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The N M R  frequencies of the helical texture in 3He-A in the presence of a 
magnetic field parallel to the superflow are reexamined in the entire stability 
region. The effects of the anisotropic contribution to the spin susceptibility are 
explicitly included and are shown to leave previous results qualitatively 
unchanged. On the other hand, we find that the anisotropic contribution gives 
rise to quantitative corrections of maximally 20% at T/To = 0.95, while its 
contribution in the immediate vicinity of T~ is negligibly small. 

We have recently studied the stability regime of helical textures in 
3He-A in the presence of a magnetic field parallel to the superflow.l-3 In 
particular, assuming that the stability of the helical texture is determined by 
the spectrum of the longitudinal fluctuations, we have determined the phase 
diagram of the helical texture in the Ginzburg-Landau regime 3 (this paper is 
referred to as I hereafter). Since the helical texture breaks the chiral 
symmetry, the appearance and the existence of the helical texture can be 
most readily detected by the dramatic splittings in the nuclear magnetic 
resonance frequencies. 1-3 

We calculated all of these frequencies earlier. 3 However,  in the pre- 
vious calculations we neglected contributions from the anisotropy term of 
the spin susceptibility. Therefore,  although the predicted frequencies are 
qualitatively correct, they are not quantitatively exact. For example, at 
T/Tc = 0.99, the corrections due the anisotropic term are still negligible 
(i.e., less than a few percent); on the other hand, at T/Tc = 0.95, where the 
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resonance frequencies are calculated, these corrections are quite appreci- 
able, although they are always less than 20%. 

The purpose of the present paper is two-fold. First, we shall present 
a spin Lagrangian, which includes the anisotropic term in the spin suscep- 
tibility. 4 Second, we shall present our results for the resonance frequencies 
in terms of this new Lagrangian. 

The kinetic energy associated with the spin rotation in 3He-A is given 
by 

1 T = ~(oJ - to0)X(oJ - too) (1) 

=  89 - Wo) 2 +/3, 2 + y,= + 2(a, - wo)y, cos/3 

- a[y ,  + (a, - wo) cos/3]2} (2) 
so here 

~ol = (cos a sin/8)3,,-(sin oe)fl~ 

w2= (sin a sin fl)y, + (cos a ) B ,  

w3 = a, + (cos/3)3', (3) 

tOO ~--" 0-)02 

and a , /L  1' are Euler angles, ~Oo is the Larmor frequency, and we assumed 
that a magnetic field is applied along the z axis. 

Here  we have introduced an anisotropic spin susceptibility tensor 5 X 
with components 

Xq = X N  (8o - a d i d i )  (4) 
which is appropriate for 3He-A, while in our earlier analysis, we neglected 
the anisotropy term a. In fact in the vicinity of the melting pressure and the 
transition temperature,  a is approximated by 6 

a = 4.8(1 - T / T c )  (5) 

The anistropy term vanishes linearly as T approaches To. Therefore,  the 
anisotropy term is completely negligible in the immediate vicinity of the 
transition temperature T~. 

In terms of Euler angles, the d vector is given by 

= (sin/3 cos a, sin/3 sin ~, cos/3) (6) 

where in the equilibrium configuration of the helical texture a a n d / 3 a r e  
given by 3 

/ 3 = 0  and a = k z  (7) 

and 0 and k are determined by minimizing the Gibbs free energy in the 
presence of super~tow. 
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It is very important to note that in the helical texture d does not depend 
on y. This implies tha t 'y  is a cyclic variable. 

The present system has a conserved angular momentum 

P = y, + (O/t -- IO0) COS/~ (8) 

In the equilibrium configuration (i.e., at = yt = 0) we have 

P = -OJo cos 0 (9) 

Then we can eliminate y, from T defined in (2). The new kinetic energy T* is 
given by 

T* =- T -  Tt(OT/OTt ) 
= 1,,~N [ ( a  t - -  090) 2 sin 2 fl + w o 2 + fl ~ - (1 - a)P2 

+2(1 - a ) P ( c e , - w o )  cos fl] (10) 

Now small fluctuations of cl around the equilibrium configuration are 
parameterized by 

f l = O + g  and o ~ = k z + f  (11) 

where g and f are small parameters.  
The equations of motion of g and f are obtained from the effective 

Lagrangian density 
, 1 2 L = T --SXNfiAG (12) 

where G is the normalized Gibbs free energy z in the presence of superflow 
and f~A if the Leggett frequency, 

' 1 / 2  p2 1 2 
G l + s + ~ ( 3 - 2 s ) x z + ( l + s ) f l ~ + 2  ( l - s )  

= - 1 + s ptOz 

( 2 1 )  
+s l + s  2 0 ~ + ( s i n 2 3 ) ( l + s ) ~ + l  

- [cos  X cos 3 +sin X sin 3 cos (0 - a ) ]  2 (13) 

Here s = sin 2 X, and X and 0 are the angles describing the spatial orientation 
of the / ' vec to r :  

f =  (sin X cos 0, sin x sin ~, cos ,~) (14) 

In (13) we have dropped the term h 2 cos2fl for the magnetic anisotropy 
energy which was previously present in the free energy functional, 2 because 
it is already contained in T* in the present formulation. 
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From (12) we obtain 

fttsin2 0_O.)o(l+a)(sinOcosO)g,  ~ 2 = -~1"1. oG/o /  (15) 
2 2 g . -oJoa  sin 0 cos 0 +OJ2o(sin z O - a  cos O)g 

= --~tlA OG/Og (16) +OJo(l+a)(sinOcosO)f ,  ~ z 

where we have linearized the left-hand sides of (15) and (16) in f and g. 
Substituting the expression for G into (15) and (16), we obtain a system 

of coupled linear equations for f and g. In particular, the resonance 
frequencies are now determined by the dispersion relation 

[0)2--Ll1~'~2][09 2 -  wE (sin 2 0 - a  cos 2 O ) -  L22~'~ 2]  

- [tOtOo(1 + a) - L12f~2A] 2 cos 2 0 = 0 (17) 

where 

L n  = sin X cos (X - 0) + (1 + s)q 2 
sin 0 

L22 sin 22r h2 = - - +  c o s 2 0 + ( l  +s)q z (18) 
sin 20 

L12 = 2kq(1 +s)  

and h = H/Ho,  Ho = 27.44 Oe, and q is the wave vector of the spin wave. 
The expressions for L11, etc. have been determined previously, 2 but we have 
corrected the sign of the h 2 cos 20 term in L22. Note, however, that the 
change thus introduced is exactly of the same order of smallness as the 
anisotropy term of the spin susceptibility (because f ~ h  2 = a~o2), which had 
been neglected anyway. Equation (17) reduces to the earlier equation 2 in the 
limit a ~ 0. Here  we have used Ho = 27.44 Oe, which is consistent with a 
finite anisotropy term given in (5), rather than H0 = 20 Oe used before for 
zero anistropy. The corresponding "dipole velocity" Vso is then given by 
1.37 ram/see. 

Very recently Bromley T derived an equation for the resonance 
frequencies of the helical texture very similar to (17), starting from the 
Leggett  equation. A direct comparison between actual numerical results of 
the two works is difficult, however, because of the different physical situa- 
tions considered; e.g., Bromley has not minimized the free energy with 
respect to the helix pitch k. While in a torus this can be justified by arguing 
that k will be restricted by the quantization condition imposed on the 
texture by the size of the torus, one cannot expect it to be correct in the bulk 
situation (which we considered 2) because then one does not obtain the 
equilibrium configuration, i.e., lowest energy configuration. One of the 
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consequences is that, as we showed,:  the true equilibrium configuration in 
the bulk does not allow for large-angle helices as obtained by Bromley. 7 
Although Bromley 's  criticism 7 of our earlier calculations (where we neglec- 
ted the anisotropic contribution to the susceptibility) is valid in principle, it 
should be pointed out that at the temperatures  at which he presents his 
numerical results (i.e., T / T c  = 0.99 and 0.998) the anisotropic contribution 
is negligibly small. In this particular tempera ture  region our previous results 
are sufficiently accurate (the error is less than a few percent). 

This can be seen for example, by investigating the spin wave dispersion 
relation (17) in the vicinity of the phase boundary between the uniform and 
the helical texture. In this region the inclination angles X and 0 are small and 
(17) can be solved exactly. One obtains 

1 2 o~ = [~oJ0 (1 + a)  2 + f~2A(At + q2 :; 2kq)]1/2 1 + ~Oo(1 + a )  (19) 

where 2 At = 1 + k 2 - h  2 is the ratio of X and 0 near the phase boundary. 
Making use of the fact 3 that the longitudinal rf field picks up the spin wave 
with q = 0, while the transverse rf field couples to the spin mode with q = +k, 
one obtains two longitudinal and four transverse resonance frequencies (two 
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Fig. 1. The longitudinal resonance frequencies ton and wt2 of the helical 
texture for fixed superflow p as functions of the reduced magnetic field h at 
T =O.95T c. 
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different modes for each of the two different polarizations, i.e., helicities). 
For the longitudinal frequencies (19) yields 

2 1 2 wll = [htIIa + Xro o (1 + a )211/2.4..  89 1 ..[. a ) (20) 

and for the transverse modes 

1 2 + = [&f~+~O)o(1 + a)1/2+ 1 5Wo(1 + a) Ogtl 

+ 2 1 2 2 1/2 1 COtz=[f~a+~wo(1-a) ] - ~ w o ( l + a )  
- 2 1 2 2 1 / 2  Ogt 1 = [ a A + ~ o o ( l - a )  ] +  89  
- 1 2 w t2 = [htfl 2 + ~r (1 + a)2] 1/2-  89 + a) 

(21) 

where At = hi + 3k 2. If we compare these results with the previous ones in I 
we can see that the anisotropic contribution to the spin susceptibility only 
appears in the terms to0(1 + a), which clearly shows that its contribution is 
unimportant in the immediate vicinity of To. 

Equation (17) allows us to calculate the six resonance frequencies for 
the whole stability region of the helical texture in the p-h phase diagram. 3 
We present the numerical results for the resonance frequencies at T = 
0.95 Tc in Figs. 1 and 2 as functions of the reduced magnetic field h (-H/Ho) 
for fixed p [ ~ - s ( 1  - s ) l / 2 k  + (1 + S)Vs/Vso], the reduced mass superflow. In 
Fig. 1 the two branches of the longitudinal resonance frequency are shown, 
while in Fig. 2 the two branches of the transverse resonance frequencies with 
different polarization (two modes each) are depicted. 

In particular, in Fig. 2b, where rot is shown, the frequency axis has 
been split up so that the two branches of W t l  and co~-2 can be viewed 
separately. Also, fewer curves have been drawn, to avoid confusion. This is 
necessary because r ~-1 initially decreases while oJ [2 increases, so it appears as 
if both modes intersected. This, however, is not the case: the branches repel 
each other (but come very close to each other), as can be seen, for example, 
for p = 1.05 in the insert in Fig. 2b, where an enlarged section of the 
hybridization region is shown, using the same w scale. Repulsion rather than 
crossing takes place because both modes are coupled and have the same 
symmetry. 

Comparing the corresponding figures in I (i.e., Figs. 3 and 4), we 
note that the anisotropic term has an appreciable effect only in the higher 
field region (h <~ 0.5). In general, the anisotropy term pushes the higher 
frequency branches even higher while the lower frequency ones are pushed 
further down. 
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Fig. 2. The transverse resonance frequencies ~o, of the helical texture as functions 
of the reduced magnet ic  field h for fixed superflow p at T = 0.95Tc: (a) the two 
branches of o)~-, coupling to M+;  (b) the two branches of o~ ;-, coupling to M - .  For 
reasons of clarity different o) axes have been used in the case of o9;- to separate the 
branches (see text). 
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