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Abstract 

The aim of this thesis is to deepen our understanding of new empirical methods, 

results and implications in interest rate and foreign exchange markets. To this end, 
this thesis is organised in three chapters. 

The first chapter tests the validity of the Expectation Hypothesis (EH) of the 

term structure using daily data for US repo rates spanning the 1991-2005 sample 

period and ranging in maturity from overnight to three months. We revisit a recent 

study by Longstaff (2000a) by implementing statistical tests designed to increase test 

power in this context. Specifically, we apply the Lagrange Multiplier and Distance 

Metric statistics to test a set of nonlinear cross-equation restrictions imposed by the 
EH on a vector autoregression model of the short- and long-term interest rates. We 

find that EH is rejected throughout the term structure examined on the basis of the 

statistical tests. 
In the second chapter, we extend the study carried out in the first chapter in a 

different direction and assess the economic value of departures from the EH based on 

criteria of profitability and economic significance. In the context of a mean-variance 
framework, we compare the performance of a dynamic portfolio strategy consistent 

with EH to a dynamic portfolio strategy that exploits the departures from the EH. 

The results of our economic analysis are favourable to the EH, suggesting that the 

statistical rejections of the EH in the repo market are economically insignificant. 
Finally, in the third chapter, we provide a comprehensive evaluation of the short- 

horizon predictive ability of economic fundamentals and forward premia on monthly 

exchange rate returns in a framework that allows for volatility timing. We imple- 

ment Bayesian methods for estimation and ranking of a set of empirical exchange 

rate models, and construct combined forecasts based on Deterministic and Bayesian 

Model Averaging. More importantly, we assess the economic value of the in-sample 

and out-of-sample forecasting power of the empirical models, and find two key re- 

sults: (i) a risk averse investor will pay a high performance fee to switch from a 
dynamic portfolio strategy based on the random walk model to one which condi- 
tions on the forward premium with stochastic volatility innovations; and (ii) strate- 

gies based on combined forecasts yield large economic gains over the random walk 
benchmark. These two results are robust to reasonably high transaction costs. 
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Overview 

ings oll This thesis ill\, (, Stlgtt, (, s liew empirical methods, challonpes estahlislied fill(li 

classic Issues, of empirical finance and provides new result's and implication, " ill Ill- 

forest rato aild foreign exchange markets. 

The first chapter re-examiiic,. ý the validitY of the Expectation Hypothesis (Ell) 

of' tll(' tPrill stilict"re of the interest, rates. Ever since Fisher (1896) postulated 

the Expectation Hypothesis (Ell) of the terin structure of intere. st, rates, this simple 

and intuitively appealing theory has attracted an enormous aniount, of attention 

ill financial ecolloulics. Many anthors have argued that, interest rates at, different, 

illat'lintle's illove together because they are linked by the EH and a number of studies 

have addressed the empirical validity of this theory. However, this literature, using 

a variety of tests and (lata, generally rejects the EH (e. g. Roll, 1970; Fania, 19841); 

Faina and Bliss, 1987; Frankel and Froot, 1987; Stambaugh, 1988; Froot, 1989; 

Call, I)bell and Shiller, 1991; Bekaert, Hodrick and TNIarshall, 1997; Bekaert, and 

Hodrick, 2001; Clarida, Sanio, Taylor and Valente, 2006; Sarno, Thornton and 

Valente, 2007). 

An important exception is provided by Longstaff (2000a), who finds that the 

EH is supported by the data. Longstaff (2000a) pr(ýs(, Ijts tile first tests of the EH 

at the extreme short elld of tile term structure, using repurchase (repo) rates with 

measur(A in (lays or -week-s. There are two reasons why Longstaffs study 

is important. First, if the EH cannot explain the terin structure at this extreme 

short, cii(t, it, s(Tins unlikely that it, can be of value it longer maturities. Secoii(l, 

the use of' repo rates is especially appropriate for investigating the EH because repo 
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rates represent the actual cost of holding riskless securities. Hence, repo rates 

provide potentially better measures of the short-term riskless term structure than 

other interest rates commonly used by the relevant literature, such as Týreasury bill 

rates. 

This chapter revisits the EH using an updated data set of repo rates from the 

same source as Longstaff (2000a). In fact, the literature on testing the EH has 

made much progress in recent years by developing increasingly sophisticated testing 

procedures that are particularly useful in this context. Given the statistical prob- 

lems afflicting conventional tests of the EH, in this chapter we employ a test that 

was originally proposed in Campbell and Shiller (1987) and made operational in 

Bekaert and Hodrick (2001). Bekaert and Hodrick (2001) develop a procedure for 

testing the parameter restrictions that the EH imposes on a vector autoregression 

(VAR) of the short- and long-term interest rates. The procedure's size and power 

properties have been thoroughly investigated by Bekaert and Hodrick (2001) and 

Sarno, Thornton and Valente (2007). We apply this test to US repo rates ranging 

in maturity from overnight to three months over the sample period 1991-2005. 

To anticipate the results of the first chapter, we find that the EH is statistically 

rejected for all pairs of repo rates in our sample throughout the maturity spectrum 

from overnight to three months. Our results differ from Longstaff's (2000a) pre- 

sumably because the VAR test is more powerful and our sample period is somewhat 

longer than his. 

In the second chapter, we extend the study carried out in the first chapter. We 

move beyond testing the validity of the EH from a purely statistical perspective and 
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provide evidence on whether deviations from the EH are economically significant. 

Distinguishing between statistical analysis and economic evaluation is crucial for at 

least three reasons: in general statistical rejections of a hypothesis do not necessarily 

imply economic rejections (Leitch and Tanner, 1991); statistical VAR tests of the 

EH do not allow for transactions costs, which are critical for exploiting departures 

from the EH in real-world financial markets; and very powerful statistical tests 

may reject virtually any null hypothesis in large samples, without necessarily being 

informative about the size of departures from the hypothesis tested (Leamer, 1978). 

All these reasons suggest that an economic assessment of the deviations from the 

EH is desirable to complement the statistical tests. 

In a mean-variance framework, we compare the performance of a dynamic port- 

folio strategy consistent with the EH to a dynamic portfolio strategy that exploits 

the departures from the EH. We use a utility-based performance criterion to com- 

pute the fee a risk-averse investor would be willing to pay to switch from the EH 

to a strategy that exploits departures from the EH to forecast interest rates. As 

an alternative economic measure, we also employ the risk-adjusted return of these 

two strategies. In short, we provide an economic test of the EH by evaluating 

the incremental profitability of an optimal (mean-variance efficient) strategy which 

relaxes the restrictions implied by the EH statement. 

To anticipate the results of the second chapter, the economic analysis lend sup- 

port to the EH as we find no tangible economic gain to an investor who exploits 

departures from the EH relative to an investor who allocates capital simply on the 

basis of the predictions of the EH. Specifically, the evidence in this chapter shows 
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that the economic value of departures from the EH is modest and generally smaller 

than the costs that an investor would incur if he were to trade to exploit the mis- 

pricing implied by EH violations. Hence, despite the statistical rejections of the 

EH recorded in the previous chapter, we conclude that the EH provides a fairly rea- 

sonable approximation to the repo rates term structure, consistent with Longstaff's 

interpretation of the functioning of the repo market. 

In the third chapter, we provide a comprehensive evaluation of the short-horizon 

predictive ability of economic fundamentals and forward premia on monthly ex- 

change rate returns in a framework that allows for volatility timing. Forecasting 

exchange rates using models which condition on economically meaningful variables 

has long been at the top of the research agenda in international finance, and yet 

empirical success remains elusive. Starting with the seminal contribution of Meese 

and Rogoff (1983), a vast body of empirical research finds that models which con- 

dition on economic fundamentals cannot outperform a naive random walk model. 

Even though there is some evidence that exchange rates and fundamentals comove 

over long horizons (e. g. Mark, 1995; Mark and Sul, 2001), the prevailing view in 

international finance research is that exchange rates are not predictable, especially 

at short horizons. 

A separate yet related literature finds that forward exchange rates contain valu- 

able information for predicting spot exchange rates. In theory, the relation between 

spot and forward exchange rates is governed by the Uncovered Interest Parity (UIP) 

condition, which suggests that the forward premium must be perfectly positively re- 

lated to future exchange rate changes. In practice, however, this is not the case 
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as we empirically observe a negative relation. The result of the empirical failure 

of UIP is that conditioning on the forward premium often generates exchange rate 

predictability. For example, Backus, Gregory and Telmer (1993) and Backus, Foresi 

and Telmer (2001) explore this further and find evidence of predictability using the 

lagged forward premium as a predictive variable. Furthermore, Clarida, Sarno, Tay- 

lor and Valente (2003,2006) and Boudoukh, Richardson and Whitelaw (2006) show 

that the term structure of forward exchange (and interest) rates contains valuable 

information for forecasting spot exchange rates. 

On the methodology side, while there is extensive literature on statistical mea- 

sures of the accuracy of exchange rate forecasts, there is little work assessing the 

economic value of exchange rate predictability. Relevant research to date comprises 

an early study by West, Edison and Cho (1993) which provides a utility-based eval- 

uation of exchange rate volatility, and more recently, Abhyankar, Sarno and Valente 

(2005) who use a similar method for investigating long-horizon exchange rate pre- 

dictability. However, in the context of dynamic asset allocation strategies, there is 

no study assessing the economic value of the predictive ability of empirical exchange 

rate models which condition on economic fundamentals or the forward premium 

while allowing for volatility timing. 

Our empirical investigation attempts to fill this gap and connect the related lit- 

eratures which examine the performance of empirical exchange rate models. We do 

this by employing a range of economic and Bayesian statistical criteria for perform- 

ing a comprehensive assessment of the short-horizon, in-sample and out-of-sample, 

predictive ability of three sets of models for the conditional mean of monthly nomi- 
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nal exchange rate returns. These models include the naive random walk model, the 

monetary fundamentals model (in three variants) , and the spot-forward regression 

model. Each of the models is studied under three volatility specifications: constant 

variance (standard linear regression), CARCH(IJ) and stochastic volatility (SV). 

In total, we evaluate the performance of 15 specifications, which encompass the most 

popular empirical exchange rate models studied in prior research. Our analysis em- 

ploys monthly returns data ranging from January 1976 to December 2004 for three 

major US dollar exchange rates: the UK pound sterling, the Deutsch mark/euro, 

and the Japanese yen. 

In addition to implementing Bayesian statistical methods for evaluating the mod- 

els, an important contribution of our analysis is the use of economic criteria. Sta- 

tistical evidence of exchange rate predictability in itself does not guarantee that an 

investor can earn profits from an asset allocation strategy that exploits this pre- 

dictability. In practice, ranking models is useful to an investor only if it leads 

to tangible economic gains. Therefore, we assess the economic value of exchange 

rate predictability by evaluating the impact of predictable changes in the condi- 

tional foreign exchange (FX) returns and volatility on the performance of dynamic 

allocation strategies. We employ mean-variance analysis as a standard measure of 

portfolio performance and apply quadratic utility, which allows us to quantify how 

risk aversion affects the economic value of predictability, building on empirical stud- 

ies of volatility timing in stock returns by Fleming, Kirby, and Ostdiek (2001) and 

Marquering and Verbeek (2004). Ultimately, we measure how much a risk averse 

investor is willing to pay for switching from a dynamic portfolio strategy based on 

6 
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the random walk model to one which conditions on either monetary fundamentals 

or forward premia and has a dynamic volatility specification. 

Furthermore, we assess the statistical evidence on exchange rate predictability in 

a Bayesian framework. In particular, we rank the competing model specifications 

by computing the posterior probability of each model. The posterior probability is 

based on the marginal likelihood and hence it accounts for parameter uncertainty, 

while imposing a penalty for lack of parsimony (higher dimension). In the context of 

this Bayesian methodology, an alternative approach to determining the best model 

available is to form combined forecasts which exploit information from the entire 

universe of model specifications under consideration. Specifically, we implement 

the Bayesian Model Averaging (BMA) method, which weighs all conditional mean 

and volatility forecasts by the posterior probability of each model. We then compare 

the BMA results to those obtained from a Deterministic Model Averaging (DMA) 

strategy, which simply combines all model specifications with equal weights. 

To preview the key results of the third chapter, we find strong economic and sta- 

tistical evidence against the naive random walk benchmark with constant variance 

innovations. In particular, while conditioning on monetary fundamentals has no 

economic value either in-sample or out-of-sample, we establish that the predictive 

ability of forward exchange rate premia has substantial economic value in a dynamic 

portfolio allocation strategy, and that stochastic volatility significantly outperforms 

the constant variance and GARCH(I, I) models irrespective of the conditional mean 

specification. This leads to the conclusion that the best empirical exchange rate 

model is a model that exploits the information in the forward market for the pre- 
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diction of conditional exchange rate returns and allows for stochastic volatility for 

the prediction of exchange rate volatility. We also provide evidence that combined 

forecasts which are formed using either DMA or BMA substantially outperform the 

random walk benchmark. These results are robust to reasonably high transaction 

costs and hold for all currencies both in-sample and out-of-sample. Finally, these 

findings have clear implications for international asset allocation strategies which 

are subject to FX risk. 

8 



1A Statistical Evaluation of the Expectation Hy- 

pothesis of the Term Structure of Very Short- 
Term Rates 

1.1 Introduction 

Ever since Fisher (1896) postulated the Expectation Hypothesis (EH) of the term 

structure of interest rates, this simple and intuitively appealing theory has attracted 

an enormous amount of attention in financial economics. Many authors have argued 

that interest rates at different maturities move together because they are linked by 

the EH and a number of studies have addressed the empirical validity of this theory. 

However, this literature, using a variety of tests and data, generally rejects the EH 

(e. g. Roll, 1970; Fama, 1984b; Fama and Bliss, 1987; Frankel and Froot, 1987; 

Stambaugh, 1988; Froot, 1989; Campbell and Shiller, 1991; Bekaert, Hodrick and 

Marshall, 1997; Bekaert and Hodrick, 2001; Clarida, Sarno, Taylor and Valente, 

2006; Sarno, Thornton and Valente, 2007). 

An important exception is provided by Longstaff (2000a), who finds that the 

EH is supported by the data. Longstaff (2000a) presents the first tests of the EH 

at the extreme short end of the term structure, using repurchase (repo) rates with 

maturities measured in days or weeks. There are two reasons why Longstaff's study 

is important. First, if the EH cannot explain the term structure at this extreme 

short end, it seems unlikely that it can be of value at longer maturities. Second, 

the use of repo rates is especially appropriate for investigating the EH because repo 

rates represent the actual cost of holding riskless securities. Hence, repo rates 

provide potentially better measures of the short-term riskless term structure than 
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other interest rates commonly used by the relevant literature, such as Treasury bill 

rates. 

This chapter revisits the EH using an updated data set of repo rates from the 

same source as Longstaff (2000a). In fact, the literature on testing the EH has 

made much progress in recent years by developing increasingly sophisticated testing 

procedures that are particularly useful in this context. Given the statistical prob- 

lems afflicting conventional tests of the EH, in this chapter we employ a test that 

was originally proposed in Campbell and Shiller (1987) and made operational in 

Bekaert and Hodrick (2001). ' Bekaert and Hodrick (2001) develop a procedure for 

testing the parameter restrictions that the EH imposes on a vector autoregression 

(VAR) of the short- and long-term interest rates. The procedure's size and power 

properties have been thoroughly investigated by Bekaert and Hodrick (2001) and 

Sarno, Thornton and Valente (2007). We apply this test to US repo rates ranging 

in maturity from overnight to three months over the sample period 1991-2005. 

To anticipate our results, we find that the EH is statistically rejected for all 

pairs of repo rates in our sample throughout the maturity spectrum from overnight 

to three months. Our results differ from Longstaff's (2000a) presumably because 

the VAR test is more powerful and our sample period is somewhat longer than his. 

The outline of the chapter is as follows. Section 1.2 briefly describes the data 

and preliminary statistics on repo rates. Section 1.3 introduces the EH and the 

VAR framework within which the empirical work is carried out, with a description 

of the essential ingredients of the VAR testing procedure proposed by Bekaert and 

1 It is well known that tests that are commonly used to investigate the EH may generate para- 
doxical results due to finite sample biases, size distortions and power problems (e. g. see Campbell 

and Shiller, 1991; Bekaert, Hodrick and Marshall, 1997; Thornton, 2005,2006). 
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Hodrick (2001). We report the results from the VAR tests of the EH in Section 

1.4. The conclusions are presented in Section 1.5. Appendix A provides technical 

details on the VAR framework and estimation issues, in addition to further empirical 

results. 

1.2 Data 

The data set comprises daily observations of the closing overnight Zt, I-week it(") 7 
. (2w) (3w) 

2-week it . (2m) i(3m) 3-week 1-month z("'n), 2-month it and 3-month t general tt 

collateral government repo rates, from May 21,1991 to December 9,2005. The 

data are obtained from Bloomberg and the source of the data is Carban, a large 

Treasury securities broker. Repo rates are quoted on a 360-day basis and the rate 

quotations in Bloomberg are given in increments of basis points (bps). The total 

number of daily observations available is 3,625 and is essentially an update of the 

data set used by Longstaff (2000a). 2 

Table 1.1 reports the summary statistics for repo rates, in level and first differ- 

ence. All variables are expressed in percentage points per annum. The data display 

similar properties to those described by Longstaff (2000a) for a shorter sample. The 

mean of the repo rates displays a mild smile effect across the term structure. In par- 

ticular, the mean overnight rate of 3.9600 is slightly higher than the mean one-week 

rate of 3.9492, which turns out to be the lowest mean across the different maturi- 

ties. The mean of three-month rate is 3.9924, which is approximately 3 bps higher 

2 Professor Longstaff kindly checked the consistency of our data set with the data used in 
Longstaff (2000a), which covered the sample from May 21 1991 to October 15 1999. Notice that 

only days for which a complete set of rates for all maturities are available are included in the 

sample. This resulted in 42 days being dropped from the sample. Finally, the period September 
11,2001 through September 30,2001 is not available. 
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than the mean overnight rate. Table 1.1 also reports the mean repo rates for the 

different maturities by day of the week and shows a number of calendar regularities 

in the data. The mean repo tends to increase from Monday to Tuesday and to 

decrease afterwards, while the mean on Monday is always higher than the mean on 

Friday. For example, the mean overnight rate on Monday is 3.9718, which is about 

5 bps higher than the mean overnight rate on Friday, equal to 3.9260. A similar 

pattern is observed for all other rates. However, it is important to note that these 

unconditional means are all very close to one another, and the differences are much 

smaller than the differences typically observed on other interest rates typically used 

in empirical research on the EH. For example, it is interesting to compare the means 

of repo rates to the means of Týreasury bill (T-bill) rates. For comparison purposes, 

in Table 1.2 we report descriptive statistics on daily I-month and 3-month US T-bill 

rates, also obtained from Bloomberg, both for a long sample from 1961 to 2005 and 

for the same sample as the repo rates data. The differences in the unconditional 

means between the I-month and 3-month T-bill rates over the 1991-2005 sample are 

often about 15 bps, approximately five times larger than the maximum difference 

observed in repo markets for the same maturities. The differences in unconditional 

means for the full sample are even larger, up to 25 bps. Before embarking in our 

econometric analysis designed to test the EH, it is therefore worthwhile to note that 

the tiny differences in the unconditional means of repo rates at different maturities 

suggest that risk premia in repo markets are unlikely to be of particular economic 

importance. Put another way, these descriptive statistics are clearly indicative that 

the EH is more likely to hold on repo rates than T-bill rates. 
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We also report the standard deviations of daily changes in repo rates in Table 

1.1. The overnight rate displays a standard deviation higher than the rates at other 

maturities. The standard deviation of daily changes in the overnight rate is about 18 

bps, while the standard deviations for the other rates range from 5 to 6 bps per day. 

The standard deviations vary somewhat across days. The corresponding figures 

for T-bill rates, given in Table 1.2, indicate that changes in T-bill rates display a 

substantially higher dispersion than repo rates, with a standard deviation of about 

16 bps for both I-month and 3-month rates. However, it is worth mentioning that 

the standard deviation of the raw variables (annualised percentage returns) is not 

the standard deviation associated with an annual holding period. Therefore, we 

also report the annualised volatility or(a). ' This battery of descriptive statistics 

confirms Longstaff's (2000a) argument that repo rates are smaller in magnitude and 

less volatile than T-bills. 4 

1.3 The Expectation Hypothesis 

The EH of the term structure of interest rates relates a long-term n-period interest 

(n) 
rate it to a short-term m-period interest rate zt('). In the case of pure discount 

bonds, the EH can be stated as: 

k-1 
(n) EEt[i(m) j+ C(n, m) 

tt k t+M 
i=O 

Vollowing Lo (2002), we compute the annualized volatility as or(a) = -ý/Var 
ý[it_(a)], where 

a-1 it (a) = Ek=o it 
-k 

(d) is the sum of the daily returns, and a= 250 is the average number of trading 

days. Notice that the raw data are quoted on a 360-day basis and expressed in percentage points 

per annum. Hence, we determine the daily return as it(d) = 
il for a given raw repo rate it. 

360 x 100 
We also report the product of the unconditional mean times the annualized volatility, Mean x a(a), 

since this may be interpreted as the commonly used Black's volatility for caps under the assumption 

of log-normality. 
'Notice also that the autocorrelation coefficients indicate a high level of persistence for all 

interest rates examined. 
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where c(', ') is the term premium between the n- and m-period bonds (and may vary 

with the maturity of the rates); k= n/m and is restricted to be an integer; and 

Et denotes the mathematical expectation conditional on information set It available 

at time t. 

In a market where expectations are formed rationally, an investor may either 

invest funds in a long-term n-period discount bond and hold it until maturity, or 

buy and roll over a sequence of short-term rn-period discount bonds over the life of 

the long-term bond. Under the EH, these strategies should only differ by a constant 

term. As result, the long-term rate should be determined by a simple average of the 

current and expected future short-term rates plus a time-invariant term premium. ' 

If the term premium c(n, m) is zero, the resulting form of the EH is often termed the 

'pure' EH. 

While much of the relevant literature relies on single equation tests of the EH, 

derived by reparameterising equation (1.1), a number of scholars reconsider the 

EH in a linear VAR framework and test the set of nonlinear restrictions which 

would make the VAR model consistent with the EH (Campbell and Shiller, 1991; 

Bekaert and Hodrick, 2001; Sarno, Thornton and Valente, 2007). ' However, while 

the EH postulated in equation (1.1) is only a statement about how longer-term 

5 Fama (1984) derives equation (1.1) by assuming that the expected continuously compounded 
yields to maturity on all discount bonds are equal, up to a constant, while Shiller, Campbell, 

and Schoenholtz (1983) show that equation (1.1) is exact in some special cases and that it can 
be derived as a linear approximation to a number of nonlinear expectation theories of the term 

structure. For coupon bonds and consols with n= oo, Shiller (1979) derives a similar linearized 

model where the long-term rate is a weighted average of expected future short-term rate plus a 
constant liquidity premium. Finally, note that, as showed by Longstaff (2000b), all traditional 
forms of the EH can be consistent with absence of arbitrage if markets are incomplete. 

6 The VAR methodology has been popular in the context of formulating and estimating dynamic 
linear rational expectations models since the 1970s, starting from Sargent (1977), Hansen and 
Sargent (1980), Sims (1980) and Wallis (1980). 
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rates are related to expected short term rates, the VAR setting further assumes 

a joint linear stochastic process for the dynamics of the long-term and short-term 

interest rates. This is a convenient assumption to extract predictions of future 

short-term rates by using current and past values of interest rates as information 

set. The VAR model is also inspired by the affine term structure literature in 

which conditional means are linear in a set of Markovian state variables (Duffie 

and Singleton, 1999; Dai and Singleton, 2000; Jagannathan, Kaplin and Sun, 2003; 

Ahn, Dittmar and Gallant, 2002; Bansal and Zhou, 2002; Clarida, Sarno, Taylor 

and Valente, 2006). This literature generally documents that affine specifications 

are unable to simultaneously match conditional means and conditional variances, 

leading to term premium puzzles. ' Therefore, the linear VAR framework is rooted 

in a literature that has the potential to inherit some of the challenges faced by more 

traditional affine term structure models. This means that one may cannot rule 

out that the impact of these issues on EH tests based on the VAR framework may 

be substantial. For example, potential biases of the EH tests would arise if the 

interest rates data are generated by a process that is not encompassed within the 

VAR framework due to nonlinearities or time-varying covariances. In short, EH 

tests based on a VAR context are only valid under the maintained hypothesis that a 

linear VAR accurately describes the process of the short- and long-term interest rates 

and the relationship between them. This maintained assumption is questionable 

due to the well-documented limitations of affine specifications in matching the level 

and term premium in bonds simultaneously with the volatility of interest rates. 

7Another stream of the literature also documents that affine structures cannot capture what 

is termed 'unspanned stochastic volatility' (e. g. Collin-Dufresne and Coldstein, 2002; Collin- 

Dufresne, Coldstein and Jones, 2007). 
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These caveats notwithstanding, in this chapter we rely on the VAR testing frame- 

work developed by Bekaert and Hodrick (2001) because of its desirable power prop- 

erties in presence of highly nonlinear restrictions. Specifically, we implement the 

Generalised Method of Moments (GMM) to estimate a constrained VAR which 

forces the data to yield the relationship postulated by the EH and, then, test the 

validity of these restrictions by using the Lagrange Multiplier (LM) and Distance 

8 Metric (DM) statistics. 

The VAR Framework 

Consider a bivariate VAR representation for the short- and long-term interest rates 

measured as deviations from their respective means: 

i(m) +b (L) i(n) (1.2) t-1 t-l + ul't 

(n) (n) 

t c(L)i(') + d(L) (1.3) t-1 t-1 + U2, t 

where a(L), b(L), c(L), and d(L) are polynomials in the lag operator of order A 

and ul, t and U2, t are error terms. For the sake of notational convenience and 

without loss of generality, we set c(', ') =0 in equation (1.1) and use demeaned data 

in our analysis. This implies that we cannot discriminate between the standard 

formulation of the EH and the pure EH with a zero average term premium, but we 

focus on testing whether the term premium is constant over time. 

The above formulation can be interpreted as a system where the forecasting 

'A simple alternative would be to estimate the model without restrictions by least squares and 
to apply a Wald test. However, Bekaert and Hodrick (2001) provide simulation evidence that 
the Wald test has poor finite sample properties in presence on nonlinear restrictions relative to 
test statistics constrained under the null. Specifically, Bekaert and Hodrick (2001) show that the 
LNI test has very satisfactory size properties and reasonable power. The DM test displays less 

satisfactory size and power properties than the LM test, whereas the Wald test shows the worst 
properties among these three test statistics. 
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equation (1.2) is used to generate the expected future short-term rate and the equa- 

tion (1.3) determines the current long-term rate. Simultaneously, the system de- 

termines endogenously both sides of the EH statement given in equation (1.1), and 

allows joint estimation of the parameters. This improves efficiency by incorporating 

contemporaneous cross-correlation in the errors (Pagan, 1984; Mishkin, 1982). 

The EH implies a set of nonlinear restrictions on the parameters of the above 

system. To define these restrictions, let us simplify the notation by translating the 

above p-order system into a first-order VAR companion form as 

. (rn) 
zt a, b, ... ap-, bp-l ap bp it(, nl) 

. (n) 
zt cl d, ... cp-l dp-l cp dp - (n) 

zt-l 

t-I 
I (M) 

z 

z 
(n) 
t 1 

t-2 

z 
(n) 

- t-2 

z 
(M) 
t l 

(M) 
z 

-p+ t-P 
(n) 

z 
(n) 

t-p+1 t-P 

+ 

ul't 

U2, t 

(1.4) 

where the blank elements are zeros. In compact form, this VAR can be expressed 

as 

Yt = IFYt-1 + Vt (1.5) 

where Yt has 2p elements, IF is a 2p square companion matrix, and vt is the vector 

of innovations orthogonal to the information set available at time t, with zero mean 

and covariance matrix E,. Then, the EH subjects equation (1.5) to the following 

set of nonlinear cross-equation restrictions 

e/ = 
rn) (1.6) 

where e1= (1,0, 
..., 0)' and e-2 = (0,1,0, 

..., 0)' are 2p dimensional indicator vec- 
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tors. 9 Although equation (1-6) does not have a straightforward intuition, it gives a 

9- dimensional vector of restrictions nonlinear in the underlying parameters of IF, ; IF I 

such that the predictions of future short-term rates are consistent with the EH and 

the resulting constrained VAR collapses to equation (1.1). We can interpret these 

restrictions as a concise summary of the main implications stated by the theory. 

First, the constrained VAR defines the theoretical long-term rate we would observe 

in a world where expectations about future short-term rates are formed rationally. 

Second, under these restrictions the long-term rate contains all relevant informa- 

tion required by the market participants to predict future short-term rates. Put 

another way, the long-term rate provides optimal predictions of future short-term 

rates and deviations of the actual long-term rate from the theoretical long-term rate 

are unsystematic and unpredictable. Then, by rewriting the 2p dimensional vector 

of restrictions as 

a (0) = e2 - e'lk-' (I 
_ ]pm) -1 (1 

_ ]pn) 

we can define the null hypothesis of rational expectations and constant term pre- 

mium as 

Ho : a(O) =0 (1.8) 

where 0 is formed by collecting the relevant parameters of the companion matrix 

F. 10 

ý'Appendix A. 1 provides further technical details on the restrictions implied by the EH in the 

VAR model. 
"Specifically, the vector of parameters 0 is defined as 0 

(a,, ---, ap, bi, ---, bp, cl, , cp, di, -, dp)'. 
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1.3.2 The VAR Tests 

Bekaert and Hodrick (2001) propose a feasible method based on the GMM to es- 

timate the VAR model under the hypothesis that the EH holds, defined by the 

nonlinear cross-equation restrictions on the parameters 0. " 

Let yt = 
[i(m), i(n) ] be the vector of data available at time t ut be the vector ttI 

of orthogonal errors defined by the model, and xt-1 be the vector of instruments 

available at time t-1, formed by stacking lagged values of yt (and possibly a 

constant term). Next, define the vector zt = (yt', x't-1)', the vector-valued function 

of the data and the parameters g(zt, 0) =- ut 0 xt-1, and the set of orthogonality 

conditions E [g(zt, 0)] =- 0. Using the corresponding sample moment conditions 

9T (0) -= T-' ET 
t=1 g(zt, 0) for a sample of size T, the parameters, 0, are estimated 

by minimizing the GMM criterion function 

QT(O) gT(0)19T1gT(O) (1.9) 

whereQT1 is a positive semidefinite weighting matrix (Hansen, 1982). " To estimate 

the parameters, 0, subjected to the nonlinear restrictions defined by equation (1-6), 

we define the Lagrangian as 

L(O, -y) =-1 gT(0)IQT-'gT(O) - aT(0)1, y (1.10) 

where -y is a vector of Lagrange multipliers, and aT(O) is the sample counterpart of 

a(O). While direct maximization of the Lagrangian is difficult as the constraints are 
"Full maximum likelihood estimation of the restricted model requires restriction on the eigen- 

values of the comapanion matrix IF. Since the eigenvalues can be complex conjugates, direct es- 
timation of the restricted VAR becomes quite complicated because the search must be conducted 

over potentially complex numbers (e. g. Bekaert and Hodrick, 2001; Melino, 2001). 

12When QT is chosen optimally, 
ý is asymptotically distributed as VýT( 00) 

N(O, GTQTGT)-17 where Oo denotes the true parameters, 0 the parameter estimates, GT V9T (0) 

the gradient of the orthogonality conditions, and the symbol - denotes convergence in distribution. 
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nonlinear, Bekaert and Hodrick (2001) develop a recursive algorithm which extends 

the estimator proposed by Newey and McFadden (1994). 13 

If the restrictions have a significant impact on parameter estimation, then the 

value of the Lagrange multipliers is significantly different from zero and the null 

hypothesis that the EH holds is rejected. The hypothesis that the multipliers are 

jointly zero can be tested using the LM statistic 

T- (ATB-lA' ), zy ) X' (1.11) TT (2p) 

or the DM statistic 

TgT(O)1 9T1 gT(b) > X'(2p) 

where 0 denotes the constrained estimates, and 2p is the number of restrictions 

implied by the EH. 

1.3.3 Small Sample Properties 

Tests of the EH null hypothesis have been known to suffer severely from problems 

related to finite sample bias estimation errors. In essence, the sampling distribution 

in finite sample may be significantly different from the asymptotic distribution (e. g. 

Bekaert, Hodrick and Marshall, 1997; Bekaert and Hodrick, 2001, Thornton, 2005, 

2006). Thus, before estimating the unconstrained and constrained VARs, we follow 

Bekaert and Hodrick (2001) and use two different data generating processes (DGPs). 

Specifically, from the original data set, we simulate via bootstrap two bias-corrected 

data sets of 70,000 observations, with homoskedastic innovations and GARCH in- 

13 Notice that the GMNI estimation is applied to the VAR defined in equations (1.2) and (1.3), 

whereas the companion VAR is exclusively used to simplify the derivation of the cross-equation 
restrictions, We refer to Appendix A. 2 for further technical details on the CNIM procedure. 
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novations, and use them throughout the econometric analysis. See Appendix A. 3 for 

technical details on the procedure to account for small-sample bias in our analysis. 

ILA Empirical Results 

In the empirical analysis, we obtain the unconstrained parameter estimate of 0, 

denoted 0, by least squares and its constrained estimate 0 by the constrained GMM 

scheme for all possible pairwise combinations of short- and long-term rates such that 

k= n/m is an integer. To take into account the day-of-the-week regularities in the 

short-term repo rates, documented in Table 1.1, we follow Longstaff (2000a) and set 

the VAR lag length to be p=5. 

Tables 1.3 and 1.4 report bias-corrected coefficients for the unconstrained VARs 

and the constrained VARs that satisfy the EH, respectively, when the DGP used 

to bias correct the parameters assumes homoskedastic innovations. Comparing 

the coefficients in Tables 1.3 and 1.4, we note that there are sharp differences in the 

constrained and unconstrained estimated dynamics. In particular, for each pairwise 

comparison, we find that the standard errors are quite large in the constrained 

VAR. Also, the absolute size of the constrained coefficients is much larger than the 

corresponding unconstrained ones, and, perhaps more importantly, the constrained 

coefficients measuring the response of the short-term rate to the long-term rate 

sometimes have a different sign from the corresponding unconstrained estimates. 

This is przma faue evidence that the EH restrictions may be inconsistent with the 

data, although this evidence does not constitute a formal statistical test. 

For robustness, we also carry out estimation of the VAR-GARCH model, re- 

ported in Tables 1.5,1.6 and 1.7. Table 1.5, Panel A reports the factor loadings, 
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which are found to be statistically significant at standard significance levels, indicat- 

ing the presence of CARCH effects. In Panel B, we also notice that the conditional 

variance turns out to be persistent for the overnight repo and moderately persistent 

for the spreads. Hence, departing from the assumption of homoskedasticity is likely 

to yield more accurate estimates of the VAR parameters and, consequently, more 

precise tests of the EH. 

Tables 1.6 and 1.7 report bias-corrected coefficients for the unconstrained VARs 

and the constrained VARs that satisfy the EH, respectively, when the DGP used 

to bias correct the parameters assumes GARCH innovations. These results are 

quantitatively different from but qualitatively identical to the results for the VAR 

with homoskedastic innovations given in Tables 1.6-1-7. Specifically, the standard 

errors of parameters estimates in the constrained VAR are large, the absolute size 

of the constrained coefficients is larger than the corresponding unconstrained ones, 

and the constrained coefficients measuring the response of the short-term rate to the 

long-term rate have sometimes a different sign from the corresponding estimates in 

the unconstrained VAR. 

The LM and DM tests results are presented in Table 1.8, where we report the 

p-values for the null hypothesis that the EH holds for all possible repo rates com- 

binations of the integer k= n/m. The results in Table 1.8 indicate that the EH is 

rejected for each rate pair with p-values that are well below standard significance 

levels. Table 1.8 also reports the p-values from the J-test, which provides a speci- 

fication test of the validity of the overidentifying moment conditions. The p-values 

are comfortably larger than conventional significance levels, validating the GMM 
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estimation and, hence, the LM and DM tests. 

1.5 Conclusions 

The EH plays an important role in economics and finance and, not surprisingly, 

has been widely tested using a variety of tests and data. Much of the empirical 

literature has struggled to find evidence supporting the validity of the EH across a 

variety of data sets and countries, and employing increasingly sophisticated testing 

procedures. This chapter re-examines an important exception in this literature: the 

result that the EH appears to fit the behaviour of US repo rates at the shortest end 

of the term structure, measured at daily frequency from overnight to the 3-month 

maturity (Longstaff, 2000a). We extend this research by testing the restrictions 

implied by the EH on a VAR of the long- and short-term repo rate using the test 

proposed by Bekaert and Hodrick (2001). Our empirical investigation, in contrast 

to Longstaff (2000a), is not encouraging for the EH, which is statistically rejected 

across the term structure considered. 

These findings differ from Longstaff (2000a), who does not reject the EH us- 

ing conventional tests, because the VAR test is particularly powerful - and, hence, 

more likely to detect fine departures from the null hypothesis in finite sample - 

and because our sample is larger than Longstaff's (2000a). However, despite this 

statistical evidence, a legitimate and unanswered concern is whether the rejection 

of the EH may be due to small departures from the null hypothesis (or tiny data 

imperfections) which are not economically meaningful but appear statistically sig- 

nificant given the powerful test statistics and the very large sample size employed. " 

"'Leamer (1978, Chapter 4) points out that classical hypothesis testing will lead to rejection of 

any null hypothesis with a sufficiently large sample: 'Classical hypothesis testing at a fixed level 
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Moreover, the VAR tests are not designed to incorporate the fact that if one wanted 

to trade on departures from the EH - rather than assuming that the EH holds 

in a simple buy-and-hold allocation strategy - transactions costs create a wedge 

between returns from an active strategy exploiting departures from the EH and a 

simple buy-and-hold strategy. Finally, while the VAR tests rely on the ability of the 

VAR to capture the time-series properties of the term structure of repo rates, we are 

aware that the simple VAR tests, inspired by the literature on affine term structure 

models, is in fact unable to satisfactorily explain conditional means and volatility of 

interest rates. Hence, potential model misspecification and model uncertainty could 

play an important role in determining the rejection of the EH recorded in Table 1.8. 

In order to address these issues and to shed light on the economic significance of 

the statistical rejections of the EH recorded in this section, we proceed, in the next 

chapter, to an economic evaluation of the EH departures. 

of significance increasingly distorts the interpretation of the data against a null hypothesis as the 

sample size grows. The significance level should consequently be a decreasing function of sample 

size' (p. 114). 
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2 An Economic Evaluation of the Expectation Hy- 
pothesis of the Term Structure of Very Short- 
Term Rates 

2.1 Introduction 

In this chapter we move beyond testing the validity of the EH from a purely sta- 

tistical perspective and provide evidence on whether deviations from the EH are 

economically significant. Distinguishing between statistical analysis and economic 

evaluation is crucial for at least three reasons: in general statistical rejections of a 

hypothesis do not necessarily imply economic rejections (Leitch and Tanner, 1991); 

statistical VAR tests of the EH do not allow for transactions costs, which are criti- 

cal for exploiting departures from the EH in real-world financial markets; and very 

powerful statistical tests may reject virtually any null hypothesis in large samples, 

without necessarily being informative about the size of departures from the hypoth- 

esis tested (Leamer, 1978). All these reasons suggest that an economic assessment 

of the deviations from the EH is desirable to complement the statistical tests. 

In a mean-variance framework, we compare the performance of a dynamic port- 

folio strategy consistent with the EH to a dynamic portfolio strategy that exploits 

the departures from the EH. We use a utility-based performance criterion to com- 

pute the fee a risk-averse investor would be willing to pay to switch from the EH 

to a strategy that exploits departures from the EH to forecast interest rates. As 

an alternative economic measure, we also employ the risk-adjusted return of these 

two strategies. In short, we provide an economic test of the EH by evaluating 

the incremental profitability of an optimal (mean-variance efficient) strategy which 
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relaxes the restrictions implied by the EH statement. 

To anticipate our results, the results of our economic analysis lend support to 

the EH as we find no tangible economic gain to an investor who exploits departures 

from the EH relative to an investor who allocates capital simply on the basis of 

the predictions of the EH. Specifically, the evidence in this chapter shows that the 

economic value of departures from the EH is modest and generally smaller than 

the costs that an investor would incur if he were to trade to exploit the mispric- 

ing implied by EH violations. Hence, despite the statistical rejections of the EH 

recorded in the previous chapter, we conclude that the EH provides a fairly rea- 

sonable approximation to the repo rates term structure, consistent with Longstaff's 

interpretation of the functioning of the repo market. 

The remainder of the chapter is as follows. In the next section we briefly review 

the framework for measuring the economic value of departures from the EH. Section 

2.3 lays out the mean-variance setting and describes the performance measures used 

to assess the economic significance of EH violations. Section 2.4 reports the results 

on the validity of the EH using economic value measures. The conclusions are 

presented in Section 2.5. 

2.2 Measuring the Economic Value of Deviations from the 
EH 

We wish to measure whether departures from the EH provide information that is 

economically valuable, regardless of whether or not they are statistically significant 

on the basis of econometric tests. This section discusses the framework we use 

to evaluate the impact of allowing for deviations from the EH on the performance 
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of dynamic allocation strategies in the repo market. We employ mean-variance 

analysis as a standard measure of portfolio performance assuming quadratic utility. 

Ultimately, we aim at measuring how much an investor is willing to pay for switching 

from a strategy that assumes that the EH holds (SH strategy) to a dynamic strategy 

which conditions on departures from the EH (DER strategy). The SH strategy 

uses the outcome from the constrained VAR to determine the portfolio allocation, 

whereas the DER strategy is based on the unconstrained VAR. The allocation 

strategy we consider is simple and intuitive. It consists of taking a position (either 

long or short) in a long-term repo, and then hedging it with an offsetting rolling 

position in a series of short-maturity repos. If the EH governs the relation between 

the long-term and short-term rates and an investor takes long positions in long-term 

repos and short rolling positions in short-term repos, then following this strategy 

over time allows the investor to earn the unconditional term premium, denoted as 

c(', ') in equation (1.1). However, if one thinks of all repo rates in deviations from 

their unconditional mean (i. e. setting c(', ') = 0), as we do in our setting below, 

then this strategy should earn a return of zero before costs. 

Regardless of the EH rejections recorded in Table 1.8, the tiny differences in un- 

conditional means of repo rates at different maturities observed in Table 1.1 suggest 

the possibility that the economic value of trading on deviations from the EH in the 

repo market may not be as appealing as the statistical rejections from the VAR 

tests may imply. The investor using the constrained VAR is effectively using the 

simple strategy described above based upon the belief that there is no difference in 

the returns from investing in the longer repo rate and from investing in a series of 
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shorter repo rates. However, if the investor does not believe in the EH and hence 

uses the unconstrained VAR, the resulting allocation strategy will be the outcome of 

the predictions of the model with respect to whether the longer-term rate is under- 

or over-valued relative to the series of shorter repo rates over the maturity of the 

longer rate. This may be seen as the implementation of the popular carry trade 

strategy that attempts to exploit mispricing along the term structure of interest 

rates. In other words, using the unconstrained VAR is tantamount to exploiting 

the deviations from the EH which we have recorded in the earlier statistical analysis. 

If the unconstrained VAR model gives predictions of short-term repo rates consistent 

with the EH, the results from the SH strategy should be equal to the results from 

the DER strategy. " From this setting we can calculate directly a variety of com- 

mon performance measures, in the form of performance fees F (Fleming, Kirby and 

Ostdiek, 2001) and risk-adjusted abnormal returns A4 (Modigliani and Modigliani, 

1997). 

We realise that a portfolio consisting only of repo rates is unlikely to be a realistic 

portfolio managed by a US investor. The repurchase agreements involving US 

Treasury securities are mainly used by banks in order to manage the quantity of 

reserves on a short-term basis and, hence, play an important role in the Federal 

Reserve's implementation of monetary policy. Moreover, the repo market plays a 

fundamental role in dealers' hedging activities and repos are used by investment 

managers who hedge the interest rate risk related to the activity of short-selling 

Treasury securities. Our main objective is not to design a realistic (executable) asset 

15 Nevertheless, when incorporating transactions costs, this equality will not hold exactly, and 
therefore incorporating transactions costs is a further relevant issue in the construction of a measure 

of economic value. 
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allocation strategy, but rather to measure the economic significance of deviations 

from the EH. Our measures of economic value complement the LM and DM tests 

for statistical significance of the EH by showing whether the constraints imposed on 

the VAR by the EH have economic value. On the one hand, departures from the EH 

may be statistically insignificant, and yet provide considerable value to an investor. 

On the other hand, the departures might be statistically significant, but be of little 

or no economic value to a repo market investor. " This economic evaluation is easier 

to carry out and assess by focusing exclusively on a VAR where the only assets being 

modeled are repo rates at various maturities, because the only source of risk in the 

resulting repo portfolio is interest rate risk. 

2.3 The EH in a Dynamic Mean-Variance Rramework 

In mean-variance analysis, the maximum expected return strategy leads to a port- 

folio allocation on the efficient frontier. Specifically, consider the trading strategy 

of an investor who has a k-period horizon and constructs a daily dynamically rebal- 

anced portfolio that maximises the conditional expected return subject to achieving 

a target conditional volatility. Computing the time-varying weights of this portfolio 

requires predictions of the k-period ahead forecast of the conditional mean and the 

conditional variance-covariance matrix. 

Let rt+k denote the NxI vector of risky asset returns; Pt+klt = Et [rt+k] is the 

conditional expectation Of 7-t+k; and Et+klt Et[(rt+k - Pt+klt)(rt+k - Pt+klt)fl is the 

conditional variance-covariance matrix0f 7-t+k - 
17 At each period t, the investor 

16See Leitch and Tanner (1991) for an early treatment of the relationship between statistical 
significance and economic value. 

17 We use the subscript t+k to indicate an investment horizon of k periods ahead, where k= n/m 
is an integer which depends on the long- and short-term interest rates. 
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solves the following problem: 

MaX f Ilp, t+k 7-- 'Wt Itt+k It + 'Wt L) 'rf If 
Wt 

o- )2 
: -- W/rit+kItWt 

pt 
where wt is the NxI vector of portfolio weights on the risky assets, 1-1p, t+k is the 

conditional expected return of the portfolio, o, * is the target conditional volatility P 

of the portfolio returns, and rf is the return on the riskless asset. " The solution to 

this optimization problem delivers the following risky asset weights: 

Wt p E-1 (2.2) 
V, 

C-t t+klt(Pt+klt 

The weight on the riskless asset is where Ct = 
(Ilt+klt 

- Lrf)lý--Jt+kjt(llt+kjt - trf). 

W't. t 

By design, in this setting the optimal weights will vary across models only to 

the extent that predictions of the conditional moments will vary, which is precisely 

what the empirical models provide. In our setting, we carry out the economic 

value analysis comparing the outcome from the DSH strategy -a strategy that 

exploits deviations from the EH - to the SH strategy which assumes that the EH 

holds. We compute the calculations for both cases with homoskedastic and CARCH 

innovations in the bias-correction DGPs. In short, our objective is to determine 

whether there is economic value in using the unconstrained VAR which relaxes the 

constraints imposed by the EH. 

18For simplicity, we drop the subscript t from the riskless return rf. 
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2.3.1 Quadratic Utility 

We rank the performance of the competing repo rate models using the West, Edi- 

son, and Cho (1993) methodology, which is based on mean-variance analysis with 

quadratic utility. The investor's realised utility in period t+k can be written as: 

AW2 At2 U (wt+k) Wt+k 
-2 Wt2+ 

k 
WtRp, 

t+k 
2 

Rp, 
t+k (2-3) 

whereWt+k is the investor's wealth at t+ k7 A determines his risk preference, and 

Rp, 
t+k + rp, t+k w'l) rf + w' t trt+k 

is the period t+k gross return on his portfolio. 

(2.4) 

We quantify the economic value of deviations from the EH by setting the in- 

vestor's degree of relative risk aversion (RRA), Jt = AWt/ (I - AWt), equal to a 

constant value J. In this case, West, Edison, and Cho (1993) demonstrate that 

one can use the average realised utility, U (. ), to consistently estimate the expected 

utility generated by a given level of initial wealth. Specifically, the average utility 

for an investor with initial wealth WO is equal to: 

T-1 
U(. ) Wo Z Rp, t+k 2(1+6) 

R 
P, t+k - (2.5) 

t=O 

We standardise the investor problem by assuming he allocates $1 in every time 

period. Average utility depends on taste for risk. In the absence of restrictions 

on 6, quadratic utility exhibits increasing degree of RRA. This is counterintuitive 

since, for instance, an investor with increasing RRA becomes more averse to a 

percentage loss in wealth when his wealth increases. As in West, Edison and Cho 
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(1993) and Fleming, Kirby and Ostdiek (2001), fixing the degree of RRA, J, implies 

that expected utility is linearly homogeneous in wealth: double wealth and expected 

utility doubles. Furthermore, by fixing 6 rather than A, we are implicitly interpreting 

quadratic utility as an approximation to a non-quadratic utility function, with the 

approximating choice of A dependent on wealth. The estimate of expected quadratic 

utility given in Equation (2-5) is used to implement the Fleming, Kirby and Ostdiek 

(2001) framework for assessing the economic value of the DSH andSH strategies. " 

2.3.2 Performance Measures 

At any point in time, one set of estimates of the conditional moments is better than 

a second set if investment decisions based on the first set lead to higher average 

realised utility, U. Alternatively, a better model requires less wealth to yield a 

given level of U than the alternative model. Following Fleming, Kirby, and Ostdiek 

(2001) we measure the economic value of the interest rate strategies by equating the 

average utilities for selected pairs of portfolios. Suppose, for example, that holding 

a portfolio constructed using the optimal weights based on the SH strategy yields 

the same average utility as holding the portfolio implied by the DER strategy. The 

latter portfolio is subject to daily management expenses T, expressed as a fraction 

of wealth invested in the portfolio. Since the investor would be indifferent between 

19A critical aspect of mean-variance analysis is that it applies exactly only when the return 
distribution is normal or the utility function is quadratic. Hence, the use of quadratic utility is not 
necessary to justify mean-variance optimization. For instance, one could instead consider using 
utility functions belonging to the constant relative risk aversion (CRRA) class, such as power or log 

utility. However, quadratic utility is an attractive assumption because it provides a high degree 

of analytical tractability. Quadratic utility may also be viewed as a second order Taylor series 
approximation to expected utility. In an investigation of the empirical robustness of the quadratic 
approximation, Hlawitschka (1994) finds that a two-moment Taylor series expansion "may provide 
an excellent approximation" (p. 713) to expected utility and concludes that the ranking of common 
stock portfolios based on two-moment Taylor series is "almost exactly the same" (p. 714) as the 

ranking based on a wide range of utility functions. 
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these two strategies, we interpret T as the maximum performance fee the investor 

would be willing to pay to switch from the SH to the DSH strategy. In general, 

this utility-based criterion measures how much an investor with a mean-variance 

utility function is willing to pay for conditioning on the deviations from the EH, as 

modeled in the unconstrained VAR model. 20 

The performance fee depends on the investor's degree of risk aversion and is a 

measure of the economic significance of violations of the EH. To estimate the fee, 

we find the value of F that satisfies 
T-1 6 T-1 6 

(R 
P, t+k 

>ý 
2(1+6) 

(-' 
"p, t+k 

Z 
p, t+k 2(1+6) p, t+k 

t=O t=O 

1 

(2.6) 

where RD-"'71 denotes the gross portfolio return constructed using the predictions p, t+k 

from the unconstrained VAR model, and R"k is the gross portfolio return implied 
P't+ 

by the constrained VAR model. In the absence of transactions costs, under the 

EH F=0, while if the EH is violated -T > 0. However, when allowing for 

transactions costs, it is also possible that F<0 if the positive gain from trading on 

the information provided by the EH violation is lower than the loss incurred by the 

more costly dynamic rebalancing of the DER strategy. 

We also consider the Modigliani and Modigliani (1997) measure A4, which defines 

the abnormal return that the DER strategy would have earned over the SH strategy 

if it had the same risk as the SH strategy 

M =- o, [x EN (, snDE7i - 
S-KEH) (2.7) 

where SIZ = E[; -r]lo-[. x] is the Sharpe Ratio, and E[;. r] and u[; -f] are the expected 

"For studies following this approach see also Fleming, Kirby and Ostdiek (2003), Marquering 

and Verbeek (2004) and Han (2006). 
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value and standard deviations of the excess return, >r, of a selected strategy. The 

DER strategy is leveraged downwards or upwards, so that it has the same volatility 

as the SH strategy. Therefore, the risk-adjusted abnormal return, M, measures 

the outperformance of the DER strategy with respect to the SH strategy while 

matching the same level of risk. " 

2.3.3 Dynamic Strategies, M-ansaction Costs and Short Selling 

Consider a US investor who allocates his wealth between a long-term n-period dis- 

count bond and a sequence of k short-term m-period discount bonds. The long-term 

bond price is known with certainty and implies a riskless return, whereas the rolling 

combination of short-term bonds generates a risky return, since k-I future short- 

term bond prices are not known. Hence, on the basis of riskless return, rf, and the 

forecasts of the conditional moments of risky return, rt+klt, the investor will define 

his portfolio optimization problem at time t. 

We consider two alternative trading strategies. The EH strategy assumes that 

EH holds exactly, and hence the investor takes a position using forecasts based on 

the constrained VAR. In this case, the investor effectively trades assuming that 

equation (1.1) holds and, in the absence of transactions costs, he is indifferent be- 

tween investing in the long rate or a series of short rates. However, if transactions 

costs are positive and equal for short- and long-rates, the investor will prefer invest- 

ing in the long rate as this minimises costs. The DER strategy uses the forecasts 

based on the unconstrained VAR. Specifically, each strategy comprises two steps at 

21 We also compute a measure that allows for downside risk. However, since the results are 

qualitatively identical to the performance fees and risk-adjusted abnormal returns, we do not 
report them here to conserve space. 
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time t. First, the investor uses the selected VAR model to generate the conditional 

moments) Pt+klt andEt+klt- Second, conditional on the predictions of this model 

and given the riskless return rf, he dynamically rebalances his portfolio by comput- 

ing optimal weights. He repeats this process every day until the end of the sample 

period. " 

This setup determines whether using one particular conditional specification af- 

fects the performance of a short-horizon allocation strategy in an economically mean- 

ingful way. The predictions are all in-sample predictions, since our focus is not to 

provide forecasting models of the repo term structure but to evaluate the measured 

departures from the EH as determined by the unconstrained VAR model. 

With daily rebalancing, transaction costs play an important role in evaluating 

the relative performance of different strategies. In particular, we assume that 

transaction costs at time t equal a fixed proportionTof the value traded in long- 

term and short-term repos (Marquering and Verbeek, 2004; Han, 2006). We also 

assume that the costs are the same for trading short and long rates. This is 

consistent with the fact that the bid-ask spread is fairly constant across maturities 

in the repo market, in the order of 2 to 5 bps. We report results both with and 

without transactions costs, and also study the impact of short selling constraints. 

In the case of limited short selling we constrain the portfolio weights to be bounded 

between -I and 2 (assuming that the investor can borrow no more than 100% of his 

wealth), while in the case of no short selling, the portfolio weights are constrained 

between 0 and 1. 
22s ince we consider a single risky return, Et+klt simply reduces to a variance term. Notice that 

parameter estimates are based on the full sample information. 
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2.4 The Economic Value of EH Departures 

Given the parameter estimates reported in Tables 1.3-1.4 and 1.6-1.7, we assume 

that a US investor dynamically updates his portfolio weights daily after reestimating 

the VAR model with the latest available data. The key question is whether the 

dynamic strategy that allows for departures from the EH generates economic gains 

relative to a benchmark dynamic strategy that assumes that the EH holds. We 

assess the economic value of conditioning on departures from the EH by analyzing 

the performance of the dynamically rebalanced portfolio constructed using pairwise 

combinations of repo rates. 23 

We compute the performance fee F and the risk-adjusted abnormal return A4 

for (i) two target annualised portfolio volatilities, o, * =f 1%, 2%j, which are in a P 

range that includes the observed annualised standard deviation of the data reported 

in Table 1.1; (ii) a degree of relative risk aversion 6=5 ; 24 (iii) for each pair of 

repo maturities where the long maturity is an exact multiple of the short maturity; 

(iv) two different DGPs for the parameter estimates, with homoskedastic and het- 

eroskedastic innovations. Furthermore, we also exploit the impact of transaction 

costs and short selling by considering four different scenarios. In case I transac- 

tion costs are ignored and the weights are unrestricted; Zn case 2 the weights are 

unrestricted but we introduce transaction costs with -F= 4 bps, a realistic cost on 

the basis of the observed bid-ask spread in the repo market; in case 3 we also add a 

limited short selling constraint by restricting the weights to be between -I and 2; 

23 For weekends and holidays we consider the rate on the previous business day for which a rate 

was reported. 
24 We investigated different values of J in the range between 2 and 10 but found no qualitative 

difference in our results. 
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and finally in case 4 we do not allow short selling so that the weights are between 

0 and 1. The performance measures, F and A4, are reported in annualised basis 

points. 
25 

2.4.1 Performance Measures 

Table 2.1 presents the in-sample performance fees F and the risk-adjusted abnor- 

mal returns A4 for the DER strategy against the SH strategy when the bootstrap 

experiment for bias correction assumes homoskedastic innovations. Panel A reports 

the results for a target volatility o-* - 1%, and Panel B for o-* = 2%. pp 

The results in Table 2.1 suggest that the performance fees for switching from a 

model that assumes the EH holds to a model that exploits departures from the EH is 

generally fairly modest when we do not consider transaction costs and the portfolio 

weights are unrestricted (case 1). For example, if we set the target volatility at 

a* = 1%, the annual performance fee a risk-averse investor would be willing to pay P 

to switch from the SH strategy to the DER strategy is at most 1.34 bps. If we 

calibrate the target volatility to be o, * = 2%, the largest annual performance fee 
P 

reaches 2.70 bps and occurs when the overnight repo rate is the short-term rate and 

the I-week repo rate is the long-term rate. 

However, when we introduce transaction costs (case 2), the performance fees 

become even smaller and are slightly negative at the shorter end of the maturity 

spectrum. For instance, given o-* = 1% and the overnight repo rate versus the 3- 
P 

week repo rate, the DER strategy has a negative annual performance fee of about 3 

25 We experimented with slightly different values of transactions costs in the range between 2 and 
5 bps, and found qualitatively similar results. Note that the transactions costs are virtual identical 

across maturities in the repo market, possibly only slightly smaller on one-day repos by some 0.5 

bps. 
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bps. This suggests that the higher transactions costs incurred in the DER strategy 

outweigh the benefit of conditioning on EH violations, with the performance fee 

generally decreasing in k= m/n due to the larger number of trades needed in the 

rolling strategy. In other words, the EH violations are not economically significant 

after costs are taken into account. 

When we move at the longer spectrum of the maturity and consider I-month 

versus 3-month repo rates for o-* = 1%, we notice a performance fee of 0.49 bps. P 

Interestingly, when we combine transaction costs and limited short-selling (case 3), 

the performance measures remain virtually the same as in case 2, suggesting that 

the weights are in the range from -1 and 2. In the fourth scenario, we consider 

dynamic strategies without short selling and with transaction costs (case 4). In this 

case the fees decrease moderately in absolute values confirming that the short selling 

constraints are now binding on the profitability of the strategies but their impact 

is modest. The risk-adjusted abnormal returns A4, are of very similar magnitude 

as (in some columns identical to) the performance fees F, leading therefore to the 

same conclusions. 

For robustness purposes, Table 2.2 reports the same performance criteria, F 

and A4, when we assume CARCH innovations for the bias correction procedure. 

The results are qualitatively identical to the case of the VAR with homoskedastic 

errors discussed in Table 2.1, providing evidence that EH violations are economically 

unimportant. However, quantitatively the results in Table 2.2 provide evidence 

of even smaller gains from the DSH strategy, with the performance fee T never 

reaching 2 bps - 
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2.5 Conclusions 

This chapter re-examines an important exception in this literature: the result that 

the EH appears to fit the behaviour of US repo rates at the shortest end of the term 

structure, measured at daily frequency from overnight to the 3-month maturity 

(Longstaff, 2000a). In the first chapter we showed how Longstaff's results are 

overturned when using a longer sample period and more powerful statistical tests. 

We innovate in this chapter by moving beyond statistical tests and providing 

complementary evidence on the validity of the EH using some economic value cal- 

culations. We assess the economic value of exploiting departures from the EH - 

i. e. using empirical models which condition on information contained in EH devia- 

tions - relative to the economic value of using a model that assumes the EH holds. 

The empirical results indicate that the economic value of departures from the EH is 

modest and generally smaller than the costs that an investor would incur to exploit 

the mispricing implied by EH violations. These findings are consistent with the 

thrust of Longstaff's (2000a) original conclusion. 

The results from economic value calculations are in contrast with the results 

from VAR tests reported earlier. This difference confirms that statistical rejections 

of a hypothesis do not always imply economic rejections and raises doubts about 

the ability of the simple linear VAR framework to capture the relationship between 

repo rates at different maturities. Activities in the repo market at maturities of 

days or weeks are largely driven by liquidity considerations and by the attempts 

of banks to manage the quantity of reserves and to hedge interest rate risk on a 

short-term basis, rather than to speculate in search of excess returns. Hence, it 
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seems unlikely that investors would be actively exploiting EH departures on a very 

short-term basis. Our main conclusion is that, even though the EH may be rejected 

statistically, it still provides a very reasonable approximation to the term structure 

of repo rates and constitutes a useful theory for practitioners in the repo market. 
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Table 2.1 
Economic Value Results with Homoskedastic Innovations 

Panel A: a* = 1% p 
Case 1 Case 2 Case 3 Case 4 

*(-) - i(-) it t 
T 
- M Ir m F m A4 

it - i0w) t 1.34 1.34 -1.01 -0.95 -1.01 -0.95 -0.57 - 0.52 

it -i 
(2w) 
t 0.47 0.47 -2.62 -2.50 -2.62 -2.50 -1.41 - 1.28 

it -I 
(3w) 
t 0.20 0.20 -3.33 -3.15 -3.33 -3.15 -1.77 - 1.56 

it -i 
(17n) 
t 0.44 0.44 -4.70 -4.46 -4.70 -4.46 -2.79 - 2.45 
. (2m) 

it - it 0.92 0.92 -7.19 -7.23 -7.19 -7.23 -4.63 - 4.11 
it -i 

(3m) 
t 1.51 1.51 -12.29 - 12.34 -12.29 - 12.34 -6.19 -6.40 

i (1w) 
-i 

(2w) 
tt 0.34 0.34 0.31 0.31 0.31 0.31 0.05 0.05 

i (1w) 
- 

(3w) 
tt 0.49 0.49 0.47 0.47 0.47 0.47 0.11 0.11 

ZOM) -z 
(2 m) 

tt 0.40 0.40 0.39 0.39 0.39 0.39 0.20 0.21 
i (1m) 

-i 
(3m) 

tt 0.60 0.60 0.49 0.50 0.49 0.50 0.32 0.32 

Panel B: c* = p 2% 

Case 1 Case 2 Case 3 Case 4 
-(-) - i(-) zt t . 

77 m 

it -Z 
(lw) 
t 2.70 2.67 -1.11 -1.17 

zt _ j(2w) t 0.95 0.94 -3.32 -3.04 
it -Z 

(3w) 
t 0.39 0.39 -7.73 -7.35 

it -Z 
(1m) 
t 0.88 0.88 -9.52 -9.00 

it -i 
(2m) 
t 1.83 1.83 -17.29 -17.32 
(3rn) 

it - it 3.02 3.02 -22.49 -22.54 
(lw) 

- 
(2w) 

tt 0.68 0.68 0.62 0.63 
i (lw) 

-i 
(3w) 

tt 0.99 0.99 0.95 0.96 
(17n) 

- 
(2rn) 

tt 
0.80 0.80 0.76 0.76 

j(im) _i 
3m) 1.20 1.20 1.10 1,10 

77 m 

-1.11 -1.17 

-3.32 -3.04 
-7.73 -7.35 

-9.52 -9.00 

-17.29 -17.32 
-22.49 -22.54 

0.62 0.63 
0.95 0.96 
0.76 0.76 

1.10 1.10 

.Fm 
-0.54 -0.41 
-2.82 -2.39 
-3.55 -3.80 
-4.58 -4.39 
-8.27 -9.33 

-11.40 -11.37 
0.10 0.10 
0.21 0.21 
0.41 0.41 
0.63 0.63 

The table reports the in-sample performance fees F and the risk-adjusted abnormal returns A4 for the 

DER strategy against the S'H strategy when the data generating process used for bias-correction assumes 
homoskedastic innovations. Panel A (B) reports the performance measures when the target portfolio 

volatility is set to 1% (2%) for all pairwise combinations of short-term i(-) and long-term i(t-)repo rates t 
such that k= n/m is an integer. Each strategy is consistent with an optimizing investor allocating capital 
in two assets: the long-term repo rate, known with certainty at the time of trading, and a risky return 

generated by rolling the short-term asset for k periods. The SH strategy assumes that he EH holds 

exactly and uses the conditional forecasts implied by the constrained VAR. The DER strategy conditions 

on the departures from the EH and uses the conditional forecasts implied by the unconstrained VAR. 

The performance fees T denote the amount an investor with quadratic utility and a degree of relative 

risk aversion equal to 5 is willing to pay for switching from the benchmark strategy SH to the alternative 

strategy DER. The risk-adjusted abnormal return, A4, defines the outperformance of the DS'H strategy 

over the SH strategy if they had the same level of risk. We consider four different scenarios: case I (zero 

transaction costs and no short selling constraints); case 2 (non-zero transaction costs and no short selling 

constraints); case 3 (non-zero transaction costs and limited short-selling between -1 and 2); and case 4 

(non-zero transaction costs and no short-selling). All the performance measures are reported in annual 

basis points. 
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Table 2.2 
Economic Value Results with GARCH Innovations 

Panel A: c* 1% p 
Case 1 Case 2 Case 3 Case 4 

i(-) - i(-) tt T m T m T m- -T m 
(1w) 

it - it 0.55 0.55 -1.35 -1.35 -1.35 -1.35 0.94 -0.92 
it -I 

(2w) 
t 0.02 0.02 -2.44 -2.42 -2.44 -2.42 -1.20 -1.11 

it -I 
(3w) 
t 0.02 0.02 -3.81 -3.63 -3.81 -3.63 -1.89 -1.68 

it -i 
(1m) 
t 0.52 0.52 -5.76 -5.50 -5.76 -5.50 -2.17 -2.82 

it -i 
(2m) 
t 0.57 0.57 -8.66 -8.68 -8.66 -8.68 -3.06 -3.02 

it -i 
(3m) 
t 0.86 0.86 -11.87 -11.91 -11.87 -11.91 -5.54 -5.65 (1w) 
-i 

(2w) 
tt 0.23 0.23 0.21 0.21 0.21 0.21 0.02 0.02 

i (1w) 
- 

(3w) 
tt 0.26 0.26 0.23 0.24 0.23 0.24 0.05 0.05 
(1m) 

_ i(2m) tt 0.23 0.23 0.20 0.19 0.20 0.19 0.12 0.12 
(1m) 

-i 
(3m) 

tt 0,26 0.26 0.23 0.24 0.23 0.24 0.14 0.14 

Panel B: or* p 2% 

Case 1 Case 2 Case 3 Case 4 
. 
(-) 

-i 
(n) 

it t F A4 T A4 A4 T A4 
it - j(lw) t 1.10 1.10 -3.78 -3.79 -3.78 -3.79 -1.44 -1.38 
zt -I 

(2w) 
t 0.04 0.04 -6.26 -6.27 -6.26 -6.27 -2.39 -2.11 

it -I 
(3w) 
t 0.03 0.03 -7.79 -7.39 -7.79 -7.39 -3.78 -3.07 

it -i 
(1m) 
t 1.03 1.03 -11.67 -11-10 -11.67 -11.10 -5.35 -5.12 

it - 
(2m) 
t 1.14 1.14 -17.28 -17.27 -17.28 -17.27 -6.12 -6.15 

zt -I 
(3m) 
t 1.72 1.71 -21.71 -21.69 -21.71 -21.69 -11.07 -11.84 

. (lw) 
-i 

(2w) 
it t 0.45 0.45 0.39 0.40 0.39 0.40 0.03 0.03 
i (1w) 

-z 
(3w) 

tt 0.52 0.52 0.48 0.48 0.48 0.48 0.10 0.10 
i (17n) 

-i 
(2 m) 

tt 0.46 0.46 0.39 0.39 0.39 0.39 0.24 0.24 
i(lm) _ i(3m) tt 0.51 0.51 0.46 0.46 0.46 0.46 0.28 0.28 

The table reports the in-sample performance fees _'F and the risk-adjusted abnormal returns M for the 
DER strategy against the SH strategy when the data generating process used for bias-correction assumes 
CARCH innovations. Panel A (B) reports the performance measures when the target portfolio volatility 
is set to 1% (2%) for all pairwise combinations of short-term z*(-) and long-term it(-)repo rates such that t 
k= n/m is an integer. Each strategy is consistent with an optimizing investor allocating capital in two 

assets: the long-term repo rate, known with certainty at the time of trading, and a risky return generated 
by rolling the short-term asset for k periods. The SH strategy assumes that he EH holds exactly and uses 
the conditional forecasts implied by the constrained VAR. The DER strategy conditions on the departures 

from the EH and uses the conditional forecasts implied by the unconstrained VAR. The performance fees 

'T' denote the amount an investor with quadratic utility and a degree of relative risk aversion equal to 5 

is willing to pay for switching from the benchmark strategy SH to the alternative strategy DEX The 

risk-adjusted abnormal return, A4, defines the outperformance of the DER strategy over the ER strategy 
if they had the same level of risk. We consider four different scenarios: case I (zero transaction costs and 

no short selling constraints); case 2 (non-zero transaction costs and no short selling constraints); case 3 

(non-zero transaction costs and limited short-selling between -1 and 2); and case 4 (non-zero transaction 

costs and no short-selling). All the performance measures are reported in annual basis points. 
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An Economic Evaluation of Empirical Exchange 
Rate Models: Robust Evidence of Predictabil- 
ity and Volatility Timing 

3.1 Introduction 

Forecasting exchange rates using models which condition on economically meaning- 

ful variables has long been at the top of the research agenda in international finance, 

and yet empirical success remains elusive. Starting with the seminal contribution of 

Meese and Rogoff (1983), a vast body of empirical research finds that models which 

condition on economic fundamentals cannot outperform a naive random walk model. 

Even though there is some evidence that exchange rates and fundamentals comove 

over long horizons (e. g. Mark, 1995; Mark and Sul, 2001), the prevailing view in 

international finance research is that exchange rates are not predictable, especially 

at short horizons. 

separate yet related literature finds that forward exchange rates contain valu- 

able information for predicting spot exchange rates. In theory, the relation between 

spot and forward exchange rates is governed by the Uncovered Interest Parity (UIP) 

condition, which suggests that the forward premium must be perfectly positively re- 

lated to future exchange rate changes. ln practice, however, this is not the case 

as we empirically observe a negative relation. " The result of the empirical failure 

of UIP is that conditioning on the forward premium often generates exchange rate 

predictability. For example, Backus, Gregory and Telmer (1993) and Backus, Foresi 

and Telmer (2001) explore this further and find evidence of predictability using the 

"See, for example, Bilson (1981), Fama (1984), Froot and Thaler (1990), and Backus, Foresi and 
Telmer (2001). For a survey of this literature, see Lewis (1995), Engel (1996) and the references 
therein. 
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lagged forward premium as a predictive variable. Furthermore, Clarida, Sarno, Tay- 

lor and Valente (2003,2006) and Boudoukh, Richardson and Whitelaw (2006) show 

that the term structure of forward exchange (and interest) rates contains valuable 

information for forecasting spot exchange rates. 

On the methodology side, while there is extensive literature on statistical mea- 

sures of the accuracy of exchange rate forecasts, there is little work assessing the 

economic value of exchange rate predictability. Relevant research to date comprises 

an early study by West, Edison and Cho (1993) which provides a utility-based eval- 

uation of exchange rate volatility, and more recently, Abhyankar, Sarno and Valente 

(2005) who use a similar method for investigating long-horizon exchange rate pre- 

dictability. However, in the context of dynamic asset allocation strategies, there is 

no study assessing the economic value of the predictive ability of empirical exchange 

rate models which condition on economic fundamentals or the forward premium 

while allowing for volatility timing. 

Our empirical investigation attempts to fill this gap and connect the related lit- 

eratures which examine the performance of empirical exchange rate models. We do 

this by employing a range of economic and Bayesian statistical criteria for perform- 

ing a comprehensive assessment of the short-horizon, in-sample and out-of-sample, 

predictive ability of three sets of models for the conditional mean of monthly nomi- 

nal exchange rate returns. These models include the naive random walk model, the 

monetary fundamentals model (in three variants), and the spot-forward regression 

model. Each of the models is studied under three volatility specifications: constant 

variance (standard linear regression), GARCH(1,1) and stochastic volatility (SV). 
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In total, we evaluate the performance of 15 specifications, which encompass the most 

popular empirical exchange rate models studied in prior research. Our analysis em- 

ploys monthly returns data ranging from January 1976 to December 2004 for three 

major US dollar exchange rates: the UK pound sterling, the Deutsch mark/euro, 

and the Japanese yen. 

In addition to implementing Bayesian statistical methods for evaluating the mod- 

els, an important contribution of our analysis is the use of economic criteria. Sta- 

tistical evidence of exchange rate predictability in itself does not guarantee that an 

investor can earn profits from an asset allocation strategy that exploits this pre- 

dictability. In practice, ranking models is useful to an investor only if it leads to 

tangible economic gains. Therefore, we assess the economic value of exchange rate 

predictability by evaluating the impact of predictable changes in the conditional 

foreign exchange (FX) returns and volatility on the performance of dynamic al- 

location strategies. We employ mean-variance analysis as a standard measure of 

portfolio performance and apply quadratic utility, which allows us to quantify how 

risk aversion affects the economic value of predictability, building on empirical stud- 

ies of volatility timing in stock returns by Fleming, Kirby, and Ostdiek (2001) and 

27 Marquering and Verbeek (2004). Ultimately, we measure how much a risk averse 

investor is willing to pay for switching from a dynamic portfolio strategy based on 

the random walk model to one which conditions on either monetary fundamentals 

or forward premia and has a dynamic volatility specification. 

27 For studies of asset return predictability following this approach see also Kandell and Stam- 
baugh (1996), Barberis (2000), Baks, Metrick and Wachter (2001), Bauer (2001), Shanken and 
Tamayo (2001), Avramov (2002), and Cremers (2002). Karolyi and Stulz (2003) provide a survey 
of asset allocation in an international context. 
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Furthermore, we assess the statistical evidence on exchange rate predictability 

in a Bayesian framework. In particular, we rank the competing model specifications 

by computing the posterior probability of each model. The posterior probability is 

based on the marginal likelihood and hence it accounts for parameter uncertainty, 

while imposing a penalty for lack of parsimony (higher dimension). In the context of 

this Bayesian methodology, an alternative approach to determining the best model 

available is to form combined forecasts which exploit information from the entire 

universe of model specifications under consideration. Specifically, we implement the 

Bayesian Model Averaging (BMA) method, which weighs all conditional mean and 

volatility forecasts by the posterior probability of each model. We then compare 

the BMA results to those obtained from a Deterministic Model Averaging (DMA) 

strategy, which simply combines all model specifications with equal weights. 

To preview our key results, we find strong economic and statistical evidence 

against the naive random walk benchmark with constant variance innovations. In 

particular, while conditioning on monetary fundamentals has no economic value ei- 

ther in-sample or out-of-sample, we establish that the predictive ability of forward 

exchange rate premia has substantial economic value in a dynamic portfolio alloca- 

tion strategy, and that stochastic volatility significantly outperforms the constant 

variance and GARCH(1,1) models irrespective of the conditional mean specifica- 

tion. This leads to the conclusion that the best empirical exchange rate model is a 

model that exploits the information in the forward market for the prediction of con- 

ditional exchange rate returns and allows for stochastic volatility for the prediction 

of exchange rate volatility. We also provide evidence that combined forecasts which 
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are formed using either DMA or BMA substantially outperform the random walk 

benchmark. These results are robust to reasonably high transaction costs and hold 

for all currencies both in-sample and out-of-sample. Finally, these findings have 

clear implications for international asset allocation strategies which are subject to 

FX risk. 

The remainder of the chapter is organised as follows. In the next section we 

briefly review the relevant literature on exchange rate predictability using either 

fundamentals or forward exchange premia as conditioning information. Section 3.3 

lays out the competing empirical models for the conditional mean and volatility of 

exchange rate returns. Section 3.4 describes the data, whereas Section 3.5 discusses 

the framework for assessing the economic value of exchange rate predictability for a 

risk averse investor with a dynamic portfolio allocation strategy. Section 3.6 provides 

a sketch of the Bayesian estimation tools, discusses the approach to model selection, 

and explains the construction of combined forecasts using methods such as BMA. 

Our empirical results are reported in Section 3.7, followed by robustness checks in 

Section 3.8. Finally, Section 3.9 concludes. 

3.2 Stylised Facts on Exchange Rate Predictability 

In this section we briefly review the theoretical and empirical research that motivates 

our conditioning on lagged monetary fundamentals and forward premia in the set 

of empirical exchange rate models. 

3.2.1 Exchange Rates and Monetary Fundamentals 

There is extensive literature in international finance which studies the relation be- 

tween nominal exchange rates and monetary fundamentals and focuses on the fol- 
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lowing predictive variable, xt: 

Xt :: -- Zt - St 

Zt == (, Mt - Mt*) -p (yt - yt*) (3.2) 

where st is the log of the nominal exchange rate (defined as the domestic price of 

foreign currency); mt is the log of the money supply; yt is the log of national income; 

asterisks denote variables of the foreign country; note that long-run money neutrality 

is imposed (as the coefficient on mt - m* is unity as predicted by conventional theories t 

of exchange rate determination) and p is a scalar that is common across countries. 

Theories of exchange rate determination view zt as the core set of economic 

fundamentals that determine the long-run equilibrium exchange rate. These theories 

include traditional models based on aggregate demand functions (e. g. Mark, 1995, 

and the references therein), and represent ative- agent general equilibrium models 

(e. g. Lucas, 1982; Obstfeld and Rogoff, 1995). The relation between exchange rates 

and fundamentals defined in Equations 3.1 and 3.2 suggests that a deviation of the 

nominal exchange rate, st, from its long-run equilibrium level determined by the 

fundamentals, z, (i. e. xt ý4 0), requires the exchange rate to move in the future so 

as to converge towards its long-run equilibrium. In other words, the deviation xt 

has predictive power on future realizations of the exchange rate. 28 

In Equation 3.2 it is often assumed for simplicity that p=1.2' This implies 

2 8Engel and West (2005) show that xt will not have predictive power if the discount factor of 

future fundamentals in the exchange rate pricing condition is close to unity. This condition can be 

written as st = (I -b)E? 'Ob'Etý: t+i = (1-b)Etýýt +bEtAst+,, and it implies a predictive regression 

of the form Ast+l 1-b (st ý: t) + Et+,, where Et+l -= 
(1 - b)EOO b'(Et+l - Et)zt+l+i and it is 

b i=O 

assumed that Etýýt : t. If bI and : -. t is nonstationary, then the exchange rate predictability to 

be detected empirically will be low even if the fundamentals model is correct. 
21) See Mark and Sul (2001) for a detailed discussion of the pros and cons of assuming p=1, and 

60 



that bilateral differences in real income are equally important to monetary factors 

in predicting exchange rates. In monetary models of exchange rate determination, 

both under flexible and sticky prices, p is interpreted as the income elasticity of 

money demand, and hence 0<p<I (Sarno and Taylor, 2003, Ch. 4). In general 

equilibrium models (e. g. Lucas, 1982), p depends on preference parameters. In these 

models, some utility functions can imply a negative value for p in very special cases, 

but the upper bound of p remains at unity. More importantly, in assessing exchange 

rate predictability Mark (1995) experiments with a range of values for p and finds 

that the results are very similar to the case of p=1. Therefore, following Mark 

(1995) and the vast majority of papers in this literature, we set p=I throughout 

this chapter. 

Despite the appeal of the theoretical relation between exchange rates and fun- 

damentals, the empirical evidence is mixed. On the one hand, short-run exchange 

rate variability appears to be disconnected from the underlying fundamentals (Mark, 

1995) in what is commonly referred to as the "exchange rate disconnect puzzle". On 

the other hand, some recent empirical research finds that fundamentals and nominal 

exchange rates move together in the long run (Groen, 2000; Berkowitz and Gior- 

gianni, 2001; Mark and Sul, 2001; Rapach and Wohar, 2002). Either way, our study 

contributes to the empirical literature on the predictive ability of monetary funda- 

mentals on exchange rates by providing an economic evaluation of the in-sample 

and out-of-sample forecasting power of fundamentals at a shoTt (one-month ahead) 

horizon. 
for further citations of papers providing support for this assumption. 
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3.2.2 The Spot-Forward Exchange Rate Relation 

Assuming risk neutrality and rational expectations, Uncovered Interest Parity (UIP) 

is the cornerstone condition for FX market efficiency. For a one-period horizon, UIP 

is represented by the following equation: 

Et-jAst = Zt-, - i; (3-3) t-1 

where it-I and it*_1 are the one-period domestic and foreign nominal interest rates 

respectively; and Ast st - st-1. 

In the absence of riskless arbitrage, Covered Interest Parity (CIP) holds and 

implies: 

ft-l - st-l = zt-1 - zt-l (3.4) 

where ft-I is the log of the one-period forward exchange rate (i. e. the rate agreed 

now for an exchange of currencies in one period). Substituting the interest rate 

differential Zt-, - Z; 1 in Equation 3.3 by the forward premium (or forward discount) t- 

ft-I - st-1, we can estimate the following regression, which is commonly referred to 

as the "Fama regression" (Fama, 1984a): 

Ast =a+0 (ft-i - st-i) + ut (3-5) 

where ut is a disturbance term. 

If UIP holds, we should find that oz = 0,3 = 1, and the disturbance term ut is 

uncorrelated with information available at time t-1. Despite the increasing sophis- 

tication of the econometric techniques implemented and the improving quality of 
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the data sets utilised, empirical studies estimating the Fama regression consistently 

reject the UIP condition (Hodrick, 1987; Lewis, 1995; Engel, 1996). As a result, it 

is now a stylised fact that estimates of ý tend to be closer to minus unity than plus 

unity (Froot and Thaler, 1990). The negative value of 0 is the defining feature of 

what is commonly referred to as the "forward bias puzzle, " namely the tendency of 

high-interest currencies to appreciate when UIP would predict them to depreciate. 30 

Attempts to explain the forward bias puzzle using models of risk premia have met 

with limited or mixed success, especially for plausible degrees of risk aversion (e. g. 

Engel, 1996, and the references therein). Moreover, it has proved difficult to explain 

the rejection of UIP by resorting to a range of proposed explanations, including 

learning, peso problems and bubbles (e. g. Lewis, 1995); consumption-based asset 

pricing theories, which allow for departures from both time-additive preferences 

(Backus, Gregory and Telmer, 1993; Bansal, Gallant, Hussey and Tauchen, 1995; 

Bekaert, 1996) and from expected utility (Bekaert, Hodrick and Marshall, 1997); 

and using popular models of the term structure of interest rates adapted to a multi- 

currency setting (Backus, Foresi and Telmer, 2001). In conclusion, even with the 

benefit of twenty years of hindsight, the forward bias has not been convincingly 

explained and remains a puzzle in international finance research. 

In this context, the objective of this chapter is neither to find a novel resolu- 

tion to the forward bias puzzle nor to discriminate among competing explanations. 

"Exceptions to this puzzle include Barisal (1997), who finds that the forward bias is related 
to the sign of the interest rate differential; Bansal and Dahlquist (2000), who document that the 
forward bias is largely confined to developed economies and countries where the interest rate is 

lower than the US; and Bekaert and Hodrick (2001), who provide a "partial rehabilitation" of UIP 

by accounting for small-sample distortions. See also Lustig and Verdelhan (2007) for a more recent 

attempt to explain the forward bias puzzle focusing on the cross-sectional properties of foreign 

currency risk premia. 
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Instead, we focus on predicting short-horizon exchange rate returns when condition- 

ing on the lagged forward premium, thus empirically exploiting the forward bias 

reported in the strand of literature stemming from Bilson (1981), Fama (1984a), 

Bekaert and Hodrick (1993) and Backus, Gregory and Telmer (1993). For example, 

Bilson (1981) argues that regressions conditioning on the forward premium can po- 

tentially yield substantial economic returns, whereas arguments based on limits to 

speculation would suggest otherwise (Lyons, 2001; Sarno, Valente and Leon, 2006). 

Furthermore, term structure models that exploit departures from UIP often yield 

accurate out-of-sample forecasts (e. g. Clarida and Taylor, 1997; Clarida, Sarno, 

Taylor and Valente, 2003; Boudoukh, Richardson and Whitelaw, 2006). However, 

little attention has been given to the question of whether the statistical rejection 

of UIP and the forward bias resulting from the negative estimate of 0 offers eco- 

nomic value to an international investor facing FX risk. Our chapter fills this void in 

the literature by assessing the economic value of the predictive ability of empirical 

exchange rate models which condition on the forward premium in the context of 

dynamic asset allocation strategies. 

3.3 Modeling FX Returns and Volatility 

In this section we present the candidate models applied to monthly exchange rate 

returns in our study of short-horizon exchange rate predictability. We use a set of 

specifications for the dynamics of both the conditional mean and volatility, which are 

set against the naive random walk benchmark. In short, we estimate five conditional 

mean and three conditional volatility specifications yielding a total of 15 models for 

each of the three dollar exchange rates under consideration. 
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3.3.1 The Conditional Mean 

We examine five conditional mean specifications in which the dynamics of exchange 

rate returns are driven by the following regression: 

Ast =a+ Oxt-, + ut, ut = vtet, Et - NID (0,1) 
. 

(3-6) 

Our first specification is the naive random walk (RW) model, which sets ý=0. 

This model is the standard benchmark in the literature on exchange rate predictabil- 

ity since the seminal work of Meese and Rogoff (1983). 

The next three model specifications condition on monetary fundamentals (MF). 

Specifically, MF, uses the canonical version xt = zt - st as defined in Equations 

3.1 and 3.2 assuming p=1. This is the most common formulation of the monetary 

fundamentals model since Mark (1995). The second variant of the monetary funda- 

mentals model, MF2, corrects for the deterministic component in the deviation of 

the exchange rate from monetary fundamentals by allowing for an intercept and a 

slope parameter; in other words, we run the ordinary least squares (OLS) regression 

St = KO + KlZt+ (t, and set xt The third variant, MF3, further corrects for 

the time trend in fundamentals deviations; in this case, we run the OLS regression 

St = Ko + KlZt + 62t + ýt where t is a simple time trend, and again we set xt = -(t. 

The motivation behind the MF2 and MF3 variants derives from empirical evidence 

that cointegration between st and zt will sometimes be established only by correct- 

ing for the deterministic components (either a constant or a constant and a time 

trend) in the cointegrating residual (e. g. Rapach and Wohar, 2002). Note, however, 

that in the out-of-sample exercise in this chapter we estimate the deterministic com- 
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ponent recursively as we move through the data sample, and hence our results do 

not suffer from "look-ahead bias". We do not report cointegration tests nor search 

for the best possible specification of the long-run relation between exchange rates 

and monetary fundamentals since the focus of this chapter is on measuring the eco- 

nomic value of predictability due to monetary fundamentals, not on understanding 

the determinants of the long-run exchange rate equilibrium. In short, we make no 

prior assumptions on the best formulation of the MF model by considering all three 

specifications proposed in the literature. 

Finally, the fifth conditional mean specification is the forward premium (FP) 

model, which sets xt = ft - st as in Equation 3.5 resulting in the Fama (1984a) 

regression. The FP model stems directly from the spot-forward exchange rate re- 

lation derived from UIP. Hence it constitutes the empirical model which exploits 

the forward bias and allows us to assess the economic value of conditioning on the 

forward premium in the context of dynamic asset allocation strategies. The forward 

bias (a negative estimate of the 0 coefficient in the FP model) implies that the 

more the foreign currency is at a premium in the forward market, the less the home 

currency is expected to depreciate. Equivalently, the more domestic interest rates 

exceed foreign interest rates, the more the domestic currency tends to appreciate 

over the holding period. 

3.3.2 The Conditional Variance 

We model the dynamics of the conditional variance by implementing three mod- 

els: the simple linear regression (LR), the GARCH(1,1) model, and the stochastic 

volatility (SV) model. The linear regression framework simply assumes that the 
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conditional variance of FX return innovations is constant over time (V2 = V2) t, and 

therefore presents the benchmark against which models with time-varying condi- 

tional variance will be evaluated. 

The benchmark GARCH(1,1) model of Bollerslev (1986) is defined as: 

ci + -ylv 
22 

t t-I 
+ ýY2Ut-l, (3-7) 

In this formulation, ut I Ft-l - N(O, vt'), and therefore the conditional variance v' t 

is time-varying but deterministic given the information set Ft-1. Furthermore, the 

stationarity and positive variance restrictions impose the following conditions: w 

07 71 ý-> 07 72 > 0, and -yj+ 72 < 1. The main contribution of this simple GARCH 

specification is that it models volatility clustering by allowing for a persistent, and 

hence predictable conditional variance. Our motivation for studying the simple 

GARCH(IJ) model is based on the early study of West, Edison and Cho (1993), 

which performs a utility-based evaluation of exchange rate volatility and finds that 

GARCH(1,1) is the best performing model. 

Stochastic volatility models are similar to the GARCH process in that they cap- 

ture the persistent and hence predictable component of volatility. Unlike GARCH 

models, however, the assumption of a stochastic second moment introduces an ad- 

ditional source of risk that cannot be perfectly hedged using t-I information. A 

GARCH specification describes the conditional distribution of returns as being ex- 

clusively a function of past information. In contrast, the SV model specifies the joint 

conditional distribution of both the return and the volatility process. " Intuitively, 

: "For details on SV models see Kim, Shephard and Chib (1998) and Chib, Nardari and Shephard 

(2002). For an application of SV models to exchange rates, see Harvey, Ruiz and Shephard (1994). 

Finally, for a comparison of GARCH and SV models see Fleming and Kirby (2003). 
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SV allows for the possibility of random contemporaneous volatility shocks due to 

news events and policy changes - in other words, unobserved contemporaneous vari- 

ables that may affect the volatility process. 32 

According to the plain vanilla SV model, the persistence of the conditional 

volatility vt is captured by the dynamics of the Gaussian stochastic log-variance 

process ht: 

vt = exp (ht/2) (3.8) 

ht -- fi +0 (ht-, - fi) + o�qt, 77t - NID (0,1) 
. 

(3.9) 

In the SV model, return and volatility innovations are independent: J--tj 
-L 

fqtl. 

Furthermore, the model assumes (and the estimation algorithm imposes) 101 <1 so 

that the log-variance is a stationary process. 

3.4 FX Data and Descriptive Statistics 

The data sample consists of 348 monthly observations ranging from January 1976 

to December 2004, and focuses on three exchange rates relative to the US dollar: 

the UK pound sterling (USD/GBP), Deutsch mark/euro (USD/DEM-EURO), and 

Japanese yen (USD/JPY). The spot and one-month forward exchange rates are 

taken from Datastream for the period of January 1985 onwards, whereas for the 

period ranging from January 1976 to December 1984 they are taken from Hai, Mark 

and Wu (1997). After the introduction of the euro in January 1999, we use the euro 

32 In fact, market microstructure theories of speculative trading (e. g. Tauchen and Pitts, 1983; 

Andersen, 1996) provide rigorous arguments for modeling volatility as stochastic. 
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exchange rate to replace the Deutsch mark rate. 

Data on money supply and income are from the International Monetary Fund's 

International Financial Statishcs database. Specifically, we define the money supply 

as the sum of money (line code 34) and quasi-money (line code 35) for Germany and 

Japan, whereas for the UK we use MO (line code 19). Since German exchange rate 

data are only available until December 1998, we use the money and quasi-money 

data of the Euro Area for the remaining period (January 1999 to December 2004). 

The US data is obtained from the aggregate M2 of the Board of Governors of the 

Federal Reserve System. Furthermore, we use the monthly industrial production 

index (line code 66) as a proxy for national income rather than the gross domestic 

product (GDP), because the latter is available only at the quarterly frequency. " We 

deseasonalise the money and industrial production indices following the procedure of 

Gomez and Maravall (2000). Note that we ignore the complication arising from the 

fact that the data we use on monetary fundamentals may not be available in real 

time and may not suffer from the measurement errors that characterise real-time 

macroeconomic data (Faust, Rogers and Wright, 2003). This issue will not affect 

our main findings on the predictive ability of the forward premium and stochastic 

volatility. 

We take logarithmic transformations of the raw data to yield time series for st, 

ft, rnt, rnt*, yt, and y*. The monetary fundamentals series, zt, is constructed as in 
t 

Equation 3.2 imposing p=1; st is taken as the natural logarithm of the domestic 

price of foreign currency, the US being the domestic country; ft is the natural 

ýý: ýFor all countries, the correlation coefficient between the quarterly industrial production index 

and GDP over our sample period is higher than 0.95. 
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logarithm of the US dollar price of a one-month forward contract issued at time t 

for delivery of one unit of foreign currency at time t+1. Finally, in our economic 

evaluation of the set of candidate exchange rate models, the proxy for the riskless 

domestic and foreign bonds is the end-of-month Euromarket interest rate with one 

month maturity, obtained from Datastrewn. 34 

Table 3.1 reports the descriptive statistics for the monthly percent FX returns, 

Ast, the three monetary fundamentals predictors, MFj, MF2, and MF3, also ex- 

pressed in percent, and the percent forward premium, ft - st. For our sample 

period, the sample means of the FX returns are -0.012% for USD/GBP, 0.165% 

for USD/DEM-EURO, and 0.309% for USD/JPY. The FX return standard devia- 

tions are similar across the three exchange rates at about 3% per month. Finally, 

the exchange rate return sample auto correlations are approximately 0.10 but decay 

rapidly. 

The three specifications of monetary fundamentals predictors display very high 

volatility and persistence. For instance, the standard deviation of MF, is about 20% 

for the UK, 30% for Germany and 40% for Japan. However, the standard deviation 

of MF3 (which is corrected for both the deterministic and the time trend component) 

is approximately half the value of the canonical monetary fundamentals MFI. The 

three monetary fundamentals predictors exhibit little skewness and excess kurtosis. 

The sample autocorrelation coefficient is very high for all three specifications and 

decreasing slowly. 

Finally, the average forward premium is negative for the UK, but positive for 

ýý 'We use the Eurocurrency deposit rate as a proxy for the riskless rate because these deposits 

are comparable across countries in all respects (such as issuer, credit risk and maturity) except for 

currency of denomination; see Levich (1985). 
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Germany and Japan. The standard deviation of ft - st is low across all exchange 

rates (in fact, about 100 times smaller than MFj), but the forward premium exhibits 

high kurtosis and its sample autocorrelation is high and decreasing slowly. 

3.5 Measuring the Economic Value of Exchange Rate Pre- 
dictability 

This section discusses the framework we use in order to evaluate the impact of 

predictable changes in both exchange rate returns and volatility on the performance 

of dynamic allocation strategies. We employ mean-variance analysis as a standard 

measure of portfolio performance and apply quadratic utility, which allows us to 

quantify how risk aversion affects economic value. Ultimately, we aim at measuring 

how much an investor is willing to pay for switching from the naive random walk 

strategy that assumes no predictability in exchange rates to a dynamic strategy 

which conditions on monetary fundamentals or the forward premium and allows for 

time-varying volatility. 

3.5.1 FX Models in a Dynamic Mean-Variance Fýramework 

In mean-variance analysis, the maximum expected return strategy leads to a port- 

folio allocation on the efficient frontier. Specifically, consider an investor who has 

a one-month horizon and constructs a dynamically rebalanced portfolio that max- 

imises the conditional expected return subject to achieving a target conditional 

volatility. Computing the time-varying weights of this portfolio requires one-step 

ahead forecasts of the conditional mean and the conditional variance-covariance 

matrix. Let rt+l denote the KxI vector of risky asset returns; yt+llt = Et [rt+, ] is 

the conditional expectation of rt+,; and Et+11t = Et [(rt+l 
- yt+11t) (rt+l - lit+11t)'] 
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is the conditional variance-covariance matrix of rt+,. At each period t, the investor 

solves the following problem: 

max ý/tp, 
t+j = w'/-tt+llt + w't), rf 

Wt t 

S. t. o- 
)2 

= WEt+JItWt (pt (3.10) 

where wt is the KxI vector of portfolio weights on the risky assets; t is aKxI 

vector of ones; I-tp, t+l is the conditional expected return of the portfolio; o-* is the P 

target conditional volatility of the portfolio returns; and rf is the return on the 

riskless asset. The solution to this optimization problem delivers the risky asset 

weights: 

Wt 

t+llt 
(/-tt+iit - trf) 

where Ct = (pt+11t - trf)'Et-+'jjt (pt+llt - Lrf). The weight on the riskless asset is 

W't. t 

Constructing the optimal portfolio weights requires estimates of the conditional 

expected returns, variances and covariances. We consider five conditional mean 

strategies (RW, MFj, MF2, MF3, and FP) and three conditional volatility strate- 

gies (LR, GARCH, and SV) for a total of 15 sets of one-step ahead conditional 

expected return and volatility forecasts. The conditional covariances are computed 

using the constant conditional correlation (CCC) model of Bollerslev (1990), in 

which the dynamics of covariances are driven by the time-variation in the condi- 

tional volatilities. 35 By design, in this setting the optimal weights will vary across 

: ý51n notation local to this footnote, the CCC model of Bollerslev (1990) specifies the covariances 
as follows: oij, t = oj, to-j, tpjj, where oi, t and o-j, t are the conditional volatilities implied by either 
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models only to the extent that forecasts of the conditional mean and volatility will 

vary, which is precisely what the empirical models provide. The benchmark against 

which we compare the model specifications is the random walk model with constant 

variance 
(RWLR). In short, our objective is to determine whether there is economic 

value in (i) conditioning on lagged monetary fundamentals and, if so, which of the 

three specifications works best, (ii) conditioning on the lagged forward premium, 

(iii) using a GARCH volatility specification, and (iv) implementing an SV process 

for the monthly FX innovations. 

3.5.2 Quadratic Utility 

Mean-variance analysis is a natural framework for assessing the economic value of 

strategies which exploit predictability in the mean and variance. In particular, we 

rank the performance of the competing FX models using the West, Edison and Cho 

(1993) methodology, which is based on mean-variance analysis with quadratic utility. 

The investor's realised utility in period t+I can be written as: 

AW2 AW2 t2 u (Wt+i) = Wt+l -2 t+j = WtRp, t+l -2 Rp, t+l (3-12) 

where Wt+l is the investor's wealth at t+1, A determines his risk preference, and 

Rp, t+l + rp, t+l wtt) rf + w, rt+l (3.13) t 

is the period t+I gross return on his portfolio. 

the GARCH(IJ) or the SV process, and pij is the constant sample correlation coefficient. Note 
that for the out-of-sample results we use a rolling correlation estimate updated every time a new 
observation is added. Fýrom a numerical standpoint, implementing the CCC model is attractive 
because it eliminates the possibility of Et+11t not being positive definite. 

73 



m 

We quantify the economic value of exchange rate predictability by setting the 

investor's degree of relative risk aversion (RRA) 6t = AWt/ (I - AWt) equal to a 

constant value 6. In this case, West, Edison and Cho (1993) demonstrate that 

one can use the average realised utility, U (. ), to consistently estimate the expected 

utility generated by a given level of initial wealth. Specifically, the average utility 

for an investor with initial wealth WO is equal to: 

T-1 6 
-u (-) Wo Z Rp, t+, 2(1+6) 

RP', t+, . 
(3.14) 

t=O 

We standardise the investor problem by assuming he allocates $1 in every time 

period. 

Average utility depends on taste for risk. In the absence of restrictions on J, 

quadratic utility exhibits increasing RRA. This is counterintuitive since, for in- 

stance, an investor with increasing RRA becomes more averse to a percentage loss 

in wealth when his wealth increases. As in West, Edison and Cho (1993) and Flem- 

ing, Kirby and Ostdiek (2001), fixing the degree of RRA, 6, implies that expected 

utility is linearly homogeneous in wealth: double wealth and expected utility dou- 

bles. Furthermore, by fixing 6 rather than A, we are implicitly interpreting quadratic 

utility as an approximation to a non-quadratic utility function, with the approxi- 

mating choice of A dependent on wealth. The estimate of expected quadratic utility 

given in Equation 3.14 is used to implement the Fleming, Kirby and Ostdiek (2001) 

framework for assessing the economic value of our FX strategies in the context of 

dynamic asset allocation. 

A critical aspect of mean-variance analysis is that it applies exactly only when 
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the return distribution is normal or the utility function is quadratic. Hence, the 

use of quadratic utility is not necessary to justify mean-variance optimization. For 

instance, one could instead consider using utility functions belonging to the constant 

relative risk aversion (CRRA) class, such as power or log utility. However, quadratic 

utility is an attractive assumption because it allows us to consider non-normal dis- 

tributions of returns, while remaining within the mean-variance framework as well 

as providing a high degree of analytical tractability. 36 

Additionally, quadratic utility may be viewed as a second order Taylor series 

approximation to expected utility. In an investigation of the empirical robustness of 

the quadratic approximation, Hlawitschka (1994) finds that a two-moment Taylor 

series expansion "may provide an excellent approximation" (p. 713) to expected 

utility and concludes that the ranking of common stock portfolios based on two- 

moment Taylor series is "almost exactly the same" (p. 714) as the ranking based 

on a wide range of utility functions. 

3.5.3 Performance Measures 

At any point in time, one set of estimates of the conditional mean and variance is 

better than a second set if investment decisions based on the first set lead to higher 

average realised utility, U. Alternatively, the optimal model requires less wealth to 

yield a given level of U than a suboptimal model. Following Fleming, Kirby and 

Ostdiek (2001) we measure the economic value of our FX strategies by equating the 

average utilities for selected pairs of portfolios. Suppose, for example, that holding a 

: 16 In fact, assuming quadratic utility allows us to use the Fleming, Kirby and Ostdiek (2001) 

framework (also based on quadratic utility) for evaluating the performance of fat-tailed volatility 

specifications, such as the tGARCH model of Bollerslev (1987). 
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portfolio constructed using the optimal weights based on the Random Walk/Linear 

Regression (RWLR) model yields the same average utility as holding the Forward 

Premium/ Stochastic Volatility (FP") optimal portfolio that is subject to monthly 

expenses 4), expressed as a fraction of wealth invested in the portfolio. Since the 

investor would be indifferent between these two strategies, we interpret 4) as the 

maximum performance fee he will pay to switch from the RWLR to the FPS' 

strategy. In other words, this utility-based criterion measures how much a mean- 

variance investor is willing to pay for conditioning on the lagged forward premium 

under stochastic volatility innovations. The performance fee will depend on the 

investor's degree of risk aversion. To estimate the fee, we find the value of -Tý that 

satisfies: 

T-1 62 T-1 
6 RP2, 

t+l E (Rp, 
t+l - -cP) 2(1+6) 

(Rp*, 
t+l - 4)) E Rp, t+l - 2(1+6) 

t=O t=O 
(3-15) 

where R*, t+l is the gross portfolio return constructed using the expected return and P 

volatility forecasts from the FPS' model, and Rp, t+l is the gross portfolio return 

implied by the benchmark RW" model. 

In the context of mean-variance analysis, a commonly used measure of economic 

value is the Sharpe ratio. However, as suggested by Marquering and Verbeek (2004) 

and Han (2006), the Sharpe ratio can be misleading because it severely underesti- 

mates the performance of dynamic strategies. Specifically, the realised Sharpe ratio 

is computed using the sample standard deviation of the realised portfolio returns 

and hence it overestimates the conditional risk an investor faces at each point in 
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time. Furthermore, the Sharpe ratio cannot quantify the exact economic gains of 

the dynamic strategies over the static random walk strategy in the direct way of the 

performance fees. Therefore, our economic analysis of short-horizon exchange rate 

predictability focuses primarily on performance fees, while Sharpe ratios of selected 

models are reported in the robustness section. 37 

3.5.4 The Dynamic FX Strategies 

In this mean-variance quadratic-utility framework, we design the following global 

strategy. Consider a US investor who builds a portfolio by allocating his wealth 

between four bonds: one domestic (US), and three foreign bonds (UK, Germany 

and Japan). At the beginning of each month, the four bonds yield a riskless return 

in local currency. Hence the only risk the US investor is exposed to is FX risk. 

Each month the investor takes two steps. First, he uses each of the 15 models 

to forecast the one-month ahead conditional mean and volatility of the exchange 

rate returns. Second, conditional on the forecasts of each model, he dynamically 

rebalances his portfolio by computing the new optimal weights for the maximum 

return strategy. This setup is designed to inform us whether using one particular 

conditional mean and volatility specification affects the performance of a short- 

horizon allocation strategy in an economically meaningful way. The yields of the 

riskless bonds are proxied by monthly Eurodeposit rates. 

In the context of this maximum return dynamic strategy we compute both the 

in-sample and the out-of-sample performance fee, (P, where the out-of-sample period 
37 The annualized Sharpe ratios reported in Table 3.10 are adjusted for the serial correlation 

in the monthly portfolio returns generated by the dynamic strategies. Specifically, following Lo 
(2002), we multiply the monthly Sharpe ratios by the adjustment factor - 

12 
-- where 

VI'12+2 (12-k)Pk 
Pk is the autocorrelation coefficient of portfolio returns at lag k. 
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starts in January 1990 and ends in December 2004. Furthermore, we compare the 

performance fees for the combinations corresponding to the following cases: (i) three 

sets of target annualised portfolio volatilities (a* = 18%, 10%, 12%1); (ii) all pairs of P 
LR WLR 15 models (for example MF, vs. R; or FPS' vs. RWSv); and (iii) degrees of 

RRA 6=f2,6 1. We report the estimates of 4) as annualised fees in basis points. " 

3.5.5 M-ansaction Costs 

The impact of transaction costs is an essential consideration in assessing the prof- 

itability of trading strategies. This is especially true in our case because the trad- 

ing strategy based on the random walk benchmark is static (independent of state 

variables), whereas the remaining empirical models generate dynamic strategies. 39 

Furthermore, making an accurate determination of the size of transaction costs is 

difficult because it involves three factors: (i) the type of investor (e. g. individual vs. 

institutional investor), (ii) the value of the transaction, and (iii) the nature of the 

broker (e. g. brokerage firm vs. direct internet trading). This difficulty is reflected 

in the wide range of estimates used in empirical studies. For example, Marquering 

and Verbeek (2004) consider three levels of transaction costs, 0.1%, 0.5% and 1%, 

to represent low, medium and high costs. 

Our approach avoids these concerns by calculating the break-even transaction 

cost, 7BE, that renders investors indifferent between two strategies (e. g. Han, 2006). 

In particular, we assume that transaction costs equal a fixed proportion (T) of the 

38 Note that, due to lack of data for the Japanese eurocurrency interest rate, the in-sample period 
in our economic value results starts in January 1979. In contrast, for the statistical analysis the 

in-sample period starts in January 1976. 
39The random walk model (RWLR) is the only empirical model that assumes constant mean 

and variance. Therefore, the in-sample optimal weights for the RWLR trading strategy remain 
constant over time. However, the out-of-sample optimal weights will vary because every month we 
re-estimate the drift and variance of the RWLR model. 
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value traded in each bond: TlWt_Wt_l 
1+rt 1. In comparing a dynamic strategy with 1+rp, t 

the static (random walk) strategy, an investor who pays transaction costs lower than 

BE will prefer the dynamic strategy. We report -FBE in monthly basis points. 'O 

3.6 Estimation and Forecasting 

3.6.1 Bayesian Markov Chain Monte Carlo Estimation 

Stochastic volatility models are generally less popular in empirical applications than 

GARCH despite their parsimonious structure, intuitive appeal and popularity in 

theoretical option pricing. This is primarily due to the numerical difficulty associ- 

ated with estimating SV models using conventional classical econometric methods. 

Specifically, discrete-time SV models cannot be estimated with standard likelihood- 

based methods because the likelihood function is not available analytically. Bayesian 

estimation offers a substantial computational advantage over any classical approach 

because it avoids tackling difficult numerical optimization procedures. In this con- 

text, we estimate all three volatility frameworks (LR, GARCH and SV) using sim- 

ilar Bayesian Markov Chain Monte Carlo (MCMC) estimation algorithms. This is 

a crucial aspect of our econometric analysis because it renders the posterior mean 

estimates directly comparable across the three volatility structures. It also allows us 

to use the same model risk diagnostics for all model specifications. Finally, a distinct 

advantage of Bayesian inference is that it provides the posterior distribution of a 

regression coefficient conditional on the data, which holds for finite samples and re- 

gardless of whether exchange rates (and fundamentals) are (co)integrated (e. g. Sims, 

1988). This is not the case in classical inference, where the small samples typically 

'Oln contrast to T), which is reported in annual basis points, -r BE is reported in monthly basis 

points because -r BE is a proportional cost paid every month when the portfolio is rebalanced. 
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employed in the study of exchange rate predictability combined with the assumption 

that exchange rates and fundamentals are cointegrated can have a critical impact 

in overstating predictability (e. g. Berkowitz and Giorgianni, 2001). 

We estimate the parameters of the SV model using the Bayesian MCMC al- 

gorithm of Chib, Nardari, and Shephard (2002), which builds on the procedures 

developed by Kim, Shephard, and Chib (1998). The algorithm constructs a Markov 

chain whose limiting distribution is the target posterior density of the SV para- 

meters. The Markov chain is a Gibbs sampler in which all parameters are drawn 

sequentially from their full conditional posterior distribution. The Gibbs sampler 

is iterated 5000 times and the sampled draws, beyond a burn-in period of 1000 it- 

erations, are treated as variates from the target posterior distribution. We design 

a similar Bayesian MCMC algorithm for estimating the GARCH(1,1) parameters, 

which also draws from the insights of Vrontos, Dellaportas and Politis (2000). The 

Bayesian Linear Regression algorithm implements a simple MCMC assuming an 

independent Normal-Gamma prior distribution (for details see Koop, 2003). The 

MCMC algorithm for each of the three volatility models is summarised in the Appen- 

dix B. Each algorithm produces estimates of the posterior means 0 =f 01,021, where 

01 =fa,,, 31 are the parameters of the return equation, and02 are the parameters of 

the volatility specification: 02 :: -- 
fV-21 for the Linear Regression, 02 f W) ýY 11 7Y2 I 

for the GARCH(1,1) specification, and 02 
"': -- 

f Y) 01 0- 21 for the SV model. All 0 

parameters are time invariant. 

The mean of the MCMC parameter draws is an asymptotically efficient estimator 

of the posterior mean of 0 (see Geweke, 1989). The Numerical Standard Error (NSE) 
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is the square root of the asymptotic variance of the MCMC estimator: 

Bi 

NSE V)o +2YK (z) ýoj 

j=i 
where I= 5000 is the number of iterations (beyond the initial burn-in of 1000 it- 

erations), 1, ..., B, = 500 lags is the set bandwidth z and Oj is the Br 

sample autocovariance of the MCMC draws for each estimated parameter cut ac- 

cording to the Parzen kernel K (z). The NSE diagnostic is distinct from the MCMC 

standard deviation. The latter is simply a measure of the variation in the MCMC 

parameter draws. In contrast, the NSE is a measure of the variation in the posterior 

mean estimate across many MCMCs we can potentially run. In other words, the 

NSE measures how much difference we should expect in the estimate of the poste- 

rior mean if estimation were to be repeated, and therefore provides a measure of 

convergence in the Markov chain. 

The likelihood function of the SV models is not available analytically, and hence 

must be simulated. Specifically, the log-likelihood function is evaluated under the 

predictive density as: 

TT 

log L=Z log fý(Ast 1 
ýFt-1,0) =Z log fýt (Ast 1 ht, 0) (3.17) 

t=l t=l 

where 0 is taken as the posterior mean estimate from the MCMC simulations. The 

key to this calculation is simulating the one-step ahead predictive log-variance ht 

F t-1,0, which is a non-trivial task as it is sampled using the particle filter of Pitt 

and Shephard (1999). The particle filter is surnmarised in the appendix B. For more 

details see also Chib, Nardari and Shephard (2002) and Han (2006). 
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3.6.2 Model Risk and Posterior Probability 

Model risk arises from the uncertainty over selecting a model specification. Con- 

sistent with our Bayesian approach, a natural statistical criterion for resolving this 

uncertainty is the posterior probability of each model. Hence, we rank the compet- 

ing models using the posterior probability, which has three important advantages 

relative to the log-likelihood: (i) it is based on the marginal likelihood and therefore 

accounts for parameter uncertainty, (ii) it imposes a penalty for lack of parsimony 

(higher dimension), and (iii) it forms the basis of the Bayesian Model Averaging 

strategy discussed below. Ranking the models using the highest posterior probabil- 

ity is equivalent to choosing the best model in terms of density forecasts and is a 

robust model selection criterion in the presence of misspecification and non-nested 

models (e. g. Fernandez-Villaverde and Rubio-Ramirez, 2004). 41 

Consider a set of N models Ml,..., MN. We form a prior belief 7 (Mi) on the 

probability that the ith model is the true model, observe the FX returns data As, 

and then update our belief that the ith model is true by computing the posterior 

probability of each model defined as follows: 

p (As 1 Mi) -F (Mi) (Mi 1 As) 
EN 

j=, p (AS 1 Mj) 7r (Mj) 

where p (As I Mj) is the marginal likelihood of the ith model defined as follows: 

1 'The information one can extract from the posterior probability of a model is similar to using 
the Kullback-Leibler Information Criterion (KLIC). Specifically, Fernandez- Villaverde and Rubio- 
Rainirez (2004) show that choosing the model with the highest posterior probability is equivalent 
to selecting the best model under the KLIC. This is an attractive feature of our Bayesian approach 
because there is a complete axiomatic foundation that justifies why KLIC is the best criterion 
a rational agent should use in choosing between models (e. g. Csiszar, 1991). See Burnham and 
Anderson (2002) for a review of KLIC. 
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p (As 1 Mi) p (As, 01 Mi) d0 p (As 10, Mi) 7r (0 j Mi) d0 (3.19) 
/0 

0 

In Equation 3.18 above we set our prior belief to be that all models are equally 

likely, i. e. 7r ( Mi 
T1v N 

Note that the marginal likelihood is an averaged (not a maximised) likelihood. 

This implies that the posterior probability is an automatic "Occam's Razor" in that 

it integrates out parameter uncertainty. " Furthermore, the marginal likelihood is 

simply the normalizing constant of the posterior density and (suppressing the model 

index for simplicity) it can be written as: 

(AS) 
f (AS 10) 7r (0) 

7r (0 1 AS) (3.20) 

where f (As 10) is the likelihood, 7 (0) the prior density of the parameter vector 

07 -F (0 1 As) the posterior density, and 0 is evaluated at the posterior mean. Since 

0 is drawn in the context of MCMC sampling, the posterior density 7r (0 1 As) is 

computed using the technique of reduced conditional MCMC runs of Chib (1995). 

For the 02 parameters in GARCH and SV, which are sampled in the MCMC chain 

by implementing a Metropolis-Hastings algorithm, the posterior density is computed 

as in Chib and Jeliazkov (2001). 

3.6.3 Combined Forecasts 

Assessing the predictive ability of empirical exchange rate models primarily involves 

a pairwise comparison of the competing models. However, given that we do not know 

12 Occam's Razor is the principle of parsimony, which states that among two competing theories 

that make exactly the same prediction, the simpler one is best. 
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which one of the models is true, it is important that we assess the performance of 

combined forecasts proposed by the seminal work of Bates and Granger (1969). 

Specifically, we design three strategies based on a combination of forecasts for both 

the conditional mean and volatility of exchange rate returns: the Deterministic 

Model Average (DMA) strategy, the Bayesian Model Average (BMA) strategy, 

and the Bayesian Winner (BW) strategy. 43 

We assess the economic value of combined forecasts by treating the DMA, BMA 

and BW strategies the same way as any of the 15 individual empirical models. For 

instance, we compute the performance fee, 4b, for the BMA one-month ahead fore- 

casts of the conditional mean and volatility and compare them to the random walk 

benchmark. In particular, we focus on two distinct universes of models: the re- 

stricted universe of the five SV models (because the five conditional mean specifica- 

tions with SV innovations have the highest marginal likelihood), and the unrestricted 

universe of all 15 empirical exchange rate models. 

Consequently, our empirical analysis of exchange rate predictability and volatil- 

ity timing further contributes to the literature by incorporating both a statistical 

view of Bayesian parameter uncertainty and an economic view of the effect of model 

uncertainty on asset allocation decisions and performance. In contrast to Avramov 

(2002), however, our approach does not attempt to separate the effects of parameter 

and model uncertainty. Finally, we only consider model uncertainty within the uni- 

verse of the 15 model specifications implied by economic fundamentals and dynamic 

volatility. 

'"See Diebold and Pauly (1990), Diebold (1998,2004), and Timmermann (2006) for a review of 
forecast combinations. 
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3.6.4 The DMA Strategy 

Quite simply, the DMA strategy involves taking an equally weighted average of the 

conditional mean and volatility forecasts from a given universe of available models. 

Hence, for a set of N models the DMA strategy is referred to as the IIN strat- 

egy. Since this is a strategy that does not require period-by-period updating of 

the weights in the forecast combination, it can be readily evaluated in-sample and 

out-of-sample on the basis of conditioning information available at the time of the 

forecast. 

3.6.5 The BMA Strategy 

In the context of our Bayesian approach, it is natural to implement the BMA method 

originally discussed in Learner (1978), and surveyed in Hoeting, Madigan, Raftery 

and Volinsky (1999). The BMA strategy accounts directly for uncertainty in model 

selection, and is in fact easy to implement once we have the output from the MCMC 

simulations. Define fit as the forecast density of each of the N competing models 

at time t. Then, the BMA forecast density is given by: 

N 
f BMA 

pt (m, 
t1 Ast) fi3t (3.21) 

i=l 

where pt (Mi I Ast) is the posterior probability of model Mi given the data Ast. 

It is important to note that the BMA weights vary not only across models but 

also across time periods as does the marginal predictive density (and hence marginal 

likelihood) of each model. In particular, at each time period we estimate the one- 

step ahead predictive density ft (Ast I Ft-1,0) and the posterior density 7rt (0 1 Ast). 

We can then compute the time-varying marginal predictive density using Equation 
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3.20, and insert it into Equation 3.18 to finally calculate the posterior probability 

of each model at each time period. It is crucial to emphasise that we evaluate the 

BMA strategy ex-ante. We do this by lagging the posterior probability of each 

model for the following reason. Suppose that we need to compute the period t 

BMA forecasts of the conditional mean and volatility for the four bonds we include 

in the portfolio. Knowing the mean and volatility forecasts implied by each model 

for the three exchange rates is not sufficient. We also need the realised data point 

Ast in order to evaluate the predictive density ft (Ast I 
-Ft-1,0). 

Since the realised 

data point Ast is only observed ex post, the only way to form the BMA weights ex 

(, ýýst_j F 0). The same ante is to lag the predictive density and thus useft -1' t-21 

method is applied both in-sample and out-of-sample. 

3.6.6 The BW Strategy 

Under the BW strategy, in each time period we select the set of one-step ahead con- 

ditional mean and volatility from the empirical model that has the highest marginal 

predictive density in that period. In other words, the BW strategy only uses the 

forecasts of the "winner" model in terms of marginal predictive density, and hence 

discards the forecasts of the rest of the models. Clearly, there is no model averaging 

in the BW strategy. Similar to the BMA, the BW strategy is evaluated ex ante 

using the lagged predictive marginal densities. 

3.7 Empirical Results 

3.7.1 Estimation of Exchange Rate Models 

We begin our statistical and economic evaluation of short-horizon exchange rate 

predictability by performing Bayesian estimation of the parameters of our 15 candi- 
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date models: the five conditional mean specifications (RW, MFj, MF2, MF3, FP) 

under the three volatility frameworks (LR, GARCH, SV). The posterior mean 

estimates for the parameters of each empirical model are presented in Tables 3.2, 

3.3 and 3.4. We particularly focus on the size, sign and statistical significance of 

the 0 estimate because it captures the effect of either monetary fundamentals or the 

forward premium in the conditional mean of exchange rate returns. In our Bayesian 

MCMC framework we assess statistical significance using two diagnostics. First, 

we report the highest posterior density (HPD) region for each parameter estimate. 

For example, the 95% HPD region is the shortest interval that contains 95% of 

the posterior distribution. We check whether the 90%, 95% and 99% HPD regions 

contain zero, which is equivalent to two-sided hypothesis testing at the 10%, 5% and 

1% level respectively. Second, we compute the Numerical Standard Error (NSE) 

as defined in Section 3.6.1. 

Tables 3.2 through 3.4 illustrate that for the three monetary fundamentals speci- 

fications (MFI, MF2, and MF3) the in-sample ý estimate tends to be a low positive 

number, which increases in size as we move from MF, to MF3. This suggests that 

when st is below its fundamental value zt, it is expected to slowly rise over time. In 

contrast, the in-sample ý3 estimate for the FP model has a large negative value. For 

example, in the case of the pound sterling, ý rises from 0.0028 for MFsv, to 0.0211 

for AIFS` and then to 0.0226 for MFSv whereas for the FPSV model -0-653. 2737 

The tables also report the estimates of the conditional variance parameters. For 

the Linear Regression model, the monthly variance of FX returns remains largely 

unchanged across the five conditional mean specifications and is around 10 (i. e. 
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v ý- 3%) for all three currencies. For the GARCH(I, 1) models, the conditional 

monthly variance is highly persistent since the sum 'Y1 +Y2 revolves around 0.96 for 

all specifications. The SV models exhibit (i) high persistence (0) in the conditional 

monthly log-variance, ranging from 0=0.75 for the Deutsch mark/euro, 0=0.82 

for the yen, to 0=0.89 for the pound sterling, and (ii) a sizeable stochastic compo- 

nent in the conditional monthly log-variance, which ranges from 0,2 = 0.070 for the 

Deutsch mark/euro, o-' = 0.090 for the pound sterling, to U2 = 0.150 for the yen. 

Finally, all parameters in both the conditional mean and volatility exhibit very low 

NSE values and therefore a high degree of statistical significance. 

3.7.2 Evaluating Forecasts Using Statistical Criteria 

We assess the statistical evidence on short-horizon exchange rate predictability by 

ranking our set of 15 candidate models according to their log-likelihood and poste- 

rior probability. The conditional performance of the models is evaluated in-sample 

as well as out-of-sample. The in-sample period for the three monthly exchange rates 

covers 29 years ranging from January 1976 to December 2004. The out-of-sample 

exercise involves two steps: (i) initial parameter estimation for the 14-year period of 

January 1976 to December 1989, and (ii) sequential monthly updating of the para- 

meter estimates for the out-of-sample 15-year period of January 1990 to December 

2004. In other words, the forecasts at any given month are constructed according to 

a recursive procedure that is conditional only upon information up to the date of the 

forecast. The model is then successively re-estimated as the date on which forecasts 

are conditioned moves through the data set. Hence the design of the out-of-sample 

exercise is computationally intensive. 
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Our analysis of the statistical evidence begins with Table 3.5, which presents 

the log-likelihood values and demonstrates that across volatility models, the SV 

model always has higher log-likelihood than both LR and GARCH. This result is 

very robust as it holds for all three currencies both in-sample and out-of-sample. 

Similarly, the GARCH(I, 1) models always beat the constant variance LR models 

in terms of log-likelihood. Furthermore, across conditional mean specifications, the 

RW model is always worse in-sample than the model specifications which condition 

on either monetary fundamentals or the forward premium. Specifically, in-sample 

the MF models are best for the pound sterling and the Deutsch mark/euro, whereas 

the FP model is best for the yen. Finally, the out-of-sample log-likelihood values 

lead to the following conclusions: FP is still the best model for the yen, but now 

the RW model is best for the pound sterling and the Deutsch mark/euro. 

In Table 3.6 we rank the in-sample and out-of-sample performance of our set 

of candidate models according to their posterior probability. The key input to 

this statistical criterion is the calculation of the marginal likelihood. Therefore, 

Table 3.6 gives us a distinct statistical perspective on performance because the 

marginal likelihood is computed in a way that integrates out parameter uncertainty 

and imposes a penalty for lack of parsimony (higher dimension). The results in Table 

3.6 indicate two clear patterns in ranking the models. The first pattern confirms one 

of our most robust results: the best models for all three currencies both in-sample 

and out-of-sample have SV innovations. The second pattern provides a result that is 

slightly different from the log-likelihood findings: for all three exchange rates, both 

in-sample and out-of-sample, the best model is FPSV, the second best is RWSv, 
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and third best is one of the three MFSV specifications. The single exception is the 

pound sterling for which RWS' is the best out-of-sample model. Hence, in contrast 

to the likelihood evidence, the MF specifications lose to RW even in-sample. In 

other words, the penalty the posterior probability imposes on the three monetary 

fundamentals models for lack of parsimony offsets their log-likelihood advantage. 

3.7.3 Evaluating Forecasts Using Economic Criteria 

We assess the economic value of short-horizon exchange rate predictability by ana- 

lyzing the performance of the dynamically rebalanced portfolios constructed using 

our set of 15 candidate models. Our analysis focuses on the performance fee, 4P, a 

US investor is willing to pay for switching from one FX strategy to another. The 

fees are reported in Table 3.7, which displays the economic value of each mean and 

volatility specification relative to the benchmark random walk model with constant 

variance (RW" ). We present the fees for the degrees of RRA 6=2 and 6=6. 

Panel A of Table 3.7 presents the in-sample performance fees and demonstrates 

that the three monetary fundamentals specifications generally have no economic 

value as indicated by the negative 4) values. Only under stochastic volatility does 

the canonical MF, model beat the random walk benchmark with constant variance. 

On the other hand, the forward premium model (FP) exhibits high economic value, 

especially under stochastic volatility. For example, at the target portfolio volatility 

of o-* = 10% and for 6=2, a US investor is willing to pay a substantial 248 annual P 

basis points (bps) for switching from the RWLR model to FPS'. Consistent with 

our statistical evidence, for all conditional mean specifications there tends to be 

high economic value associated with stochastic volatility. However, in contrast to 
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our statistical evidence, the performance of the GARCH(I, 1) model is surprisingly 

poor relative to the constant variance Linear Regression model. Specifically, at 

L7* = 10% and 6=2, the in-sample fee for switching from RWLR to RWGARCH is 
P 

-24 bps, whereas the fee for switching from RWLR to RWS' is 42 bps . 
44 Finally, 

as investors become less risk averse, the fees tend to increase in absolute value, 

strengthening the evidence against the random walk benchmark and in favour of 

the FP" specification. 

The out-of-sample performance fees are displayed in Panel B of Table 3.7 and 

suggest that even out-of-sample there is still high economic value in both the forward 

premium and stochastic volatility. This is a new and important result, which adds 

to the existing literature that is anchored around the seminal contribution of Meese 

and Rogoff (1983). Specifically, at a* = 10% and 6=2, the annual performance P 

fees for switching from RW" to another model are: 127 bps for RWS' and 266 bps 

for FP". We can therefore conclude that there is substantial economic value both 

in-sample and out-of-sample against the naive random walk model and in favour 

of conditioning on the forward premium with stochastic volatility. This finding is 

in fact consistent with the large profits made by financial institutions that engage 

in sophisticated multi-currency forward bias strategies. For example, Galati and 

Melvin (2004) show that simple carry trades aiming at exploiting the forward bias 

constitute a significant source of the surge in FX trading observed in recent years. 

In addition to the results associated with individual models, even stronger eco- 
""At first sight, the poor performance of the GARCH model in terms of economic value appears 

rather surprising. For instance, Fleming and Kirby (2003) find that SV models only marginally 
outperform GARCH models. However, there is no study to date which assesses the economic value 

of GARCH and SV models, especially when applied to exchange rates. Furthermore, the negative 
in-sample and out-of-sample performance fees of RWGARCH are not far from zero. 
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nomic evidence is found for the combined forecasts reported in Table 3.8. In par- 

ticular, we compare the three methods of forecast combination described in Section 

3.6.3 to the RWLR benchmark for two cases: (i) the restricted universe of the 

five SV models (because the SV models generally perform the best) , and (ii) the 

unrestricted universe of all 15 models. A purely agnostic approach to forecast com- 

bination would use the full set of 15 models (case ii). At first glance, therefore, 

restricting the universe of models appears to be conceptually inconsistent with the 

adopted model uncertainty framework. However, we still consider the restricted 

universe of SV models (case i) as an additional exercise, which represents the case 

where an investor first examines the in-sample results at the end of 1989, realises 

the superior in-sample performance of SV models, and consequently decides to use 

the restricted universe of only SV models in the out-of-sample forecast combination. 

The results in Table 3.8 provide robust evidence against the naive random walk 

model as all performance fees based on combined forecasts are positive and high, 

both in-sample and out-of-sample. The BMA and BW perform similarly well and, 

in turn, both perform better than DMA. For example, when selecting among the 

SV models and setting o-* = 10% and 6=2, the annual in-sample performance P 

fee for switching away from the benchmark random walk model (RWLR) is 169 

bps for DMA, 255 bps for BMA, and 235 bps for BW. The out-of-sample fees 

are even higher: 219 bps for DMA, 317 bps for BMA, and 340 bps for BW. In 

short, therefore, there is clear in-sample and out-of-sample economic evidence on 

the superiority of combined forecasts relative to the naive random walk benchmark. 

In fact, the simple DMA (11N) strategy comfortably beats the RWLR model and 
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indeed its performance is not drastically lower than the more sophisticated BMA 

and BW strategies. 

In conclusion, Figure 3.1 offers a visual description of the time variation in the 

weights investing in the three risky assets: the UK, German and Japanese bonds. 

The figure displays the weights for four cases: the benchmark RWLR model, the 

best performing individual model FPSV, the DMA combined forecast strategy, and 

finally the more sophisticated BMA strategy. As expected, the weights are very 

smooth over time for RWLR and DMA, and remain reasonably smooth for the 

FPS' model and the BMA strategy. 15 

3.7.4 M-ansaction Costs 

If transaction costs are sufficiently high, the period-by-period fluctuations in the 

dynamic weights of an optimal strategy will render the strategy too costly to im- 

plement relative to the static random walk model. We address this concern by 

computing the break-even transaction cost, 7- BE 
, as the minimum monthly propor- 

tional cost which cancels out the utility advantage (and hence positive performance 

fee) of a given strategy. In comparing a dynamic strategy with the static random 

walk strategy, an investor who pays a transaction cost lower thanT BE will prefer 

the dynamic strategy. The 7- BE values are expressed in monthly basis points and 

are reported only when 4) is positive. 

The in-sample break-even transaction costs are reported in Panel A of Table 

15However, the dynamic weights appear to be quite volatile in the beginning of the sample 
before they stabilize. We have experimented with alternative initial values and starting dates, and 
found that the results are robust to different initializations. Therefore, we believe that the initial 

instability in the weights is due to the high exchange rate volatility at the start of the sample, 

especially during the 1992 crisis of the Exchange Rate Mechanism that forced the UK to abandon 
the target zone system following a speculative attack. 
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3.7, which demonstrates that for the forward premium and stochastic volatility the 

values of T BE 
are positive and high; they tend to be higher than 100 bps and can 

be as high as 556 bps. For instance, at a* = 10% and 6=2, a US investor will p 

switch back to the RWLR model if he is subject to a proportional transaction cost 

of at least 120 bps for FpLR, 101 bps for FpGARCH, 132 bps for FPS', and 471 

bps for RWSV. In other words, at the reasonably high transaction cost of 50 bps 

(e. g. Marquering and Verbeek, 2004), there is still significant in-sample economic 

value in empirical models which condition on the forward premium, especially under 

stochastic volatility. 

Determining the out-of-sample robustness to transaction costs is one of the most 

important considerations in assessing the forecasting performance of empirical ex- 

change rates models. Panel B of Table 3.7 shows that conditioning on the forward 

premium and stochastic volatility leads to reasonably highT BE values. Specifically, 

at o, * = 10% and J=2, the break-even transaction cost which would eliminate the p 

performance fee of 266 bps of the FPS' model relative to the RWLR benchmark is 

90 bps. Furthermore, theT" for RWS' versus RWLR is a very large 321 bps. 

The evidence on the 7- BE of combined forecasts displayed in Table 3.8 is even 

stronger. Compared to the benchmark RW" at o-* = 10% and 6=2, a combined P 

forecast of all 15 model specifications exhibits an in-sample -F BE of: 240 bps for 

DAIA) 141 bps for BMA, and 114 bps for BW. Additionally, Panel B of Table 

3.8 shows that the out-of-sample 7 BE values for combined forecasts are generally 

as high as the in-sample values. It is particularly interesting to note that for the 

simple DMA (11N) strategy we find a positive -ýD over the RW" benchmark and 
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a highT". In short, as the T BE values are generally positive and reasonably high, 

we conclude that the in-sample and out-of-sample economic value we have reported 

is robust to reasonably high transaction costs for empirical exchange rate models 

conditioning on the forward premium, for models with SV innovations, and for 

combined forecasts. 

3.7.5 Summary of Results 

The statistical and economic evidence on short-horizon exchange rate predictability 

supports the following four results: (i) the forward premium model unequivocally 

beats the random walk both in-sample and out-of-sample; (ii) conditioning on mon- 

etary fundamentals has no economic value either in-sample or out-of-sample; (iii) 

the stochastic volatility process always leads to superior portfolio performance both 

in-sample and out-of-sample; and (iv) the combined forecasts, including the simple 

11N strategy, consistently outperform the constant variance random walk bench- 

mark both in-sample and out-of-sample. All these results are robust to reasonably 

high transaction costs. 

3.7.6 Robustness and Extensions 

This section discusses directions in which one can possibly extend the analysis of 

the chapter. First, we perform an additional robustness test by evaluating the out- 

of-sample performance of the empirical models in three 5-year subsamples. Recall 

that the full sample period at our disposal covers 29 years ranging from January 

1976 to December 2004. We use data from January 1976 to December 1989 for 

in-sample estimation, whereas the out-of-sample period contains 15 years ranging 

from January 1990 to December 2004. The out-of-sample results we report in Ta- 
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bles 3.5 through 3.8 are for the entire 15-year out-of-sample period. In addition, 

Panel A of Table 3.9 presents the performance fees for selected models for three 

subsamples: 1990-1994,1995-1999 and 2000-2004. We find that the economic value 

in conditioning on the forward premium and stochastic volatility is positive in all 

periods but is substantially higher in the last two subsamples. This is consistent 

with the well-known fact in the literature that the forward bias is very small in 

the early 1990s (e. g. Flood and Rose, 2002). " For all models, the best subsample 

period is 1995-1999. Furthermore, it is important to note that the combined fore- 

cast strategies, including the simple DMA, substantially outperform the random 

walk benchmark in all three subsamples. Finally, the best performing combined 

forecast strategies, BMA and BW, display similar performance fees to FP" for 

the last two subsamples. However, for the first subsample when the forward bias 

is small, the BMA and BW strategies significantly outperform FPS' by optimally 

using predictive information from the entire universe of models, including monetary 

fundamentals. 

Second, our analysis of the conditional variance of exchange rate returns includes 

the GARCH(I, 1) specification because this is the benchmark model in the seminal 

study of West, Edison and Cho (1993). As a further robustness check, we also 

examine the out-of-sample performance of the tGARCH(l, 1) model of Bollerslev 

(1987) in order to determine whether departing from the assumption of conditional 

161n a separate experiment we start the out-of-sample exercise in 1985 and find significant eco- 

nomic value in the forward premium and stochastic volatility for the 1985-1989 period. However, 

starting the out-of-sample period in 1985 leaves too few in-sample observations for initial parame- 

ter estimation. Therefore, the tables present the out-of-sample results for the period starting in 

1990. 
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normality can improve the performance of the GARCH model. " The results from 

this exercise -a subset of which is reported in Panel B of Table 3.9 - reveal that 

using a Student-t distribution leads to substantial performance gains in the GARCH 

framework. " In particular, the results in Panel B of Table 3.9 show that the out- 

of-sample performance fees of the tGARCH(l, 1) model are much higher than for 

GARCH(I, 1), especially for the forward premium and random walk conditional 

mean specifications. For instance, setting or* = 10% and J=2 and comparing the P 

results in Tables 3.7 and 3.9 indicates that the out-of-sample fees for switching from 

the RW" model to the forward premium models are as follows: 76 bps for FP", 

70 bps for FpGARCH 
, 140 bps for FptGARCH, and 266 bps for FPsv. Similarly, 

when switching from the random walk with constant variance, RWLR , to a random 

walk with time-varying volatility the fees are: -32 bps for RWGARCH 
1 28 bps for 

RWtGARCH 
, and 127 bps for RWS'. Therefore, we can conclude that in terms of 

economic value the tGARCH model performs better than GARCH, although the 

SV model outperforms both normal and Student-t GARCH specifications. Hence, 

our main conclusions remain qualitatively the same. 

Third, Table 3.10 presents the in-sample and out-of-sample annualised Sharpe 

ratios for selected models. The Sharpe ratio values are generally in agreement with 

the performance fees and hence confirm our conclusions. Specifically, FPS' and all 

combined forecast strategies consistently outperform the random walk model both 

171n estimating the tGARCH model, we implement an algorithm similar to the GARCH case as 
described in Appendix B. 3, with an additional Metropolis-Hastings step for sampling the degrees 

of freedom parameter v. 
""Note that the degrees of freedom parameter estimate revolves around v= 10 for the UK pound, 

v z-- 25 for the Deutsch mark/euro, and v=7 for the Japanese yen (not reported). This indicates 

that the unconditional distribution of exchange rate returns is not normal, especially for the UK 

pound and the Japanese yen. 
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in-sample and out-of-sample. Indeed, the simple DMA strategy also performs better 

than the random walk, but not as well as FP". The best performing strategies are 

BMA and BW. For example, at o-* = 10%, the out-of-sample Sharpe ratios are: P 

0.76 for RWLR 7 0.98 for FPS', 0.86 for DMA, 1.06 for BMA, and 1.12 for BW. 

Fourth, this chapter explores the predictability in exchange rates by focusing on 

the frequency and horizon of one month. On the one hand, adopting the monthly 

frequency is a natural choice because this is the highest frequency at which monetary 

fundamentals are observed. On the other hand, our motivation for investigating 

predictability at the one-month horizon is founded on the prevailing view in this 

literature that exchange rates are not predictable at short horizons. It is clear, 

therefore, that one possible direction in extending the analysis of this chapter is to 

study the predictability of the forward premium, stochastic volatility and combined 

forecasts for higher frequencies and longer horizons. We leave this for future research. 

Finally, we study short-horizon exchange rate predictability by estimating a set 

of univariate conditional mean and volatility models. However, in assessing the 

economic value of exchange rate predictability we build multivariate dynamic asset 

allocation strategies. Specifically, the optimal weights of the dynamically rebal- 

anced portfolios are computed using the conditional mean forecasts, the conditional 

volatility forecasts and the dynamic covariances implied by the constant conditional 

correlation (CCC) model of Bollerslev (1990). In the CCC model, the dynamics 

of covariances are driven by the time-variation in the conditional volatilities. By 

design, therefore, the advantage of this setting is that the optimal weights will vary 

across models only to the extent that forecasts of the conditional mean and volatility 
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will vary, which is precisely what the empirical models provide. Indeed, introducing 

multivariate stochastic volatility models for capturing the dynamic heteroskedas- 

ticity of the covariances of exchange rate returns remains an important extension 

to this line of research. Multivariate stochastic volatility models are high dimen- 

sional and their estimation is computationally challenging (e. g. Chib, Nardari and 

Shephard, 2006). Additionally the dynamic conditional correlation (DCC) model of 

Engle (2002) has yet to be examined in a Bayesian SV framework. Hence, we will 

revisit this issue in future research. 

3.8 Conclusion 

This chapter draws from three separate, yet related strands of international finance 

literature. A large body of empirical research finds that models which condition on 

monetary fundamentals cannot outperform the naive random walk model in out- 

of-sample forecasting of exchange rates. Despite the increasing sophistication of 

the econometric techniques implemented and the improving quality of the data sets 

utilised, evidence of exchange rate predictability remains elusive. A second and 

related research strand indicates that the rejection of the risk-neutral FX efficient 

market hypothesis implies that exchange rate movements can be predicted using 

information contained in forward premia. Finally, financial economists agree that 

exchange rate volatility is predictable by specifying either GARCH or stochastic 

volatility innovations. 

Prior research in this area has largely relied on standard statistical measures of 

forecast accuracy. In this chapter, we complement this approach in two critical as- 

pects. First, in assessing the predictive performance of the set of empirical exchange 
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rate models, we implement a Bayesian methodology which explicitly accounts for 

parameter and model uncertainty. Second, we provide a comprehensive economic 

evaluation of the models in the context of dynamic asset allocation strategies. In 

doing so, our study contributes to the growing empirical literature on exchange rate 

predictability in the following manner. We assess the economic value of exchange 

rate forecasts derived from empirical models which condition on information con- 

tained in either monetary fundamentals or forward premia. This is done in a frame- 

work that allows for time-varying volatility. The empirical exchange rate models are 

set against the naive random walk benchmark. Finally, we evaluate the performance 

of combined forecasts based on Deterministic and Bayesian Model Averaging. 

Our results provide robust evidence against the random walk (no predictability) 

benchmark, and therefore our empirical findings reinforce the notion that exchange 

rates are predictable. Specifically, we find that the predictive ability of the forward 

premium has substantial economic value in a dynamic portfolio allocation context 

and that stochastic volatility significantly outperforms the constant variance and 

GARCH(1,1) models irrespective. of the conditional mean specification. Combined 

forecasts which are formed using Deterministic and Bayesian Model Averaging also 

substantially outperform the random walk benchmark. These results are robust to 

reasonably high transaction costs and they hold for all currencies both in-sample 

and out-of-sample. In short, these findings suggest that the random walk hypothesis 

as applied to exchange rates might have been overstated, while at the same time 

they justify the widespread use of forward bias and volatility timing strategies in 

the practice of currency management. 
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Table 3.2 
Posterior Means for the UK Pound Sterling (USDIGBP) 

Panel A: Bayesian Linear Regression 

Parameter RW MF1 MF2 MF3 FP 

-0.012 -0.012 -0.012 -0.012 -0.110 (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) 

0.0079 0.0254** 0.0254* -0.629 (2.4e-05) (3.7e-05) (4.4e-05) (0.0016) 

v2 8.72*** 10.12*** 8.63*** 10.06*** 8.69*** 
(0.0021) (0.0021) (0.0021) (0.0021) (0.0021) 

Panel B: Bayesian GARCH(1,1) 

0.018 0.027 0.005 0.017 -0.101 (0.0022) (0.0021) (0.0021) (0.0020) (0.0022) 

0.0042 0.0215 0.0193 -0.816 (0.0001) (0.0002) (0.0002) (0.0078) 

0.331*** 0.346*** 0.324*** 0.329*** 0.387*** 
(0.0015) (0.0026) (0.0017) (0.0017) (0.0064) 

0.905*** 0.902*** 0.903*** 0.902*** 0.897*** 
(0.0003) (0.0004) (0.0003) (0.0003) (0,0009) 

-ý2 0.055*** 0.056*** 0.0572*** 0.058*** 0.056*** 
(0.0002) (0.0002) (0.0002) (0.0002) (0.0004) 

Panel C: Bayesian Stochastic Volatility 

0.048 0.046 0.022 0.022 -0.045 (0.0026) (0.0028) (0.0032) (0.0027) (0.0034) 

0.0028 0.0211 0.0226 -0.653 (0.0001) (0.0002) (0.0004) (0.0107) 

A 2.01*** 2.02*** 2.01*** 2.01*** 2.00*** 
(0.0037) (0.0033) (0.0035) (0.0036) (0.0033) 

0.882*** 0.878*** 0.885*** 0.884*** 0.871*** 
(0.0012) (0.0014) (0.0014) (0.0013) (0.0015) 

C2 0.093*** 0.092*** 0.086*** 0.090*** 0.097*** 
(0.0010) (0.0010) (0.0009) (0.0010) (0.0011) 

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, 
GARCH(1,1) and SV model parameters for the USDIGBP monthly percent FX returns. The MCMC 

chain run for 5,000 iterations after an initial burn-in of 1,000 iterations. The numbers in parenthesis 
indicate the Numerical Standard Error (NSE). The superscripts *, ** and *** indicate that the 90%, 95% 

and 99% highest posterior density (HPD) regions, respectively, do not contain zero. The HPD region for 

each MCMC parameter estimate is the shortest interval that contains 95% of the posterior distribution. 
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Table 3.3 
Posterior Means for the Deutsch Mark/Euro (USDIDEM-EURO) 

Panel A: Bayesian Linear Regression 

Parameter RW MF1 MF2 MF3 FP 
0.160 0.160 0.160 0.160 0.206 

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) 

0,0077 0.0104 0.0148 -0.355 (1.6e-0.5) (3.0e-05) (3. le-05) (0.0015) 

v2 9.30*** 9.26*** 9.30*** 9.27*** 10.81*** 
(0.0023) (0.0022) (0.0022) (0.0022) (0.0022) 

Panel B: Bayesian GARCH(1,1) 

0.153 0.164 0.154 0.159 0.216 
(0.0024) (0.0022) (0.0023) (0.0023) (0.0023) 

0.0068 0.0097 0.0134 -0.463 (7.6e-05) (0.0001) (0.0001) (0.0072) 

0.405*** 0.404*** 0.400*** 0.399*** 0.409*** 
(0.0019) (0.0026) (0.0028) (0.0027) (0.0023) 

'Yi 0.930*** 0.929*** 0.928*** 0.928*** 0.929*** 
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) 

'Y2 0.028*** 0.029*** 0.030*** 0.030*** 0.028*** 
(0.0002) (0.0002) (0.0002) (0.002) (0.0002) 

Panel C: Bayesian Stochastic Volatility 

0.163 0.176 0.165 0.173 0.219 
(0.0031) (0.0010) (0.0028) (0.0028) (0.0030) 

0.0074 0.0091 0.0136 -0.440 (9.4e-05) (0.0002) (0.0002) (0.0084) 

2.17*** 2.16*** 2.17*** 2.16*** 2.17*** 
(0.0030) (0.0028) (0.0028) (0.0030) (0.0029) 

0.746*** 0.751*** 0.757*** 0.755*** 0.751*** 
(0.0032) (0.0036) (0.0033) (0.0036) (0.0033) 

01 
2 0.068*** 0.069*** 0.068*** 0.067*** 0.069*** 

(0.0005) (0.0006) (0.0005) (0.0005) (0.0005) 

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, 
GARCH(1,1) and SV model parameters for the USDIDEM-EURO monthly percent FX returns. The 
MCMC chain run for 5,000 iterations after an initial burn-in of 1,000 iterations. The numbers in parenthesis 
indicate the Numerical Standard Error (NSE). The superscripts *, ** and *** indicate that the 90%, 95% 

and 99% highest posterior density (HPD) regions, respectively, do not contain zero. The HPD region for 

each NICNIC parameter estimate is the shortest interval that contains 95% of the posterior distribution. 
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Tab le 3.4 
Posterior Means for the Japanese Yen (USDIJPY) 

Panel A: Bayesian Linear Regression 

Parameter RW MF1 MF2 MF3 FP 

01 0.299* 0.299* 0.299* 0.299* 0.615*** 
(0.0006) (0.0005) (0.0005) (0.0005) (0.0007) 

0.0070 0.0075 0.0189* -1.224** (1.3e-0.5) (1.9e-05) (3.4e-05) (0.0016) 

v2 11.0*** 10.96*** 10.99*** 10.94*** 10.79*** 
(0.0027) (0.0026) (0.0026) (0.0026) (0.0026) 

Panel B: Bayesian GARCH(1,1) 

0.343* 0.344* 0.342* 0.333* 0.623* 
(0.0027) (0.0023) (0.0024) (0.0024) (0.0027) 

0.0065 0.0077 0.0164 -1.170** (6.4e-05) (8.6e-05) (0.0002) (0.0069) 

W 0.595*** 0.593*** 0.599*** 0.594*** 0.676*** 
(0.0028) (0.0034) (0.0043) (0.0042) (0.0076) 

'Y1 0.911*** 0.911*** 0.909*** 0.911*** 0.898*** 
(0.0004) (0.0004) (0.0005) (0.0005) (0.0011) 

'Y2 0.037*** 0.036*** 0.038*** 0.036*** 0.041*** 
(0.0003) (0.0003) (0.0003) (0.0003) (0.0007) 

Panel C: Bayesian Stochastic Volatility 

0.166 0.166 0.161 0.138 0.532*** 
(0.0039) (0.0039) (0.0041) (0.0040) (0.0038) 

)3 0.0055 0.0059 0.0155 -1.763*** (8.1 e -05) (0.0001) (0.0002) (0.0109) 

P, 2.16*** 2.16*** 2.16*** 2.15*** 2.06*** 
(0.0040) (0.0042) (0.0037) (0.0036) (0.0040) 

0.814*** 0.818*** 0.818*** 0.816*** 0.801*** 
(0.0017) (0.0020) (0.0018) (0.0019) (0.0019) 

2 0.149*** 0.147*** 0.146*** 0.150*** 0.230*** 
(0.0025) (0.0021) (0.0022) (0.0020) (0.0043) 

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, 
GARCH(1,1) and SV model parameters for the USDIJPY monthly percent FX returns. The MCMC chain 

run for 5,000 iterations after an initial burn-in of 1,000 iterations. The numbers in parenthesis indicate 

the Numerical Standard Error (NSE). The superscripts *, ** and *** indicate that the 90%, 95% and 
99% highest posterior density (HPD) regions, respectively, do not contain zero. The HPD region for each 
MCMC parameter estimate is the shortest interval that contains 95% of the posterior distribution. 
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Table 3.5 
The Likelihood of the Models 

Panel A: In-Sample log-Likelihood 

USDIGBP 
Model RW MF1 M F2 M F3 FP 

LR -867.47 -866.90 -865.12 -865.76 -866.50 
GARCH(1,1) -860.94 -860-51 -858.00 -858.67 -860.28 

sv -801.80 -804.07 -802.25 -801.15 -801.33 
USDIDEM-EURO 

LR -878.71 -877.47 -878.09 -877.55 -878.49 
GARCH(1,1) -878.26 -876.96 -877.45 -876.91 -877.97 

sv -847.84 -846.23 -846.52 -846.72 -846.64 
USDIJP Y 

LR -907.95 -906.60 -907.17 -906.34 -904.08 
GARCH(1,1) -906.97 -905.60 -905.93 -905.37 -903.05 

sv -828.49 -827.76 -828.66 -827.61 -791.47 
Panel B: Out-of-Sample log-Likelihood 

USDIGBP 
Model RW MF1 MF2 MF3 FP 

LR -439.52 -440.173 -438.97 -439.25 -439.91 
GARCH(1,1) -427.58 -427.69 -426.27 -426.31 -428.25 

sv -412.08 -412.91 -412.24 -412.63 -412.18 
USDIDEM-EURO 

LR -451.91 -452.37 -452.50 -453.06 -452.76 
GARCH(1,1) -448.47 -448.68 -449.00 -449.36 -449.03 

sv -427.120 -433.68 -433.91 -434.69 -434-58 
USDIJPY 

LR -465.04 -465.58 -465.47 -466.99 -464.84 
GARCH(1,1) -458.33 -458.68 -458.68 -460.14 -458.05 

sv -433.814 -426.40 -425.50 -425.68 -413.52 

The table reports the in-sample and out-of-sample log-likelihood values for the three FX rates (USD/GBP, 
USD/DEM-EURO and USD/JPY), five conditional mean specifications (RW, MFi, MF2, MF3 and FP) 

and three volatility frameworks (Linear Regression, CARCH and Stochastic Volatility). The out-of-sample 
data runs from January 1990 through December 2004. 
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Table 3.6 
The Models with the Highest Posterior Probability 

Panel A: The Best In-Sample Models 

Best Model Second Best Model Third Best Model 
USDIGBP FPSv RWSV M F3S V 

USDIDEM - EURO FPSV RWSv M F2S V 

USDIJPY FPSV RWSV M F3S V 

Panel B: The Best Out-of-Sample Models 

Best Model Second Best Model Third Best Model 

USDIGBP RWS"' FPSV M F2S I' 

USDIDEM - EURO FPSV RWSV MF2SV 

USDIJPY FPSV RWSV M F3S V 

The table shows the three best models according to the highest in-sample and out-of-sample posterior 

probability for the three FX rates (USD/GBP, USD/DEM-EURO, and USD/JPY). The out-of-sample 
data runs from January 1990 through December 2004. Ranking the models using the highest posterior 

probability is equivalent to choosing the best model in terms of density forecasts and is a robust model 

selection criterion in the presence of misspecification and non-nested models. 
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Tab le 3.8 
The Economic Value of Combined Forecasts 

Panel A: In-Sample Performance 

All Models (vs. RWLR) 

DMA BMA BW 
BE BE BE BE BE BE -TO (D6 7-C 4)2 -r, ) (Df; -T9 ýDq 7-0 (bg Tý 

8% 109 244 93 204 207 145 156 120 192 117 156 93 
10% 134 240 109 189 254 141 172 109 235 114 177 83 
12% 158 239 121 177 299 138 178 100 276 Ill 191 74 

Stochastic Volatility Models (vs. RWLR) 
DMA BMA BW 

0, p 
(1)2 BE 4)6 BE 

'r6 
BE BE 1b2 72 4)6 4)2 BE 

7,2 4)6 BE 
'f'6 

8% 140 262 102 147 208 146 157 120 192 117 156 93 
10% 169 253 109 158 255 142 173 110 235 114 178 83 
12% 197 244 110 131 300 139 179 100 276 111 191 74 

Panel B: Out-of-Sample Performance 

All Models (vs. RWLR) 

DAIA BMA BW 
0, p (D2 

BE 
72 4)6 BE 

76 
BE BE (P2 72 (P6 76 (D2 BE 

72 'ýN 
BE 

76 

8% 83 126 75 116 250 130 206 108 268 128 222 107 
10% 103 124 91 ill 306 127 237 100 329 125 255 99 
12% 122 121 105 106 360 124 259 91 386 122 279 90 

Stochastic Volatility Models (vs. RW LR) 

DMA BMA BW 

p 
(D2 BE 

72 '(D6 
BE 

76 'CP 2 
BE 

72 (D6 BE 
r6 4)2 BE 

72 (D6 BE 
T6 

8% 179 174 147 142 259 134 215 112 277 131 231 111 
10% 219 169 168 129 317 131 249 104 340 129 267 103 
12% 258 164 183 116 373 128 273 95 400 126 294 94 

The table reports the in-sample and out-of-sample performance fees (ýD) and break-even transaction 

Costs (T BE) for all maximum return strategies based on combined forecasts for three target portfolio 
volatilities (8%, 10% and 12%). DMA denotes Deterministic Model Average (11N strategy), BMA denotes 

Bayesian Model Average, and BW is Bayesian Winner. The combined forecasts are shown for two cases: 
(i) the unrestricted universe of all 15 models, and (ii) the restricted universe of only the five stochastic 

volatility models. The fees denote the amount an investor with quadratic utility and a degree of relative 

risk aversion equal to either 2 or 6 is willing to pay for switching from the R WLR benchmark to (say) the 

BAIA strategy. -r BE is defined as the minimum monthly proportional cost which cancels out the utility 

advantage (and hence positive performance fee) of a given strategy. The transaction costs are only reported 

when -1) is positive. The performance fees are expressed in annual basis points, and the transaction costs in 

monthly basis points. The in-sample period starts in January 1979 and the out-of-sample data runs from 

January 1990 through December 2004. 
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Table 3.9 
Out-of-Sample Robustness 

Panel A: Subsample Analysis for Selected Models vs. RWLR 
(u* = 10%, 6= 2) p 

FPSv DMA BMA BW 
Subsample 

BE 
'ýD2 72 

BE (D2 
-7'2 

BE 4P2 7-2 BE 
'ýD2 72 

1990-1994 40 12 90 46 196 50 260 56 
1995-1999 539 347 185 446 519 346 523 357 
2000-2004 229 83 39 79 227 93 224 96 

1995-2004 381 193 109 279 363 208 364 281 
1990-2004 266 90 103 124 306 127 329 125 

Panel B: The Performance of tGARCH Models vs. RWLR 
(6 = 2) 

MFItGARCH tGARCH MF2 MF3tGARCH ptGARCH F IGARCH RW 
BE BE 

0, ýp 
(D2 T2 (D2 72 

BE 4)2 72 
BE (D2 72 

BE 
'ýN 'r2 

8% -34 - -32 - -29 - 110 49 21 78 
10% -43 - -40 - -36 - 140 50 28 82 
12% -50 - -48 - -42 - 169 51 35 88 

The table provides an analysis of out-of-sample robustness for the performance fees (-cP) and break-even 

transaction costs (, r BE) of selected models against the RWLR benchmark. Panel A conducts a subsample 
analysis and Panel B examines the performance of the tGARCH(1,1) model with Student-t innovations. 
DMA denotes Deterministic Model Average (11N strategy), BMA denotes Bayesian Model Average, and 
BW is Bayesian Winner. All maximum return strategies build an efficient portfolio by investing in the 

monthly return of four bonds from the US, UK, Germany and Japan and using the three exchange rates 
to convert the portfolio return in US dollars. The fees denote the amount an investor with quadratic 
utility and a degree of relative risk aversion equal to 2 is willing to pay for switching from RWLR to (say) 

FPsv. The target portfolio volatility in Panel A is set at 10%. -r BE is defined as the minimum monthly 

proportional cost which cancels out the utility advantage (and hence positive performance fee) of a given 
strategy. The transaction costs are only reported when 4) is positive. The performance fees are expressed 
in annual basis points, and the transaction costs in monthly basis points. The combined forecasts are for 

the universe of all 15 models. The out-of-sample period runs from January 1990 through December 2004. 

110 



Table 3.10 
Sharpe Ratios for Selected Models 

Panel A: In-Sample 

a* p 
RWLR FPsv DMA BMA BW 

8% 0.88 1.09 1.00 1.11 1.13 
10% 0.91 1.14 1.05 1.15 1.17 
12% 0.94 1.17 1.07 1.19 1.21 

Panel B: Out-of-Sample 

0'* p 
RWLR FPsv DMA BMA BW 

- 8% 0.76 0.98 0.86 1.06 1.11 
10% 0.76 0.98 0.86 1.06 1.12 
12% 0.76 0.98 0.86 1.06 1.12 

The table presents the in-sample and out-of-sample annualized Sharpe ratios for selected models. 
DMA denotes Deterministic Model Average (11N strategy), BMA denotes Bayesian Model Average, and 
BW is Bayesian Winner. The Sharpe ratios are adjusted for the serial correlation in the monthly portfolio 
returns generated by the dynamic strategies (e. g. Lo, 2002). All maximum return strategies build an 
efficient portfolio by investing in the monthly return of four bonds from the US, UK, Germany and Japan 

and using the three exchange rates to convert the portfolio return in US dollars. The maximum return 
strategies are evaluated at three target portfolio return volatilities: 8%, 10%, and 12%. The in-sample 

period starts in January 1979 and the out-of-sample data runs from January 1990 through December 2004. 
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Figure 1: The Out-of-Sample Dynamic Weights for Selected Models: This is the out-of-sample time 
variation in the weights investing in the three risky assets (the UK, Japanese and German bonds) at 
a target portfolio volatility of 10% and a degree of relative risk aversion of 2. The figure presents four 

cases: the benchmark random walk model with constant variance (upper left), the forward premium 
model with stochastic volatility (upper right), the Deterministic Model Average strategy (lower left), 

and the Bayesian Model Average strategy (lower right). 
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Concluding Remarks 

In the first chapter, we re-examine the result that the EH appears to fit the behav- 

iour of US repo rates at the shortest end of the term structure, measured at daily 

frequency from overnight to the 3-month maturity (Longstaff, 2000a). We extend 

this research by testing the restrictions implied by the EH on a VAR of the long- 

and short-term repo rate using the test proposed by Bekaert and Hodrick (2001). 

Our empirical investigation, in contrast with Longstaff (2000a), is not encouraging 

for the EH, which is statistically rejected across the term structure considered. 

These findings differ from Longstaff (2000a), who does not reject the EH us- 

ing conventional tests, because the VAR test is particularly powerful - and, hence, 

more likely to detect fine departures from the null hypothesis in finite sample - 

and because our sample is larger than Longstaff's (2000a). However, despite this 

statistical evidence, a legitimate and unanswered concern is whether the rejection 

of the EH may be due to small departures from the null hypothesis (or tiny data 

imperfections) which are not economically meaningful but appear statistically sig- 

nificant given the powerful test statistics and the very large sample size employed. 

Moreover, the VAR tests are not designed to incorporate the fact that if one wanted 

to trade on departures from the EH - rather than assuming that the EH holds in a 

simple buy-and-hold allocation strategy - transactions costs create a wedge between 

returns from an active strategy exploiting departures from the EH and a simple buy- 

and-hold strategy. Finally, while the VAR tests rely on the ability of the VAR to 

capture the time-series properties of the term structure of repo rates, we are aware 

that the simple VAR tests, inspired by the literature on affine term structure models, 
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is in fact unable to satisfactorily explain conditional means and volatility of interest 

rates. Hence, potential model misspecification and model uncertainty could play 

an important role in determining the rejection of the EH recorded in Table 1.8. 

In the second chapter, we shed light on the economic significance of the statis- 

tical rejections of the EH recorded in previous section, and proceed to an economic 

evaluation of the EH departures. We innovate in this context by moving beyond 

statistical tests and providing complementary evidence on the validity of the EH 

using some economic value calculations. We assess the economic value of exploiting 

departures from the EH - i. e. using empirical models which condition on informa- 

tion contained in EH deviations - relative to the economic value of using a model 

that assumes the EH holds. The empirical results indicate that the economic value 

of departures from the EH is modest and generally smaller than the costs that an 

investor would incur to exploit the mispricing implied by EH violations. These 

findings are consistent with the thrust of Longstaff's (2000a) original conclusion. 

The results from economic value calculations are in contrast with the results 

from VAR tests reported earlier. This difference confirms that statistical rejections 

of a hypothesis do not always imply economic rejections and raises doubts about 

the ability of the simple linear VAR framework to capture the relationship between 

repo rates at different maturities. Activities in the repo market at maturities of 

days or weeks are largely driven by liquidity considerations and by the attempts 

of banks to manage the quantity of reserves and to hedge interest rate risk on a 

short-term basis, rather than to speculate in search of excess returns. Hence ) it 

seems unlikely that investors would be actively exploiting EH departures on a very 
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short-term basis. Our main conclusion is that, even though the EH may be rejected 

statistically, it still provides a very reasonable approximation to the term structure 

of repo rates and constitutes a useful theory for practitioners in the repo market. 

Finally, third chapter draws from three separate, yet related strands of inter- 

national finance literature. A large body of empirical research finds that models 

which condition on monetary fundamentals cannot outperform the naive random 

walk model in out-of-sample forecasting of exchange rates. Despite the increasing 

sophistication of the econometric techniques implemented and the improving quality 

of the data sets utilised, evidence of exchange rate predictability remains elusive. A 

second and related research strand indicates that the rejection of the risk-neutral 

FX efficient market hypothesis implies that exchange rate movements can be pre- 

dicted using information contained in forward premia. Finally, financial economists 

agree that exchange rate volatility is predictable by specifying either GARCH or 

stochastic volatility innovations. 

Prior research in this area has largely relied on standard statistical measures of 

forecast accuracy. In this chapter, we complement this approach in two critical as- 

pects. First, in assessing the predictive performance of the set of empirical exchange 

rate models, we implement a Bayesian methodology which explicitly accounts for 

parameter and model uncertainty. Second, we provide a comprehensive economic 

evaluation of the models in the context of dynamic asset allocation strategies. In 

doing so, our study contributes to the growing empirical literature on exchange rate 

predictabilitY in the following manner. We assess the economic value of exchange 

rate forecasts derived from empirical models which condition on information con- 
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tained in either monetary fundamentals or forward premia. This is done in a frame- 

work that allows for time-varying volatility. The empirical exchange rate models are 

set against the naive random walk benchmark. Finally, we evaluate the performance 

of combined forecasts based on Deterministic and Bayesian Model Averaging. 

Our results provide robust evidence against the random walk (no predictability) 

benchmark, and therefore our empirical findings reinforce the notion that exchange 

rates are predictable. Specifically, we find that the predictive ability of the forward 

premium has substantial economic value in a dynamic portfolio allocation context 

and that stochastic volatility significantly outperforms the constant variance and 

GARCH(1,1) models irrespective of the conditional mean specification. Combined 

forecasts which are formed using Deterministic and Bayesian Model Averaging also 

substantially outperform the random walk benchmark. These results are robust to 

reasonably high transaction costs and they hold for all currencies both in-sample 

and out-of-sample. In short, these findings suggest that the random walk hypothesis 

as applied to exchange rates might have been overstated, while at the same time 

they justify the widespread use of forward bias and volatility timing strategies in 

the practice of currency management. 
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Appendix: The Expectation Hypothesis 

A. 1 The EH Restrictions in the VAR Framework 

In this appendix we derive the restrictions implied by the EH in the VAR frame- 

work. Define the indicator vectors e1= (1,0, 
..., 0)' and e2 = (0,1,0, 

---, 0)' with 

dimension 2p and select from the companion VAR the long-term rate and expected 
(n) future short-term rates as it e', Yt and Et[it(7j) e', F'Yt, respectively. " Hence, +i I 

the general statement in equation (1.1) 

i(n) i(m) [i(m) ] 
t k-1 t+ Et + Et [i t(72) t+m +2m]+ + Et[z(') (A. 1.1) t+m(k-1) 

can be rewritten, under the maintained assumption that the joint process of the 

short- and long-term interest rates is accurately described by a linear VAR, as 

t1 e /y [I + Fm + r12m + rm(k-1) 2= e'k-1 Yt (A. 1.2) 

which converges, if the eigenvalues Ai of F are such that I Ai I<1, to the following 

compact form 

(I _ ]pn) y I e'2Yt = e', k t. (A. 1.3) 

Notice that right-hand-side of equation (A. 1.3) gives the sum of the current and ex- 

pected short-term rates implied by the predictions of the VAR representation, while 

the left-hand-side of equation (A. 1.3) gives the current long-term rate. In order 

to satisfy this equality and, hence, makes equation (A. 1.3) consistent with equation 

(A. 1.1), equation (A. 1.3) implies the following system of nonlinear equations 

e/ = 
prn) -1 (1 

_ 
17n) 

`)The expectation is with respect to the information set of the VAR. 

(A. 1.4) 
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whose solution implies a 2p dimensional vector of highly nonlinear restrictions in the 

underlying parameters of the VAR. In the case where m=1, the system of equation 

in (A. 1.4) has a simple analytical solution (see Campbell and Shiller, 1987), but in 

the general case analysed in this chapter and in Bekaert and Hodrick (2001) we have 

to rely on the numerical outcome of the GMM maximization. 

A. 2 GMM Iterative Procedure 

In this appendix we present the iterative procedure used for the constrained GMM 

maximization. The first-order conditions for the Lagrangian problem in equation 

(1.10) can be written as 

0 
-G'Q-lv1T9T 

(ý) 
-At IT 

0 VT-aT (ý) 

I 

where 
AT 

=- VoaT(O) and 
GT 

-= V09T(O). By using the Taylor's expansion of 

9T(O) and aT(O) around the true parameter value, 00, and substituting into the first- 

order conditions, Newey and McFadden (1994) derive an approximate asymptotic 

solution under the null hypothesis aT(00) =0 as 

0 G' Q-1, ýI-TgT 
(00) BT Al VT 00) (A. 2.2) TTT 

00 AT 0 VIT --y 

Next, the formula for a partitioned inverse implies that 

BT AT' B -1/2 MTB -1/2 B-'A' -'A'T -1 TTTT (ATBT )I 
(A. 2.3) 

AT 0 (ATB-'A')-'ATB-1 - (ATB -'A') TTTTT 

where MT 
=I- 

BT 1/2 AT (ATB-'A') -1 ATB -1/2 is an idempotent matrix, and TTT 

B= G' Q-'GT. Hence, the asymptotic distribution for the constrained estimator TTT 

and the Lagrange multiplier turns out to be VT 00] ---> N [0, BT 1/2 MTB 
T 

1/2 ] 

and VT---y --ý N[O, (ATB-'A' )-1], respectively. Then, given an initial consistent TT 
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unconstrained estimate 0, by deriving 9T(ý) ' 9T (0) + GT (0 
- 0) and aT 

aT(O) + AT (0 
- 0), and substituting into the first-order conditions, Bekaert and 

Hodrick (2001) define the following iterative scheme 

0 
ý- O-B -1/2 MTB -1/2 GI Q-19T(O) 

- B-'A' (ATB-'A) -1 aT (ý) (A. 2.4) TTTTTTTT 

TBT T -lATB-'G' Q-1 9T(O) + (ATB-'A') -1 aT (0) (A. 2-5) -(A - 'A') TTTTT 

To obtain the constrained parameters ý, we iterate on equations (A. 8) and (A. 9), 

substituting the first constrained estimate for the initial consistent unconstrained 

estimate to derive a second constrained estimate and so forth. The iterative process 

continues until the constrained estimate satisfies the constraints, that is aT (ý) 0- 

A. 3 Small Sample bias correction 

[ -t, S(lw) 
, 

S(2w) S(3w), S(lm) S(2m), S(3m) / Let Zt == Ztttttt where SW denotes the spread t 

between repo rate itj ) and the overnight repo rate it, and assume a VAR(p) dynamics 

p 
Zt + 

Y"Djzt-j + Et 

j=l 

(A. 3.1) 

where ýo is a vector of constant and 4bj is a square matrix. Under the assumption of 

homoskedastic innovations, we proceed as follows. Estimate equation (A. 10) on the 

original data set and simulate 100,000 artificial data sets of 3,625 by using an i. i. d. 

bootstrap of Et. Next, reestimate equation (A. 10) for each replication and determine 

bias as the difference between the parameter estimates of the initial data set and 

the average of the parameter estimates of the artificial data sets. Then, correct the 

original parameters, simulate 70,000 observations, and add the simulated it to each 

simulated spread SM. This bias corrected data set is, hence, subjected for each t 
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pairwise combination of short-term and long-term rate to the analysis described in 

Section 1.3. 

In the second DGP, reparameterise Et == F77t, to capture the effects of temporal 

heteroskedasticity, where ? It is a vector of idiosyncratic innovations and F is a7x7 

factor loadings matrix defined as 

f21 '«» f27 
(A. 3.2) 

f71 

where the blank elements are zero. Define Et-I = Vt, and Et-, [E'et] = FVtF', tt 

where Vt is a diagonal matrix and each element is assumed to follow an GARCH(1,1) 

process augmented with square root of overnight rate, hjt = wjvrz-t-, + ýjhjt-j + 

aj7jý with jG 11,71, as in Cray (1996), Bekaert and Hodrick (2001), Longstaff 
3t-l 

(2000a), and Ang and Bekaert (2002), in order to accommodate shifts in the short- 

rate volatility. Hence, estimate equation (A. 3.1) and proceed with bias correction 

as in the previous experiment, Next, compute the residual vector Et, estimate the 

factor GARCH parameters via quasi-maximum likelihood, and simulate a second 

bias corrected data set as in the previous experiment. Finally, we always generate 

additional 1,000 discarding values to avoid any dependence on the starting values. 
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B Appendix: Bayesian MCMC Estimation 

B. 1 Prior Specification 

We perform Bayesian MCMC estimation of the parameters of the empirical exchange 

rate models by constructing a Markov chain whose limiting distribution is the target 

posterior density. This Markov chain is a Gibbs sampler in which all parameters 

are drawn sequentially from their full conditional posterior distribution. The chain 

is then iterated and the sampled draws, beyond a burn-in period, are treated as 

variates from the target posterior distribution. 

For the conditional mean parameters, 01 =fa, ýJ, we assume a Normal prior 

N(01, V), where 01 == 02 and V= 12. In the Linear Regression model, we define 

2L 2ýý- 2 02 
- 

JV- I 
as the inverse of the variance and assume a prior Gamma 

V with 

mean S-2 = 1, and degrees of freedom v= 

In the GARCH(1,1) model, 02 :::::: fW) 71) 721 are the conditional variance parame- 

ters. We ensure that the conditional variance is covariance stationary by specifying 

w as a logNormal prior: ci , LogN (w, W), with w= -I and W=2. The prior 

specification is completed by assuming -yj - Beta (ii 
1 ! 
21) 

, and72- Beta 
(92 

1 
! 22 

)7 

where g1= 40, ! 21 = 5, g2=2, and G2 = 40. These hyperparameters imply a mean 

of 0.89 and 0.05 for -yj and 2, respectively. 

In the SV model, 
02 

--- :ýfy, 0, al are the conditional log-variance parameters. 

Our prior for y is N (rn, M) with m=I and M =: 25. Following Kim, Shephard, 

and Chib (1998), we formulate the prior for 0 in terms of 0= 20* - 1, where 0* 

is distributed as Beta(f, F). This implies that the prior on 0c (-1,1) is p(O) =: 

-110.5(l - OJE-1, f, E > 0.5, where r, = 0.5 
F(f +F)_ Specifying KfO. 5(l + OIL F(f)+r(E) * 
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20 and F=1.5 yields a mean of 0.86 with variance of 0.01. For u, the prior 

is inverse gamma IG (s, ýS) with s=3 and S=2.5 so that the distribution has a 

mean of 0.20 with variance 0.006. 

For all models, the hyperparameters are set to reasonable values, but the algo- 

rithms described below are robust to the prior specification and initial values. 

B. 2 The Linear Regression Algorithm 

In the Bayesian Linear Regression (LR) model, we need to estimate 0=f 01) 0217 

where 01 =f oz, ýj is the set of the conditional mean parameters, and 02 = 
{V-21 

is the constant precision defined as the inverse of the variance. The simple Gibbs 

algorithm is summarised below (for more details see Koop, 2003): 

1. Initialise 02- 

2. Sample 01 from 01 1 ýISi 02 -N (ý,, V), where V= (L-1 + 02XfX) -1, and 

o (V- 1 0-1 + 02XIIýýS) 
- 

2'ýý-2 -g2 3. Sample 02 from 02 1 As, 01 - Gamma 
v where T+v, and 

(AS_Xol)I(AS_Xol)+1,82 

TT 

4. Go to step 2 and iterate 100000 times beyond a burn-in of 20000 iterations. 

B. 3 The GARCH(1,1) Algorithm 

in the Bayesian CARCH(IJ) model, we need to estimate 0 =f 011 021, where 01 = 

ýce, oj is the set of the conditional mean parameters, and 02 : -- fW, 'Y1, 'Y2j are the 

conditional variance parameters. The algorithm is surnmarised below: 50 

ý)()We have performed a simulation study for comparing the mean square error (MSE) of the 

GARCH(1,1) parameter estimates resulting from maximum likelihood and Bayesian MCMC es- 
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Initialise 01 and transform the data into As* == (Ast -a- Oxt-1). t 

2. Sample the variance parameters 02 from their full conditional posterior density: 

02 1 As*, 01. This posterior density is not available analytically. We compute 

the log-likelihood of the transformed data As* as function0f 02 (conditional on t 

01) and then we optimise the conditional log-posterior. We generate a proposal 

from a t-distribution t (m, V, ý) , where m is the mode, V is the inverse of the 

negative Hessian, and ýa tuning parameter. The proposal is then accepted as 

according to the independence chain Metropolis-Hasting algorithm (e. g. Chib 

and Greenberg, 1995). 

3. Sample all the conditional mean coefficients 01 1 IýISi 
02 using a precision- 

weighted average of a set of normal priors and the normal likelihood conditional 

on02- 

4. Update the data Ast* = (Ast -a- Oxt-1) . 

5. Go to step 2 and iterate 5000 times beyond a burn-in of 1000 iterations. 

BA The Stochastic Volatility Algorithm 

In the Bayesian SV model, we need to estimate 0 =f 01) 021, where 01 =fa, 01 is 

the set of the conditional mean parameters, and02 : -- f A) 07 CT 21 
are the conditional 

log-variance parameters. The parameters of the SV model are estimated using the 

Bayesian MCMC algorithm of Chib, Nardari, and Shephard (2002), which builds on 

timation methods. We set the true model parameters: w=0.0005, -yj = 0.70, 'Y2 = 0.25, and 

vo = 0.003 as in Vrontos, Dellaportas and Politis (2000). For small (T = 300), medium (T = 1000), 

and large (T = 5000) sample sizes, we generated 10000 artificial samples for which we then es- 
timated the GARCH parameters using the two estimation methods. We find that the Bayesian 

MCMC estimates have lower MSE values than the maximum likelihood estimates. 
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the procedures developed by Kim, Shephard, and Chib (1998), and is surnmarised 

below: 

1. Initialise 0, mx, and transform the data into 

As* = In ((Ast 
-a- ýxt-, )' + c) t 

c=0.001 to put the model in state-space form. The "offset" constant c 

eliminates the inlier problem. 

2. Sample the log-variance parameters 02 from their full conditional posterior 

density: 02 1 As*, mx. This posterior density is not available analytically. We 

use the Kalman filter to compute the log-likelihood of the transformed data 

As* as a function Of 02 (conditional on mxt) and then optimise the conditional t 

log-posterior. We generate a proposal from a t-distribution t (M, V, ý), where m 

is the mode, V is the inverse of the negative Hessian, and ýa tuning parameter. 

The proposal is then accepted according to the independence chain Metropolis- 

Hastings algorithm (e. g. Chib and Greenberg, 1995). 

3. Sample the log-variance vector f ht I in one block from the posterior distri- 

bution: hI ýýS*Jn-T, 02. This step uses the de Jong and Shephard (1995) 

simulation smoother, which is an algorithm designed for efficient sampling of 

the state vector in a state-space model. 

4. Sample all the conditional mean coefficients 01 from 01 1 As, h using a precision- 

weighted average of a set of normal priors and the normal likelihood conditional 

on h. Then update the transformed data 

As* = In ((ASt 
_a_ 

&t_j)2 + C) t 
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with c=0.001. 

5. Finally, sample the mixture indicator variable mx I As*, h, 0 directly from its 

posterior: 

Pr (mxt I As*, ht) oc Pr (mxt) fN(As* I ht+, MMxt, t)2 xt) t<T ttm 

where {mmxt, v2 are the means and variances of the seven-component mix- Mxt 
I 

ture of normal densities which are used to approximate the log X' (1) distrib- 

ution (see Kim, Shephard, and Chib, 1998). 

6. Go to step 2 and iterate 5000 times beyond a burn-in of 1000 iterations. 

B. 5 The Particle Filter 

The particle filter of Pitt and Shephard (1999) generates a sample from the density 

ht I Ft, 0. This is a non-trivial task performed by an Auxiliary Sampling-Importance 

Resampling algorithm. The SV application of the algorithm is detailed in Chib, 

Nardari and Shephard (2002) and sketched below: 

1. Given a sample ý h'- hm 11 from (ht- II Ft- 1,0) calculate: ht*3 =p+ tt- 

(ht /-t), wj =N Ast Ia+, 3xt-1, exp(h*') for j=1,... M. Sample t)7 

10000 times the integers 1,2,..., M= 2000 with probability propor- 

tional. to f wj 1. Let the sampled indices be ki, ..., 
kR and associate these with 

h *kl h *kR 
tt 

R 2. For each value of kj from Step 1, simulate the values f h',..., ht I from the t 
kj i 

volatilit process as: h*j y+h y) + 0-77t j R, where rýt yt 

N (0,1). 
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*R 3. Resample the values ý h*1 ht IM times with replacement using probabil- t 

ities proportional to: 
N(Ast I a+Ojxt-j, exp(ht*j)) for j R, to produce the 

t* 
N 

(Ast 
I a+Ojxt-j, exp 

(h 
t 

kj 

desired filtered sample fh1, 
..., 

htm I from (ht Ft, 0). t 
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