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Abstract

Visual object detection has made significant progress with the advent of deep neural net-

works and has been extensively applied. This thesis reports a novel application that aims

to detect individual microatolls, which are circular coral colonies, from island images

captured by drones. We first describe data collection and labelling to create a novel mi-

croatoll dataset for the microatoll detection task from drone images. Upon this dataset,

the state-of-the-art object detectors are then evaluated for this task. To better integrate

a detector with the characteristic of microatolls, we propose a modified detector called

Microatoll-Net. It actively extracts features from the surrounding area of a microatoll to

differentiate it from distractors to improve detection. Multiple ways to incorporate this in-

formation into the detector are designed. The experimental study shows the efficacy of the

proposed Microatoll-Net, especially on the most challenging area for detection. Besides,

in geographical research, the position of a microatoll is more important than its size. It

means that we shall pay more attention to detecting the centre of a microatoll instead of

generating its bounding box. Motivated by this, we transform this object detection task

into an object centre detection task.
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Introduction
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1.1 Research Background

Unmanned Aerial Vehicle (UAV), also known as a drone, is an aircraft without a human

pilot. The UAV is a part of an unmanned aircraft system, including a ground-based con-

troller and a system between them for their communication (an illustration is shown in

Fig. 1.1). Such a structure is very convenient for users to operate, so people with a drone

licence can satisfactorily complete the route design, take-off and recovery. Therefore, it is

advantageous to use a drone to collect data as high mobility allows it to collect data more

efficiently. Also, it can be used to collect data in places difficult for humans to reach.

Specifically, the planability of the course of action makes the collected data more mean-

1



CHAPTER 1. INTRODUCTION 2

ingful and accurate. The high-resolution camera mounted on a drone is able to capture

and retain sufficient details of the target area. The mobility, plannability, and capturability

make a drone a cost-effective way of gathering information compared with a fieldwork in

persons.

Figure 1.1: This diagram illustrates an unmanned aircraft system. A human operator
operates the controller on the ground, and the signal is sent to the communication system,
which could be a part of the controller or an online system. After that, the channel
between the drone and the communication system exchanges user information and data
such as field images.

The widespread usage of drones also covers geological research, where environmental

scientists conduct field research with a drone to assemble photographs. As aforemen-

tioned, it is advantages to use drones for geological research. Accordingly, it is quite

intuitive to apply it to the study of sea-level change through microatolls. Microatolls are

boulder-like (an example is shown in Fig. 1.2) corals of the genus Porites that act as nat-

ural recorders of sea-level [1]. As described in the work of Scoffin et al. [2], microatolls

record the tidal changes by the biological behaviours: as it is under the water, a microatoll

grows in horizontal and vertical directions and forms a hemisphere shape. Whereas its

exposures to the air could stop its vertical growth, it continues to be broader, resulting

in a circular shape. Besides, tides changes will affect their exterior because tides may

flip microatolls upside down and bring sea-bed changes, and these uncertainties cause

microatolls to have a variety of shapes, such as significant breakages across themselves

and forming a classical horse-shoes shape. Over the period, the stable sea-level creates

a suitable environment for microatolls to become broader to form microatoll pavements.
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The microatoll pavements lose the ability to record sea-level change because of forming

coral reef lagoon.

Figure 1.2: This figure shows the sample of a microatoll. Image courtesy of the organi-
zation of Coral of The World.

As a drone is efficient for high-quality image collection, the microatoll labelling nat-

urally becomes a critical step to narrow the gap between raw fieldwork image data and

real-world application. Technically, locating microatolls from given drone images by

computers can be formulated as a computer vision task, and deep learning methods have

shown their outstanding capability of handling various artificial intelligence related tasks.

In 2016, Alpha-GO, the first computer program that defeated a professional human Go

player, shows that robust and well designed artificial intelligence systems could be ex-

ploited to perform tasks that need human intelligence. Since then, artificial intelligence

has attracted intensive attention. Tracing back to 2012, the AlexNet [3] performed con-

siderably better than the previous state-of-the-art methods in object classification task,

starting a deep learning based revolution in the field of computer vision via convolutional

neural networks (CNN) [4]. It automatically extracts robust and generalised feature repre-

sentation for image recognition tasks. Additionally, the feature representation from CNN
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also benefits other computer vision tasks.

Specifically, locating the microatolls from drone images could be categorised as an

object detection task. Object detection is one of the vital tasks in computer vision. It

maps an image to a set of bounding boxes indicating the location and category of ob-

jects of interest. A key factor of object detection is the quality of feature representation.

Compared with those detectors that utilise hand-craft features (i.e. histogram of oriented

gradients (HOG) [5] and scale-invariant feature transform (SIFT) [6]), the deep learning

based object detection methods have notable advantages in speed, efficiency and accu-

racy. HOG and SIFT rely on human experts to build and extract hand-crafted features

(also named shallow features, such as colours, edges and corner in images). In contrast,

CNN could automatically extract deep features (such as pixel relationships) efficiently

and abundantly. It significantly increases the quality of feature representation for object

detection. Therefore, this thesis employs CNN to respond to the challenge of detecting

microatoll from drone images.

1.2 Thesis Organisation

For detecting microatolls, this thesis is organised into five chapters. The first chapter

is an introduction that provides the research background, aims and significance. The

second chapter introduces the significant literature in the field, including the geographic

research for microatoll dataset construction, object detection development in the past two

decades, their suitable application scenarios and limitations. The third chapter describes

the microatoll dataset construction, investigates modern state-of-the-art object detection

methods on the constructed microatoll dataset and proposes Microatoll-Net to better in-

corporate the surrounding information of a microatoll for its detection. The fourth chapter

presents a novel detector based on the generative adversarial network for microatoll de-

tection from drone images. The motivation is that the microatoll centres can well indicate

their locations related to their circular shape. This model removes the need for manually

designed anchor settings (introduced in Chapter 2) in modern object detection methods.
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Also, it does not need to use the non-maximum suppression to merge the bounding boxes

after the object detection procedure. In the final chapter, the research outcomes of this

thesis are summarised, and future research directions are discussed.

1.3 Research Aim

This thesis aims to address the challenge in the task of microatoll detection from drone

images. As a challenging issue, detecting objects from drone images has recently at-

tracted research attention [7]. Different to the benchmark image datasets [8, 9] which

include common objects in context, objects in drone images are tiny, difficult to find, and

could be confused with background and other objects. This characteristic prevents popu-

lar object detectors from simply being transplanted to detect objects viewed from drones,

although they achieved great success in ordinary detection settings. The recent litera-

ture [7] has reported that the performances of the state-of-the-art object detectors became

worse in drone image datasets than their performances in the common benchmark image

datasets. Detecting microatolls from drone images shares the same challenges in drone-

based generic image detection. This thesis aims to enhance the efficiency and accuracy of

detection microatolls from drone images to help geographic research.

1.4 Research Significance

The study of climate has attracted more attention, especially in the area of its history.

The history of climate change helps understand alterations in the environment, such as

temperature, animal migrations, and sea-level changes. The sea-level changes can reflect

climate changes because ice melting in the Antarctic and Arctic is powerful evidence of

global temperature changes. However, the total amount of the ice is difficult to accurately

estimate. Therefore, it is a simpler and more effective method to estimate the history of

temperature fluctuation based on changes in sea-level.

In geographic research, there are many ways to investigate and study the history of
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sea-level changes, such as using carbon dating [10] to estimate the age of marine fossils

to roughly determine the sea-level. Compared with other methods, it is more accurate and

convenient to use microatolls to determine the sea-level history. Microatolls are relatively

easy to locate compared to the identification methods that need fossils or rocks. They

live in open waters, have obvious characteristics and do not require geological mining.

Meanwhile, its growth is sensitive to sea-level changes and this enables its growth to

reflect sea-level changes with minimum errors (within three centimeters).

Locating microatolls is straightforward but still tricky because of their habitats. They

live in open water apart from the coastline, and the field research is inefficient and not

convenient. By using drones in geological research, the high-resolution geographic pho-

tographs allow researchers to locate microatolls before field research. Obviously, manu-

ally detecting microatolls from drone images is not the best solution in terms of efficiency

and accuracy.

This thesis is to employ deep learning methods to automatically detect microatolls from

drone images. Applying this method to high-resolution drone images is a key step to im-

prove the efficiency of geographic fieldwork. With the help of deep learning methods, the

data collection and annotation procedures in microatoll based sea-level changes research

will be more efficient and accurate.

1.5 Contributions

This thesis focuses on microatoll detection from drone images. There are two main con-

tributions in this thesis.

First, a novel drone image based microatoll dataset is constructed for such a microa-

toll detection task. Meanwhile, the mainstream object detection frameworks (i.e. Faster

R-CNN [11] and SSD [12]) are investigated to evaluate their detection performances and

the challenges of transplanting them from common datasets to our microatoll dataset are

highlighted. The experimental study upon the dataset shows that the surrounding infor-

mation outside the truth microatolls significantly differs from that of the false positives.
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Therefore, Microatoll-Net is proposed to incorporate the surrounding information in the

training procedure. Consequently, the proposed Microatoll-Net surpasses the mainstream

detector (Faster R-CNN) in the most challenging area. More than just seeking a better

result, this thesis also investigates different variants of Microatoll-Net to find a suitable

feature combination. Chapter 3 presents the microatoll dataset construction, investigates

the state-of-the-art object detection methods, and proposes Microatoll-Net.

Second, Faster R-CNN and proposed Microatoll-Net rely on the anchors to detect mi-

croatolls. Meanwhile, the primary task of this thesis is to locate the position (instead of the

shape) of microatolls from drone images for field research. Inspired by this observation,

this thesis designs a model that focuses on the location of microatolls during detection.

The proposed model is named Microatoll-GAN. It takes advantages of recent research

on infrared small object segmentation [13] to reduce miss detection and false negative by

two parallel networks. The proposed Microatoll-GAN outputs centre density maps for

the input drone images to indicate microatoll locations. Meanwhile, although the model

focuses on the location, the centre density can roughly illustrate the sizes of microatolls.

More details of the model are presented in Chapter 4.

1.6 Publications

1. Sarah M. Hamylton, Zhexuan Zhou and Lei Wang (2020) What Can Artificial In-

telligence Offer Coral Reef Managers? Frontiers in Marine Science 7:603829. doi:

10.3389/fmars.2020.603829
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Deep learning methodology is a data-driven approach. It heavily relies on massive data

to learn the patterns from the dataset to achieve its aim. Hence, only reliable annotations

could help the deep learning models learn the efficacious data patterns and evaluate their

performances. However, unlike the existing common object datasets [8, 9] or drone image

dataset [7], microatolls are rare objects and are not included in these datasets. Thus, build-

ing a specific dataset on microatolls is inevitable. Also, it is necessary to carry a complete

view of object detection literature to build a strong baseline for microatoll detection. Con-

sequently, this chapter is organised as follows. First, it presents the literature on existing

datasets and microatolls for constructing a reliable microatoll dataset from given drone

8
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images. Second, the development of object detection methods from hand-crafted features

based to deep learning based methods is reviewed. Finally, the importance of dataset

construction and the reasons for baseline model selection are concluded.

2.1 Dataset Construction

2.1.1 Existing Datasets on Object Detection

The literature of existing object detection datasets reflects the importance and necessity

of constructing a specific microatoll dataset for this thesis. In object detection challenges,

many well-known datasets and benchmarks have been released in the past ten years, such

as PASCAL VOC Challenges [8], MS-COCO Detection Challenge [9] and VisDrone-

DET Challenge [7]. For convenience, name them VOC, COCO and VisDrone dataset in

short, respectively. Many object detection algorithms have been developed based on them.

Therefore, it becomes necessary to dig out their relationship with microatolls.

VOC challenge is one of the most important competitions in the development of com-

puter vision. It includes multiple tasks, such as image classification, object detection, se-

mantic segmentation and action detection. Two versions (VOC07 and VOC12) are most

used in the object detection task. The former contains about 5,000 images with 12,000 an-

notations, and the latter has 11,000 images with 27,000 annotations in the latter. In terms

of categories, it contains four classes: person, animal, vehicle and indoor, and each of the

main classes includes several subclasses. The names of categories clearly indicate that

microatolls are not included in the dataset. Compared with VOC, COCO is the most chal-

lenging object detection dataset available today. It contains 164,000 images with 897,000

annotations from 80 categories. Similarly, there are 12 super-categories: accessory, an-

imal, appliance, electronic, food, furniture, indoor, kitchen, outdoor, person, sports and

vehicle. Although the number of categories is more than of VOC, it can be confirmed

that COCO does not consist of microatolls either. In terms of VisDrone, it is the most

challenging object detection dataset for drone images. There are 8,599 images (6,471

for training, 548 for validation and 1,580 for testing) with 540,000 annotations from 10
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categories: pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and

tricycle. Again, microatolls are not included in this dataset.

In sum, the microatoll class is not in the commonly used object detection datasets. Con-

structing a specific microatoll dataset is necessary. The existing literature gives criteria

to label and store image annotations. This thesis follows the VOC format that stores the

top-left and button-right coordinators of the ground truth bounding boxes as annotations

for the microatoll detection task.

2.1.2 Microatoll Morphological Study for Microatoll Dataset Con-

struction

Microatolls are boulder-like corals of the genus Porites that act as natural recorders of sea-

level [1]. Scoffin and Stoddart [2] described them as coral colonies with dead, flat tops

and living perimeters. Meanwhile, they also highlighted how the growth of microatoll is

affected by tidal changes. According to their fieldwork research, individual microatolls

in drone images should have a circle shape. Also, their margins (living perimeters) are

generally darker than the centres because the margins are alive. Taking Fig. 2.1 as an

example, the forming process of a typical microatoll is described. For convenience, λi is

used to indicate the sea-level at some time. Suppose a microatoll is in its habitat under sea-

level λ1 (a lower water-level). In the beginning, the microatoll grows up in both vertical

and horizontal directions to form a hemispherical shape. Once it reaches the water-air

surface λ1, the vertical growth will stop while the horizontal growth remains the same.

Therefore, the microatoll forms a platform that is roughly the same as the smaller red

circle shown in the figure. After that, the horizontal growth continues. When the water-

level increases to λ2 (water-level higher than λ1), the platform in λ1 is a dead top that stays

as before, but its alive margin (because the margin is still under λ1) will continue in both

vertical and horizontal directions. Thus, there is a circle higher than the dead top platform

within two red circles. This example indicates that the periphery of live coral needs to

remain submerged underwater for much of the tidal cycle, so living microatolls are not
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found on exposed areas of coral reef top platforms, such as inside islands. As shown

in Fig. 2.2, the area outside the red circle may contain microatolls. Therefore, ensuring

the specific areas that may contain microatolls will speed up the labelling process by

removing those images that do not contain the habitat of microatolls.

Figure 2.1: The microatoll example. As the image shows, the part within the two red
circles is the living margin, which should be dark in the drone image. The smallest red
circle is the dead top which has the lowest height. The irregular part of the dead top is
due to the changes of sea-level.

Additionally, some individual microatolls may have breakages or form the shape of

horseshoe due to the riverbed changes. These two shapes are typical in drone images, so

figuring out their forming process would benefit the annotation process. According to the

work of Scoffin et .al [2], the breakage of the microatoll skeleton into segments is because

the sandy substrate is removed from the periphery of a large microatoll, then a disequilib-

rium will affect the continue growth trend. Therefore, those microatolls have decomposed

into multiple small segments but still present the circular feature of an individual microa-

toll that can still be regarded as individual microatolls. Note that the horseshoe-shaped
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microatoll is a specific breakage. Because of the fluctuation of water-level changes and

unstable riverbed, microatolls could have various shapes. Understanding the causes of

cracks in microatolls will help reduce confusing labels when the annotating dataset.

Meanwhile, one type of microatolls named microatoll pavement is not the research

target of this thesis. It is formed by individual microatolls that stay in a stable sea-level

environment that reduces research value in sea-level change research.

Figure 2.2: The areas of Nymph island that may contain microatolls. The areas out-
side the red circle have a great chance to contain microatolls because they have similar
characteristics to microatoll habitats.

2.2 Object Detection

The year 2014 is a demarcation to split the traditional object detection and deep learning

based detection, as shown in Fig. 2.3. Traditional object detection methods rely on hand-

crafted features generated and designed by human experts, while deep learning methods
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take advantages of convolutional neural network (CNN) to extract features automatically.

Existing deep learning methods can be generally grouped into two- and one-stage ones.

The former frames the detection as a coarse-to-fine procedure while the latter frames it as

a completed in one network.

2.2.1 Hand-crafted Feature based Methods

Before AlexNet [3], hand-craft feature extraction methods were the most successful method

in feature representation for many years. Those hand-craft features are robust, invariant to

outliers such as lighting, scale changes, and background clutter, and have low computa-

tional costs. In sharp contrast to the advantages, the hand-craft feature is time-consuming,

strongly relays on the experience of human experts, and they are not generalising to other

tasks. Therefore, the hand-craft feature is also named shallow feature. Those popular

methods in extracting shallow feature are Haar features [14], scale-invariant feature trans-

form (SIFT) [3], a histogram of gradients (HOG) [5] and colour histograms. While in the

early face detection task, Haar features are the most popular method used in Viola-Jones

Detector [14], which is one of the most famous face detectors. It utilises sliding-windows

to extract a large number of Haar features as input for a set of AdaBoost [15] classifiers.

The cascade architecture connects weak detectors to be stronger detector and enhances

the detection efficiency simultaneously. The Haar feature considers adjacent rectangular

areas at specific positions in the detection windows, sums the pixel intensities in each area,

and then calculates the difference between these sums. Finally, this difference is used to

classify different parts of the image. Although Viola-Jones Detector is an “old school”

detector, it highlights the three fundamental object detection problems: selection of de-

tecting area, feature extraction, and classification, guiding the direction and procedure for

later object detection methods.
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Figure 2.3: This figure presents the milestone of object detection during its development. It highlights the demarcation which separates the tradi-
tional and deep learning detection methodologies. The following methods are shown in this figure: Viola Jones Detectors [14], HOG Detector [5],
Deformable Part-based Model [17], AlexNet [3], R-CNN [18], SSPNet [19], Fast R-CNN [20], Faster R-CNN [11], Pyramid Networks [21], YOLO
(v1 to v4) [22–25], SSD [12], RetinaNet [26], CornerNet [27], CenterNet [28, 29], FoveaBox [30], FCOS [31] and End-to-End Object Detection with
Transformers [32]. Those colored are also the Anchor Free methods.
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2.2.2 Deep Learning based Object Detection

Critical layers in convolutional neural network

In order to have a better view of the theory of CNN, this section starts from the key layers

of CNN. As mentioned in Section 2.2.1, the hand-crafted features have disadvantages of

being time-consuming and not generalizing from one task to the others. Furthermore,

they require experience from human experts. CNN well addresses these problems. In

1998, LeCun et al. [4] proposed LeNet to classify hand-written digits on MNIST [16]

dataset. Although its structure (2 convolutional layers, 2 downsampling layers and 3 fully

connected layers) is simple, it is introduced as the pioneer of deep learning methods.

As seen in LeNet, a CNN architecture is formed by a stack of distinct layers to trans-

form input volumes to an output volume according to different purposes [4]. The con-

volutional layer is the core building block. It has a set of learnable filters with a small

receptive field but extended to entire input volumes. The receptive field indicates the area

where a filter learns from the input, and each of the filters presents the feature that they

learn from input volumes. The size of output from CNN is controlled by output depth

(the number of neurons or filters in the layer), stride (of filters going through entire input

volumes) and padding (output size control). Another important layer is the pooling layer,

which performs nonlinear sampling. As the most commonly used pooling method, Max-

pooling partitions the input image into a set of non-overlapping rectangles and, for each

sub-region, outputs the maximum value. At the same time, the Average-pooling acts the

same but outputs the average value. An activation layer usually follows the convolutional

layer and pooling layer to add non-linearity to help the neural network learn complex data

patterns. Taking ReLU [33] as an example, it actively removes negative values from fea-

ture maps by setting them to zero: f (x) = max(0,x). It increases the nonlinear properties

of the decision function and the overall network without affecting the receptive fields of

the convolution layer. Fully connected layers are the high-level reasoning in the neural

network computed as an affine transformation, with matrix multiplication followed by a

bias offset. The loss function indicates how to train the neural network, so it is usually
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the last neural network layer. Various loss functions appropriate for different tasks may

be used, such as cross-entropy loss for multi-class prediction and Focal loss [26] to solve

the foreground and background imbalance problem. These layers lay the foundation for

a powerful convolutional neural network backbone such as ResNet [34], VGG [35] and

DarkNet [36].

Those famous backbones make significant contributions to feature extraction. The

AlexNet [3] is an eight-layer deep network that was the first CNN model used in the

deep learning object detection task. It is followed by VGG that uses smaller (3×3) con-

volution filters instead of 5× 5 and 7× 7 filters previously used in AlexNet. Then the

GoogLeNet [37] increases the width and depth of CNN and, at the same time, introduces

the factorizing convolution and batch normalization. In 2015, the ResNet [34] was pro-

posed to simplify the network training phases by reconstructing the network layers and

using the reference layer input to learn the residual function. The literature helps the

backbone selection in this thesis.

Two-stage

In the literature on object detection methods, the two-stage methods appeared earlier than

the one-stage ones. Two-stage detection is also implemented by a region-based convo-

lutional neural network. Considering that the deep learning network could learn more

robust, generalised and higher-level feature representations from input volume, Girshick

et al. improved the object detection by combining the proposed Regions with CNN fea-

tures (R-CNN) [18].

R-CNN: The idea behind R-CNN [18] is simple. It starts with creating the region of

interest (RoI) by selective search [38]. Because CNN requires all input volumes to have

the same size, each image will be cropped by a set of RoI and resized to the same. Then

CNN is used to extract the feature representations for classification. R-CNN has made

significant progress, but the disadvantages are obvious: feature extraction of over 2000

bounding boxes from one image leads to a prolonged detection in GPU. SPPNet [19]

overcomes this problem by generating the same size of pooling result from the various
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size of inputs.

SPPNet: He et al. proposed Spatial Pyramid Pooling Networks (SPPNet) [19] in 2014.

The aim is to address the issue that CNN requires the fixed input (e.g., AlexNet [3]

requires a 224× 224 image as input). SPPNet allows CNN to generate a fixed-length

representation for images of different sizes. Applying it to an object detector (e.g., R-

CNN [18]), the backbone can extract features from all proposed bounding boxes at the

same time. Compared with the previous R-CNN, it is more than 20 times faster without

sacrificing any detection accuracy. Based on SPPNet, Faster R-CNN [11] was proposed

in the next year. It takes advantages of SPPNet, proposing Region of Interest Pooling (RoI

Pooling) to reduce the training time and achieve state-of-the-art performance.

Fast R-CNN: In 2015, inspired by SPPNet, Girshick proposed Fast R-CNN detec-

tor [11]. With RoI Pooling, the detector and bounding box regressor could be trained in

the same framework. The mAP increases to 70% from 58.5%, while the detection speed

is over 200 times faster than R-CNN. Although the improvement is encouraging, proposal

generation is still the bottleneck of detection speed. The reason is that Fast R-CNN relies

on the selective search for region proposal while the algorithm is plodding and breaks

the entire framework into two parts. Later, Faster R-CNN [11] solves the problem and

becomes the first end-to-end detector.

Faster R-CNN: Shortly after the Fast R-CNN, in the same year, Ren et al. proposed

Faster R-CNN [11]. It is the first end-to-end deep learning detector and performs near

real-time in the detection phase. The main contributions include i) Introducing Region

Proposal Network (RPN) to replace the selective search to speed up the proposal gen-

eration phase with nearly free cost and ii) bridging the individual region proposal and

feature extraction blocks of the Faster R-CNN together to form an end-to-end learning

framework. As Faster R-CNN obtains such great success, many algorithms are devel-

oped based on or modified from Faster R-CNN, such as Mask R-CNN [39], Libra R-

CNN [40], and Cascade R-CNN [41]. Another contribution of Faster R-CNN consists of

the translation-invariant anchors and the functions that compute proposals relative to the
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anchors. Moreover, the proposed method has an order of magnitude fewer parameters to

reduce the risk of overfitting.

Feature Pyramid Networks: In 2017, Lin et al. proposed Feature Pyramid Networks

(FPN) [21] to address the information loss problem in convolution computation. Before

FPN, the detectors take the last feature map of the backbone for bounding boxes regres-

sion and classification. Although the last layer benefits category recognition, it is not

conducive to localising objects. To fix this problem, the FPN is designed as a top-down

architecture to combine high-level features with low-level features to enrich the feature

maps. Meanwhile, assigning proposed bounding boxes to corresponding feature maps

based on their scale (such as large bounding boxes in high-level feature map while the

small ones are in the low feature map) increases the ability to detect small objects. Hence,

FPN becomes an essential component of an object detection model.

After a long period of development, Faster R-CNN has demonstrated its powerful abil-

ity in object detection tasks. Therefore, Faster R-CNN is to be the baseline in this re-

search.

One-stage

In terms of one-stage detectors, You Only Look Once (YOLO) [22] is the best start be-

cause the YOLO series report significant detection speed and comparable accuracy.

You Only Look Once: In 2015, Joseph et al. proposed YOLO. It is the first one-stage

detector in deep learning. As indicated by its name, YOLO abandoned the previous ”pro-

posal RoI and detection” paradigm. It applies one network for images. This network

uses a grid to split an image, and each of the cells with object centres corresponds to the

predicted bounding boxes and probabilities of objects. Meanwhile, YOLO could be con-

sidered an anchor-free method because the predicted bounding boxes are not from the pre-

defined anchor. Later, holding the basic idea and inspired by ResNet [34] and SSD [12],

Joseph proposed v2 [23] and v3 [24] editions, which further improve the detection accu-

racy while keeping a very high detection speed. YOLOv4 is proposed by Bochkovskiy et
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al. in 2020 [25]. The main contributions are verifying the influence of different methods

of object detection during the detector training and modifying the cross-iteration batch

normalization [42], path aggregation network [43], and spatial attention module [44] for

reducing computation cost.

Single Shot MultiBox Detector: In 2015, Liu et al. proposed Single Shot MultiBox

Detector (SSD) [12]. The significant difference between SSD and YOLOv1 [22] is that

the former one is able to handle the various size of the object because of detecting objects

from different feature maps according to the size of the objects, which is the so-called

multi-reference and multi-resolution technologies. In contrast, the latter ones only run

detection on their top layers.

RetinaNet: In 2017, Lin et al. proposed RetinaNet, which changed the situation that

one-stage methods have a significant speed advantage but are far less accurate than the

two-stage ones [26]. They claimed that the class imbalance between foreground and

background classes is the major cause of accuracy drop. To this end, they proposed “focal

loss” to reshaping the standard cross-entropy loss so that the detector could focus more

on the challenging, miss-classified examples. Focal loss enables the one-stage detectors

to achieve comparable accuracy as two-stage detectors while maintaining a very high

detection speed.

Collectively, although the one-stage object detection method has clear advantages in

terms of speed and the number of model parameters, the two-stage detection method is

better in terms of detection accuracy. The research in this thesis requires higher accu-

racy than detection speed, so this thesis selects two-stage detectors instead of one-stage

detectors.

Anchor-Free

The anchor box concept comes from region proposal network (RPN) in Faster R-CNN,

which generates RoIs based on three scales and three aspect ratios, yielding nine anchor

boxes. The anchor boxes are considered to violate human intuition to recognise targets,
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and this is the reason for proposing anchor-free methods.

CornerNet: In 2018, Law and Deng proposed CornerNet [27], which is the first an-

chor free detector. Instead of using anchor boxes as regression reference, they use two

prediction models after the backbone to predict top-left corners and bottom-right corners.

They use Hourglass Network [45] as the backbone. For each detector, the outputs are

heatmaps for corner detection, embedding for grouping top-left corner and bottom-right

corner, and offsets to adjust corresponding corner locations. On the COCO dataset, Cor-

nerNet outperforms all one-stage detectors and achieves results competitive to two-stage

detectors. In 2019, H. Law et al. updated CornerNet as CornerNet-Lite [46]. CornerNet-

Lite is 6x faster than CornerNet with a 1% AP increase, and it is faster and more accurate

than YOLOv3.

CenterNet: There are two networks named CenterNet. However, the same name does

not mean the same methods. Duan et al. [28] take advantages of cascade corner pooling

and centre pooling to output two corner heatmaps and a centre key-point heatmap, respec-

tively. The result is comparable with the state-of-the-art two-stage and one-stage methods

on the COCO test-dev dataset. Nevertheless, it is not the only method to detect the object

centre. Zhou et al. proposed the other CenterNet [29] in 2019. They treat objects as centre

points only. With the modified focal loss, it solves background and foreground imbalance.

Meanwhile, it cooperates with offsets computation to reduce discretisation error caused

by the output with stride and L1 loss for size regressor. The CenterNet also achieves the

state-of-the-art performance.

FCOS: Fully Convolutional One-Stage Object Detection (FCOS) [31] uses another

method to avoid using anchor boxes. They directly regress the target bounding box

for each location, meaning that the detector directly views locations as training sam-

ples. The regression targets become the distances of pixels between the detected result

and the ground truth. Meanwhile, they use center-ness, which is the location deviates

from the object centre, to down-weight the scores of bounding boxes far from the cen-

tre of an object, which improves the detection performance remarkably in the final non-
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maximum suppression process. FCOS outperforms the anchor-based counterpart Reti-

naNet by 1.9% and 1.3% in AP with ResNet-101-FPN and ResNeXt-32x8d-101-FPN,

respectively. FCOS also outperforms the recent anchor-free one-stage detector CornerNet

with much less design complexity.

FoveaBox: In 2019, Kong et al. [30] proposed FoveaBox. It jointly predicts the objects’

centre areas and bounding boxes without a predefined anchor. The most interesting point

is that they generated a positive area (named object fovea) from the corresponding ground

truth bounding box. The object fovea is a small area in the object centre instead of an

object centre pixel. Outside the fovea, the model takes the area as negative area. This

model is a state-of-the-art model on the COCO test dataset.

Transformers: In 2020, Carion et al. proposed End-to-End Object Detection with

Transformers [32]. It is the first to use transformer [47] technology in the object detec-

tion area. Moreover, its architecture is much simpler compared with previous detection

architecture (e.g. Faster R-CNN). The idea behind it is simple: it aims to train N object

queries to find where the object is, and what they are, where the N is predefined as the

number of objects in one image. Technically, similar to other architectures, they use CNN

as a backbone to extract features from images. Cooperating with Position Embedding, the

feature map is then reshaped to have a size of WH×C (representing image width, height

and the number of channels, respectively) in order to be fed into the transformer encoder

sequentially. The encoder features are sent to the transformer decoder, who computes N

object queries as a set of predictions. The most instructive part is that they use an attention

matrix to locate objects. Transformer [47] enables communication between different parts

of the image. Hence, in the attention matrix, which has the size of WH×WH, each point

corresponds to two pixels in the image to describe their relationship. A simple architec-

ture like this outperforms Faster R-CNN. However, it requires 8 GPUs to train for six days

at the COCO dataset and the performance drops when detecting small objects.

Overall, the detection methods without the anchor setting show how to eliminate the

dependence on anchor in the regression process and provide an example of transforming
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the regression target.

Deep Learning Applied on Remote Sensor Applications

In this thesis, all the collected images are taken by a drone, so it is necessary to step into

the remote sensor detection area.

As introduced before, the detection models are categorised into one- and two-stage

methodologies. Similar to the common object detection tasks, those methods also achieve

considerable success in the task of detecting objects on drone images, such as vehicle

detection and human detection. According to Mittal et. al [48], Faster R-CNN and YOLO

are the most popular methodologies as they give the best detection accuracy and have the

highest detection speed, respectively.

Additionally, deep learning applications using remote sensor (e.g. satellite and drone)

data have a different nature from those in common object detection datasets. That is, the

objects in remote sensor images are usually much smaller in size than those in common

object detection datasets. In 2018, Kellenberger et al. presented work in detecting deer in

UAV images [49]. They take 512×512 images as input and output a 32×32 probability

score to indicate if such an area contains animals or not. In the following year, Pang et

al. [50] proposed R2-CNN to detect objects in large-scale remote sensing images. The R2

means remote sensing and region-based. This work can be considered as an extension of

Faster R-CNN. The extension is inserting global attention after feature extraction.

The significance of these works are i) they give a clue to deal with high-resolution

images (e.g. crop them into small patches), ii) the models are robust to false positives

and strong to detect tiny objects, and iii) their results show that a shallow network may be

sufficient in the tasks of detecting objects from drone or satellite images.

2.3 Chapter Summary

In this chapter, the review emphasises the importance of constructing a microatoll dataset

for microatoll detection from drone images. The literature of the existing datasets shows
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that microatolls are not considered in the common datasets used in object detection and

drone image based detection challenges. Therefore, constructing a reliable dataset is the

critical step for the research work in this thesis. In order to enhance the reliability of

annotation in our microatoll dataset, the literature is reviewed to establish a labelling rule

for microatolls in drone images.

After that, through LeNet, the pioneer of convolutional neural networks, this chapter

gives an overview of critical layers used CNN. Those essential layers lay the foundation of

the feature extraction backbones. Those backbones help in building robust deep learning

based object detectors. This thesis selects Faster R-CNN (a two-stage method) as the

baseline model because the accuracy of detection microatolls is more important than the

detection speed. The literature in modern deep learning based object detection shows the

two-stage methods have advantages in object detection accuracy compared with the one-

stage ones. Besides, the real-world applications of detecting objects (i.e. animals) are

reviewed.
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3.1 Introduction

The capacity to detect individual corals from airborne remote sensing imagery with ob-

ject detection is an exciting technological frontier, with the potential to deliver a wealth

of important information for reef management [51]. In practice, it is complicated and

inefficient for researchers to survey an island to locate microatolls physically. The use

of drones has recently become a more efficient solution. Particularly, as drone platforms

coupled with GPS technology enable images to be georecitified, such that features iden-

tified in images can be located in a geographical space, i.e. across different sub-zones

of reef platforms. Accordingly, automatically detecting microatolls from the captured

high-resolution images becomes a key step of this solution.

Figure 3.1: This figure shows the situation of microatoll detection. Subfigure (a) is
zoomed into an image of an island captured by a drone. All targets in (a) are indicated
by red boxes. Subfigure (b) gives an example of an individual microatoll.
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The challenge of detecting objects from drone images has recently attracted research

attention [52]. Although popular object detectors have achieved great success in com-

mon objects detection settings (i.e. VOC [8] and COCO [9] challenges in literature), they

cannot be simply transplanted to detect objects viewed from drones. The situation is par-

ticularly challenging in microatoll detection presented in this chapter. As seen in Fig. 3.1,

a microatoll is a tiny object in drone images. Moreover, it could be fully covered by water,

and its appearance is affected by the motion of water. Microatolls could also be confused

with other corals nearby, and dead and living microatolls could connect with each other,

forming a flat, coalesced pavement that often misleads object detectors.

In this chapter, by accessing a set of real images of an island collected by a drone, the

nature of this microatoll detection task is examined. Through the joint work from the

fields of computer science and coastal geography, we manually label the ground truth of

individual microatolls and iteratively refine the labels by leveraging the detection result

of a trained detector. This yields a quality benchmark dataset that can reliably be used

to train a deep learning based microatoll detection model and evaluate its performance.

Focusing on the commonly used Faster R-CNN [11] detector, the efficacy of visual object

detection for this microatoll detection task is investigated. Firstly, an investigation is con-

ducted on the fine-tuned Faster R-CNN with online hard example mining (OHEM) [53]

and feature pyramid networks (FPN) [21]. Then, the non-maximum suppression (NMS)

threshold is adjustified to improve detection precision, and finally, promising detection re-

sults are achieved. Meanwhile, OHEM and the adjusted NMS threshold reduce the recall

and average precision, and there are still considerable false positives appearing around

microatoll pavements, which affects the overall detection performance.

To address this situation, the characteristics of individual microatolls shall be better re-

flected in the detection model. The comparison between individual microatolls with dis-

tractors shows that the individual microatolls are usually surrounded by water and that this

does not apply to the latter. This characteristic motivates us to develop the Microatoll-Net

explicitly for the microatoll detection task. It has a novel module called context region of

interest to actively extract the information on the surrounding area of each bounding box
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proposal to improve discrimination. Several ways are designed to utilise this information,

either directly combining with original features or working as a signal via an attention

mechanism to weight original features.

Experimental study is conducted on the created microatoll dataset. The proposed

Microatoll-Net demonstrates the overall best detection performance. The most signifi-

cant improvement is obtained on the most challenging region for detection, indicating the

efficacy of the proposed context region of the interest module.

3.2 Related Work

This chapter aims to extract contextual features to help microatoll detection from drone

images. In the literature, some work has used context to boost detection. For exam-

ple, Bell et al. [54] use IRNN [55] to extract contextual information while the IRNN

is a set of recurrent neural networks, introducing more computational cost. Pyramid-

Box [56] utilises the head and body information to facilitate face detection. Besides,

Kuan et al. [57] propose region average pooling (RAP) to extract the contextual informa-

tion on object co-occurrence in an image. Specifically, RAP utilises all regions of interest

(RoI) to compute an average representative and concatenate it with each RoI, respectively,

for object detection. Note that IRNN and PyramidBox are applied to a one-stage detector

while the RAP is designed for Faster R-CNN. There will be an experimental comparison

of our context-RoI module with RAP for microatoll detection.

Meanwhile, second-order pooling (SOP) technical attracts us in modelling feature rela-

tionships. Wang et al. [58] highlight that the feature representation from kernel matrix is a

more sophisticated feature relationship in object classification, and Gao et al. [59] utilise

SOP to generate an attention signal from the feature map as a weighting vector, and it

achieves significant performance. Accordingly, it is presumed that modelling the relation-

ship between context and object feature would improve the performance. By contextual

features, this thesis means the features presented in the surrounding area of an object to

detect. Hence, an experimental study is conducted to check whether the SOP context
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feature or ordinary CNN context feature can improve detection performance.

3.3 Microatoll Dataset Construction

Deep learning is a data-driven technique. The quality of data significantly affects the

design, training and final performance of a deep learning model. Without being properly

processed, data could mislead the model, and the model will not be able to learn the

underlying patterns from it. This section presents how the microatoll dataset is collected,

organised and processed to meet the requirements of being reliably used in this microatoll

detection task.

3.3.1 Microatoll Data Collection

The microatoll photographs are collected by a drone from Nymph island, a national park

in Far North Queensland, Australia. The Nymph island is in 1,636 km northwest of

Brisbane, and located at 14◦39′20′′S,145◦15′03′′E. The island is circular, and there is a

lagoon in the centre.

The fieldwork was conducted to scan the whole Nymph island to locate the individual

microatolls for further research. Because the island area is around 0.65 km2, using a

drone could efficiently reduce working hours and safely store high-quality images. To

prepare for the drone surveys, a DJI Phantom drone was adopted, and the flight route was

predesigned to scan the whole island at an altitude around 60 to 70 meters. Finally, 1,400

drone images were acquired in total.

3.3.2 Microatoll Data Processing

Initially, a labelling software [60] is used to generate the ground truth bounding boxes for

each image manually. The annotations format follows the VOC [8] to use an XML file

to store the top-left and button-right corners of the ground truth bounding boxes. Before

labelling microatolls, we need to locate the areas that may contain microatolls roughly.

It is notable that, first, all images have the same resolution because they are collected
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by one drone at the same height. Second, an image may overlap with another image by

about 60% of its size because of the need for geological picture collection, which means

an area of the island presented in an image could appear multiple times in other images.

Meanwhile, the overlapping reminds us of the potential data leakage issue.

According to Scoffin and Stoddart [2], all living microatolls grow in the open sea,

and their tops are higher than the lowest water level of spring tides. Furthermore, they

indicate that the positions containing microatolls are around 14◦39′lat.S,145◦15′long.E.

Benefited from the literature, we identify 195 images that contain microatolls to construct

the dataset for this microatoll detection task.

This dataset should be able to be split into a training and a testing subset. The former

is used to train an object detection model, while the latter is used to evaluate the detection

performance of this model. Note that there shall be no overlapping between the training

and test subsets, and the evaluation result will be over-optimistic otherwise (i.e. the over-

fitting issue). Nevertheless, the overlapping between images mentioned earlier makes the

splitting not straightforward. Randomly splitting all images into a pair of training and test

subsets will not work.
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Figure 3.2: The eight groups (from G1 to G8) are formed by the images based on their
coverage areas. The colours from blue to red indicate the density of microatolls in an
area, and the black and red dots indicate the positions where images are captured, and
microatolls are found. Group G4 is the most challenging area because it contains a lot of
microatoll pavements shown in the zoomed-in image.

Figure 3.3: An example of separating an image based on an boundary.

As aforementioned, one individual image could be overlapped with others, and images

in this situation should be partitioned. Fig. 3.3 shows an example of how the partitioning
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is done. The red line is selected according to the gap between areas, and it indicates the

separation of the image into two parts. The part above the red line belongs to one area,

while the part below the red line belongs to another area. In this way, all the 195 images

in the dataset are examined and processed. After this procedure, images corresponding to

eight groups of the areas (i.e. G1, . . . , G8) that contain microatolls are obtained.

3.3.3 Microatoll Data Labelling

Manually labelling data is to create the ground truth for a machine learning model to

learn. In this chapter, the target is a bounding box that delineates the location and size of

a microatoll to detect. The labelling needs to deal with some difficulties. First, there are

no specific rules to indicate what a microatoll shall look like in the images captured by a

drone. Second, microatolls are generally very small in size when compared with the size

of a whole image. Hence, it is hard for human observers to locate the microatolls even

from an area that may contain microatolls.

The research of Scoffin and Stoddart [2] and that of Smithers and Woodroffe [1] indi-

cate that microatolls are commonly in shapes of circles or hose-shoes. Meanwhile, their

edges will be significant when compared with the dead top. Based on these two obser-

vations, the individual microatolls in drone images are described as follows: in an area

of open water and water in moats, a rough circle with a margin darker than its centre

could be a microatoll. Also, a microatoll could be with damage or of being a specific

horse-shoes shape. After manually labelling, an object detector is trained to work on all

images. The top-ranked detection results are included in the ground truth once confirmed

to be microatolls. This iterative approach effectively improves labelling efficiency and

accuracy.

With the above rules, manual labelling is still time-consuming. Each image in the

dataset has around 4000×3000 pixels (160m×160m), but the size of a microatoll bound-

ing box is in the average of 50×50 pixels (2m×2m). This size gap could easily lead to

mislabelling. The mislabelling means that some microatolls could be missed because of
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(a) Microatoll Sample 1: Typical microatoll.

(b) Microatoll Sample 2: Different in size and shape.

Figure 3.4: Microatoll Samples. Those images give the samples in the dataset. The
blue rectangle indicates a typical microatoll with a complete shape. The red one shows
a microatoll with breakage. The green one is a microatoll in the horse-shoes shape. The
yellow boxes indicate the microatolls of other types and some of them are found via the
iterative labelling process.
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their small sizes and that the microatolls with low confidence are not labelled. Minimising

the odds of mislabelling is crucial to ensure the high quality of ground truth. The iterative

labelling process also addresses this issue to enhance reliability. In addition, the dataset

is confirmed by human experts, and all annotations are adjusted accordingly.

The setting for training and testing an object detection algorithm is described as follows.

The size of an input image is set as 800 pixels in width and 600 pixels in height. This

setting is based on the following considerations. On one hand, the size of microatolls

is in the range 25× 25 pixels (1m× 1m) to 125× 125 pixels (5m× 5m). Using 800×

600 pixels (32m×24m) input image will contain enough background information for the

object detector to use. On the other hand, further increasing the input image size will

incur more computational cost for object detection algorithms.

To facilitate training, there are 1888 training patches in the size of 800×600 pixels by

sampling the original large images (in the size of 4000×3000 pixels as mentioned before)

with the stride of 400 and 300 pixels. Choosing this stride setting is to balance the number

of generated training samples and the area of overlapping regions between two adjacent

training samples.

It is worth mentioning that the labelling results will continue to be adjusted during

developing and applying the object detection algorithm. This process takes advantage of

the detection algorithm (which could find some microatolls missed in the human labelling

process) to enhance the labelling quality. Fig. 3.4 gives an example image in the dataset,

in which the coloured bounding boxes highlight the labelling result. Finally, it takes about

150 hours to label 7,414 annotations for all the 195 big images (4000×3000 pixels).

3.4 Model Investigation And Analysis

This chapter is to detect microatolls from given images collected by a drone automatically.

Considering that i) the one-stage detectors could generate more false-positive samples

than the two-stage ones, and ii) there is currently no need for high-speed detection, this

investigation adopts the two-stage (Faster R-CNN) object detection algorithm.



CHAPTER 3. MICROATOLL-NET FOR MICROATOLL DETECTION 34

3.4.1 Investigation Setting

All experiments are conducted in the same server with 12 Intel(R) Xeon(R) CPU E5-2603

v4 @ 1.70GHz, 31888 MB memory and 4 GeForce GTX1080 GPU cards. This exper-

imental study investigates the performance gap between SSD (i.e. One-stage detector)

and Faster R-CNN (i.e. Two-stage detector) on the constructed microatoll dataset. We

compare them because they are the typical representatives of their respective approaches.

The comparison is conducted based on their default structures and settings.

3.4.2 Evaluation Method

The following criteria are used to evaluate the detection performance. The ground truth

means the labels (i.e. the bounding boxes manually labelled for each microatoll) in the

microatoll dataset. The detected number means the number of microatolls successfully

detected by a model. A successful detection means that the intersection over union (IOU)

of the ground truth bounding box and a detected bounding box is greater than a predefined

threshold (usually 0.5). The IOU between the ground truth and detected bounding boxes

is calculated as

IOU =
area of overlap
area of union

(3.1)

The true positive means that a microatoll is correctly detected, and the false positive

means a non-microatoll area is wrongly detected as a microatoll. The recall indicates

the percentage of successfully detected microatolls in all the microatolls presented in an

image, and the precision indicates the percentage of the true microatolls in all the detected

ones. Average precision (AP) is calculated from recall and precision to give an overall

evaluation of the detection performance of the model. Generally, AP equals the area under

the precision and recall curve. The AP is calculated as follows, and it finally presents the

detection score (higher is better).

AP =
∫ 1

0
p(r)dr, (3.2)
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where p(r) is the precision that takes recall as a parameter.

3.4.3 Investigation Result

Table 3.1 and Table 3.2 give the evaluation results on the detection methods of SSD and

Faster R-CNN, respectively. Considering that the training and detection time cost is dif-

ferent between one-stage and two-stage detectors, the comparison only focuses on their

performances on the testing dataset. Recall that the microatoll dataset images correspond

to eight areas (G1 to G8). Groups 1, 2 and 3 are merged into one due to their smaller

sizes and their closeness. Consequently, there are six area groups G123, G4, G5, G6,

G7 and G8. The leave-one-out cross-validation protocol [61] is used in this experimental

study. It reserves one group as the test set in turn and uses all the remaining groups for

training.

Comparing the results in Table 3.1 and Table 3.2 indicates that the two-stage detector

Faster R-CNN is more promising because it achieves higher average precision than the

SSD method. With the leave-one-out cross-validation protocol [61], this evaluation result

should be convincing. As aforementioned, the dataset consists of six groups (i.e. G123,

G4, G5, G6, G7 and G8) without any image overlapping among these groups. The results

obtained by testing the trained detection model on each unseen group indicate the gen-

eralisation capability of the model. The significant gap between SSD and Faster R-CNN

in terms of AP is because SSD is trying to use more bounding boxes to cover the mi-

croatolls (therefore, precision is lower). The low precision means that SSD is weaker in

distinguishing similar background regions from microatolls. Based on this observation,

Faster R-CNN is employed as the baseline method to detect microatolls to produce better

detection performance. (ResNet50 [34] as default backbone if not mentioned.)

3.4.4 Performance and Analysis

Fig. 3.5 illustrates the path to obtain the final result. It gives an overview of this section

as well. Following the path, all the details will be given. Faster R-CNN gives a better
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Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

Basic SSD

G123 655 23600 618 22982 0.94 0.03 0.72
G4 7853 110400 6964 103436 0.89 0.06 0.44
G5 502 14200 490 13710 0.98 0.04 0.67
G6 3297 82800 3109 79691 0.94 0.04 0.69
G7 4553 82200 4458 77742 0.98 0.05 0.78
G8 3387 63800 3185 60615 0.94 0.05 0.63

Average 0.945 0.045 0.66

Table 3.1: Basic SSD model performances in the microatoll detection. “Tested Group” indicates the group used as the test set, while the remainder is
used together as the training set.

Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

Basic Faster R-CNN

G123 655 1872 628 1244 0.96 0.34 0.87
G4 7853 24406 7104 17302 0.91 0.29 0.62
G5 502 2144 476 1668 0.95 0.22 0.76
G6 3297 10328 3163 7165 0.96 0.31 0.84
G7 4553 13950 4440 9510 0.98 0.32 0.87
G8 3387 9366 3256 6110 0.96 0.35 0.83

Average 0.953 0.305 0.79

Table 3.2: Basic Faster R-CNN model performances in the microatoll detection. “Tested Group” indicates the group used as the test set, while the
remainder is used together as the training set.
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Figure 3.5: The path to obtain the final result. This flowchart indicates the path to obtain the final result. It starts from the comparison of SSD and
Faster R-CNN, then obtains the improvements step by step. And finally, it is determined that a deeper backbone may not be necessary to boost the
performance.
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result than SSD, but its performance is still far from being satisfactory. The low preci-

sion means many detected microatolls are actually from the background area of an image.

At the same time, reef flats (the environment where the microatolls are located) are very

dense and heterogenous parts of the image/ reef environment. To overcome this prob-

lem, adjusting the NMS parameter becomes the first and most straightforward option, as

explained below.

As observed from the experimental study, a lower IOU threshold at the testing phase

will keep more detection results (even if they are false positive). Based on the AP for-

mula, the area under the precision and recall curve is more significant. However, more

false positive detection results may require more human resources to distinguish and re-

move. The NMS algorithm developed in the literature is designed to only detect an object

once. Hence, those bounding boxes overlapped with one target will be removed while the

highest confidence score will remain.

The confidence score for each detection box in the detection phase indicates how proba-

ble it is indeed the target object. To obtain higher confidence instead of all of the bounding

boxes, increasing the confidence threshold at the test phase is essential. With IOU thresh-

old and confidence thresholds set as 0.3 and 0.5 at the testing phase, respectively, the

improved results in all groups are obtained as follows.

The comparison between Table 3.2 and Table 3.3 shows that the precision values are

well improved with the mild decrease of recall value in all regions, except G4. The ex-

periment result demonstrates the effectiveness of the above strategy of NMS adjustment.

The following issues remain:

1. What leads to the inferior detection performance on the group G4?

2. How to further boost the detection precision?
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Figure 3.6: An example detection result from the group G4. The green bounding boxes
indicate the ground truths while the red ones are the detection results. Meanwhile, it
shows that the not only the microatolls vary in size, and also the microatoll pavements
are in different size and shape.

Figure 3.7: One detection example of group G5. The green bounding boxes indicate the
ground truths while the red ones are the detection results.
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Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

Basic Faster R-CNN With NMS adjustment

G123 655 943 584 359 0.89 0.62 0.84
G4 7853 10502 5542 4960 0.71 0.53 0.54
G5 502 1085 454 631 0.90 0.42 0.75
G6 3297 5030 2911 2119 0.88 0.58 0.81
G7 4553 7353 4208 3145 0.92 0.57 0.85
G8 3387 4676 2927 1749 0.86 0.63 0.78

Average 0.86 0.56 0.76

Table 3.3: After changing IOU and confidence thresholds to 0.3 and 0.5, respectively, the increase of Precision is obvious.

Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

Basic Faster R-CNN With FPN

G123 655 860 580 280 0.89 0.67 0.84
G4 7853 8181 5167 3014 0.66 0.63 0.55
G5 502 921 460 461 0.92 0.50 0.79
G6 3297 4799 3000 1799 0.91 0.63 0.85
G7 4553 7205 4301 2904 0.95 0.60 0.88
G8 3387 4218 2964 1254 0.88 0.70 0.81

Average 0.87 0.62 0.79

Table 3.4: Basic Faster R-CNN obtains improvements by combining the sub-neural network FPN. The Recall becomes slightly higher while the
Precision achieves clear improvement over the results in Table 3.3.
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Fig. 3.6 illustrates the issues in detecting microatolls from the group G4 by showing

a typical situation. Firstly, the microatolls presented in the images in this group have

various sizes. Secondly, the microatolls here grew and connected, forming microatoll

pavements. Those two factors lead to the missing detection of microatolls and a large

number of wrong detections.

Additionally, Fig. 3.7 shows another reason in the area G5 that causes low precision.

As seen, many small regions in this image look similar to microatolls. However, they are

actually not—those results are false-positives.

To sum up, the main factor causing low recall is that some microatolls are too small to

be detected, and the main factors leading to low precision are the pavements formed by

connected microatolls and the backgrounds that are similar to microatolls.

According to the above result, it can be seen that the detection model shall learn more

discriminative features to distinguish similar background regions from microatolls. Also,

the detection model could focus more on the bounding boxes with the expected size of

microatolls. This can be achieved by using the feature pyramid network (FPN) as a sub-

neural network. To estimate the expected size of microatolls, a statistical analysis of the

ground truth bounding boxes is conducted as follows. In total, there are 20,242 ground

truth bounding boxes labelled in the microatoll dataset. As shown in Fig. 3.8, the height

and width of most bounding boxes, which are taken at the same altitude around 70m,

distribute in the range from 25 pixels to 75 pixels (as indicated by the two histograms in

Fig. 3.8(a) and the Fig. 3.8(b)), and the ratio of height to width is roughly 1.0.

We use clustering method to find the suitable anchor setting for the model. K-means [62]

clustering algorithm is used in this experiment to discover the underlying clusters of the

bounding boxes. In other words, the K-means is to cluster all the bounding boxes based

on their height and width. As shown in the subfigure 3.9(a), the elbow-point for cluster-

ing is 3, which means the bounding boxes can be reasonably clustered into three clusters.

The subfigure 3.9(b) colours obtained the three clusters in different colours. We adjust

the scale and aspect ratio of the anchor and combine the FPN with Faster R-CNN based
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(a) Scatter plot for microatoll bounding box
width and height.

(b) Density map for microatoll bounding
box width and height.

Figure 3.8: Bounding boxes height and width relationship. The x-axis and y-axis repre-
sent the width and height of a bounding box.

(a) Elbow point of selecting K for k-mean
algorithm.

(b) Clustering results (3 groups)

Figure 3.9: By using K-means clustering algorithm, all the bounding boxes are clustered
into three clusters according to their height and width. The different colour indicates the
bounding boxes are clustered into 3 different groups.
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Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

Basic Faster R-CNN With FPN and OHEM

G123 655 665 537 128 0.82 0.81 0.79
G4 7853 5075 3714 1361 0.47 0.73 0.40
G5 502 662 418 244 0.83 0.63 0.73
G6 3297 3511 2695 816 0.82 0.79 0.78
G7 4553 5511 4015 1496 0.88 0.73 0.83
G8 3387 3020 2522 498 0.75 0.84 0.71

Average 0.76 0.76 0.71

Table 3.5: This table shows the detection performance after incorporating the OHEM strategy. The increase of Precision is significant when compared
with Table 3.4.

Model Tested Group Ground Truth Detected True Positive False Positive Recall Precision Average Precision

R101 Faster R-CNN With FPN and OHEM

G123 655 657 522 135 0.80 0.80 0.77
G4 7853 5224 3816 1408 0.49 0.73 0.42
G5 502 661 396 265 0.79 0.60 0.68
G6 3297 3429 2565 864 0.78 0.75 0.73
G7 4553 5452 3917 1535 0.86 0.72 0.81
G8 3387 3053 2399 654 0.71 0.79 0.67

Average 0.74 0.73 0.68

Table 3.6: A deeper backbone model is used for the object detection model. The performance degrades.
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on this clustering result. The obtained result is shown in Table 3.4.

Table 3.5 further presents the results of combining train another strategy called online

hard example mining (OHEM) [53] into the object detection model. The OHEM can

better train the detection model by helping the model focus on the bounding boxes for

which it does not function well. Technically, in the forward propagation step of training,

the OHEM will sort the region of interest (RoI) by their loss values. After that, in the

backward propagation step of training, the OHEM will select the most K difficult RoIs

to train the model. By taking this strategy, it can be found in Table 3.5 that the precision

values are well improved when compared with Table 3.4.

The following experimental study investigates for this microatoll detection task whether

the object detection model can achieve better performance by using a deeper CNN neural

network as its backbone network. As seen in Table 3.6, the result indicates that using

a deeper backbone network (i.e. ResNet101) is not necessarily helpful in increasing the

detection performance. The deeper model may cause the performance decrease because

it contains more parameters to tune and it is not well trained by the limited number of

samples in our microatoll dataset.

To take an overview of these improvements, two diagrams are plotted to show the

increase achieved step by step. As Fig. 3.10 illustrates, with a slight loss in recall, the

precision increased from around 0.3 to near 0.8. Considering the G4 is more challenging

than the others (as the G4 mainly contains the microatoll pavements), it is treated as an

outliner. Hence, removing the G4 and obtained Fig. 3.11. The promotion is significant.

The recall remains above 0.8, and the precision goes up to around 0.8 from nearly 0.3.

More details are in Fig. 3.12 and Fig. 3.13.

By comparing with the result in Table 3.4 and Table 3.5, the improvement in the same

area is significant. Specifically, Fig. 3.14 shows the differences between the original

setting (corresponding to Fig. 3.6) and the adjusted setting reported in Table 3.5. As seen

from the sub-figure (a) of Fig. 3.14, while microatolls are correctly detected, many similar

background regions are wrongly detected as microatolls, resulting in a lower precision
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Figure 3.10: Performances enhancement in average (include G4)

Figure 3.11: Performances enhancement in average (exclude G4)
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(this is the setting in Table 3.4). In contrast, the sub-figure (b) of Fig. 3.14 shows that with

the same number of microatolls detected, fewer wrong detection results occur, leading to

a higher precision. Visually, fewer unpaired red bounding boxes are presented in the right

sub-figure (b). The red bounding boxes paired well with the green boxes indicate that the

ground truths are correctly detected.

Figure 3.12: The change of Recall value with model structures modified

As a summary of the above investigation, Fig. 3.12 and Fig. 3.13 show the changes

of recall and precision value when the microatoll detection model is modified. For the

result in Fig. 3.12, although the recall decreases significantly for area G4, the recall for

other areas is well maintained. While in Fig. 3.13, it can be seen that the precision is

significantly improved due to the adjusted NMS and the use of FPN and OHEM.

Finally, another experiment also investigates the generalisation capability of the model

in detecting microatolls from the areas of another island. The Three Isles island pho-

tographs taken by the same drone and labelled by human experts are used as the test set

to assess the generalisation ability of the detection model trained above. The Three Isles

island is geographically close to Nymph Island (as shown in Fig. 3.15). They are com-

parable to the training set as they have approximately the same sea-level history and tide

range. The main difference is the age of the reef flats. This difference will vary depending
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Figure 3.13: Performances enhancement in average (exclude G4)

on the age of the reef platform. These reef platforms have grown from the seafloor up to

the current sea-level over the last 5,000-6,000 years (known as the Holocene). They have

grown up from an underlying platform at a different height, which means that they have

had a different length of time at sea-level. In terms of environmental processes, they are

very similar. The detection results are presented in Table 3.7 and Fig. 3.16.

Model Ground Truth Detected True Positive False Positive Recall Precision Average Precision
Basic Faster R-CNN With FPN and OHEM 3111 5098 2923 2175 0.94 0.57 0.72

Table 3.7: The performance of the above object detection model on the Three Isles
island.

Fig 3.16 shows the detection result given by the above object detection model on the

Three Isles island. The red and green boxes appear in pairs in most cases, which means

most microatolls are correctly detected. However, the overall detection performance

shown in Table 3.7 is not as promising as what is seen in Fig. 3.16. After examining

the results, it is found that the object detection model works well for the areas that have

microatolls. Some regions occupied by the mangroves are wrongly detected as microa-

tolls because they display similar patterns as microatolls in the images captured by the

drone. Those ‘novels’ areas (i.e. they are not similar enough to the set of images used to

train the above detection model) affect the overall detection performance. A straightfor-
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(a) Before improvement.

(b) After improvement.

Figure 3.14: The comparison of the detection results for the same area for different
settings investigated above. The top is the result of basic setting (shown in Table 3.4)
while the bottom is the result from the adjusted model (shown in Table 3.5).
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Figure 3.15: This map shows that Nymph island and Three Isles island have similar
latitude and longitude coordinates.
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ward solution may include more images of mangrove-occupied regions into the training

set to retrain the object detection model. Meanwhile, enlarging the images to include

mangroves and other environments may promote the performances in both Region Pro-

posal (RoI) and the following detection phases. Combined with sufficient training data,

the model could be potentially applied to many (up to 2,400) other islands on the Great

Barrier Reef and possibly other global reef islands.

Figure 3.16: detection result in Three Isles island. Similarly, the green boxes are the
ground truth and the red ones are detected results.

3.5 Proposed Method

3.5.1 Motivation

As the previous experimental study shows, the improvements from OHEM and adjusted

NMS threshold take the cost of reducing recall and average precision. Meanwhile, those

investigated models do not perform well in the most challenging area (G4). In sight of



CHAPTER 3. MICROATOLL-NET FOR MICROATOLL DETECTION 51

this, we examine and analyse the detection results in the most challenging area. The

examination reveals that the critical factor of the performance degraded in this area is

because the detection model is confused with individual microatolls and microatoll pave-

ments. Comparing the individual microatolls and microatoll pavements, the significant

difference between them is the background features. The individual microatolls are gen-

erally surrounded by water, which means the areas outside the individual microatolls have

different features. Although the individual microatolls could have a similar colour to the

background, their margins are distinguishable. In terms of the microatoll pavements, the

areas outside the wrongly detected bounding boxes have the same unchanged features

because individual microatolls connect to form microatoll pavements. In other words,

the difference of surrounding features is the critical factor to distinguish individual mi-

croatolls from microatoll pavements. In the literature, many methods utilise context or

background features to enhance object detection performances. Inspired by region aver-

age pooling [57], we found that the context features could achieve our aim of including the

background information. These two factors prompted us to propose Microatoll-Net to use

surrounding information to enhance the detection performance in the most challenging

area.

3.5.2 Microatoll-Net

We propose Microatoll-Net that combines context information around individual microa-

tolls to improve the detection from the most challenging area (G4).

The architecture of Microatoll-Net is illustrated in Fig. 3.17. In the literature, ResNet [34]

strongly dominates the VGG [35] in the task of image recognition. Therefore, we take

advantages of Faster R-CNN [11] but using ResNet [34] instead of VGG [35] as the back-

bone network for feature extraction. Besides, the FPN is also mounted on the Faster

R-CNN. As aforementioned, to consider the background information, Kuan et al. [57]

use RAP to include additional context features from all RoIs. Different from that work, a

proposed module called context region of interest (C-RoI) actively extracts features from

the area surrounding an RoI, which is generated by RPN in Faster R-CNN. This extra con-
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Figure 3.17: This figure illustrates the proposed Microatoll-Net. It takes an image as
input and passes it through the Faster R-CNN module with FPN to generate a set of RoIs.
They are then fed to the proposed C-RoI module (in purple) in which contextual features
are extracted from each of the enlarged RoIs. The contextual features are integrated with
those from the original RoIs and further fed to the detection head. Two integration ways
are shown: (a) concatenating the two types of features; (b) using the contextual features
as a signal via attention mechanism to weight original features.

textual information helps improve discrimination and boost detection performance.

As shown in Fig. 3.17, our C-RoI module expands the RoI Align [39] component in

Faster R-CNN. The inputs of C-RoI are the RoIs with corresponding feature maps. Let

the subscripts o and e denote “original” and “enlarged”, respectively. The RoIs are a set

of n bounding boxes, each defined by its top-left and bottom-right coordinates (x,y,x′,y′).

Enlarging an RoI with respect to its centre so that the area of the enlarged RoI is Ae =αAo,

where α is a preset parameter. Based on the same feature maps X ∈ Rc×h×w, cropping

each RoI and its corresponding enlarged RoI, respectively. Passing them through the RoI
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Align component produces their feature maps (of the same size) as X̂o, X̂e ∈Rc×r×r where

c is the number of feature channels and r is the height and width. Now, the issue boils

down to how to integrate them. Four different methods are proposed as follows.

Obtaining the microatoll features X̂o and X̂e leads to a natural thought of how to effi-

ciently utilise them. The first method is a simple concatenation, as shown in the subfigure

(a) in Fig. 3.17. Considering X̂o and X̂e are in the same shape, and they are concatenated

along the first dimension to obtain a feature map Xc ∈ R2c×r×r, which is then fed to the

detection head. Note that, original Faster R-CNN takes a feature map in the shape of

c×r×r as input. Hence, we add a convolutional layer (by having 1×1 kernel and setting

stride as 1) to downsample the input feature maps for the original Faster R-CNN detection

head. This model is named “M-Net” in short.

The second method is shown in the subfigure (b). It is motivated by the recent work

on second-order pooling (SOP) and attention mechanism. Inspired by Gao et al. [59],

in which SOP is utilised to generate an attention signal from the contextual feature X̂e

to weight the features of the corresponding original RoI so as to obtain context-guided

features for detection. Specifically, let Xr ∈Rc×d denote a reshaped X̂e, where d = r× r.

To obtain the SOP feature, the first step is computing an outer product ΣΣΣ = XrX>r ∈Rc×c,

which essentially characterises the correlation among each pair of feature channels. After

that, a row-wise convolution Conv(·) is applied to the matrix ΣΣΣ to obtain the attention

vector V ∈Rc×1×1. The context-guided feature map is then calculated as V⊗ X̂o, where

⊗ means the components of V are multiplied to each channel. This model is named

“M-Net1”.

Additionally, another two ways are explored to investigate the pure efficacy of SOP

features in Microatoll-Net, without considering the contextual information. One is similar

to the approach of Gao et al. [59], only the original RoI features X̂o are used to generate

SOP and the attention signal to weight itself. The variant is named “M-Net2”. The

other one directly feeds the SOP features obtained based on X̂o into the detection head.

The variant is named “M-Net3”. All of these variants are investigated in experimental
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study.

3.6 Experimental Result

Group
Model

Baseline Baseline+C-RoI Baseline+RAP [57] Baseline+FPN M-Net1 M-Net2 M-Net3 M-Net

G123 0.80 0.80 0.80 0.88 0.89 0.89 0.88 0.89
G4 0.53 0.55 0.53 0.62 0.65 0.65 0.64 0.66
G5 0.71 0.72 0.72 0.80 0.81 0.81 0.79 0.81
G6 0.75 0.76 0.75 0.85 0.88 0.87 0.86 0.87
G7 0.8 0.81 0.81 0.89 0.89 0.90 0.89 0.90
G8 0.68 0.67 0.68 0.86 0.87 0.87 0.86 0.87
Average 0.712 0.718 0.715 0.817 0.832 0.832 0.820 0.833
FPS 36.3 33.4 34.2 31.4 7.7 7.2 6.5 31.3

Table 3.8: This table reports Average Precision (AP) of each detection method tested
on each group of our microatoll dataset. “Baseline” is Faster R-CNN, “Baseline+C-
RoI” is Baseline+our C-RoI module, “Baseline+RAP” is Baseline+region average pool-
ing in [57], “Baseline+FPN” is Baseline+feature pyramid network. “M-Net” and “M-
Net1, 2, 3” are the four variants of our Microatoll-Net defined in Sec. 3.5. The last
row presents the detection speed of these detection methods in terms of the number of
processed frames (i.e. test samples) per second.

3.6.1 Experimental Setting

With our microatoll dataset, object detection algorithms are tested in the “leave-one-out”

setting [61]. Each of the eight groups is used as the test set in turn while the remaining

groups are used for training.

The proposed Microatoll-Net is trained on two NVIDIA 1080Ti GPU cards for 12

epochs, with ImageNet pre-trained ResNet50. Each mini-batch has two samples per GPU

card. Weight decay is 0.0001, momentum is 0.9, and a learning rate warm-up strategy [34]

is used. α is set as 2.0 to enlarge an RoI in our C-RoI module.

3.6.2 Experimental Analysis

Table 3.8 shows the comparison of eight models, explained in table caption, in terms of

the average precision (AP) obtained on each test group. The left part shows the effect of

adding the C-RoI, RAP or FPN module to the baseline Faster R-CNN. As seen, adding

our C-RoI module has boosted detection, particularly on the most challenging group G4

(0.53 to 0.55). Also, C-RoI outperforms RAP on G4 and the averaged AP, showing its
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Figure 3.18: The Average Precision (AP) and Recall of Baseline+FPN and Microatoll-
Net on each test group. The largest improvement is obtained on group G4. Best viewed
in color.

suitability for microatoll detection. Meanwhile, adding FPN achieves the most consid-

erable improvement, confirming its importance in microatoll detection. The right part

further verifies the efficacy of our C-RoI module, even when FPN is used. As shown, all

four variants of M-Net outperform baseline+FPN. Particularly, the most significant gain is

obtained on G4 (0.62 to 0.66), which aligns well with our motivation to design the C-RoI

module.

Comparison of the four variant of M-Net shows that they achieve overall similar per-

formance. This indicates that all variant models help microatoll detection. This indicates

that simple concatenation, attention with the SOP on the contextual features, and even the

SOP on the original RoI features all help microatoll detection. This suggests that contex-

tual information and SOP features could be complementary in enhancing discrimination

and that their deep integration could be pursued in the future work. Finally, taking the

detection speed shown in the last row into account, M-Net in the last column becomes

a clear winner in terms of accuracy and efficiency. Also, it well maintains the detection

speed when compared with baseline+FPN. To provide more details, it also reports that
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the average precision and recall values of two typical models among the compared ones

in Table 3.8, baseline+FPN and M-Net, on each test group. As shown in Fig. 3.18, our

M-Net consistently attains higher AP and Recall on all groups, especially on the most

challenging group G4.

3.7 Chapter Summary

This chapter reports our recent work on utilising visual object detection to locate microa-

tolls from drone images, and it is significant for coastal and climate research. A solid

benchmark dataset is created for microatoll detection from drone images. It investigates

existing modules and proposes a Microatoll-Net that better considers the characteristic

of microatolls. The experimental study demonstrates the promising performance of our

method and the more work needed to address the detection in challenging areas. Future

works could focus on enhancing the performance of the problematic areas and utilising

the model on other Great Barrier Reef islands.
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4.1 Introduction

The previous chapter presents the experimental study on our microatoll dataset to inves-

tigate the performance of Faster R-CNN [11] and its variants (i.e. combining FPN and

57
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OHEM) on the task of microatoll detection from drone images. After that, Microatoll-

Net is proposed that adds a novel microatoll context RoI module upon the Faster R-CNN

to fuse the local microatoll feature and corresponding context information around mi-

croatolls. The proposed Microatoll-Net surpasses the fine-tuned Faster R-CNN in the

most challenging area (G4). Microatoll-Net and Faster R-CNN variants are region-based

methods that generate a set of RoIs to reduce the object detection task to an image recog-

nition problem. Meanwhile, the anchors in such detectors are translation invariant, and

the anchors minimise the parameters in the region proposal phase to reduce the overfit-

ting risk. The success of anchors leads them to be extensively used in one-stage detectors.

However, there are two drawbacks to the use of anchors in object detectors. First, a large

number of anchors are generally needed to sufficiently cover the ground truth bounding

boxes of objects. Second, the scales and aspect ratios of the anchors are hyper-parameters

that rely on manual design. In addition to the anchors, non-maximum suppression (NMS)

is required to remove those overlapping boxes and ensure one object will be detected once

after the detection phase—the selected threshold for non-maximum suppression severely

impacts the detection performance in real-world applications.

This chapter reports our recent research on exploring the approach of centre-based mi-

croatoll detection from drone images without anchors or post-processing steps (i.e. NMS).

As described in the literature, a microatoll is a circular coral colony that can live for thou-

sands of years [2]. The circular shape arouses great interest in presenting microatolls

by their centres instead of bounding boxes. Kong et al. proposed FoveaBox [30] that

transforms the bounding boxes to smaller centre areas (they are named fovea areas) to

eliminate the use of bounding boxes in object detection tasks. The fovea areas are accord-

ingly computed from the ground truth bounding boxes, and their model achieves notable

results compared with state-of-the-art methods. It inspires us to transform the bounding

boxes into central areas which can reflect the information of object locations.

Recently, Wang et al. [13] proposed a conditional generative adversarial network based

segmentation model which contains a Miss Detection vs. False Alarm loss function

(named MDFA in short) to segment targets from infrared small object segmentation (ISOS)
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datasets. The targets in the ISOS datasets only occupy a few pixels in grey scale images,

and the MDFA model successfully segments them by combining the local and global

features. Since the data patterns of small targets can be learned through this method,

identifying whether this method can learn a more complex data pattern such as microa-

toll centres becomes an interesting research problem. The idea of transforming bounding

boxes to object centre density maps comes from CenterNet [29]. It uses a Gaussian kernel

to obtain two-dimensional Gaussian distribution centre density maps as regression targets.

Following the above idea, a generative adversarial network based framework to detect mi-

croatoll centres is proposed, named Microatoll-GAN. With the same structure of MDFA,

Microatoll-GAN has two generators and one discriminator. Each of the generators is

designed to generate a centre density map from a given image, and they cooperatively

reduce miss detection (by a generator with the smaller receptive field) and false alarm (by

the other with a larger one). A discriminator network is to make the two density maps

align with the ground truth detection result. Different to MDFA [13], in our case, anno-

tations are first transformed from the bounding boxes in the microatoll dataset (created

in Chapter 3) to centre-based density maps. Second, the receptive fields in both genera-

tors are modified according to the analysis of microatoll sizes. Specifically, a generator

uses a smaller receptive field to utilise the local feature to reduce miss detection (MD),

and the other has a bigger one to use the surrounding feature to reduce false alarm (FA).

The discriminator is changed to downsample the input images, and the max-pooling lay-

ers are removed to weaken the ability of the discriminator. Weakening the ability of the

discriminator means that an overstrong discriminator will cause the training generator to

fail because of the vanishing gradients. Hence, we adaptively modify the discriminator to

ensure a proper training procedure. The proposed Microatoll-GAN increases recall from

25% to 55% and precision from 57% to 64% compared with the original MDFA.

In sum, a novel generative adversarial network based microatoll detection network is

proposed that successfully converts a segmentation model to serve the microatoll detec-

tion task. The model significantly elevates the performance of MDFA in the microa-

toll centre detection task and removes the use of anchor and post-processing step in
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Microatoll-Net.

4.2 Related Work

Wang et al. [13] describe the concepts of miss detection (MD) and false alarm (FA) in in-

frared small object segmentation. This idea grabs great interest since we aim at detecting

microatoll centres. In the scenario of segmenting objects from ISOS datasets, the targets

are pixel-level. Therefore, the MD indicates that those foreground pixels are not included

in segmentation results, while the FA describes the background pixels are improperly

labelled as foreground. MD and FA are formally defined as follows:

MD =‖ (S1−Sgt)⊗Sgt ‖2
2

FA =‖ (S2−Sgt)⊗ (1−Sgt) ‖2
2,

(4.1)

where S1,S2 and Sgt ∈ [0,1]w×h are segmentation results respectively from the generator

with smaller receptive field G1 and the other with lager one G2. Additionally, S is used to

broadly represent any arbitrary S1,S2 or Sgt . The ground truth heatmaps are in the same

size of w× h with input images, the L2 norm is matrix-based, the operation ⊗ denotes

element-wise multiplication and the operation — means subtraction. Based on the MD

and FA definitions, they construct a model that consists of two generators and a discrim-

inator. A generator G1(·) takes an input image I ∈R3×w×h to generate a heatmaps S1 by

G1(I). Similarly, G2(I) indicates the result S2 from the other generator. The discriminator

(D(·)) takes I and the corresponding heatmaps Sgt ,S1 and S2 to decide if they come from

G1, G2 or the ground truth.

Loss(D,G1,G2) = min(α1LGC +α2(LMF1 +LMF2)+α3LcGAN) (4.2)

As shown in Equation 4.2, the loss function used in MDFA has four terms, and each of

them serves a specific purpose. Firstly, LGC is to minimize the difference between S1 and

S2. I and the corresponding heatmap S are sent to D, and then D outputs D((I,S))∈R1×3
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that presents the source of S in a binary format. Recall that Sgt ,S1 and S2 denote the

ground truth, G1(I) and G2(I) heatmaps, respectively. The LGC is defined as

LGC = ||φ(D((I,S1)))−φ(D((I,S2))||2, (4.3)

where each of the terms presents a discriminator (D(·) ) that takes an concatenation of an

image and corresponding a heatmap as input to generate a feature map φ for minimising

the difference of feature maps between G1 and G2.

Secondly, LMF originally aims to narrow the difference between MD and FA to make

two generators to generate the same heatmaps. Let LMF1 and LMF2 denote the LMF for

G1 and G2, respectively. In the literature, G1 is to reduce the MD by using a smaller

receptive field and G2 is to minimise FA by using a larger one. Thus, LMF1 and LMF2

are in the same form, but they have different focuses. The difference is reflected in the

formula through the λ s. As shown in Equation 4.4, the aims are achieved by using λ1 and

λ2 to weight MD and FA. Although LMF1 and LMF2 are originally designed to reduce MD

and FA, the information exchange between G1 and G2 could, in turn, boost the ability of

G1 in reducing FA and similarly boost the ability of G2 in reducing MD.

LMF1 =
1
n

n

∑
i=1

(λ1MD1i +FA1i)

LMF2 =
1
n

n

∑
i=1

(MD2i +λ2FA2i),

(4.4)

where MD1i and FA1i represent the MD and FA coming from G1, and this applies to MD2i

and FA2i similarly.

Lastly, LcGAN comes from conditional GAN [63] that originally combines its generated

result with encoded text feature to fool a discriminator, while the discriminator behaves

to identify if the given input is faked or not. Similarly, LcGAN takes original images as

conditions and adds the generated segmentation results to fool the discriminator. At the

same time, the discriminator tries to distinguish the given inputs to decide if they are from

the ground truth, G1 or G2. Formally, Equation 4.5 combines three binary cross-entropy
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losses (FBCE) to achieve this goal:

LcGAN = FBCE(D((I,Sgt)), Ŝgt)+FBCE(D((I,S1)), Ŝ1)+FBCE(D((I,S2)), Ŝ2) (4.5)

, where Ŝ1, Ŝ2 and Ŝgt are a binary label to indicate the sources of S1,S2 and Sgt , FBCE =

−(y log p+(1− y) log(1− p)), and y and p represent the ground truth and the prediction

result, respectively.

Following the idea described above, a novel Microatoll-GAN is proposed for the mi-

croatoll centre detection. Because the targets in the ISOS datasets are at pixel-level, their

proposed MD and FA are strict to the position of foreground pixels. Therefore, in the

task of this chapter, following the original setting will lead the predicted centres to be

considered as false positive results if they are not wholly and precisely the same as the

corresponding ground truth targets. For this reason, instead of using the pixels as targets,

the bounding box annotations in our microatoll dataset are transformed to centre density

maps mentioned in [29]. We use this transformation for microatoll detection due to the

fact that as long as the detected centres by the model are within the limits of bounding

box, it can indicate the location of the microatoll in the Coral reefs of oceans. It is not re-

quired for the centres detected by the model to be the exact centres of the of the microatoll

blobs. An experimental study is conducted to examine the performance of MDFA in two

different annotation formats to draw forth the necessary annotation transformation.

4.3 Proposed Method

4.3.1 Motivation and Challenge

The Microatoll-GAN is motivated by MDFA [13], a segmentation model designed to

segment pixel targets from infrared images via two different models to reduce the miss

detection and the false alarm, respectively. In short, the MDFA model generates two

heatmaps from two generators and align them with the ground truth by a discriminator.

The two generators actively extract local and global features to achieve this aim. It is
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interesting in employing the same structure to detect microatoll centres because individual

microatolls are circular, and their centres could well indicate their locations.

However, there are three challenges for adapting this segmentation model to be a detec-

tion one. First, the samples in ISOS and our microatoll datasets are significantly different.

As mentioned in the work of Wang et al. [13], the ground truth Sgt ∈ [0,1]w×h indicates

that the pixels are one if they are foreground. In contrast, those background pixels are set

to zero. While in our microatoll dataset, the analysis in Fig. 3.8 and Fig. 3.9 shows the

heights and widths in most microatoll annotations laying in the range of 25 to 75 pixels.

In our experimental study, it is found that using a few pixels to represent a centre or setting

all pixels within a bounding box as one will lead to detection failure (see Fig. 4.1). Due

to these, the bounding box should be better transformed into a central area with the high-

est value to present the mathematical centre of a bounding box, and this value gradually

decreases to 0 when the pixels are away from that centre. Inspired by CenterNet [64], a

Gaussian kernel Yxyz = exp(− (x−p̂)2+(y−p̂)2

2σ2
p

)∈ [0,1]w×h is applied to represent the density

map in size of w× h (let w,h = R because the w and h are the same for input images),

where p̂ is a four times low-resolution equivalent ground truth centre point and σp is an

object size-adaptive standard deviation [27].

Secondly, the difference between targets in ISOS and our microatoll datasets leads

to the modification of the model receptive fields. As mentioned in the literature, the

receptive field is the area where a filter learns from an input image. In MDFA, the two

sizes are 31× 31 and 257× 257 in G1 and G2, respectively. Recall the targets in ISOS

datasets are of pixel-level and shown in the grey scale image, so the target features are

limited. Hence, the authors employ a dilated convolutional layer [65] to extract context

feature to enrich the pixel-level target features in G1 for reducing MD. Because targets

are sparse (i.e. one image only contains one target), the receptive field in G2 covers

an entire image to use context features to reduce FA. While in our microatoll dataset,

each of the microatolls is presented in a high-resolution drone image. The features of

microatolls are sufficient for reducing MD. Thus, the use of a dilated convolutional layer

is not necessary, and a receptive field close to most microatoll sizes is sufficient to extract
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(a) (b) (c)

Figure 4.1: This figure indicates the detection failures in transforming a bounding box
to a single centre pixel or regarding all pixels within a bounding box as a detection
target. Column (a) to (c) represent image, regression ground truth and prediction results,
respectively. The first row illustrates that making every pixel within the bounding box as
one causes detection failure. Also, the other failure is shown in the second row, which
uses a pixel to present the object centre.

local microatoll features. In terms of G2, the original receptive field will bring additional

noise. The noise is caused by extracting external features from an individual microatoll.

The targets in ISOS datasets are sparse, and most images only contain one target. As for

our microatoll dataset, most images contain more than one target. That means using a

larger receptive field like the original G2 to cover the entire image will lead filters to learn

noise patterns from the background and other microatolls when extracting a feature from

an individual microatoll. Therefore, reducing the size of the receptive field in G2 to meet

the requirements of enclosing surrounding information and avoiding additional noise is

challenging and important. In sum, based on the analysis shown in Fig. 3.8, the receptive

fields in G1 and G2 are enlarged to 50×50 and reduced to 175×175, respectively.

The last challenge is how to evaluate the detection performance properly. For the in-

frared images in ISOS datasets [13], the segmentation result is presented in a mask with

the same size as an input image. Because the targets are of a few pixels and have exact lo-
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cations in the image, using the absolute difference of foreground pixels could efficiently

compute the true positive and false positive. While in microatoll centre detection, the

detector is required to output the locations of microatolls by giving indicators around

the microatoll centres instead of exactly locating the microatoll centres. This difference

needs us to design a suitable evaluation method to evaluate microatoll centre detection

performance.

4.3.2 Proposed Microatoll-GAN

Data Processing

As the experimental study shown in Fig. 4.1, the modification of microatoll dataset (in-

troduced in Chapter 3) follows the method used in CenterNet [64]. Instead of using

800× 600 pixel patches, all the patches are cropped from the original drone images to

have the size of 512× 512 pixels. There are two reasons for selecting such a size: first,

we follow the original MDFA model to take a square image as input. Moreover, sufficient

surrounding information should be retained for microatoll detection. Second, the image

in this size meets our hardware configuration to set a mini-batch as 2 per GPU.

The aforementioned Gaussian kernel is utilised to convert a bounding box to a centre

density map during the annotation transformation process. As shown in Fig. 4.2, Cen-

terNet [64] gives three cases of overlapping between the detected (in red) and ground

truth (in green) boxes. To simplify the explanation, we take the last case in the figure as

an example first. We let the threshold of intersection over union of red and green boxes

to be β = hw
(h+2r3)(w+2r3)

where the h and w are the height and width of the red box and

r3 denotes the radius shown in the figure. Then we can rewrite the above equation as

4β r2
3 + 2β (h+w)r3 +(β − 1)hw = 0. Let a = 4β ,b = 2β (h+w) and c = (β − 1)hw,

and it can be obtained that r3 =
−b+

√
b2−4ac

2a . That means a detected box, which is com-

pletely within the green box, will be considered to be correctly detected if the resulted

radius in the figure r ≤ r3. Similarly, the second case, β = (h−2r2)(w−2r2)
hw , and we have

4r2
2 − 2(h+w)r2 + (1− β )hw = 0. Let a = 4,b = −2(h+w) and c = (1− β )hw, and
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we can obtain that r2 = −b+
√

b2−4ac
2a . That means a detected box, which is outside of

the green box, will be considered to be correct if its radius r ≤ r2. In terms of r1,

β = (h−r1)(w−r1)
2hw−(h−r1)(w−r1)

. Let a = 1,b = −(h+w) and c = (1−β )wh
1+β

, and we can then ob-

tain that r1 =
−b+

√
b2−4ac

2a . Therefore, a detected box which is partially overlapping with

the green box will be considered to be correctly detected if the radius r ≤ r1. Finally, we

select the smallest radius of r1,r2 and r3 to create the center map of an object.

Figure 4.2: As introduced in CenterNet [64], there are three cases of the overlapping of
the detected (in red) and the ground truth boxes (in green). This figure gives three critical
values (three radii) for which the intersection over union of detected and ground truth
bounding boxes are greater or equal to the threshold β : 1) the detected box is partially
overlapping with the ground truth box with radius r1; 2) the detected box is completely
outside of the ground truth bounding box with radius r2; 3) the detected box is completely
within the ground truth bounding box with radius r3. As shown in the figure, the h and
w correspond to the height and width of predicted boxes while the r1,r2 and r3 are radii
for the three cases, respectively.

Finally, we transform the bounding boxes to corresponding density map represented by

a two-dimensional Gaussian kernel as the ground truth. Note that the ground truth density

maps are downsampled four times to avoid a similar detection failure because the centre

areas occupy too many pixels (see example in the first row of Fig. 4.1).

Proposed Model

The proposed model consists of a discriminator (D) and two generators (G1 and G2) as

the model described in MDFA [13]. Each of the generators maps an input image I to

a density map S that shows the locations of microatolls, subject to the minimization of

MD or FA. At the same time, the D classifies the sources of those density maps by taking

the corresponding input image as the condition, aiming to align the two density maps
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Figure 4.3: The overview of Discriminator (D). The D takes 512× 512 images and a 128× 128 center density maps (Sgt , S1 or S2) as input. Images
are firstly downsampled to the same size with centre density map, then they are concatenated (the C operation) for the following sub net, which is to tell
where the center density map comes from. Meanwhile, the last convolutional layer will output the φ1 and φ2 to minimise the LGC.
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to the ground truth. The architecture of D is illustrated in Fig. 4.3. The D takes I

and S to decide the S from G1, G2 or the ground truth. In the original MDFA, the D

consists of two max-pooling layers, four convolutional building blocks and three fully

connected layers in order. A similar structure is used in our case but modified to meet

the following requirements: i) weakening the discriminator to avoid gradient vanishing of

generators and ii) aligning the sizes of I and S for concatenation. According to Arjovsky

and Bottou [66], a stronger discriminator may lead to gradient vanishing of a generator.

Therefore, the two max-pooling layers are replaced with two average-pooling layers so

that the sharp features may not be identified, while max-pooling may help build a stronger

discriminator by sharping the features. Different to MDFA that I and S have the same

width and height, in our model, the I is four times bigger than S after previously described

data processing in our microatoll dataset. Hence, the two average-pooling layers are

applied to downsample the input image only. The downsampled I is concatenated with

S and the result is sent to four convolutional building blocks in order (see the blue block

in Fig. 4.3). Besides, the D also corresponds to minimising the gap between G1 and G2.

Specifically, in Fig. 4.3, the 128× 128 density map S could represent Sgt, S1 and S2. (I,

Sgt) , (I, S1) or (I, S2) are sent to D to obtain feature maps φ ( φ1 or φ2) for S from the last

convolutional building block to compute the LGC value for minimising the gap of density

maps from G1 and G2. Each of the convolutional building blocks is serially made up of a

convolutional layer, a batch normalisation and an activation function (leaky-ReLU [67]).

All convolutional building blocks in this chapter have the same structure unless otherwise

stated.

As the bounding box analysis shown in Section 3.8, most of the microatolls are of 50

pixels in height and width. Meanwhile, Section 4.3.1 shows that the receptive fields of

G1 and G2 should be adjusted to 50× 50 and 175× 175, respectively. The difference in

receptive field sizes indicates that G1 focuses on extracting local features of microatolls to

reduce MD, and the other is used for the surrounding features to reduce FA. Additionally,

the MDFA uses dilated convolutional layer to enlarge the receptive field to enclose context

feature to enrich the features of pixel-level targets. However, in our microatoll dataset,
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Figure 4.4: The structure of the generator which is used to reduce miss detection, named
G1. Each of the numbers in the block represents kernel size, channel, stride and dilation,
respectively. Feeding a 512× 512 image to G1 will generate the corresponding centre
density map with size of 128×128.

each of the microatolls has more significant and features in drone images. Therefore,

G1 is able to distinguish and indicate those areas where there could be microatolls via

adjusting the receptive field to 50× 50 without the use of dilated convolutional layer.

With the same convolutional building blocks described in D, the structure of G1 is shown

in Fig. 4.4. An input image serially goes through ten convolutional building blocks, and

G1 outputs a density map S that is four times smaller than I and each of the eight connected

components in S is a detected microatoll. An eight connected component in our density

map is the maximum set of pixels in the image such that any two pixels in the set are eight

connected.

In terms of G2, it aims to reduce the FA by cooperating with the context information.

As the experimental study discussed in Chapter 3, the context information will improve

the microatoll detection performance. Coincidentally, a lager receptive field in G2 en-

closes context information performing a similar manner. However, the original receptive

field is not suitable for the microatoll detection task because most of the bounding boxes

are below 75 in both width and height, and they are far smaller than the receptive field in

G2 (258× 258). Therefore, the receptive field of G2 is reduced to 175× 175. Selecting



C
H

A
PT

E
R

4.
M

IC
R

O
A

TO
L

L
-G

A
N

FO
R

M
IC

R
O

A
TO

L
L

D
E

T
E

C
T

IO
N

70

Figure 4.5: The structure of the generator which is used to reduce false alarm, named G2.
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such a receptive field size is because i) our targets are individual microatolls that are well

separated, ii) most targets are under the size of 75×75, so the receptive field is enlarged

two times bigger than the size to enclose rich context information, and iii) there are few

microatolls in size of 175×175 pixels, so the receptive field is enlarged to meet this size.

According to ResNet [34], residual networks are easier to be optimized and can gain ac-

curacy from considerably increased depth. Hence, three residual shortcuts are built in G2.

The reason behind only using residual structure in G2 is simple. G1 aims to distinguish

those small patches with the highest possibility to be microatolls, and most of the mi-

croatolls are salient objects within the 75× 75 bounding boxes, so a shallow network is

sufficient to extract the local features. While G2 cooperates with context information to

remove those patches that are not microatolls, the additional context information needs a

deeper network to handle the feature extraction process. As shown in Fig. 4.5, an input

image I goes through twelve convolutional building blocks to generate a density map that

is similar to the outputs of G1. Meanwhile, there are residual shortcuts in the pairs of 2nd

and 8th, 3rd and 7th ,and 4th and 6th.

4.4 Experimental Result

4.4.1 Evaluation Method

Gao et al. [68] use mean absolute error MAE = 1
N ∑

n
i=1 |y− ŷ| and root mean square error

RMSE =
√

1
N ∑

n
i=1(y− ŷ)2 to evaluate their model performance in counting object tasks.

The outputs in the counting object tasks are similar to ours, so MAE and RMSE are

used to evaluate MDFA and Microatoll-GAN originally. However, it is soon realized that

these two methods do not meet our requirement. Similar to the MD and FA in literature,

MAE and RMSE strictly compute the distance between binary y and ŷ. The distance will

increase when the detected centre does not exactly match the ground truth. However,

in our detection setting, they are still considered correct if they are closely around the

microatoll centres.

Accordingly, the true positive and false positive concepts are employed to propose an
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evaluation method as follows. First, the eight connected components in detected density

maps will be counted as detected microatolls. Then, each of the connected components

will be compared with original bounding boxes. Furthermore, the connected-component

is a true positive as long as it is within a bounding box; otherwise, it is a false posi-

tive. Second, it is found that most individual microatolls are well separated during the

labelling process, which means the overlapped bounding boxes rarely appear in the mi-

croatoll dataset. Therefore, if there are more than one connected components in a bound-

ing box, only the biggest one is treated as the true positive, and the rest are treated as the

false positive results. In sum, the evaluation method is described as follows:

• All eight connected components are regarded as detected targets.

• True positive detection results are those connected-components within original bound-

ing boxes.

• False positive detection results are those outside the original bounding boxes or

those connected-components smaller than the biggest one in the same bounding

box.

4.4.2 Experimental Setting

All experiments are implemented in PyTorch [69], and our model is trained from scratch

in a server with two NVIDIA 1080ti GPUs. As described in Section 4.3.2, all input images

are cropped into 512×512 patches. In the training set, the stride is set as 100 to enlarge

the training samples. Different to the training set, the stride in the testing set (only taking

G123 for testing, see Section 3.3) is 512. Consequently, a microatoll will only appear

once in the test dataset. Based on this setting, performance evaluation becomes more

reliable.

To train the model, Adam [70] is used to optimize D, G1 and G2 by setting the learn-

ing rates as 1e−4, 1e−5 and 1e−5, respectively. The model performs in an end-to-end

manner. The setting of hyper-parameters in the final loss function (see Equation 4.2)

are α1 = 1,α2 = 1,α3 = 100, λ1 = 10 and λ2 = 5 for 10 epochs without other training
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strategies.

4.4.3 Result Analysis

Following the evaluation method described previously, the comparison of the model per-

formances on microatoll detection task is shown in Table 4.1. In total, there are 515

unique microatolls in the test dataset. The original MDFA could only detect 129 microa-

tolls. In contrast, our proposed Microatoll-GAN increases the true positive to 284. More

details are given in Table 4.1 and Fig. 4.6. There is a significant improvement in both

recall and precision.

Model Ground Truth Detected True Positive False Positive Recall Precision
MDFA [13]

515
231 129 98 0.25 0.57

M-GAN (ours) 447 284 162 0.57 0.64

Table 4.1: The performances of the MDFA and M-GAN in G123. There is a significant
increase from 0.25 to 0.57 in the recall, and the precision is elevated too.

Figure 4.6: The Recall and Precision of MDFA and M-GAN on the test group. The
significant improvement is obtained compared with original MDFA [13]. Best viewed in
color.

The increase in numbers cannot fully reflect the actual performance. To figure out the

reasons for performance enhancement, those typical areas that give better results are se-

lected and, at the same time, those areas that have overall performance dropped will be

presented as well. Fig. 4.7 illustrates the typical areas where our model can perform well.
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Column (a) gives the samples of input images, and green box labels indicate all ground

truth. From top to bottom, the first image indicates the area containing a dense microatoll

but with significant and rich features. Each of the microatolls has a significant margin

and well separated from others. The second one shows the microatolls with various sizes,

and the last one indicates the microatolls appearing in the surrounding where background

has similar color with microatolls. Column (b) to (d) illustrate the ground truth, the re-

sults from MDFA and Microatoll-GAN (ours), respectively. In the first row, the proposed

Microatoll-GAN detects all microatolls and MDFA roughly detects half of them. Sim-

ilarly, our model surpasses MDFA in other areas. The comparison highlights that our

proposed method can better handle the microatoll centre detection task. Simultaneously,

the previous MDFA cannot locate the microatolls even in the area with significant features

and the same size (see the first row). Based on this, the proposed model indeed improves

the performance compared to the original MDFA.

(a) (b) (c) (d)

Figure 4.7: There are three examples to indicate those areas which are well detected by
the proposed method. Column (a) is the input images, and the green boxes are to show
the microatolls in the area. Column (b) is the ground truths heatmap, (c) is generated by
the MDFA [13] and (d) is the result coming from our model.
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Three main factors affecting the detection performance are: water wave, microatoll

breakage, and the target sizes unsuitable for the fixed receptive field. Those areas cannot

be well detected as presented in Fig. 4.8. The first row indicates that the water wave

covered microatoll is not detected in both models. Second, as described in Section 4.3.2,

the receptive fields in G1 and G2 are fixed. The fixed receptive fields perform well in most

cases, but those microatolls that are extremely smaller or bigger than the receptive fields

will be considered background by mistake. Third, the breakage will be another important

factor in reducing performance. As shown in the third row, our model cannot correctly

detect the microatoll even it has a significant margin. Similarly, the one on the right side

is wrongly taken as background for the same reason.

(a) (b) (c) (d)

Figure 4.8: There are three examples to indicate the reasons for the dropped detection
performances. Water wave impact is shown in the first row, the microatoll size unsuitable
issues is in the second row and the last row shows the impact of microatoll breakage.
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4.5 Chapter Summary

This chapter takes advantages of MDFA that separates the reduction of missed detection

and false alarm into two models. As mentioned before, although two generators have

different purposes, where the G1 is to reduce the MD and the G2 is to reduce the FA, the

information exchange is performed by LMF to boost the ability of G1 (designed to reduce

MD) in reducing FA and G2 (designed to reduce FA) in reducing MD. The information

exchange is as shown in Equation 4.4, the item MD and FA appear in LMF1 and LMF2 with

different λ . That means the two sub-task share the information but have different focus.

At the same time, LcGAN helps to force G1 and G2 to produce the same feature maps and

align the outputs to the ground truth.

The loss function, models, and dataset are modified to bridge the gap between the in-

frared small object segmentation and the microatoll detection from drone images. The

hyper-parameters in the loss function are adjusted by experimental study. In terms of

model, original model outputs have the same size as input. This setting may benefit from

producing pixel-level targets, but it will bring a high computation cost when the input

images have a larger size. The cost is reduced by setting the stride as two in the convo-

lutional layer in generators and employing the average pooling layer in the discriminator

to downsample the input images. Because the training annotations are transformed from

bounding boxes in our microatoll dataset, it is too strict to using only one or two pixels

to represent the location of microatoll centres. Therefore, a Gaussian kernel is used to

reconstruct the ground truth of our microatoll dataset for the proposed Microatoll-GAN.

After that, an experimental study is conducted to compare MDFA and Microatoll-GAN

performances, and our method surpasses MDFA in both recall and precision.

The advantages of the proposed Microatoll-GAN are significant. It removes the need

for anchors and the post-processing step. Meanwhile, our model is trained end-to-end

from scratch. It successfully converts a segmentation model to meet the requirements of

microatoll detection task. In terms of disadvantages, our model is still heavily affected

by water wave, different microatoll sizes and the breakages. To solve these problems,
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further research could focus on combining FPN with Microatoll-GAN and enhancing the

generalisation of the model.



Chapter 5

Conclusion

Drones are increasingly used in field research for microatoll image collection. Hence,

automatically locating their positions becomes a key step in making more effective use of

the captured drone images. To the best of our knowledge, this thesis is the first one that

systematically applies deep learning in detecting microatolls from drone images. There-

fore, dataset construction is the first critical challenge. As the first contribution, microa-

toll characteristics are investigated to establish microatoll labelling rules for microatoll

annotation creation and construct the first drone image based microatoll detection dataset.

Meanwhile, a set of experimental studies is presented to compare the performances of

two-stage detection methods (i.e. Faster R-CNN) and one-stage detection methods (i.e.

SSD), evaluates enhancements from the detection modules such as FPN and OHEM, and

highlights the challenges that appear in the microatoll detection task. To solve one of the

challenges that the microatoll pavements drop the detection performance in the most chal-

lenging area (G4), Microatoll-Net is proposed in Chapter 3 to utilise additional context

information outside the RoIs to distinguish individual microatolls and microatoll pave-

ments. Besides, variants Microatoll-Net are developed and evaluated to address the best

way to combine local and context features.

The use of anchors and post-processing steps are widespread in modern detection meth-

ods. In Chapter 4, Microatoll-GAN is proposed to remove the need for anchors and post-
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processing steps. There are two generators in Microatoll-GAN to reduce miss detection

and false alarm, and a discriminator helps to align two density maps with the ground truth

and minimise the difference of feature maps between G1 and G2. The proposed microatoll

dataset is re-constructed, which presents the regression targets as two-dimension Gaus-

sian density maps instead of bounding boxes. The proposed Microatoll-GAN significantly

outperforms the MDFA in our microatoll dataset.

5.1 Future Research Directions

This thesis emphasises the challenges of detecting microatolls from drone images: areas

not seen in our microatoll dataset(i.e. mangrove forest and helipad), tides and sunshine

impact microatolls characters, and microatoll pavements. The proposed Microatoll-Net

in Chapter 3 partially addresses the issue of microatoll pavements, but it can still be im-

proved. Meanwhile, more than 2,400 islands are in the Great Barrier Reef region. Main-

taining or improving the performance of the proposed Microatoll-Net to detect microatolls

from the drone images of other islands is also a significant issue for future research. As for

the adversarial learning network based Microatoll-GAN proposed in Chapter 4, its per-

formance is considerably affected due to the varying dimensions of microatolls which are

far beyond its fixed receptive field of the proposed model. In other words, the microatolls

that are too small or too big for the receptive fields of the proposed model will be wrongly

recognised as background. Also, the water wave hurts detection performance. Therefore,

improving the generalisation capability of the proposed model and handling the problem

of various sizes presented in microatolls are the potential directions to enhance detection

performance. Additionally, applying the Microatoll-GAN to common object detection

tasks will also be an exciting research direction to explore because of the advantages of

removing anchors and post-processes. Removing anchors will be an important step to

make computer vision to be close to human vision behaviour because human being will

not set an anchor for locating objects. Meanwhile, it is also simplify the algorithm design

process. Besides, removing post-processes will make the model more robust because the

results are no longer dependent on the experience of experts.
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