) ∈ L1(a, b) × M(a, b) there exists a sequence
{(uε, γε)}ε in L1(a, b) × M(a, b) such that uε → u in L1(a, b), γε → γ in the flat
norm, and

lim sup
ε→0

Eε(uε, γε) ≤ E(u, γ).

The associated compactness result is stated in Theorem 4.2, where we in fact establish
for the second variable convergence in W−1,q(a, b) for all 1 < q < ∞. Therefore, we
obtain as a direct consequence of Theorem 2.1 also Γ-convergence of {Eε}ε>0 to E in
L1(a, b) ×M(a, b), when M(a, b) is equipped with the stronger topology of convergence
in W−1,q(a, b) for some 1 < q <∞.

For completeness we also give the corresponding approximation result for the minimal
energies with respect to the second variable γ, which are defined as

Ẽε(u) := inf
γ∈M(a,b)

Eε(u, γ) = inf
g∈L1(a,b)

Eε(u, gL
1) (4)

and
Ẽ(u) := inf

g∈L1(a,b)
E(u,Dsu+ gL1), (5)

for u ∈ L1(a, b). As a direct consequence of the previous Γ-convergence result we obtain:

Corollary 2.2. Let L1(a, b) be equipped with the strong topology. Then the family {Ẽε}ε>0

Γ-converges to Ẽ in L1(a, b).
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3 Preliminaries

In this section, we recall some basics on BV -functions and convergence of measures. In
what follows, we consider an open, bounded set Ω ⊂ R

d with d ≥ 1.

Functions of bounded variation. A function u ∈ L1(Ω) is said to belong to the space
BV (Ω) of functions of bounded variation if its distributional derivative is a finite Rd-valued
Radon measure, i.e, if the integration-by-parts formula

∫

Ω
u
∂ϕ

∂xi
dx = −

∫

Ω
ϕdDiu for every ϕ ∈ C1

c (Ω) and i = 1, . . . , d

is valid for a (unique) vector measure Du ∈ M(Ω;Rd). The space BV (Ω) is a Banach
space endowed with the norm

‖u‖BV (Ω) := ‖u‖L1(Ω) + |Du|(Ω),

where |Du|(Ω) is the total variation of Du. We here collect some basic facts from [2] for
functions of bounded variation, which are relevant for our paper.

We recall the notions of weak-∗ and strict convergence for sequences {un}n in BV (Ω),
which are useful for compactness properties and approximation arguments, respectively.
We say that {un}n converges weakly-∗ to u ∈ BV (Ω), denoted by un

∗
⇀ u, if un → u in

L1(Ω) and Dun
∗
⇀ Du in M(Ω;Rd). We notice that every weakly-∗ converging sequence

in BV (Ω) is norm-bounded by Banach–Steinhaus, while every norm-bounded sequence in
BV (Ω) contains a weakly-∗ converging subsequence provided that Ω is sufficiently regular
(see [2, Theorem 3.23]). We further say that {un}n converges strictly to u ∈ BV (Ω) if
un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω). As a matter of fact, the space C∞(Ω) is dense
in BV (Ω) with respect to the strict topology (see [2, Theorem 3.9]).

We next discuss approximate continuity and discontinuity properties of a function
u ∈ L1

loc(Ω). We say that u has an approximate limit at x ∈ Ω if there exists a (unique)
ũ(x) ∈ R such that

lim
ρ→0+

−

∫

Bρ(x)
|u(y)− ũ(x)|dy = 0.

We denote by Su the set, where this condition fails, and call it the approximate disconti-
nuity set of u. It is Ld-negligible, and ũ coincides Ld-a.e. in Ω \ Su with u. Furthermore,
we say that u has an approximate jump point at x ∈ Su if there exist ν = νu(x) ∈ S

d−1

and u(x+), u(x−) ∈ R with u(x+) 6= u(x−) such that

lim
ρ→0+

−

∫

B+
ρ (x,ν)

|u(y)− u(x+)|dy = 0 and lim
ρ→0+

−

∫

B−

ρ (x,ν)
|u(y)− u(x−)|dy = 0,

where B±
ρ (x, ν) := {y ∈ Bρ(x) : (y−x) ·ν ∈ R

±}. The triplet (u(x+), u(x−), ν) is uniquely
determined up to a permutation of (u(x+), u(x−)) and a change of sign of ν. We denote
by Ju the set of approximate jump points and call it the jump set of u.

For u ∈ BV (Ω) the set Su is countably Hn−1-rectifiable with Hn−1(Su \ Ju) = 0 (see
[2, Theorem 3.78]). It is also convenient to work with the precise representative

u∗(x) :=

{
ũ(x) if x ∈ Ω \ Su,

[u](x)/2 if x ∈ Ju,
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which is uniquely defined Hd−1-almost everywhere. According to the Radon–Nikodým
theorem we can decompose the measure derivative Du = DauLd+Dsu into the absolutely
continuous and the singular part with respect to the Lebesgue measure Ld. We then define
the jump and the Cantor part of Du as

Dju := Dsu Ju and Dcu := Dsu (Ω \ Su).

From the identifications Dau = ∇uLd with the approximate gradient ∇u for the absolutely
continuous part and Dju = [u]νuH

d−1 Ju for the jump part (see [2, Theorem 3.83 and
formula (3.90)]) we arrive at the decomposition

Du = ∇uLd + [u]νuH
d−1 Ju +Dcu.

We further mention the subspace SBV (Ω) of special functions of bounded variation, which
contains all functions u ∈ BV (Ω) with Dcu = 0. In addition, we define

SBV 2(Ω) := {u ∈ SBV (Ω): ∇u ∈ L2(Ω,Rd) and Hd−1(Ju) <∞}.

We finally comment on some peculiarities for Ω = (a, b) ⊂ R in the one-dimensional
setting considered in the paper, in particular, concerning the pointwise behavior of a
function u ∈ BV (a, b)-functions and the structure of the distributional derivative. Here
we have Su = Ju, Ju is at most countable, and we can write

u = ua + uj + uc (6)

for an absolutely continuous function ua ∈W 1,1(a, b) with Dua = Dau, a jump function uj
with Duj = Dju, and a (continuous) Cantor function uc with Duc = Dcu (which are
determined uniquely up to additive constants). Thus, the decomposition ofDu is recovered
from a corresponding decomposition of the function itself (which in higher dimensions
d > 1 in general is not possible). For simplicity, we shall write u′ instead of ∇u and choose
ν = 1 for every jump point x ∈ Ju, meaning that u(x+) and u(x−) can be considered as
one-sided limits from the right and from the left, respectively.

Convergence in negative Sobolev spaces and in the flat topology. The negative
Sobolev spaces W−1,q(Ω) with 1 < q ≤ ∞ are defined as usual as the dual spaces of

W 1,q′

0 (Ω) (with q′ ∈ [1,∞) denoting the conjugate exponent to q with 1
q
+ 1

q′
= 1), and

correspondingly the norm is defined via the duality pairing as

‖T‖W−1,q(Ω) := sup
{
T (ϕ) : ϕ ∈W 1,q′

0 (Ω) with ‖ϕ‖W 1,q′(Ω) ≤ 1
}
,

for every T ∈W−1,q(Ω). Consequently, the spaces W−1,q(Ω) with 1 < q <∞ are reflexive
and separable. For later purposes, we mention two specific situations. Let v ∈ Lq(Ω,Rd)

and w ∈ Lr(Ω) with 1 ≤ r ≤ ∞ such that the embeddingW 1,q′

0 (Ω) ⊂ Lr′(Ω) is continuous.
If we set

Tdiv v(ϕ) := −

∫

Ω
v · ∇ϕdx and Tw(ϕ) :=

∫

Ω
w · ϕdx for all ϕ ∈W 1,q′

0 (Ω),
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then, by the Hölder inequality and the continuous embedding (with constant C ′), we
obtain Tdiv v, Tw ∈W−1,q(Ω) with

‖Tdiv v‖W−1,q(Ω) ≤ ‖v‖Lq(Ω,Rd) and ‖Tw‖W−1,q(Ω) ≤ C ′ ‖w‖Lr(Ω) . (7)

Because of the compact embedding W 1,q′

0 (Ω) ⋐ C0(Ω) for q′ > d, the negative Sobolev
norms can actually be considered on the space M(Ω) of all finite Radon measures on Ω,
for which the duality pairing reads as

‖µ‖W−1,q(Ω) = sup

{∫

Ω
ϕdµ : ϕ ∈W 1,q′

0 (Ω) with ‖ϕ‖
W

1,q′

0 (Ω)
≤ 1

}

for µ ∈ M(Ω). If we allow q′ = ∞ in this expression, we obtain the flat norm

‖µ‖flat := sup

{∫

Ω
ϕdµ : ϕ ∈W 1,∞

0 (Ω) with ‖ϕ‖
W

1,∞
0 (Ω)

≤ 1

}
,

for µ ∈ M(Ω). Here we have the inequalities

‖div v‖flat ≤ ‖v‖L1(Ω,Rd) and ‖wLd‖flat ≤ ‖v‖L1(Ω) (8)

for all functions v ∈ BV (Ω,Rd) and w ∈ L1(Ω). Let us still notice that due to Schauder’s
theorem and the compact embeddingW 1,∞

0 (Ω) ⋐ C0(Ω), the flat topology metrizes weak-∗
convergence of (uniformly bounded) measures. Therefore, we have the following relations
for the convergence of measure with respect to convergence in W−1,q(Ω), the flat norm
and in the weak-∗ sense.

Lemma 3.1 (on convergence of measures). Let Ω ⊂ R
d be an open, bounded set. For a

measure µ ∈ M(Ω) and a sequence {µn}n∈N of measures in M(Ω), we have:

(i) If µn → µ in W−1,q(Ω) for some 1 < q ≤ ∞, then µn → µ in the flat norm.

(ii) If µn
∗
⇀ µ, then µn → µ in the flat norm.

(iii) If µn → µ in the flat norm and supn∈N |µn|(Ω) <∞, then µn
∗
⇀ µ.

4 Compactness

In this section we establish a compactness result for sequences in L1(a, b)×M(a, b) with
bounded energy in Eε. This result together with a Γ-convergence result implies the con-
vergence of minimizers and the corresponding minimum values. In order to bound suitable
norms of the two fields in terms of the energy, we first prove the following technical lemma:

Lemma 4.1. Let g ∈ L1(a, b). For ε > 0 there exists xε ∈ R such that the grid

Gε :=
{
xε + 2εα : α ∈ Z and xε + 2εα ∈ (a+ ε, b− ε)

}

contains a subset G ′
ε ⊂ Gε with

∫
⋃
{Iε(xα) : xα∈G ′

ε}
|g|dt+ 2#(Gε \ G

′
ε) ≤

1

c0ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|g|dt

)
dx.
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Proof. We proceed analogously to [29, proof of Lemma 4.2]. Let φε ∈ C∞
0 (a, b) be a cut-off

function with 0 ≤ φε ≤ 1 in (a, b) and φε ≡ 1 in (a+ε, b−ε). We then consider ψε ∈ C0(R)
defined via

ψε(x) := φε(x) f

(
ε−

∫

Iε(x)∩(a,b)
|g|dt

)

for x ∈ (a, b) and ψε(x) := 0 for x ∈ R \ (a, b). The application of [10, Lemma 4.2] (with
η = 2ε), which is a consequence of the mean value theorem for integrals, shows that

∫

R

ψε dx = 2ε
∑

α∈Z

ψε(xε + 2εα)

holds for a suitable xε ∈ R. By non-negativity of f , the choice of the cut-off function φε
and the definition of Gε, we hence have

1

ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|g|dt

)
dx ≥

1

ε

∫

R

ψε(x) dx

≥ 2
∑

xα∈Gε

ψε(xα) = 2
∑

xα∈Gε

f

(
ε−

∫

Iε(xα)
|g|dt

)
. (9)

If we now set

G
′
ε :=

{
xα ∈ Gε : ε−

∫

Iε(xα)
|g|dt < 1

}
,

then the claim follows directly from (9), after rewriting the right-hand side via the defini-
tion of f as

2
∑

xα∈Gε

f

(
ε−

∫

Iε(xα)
|g|dt

)
= 2c0

∑

xα∈G ′

ε

ε−

∫

Iε(xα)
|g|dt+ 2

∑

xα∈Gε\G ′
ε

c0

= c0
∑

xα∈G ′

ε

∫

Iε(xα)
|g|dt+ 2c0#(Gε \ G

′
ε).

We can now address the aforementioned compactness result.

Theorem 4.2 (Compactness). Let {(uε, γε)}ε be a sequence in L1(a, b)×M(a, b) with

Eε(uε, γε) ≤ C0

for a positive constant C0 and all ε > 0. There exist a function u ∈ BV (a, b) with
‖u‖L∞(a,b) ≤ K and a measure γ ∈ M(a, b) such that, up to subsequences, {uε}ε converges

to u in L1(a, b) and {γε}ε converges to γ = γs+ gL1 in W−1,q(a, b) for all 1 < q <∞ and
in particular in the flat norm. Moreover, there holds γs = Dsu and u′ − g ∈ L2(a, b).

Proof. We first observe from the finiteness of Eε(uε, γε) that we necessarily have uε ∈
W 1,1(a, b) with ‖uε‖L∞(a,b) ≤ K and γε = gεL

1 for some functions gε ∈ L1(a, b) for all ε.

By the uniform boundedness of ‖u′ε − gε‖L2(a,b) and ‖uε‖L∞(a,b) we deduce from (7)

‖γε‖W−1,∞(a,b) ≤
∥∥u′εL1

∥∥
W−1,∞(a,b)

+
∥∥γε − u′εL

1
∥∥
W−1,∞(a,b)

≤ ‖uε‖L∞(a,b) + C ′
∥∥gε − u′ε

∥∥
L2(a,b)

≤ C(a, b,K),

9



independently of ε. Therefore, {γε}ε is bounded inW−1,∞(a, b) and consequently contains
a subsequence, which converges weakly-∗ in W−1,∞(a, b) to some γ ∈ W−1,∞(a, b). We
next study the convergence of the sequence {uε}ε. To this end, we consider the function
vε defined by

vε(x) :=

{
uε(x) x ∈

⋃
{Iε(xα) : xα ∈ G ′

ε},

0 otherwise.

Since uε ∈ W 1,1(a, b) with ‖uε‖L∞(a,b) ≤ K is assumed, we clearly have vε ∈ SBV (a, b)
with ‖vε‖L∞(a,b) ≤ K, for every ε. Moreover, jump discontinuities of vε can only occur at

points xα ± ε for xα ∈ Gε \ G ′
ε and close to the boundary at minG ′

ε or at maxG ′
ε. As a

consequence of Lemma 4.1 and the definition of the energy Eε, we deduce

#Jvε ≤ 2#(Gε \ G
′
ε) + 2 ≤

1

c0ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|g|dt

)
dx+ 2 ≤

C0

c0
+ 2,

i.e., that #Jvε is bounded independently of ε. By the Cauchy–Schwarz inequality and
again by Lemma 4.1, we additionally have

∫ b

a

|v′ε(x)|dx ≤

∫
⋃
{Iε(xα) : xα∈G ′

ε}
|u′ε(x)− gε(x)|dx+

∫
⋃
{Iε(xα) : xα∈G ′

ε}
|gε(x)|dx

≤ |b− a|
1
2

(∫ b

a

|u′ε(x)− gε(x)|
2 dx

) 1
2

+
1

c0ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|gε|dt

)
dx

≤ |b− a|
1
2C

1
2
0 +

C0

c0
,

independently of ε. Hence, {vε}ε is bounded in BV (a, b). By the Rellich–Kondrachov
theorem, there exists a subsequence that converges in Lq(a, b) to some u ∈ BV (a, b) with
‖u‖L∞(a,b) ≤ K, for any 1 ≤ q < ∞. To identify u as the limit in Lq(a, b) of (the same
subsequence of) {uε}ε we notice from the definition of vε

‖vε − uε‖
q
Lq(a,b) ≤

∫

(a,b)\
⋃
{Iε(xα) : xα∈G ′

ε}
Kq dx ≤ 2ε(#(Gε \ G

′
ε) + 2)Kq.

Since #(Gε \ G ′
ε) is bounded uniformly in ε, this allows to conclude the convergence of

{uε}ε to u in Lq(a, b), for any 1 ≤ q <∞.
It remains to show convergence of (the subsequence of) {γε}ε in W−1,q(a, b) for any

1 < q < ∞ and the claimed relations between γ and Du. In view of (7), we have
u′εL

1 → Du = u′L1 + Dsu in W−1,q(a, b) for every 1 < q < ∞. Furthermore, by the
boundedness of {u′ε−gε}ε in L

2(a, b), we can extract a subsequence which converges weakly
in L2(a, b) to some w ∈ L2(a, b). Since L2(a, b) is compactly embedded in W−1,q(a, b) for
all 1 < q <∞, we obtain γε → Du−wL1 in W−1,q(a, b) and thus, via Lemma 3.1, also in
the flat norm. This shows γ = Du−wL1 ∈ M(a, b), which in turn, by the Radon-Nikodým
theorem, yields γs = Dsu and w = u′ − g ∈ L2(a, b).

Remark 4.3. According to the compactness result of Theorem 4.2 we may restrict ourselves
to pairs (u, γ) ∈ BV (a, b)×M(a, b) with ‖u‖L∞(a,b) ≤ K and such that the measure Du−γ

is absolutely continuous with respect to the Lebesgue measure with density in L2(a, b).
The statements of Theorem 2.1 are trivial otherwise.
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Remark 4.4. In principle, with the compactness result of Theorem 4.2 at hand, we could in-
fer our Γ-convergence result in Theorem 2.1 from known results, by separate considerations
of the elastic and inelastic contributions. To this end, given (uε, γε) ∈W

1,1(a, b)×M(a, b)
with γε = gεL

1 and u′ε − gε ∈ L2(a, b), we define (Wε, Gε) ∈ W 1,2(a, b) ×W 1,1(a, b) via
Wε(a) = Gε(a) = 0 and W ′

ε = uε − gε, G
′
ε = gε on (a, b). This allows to express

Eε(uε, γε) =

∫ b

a

|W ′
ε|
2 dx+

1

ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|G′

ε|dt

)
dx

as the sum of the standard Dirichlet energy for Wε and a non-local energy involving
only Gε considered by Lussardi and Vitali in [29]. However, the understanding of the
coupling between uε and γε is essential for the extension to higher dimensions addressed
in [5], which cannot be traced back to the one-dimensional case via the slicing technique.
For this reason, we prefer to give a self-contained proof of Theorem 2.1.

5 Estimate from below of the Γ-lower limit

Next, we start with the proof of the Γ-lim inf-inequality. To show this inequality it is
useful to introduce the localized version of the functionals {Eε}ε and E. They are defined
for (u, γ) ∈ L1(a, b) ×M(a, b) and every open subset A of (a, b) via

Eε(u, γ,A) :=





∫
A
|u′ − g|2 dx if u ∈W 1,1(a, b), ‖u‖L∞(a,b) ≤ K,

+1
ε

∫
A
f
(
ε−
∫
Iε(x)∩(a,b)

|g| dt
)
dx and γ = gL1, g ∈ L1(a, b)

∞ otherwise,

and

E(u, γ,A) :=





∫
A
|u′ − g|2 dx+

∫
A
c0|g|dx if u ∈ BV (a, b), ‖u‖L∞(a,b) ≤ K,

+2
∑

x∈Ju∩A
f
(
1
2 |[u](x)|

)
γ = Dsu+ gL1,

+c0|D
cu|(A) u′ − g ∈ L2(a, b),

∞ otherwise.

We denote the Γ-lower and Γ-upper limit of {Eε}ε by

E′(u, γ) := inf
{
lim inf
ε→0

Eε(uε, γε) : uε → u in L1(a, b), γε → γ in the flat norm
}
,

E′′(u, γ) := inf
{
lim sup

ε→0
Eε(uε, γε) : uε → u in L1(a, b), γε → γ in the flat norm

}
,

respectively. For the Γ-lower limit we also need a localized version, for which we adapt
the notation and write E′(·, ·, A) for every open subset A of (a, b).

Remark 5.1 (Properties of the localized Γ-lower limit). Let (u, γ) ∈ L1(a, b)×M(a, b).

(i) The properties that the set functions A 7→ Eε(u, γ,A) are increasing and superaddi-
tive for each ε carry immediately over to A 7→ E′(u, γ,A).
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(ii) A direct consequence of (i) is that lower bounds for A 7→ E′(u, γ,A) transfer from
intervals in (a, b) to arbitrary open subsets of (a, b), i.e., if for a positive Borel
measure λ an estimate of the form

E′(u, γ,A) ≥ λ(A)

holds for all intervals A ⊂ (a, b), then the estimate actually holds for any open subset
A ⊂ (a, b), cp. [29, Remark 4.6] for a similar statement.

In this section we prove the Γ-lim inf-inequality, where in view of Remark 4.3 it is
sufficient to consider (u, γ) ∈ BV (a, b) × M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu + gL1

and u′ − g ∈ L2(a, b). The basic idea is to derive three separate estimates for the jump
part, the volume term and the Cantor term, respectively, and to infer the desired estimate
then from a combination of these estimates by means of measure theory.

5.1 Estimate from below of the jump term

Proposition 5.2. Let A be an open subset of (a, b). For every (u, γ) ∈ BV (a, b)×M(a, b)
with γ = Dsu+ gL1 and u′ − g ∈ L2(a, b) we have

E′(u, γ,A) ≥ 2
∑

x∈Ju∩A

f

(
1

2
|[u](x)|

)
.

Proof. Step 1: For every x̄ ∈ Ju ∩A we have

E′(u, γ,A) ≥ 2f

(
1

2
|[u](x̄)|

)
. (10)

Since only finite energy approximations are of interest, we consider a sequence {(uε, γε)}ε
in W 1,1(a, b) × M(a, b) with γε = gεL

1 for some gε ∈ L1(a, b) and Eε(uε, γε) ≤ C0 for
some uniform constant C0, for all ε > 0, such that uε → u in L1(a, b) and γε → γ in the
flat norm. We fix an arbitrary δ > 0 such that (x̄− 2δ, x̄+2δ) ⊂ A (recall that A ⊂ (a, b)
is open). By definition of (u(x̄+), u(x̄−)) and since uε → u in measure, we readily find
points x̄−ε ∈ (x̄− δ, x̄) and x̄+ε ∈ (x̄, x̄+ δ) such that, for sufficiently small ε,

|uε(x̄
+
ε )− u(x̄+)| < δ and |uε(x̄

−
ε )− u(x̄−)| < δ (11)

(also cp. [29, Lemma 5.1]). Using the monotonicity of A 7→ Eε(uε, γε, A) and applying the
estimate (9) with (a, b) replaced by (x̄− 2δ, x̄+2δ) on an associated grid of points Ḡε, we
obtain from the subadditivity and non-negativity of f

Eε(uε, γε, A) ≥ 2
∑

xα∈Ḡε

f

(
ε−

∫

Iε(xα)
|gε|dt

)

≥ 2f

( ∑

xα∈Ḡε

1

2

∫

Iε(xα)
|gε|dx

)
≥ f

(
1

2

∫

(x̄−

ε ,x̄+
ε )

|gε|dx

)
, (12)
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for all ε < δ (notice the inclusion (x̄−ε , x̄
+
ε ) ⊂

⋃
{Iε(xα) : xα ∈ Ḡε}). For the argument

on the right-hand side, we observe from the Cauchy-Schwarz inequality, the inequalities
in (11) and from the energy bound

∫

(x̄−

ε ,x̄+
ε )

|gε|dx ≥

[∫

(x̄−

ε ,x̄+
ε )

|u′ε|dx−

∫

(x̄−

ε ,x̄+
ε )

|gε − u′ε|dx

]

+

≥
[
|uε(x̄

+
ε )− uε(x̄

−
ε )| − |x̄+ε − x̄−ε |

1
2

∥∥gε − u′ε
∥∥
L2(a,b)

]
+

≥
[
|u(x̄+)− u(x̄−)| − 2δ − (2δ)

1
2C

1
2
0

]
+
.

Using once again the fact that f is increasing, we can continue to estimate (12) from below
via

Eε(uε, γε, A) ≥ 2f

(
1

2

[
|[u](x̄)| − 2δ − C

1
2
0 (2δ)

1
2

]
+

)
.

Now, passing to the lim inf as ε→ 0 and then letting δ → 0+, we obtain (10).
Step 2. For an arbitrary M ∈ N with M ≤ #(Ju ∩ A) we select a set {x1, . . . , xM}

containing M points of Ju ∩ A and pairwise disjoint open intervals I1, . . . , IM in A such
that xi ∈ Ii for all i = 1, . . . ,M . First, we apply the monotonicity and superadditivity
of E′(u, γ, · ) (see Remark 5.1) and then the estimate of Step 1 for Ii instead of A. This
yields

E′(u, γ,A) ≥

M∑

i=1

E′(u, γ, Ii) ≥

M∑

i=1

2f

(
1

2
|[u](xi)|

)
.

SinceM is arbitrary and Ju is at most countable, the claim of the proposition follows.

5.2 Estimate from below of the volume and Cantor terms

We basically follow the idea of Lussardi and Vitali from [29, Lemma 4.3 and Lemma 4.4].
We start by proving that approximation sequences inW 1,1(a, b)×M(a, b) can be modified
in such a way that in the limit we additionally have the optimal L∞-estimate.

Lemma 5.3. Let (u, γ) ∈ BV (a, b) ×M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu+ gL1 and

u′ − g ∈ L2(a, b). Furthermore, let {(uε, γε)}ε be a sequence in W 1,1(a, b) ×M(a, b) with
‖uε‖L∞(a,b) ≤ K, γε = gεL

1 and u′ε − gε ∈ L2(a, b) for all ε > 0 such that {uε}ε converges

to u a.e. in (a, b) and in L1(a, b) and such that {γε}ε converges to γ in the flat norm. There
exists a sequence {(ūε, γ̄ε)}ε in W 1,1(a, b) ×M(a, b) with ‖ūε‖L∞(a,b) ≤ K, γ̄ε = ḡεL

1 for

some ḡε ∈ L1(a, b) and Eε(ūε, γ̄ε) ≤ Eε(uε, γε) for all ε such that {ūε}ε converges to u
a.e. in (a, b) and in Lq(a, b) for all 1 ≤ q <∞ and

lim sup
ε→0

‖ūε − u‖L∞(a,b) ≤ sup
{
|[u](x)| : x ∈ Ju

}
.

If, in addition, the energies {Eε(uε, γε)}ε are bounded, then {γ̄ε}ε converges to γ in the
flat norm.

Proof. We follow the outline of the proof for [29, Lemma 4.3], which, however, needs some
modifications due to the additional variable γ. In what follows, we may assume that
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the precise representatives of u and uε for each ε are considered. The function u can be
decomposed as ua+uj+uc, see (6), where uj is a jump function with jump discontinuities
at any point of Ju and where ua + uc is uniformly continuous in (a, b). We set

σ := sup
{
|[uj ](x)| : x ∈ Ju

}

and first claim that for every n ∈ N there exists δn ∈ (0, 1
n
] such that

x, y ∈ (a, b) with |x− y| < δn ⇒ |uj(x)− uj(y)| < σ +
1

n
, (13)

|ua(x) + uc(x)− ua(y)− uc(y)| <
1

n
. (14)

In fact, there are only finitely many points x̄1, . . . , x̄m(n) in Ju that have to be excluded
to deduce that

∑

z∈Ju\{x̄1,...,x̄m(n)}

|[uj ](z)| <
1

n
. (15)

By choosing δn > 0 sufficiently small we can guarantee (13) by (15) and the definition
of σ provided that each interval of length δn contains at most one x̄j, and we can further
ensure (14), by the uniform continuity of ua + uc. We then consider a partition Pn of
(a, b), i.e.,

a = x0 < x1 < · · · < xk < xk+1 = b

(where the dependence of the points on n is not written explicitly) such that the mesh
size is less than δn, i.e., xi+1 − xi < δn for all i ∈ {0, . . . , k}, xi /∈ Ju and uε(xi) → u(xi)
as ε → 0 for every i ∈ {1, . . . , k}, which is possible by the pointwise convergence uε → u
a.e. in (a, b). Since by construction of δn at most one of the points x̄1, . . . , x̄m(n) ∈ Ju,
where a large jump of uj occurs, may belong to the interval [xi, xi+1], we necessarily have
|uj(x)− uj(y)| <

1
n
for y = xi or y = xi+1 such that as a consequence of (14) there holds

u(x) ∈

[
min{u(xi), u(xi+1)} −

2

n
,max{u(xi), u(xi+1)}+

2

n

]
(16)

for all x ∈ [xi, xi+1] and every i ∈ {1, . . . , k − 1}.
After having fixed the partitions Pn, we can now start with the construction of the

sequence {ūε}ε. Since uε → u in measure and uε(xi) → u(xi) for every i ∈ {1, . . . , k}, we
can fix a “level” ε̄n for each n ∈ N such that

∣∣∣
{
x ∈ (a, b) : |uε(x)− u(x)| ≥

1

n

}∣∣∣ ≤
1

n
for all ε < ε̄n (17)

and

|uε(xi)− u(xi)| <
1

n
for every i = 1, . . . , k and all ε < ε̄n. (18)

Notice that we can choose {ε̄n}n strictly decreasing and such that ε̄n → 0+ as n → ∞.
For ε > ε̄1 we then set ūε := uε and γ̄ε := γε. Otherwise, if ε ∈ (0, ε̄1], we first determine
the unique n = n(ε) ∈ N with ε ∈ (ε̄n+1, ε̄n]. On the first and the last interval of Pn we
set ūε equal to uε(x1) and uε(xk), respectively. On an arbitrary interior interval [α, β] of
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the form [xi, xi+1] for some i ∈ {1, . . . , k − 1} we define, after assuming without loss of
generality uε(α) ≤ uε(β),

ūε(x) := min

{
max

{
uε(x), uε(α)−

4

n

}
, uε(β) +

4

n

}

for every x ∈ [α, β], which is the projection of uε onto [uε(α)− 4/n, uε(β)+ 4/n]. Because
of ūε(xi) = uε(xi) for every i ∈ {1, . . . , k} and uε ∈ W 1,1(a, b), we clearly have ūε ∈
W 1,1(a, b). Moreover, the L∞ bound on uε with constant K directly transfers to ūε.

We next study the asymptotic behavior of the sequence {ūε}ε. From the definition
of ūε and with (18), we observe for all ε ≤ ε̄1

ūε(x) ∈

[
min{u(xi), u(xi+1)} −

5

n
,max{u(xi), u(xi+1)}+

5

n

]

which, via (13) and (14), implies

|ūε(x)− u(x)| ≤ σ +
7

n
,

for all x ∈ [xi, xi+1] and every i ∈ {1, . . . , k− 1}. Since the latter estimate is also satisfied
for the first and the last interval of the partition, we then infer from n = n(ε) → ∞ as
ε→ 0 the estimate

lim sup
ε→0

‖ūε − u‖L∞(a,b) ≤ σ = sup
{
|[u](x)| : x ∈ Ju

}
.

In order to show the convergence claims of {ūε}ε, we again consider an arbitrary interior
interval [α, β] of the partition Pn. If we denote the pointwise projection of uε onto [uε(α)−
3/n, uε(β) + 3/n] by u∗ε, we have

|ūε − u| ≤ |ūε − u∗ε|+ |u∗ε − u| ≤
1

n
+ |uε − u| in [α, β],

as we know u(x) ∈ [uε(α)−3/n, uε(β)+3/n] due to (16) and (18). Since the length of the
first and last interval of Pn vanish in the limit n → ∞ and hence for ε → 0, this implies
the pointwise convergence of {ūε}ε to u a.e. on (a, b). In addition, as {ūε}ε is bounded in
L∞(a, b), convergence in Lq(a, b) for all 1 ≤ q <∞ follows from the dominated convergence
theorem. For later purposes, we notice from the definition of ūε and the previous inclusion
for u that for every ε we have

{x ∈ (a, b) : uε(x) 6= ūε(x)}

⊂
{
x ∈ (a, b) : |uε(x)− u(x)| ≥

1

n

}
∪ (x0, x1) ∪ (xk, xk+1). (19)

We next define the sequence {γ̄ε}ε in M(a, b) by setting for every ε

ḡε(x) :=

{
gε(x) if uε(x) = ūε(x),
0 otherwise,
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and γ̄ε := ḡεL
1. Since there holds ū′ε = 0 on {x ∈ (a, b) : ūε(x) 6= uε(x)} and ū′ε = u′ε on

{x ∈ (a, b) : ūε(x) = uε(x)}, it follows that

Eε(ūε, γ̄ε) =

∫ b

a

|ū′ε(x)− ḡε(x)|
2 dx+

1

ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|ḡε(t)|dt

)
dx

≤

∫ b

a

|u′ε(x)− gε(x)|
2 dx+

1

ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|gε(t)|dt

)
dx = Eε(uε, γε).

If, in addition, {Eε(uε, γε)}ε is a bounded sequence, then {ū′ε − ḡε}ε is a bounded
sequence in L2(a, b). In view of (8) and the Cauchy–Schwarz inequality we then notice for
1 < q <∞

‖γ̄ε − γε‖flat ≤ ‖Dūε −Duε‖flat + ‖(γ̄ε −Dūε)− (γε −Duε)‖flat

≤ ‖ūε − uε‖L1(a,b) +
∥∥(gε − u′ε)1{uε 6=ūε}L

1
∥∥
flat

≤ ‖ūε − uε‖L1(a,b) +
∥∥(gε − u′ε)1{uε 6=ūε}

∥∥
L1(a,b)

≤ ‖ūε − uε‖L1(a,b) +
∥∥gε − u′ε

∥∥
L2(a,b)

|{x ∈ (a, b) : uε(x) 6= ūε(x)}|
1
2 .

If we consider the limit ε → 0 on the right-hand side, the first term disappears, since we
have the convergence ūε − uε → 0 in L1(a, b), while the second term disappears by (19)
combined with (17) and the fact that the length of the intervals in Pn vanish for ε → 0.
Therefore, we have γ̄ε − γε → 0 in the flat norm. Since by assumption there holds γε → γ
in the flat norm, we conclude that we also have γ̄ε → γ in the flat norm, which completes
the proof of the lemma.

For a localization procedure, we further need the following statement on the relation
between E′(u, γ, I) and the localized Γ-lower limit E′(uI , γI), where I ⊂ (a, b) is an open
interval, uI is the extension of u

∣∣
I
to (a, b) with inner traces and γI is the restriction of γ

to I.

Lemma 5.4. Let I = (α, β) be an open interval in (a, b). Let (u, γ) ∈ BV (a, b)×M(a, b)
with ‖u‖L∞(a,b) ≤ K, γ = Dsu+gL1 and u′−g ∈ L2(a, b). Then for (uI , γI) ∈ BV (a, b)×
M(a, b) defined via

uI(x) :=





u(α+) x ∈ (a, α),
u(x) x ∈ [α, β],
u(β−) x ∈ (β, b),

and γI := γ I there holds
E′(uI , γI) ≤ E′(u, γ, I).

Proof. We proceed analogously to the proof of [29, Lemma 4.4]. By definition of E′ as
the Γ-lower limit of {Eε}ε, there exists a sequence {(uε, γε)}ε in W

1,1(a, b)×M(a, b) with
‖uε‖L∞(a,b) ≤ K and γε = gεL

1 such that uε → u in L1(a, b), γε → γ in the flat norm

and lim infε→0Eε(uε, γε, I) = E′(u, γ, I). Without loss of generality, we may also assume
pointwise convergence uε → u a.e. in (a, b). For an arbitrary η ∈ (0, (β − α)/2) we then
pick points αη ∈ (α,α + η) and βη ∈ (β − η, β) such that on the one hand

uε(αη) → u(αη) and uε(βη) → u(βη) as ε→ 0, (20)
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and on the other hand

|u(αη)− u(α+)| + |u(βη)− u(β−)| < η. (21)

For Iη := (αη, βη) ⊂ (α, β) we now consider the functions (uIη , γIη) and the sequence

{(u
Iη
ε , γ

Iη
ε )}ε in W 1,1(a, b) ×M(a, b) defined analogously to (uI , γI). The condition (20)

guarantees u
Iη
ε → uIη in L1(a, b), while γ

Iη
ε → γIη in the flat norm is trivially satis-

fied. Moreover, we notice Eε(u
Iη
ε , γ

Iη
ε ) = Eε(u

Iη
ε , γ

Iη
ε , I) for all ε < min{αη − α, β − βη}.

Therefore, we conclude from the definition of Eε that

E′(uIη , γIη) ≤ lim inf
ε→0

Eε(u
Iη
ε , γ

Iη
ε ) = lim inf

ε→0
Eε(u

Iη
ε , γ

Iη
ε , I)

≤ lim inf
ε→0

Eε(uε, γε, I) = E′(u, γ, I).

We next observe uIη → uI in L1(a, b) and γIη → γI in the flat norm as η → 0, from (21),

respectively, Lemma 3.1 since γIη
∗
⇀ γI in M(a, b) by dominated convergence. By the

lower semicontinuity of E′ we then arrive at the claim

E′(uI , γI) ≤ lim inf
η→0

E′(uIη , γIη) ≤ E′(u, γ, I).

Now, we finally turn to the estimate from below for the volume and the Cantor terms.

Proposition 5.5. Let A be an open subset of (a, b). For every (u, γ) ∈ BV (a, b)×M(a, b)
with ‖u‖L∞(a,b) ≤ K, γ = Dsu+ gL1 and u′ − g ∈ L2(a, b) we have

E′(u, γ,A) ≥

∫

A

|u′ − g|2 dx+ c0

∫

A

|g|dx+ c0|D
cu|(A).

Proof. Step 1: With σ := supx∈Ju |u(x+)− u(x−)|, there holds the preliminary estimate

E′(u, γ) (1 + 3σ) ≥

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g| dx+ c0|D
cu|(a, b). (22)

By definition of E′ as the Γ-lower limit of {Eε}ε, there exists a sequence {(uε, γε)}ε in
W 1,1(a, b)×M(a, b) with ‖uε‖L∞(a,b) ≤ K and γε = gεL

1 for some gε ∈ L
1(a, b) for every

ε > 0 such that uε → u in L1(a, b), γε → γ in the flat norm and lim infε→0Eε(uε, γε) =
E′(u, γ). After assuming without loss of generality E′(u, γ) < ∞ and passing to a subse-
quence (not relabeled) and a possible modification of the sequence via Lemma 5.3 we may
further suppose

lim
ε→0

Eε(uε, γε) = E′(u, γ), in particular Eε(uε, γε) ≤ C0 for all ε (23)

for a positive constant C0 as well as

lim sup
ε→0

‖uε − u‖L∞(a,b) ≤ σ.

Let η > 0 be fixed. We may assume that ‖uε − u‖L∞(a,b) ≤ σ + η holds for all ε. Anal-
ogously as in the proof of Lemma 5.3 (cf. (13) and (14)), there exists δη > 0 such that
|u(x)− u(y)| < σ + η for all x, y ∈ (a, b) with |x− y| < δη. Thus, there holds

x, y ∈ (a, b) with |x− y| < δη ⇒ |uε(x)− uε(y)| < 3(σ + η) (24)
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for all such ε. Next, we apply Lemma 4.1 with u = uε and γ = γε. In this way we find a
uniform grid Gε in the interval (a, b) with grid size 2ε such that

∫
⋃
{Iε(xα) : xα∈G ′

ε}
|gε|dt+ 2#(Gε \ G

′
ε) ≤

1

c0ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|gε|dt

)
dx. (25)

Let a∗ = minGε − ε and b∗ = maxGε + ε. We then consider a sequence {ṽε}ε of functions
in L∞(a, b), which is defined a.e. in (a∗, b∗) by

ṽε(x) :=

{
uε(x) x ∈

⋃
{Iε(xα) : xα ∈ G ′

ε},
−
∫
Iε(xα)

uε(z) dz x ∈ Iε(xα) for some xα ∈ Gε \ G ′
ε,

(26)

and then extended to (a, b) by the constant values ṽε(a
+
∗ ) and ṽε(b

−
∗ ), respectively, for all ε.

As ṽε is bounded with ‖ṽε‖L∞(a,b) ≤ K and coincides with uε on the set
⋃
{Iε(xα) : xα ∈

G ′
ε}, where

|(a, b) \
⋃

{Iε(xα) : xα ∈ G
′
ε}| ≤ 2ε(2 + #(Gε \ G

′
ε)) ≤ 4ε+ ε

C0

c0
(27)

by (23) and (25), we observe ṽε → u in Lq(a, b) for all 1 ≤ q < ∞. Moreover, we have
ṽε ∈ SBV (a, b) with

|[ṽε](x)| ≤ 3(σ + η) for all x ∈ Jṽε ,

provided that ε is sufficiently small, i.e., 4ε < δη (such that (24) is satisfied). Since the
number of jumps of ṽε is bounded via (25) and the definition of Eε by

#Jṽε ≤ 2#(Gε \ G
′
ε) ≤

1

c0
Eε(uε, γε),

we end up with the estimate

|Dsṽε|(a, b) ≤
3(σ + η)

c0
Eε(uε, γε) (28)

for the size of Dsṽε in terms of the energy Eε(uε, γε). Next, we introduce a sequence {γ̃ε}ε
of measures in M(a, b), by setting γ̃ε := g̃εL

1 with gε ∈ L1(a, b) defined as

g̃ε(x) :=

{
gε(x) x ∈

⋃
{Iε(xα) : xα ∈ G ′

ε},
0 otherwise,

(29)

for all ε. In order to show that {γ̃ε + Dsṽε}ε is an approximating sequence of γ, we
first notice from the definition of ṽε and γ̃ε = g̃εL

1 in (26) and (29), with ṽ′ε = u′ε on⋃
{Iε(xα) : xα ∈ G ′

ε} and ṽ′ε = 0 on the remaining set of (a, b), that

‖γε − (γ̃ε +Dsṽε)‖flat =
∥∥gε1(a,b)\⋃{Iε(xα) : xα∈G ′

ε}
L1 −Dsṽε

∥∥
flat

=
∥∥(gε − u′ε)1(a,b)\

⋃
{Iε(xα) : xα∈G ′

ε}
L1 + u′εL

1 − ṽ′εL
1 −Dsṽε

∥∥
flat

≤
∥∥(gε − u′ε)1(a,b)\

⋃
{Iε(xα) : xα∈G ′

ε}
L1

∥∥
flat

+ ‖Duε −Dṽε‖flat .
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With (8) and the Cauchy–Schwarz inequality we can then continue to estimate

‖γε − (γ̃ε +Dsṽε)‖flat
≤

∥∥(gε − u′ε)1(a,b)\
⋃
{Iε(xα) : xα∈G ′

ε}

∥∥
L1(a,b)

+ ‖uε − ṽε‖L1(a,b)

≤
∥∥gε − u′ε

∥∥
L2(a,b)

|(a, b) \
⋃

{Iε(xα) : xα ∈ G
′
ε}|

1
2 + ‖uε − ṽε‖L1(a,b) .

We now study the terms on the right-hand side. From (23) and the definition of Eε we
notice that {u′ε − gε}ε is a bounded sequence in L2(a, b). Together with (27) and taking
into account also the strong convergences uε → u and ṽε → u in L1(a, b), we then arrive
at

‖γε − (γ̃ε +Dsṽε)‖flat → 0 as ε→ 0.

With γε → γ = Dsu+ gL1 in the flat norm and Lemma 3.1, we then conclude

γ̃ε +Dsṽε → γ in the flat norm and γ̃ε +Dsṽε
∗
⇀ γ in M(a, b). (30)

For the latter conclusion we have also used the fact that {|γ̃ε +Dsṽε|(a, b)}ε with

|γ̃ε +Dsṽε|(a, b) =

∫ b

a

|g̃ε|dx+ |Dsṽε|(a, b) for every ε > 0

is a bounded sequence, which is a consequence of the boundedness of {g̃ε}ε in L1(a, b)
via (25) and the estimate (28) (recall also the bound (23) on the energies).

After having discussed the convergence properties of the sequence {(ṽε, γ̃ε)}ε, we can
finally turn to the proof of the estimate (22). From the definition of Eε we obtain via (25)
and (28)

Eε(uε, γε) (1 + 3(σ + η))

≥

∫ b

a

|u′ε − gε|
2 dx+ c0

∫
⋃
{Iε(xα) : xα∈G ′

ε}
|gε|dx+ c0|D

sṽε|(a, b)

=

∫ b

a

|u′ε − gε|
2 dx+ c0

∫ b

a

|g̃ε|dx+ c0|D
sṽε|(a, b).

By the choice of the sequence {(uε, γε)}ε with (23) it follows that

E′(u, γ) (1 + 3(σ + η))

≥ lim inf
ε→0

∫ b

a

|u′ε − gε|
2 dx+ lim inf

ε→0

[
c0

∫ b

a

|g̃ε|dx+ c0|D
sṽε|(a, b)

]

≥

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g|dx+ c0|D
su|(a, b)

≥

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g|dx+ c0|D
cu|(a, b).

Let us comment on the second-last inequality. For the first term we first deduce from
the boundedness of the sequence {u′ε − gε}ε in L2(a, b) combined with the convergences
u′εL

1 → Du and γε → γ = Dsu + gL1 in the flat norm that u′ε − gε ⇀ u′ − g in
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L2(a, b) and then employ the lower semicontinuity of the L2-norm with respect to weak
convergence in L2(a, b). For the second and third term we use the weak-∗ convergence

γ̃ε+D
sṽε

∗
⇀ γ = Dsu+gL1 in M(a, b) from (30) and the lower semicontinuity of the total

variation with respect to weak-∗ convergence. By the arbitrariness of η > 0 we conclude
from the previous inequality the desired estimate (22).

Step 2: Localization. We fix an arbitrary σ̄ > 0 and consider the finite set of points
{x1, . . . , xN−1} ⊂ Ju such that |[u](xi)| > σ̄ for i = 1, . . . , N − 1. Let x0 = a and xN = b.
Then we have

sup
x∈Ju∩(xi,xi+1)

|[u](x)| ≤ σ̄ for every i ∈ {0, . . . , N − 1}.

For every open subinterval (α, β) of (a, b) we consider pairs (u(α,β), γ(α,β)) ∈ BV (a, b) ×
M(a, b) defined as in Lemma 5.4 as

u(α,β)(x) =





u(α+) x ∈ (a, α),
u(x) x ∈ [α, β],
u(β−) x ∈ (β, b),

and γ(α,β) = γ (α, β). By Lemma 5.4 (with I = (xi, xi+1)) and by Step 1 (applied with
u = u(xi,xi+1) and γ = γ(xi,xi+1)), we obtain

E′(u, γ, (xi, xi+1))(1 + 3σ̄) ≥ E′(u(xi,xi+1), γ(xi,xi+1))(1 + 3σ̄)

≥

∫ xi+1

xi

|u′ − g|2 dx+ c0

∫ xi+1

xi

|g|dx+ c0|D
cu|(xi, xi+1)

for every i ∈ {0, . . . , N − 1}. With the superadditivity of A 7→ E′(u, γ,A) from Re-
mark 5.1 (i) we then deduce

E′(u, γ) (1 + 3σ̄) ≥

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g|dx+ c0|D
cu|(a, b),

which, by the arbitrariness of σ̄ > 0, leads to

E′(u, γ) ≥

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g|dx+ c0|D
cu|(a, b).

Applying this estimate to (uI , γI), from Lemma 5.4 we infer that

E′(u, γ, I) ≥ E′(uI , γI) ≥ λ(I)

for every open interval I ⊂ (a, b), where λ denotes the positive Borel measure on (a, b)
that is given by

λ(B) :=

∫

B

|u′ − g|2 dx+ c0

∫

B

|g| dx+ c0|D
cu|(B)

for every Borel subset B of (a, b). Therefore, the claim of the proposition follows from
Remark 5.1 (ii).
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5.3 Conclusion and proof of Theorem 2.1 (i)

For (u, γ) ∈ BV (a, b)×M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu+ gL1 and u′− g ∈ L2(a, b)
we have proved so far in Propositions 5.2 and 5.5 the following lower bounds for the
volume, the Cantor and the jump part:

1. E′(u, γ,A) ≥
∫
A
|u′ − g|2 dx+ c0

∫
A
|g|dx,

2. E′(u, γ,A) ≥ c0|D
cu|(A),

3. E′(u, γ,A) ≥ 2
∑

x∈Ju∩A
f
(
1
2 |[u](x)|

)
,

for every open subset A of (a, b). These are now combined to prove the estimate from
below of the Γ-lower limit which shows the first part of Theorem 2.1.

Theorem 5.6. For every (u, γ) ∈ BV (a, b)×M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu+gL1

and u′ − g ∈ L2(a, b) we have
E′(u, γ) ≥ E(u, γ).

Proof. We consider the Radon measure λ defined by

λ(B) := L1(B) + #(Ju ∩B) + |Dcu|(B)

for every Borel subset B of (a, b). Let C be a Borel subset of (a, b) \ Ju with |C| = 0 such
that |Dcu|((a, b) \ C) = 0. Then, we obtain

E′(u, γ,A) ≥

∫

A

ψi dλ

for i ∈ {1, 2, 3} and for every open set A ⊂ (a, b), where

ψ1 :=
(
|u′ − g|2 + c0|g|

)
1(a,b)\(Ju∪C),

ψ2 := 2f
(
1
2 |[u]|

)
1Ju ,

ψ3 := c01C .

Next, we define

ψ(x) := sup
i
ψi(x) =





|u′(x)− g(x)|2 + c0|g(x)| if x ∈ (a, b) \ (Ju ∪ C),
2 f

(
1
2 |[u](x)|

)
if x ∈ Ju,

c0 if x ∈ C.

By a measure theoretic result (see e.g. [9, Lemma 15.2] applied with the set function
µ(·) := E′(u, γ, ·)) we conclude that

E′(u, γ,A) ≥

∫

A

sup
i
ψi dλ =

∫

A

ψ dλ = E(u, γ,A)

for every open subset A of (a, b). With A = (a, b), this proves the theorem.
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6 Estimate from above of the Γ-upper limit

We now turn to the estimate from above of the Γ-upper limit E′′. We again restrict
ourselves to pairs (u, γ) ∈ BV (a, b) ×M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu + gL1 and

u′ − g ∈ L2(a, b) since the estimates are trivial otherwise. We first show the result for the
particular case u ∈ SBV 2(a, b) and then deduce the general result by approximation.

Proposition 6.1. For every (u, γ) ∈ SBV 2(a, b) × M(a, b) with ‖u‖L∞(a,b) ≤ K, γ =

Dsu+ gL1 and u′ − g ∈ L2(a, b) we have

E′′(u, γ) ≤ E(u, γ).

Proof. Since u ∈ SBV 2(a, b) ∩ L∞(a, b), the jump set is finite, i.e., Ju = {x1, . . . , xN−1}
for some N ∈ N, and we may further assume by the Sobolev embedding theorem that u
is a piecewise continuous function with one-sided limits u(x±) for all x ∈ (a, b). Thus, γ
is of the form

γ =
N−1∑

i=1

[u](xi)δxi
+ gL1,

with g ∈ L2(a, b). Let x0 = a and xN = b. We then choose ε small enough such that

|xi+1 − xi| > 2ε2 + 4ε for every i ∈ {0, . . . , N − 1}.

We first define uε ∈W 1,1(a, b) nearby the jumps of u by linear interpolation via

uε := u on (a, b) \
⋃N−1

i=1 (xi − ε2 − 2ε, xi + ε2 + 2ε),

u′ε :=
u(xi+ε2+2ε)−u(xi−ε2−2ε)

2ε2 on (xi − ε2, xi + ε2) for i ∈ {1, . . . , N − 1},

u′ε := 0 otherwise.

(see the figure below). By construction, we have ‖uε‖L∞(a,b) ≤ K for all ε, and taking

advantage of the fact that u is only modified on the intervals (xi − ε2 − 2ε, xi + ε2 + 2ε)
for i ∈ {1, . . . , N − 1}, we also have

‖uε − u‖L1(a,b) ≤

∫
⋃N−1

i=1 (xi−ε2−2ε,xi+ε2+2ε)
|uε − u|dx ≤ 4K(N − 1)(ε2 + 2ε),

which shows strong convergence of {uε}ε to u in L1(a, b).
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x

u

x

uε

2ε2 2ε2

x

gε

2ε2 + 4ε 2ε2 + 4ε

γa u(xi+ε2+2ε)−u(xi−ε2−2ε)
2ε2

Fig.: Construction of the recovery se-
quence for a piecewise affine function with
jump discontinuities.

We next define γε ∈ M(a, b) as γε = gεL
1, where gε ∈ L

2(a, b) is given by

gε :=





g on (a, b) \
⋃N−1

i=1 (xi − ε2 − 2ε, xi + ε2 + 2ε),

u′ε on (xi − ε2, xi + ε2) for i ∈ {1, . . . , N − 1},

0 otherwise.

We notice that

γε − γ =

N−1∑

i=1

(
u′ε1(xi−ε2,xi+ε2)L

1 − [u](xi)δxi
− g1(xi−ε2−2ε,xi+ε2+2ε)L

1
)
.

Therefore, we observe from the definition of u′ε that for every function ϕ ∈ W 1,∞
0 (a, b)

with ‖ϕ‖
W

1,∞
0 (a,b)

≤ 1 there holds

∫ xi+ε2+2ε

xi−ε2−2ε
ϕd(γε − γ) =

[
u(xi + ε2 + 2ε)− u(xi − ε2 − 2ε)

](
−

∫ xi+ε2

xi−ε2
ϕdx− ϕ(xi)

)

+
[
u(xi + ε2 + 2ε) − u(xi+)− u(xi − ε2 − 2ε) + u(xi−)

]
ϕ(xi)

−

∫ xi+ε2+2ε

xi−ε2−2ε
ϕg dx

for every i ∈ {1, . . . , N − 1}. Since we also have |ϕ(x) − ϕ(xi)| ≤ |x − xi| ≤ ε2 on
(xi − ε2, xi + ε2), we deduce from the bound ‖u‖L∞(a,b) ≤ K and the Cauchy–Schwarz
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inequality

‖γε − γ‖flat ≤ 2K(N − 1)ε2

+
N−1∑

i=1

[
|u(xi + ε2 + 2ε)− u(xi+)|+ |u(xi − ε2 − 2ε)− u(xi−)|

]

+ ‖g‖L2(a,b)

[
2(N − 1)(ε2 + 2ε)

] 1
2 .

This shows the convergence of {γε}ε to γ in the flat norm. It only remains to establish
the energy estimate. From the construction of (uε, γε), we clearly have |u′ε − gε| ≤ |u′ − g|
on (a, b). Therefore, the elastic energy contribution in Eε(uε, γε) is estimated by

∫ b

a

|u′ε − gε|
2 dx ≤

∫ b

a

|u′ − g|2 dx.

Due to the monotonicity of f and f(t) ≤ c0t for all t ≥ 0, we estimate the non-local energy
term by

1

ε

∫ b

a

f

(
ε−

∫

Iε(x)∩(a,b)
|gε|dt

)
dx

≤
1

ε

∫

(a,b)\
⋃N−1

i=1 (xi−ε2−ε,xi+ε2+ε)
f

(
ε−

∫

Iε(x)∩(a,b)
|g|dt

)
dx

+
1

ε

∫
⋃N−1

i=1 (xi−ε2−ε,xi+ε2+ε)
f

(
1

2

∫

(xi−ε2,xi+ε2)
|u′ε|dt

)
dx

≤ c0

∫ b

a

−

∫

Iε(x)∩(a,b)
|g|dt dx

+
2(ε2 + ε)

ε

N−1∑

i=1

−

∫ xi+ε2+ε

xi−ε2−ε

f

(
1

2
|u(xi + ε2 + 2ε)− u(xi − ε2 − 2ε)|

)
dx.

With the continuity of u outside of the jump set Ju we can pass to the limit ε→ 0 on the
right-hand side. In this way, we finally arrive at

E′′(u, γ) ≤ lim sup
ε→0

Eε(uε, γε)

≤

∫ b

a

|u′ − g|2 dx+ c0

∫ b

a

|g|dx+ 2
N−1∑

i=1

f

(
1

2
|[u](xi)|

)

= E(u, γ).

By approximation with SBV 2-functions, we can now give the proof of the second part
of Theorem 2.1.

Theorem 6.2. For every (u, γ) ∈ BV (a, b)×M(a, b) with ‖u‖L∞(a,b) ≤ K, γ = Dsu+gL1

and u′ − g ∈ L2(a, b) we have
E′′(u, γ) ≤ E(u, γ).
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Proof. We here want to construct a sequence {(ûh, γ̂h)}h in SBV 2(a, b) ×M(a, b) (with
‖ûh‖L∞(a,b) ≤ K, γ̂h = Dsûh + ĝhL

1 and û′h − ĝh ∈ L2(a, b) for every h > 0) such that

ûh → u in L1(a, b), γ̂h → γ in the flat norm and

lim inf
h→0

E(ûh, γ̂h) ≤ E(u, γ). (31)

This is indeed sufficient since by lower semi-continuity of the Γ-upper limit E′′ and by
Proposition 6.1 we then conclude with

E′′(u, γ) ≤ lim inf
h→0

E′′(ûh, γ̂h) ≤ lim inf
h→0

E(ûh, γ̂h) ≤ E(u, γ).

We first recall that in dimension one every function u ∈ BV (a, b) can be represented
as ua + uj + uc, see (6) where ua ∈ W 1,1(a, b), uj is a pure jump function and uc is a
Cantor function. This allows us to modify the three parts of u separately. We start with
the jump function uj . We define uj,h by

uj,h(x) := uj(a+) +
∑

y∈Juj (h)∩(a,x]

[uj ](y) for x ∈ (a, b),

where Juj
(h) := {y ∈ Juj

: |[uj ](y)| > h} = Juj,h
. We observe #Juj,h

< ∞, uj,h → uj in
L1(a, b) as h→ 0, and for all h the estimate

∑

x∈Juj,h

f

(
1

2
|[uj,h](x)|

)
≤

∑

x∈Juj

f

(
1

2
|[uj ](x)|

)
. (32)

For the Cantor function uc we use the density of smooth functions in BV (a, b) with respect
to the strict topology. In this way, we find a sequence {uc,h}h in W 1,1(a, b) with uc,h → uc
in L1(a, b) and

lim
h→0

∫ b

a

|u′c,h|dx = |Duc|(a, b). (33)

The absolutely continuous part ua is first extended to a W 1,1(R) function with compact
support and we then set ua,h := ua ∗ ψh for all h > 0, where ψh is a standard h-mollifier
given by ψh(x) := h−1ψ(h−1x) for x ∈ R, for a fixed non-negative, symmetric function
ψ ∈ C∞(R) with compact support and normalized to

∫
R
ψ dx = 1. We then have ua,h ∈

C∞(R) for all h > 0, ua,h → ua in L1(a, b) and u′a,h = u′a ∗ψh, see e.g. [20, Theorem 4.2.1].
Then we set

uh := ua,h + uj,h + uc,h for all h > 0.

We clearly have {uh}h in SBV 2(a, b) for all h > 0 and uh → u in L1(a, b), which implies
Duh → Du in the flat norm.

We next address the modification of γ. We extend the absolutely continuous part g
outside of (a, b) by 0 and set ga,h := g ∗ ψh for all h > 0. Then we have ga,h ∈ C∞(R) for
all h > 0 and

ga,h → g in L1(a, b). (34)
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Because of u′a − g ∈ L2(a, b) and u′a,h − ga,h = (u′a − g) ∗ ψh we further notice

u′a,h − ga,h → u′a − g in L2(a, b). (35)

Now, we set

γh := Duj,h + ghL
1 with gh := ga,h + u′c,h for all h > 0.

With the convergences Duh → Du and ga,h − u′a,h → g − u′a in the flat norm (via (35)),
we infer γh → γ in the flat norm. Since u′c,h is canceled in the first term, we deduce

∫ b

a

|u′h − gh|
2 dx+ c0

∫ b

a

|gh|dx+ 2
∑

x∈Juh

f

(
1

2
|[uh](x)|

)

≤

∫ b

a

|u′a,h − ga,h|
2 dx+ c0

∫ b

a

(
|ga,h|+ |u′c,h|

)
dx+ 2

∑

x∈Juj,h

f

(
1

2
|uj,h](x)|

)
,

which, via (32), (33), (34) and (35), implies

lim sup
h→∞

[ ∫ b

a

|u′h − gh|
2 dx+ c0

∫ b

a

|gh|dx+ 2
∑

x∈Juh

f

(
1

2
|[uh](x)|

)]
≤ E(u, γ). (36)

This does not yet show (31), since ‖uh‖L∞(a,b) ≤ K might not be satisfied for all h > 0.

We resolve this problem in two steps. With ‖u‖L∞(a,b) ≤ K and uh → u in L1(a, b), we

can fix a sequence {ηh}h in R
+ with ηh → 0+ as h→ 0 and

|{x ∈ (a, b) : |uh(x)| ≥ K + ηh}| → 0 as h→ 0. (37)

We next define the truncated versions

ũh(x) := min{max{uh(x),−K − ηh},K + ηh} for all h > 0.

We then have ũh → u in L1(a, b), Dũh → Du in the flat norm and, in addition, also
‖ũh‖L∞(a,b) ≤ K + ηh for all h > 0. Correspondingly, we set

γ̃h := Djũh + gh1{ũh=uh}L
1 for all h > 0.

By using (8) and by applying subsequently the Cauchy–Schwarz inequality, we get

‖γ̃h − γh‖flat ≤ ‖(γ̃h −Dũh)− (γh −Duh)‖flat + ‖Dũh −Duh‖flat

=
∥∥(gh − u′h)1{ũh 6=uh}L

1
∥∥
flat

+ ‖Dũh −Duh‖flat

=
∥∥(ga,h − u′a,h)1{ũh 6=uh}L

1
∥∥
flat

+ ‖Dũh −Duh‖flat

≤
∥∥(ga,h − u′a,h)1{ũh 6=uh}

∥∥
L1(a,b)

+ ‖ũh − uh‖L1(a,b)

≤
∥∥ga,h − u′a,h

∥∥
L2(a,b)

|{x ∈ (a, b) : ũh 6= uh}|
1
2 + ‖ũh − uh‖L1(a,b) .
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If we pass to the limit h→ 0 on the right-hand side, the first term vanishes because of the
uniform boundedness of u′h − gh = u′a,h − ga,h in L2(a, b) due to (35) combined with the
convergence

{x ∈ (a, b) : ũh(x) 6= uh} = {x ∈ (a, b) : |uh(x)| > K + ηh} → 0 as h→ 0

as a consequence from (37). Since with uh → u and ũh → u in L1(a, b) also the second
term vanishes, we conclude that γ̃h − γh → 0 in the flat norm. Consequently, we have
established γ̃h → γ in the flat norm. For h > 0 we finally define

ûh(x) :=
K

K + ηh
ũh and γ̂h(x) :=

K

K + ηh
γ̃h(x) for x ∈ (a, b).

We clearly have ‖ûh‖L∞(a,b) ≤ K, Juh
⊂ Jûh

and |[ûh]| ≤ |[uh]| for all h > 0. In view of

K/(K + ηh) → 1, we also have ûh → u in L1(a, b) and γ̂h → γ in the flat norm. Moreover,
if we denote the density of γ̂h with respect to L1 by ĝh, we observe |û′h − ĝh| ≤ |u′h − gh|
and |ĝh| ≤ |gh| on (a, b) for all h > 0. This shows, that the energy E(ûh, γ̂h) is finite for
all h > 0, with

E(ûh, γ̂h) =

∫ b

a

|û′h − ĝh|
2 dx+ c0

∫ b

a

|ĝh|dx+ 2
∑

x∈Jûh

f

(
1

2
|[ûh](x)|

)

≤

∫ b

a

|u′h − gh|
2 dx+ c0

∫ b

a

|gh|dx+ 2
∑

x∈Juh

f

(
1

2
|[uh](x)|

)
.

By taking into account (36), we then obtain the claim (31) (even for the lim sup), which
ends the proof.

7 Γ-convergence for the minimal energies with respect to γ

We finally prove the Γ-convergence result in Corollary 2.2 for the minimal energies with
respect to the second variable γ, i.e., we consider the energies Ẽε and Ẽ from (4) and (5),
respectively. Notice that, as a direct consequence of the fact that the function g∗ from (3)
solves the optimization problem in (2), for every u ∈ BV (a, b) there holds

Ẽ(u) = E(u,Dsu+ g∗L1) = E(u, γopt). (38)

For completeness we state also the corresponding compactness result.

Corollary 7.1 (Compactness of the minimal energies with respect to γ). Let {uε}ε be a
sequence in L1(a, b) with

Ẽε(uε) ≤ C0

for a positive constant C0 and all ε > 0. There exists a function u ∈ BV (a, b) with
‖u‖L∞(a,b) ≤ K such that, up to a subsequence, {uε}ε converges to u in L1(a, b).

Proof. We choose a low energy sequence {γε}ε in M(a, b) with Eε(uε, γε) ≤ Ẽε(uε) + 1
for all ε. Since there holds Eε(uε, γε) ≤ C0 + 1 for all ε, according to Theorem 4.2 there
exists a function u ∈ BV (a, b) with ‖u‖L∞(a,b) ≤ K such that uε → u in L1(a, b).
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Proof of Corollary 2.2. It is again sufficient to establish the Γ-lim inf-inequality and the
Γ- lim sup-inequality only for u ∈ BV (a, b) with ‖u‖L∞(a,b) ≤ K since the estimates are
trivial otherwise.

We first show the Γ-lim inf-inequality. We consider an arbitrary sequence {uε}ε in
L1(a, b) with uε → u in L1(a, b), for which we may assume Ẽε(uε) ≤ C0 for some positive
constant C0 and all ε. We then select a low energy sequence {γε}ε in M(a, b) with

Eε(uε, γε) ≤ Ẽε(uε) + ε for every ε > 0.

By passing to a subsequence if necessary, we may assume that

lim inf
ε→0

Eε(uε, γε) = lim
ε→0

Eε(uε, γε).

At this stage we employ the compactness result of Theorem 4.2: since uε → u in L1(a, b),
there exists a function g ∈ L1(a, b) with u′ − g ∈ L2(a, b) such that, up to a subsequence,
γε → Dsu+gL1 in the flat norm. Since by Theorem 2.1 we have Γ-convergence of {Eε}ε>0

to E in L1(a, b)×M(a, b) also for every subsequence, we obtain

lim
ε→0

Eε(uε, γε) = lim inf
ε→0

Eε(uε, γε) ≥ E(u,Dsu+ gL1),

which, by the choice of the sequence {γε}ε, shows

lim inf
ε→0

Ẽε(uε) ≥ Ẽ(u).

We next show the Γ-lim sup-inequality. Via Theorem 2.1 (ii) we find a recovery se-
quence {(uε, γε)}ε of (u, γopt) in L1(a, b) ×M(a, b). In combination with (38) this yields
the claim

lim sup
ε→0

Ẽε(uε) ≤ lim sup
ε→0

Eε(uε, γε) ≤ E(u, γopt) = Ẽ(u).
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