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 5 

Abstract 6 

While soil respiration is known to be controlled by a large range of biotic and abiotic 7 

factors, its temperature sensitivity in global models is largely related to climate 8 

parameters. Here, we show that temperature sensitivity of soil respiration is primarily 9 

controlled by interacting soil properties and only secondarily by vegetation traits and 10 

plant growth conditions. Temperature was not identified as a primary driver for the 11 

response of soil respiration to warming. In contrast, the non-linearity and large spatial 12 

variability of identified controls stress the importance of the interplay among soil, 13 

vegetation and climate parameters in controlling warming responses. Global models 14 

might well predict current soil respiration, but not future rates because they neglect the 15 

controls exerted by soil development. Thus, to accurately predict the response of soil 16 

respiration to warming at the global scale, more observational studies across 17 

pedogenetically diverse soils are needed rather than focusing on the isolated effect of 18 

warming alone.   19 

 20 

Background 21 

With implemented climate policies struggling to limit global warming to an average of less 22 

than 1.5 °C1, elucidating the response of an adapting ecosphere to warming is more and more 23 
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important. Understanding soil C dynamics is key to this because it directly determines a large 24 

portion of future net greenhouse gas (GHG) emissions from terrestrial ecosystems2.  25 

Soils are considered net sinks for C with current net sequestration estimated at 1 Pg C yr-1 3. 26 

This is only a minor part of the continuous exchange of C between soil and atmosphere due to 27 

C input to soils through plants and release of C through soil respiration, approximately balanced 28 

at annual fluxes of 58 - 80 Pg C yr-1 4-6. Rising global temperatures are expected to lead to 29 

significantly higher decomposition rates of soil C and thus CO2 release from soils7,8, largely 30 

because of more energy available for microbial decomposer communities9. However, despite 31 

its importance, the response of soil C to warming is still one of the great uncertainties in global 32 

carbon cycling10. Great uncertainties are related to the effect of warming on vegetation, C 33 

input11 across different soil depths12, microbial responses13, and estimates for losses of soil C 34 

the arctic plus high latitudes14 and tropical plus low latitudes15.  35 

While the temperature sensitivity of soil carbon has been long studied10,16, only now ecosystem 36 

models begin to implement mechanistic controls of microbial soil respiration in response to 37 

climate and soil changes17,18. One issue is that soil properties, often crucially related to subsoils, 38 

are hidden from air and space borne sensing techniques that do not “see” soils. Therefore, 39 

statistical models are needed to better represent relationships between microscopic and 40 

macroscopic processes, especially on broader scales19,20. Furthermore, most of our mechanistic 41 

understanding of soil processes and warming is derived from studies in temperate zones; their 42 

numbers simply dwarf the number of studies in boreal and tropical ecosystems (see Figures S1 43 

and S2). Due to the nature of small-scale studies with often homogenous soil and environmental 44 

properties, a holistic, global assessment on factors controlling soil respiration, except for basic 45 

variables that integrate various processes at once (i.e. clay content) has not been done yet16. 46 

Soil is not mechanistically represented in global ecosystem models, but is rather given a mostly 47 

budgetary function. Thus, future global soil greenhouse gas emissions might be critically 48 
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misrepresented under changing environmental conditions. For example, global climate and 49 

ecosystem models21,22 dealing with warming focus on GHG fluxes from environments where 50 

climatic and hydrological barriers are the key controls to limit C decomposition23. However, 51 

these climate and hydrology driven, geochemically speaking “young”, soil systems do not 52 

represent soil conditions found for the largest part of globally relevant soil C stocks24. The 53 

majority of soil C is stored in geochemically more complex and weathered soil systems, where 54 

soils have developed over millennia and the biosphere adapted to warmer conditions over 55 

millions of years of evolution25. Hence, soils in every (geo-)climatic zone will likely show very 56 

different responses in respirations to warming due to their different, soil type dependent, 57 

properties and drivers26.  To the best of our knowledge, previous models of soil Q10 took the 58 

average air temperature as main predictor for soil Q10.
27-29 Thus, the global representation of 59 

soils and GHG emissions from them with their drivers and controls are not well represented in 60 

earth system models (ESMs) and Q10 is still treated as an average value over all climate zones 61 

and state-of-the-art in CMIP5 models to consider temperature sensitivity in soil29-32. By using 62 

highly averaged values of temperature sensitivity of soil C28,33-36 that do not represent the 63 

underlying processes16, or by focusing on selected climatic drivers, current earth system and 64 

climate models unintentionally neglect the variability of crucial biogeochemical factors 65 

altering the response of soils to climate forcing37. Doing so introduces large biases and 66 

uncertainties in global estimates of future C emissions from soils. 67 

Here, we brought together large and small-scale controls that have been identified as key 68 

variables to explain the soil respiration response to warming - expressed as soil Q10 - at the 69 

global scale and used machine learning techniques to identify the most important groups of 70 

explaining variables for soil Q10. More specifically, we combined experimental results with a 71 

large database on climate, vegetation and soil related parameters (further called best data 72 

approach) as proxies of soil respiration influencing factors under warming38,39 (Table S3). 73 
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While Q10 of soil respiration is not a mechanistic depiction of soil C response, it can be 74 

interpreted as a phenomenological response of multiple instantaneous processes that differ 75 

across geo-climatic and land use settings38,39 and is widely used in global scale ecosystem 76 

models. We compiled 3400 observations from 560 soil warming studies conducted from 1971 77 

to 2018 with incubation lengths of several days to more than three years from all major climate 78 

and land use combinations (see methods & Figure S2). For our analyses, we concentrated on 79 

climate zones in which rich plant-soil interactions occur and excluded regions with bare soils 80 

(polar and non-polar (semi-)deserts and high alpine environments) for which not enough data 81 

to train models and/or global maps of independent predictors were available. Then, we (i) built 82 

linear and non-linear predictive models for soil Q10, (ii) derived the relative importance of the 83 

derived groups of explaining variables for SRRW and (iii) determined the changing importance 84 

of the identified controls in different climate systems and land use zones using partial 85 

dependence analyses (Figures 1 & 2). To assess the validity of our interpretation and the 86 

robustness of our models, we have repeated i-iii by using only predictors of SRRW derived 87 

from global datasets, further referred to as the generalized data approach (Table S4 & Table 88 

S6).  89 

 90 

Results & Discussion 91 

Predicting soil Q10 and its controls 92 

Our model satisfactorily predicted soil Q10 across all included systems for both the best data 93 

and the generalized data approach (Figures 1a & S3a), showing to the best of our knowledge, 94 

for the first time how the temperature sensitivity of heterotrophic soil respiration is driven by 95 

a combination of soil properties, vegetation and climate interactions at the global scale. 96 

Similarly to previous assessments of soil Q10 at the regional scale40, non-linear model 97 

approaches (R2 = 0.18 - 0.46; RMSE 0.58 - 0.72) greatly outperformed linear models (R2 = 98 

0.07 - 0.08; RMSE 0.76 - 0.77) (Table S6). Both the best data and generalized data model 99 
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approaches performed similarly in explaining the variability in temperature sensitivity of soil 100 

respiration (R2 = 0.46) and with reasonable uncertainty (relative RMSE = 24 %). Only a relative 101 

small part of soil Q10 was directly controlled by plant growth conditions (11.6%) as well as 102 

evapotranspiration and precipitation (12.6%). In contrast, a much larger share of soil Q10 103 

variability was controlled by soil properties (63.1%) (Figure 1b). Interestingly, climate and 104 

vegetation variables were more intercorrelated and their effects on soil Q10 were not clearly 105 

separable (Table S3).  106 

 107 

[Figure 1 about here] 108 

 109 

Global patterns of controls on soil Q10  110 

Our analyses also revealed an extremely high variability in the controlling factors for soil 111 

respiration (Figure 1c). Vegetation and climate related parameters like growth conditions and 112 

evapotranspiration had a strong influence at both extreme ends of their respective range of 113 

values, which represent climatic extremes; As a general trend, climate was a strong control at 114 

lower temperatures, low precipitation or higher evaporation (Figures 1c, 2). This is likely 115 

related to the lack of mineral stabilization of C in these colder climate zones41 leading to a 116 

faster response of microorganisms to warming, and hence a decomposition of labile C once 117 

temperature barriers are released42. Notably, temperature was not a separate dominant control 118 

on SRRW and climatic variables in general exert little influence in environments with more 119 

moderate climate; moreover, temperature seizes to influence soil Q10 in warmer climate zones.  120 

In contrast, a wide range of biotic and abiotic soil variables controlled the variability of soil 121 

Q10 across their full range of values, resulting in the observed high heterogeneity. This 122 

dominance of soil variables is most likely because of the variety of parent materials that soils 123 

develop from and the various stages of weathering across the globe that affect plant growth and 124 

C stabilization. In cold climates, soils show low reactivity due to climatic barriers to chemical 125 
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soil weathering16. Plant litter, and not microbially processed or mineral associated C, is often 126 

the main source of energy for microorganisms under these cold conditions. In temperate 127 

climates, soils have generally higher chemical reactivity and high C stabilization potential, 128 

thereby diversifying potential C sources for microorganisms. This diversification of energy 129 

sources can lead to very variable competitive strategies driving carbon use efficiency43 and 130 

thus soil Q10
42. In tropical climates, chemical weathering has depleted many soils of reactive 131 

minerals and reduced C stabilization potential, leading to a reduction in the variety of C 132 

resources.  133 

Hence, strategies for an efficient recycling of nutrients from litter back into plants are 134 

prevailing26,44. The implementation of all identified controls in our model resulted into a 135 

spatially highly variable map of soil Q10 (Figure 2a,b) and a similarly diverse map of relative 136 

uncertainty of prediction (Figure 2c,d). More specifically, in arctic and boreal environments, 137 

where temperature is a major barrier for decomposition of labile C, soil Q10 was particularly 138 

high across all major land use systems. In contrast, soil Q10 was highly variable in temperate 139 

zones where local soil development drives C stabilization and thus responsiveness to warming. 140 

Lastly, soil Q10was generally lowest in tropical environments where soils are deeply weathered 141 

and C accessibility is driven by litter quality. Deviations from this general pattern were tied to 142 

local variations in climatic, topographic and biogeochemical soil conditions (Table S9). Our 143 

uncertainty map (Figure 2c,d) shows high spatial variability especially in data poor regions of 144 

the (sub)tropics or in regions with highly diverse soil landscapes (temperate and tropical 145 

zones). We explain this with the fact that in data poor regions the model cannot be trained to 146 

the same degree as in data-rich regions due to a lack of data and precision for both response 147 

and independent variables. In regions of highly developed soils, our results point at the 148 

importance of considering local soil development and land use history for predicting SRRW, 149 

because these can differ greatly from one geo-climatic region to the next leading to varying 150 
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model complexity and strength of predictors (see figure 1) that is not fully captured at the global 151 

scale. In summary, our analyses allowed for predicting global patterns of soil Q10 with 152 

reasonable uncertainty at a much higher accuracy and spatial variability than comparable 153 

approaches using climatic and vegetation variables alone27,28,40,45 across major climate zones 154 

in which forests, grasslands and agricultural land use appears. Nevertheless, a larger share of 155 

variability in soil Q10 remained unexplained (about 55%). We relate this lack of identifiability 156 

to the coarse spatial and temporal resolution of global key datasets, where information on local 157 

heterogeneity is lost, paired with a lack of accurate data from data poor regions (i.e. mountains, 158 

boreal zones, wetlands, tropics). Furthermore, global studies and predictions are in parts driven 159 

by completely different parameters then comparable regional studies, due to the different 160 

resolution and data availability46. A large number of local to regional scale controls on soil Q10 161 

and microbial decomposition processes exist (i.e. land management) that cannot be represented 162 

currently through proxy variables at the global scale39.  163 

 164 

[Figure 2 about here] 165 

CO2 release from soils in the decades to come 166 

Our study showed much higher and more variable temperature sensitivity of respiration than 167 

comparable ecosystem-level assessments27. Soil Q10 predicted by our model was on average 168 

33 ± 10 % higher than compared to soil Q10 in climate driven models28. Our results are 169 

consistent with, and can help explain, the predicted reduced uptake of C in soils by the end of 170 

the 21st century47,48.  As has been demonstrated before49, boreal and temperate climate zones of 171 

the northern hemisphere showed increased C release from soils with changing temperature and 172 

precipitation while soils of the southern hemisphere showed only limited responses and tropical 173 

soils even less. However, based on our results, we would predict that in colder environments, 174 

warming will create over time a more reactive soil matrix, similar to those found in temperate 175 

climates. Examples for the expected changes in arctic soils are for example, higher rock-176 
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derived nutrient release due to (bio-) chemical weathering, higher potential to stabilize carbon 177 

with minerals, thicker soils for higher water retention capacity and larger rooting zones50-52. It 178 

is thus likely that in many of these changed future soils of arctic, antarctic or alpine 179 

environments, plant productivity will increase, C stabilization through various mineral related 180 

physico-chemical mechanisms53 will improve and microbial communities will respond to the 181 

changed climatic conditions with, for example, higher carbon use efficiency43. Greening and 182 

weathering are likely to compensate some of the projected soil C loss from thawing and 183 

regressing permafrost54 losses through additional C sequestration and create new terrestrial C 184 

sinks in higher latitudes. However, recent studies show36 that it is unreasonable to assume that 185 

these processes can fully compensate for the additional release of C from soils. Plant growth is 186 

limited by more than atmospheric parameters, and weathering leading to nutrient release or C 187 

stabilization potential is slow and on decadal timescales55. Warming in the next decades could 188 

lead to an additional C release from soil that is equal to all other current anthropogenic C 189 

emissions.  190 

A warming climate, however, will ultimately lead to lower SRRW in boreal zones in the long 191 

term, as plant-soil systems become more adapted to warming56 with arctic soil systems 192 

becoming more similar to boreal or even temperate systems if climate change is progressing as 193 

predicted57. Predicting these contrasting trends of soil Q10 in changed soil landscapes requires 194 

earth-system models to incorporate soil development trajectories as a control for future C fluxes 195 

and account correctly for the carbon flux between soil and atmosphere58. Indeed, in order to 196 

estimate C fluxes further into the future, a more mechanistic approach is needed that includes 197 

processes like soil formation (i.e. accelerated soil formation in arctic due to warming and 198 

increased weathering) or soil degradation (i.e. in the tropics due to land use change and erosion) 199 

to accurately predict the future warming response of these dynamic systems. 200 

 201 

Take home message - A call for action 202 
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Our results illustrate how complex the interplay and strengths of controlling factors for soil Q10 203 

can be at global scales. First, using a large range of independent variables to predict soil Q10 in 204 

heterogeneous ecosystems, we confirm that controls on soil C responses to climate change are 205 

drastically different between climate zones and environmental settings, limiting the 206 

transferability of experimental and mechanistic knowledge on soil processes across geo-207 

climatic zones. Second, almost all variables showed spatially varying influence on soil Q10, 208 

meaning that soil Q10 is highly non-linear and multifactorial. Lastly, from poles to the equator, 209 

temperature has not been identified as the main driving factor for soil Q10. While temperature 210 

was certainly a limiting and controlling factor for biological activity in high latitudinal 211 

environments, soil Q10 was increasingly stronger related to biogeochemical and physical soil 212 

conditions than to warming per se in mid and lower latitudes. Thus, large changes to the soil C 213 

cycle will occur through a warming induced feedback loop that is more strongly controlled by 214 

changing soil parameters and development due to better conditions for chemical weathering 215 

than by temperature itself. Our study, focusing on soil development related variables shows 216 

which key controls have to be considered in ESMs besides warming to understand and predict 217 

a changing terrestrial C sink versus source by the end of the 21st century. Lastly, improving our 218 

mechanistic understanding of the effects of developing soil characteristics in different climate 219 

zones and ecosystems, especially in tropical regions, is required before soil respiration 220 

responses to warming can be accurately projected into the future. 221 

 222 
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Figures 497 
 498 

 499 

Figure 1. Predictions for soil Q10, expressed as Q10 of soil respiration, (panel a, best data approach, random forest 500 

model) show a good fit across the complete data range.  An assessment of the relative importance of rPCA derived 501 

variables (panel b) shows the dominance of the sum of soil parameters on the prediction over climate and 502 

vegetation related and experiment specific modifiers. Partial dependence plots (panel c) illustrate the variable 503 

effect of identified controls on averaged soil Q10. 504 
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 505 

 506 

 507 

 508 
Figure 2. Map of the predicted average soil Q10 for terrestrial, non-desert environments (a), and the averaged 509 

latitudinal Q10-pathway for different major land-use types (b), aggregated at 0.25° latitudinal resolution, and the 510 

corresponding distribution of relative uncertainty (c & d) (see  methods section “Global soil Q10 mapping for 511 

details and uncertainty).    512 

  513 
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Online only methods section 514 

Statistical analysis. Basics. Statistical analysis was performed in R59 Version 3.4.1 with 515 

additional packages (Table S8). For all statistical tests, a significant level of p < 0.05 was used. 516 

A documented and annotated R code of all applied statistics as well as a database containing 517 

all input data. 518 

 519 

Database assembly and pre-processing. Global Q10 data of soil basal respiration was 520 

collected from existing scientific databases60 and published laboratory and field studies (for a 521 

full overview of all included studies, see supplementary data file “Q10_Database“ and 522 

“Q10_Database References”). The biggest part of soil Q10 values were taken from the Global 523 

Database of Soil Respiration Data (SRDB)60, together with information about the experiment 524 

temperatures. All compiled information from the database were counterchecked with the 525 

reported values of the original reference and duplicate Q10 values for the same temperature 526 

ranges were removed to keep only the temperature range related to the original study.   527 

Furthermore, web-based search engines like Google Scholar, ResearchGate or Web of Science 528 

were examined with catchphrases like “(laboratory/field measured) temperature sensitivity of 529 

SOC decomposition” or “soil Q10 (for laboratory/field experiments)” and added to our 530 

database. In total, data from 67 laboratory studies and from 493 field studies were compiled 531 

located between 68 °N to 43 °S and 176 °E to 156 °W (Fig. S1). 532 

In our compiled database, soil Q10 data in these studies were taken from temperature ranges -5 533 

- +50 °C, conducted from 1971 to 2018 with incubation lengths of several days to more than 534 

three years. We constrained our study to observations of topsoil samples (weighted averages 535 

for 0-30cm soil depth) and excluded studies that targeted autotrophic soil respiration. Reported 536 

Q10 in these studies represent the average soil Q10 during the length of the experiment and are 537 

considered as soil basal respiration. 538 
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The included soil Q10 data was tested for fulfilling normal distribution using the  Shapiro-Wilk 539 

Normality Test61 and for fulfilling homogeneity of variances with the Fligner-Killeen Test62. 540 

Comparability of soil Q10 and to avoid introducing potential biases was tested in several ways.  541 

To identify experiment specific influencing factors (measures taken by the experimentalist, see 542 

figure A2) we used one-way Analysis of Variances (ANOVA)63,64 and in case of significant 543 

rejection of the statistical requirements for ANOVA, using the Kruskal-Wallis Test65, to test 544 

for differences in soil Q10 between (i) lab and field studies, (ii) studies reporting explicitly 545 

heterotrophic respiration vs. mixed respiration where remnants of autotrophic respiration 546 

cannot be excluded, (iii) sequential vs. parallel warming of soils and (iv) explicit pre-treatments 547 

of the samples vs. non-treated samples. Results of this test indicated only minor differences 548 

between the above compared studies (Figure S2). Furthermore, we evaluate the effect size of 549 

the applied Kruskal-Wallis test pairs to show the strength of the analysed relationship of 550 

statistical significant differences between sub-groups of the database. We computed the effect 551 

size as follows66:  552 

η²(H) = (H - k + 1)/(n - k)    (1) 553 

 554 

where H is the test statistic, n is the number of observations and k is the number of groups in 555 

the model.  556 

The analyses revealed that among all pairs, only grouping by climate zone has a strong effect 557 

on Q10 differences between subgroups. Other pairings, including the division of lab vs. field 558 

derived Q10 did not show a significant effect size (Table S2). Additionally, we tested our model 559 

performance on a data-rich and environmentally diverse region (Continental Europe, 560 

Scandinavia and the British Isles) using the same independent predictor variables and model 561 

structures as for the global approach, but predicting SRRW with only subsets of the data: one 562 

prediction where we use both field and lab data (n = 786) combined, and one prediction each 563 

where we used only lab (n = 237) or field data (n=549). Our results (Figure S3) show that no 564 
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difference in model performance or potential bias can be observed based on the origin of parts 565 

of our data. Hence, we continued with a unified dataset for all other analyses, but included 566 

these experiment specific criteria in our later modelling approach as a confining factor (see 567 

methods section “statistical analyses”, results in tables S3-S5 and figure 1). 568 

From the compiled Q10 data, values <1 and >4.5 were excluded from further analysis, as (i) we 569 

want to represent natural conditions that follow current paradigm, namely that soil basal 570 

respiration increases with incubation temperatures27 and (ii) that Q10 >4.5 are the result of the 571 

decomposition of large amounts of poorly decomposed, isolated organic matter (litter,  roots67) 572 

in litter layers or de-frosting former permafrost soils. Furthermore, including these values 573 

would lead to inaccuracy in calculation with exponential equations68. These criteria led to the 574 

exclusion of 8% of the compiled observations (262 observations), resulting in a total of 3413 575 

observations remaining across all major land use (grassland, cropland, forest and wetland) for 576 

the boreal, temperate, subtropical and tropical climate zones of the northern and southern 577 

hemisphere used in this study (Figure S2). 578 

 579 

Included independent variables. To analyse the influence of soil properties, vegetation and 580 

climate parameters on Q10, five climatic and vegetation as well as eight soil parameters were 581 

selected as independent variables. These parameters were used for all further statistical 582 

analyses. Where available, we used high-resolution local data taken from the included studies 583 

directly, resulting in our “best data” dataset. Where local studies did not include all the desired 584 

independent variables, global datamaps and satellite remote sensing data were used to fill gaps 585 

in climate and soil properties (Table S3). Note that values of pH <3 were replaced with a pH = 586 

3, due to the fact that soils with a pH < 3 do not occur in the ecosystems investigated in this 587 

study69 and are an artefact created during the assembly of the original dataset (best data 588 

approach: 9 datapoints replaced; generalized data approach: 0 datapoints replaced). Note that 589 

these global datamaps of independent controls show variable spatial resolutions ranging from 590 
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250m - 0.5° and represent averages over 1-30 years (see Table S1 for details). To assess the 591 

potential impact of spatially highly variable data in our analyses, we used the data in the highest 592 

available resolution and did not transformed the data to match resolutions. In addition, to 593 

represent potential controls that result from the interaction of soil parameters with climate and 594 

vegetation, a series of interaction terms were included. Organic carbon/organic nitrogen/total 595 

phosphorus ratios were included to represent effects of nutrient stoichiometry in soils70. Clay 596 

content/mean annual temperature ratios were included to represent soil weathering and changes 597 

in mineral surface area71. Base saturation/clay content and potential cation exchange capacity 598 

(CEC)/clay content as well as base saturation/CEC ratios were used to assess mineral surface 599 

charge effects. Base saturation / pH ratios were used to assess soil acidity effects. Mean annual 600 

precipitation (MAP) / Potential evapotranspiration (PET) and PET/normalized vegetation 601 

index (NDVI) ratios were used to assess plant productivity as well as precipitation and 602 

evapotranspiration related effects72.  603 

The resulting dataset of independent variables is not inclusive for all experimentally identified 604 

controls (i.e. variability of microbial decomposers and their strategies are not included)73,74. 605 

However, key criteria for their selection in our modelling exercise was availability as global 606 

datasets to fill data gaps of the metadata of the included warming studies. Furthermore, all 607 

included variables stand in a causal relationship for controlling biological processes and C 608 

cycling between soils and atmosphere and vary across a large range of possible values (Table 609 

S1) that represent the majority of conditions in which biological processes take place in soils 610 

(i.e. very acidic, to very basic, very low and very high temperatures, etc.). This compilation of 611 

empirical data was selected to bridge a crucial gap from experimental finding to 612 

implementation of soil processes into earth system models. 613 

 614 

Statistical analysis. Rotated principal component analysis. To increase the identifiability of 615 

larger groups of controls and to reduce the number of independent variables that are 616 
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autocorrelated, we used rotated principal component analysis (rPCA), performed for both our 617 

best data model building (Table S3) as for our generalized data approach (Table S4) and 618 

interpreted the loading of each principal component according to their underlying relevance as 619 

a controlling factor for SRRW. To minimize multicollinearity effects, the Variance Inflation 620 

Factor (VIF) was estimated for all independent predictor variables and maximal VIF was 621 

eliminated until all independent variables possessed a VIF < 5. As rotation method and to 622 

minimize multicollinearity, variance maximizing (VARIMAX) was used. The selection of an 623 

optimal number of principal components was done on the basis of the Kaiser-Guttman rule and 624 

limited to principal components with an Eigenvalue > 1. This resulted in 8 rotated principal 625 

components (rPC), identifying the eight most important groups of explaining variables for 626 

SRRW (Table S3).  627 

 628 

Statistical analysis. Predictive modelling. To build and identify the best model for predicting 629 

soil Q10 and using the results of the rPCA analyses, regression modelling was conducted 630 

including four different linear and four different non-linear regression types. Linear regression 631 

included models without (LM) and with (LEAPS) stepwise selection75 as well as models such 632 

as least angle regression (LARS)76 and Elastic Net (ENET)77 that use a penalizing term to the 633 

regression coefficients of those variables with minor influence on the prediction78. Non-linear 634 

regressions included the tree- and rule-based (=representing the path of partitioned 635 

regression(s) by using distinct if-then rules to create prediction models)77 models random forest 636 

(RF)79 and boosted tree model (BOOSTED)80, as well as model bagged tree (BAGGED)81 and 637 

cubist (CUBIST)82. All models, except for the LM linear regression and the BAGGED model, 638 

have built-in feature selection procedures and were tuned individually, to increase the accuracy 639 

and control the complexity of the models78 . As part of the tuning process, the following steps 640 

have been taken: LEAPS models were trained for the maximal number of variables. For 641 

penalizing models, penalty terms for feature reduction (i.e. lowering the effect of less important 642 
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variables on the final linear equation) varied between 0 and 0.1 in 0.01 steps. The RF models 643 

were constrained by setting the maximum number of allowed trees to 1000. The number of 644 

included predictors were set to the maximum number of possible predictors divided by three83. 645 

BOOSTED were trained with a minimum of 10 to a maximum of 100 trees with 1-7 nodes, a 646 

shrinkage factor of 0.01 or 0.1 and a maximum size of 5. To train the CUBIST models, 1-9 by 647 

2 neighbours and 1, 5, 10, 50, 75 and 100 communities were used. For all models, Monte-648 

Carlo-cross-validation84, with 100 repeated data resamples and a ratio of 80 % training to 20 649 

% validation data were used to assess the uncertainty of model structures and prevent over-650 

fitting. Root mean square error of cross-validation (RMSE) and R² were estimated for all tuned 651 

models and used to analyze the residual variance and accuracy of the models85
 and as a criterion 652 

for ranking model performance (Table S5). For an easier interpretation of the uncertainty of 653 

estimated SRRW, relative root means square error (rRMSE) was estimated by dividing the 654 

absolute error by the global mean of Q10. Random Forest regressions resulted in the best model 655 

performance within one-standard error of minimal RMSE86 and were used for all further 656 

analyses of variable importance. Furthermore, residual plots for the global best model (Figure 657 

4S) and the three data-rich examples of continental Europe (Figure S3) were created. All 658 

residual plots show random patterns, indicating a good fit of the used random forest models for 659 

the global and the European models. 660 

 661 

Statistical analysis. Assessing variable importance. To estimate the influence of the 662 

identified rPC variables for predicting Q10, we assessed variable importance using permutation 663 

variable importance measurements (PVIM) through the variable importance tool implemented 664 

in R caret package87 for the model with the highest accuracy and prediction quality (Random 665 

Forest RF). Briefly, to assess the error of prediction in the model, the PVIM method calculates 666 

the mean square error for every given regression tree with out-of-bag estimates79,88. The 667 

resulting measure of variable importance of RF models represents the influence of the predictor 668 
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variables on the model results89. For better comparability all independent controls in our 669 

models90, the included independent rPC control variables were normalized on a scale of 0-670 

100% to represent relative importance for the model outcome. 671 

 672 

Statistical analysis. Partial dependency of controls. Partial dependence analyses using the R 673 

package pdp91 were used to test effects between predicted Q10 and independent controls across 674 

the whole range of possible values that were included in the RF modeling. Briefly, the method 675 

results in a statement about the global relationship of an independent variable to the predicted 676 

across the whole range of all potential values by removing and averaging out the effect of other 677 

independent controls and isolating the effect of the targeted independent variable(s)80. In 678 

contrast to the assessment of the relative importance of an independent variable overall, partial 679 

dependence analyses and their visual representations (partial dependence plots, PDP) can 680 

illustrate the average marginal effect of one or more independent variables on the predicted 681 

outcome of a machine learning model80 across a specific range of values. For example, a PDPs 682 

can show whether the relationship between the predicted variable and an independent control 683 

is linear, monotonic or complex92. The shape and knickpoints of the PDP curve  can then be 684 

used to interpret and identify areas where an independent has a particular strong and direct 685 

effect on the predicted, and where its control is rather indirect, for example through influencing 686 

other independent variables. For simpler interpretation of the PDPs x-axis from low to high, 687 

the curves of rPCs with dominant negative loading (best data approach: rPC1, rPC7; Table S3) 688 

were reversed.   689 

As an example in our study, PDPs illustrate that precipitation and evapotranspiration has a 690 

weak effect and control on Q10 at lower ranges, but a stronger effect at higher ones (Figures 691 

1c). As the loading of our rPC variable “precipitation and evapotranspiration” is not mixed 692 

with other controls (Table S3, S4), the PDP allows a direct interpretation of the variable’s 693 
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value. In contrast, temperature has a complex relationship to the predicted soil Q10, mostly 694 

through affecting plant growth conditions, experimental setup and weathering.    695 

 696 

Statistical analysis. Global soil Q10 mapping. A map of the global distribution of soil Q10, 697 

expressed as Q10 of soil basal respiration and a corresponding map of the relative uncertainty 698 

of prediction (Figure 2) was derived using our best data rPCA structure and scores (Table S4) 699 

and a RF model with the included global climate, vegetation and soil datasets (Table S1) that 700 

we used to build our generalized data model of soil Q10. Using the datasets of the generalized 701 

data approach, we calculated factor maps based on the primary input variables for our 8 rPC 702 

scores for each according raster cell before using them to calculate a spatial explicit map of 703 

global soil Q10. In consequence, the resulting map corresponds in quality to the results of our 704 

RF model results without experiment specific modifiers as explanatory variables (Table S7; R² 705 

= 0.42, RMSE 0.61). For this mapping exercise at a global scale, input variables were run at a 706 

0.5° resolution and later aggregated at 0.25° latitudinal resolution to derive a mean Q10 value 707 

separately for major land use systems at the respective latitude. Land use was derived using the 708 

2015 ESA CCI-LC93 land cover maps (300m original resolution) and summarized to 709 

agriculture, forest and grassland systems. We excluded those areas from our prediction where 710 

(i) data in any of the required predictors was missing, (ii) land use was different to the 711 

aggregated land use systems listed above or (iii) areas where located in climate zones which 712 

were not targeted by our model (polar and non-polar (semi-) deserts). Predictors that were 713 

available at a higher resolution were resampled using geostatistics to match a 0.5° resolution. 714 

The resulting map’s averages shows significant differences for distinct USDA and WRB94 soil 715 

orders across climate zones and land use systems (Table S9).To assess the uncertainty related 716 

to the creation of the map due to resampling of data and unexplained variability not captured 717 

by the rPC scores we run the model also at a finer resolved 1 km2 grid or those areas where 718 

input variables were available at this higher resolution. This analysis revealed an overall 719 
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uncertainty of our global soil Q10 map averaging at 27.4 +/- 10 %. The corresponding map of 720 

relative uncertainty of prediction was built by displaying  standard deviation/divided by the 721 

mean of prediction based on the results of our final random-forest model with standard 722 

deviation related to the range of possible predictions based on the build-up of the used decision 723 

tree after 500 model runs. 724 

 725 

Caveats 726 

The “real” controls and the influence of experimental modifications 727 

The identification of variables for regression models, including their importance and 728 

dependency assessments, are highly dependent on the range in which the included variables 729 

can vary. In our global model design, we addressed this by including independent variables 730 

that vary across a large range of possible values in which biological processes take place and 731 

which represent the majority of conditions that can occur in soils (Table S1). To assess the 732 

validity of our interpretation and the robustness of our models, we repeated all statistical 733 

analyses that involve independent predictors by using data only derived from global datamaps, 734 

further referred to as the generalized data approach (Table S4 & Figure S3). An approach that 735 

excluded experiment specific modifiers (Table S7) generally yielded in less performance than 736 

fully parameterized models, but differences were marginal (R2 = 0.03 - 0.42; RMSE 0.61 - 737 

0.79). Together with our analyses of potential biases in the database that yielded negative 738 

results (Figure S2) this suggests that experimental and climatic conditions, if made comparable 739 

across larger gradients, do not exceed the control of soil variables on soil Q10. 740 

 741 

Spatial autocorrelation 742 

Building our predictive models of soil Q10 (Figures 1a 3Sa), we tested for and quantified spatial 743 

autocorrelation of modelled residuals using Moran I test95. Results indicated only a minor 744 

influence of spatial autocorrelation for all linear models (Moran I = ca. 0.3 for all models). 745 



26 

 

Further corrections taking into account spatial variability and the accuracy of geographic 746 

coordinates96 in the modelling structure of the linear models showed no improvement. In 747 

combination with the good results of the machine learning models (Table S6 & S7), we 748 

interpret these results as supportive to our finding that the relationship of soil Q10 and the 749 

included independent controls are primarily non-linear.  750 


