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ABSTRACT  
Nowadays, the mechanical characterization of 3-D 
spacer fabrics has attracted the interest of many 
textile researchers. These Spacer fabrics present 
special mechanical and physical characteristics 
compared to conventional textiles due to their 
wonderful porous 3-D structures. These fabrics, 
produced by warp knitting method, have extensive 
application in automobile, locomotive, aerospace, 
building and other industries. In these applications, 
the compressibility behaviour plays a significant role 
in the fabric structural stability. This compressibility 
behaviour could be affected by different knitting 
parameters such as density of pile yarn, fabric 
thickness, texture design etc. 
 
The aim of this paper is to introduce and develop an 
appropriate elastic theoretical model to predict the 
compressibility behaviour of warp knitted spacer 
fabric (WKSF). Three theoretical models are 
proposed, based on modelling pile yarns as the 
curved bars and are improved in three steps: a) with 
same curvatures in weft and warp directions (model 
A), b) curved bar for warp direction and cantilever 
bar for weft direction (model B), and c) curved bars 
with two different curvatures in weft and warp 
directions considering the curvature variations under 
loading (model C: improved model). The results 
obtained by the proposed models have been 
compared with previous model based on simply 
cantilever bars theory in literature. The results show 
that the simulation data obtained by the model C are 
closer to the experimental results comparing to the 
models A and B. Model C based on different weave 
parameters could better predict the elastic 
compressibility behaviour of this kind of WKSF in 
order to compare with previous models.  
 
KEYWORDS: Spacer fabrics, Compressibility 
behaviour, Theoretical modelling, Elastic curved bar 
theory, Weft and warp curvatures variations under 
loading  
 
 

INTRODUCTION 
Spacer knits are double-layered circular knits with a 
cushion of air and “spring-like” yarns between the 
two sides. This unique fabric class is knit in one 
continuous operation. Although it looks like several 
fabrics bonded together, it is actually one fabric 
which cannot be separated by layer. Special yarns are 
selected for aesthetic qualities (i.e.: soft hand, 
bright/dull, etc.) and for performance properties (i.e.: 
moisture transport, thermal insulation or 
conductance, anti-microbial, compressibility etc.). 
Compressibility is known as an important mechanical 
property of textiles. In Murthyguru theory, 
compressibility can be defined as a decrease of initial 
thickness due to appropriate increase of compressive 
force at measuring time [1]. In this definition, initial 
thickness of tissue is considered as thickness without 
applied force.  
 
The most important and fundamental theory related 
to the compressibility of textiles is Van Wyk theory. 
In his theory, he introduced a relationship between 
volume and stress for raw wool fibers regardless of 
their friction, twist and strength of fibres during 
compressibility [2].  However, few works have been 
done on modelling of compression behaviour of warp 
knitted spacer Fabrics [3,4,5]. 
 
Hong and Ming obtained the stress-strain curve of 
warp knitted spacer fabrics (WKSF) experimentally, 
and  calculated the contact pressure of WKSF 
assuming this pressure is exerted in two different 
ways: by solid plate and ball indentation [3]. Theirs 
objective was finding the relationship between the 
construction parameters and indentation hardness. 
They reported that more efforts should be done to 
calculate the deformations in order to analyze the 
compressibility behaviour of WKSF (stress-strain 
curve).  
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Numerical modelling of the compression behaviour 
of WKSF was carried out using Finite Element 
Analysis (FEA) based on bar, solid and shell theory 
[4]. The principle of the proposed methodology was 
the replacement of the discrete structure of each layer 
by a continuum structure presenting an identical 
mechanical performance.  
 
The mechanical characteristics and the damage 
modes of these mono-spacer fabric composites under 
different load conditions have been explored 
experimentally by Min Li et al. [5]. Also, they 
analysed the effects of pile height, pile distribution 
density and pile structure on the composites 
mechanical performances using the experimental 
results. 
 
Compressibility of the spacer fabrics depends on the 
type of spacer yarn, the yarn count of the spacer yarn, 
the stitch density and the spacer yarn configuration 
[6].  In different applications, compressibility can be 
adjusted by appropriate selection of these parameters 
[5]. Musial introduced a cantilever bar theory of 
transverse deformation in textile products consisting 
of two external layers combined with deformed 
elements in the middle layer [7]. Hong and Ming 
presented the compressibility of WKSF based on its 
construction and analyses the stress and strain 
behaviour of spacer fabric when compressed [3].  
 
The aim of this research is to predict elastic 
compressibility behaviour of WKSF using three 
different configurations as curved and cantilever bars 
for monofilaments; model A) with same constant 
curvatures in weft and warp directions model B) 
constant curved bar for warp direction and cantilever 
bar for weft direction and model C) curved bars with 
two different curvatures in weft and warp directions, 
considering the variation of curvature radius and 
angle with compression loading. These three models 
are based on spring constants parameters in elastic 
curved and cantilever bar theory. The results show 
that the simulation data obtained by model C are 
closer to the experimental results of these spacer 
fabrics comparing to the other theoretical models.  
 
THEORETICAL MODELS 
Three different theoretical models: named here 
models A, B and C for spacer fabric have been 
proposed and developed. In model A, the 
monofilament compression deflection has been 
modelled as the deflection of the curved bars with 
same curvature in weft and warp directions. In model 
B, monofilaments in weft and warp directions are  
 

considered as cantilever bar and curved bar 
respectively. Finally, in model C, the monofilaments 
are modelled with two different curvatures in weft 
and warp directions as the curved bars. Also, the 
variations of curvature radius and angle in weft and 
warp directions during compression loading increase 
have been considered in model C. Since these three 
models are based on classical elastic curved bar 
theory in compression, this will be described first in 
the following section. 
 
CURVED BAR THEORY 
This theory is based on the small deformations of an 
elastic coplanar curved bar presented in the literature 
[8]. Each point on the cross section of this bar is 
displaced from its unstrained position through small 
components u, v and w along x, y and z directions 
respectively Figure 1. u, v and w are the continuous 
single-value functions of the coordinates and, in the 
case of a curved bar, u  and v represent tangential and 
radial deflections of points on the cross section and w 
represent the deflection in a direction normal to the 
plan of the bar (the z direction). It is assumed that the 
cross section of the bar remains plane after 
deformation and also the bar material is linearly 
elastic, homogeneous, isotropic, and continuous. This 
allows to take advantage of the principle of 
superposition and to study each of these deflection 
components separately. 
 

 
FIGURE 1. Deformation of a curved bar element [8] 

 
The radius of curvature of the bar has been denoted 
as R. An orthogonal coordinate (x,y,z) is assigned on 
the cross section of the bar.  The x axis is along to 
longitudinal direction of the bar, the y is the radial 
coordinate which directing toward the centre of 
curvature and z is perpendicular to the plan of the 
bar. It is assumed that the bar deflects in x-y plan and 
the deflection in the z direction has been neglected. 
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FIGURE 2. An element along the curved bar 
 
Considering Figure 2, the equilibrium equations can 
be written in the cantilever and horizontal directions 
as: 
 

dV y N s
ds R

   (1) 

 
V ydN s

Rd s
  

 
 

(2) 
 
 

The Equilibrium condition around z axis rotation 
results in: 
 

dM z V yds
  

(3) 

 
Finally by twice differentiation of Eq. (3) and using 
the Eq. (1) and Eq. (2), Eq. (4) which is the 
equilibrium equation in the term of moment, can be 
obtained [8].  
 

2 1
02 2

dd M Mz z
dsd s R

   
(4) 

 
Due to circular shape of the monofilaments, the 
radius of the curvature is assumed to be constant 

along bar length.   0
dR

ds
  is considered.  

To obtain the relationship between M z  and 
deflections components of the bars cross section, the 
deflections of the bar has been defined.  The absolute 
deflection of a point is obviously the vector sum of 
the three independent components. In fact, the 
complete deformation of a bar element can be 
considered to be due to three different  

deflections: 0u , a deflection of points on the cross 
section due to a stretching of the censorial axis; 1u , a 
shortening of the fibres due to a decrease in the 
radius of curvature R by an amount v . These 
deflections are illustrated in Figure 1. 
 
To obtain bending moment in bar, the stress in the 
cross section must be obtained. The stress can be 
calculated by cross section deflections. After some 
mathematical manipulations, the Eq. (5) for bending 
moment is obtained [8]. 
  

2

2 2
v vdEM Jz z

d s R

  
        

 
 

(5) 
  

 
It is emphasized v is the deflection in the radial 
direction and deflection along Z axis has been 
neglected. In above equation J z  is defined as: 

 
2

1

y
dAJ z y

R

 


 
(6) 

 
In the specific case of monofilaments because their 
radius curvature are very large in compare with their 

cross section radius the y
R   ratio is negligible and 

J z can be calculated as: 

 
2dAyJ Iz z   (7) 

 
Finally, according to Eq. (4) and Eq. (5), the 
alternative form of the differential equation for the 
elastic curve has been obtained.  
 

5 22 1
0

5 2 2 4
v v dvd dE I z

dsd ds R s R

 
    

 
 

(8) 

 
The general solution of (8) is given as: 
  

cos sin cos sin1 2 3 4 5v c c c c c         

 
(9) 

 
As it is obvious in Eq. (9), to obtain the unique 
solutions, 5 boundary conditions are required to 

determine the five unknown coefficients   1 5i toci  . 

Considering Figure 3 the boundary conditions are 
described.  
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FIGURE 3.  Schematic of a monofilament which is considered as 
curved bar 

 
By assuming that monofilaments don’t move in 
radial direction, the first boundary condition in 
    is proposed as: 
 

0v     (10) 

 
Considering that the surface layer above and below 
the monofilaments cannot exerts moments on the 
monofilaments, two boundary conditions are 
presented in Eq. (11) and Eq. (12). 
 

0M z     (11) 

 
0M z     

 
 

(12) 
 
By taking into account the bending moment 
definition in Eq. (5), Eq. (11) and Eq. (12) can be 
written as Eq. (13) and Eq. (14) respectively. 
 

2
02

vd v
d  

   
(13) 

 
2

02
vd v

d  
   

 
 

(14) 

 
During compressibility testing procedure, a total 
force is applied on the whole surface of the sample. 
To calculate the force for each monofilament, total 
force must be divided by the number of the 
monofilaments in the sample area. The equilibrium 
equation on the cross section of the monofilament 
due to equivalent force is:  
 

cos sinF N Vs y    (15)  

 
Where F  is to equivalent force which is applied to 
each monofilaments. In the above equation, the shear 
force can be obtained by Eq. (3). By replacing ds   in 
Eq. (4) with ds Rd , Eq. (16) can be achieved as 
follow: 
 

1 dM
V y R d

  
(16) 

 
Considering equations which are derived for V y  and 

N s , Eq. (15) for the equivalent force can be 
rewritten as Eq. (17). 
 

21
cos sin 2 2

dV Ey v dvJ dzF
d R dR d

 
 

 
     
  

 
(17) 

 
As the last boundary condition it is assumed that the 
monofilaments are symmetrical curved bars. 
Therefore for the middle point of the curved bar 
length, we have: 
 

0
0

dv

ds 



 

(18) 

 
By the above mentioned boundary conditions, the 
unknown coefficients can be obtained in Eq. (9) and 
as a consequence, the radial deflection of the curved 
bar in any position along its length can be calculated. 
As it can be inferred the longitudinal deformation of 
the bar has been neglected. To apply this curved bar 
theory for WKSF, the exerted forces in each curved 
monofilament should be calculated regarding the 
compression load on the fabric. These forces are 
introduced in Eq. (15) to determine the boundary 
conditions needed in Eq. (9). As a result, in the 
following sections, three modelling approaches are 
utilized based on three different assumptions related 
to initial monofilament shapes and configurations.   
 
Model A: Deflection of the curved bars in 
compression  
In this model, the monofilaments are assumed as 
curved bars in weft and warp directions Figure 4. 
Monofilaments have initial curved shapes before 
loading and it is supposed that this curvature remains 
constant during compression loading.  
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FIGURE 4. Model A: monofilaments in weft and warp directions 
as the curved bars in compression with an initial constant curvature 
radius and angle   
 
Model B: Deflection of the curved bar with the 
cantilever bar  
An initial curvature is considered for warp direction, 
it is supposed that this curvature remains constant 
during loading.  The monofilaments in the weft 
direction are considered as a cantilever bars Figure 5.  
 

 
 
FIGURE 5. Model B: monofilaments in weft direction as 
cantilever bars and   monofilaments in warp direction as curved 
bars with an initial constant curvature radius and angle   

 
To drive the relationship between force and 
deflection of the fabrics as modelled in Figure 5, 
it is considered that the force on the cantilever 
bar is 1F  and the force on the curved bar is 2F . 
These forces can be calculated by Eq. (19) and 
Eq. (20). 
 

1 2 FF F   (19) 

  

  

1 2
1 2

F F
K K

  (20) 

 
In which 1K  and 2K  are the spring constants of the 
cantilever and curved bar along the cantilever 
deflection respectively. As it is obvious, the two bars 
are considered to behave such as parallel springs. To 

obtain 2K  from the deflection theory of the bar, the 
deflections along normal 1  and axial 2  directions 
of the cantilever bar has been calculated as follow 
[9]: 
 

2cos( )1
1 3

sin( )2
2

F L
EI

LF
EA








 

 

 

(21) 

 
Where E  and I  are the Young modulus and 
bending moments of the bar and L  is the length of 
the cantilever bar. The total cantilever deflection of 
the cantilever bar  is: 
 

cos( ) sin( )1 2      (22) 

 
The spring constant cantilever bar in the cantilever 
deflection can be obtained as: 
 

11
FK   (23) 

 
By substituting Eq. (22) in Eq. (23), the spring 
constant of the cantilever bar 1K  can be obtained. By 
calculating cantilever bar 1K  and also using curved 
bar theory as presented in previous section, 2K  can 
be determined by solving Eq. (19) and Eq. (20) 
together. By this way the forces on cantilever and 
curved bars ( )1 2andF F  will be obtained. Achieving 
these forces, the deflections of the bars and 
consequently the deflections of the fabric will be 
calculated as a function of the exerted forces. 
 
Model C: Modelling of the monofilaments with 
two different curved bars 
To make more realistic model to predict the 
compressibility behaviour of the spacer fabric, the 
monofilaments in both warp and weft directions have 
been considered as the curved bars in model C. The 
schematic representation of the monofilament 
configuration used in model C has been depicted in 
Figure 6. 
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FIGURE 6. Model C: configuration of the monofilaments in 
WKSF: monofilament A in weft direction, monofilament B in 
warp direction modelled  as the curved bars with variable curvature 
radius and angle 

 
As it is described previously in the modelling of 
cantilever and curved bars, the force in each curved 
bars are inversely proportional to their spring 
constants. Additionally the spring constants of each 
curved bars are implicitly related to the force. To 
calculate the deflection due to an exerted force, the 
theoretical procedure similar to model A, is used 
here.  Therefore to obtain the forces in each curved 
bar and also the cantilever deflections, Eq. (24) to Eq. 
(27) are solved simultaneously: 
  

F KA A A   (24) 

  

F KB B B   (25) 

  

F FA B
K KA B

  
(26) 

  
FF FA B   (27) 

  

 
Where   is the cantilever deflection of the both 

curved bars.  F A  and F B are  the components of 
force F applied on point P in weft and warp 
directions respectively. 
 
To solve Eq.(24-27) simultaneously, an iterative 
approach is utilized as follow: 

‐ F A  is assumed. 

‐ F B  is calculated from Eq.(27). 

‐ K A , K B , A and B  are calculated based 
on curved bar theory 

If the equality in Eq.(26) is true i.e. the deflection 
continuity in monofilament intersection exists, the 

assumed values for F A and F B are the right values, 
if not, the process should return to the first step again. 
 
It is worthy to mention that the design parameters of 
the fabric are present in the theoretical model 
implicitly. The thickness and density of the fabric are 
taking into account in the radius of the curved bar 
and the force which is exerted on each 
monofilaments respectively. The centre position of 
the monofilaments is related to angle in the way that 
they are connected to surface layers. The cross 
section radius of the monofilaments and its 
mechanical property is considered in I z  and E  
respectively.  
 
FABRIC CHARACTERISTICS AND TESTS 
The 3-D spacer fabric configuration studied in this 
paper is shown in Figure 7 and 8. As it can be seen 
two bi-directional woven face sheets are connected 
with cantilever woven piles.  

 
The monofilaments in the face sheets are in the warp 
direction, along which the 3-D spacer fabric is rolled 
up. The fabric structure design parameters can be 
selected and be variable depending on the fabrication 
process:  the pile height, the distribution density of 
piles, the anisotropy distribution of the yarns in the 
warp and the weft directions etc. 
 

 
FIGURE 7.  Spacer fabric in weft direction 

 
 

 
FIGURE 8.  Spacer fabric in warp direction 
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In this work, the 3-D spacer fabric is woven with 
Polyester fibres, produced by Rachel warp knitting 
machine with two needle bars with specific 
thicknesses, densities and texture designs presented 
in Table I and Table II. The characteristics of 
monofilaments as Young modulus and dimensional 
properties used in theoretical models are given in 
Table II. 
 
The compression tests are carried out on traction-
compression machine Instron 5566. The compression 

loading ramp is applied with the rate of  1
min

mm
 to 

reach a maximum pressure 21 2
ib

in
. In different 

compression steps, the specimen photos have been  

taken in both sides to measure experimentally the 
variation of curvature angle and curvature radius in 
weft and warp directions with loading increase. This 
measurement of curvature variation has been utilized 
in theoretical model C. To measure the angle of 
monofilament and radius of curvature, a camera is 
used to capture photos from both sides of spacer 
fabrics during loading. A manual curve fit is used to 
match the monofilament curvatures, so to find the 
curvature angle. To determine the curvature radius, 
the thickness reduction is scaled using the 
measurement values of Instron machine and a direct 
dimension measurement on photos Figure 9. 
Therefore,   and R are calculated for each loading 
step for both sides in weft and warp directions. 

 
TABLE I. Characteristics of the spacer fabric sample (10cm×10cm).  

 
Weight 

(gr) 
Thickness(mm) Linear density 

 (Tex) 
Yarn 

Material 
Density(cpc) Type layer sample 

 
 

5.21 

 
 

8.68 
 

 

7.78(34f) Polyester  
 

19 
 

External 
upper layer 

Raw 
Fabric 
(p7) 2.23monofilament polyester Connectors 

11.22(48f) Polyester 
 

External 
lower layer 

 
TABLE II. Characteristics of the monofilament 

 
Density  

)(
3Cm

gr  Radius of 
surface 

area 
(m) 

Modulus  
  (cN/Tex) 

Max Stress  
 (cN/Tex) 

Extensi
on at 
max 
load   
 (%) 

1.52 2.161×10E
-5 

52.39 3.27 7.21 

 
 
 
 

 
FIGURE 9.  Curve fit to determine    and R of monofilament. 

 

 
 
FIGURE 10.  Photo of Spacer fabric under compression. 
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FIGURE 11.  Variation of angle curvature in warp direction during 
compression increase. 
 

 
FIGURE 12.   Variation of curvature radius in warp direction. 
during compression increase 

 
 

 
FIGURE 13.  Variation of angle curvature in weft direction during 
compression increase. 

 
 

 
FIGURE 14.  Variation of curvature radius in weft direction during 
compression increase. 

 
As shown in Figure 11, 12, 13 and 14, the curvature 
radius and angles for warp and weft directions 
respectively increase with compression force increase 
as it was expected.  The initial curvature radius and 
angles depend on the structural design of each fabric. 
A curve fitting is presented in order to provide an 
analytical expression based on experimental data for 
the variation of curvature radius and angle with 
compression loading for P7 –WKSF (Table I) as it 
will be useful for the fabricant industry for further 
investigations. So, one could find these variations for 
a different rang of compression loading depending on 
different applications. 
 
RESULTS AND DISCUSSION 
The stress-strain curve of the spacer fabric reported in 
reference [3] is given in Figure 15. Three distinct 
regions in this curve can be observed: modulus, 
collapse and densification regions. The modulus of 
elasticity is defined as the initial slope in the linear 
elastic part of the stress-strain curve (modulus 
region). The initiation of collapse region is 
characterised by a relatively large deformation that 
occurs with a constant stress. During this stage, the 
monofilaments bend, so the thickness of the spacer 
fabric will decrease.  
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FIGURE 15 .Stress-strain curve for spacer fabric in 
compression[3]. 
 
This constant stress is referred to a collapse stress or 
a collapse plateau. The most compressibility 
behaviour and deformation of 3D fabrics occurs in 
this region, this is why this region is the subject of 
many investigations in the cushion fabric mechanical 
behaviour. In the densification region, monofilaments 
are engaged to each other and the deflection change 
decreases; the slope of stress-strain curve will 
decrease [3].  

 

 

 
FIGURE 16.  Stress-strain results obtained experimentally for 
tested spacer fabric in compression. 

 
In Figure 16, the experimental results obtained for 
3D fabric sample have been depicted. Figure 16 
shows that a typical compressibility behaviour as 
presented in Figure 15 is obtained for the 3D fabric 
sample tested here. Modulus, collapse and 
densification regions are present and appear under 
40% deformation. So, the maximum compression 
loading in experimental tests is sufficient to make 
appear theses three regions for the studied spacer 
fabric here.   
 

In Figure 17, the simulation results obtained by the 
theoretical models A, B and C are compared with 
experimental results for 3D spacer fabric. It can be 
seen that there exist a significant deviation of 
simulation results obtained by model A and B from 
experimental results whereas a good agreement 
between the experimental results and the simulation 
results obtained by model C has been observed. 

 
FIGURE17. Compressibility behaviour of P7-WKSF obtained by 
different models compared with experimental results 

 
The deviation from experimental results in models A 
and B can be justified as follow. In model A, all 
monofilaments are considered first to have the same 
curvatures and second their curvature radius and 
angles are assumed constant during compression 
loading. As it can be seen by observation on tested 
fabrics, not only the curvature in weft direction is 
different from warp direction but also these 
curvatures change during loading process.  Figures 
11, 12, 13 and 14 show that the curvature radius and 
angles increase with increasing compression load in 
experimental tests.  Although model B comparing to 
model A has been improved by considering different 
initial shapes for monofilaments in weft and warp 
directions, but the assumption raised from 
considering constant curvature and angle during 
loading is still applied and  could generate the 
erroneous result. In fact, the initial curvatures and 
angles of monofilaments in weft and warp directions 
change during compression loading. As a result, there 
is no wonder to observe that in Figure 17, using 
model B, a same order of deviation still remains 
between theoretical and experimental results. Figure 
18 depicts the comparison of experimental results 
with theoretical results obtained by model C in the 
modulus, collapse and densification regions.   
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FIGURE18. Comparison of experimental results with theoretical 
data obtained by model (C) 

 
As it is shown in Figure 18, three distinct regions can 
be noticed. In modulus and collapse regions, 
theoretical results almost agree with the experimental 
results. This can be explained by the fact that in this 
model the variations of the curvature radius and angle 
of the curved monofilaments in weft and warp 
directions have been considered conforming to the 
experimental observation presented in Figure 11 up 
to Figure 14. 
 
Also, in this region, the monofilaments have small 
deflections and the linear mechanical modelling used 
in curved bar theory could acceptably predict the 
force-elongation behaviour.  
 
In densification region (region III), due to the large 
deflection of the monofilaments comparing to their 
initial length, the deviation between experimental and 
theoretical results increased. The simulation data 
obtained by model C overestimate the elongation of 
monofilament under compression loading. This is 
mainly because the curved monofilaments are 
compressed into each other when large deflection 
occurred. When the monofilaments engaged into each 
other in densification region, more mechanical 
energy dissipate during deflection, so more force is 
needed to generate each unit elongation of 
monofilaments. Moreover, the proposed model is 
based on the deflection of curved bars in the elastic 
region without considering the plastic deformation of 
monofilament under high compression load in 
densification region. So to predict the mechanical 
behaviour of these spacer fabrics in high loads, the 
model C should be modified by integration of the 
plastic behaviour of monofilaments. Finally, the inter 
effect of two layers on both sides of pile yarns should 
be considered. The stiffness of these layers can affect 
the experimental results. Therefore the slope of the 

experimental results is higher than the theoretical 
ones. 
 
CONCLUSION 
Three theoretical elastic models have been proposed 
and developed in order to predict the compressibility 
behaviour of monofilaments in spacer fabrics. The 
last modified model (model C), based on elastic 
curved bar theory,  takes into account not only the 
initial curvature radius and the angle of 
monofilaments in weft and warp directions but also 
the variation of these parameters during compression. 
The results show that this model could better predict 
the elastic compressibility behaviour of spacer fabrics 
with similar texture design and initial curved 
monofilaments in weft and warp directions 
comparing to previous models. In modulus and 
collapse regions, theoretical results almost agree with 
the experimental ones.  
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