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Abstract

The search for the primordial B-mode polarization signal in the cosmic microwave back-
ground (CMB), sourced by gravitational waves in the early universe, is a primary science
goal of many contemporary and future experiments. However, a number of cosmological
effects and imperfections in instrument design may also source B-modes that may contami-
nate the primordial signal. In this thesis we study these systematic instrument imperfections,
and a cosmological effect, that may source B-modes, known as cosmological birefringence
(CB). The CB effect involves a beyond standard model coupling between a pseudo-scalar field
(such as the axion) and the photon that can generate either a uniform, or a direction dependent
rotation of the linear polarization angle of CMB photons.

We begin this study by examining constraints on what is known as the uniform CB effect,
which involves a direction independent rotation of CMB polarization, α0. This study focuses
on the constraints that the future Simons Observatory and CMB-S4 experiments may place on
uniform CB. We forecast 1σ constraints of α0 ≤ 6.06×10−3 degrees for Simons Observatory
and α0 ≤ 1.8× 10−3 degrees for CMB-S4.

We follow this by investigating two techniques which may be used to place constraints on
the power spectrum for anisotropic CB effect. The first technique is a quadratic estimator
(QE) method and the second utilizes observations of the B-mode power spectrum (BB). We
find that the QE technique outperforms the BB method. However, for some experimental
configurations we find the difference is marginal and the more efficient BB method should be
used to place constraints. We also find that experiments with a larger sky coverage may be
able to place stronger constraints than equivalent experiments with access to less of the sky.

We then turn our attention to B-modes sourced by instrument systematics. For the first
time we apply QEs to reconstruct systematics present in realistically simulated maps. We
carry out a case study where we use QEs to reconstruct maps of a temperature to polarization
leakage sourced by a differential detector gain. We are able to reconstruct and, using an
iterative process, remove this leakage, recovering the primordialB-mode signal and reducing
the bias on the tensor to scalar ratio, r, by a factor of ∼ 100.

Finally, we apply a QE approach to the Planck 2018 data to reconstruct the CB map and
power spectrum. We apply a likelihood to the reconstructed spectra in order to place con-
straints the amplitude of the CB spectrum, ACB. We find constraints of ACB ≤ 1.97 ×
10−5

[
rad2

]
, within 95% confidence limits (C.L.), corresponding to a photon-axion coupling

strength of gφγγ ≤ 5.58× 10−2
[
H−1
I

]
. Our constraints offer a factor of ∼ 1.3 improvement

over the best existing ACB constraints from Planck data.
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Chapter 1

Introduction

1.1 The Expanding Universe

1.1.1 From expansion to the Big Bang

In the early 20th century the prevailing consensus was that the Universe was static, the cosmos
was infinite, with astrophysical bodies set at a fixed distance from one another, and space and
time were rigid and fixed. This consensus was ended by Einstein’s theory of General Relativ-
ity [1] and work by Friedmann, Lemaitre, and the observations made by Hubble. Einstein’s
theory was one of a space-time that was not rigid, but was curved by the presence of matter
and energy. This relationship between the curvature of space-time and the distribution of
matter and energy are elegantly presented in Einstein’s field equations [2],

Gµν =
8πG

c4
Tµν + Λgµν . (1.1)

Both Friedmann, and Lemaîtra independently derived dynamic solutions to Einstein’s equa-
tions for a Universe which was expanding at a calculable rate [3], [4]. Indeed Lemaîtra even
estimated what would later become known as the Hubble constant. The theoretical work of
Friedmann, and Lemaîtra was verified by observations made by Hubble, that galaxies ap-
peared to be moving at away from the observer rate proportional to their distance from the
observer. From the work of Friedmann, Lemaitre, and Hubble the Big Bang theory emerged.

The consensus among the majority of cosmologists today is that the Universe began in an
state of extreme temperature and density, and expanded from this state to the state in which
it now exists [5]. What is known today as the Big Bang theory describes a number of key
epochs that occur during the expansion of the Universe, with a number of measurable predic-
tions for a number of these epochs. One of the most exciting of these epochs is recombination.
Before recombination the temperature and density of the of the Universe is high enough that
the background photon plasma was larger than 13.6eV. Therefore, the energy of photons was
higher than the binding energy of hydrogen keeping the Universe ionized and preventing neu-
tral toms from forming [5], [6]. Recombination occurred when the temperature and density
of the Universe reduced enough that the photons decoupled from electrons and free streamed,
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allowing neutral atoms to form [7]. This epoch is exciting because it provides important ob-
servable evidence for the Big Bang today. The decoupled free streaming photons from the
epoch of recombination are observed today as the cosmic microwave background (CMB).

1.1.2 The cosmic microwave background

The CMB, formed when photons decoupled from electrons in the Early Universe during the
epoch of recombination, is one of the most important cosmological observables in modern
cosmology. It is the oldest observable source of electromagnetic radiation in the cosmos
and giving key information about the structure and composition of the Universe providing
measurements that include measurements of the density of different species in the Universe
including the dark matter, dark energy, and baryon density, measurements the curvature of
the Universe, and measurements the expansion rate of the Universe [5], [7].

Discovered in 1964 by Penzias and Wilson, the CMB is the closest example to a perfect
black body that exists in our Universe. While appearing to be isotropic in Penzias and Wil-
son’s original observations, local anisotropies in the structure of the CMB were first observed
by the COBE satellite [8]. The particular measurements made of the properties, composition,
and structure of the Universe come from analysis of the statistical structure of these CMB
anisotropies. Often these statistical properties are summarized using the CMB temperature
and polarization power spectra.

The temperature anisotropies are defined as

T (n̂) ≡ T̄ (n̂)− T0
T0

, (1.2)

where T̄ (n̂) is the temperature of the CMB measured today in direction n̂ and T0 is the average
temperature across the sky [5]. The temperature anisotropies can be decomposed into modes
with different scale dependence using spherical harmonic decomposition so that

T (n̂) =
∑
lm

TlmYlm(n̂) , (1.3)

The Tlm is the spherical harmonic decomposition coefficient1 and is a Gaussian random vari-
able. Here, Ylm(n̂) are the spherical harmonic functions [9]. The advantage of this approach
is that all the geometric behavior is captured in the spherical harmonic functions, and all of
the statistical behavior of the CMB is captured in the coefficients. The temperature power
spectrum, CTT

l is then defined as the ensemble average of the 2-point correlation of the CMB
temperature anisotropies so that,

〈TlmT ∗
l′m′〉 = CTT

l δll′δmm′ . (1.4)
1Often Tlm is denoted alm or aTlm in the literature.
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Often the ensemble average, 〈TlmT ∗
l′m′〉, is referred to as the CMB covariance. Note that the

ensemble average is over the different possible realizations of the process by which the CMB
is formed [10]. In reality we only measure one realization of the CMB, so we instead use an
estimator of the true CMB temperature power spectrum which has the form [9]

ĈTT
l =

1

2l + 1

∑
m

|Tlm|2 . (1.5)

As the Thompson scattering process that produces the CMB generates linearly polarized
photons another key observable from the CMB are the maps of the direction dependent Q
and U Stokes polarization parameters, Q(n̂) and U(n̂). The Stokes parameters are defined in
terms of the complex amplitude of the x and y components of the electromagnetic field, ax
and ay, such that

I ≡
〈
a2x
〉
+
〈
a2y
〉
,

Q ≡
〈
a2x
〉
−
〈
a2y
〉
,

U ≡ 〈2axay cos (θx − θy)〉 ,

V ≡ 〈2axay sin (θx − θy)〉 ,

(1.6)

where θx and θy are phase terms for the x and y components of the electromagnetic fields.
Here, the intensity is equivalent to the temperature. TheQ and U stokes parameters represent
the linear polarization components of the electromagnetic field, and V represents the circular
polarization component. TheQ(n̂) and U(n̂) fields represent the stokes parameters at a given
direction n̂ on the sky. The specific details of this projection of coordinate dependent fields
onto the sky are discussed in Chapter 2.4.

If the stokes fields are transformed under a rotation by an angle ϑ they are transformed so
that

Q′(n̂) = Q(n̂) cos 2ϑ+ U(n̂) sin 2ϑ ,

U ′(n̂) = −Q(n̂) sin 2ϑ+ U(n̂) cos 2ϑ .
(1.7)

TheQ(n̂) andU(n̂) fields transform as components spin-2 symmetric trace free tensor. There-
fore, they can be decomposed using a spin-weighted spherical harmonic decomposition into
what are known as E- and B-modes, so that [11],

Q(n̂)± iU(n̂) = −
∑
lm

(Elm ± iBlm)±2Ylm(n̂) . (1.8)

The ±2Ylm(n̂) are the spin ±2 spherical harmonic functions. If the spin-weighted spherical
harmonics are rewritten in terms of the non-weighted spherical harmonics then the Elm and
Blm coefficients have basis the basis functions Y E

lm(n̂) and Y B
lm(n̂) respectively. These basis

functions are composed of covariant derivatives of the spherical harmonic functions Ylm in
such a way that Y E

lm(n̂) is gradient containing, and Y B
lm(n̂) is curl containing [9]. In this way

the decomposition of the polarization fields into Elm and Blm is analogous to the Helmholtz
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decomposition of the electric and magnetic fields with the Elm and Blm notation chosen
accordingly2.

The E- and B−modes have their own power spectra

〈ElmE∗
l′m′〉 =CEE

l δll′δmm′ , (1.9a)

〈BlmB
∗
l′m′〉 =CBB

l δll′δmm′ . (1.9b)

with estimators equivalent to ĈTT
l in (1.5) such that [9],

ĈEE
l =

1

2l + 1

∑
m

|Elm|2 , (1.10a)

ĈBB
l =

1

2l + 1

∑
m

|Blm|2 . (1.10b)

As only the observed CMB constitutes a single realization only there is an inherent uncer-
tainty in the observed power spectrum known as cosmic variance. This is in addition to any
uncertainty due to instrumental noise on the spectra due to the measurement process, or any
systematic errors in the measurement and takes the value

σ2
l =

2

2l + 1
(CA

l )
2 (1.11)

where A ∈ [TT,EE,BB] [10].

In order to use the power spectra to establish values physical parameters, Markov-Chain
Monte-Carlo (MCMC) simulations of the power spectra for values are fit to observed spectra.
The fit is found by varying six parameters that are used to define the ΛCDM cosmological
model. This is the minimum number of parameters required in order to completely specify
the model [12]. There is some flexibility as to which six parameters are chosen but some
examples are the physical baryon density parameters, Ωbh

2, the physical dark matter density
parameter, Ωch

2, the current Hubble expansion rate, H0, the ionization optical depth τ , the
amplitude of primordial curvature perturbations, As, and the scalar spectral index, ns [13].
An example of the data fit to measured estimates of the CMB spectra is shown in Figure 1.1.

While the temperature and E-mode power spectra have been measured to an extremely
high precision by a number of CMB experiments, only theB-modes sourced by weak lensing
of the CMB [15] have been measured to date. The primordial B-modes from the surface of
last scattering (LSS) have yet to be observed. The observation of primordial B-modes is an
important science goal of many contemporary CMB experiments [14], [16] as the presence
of primordial B-modes is a key prediction of the theory of inflation.

2In the literature Elm and Blm are often denoted as aElm and aBlm. Historically, they were denoted aGlm and aClm corresponding to
the gradient and curl containing parts of the decomposition.
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Figure 1.1: The ΛCDM best fit CTT
l , CEE

l , and CBB
l spectra compared to measurements

from a range of CMB instruments including Planck, ACTpol, BICEP2/Keck, Polarbear and
SPT/SPTpol. This figure is taken from the CMB-S4 science book [14].

1.1.3 Inflation

The theory of inflation came about as a solution to three important problems with the Big
Bang theory. While there is strong evidence for the Big Bang in the form of the CMB a
number of problems arose which could not be resolved in within the framework of the Big
Bang and subsequent expansion alone. These problems all arose as a result of observations
that did not match what was expected for the Big Bang theory. They are as follows [5]:

• The flatness problem: The Universe as we measure it today has an nearly perfectly flat
geometry. The measured value of the total density parameter is Ωtot −1 = 0.0007±0.0037

[13], where Ωtot = 1 is the requirement for a perfectly geometrically flat universe. This
level of flatness today requires the initial conditions of the Universe to be such that at matter
radiation equality Ωtot < 10−20 and at the Planck scale Ωtot < 10−60. This requires a large
amount of fine tuning if no mechanism is present to drive the flatness to current observed
value.

• The horizon problem: When COBE made its observations of the CMB anisotropy it was
noted that the CMB was in thermal equilibrium across the full sky [8]. This is unexpected
as the length of the mean free path of photons before the CMB was formed was too short
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for the photons across the entire horizon distance to have enough time to come into causal
contact with one another. In fact, accounting for the expansion of the Universe, a region in
causal contact before photon free streaming would cover less than 2◦ of the sky.

• The relic abundance problem: A number of particle theories predict the presence of relics
formed in the Early Universe such as monopoles, cosmic strings, and domain walls. How-
ever, these relics and their effects on the evolution of the Universe are not observed today.
This is a problem as normal expansion does not account for the reduction of the density of
these species to levels where they are not observed and do not dominate the evolution of
the Universe.

Fortunately a solution to these issues was proposed by Starobinsky [17], Guth [18], and
Linde [19] in the form of inflation. Inflation refers to an epoch during which the Universe un-
dergoes a period of exponential expansion where the scale factor, a(t) which relates physical
distance to comoving evolves as [5]

a(t) ∝ eHt , (1.12)

where H is the Hubble constant and t is time. This period of exponential expansion can be
shown to drive the Universe towards a flat geometry so that,

Ωtot − 1 ∝ exp(−2Ht) . (1.13)

This mechanism avoids the fine tuning flatness problem, as initial conditions where the Uni-
verse is near perfectly flat are no longer required for the Universe to be close to flat after infla-
tion. Inflation also provides a solution to the horizon problem. During inflation, volumes that
are in causal contact with one another can expand rapidly during inflation without changes to
the characteristic length scale of the Universe, allowing the area in thermal equilibrium to be
larger than the horizon. The dilution of relic particle density at the levels required to prevent
them from dominating is also provided by inflation. During inflation the relic particle den-
sity decreases quicker than the overall energy density to negligible levels, preventing relics
from becoming the dominant factor in determining the dynamics of the Universe’s evolution.
Indeed, inflation itself also allows for the Gaussian fluctuations that form the structure in the
CMB [5].

A key prediction of inflation is that, as well as the scalar perturbations that seed the struc-
ture in the CMB temperature andE-mode polarization, there should also be primordial tensor
perturbations, primordial gravitational waves. As only tensor perturbations source primordial
B-modes3 [9], [20], the B-mode signal constitutes an important observable signature of the
gravitational waves in the Early Universe sourced by inflation. Indeed it may be possible to
use B-modes to constrain the energy scale and different models for inflation [11]. The level

3Scalar perturbations cannot contribute to the B-mode signal due to the difference in parity between the scalar perturbations and the
basis functions for B-modes [9].
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of tensor perturbations is often parameterized as the ratio between tensor and scalar modes,
r.

However, primordial tensor perturbations are not the only potential source of CMB B-
modes. As previously mentioned, B-modes sourced by weak lensing of the CMB radiation
have already been observed [21]–[24]. However, weak lensing is not the only non-inflationary
source of B-modes. Parity violating mechanisms may exist in the Early Universe that result
in a mixing between E- and B-modes, generating a B-mode signal that is additional to the
primordial signal. These mechanisms may be primordial magnetic fields waves [25], [26], or
parity violating extensions to the standard model Lagrangian [25], [27]. Both these mecha-
nisms result in the rotation of the linear polarization angle of light. The phenomenon of this
rotation is referred to as either Cosmic Polarization Rotation (CPR) or Cosmological Bire-
fringence (CB), although in some literature only the standard model extension is referred to as
CB. Additionally, a contaminant B-mode signal may also be generated by systematic effects
from imperfections in CMB instruments such as a differential gain between detectors, or an
ellipticity in the observation beam [28].

Both systematic and cosmological effects that source these B-modes provide a large chal-
lenge to the robustness of future claims of primordial B-modes. To circumvent this issue,
both cosmological and systematic effects must either be detected in a way that allows the
removal of non-primordial B-modes from the observed CMB polarization or be constrained
to levels where the spurious B-modes are subdominant to the primordial signal. Additional
motivation to search for cosmological effects that source B-modes is that a detection of CPR
would be of large scientific significance, providing an exciting signature of new and exotic
physics. The search for CPR, and the attempts to detect, constrain, and remove systematic
sources of non-primordial B-modes is the primary focus of this thesis.

1.2 Thesis Structure

This thesis consists of seven chapters including this introductory chapter. Four of these
chapters contain original scientific content, with the remaining consisting of this introduction,
a literature review, and a concluding chapter. Here the structure of this thesis is summarized
and a description of the content of each chapter is provided.

In Chapter 2 literature surrounding alternative mechanisms of producing B-mode polar-
ization in the CMB. In this chapter literature on extensions to the electrodynamics that lead
to CPR or CB are discussed, as well as the way these modifications manifest CMB. Litera-
ture surrounding methods for detecting monopole CB is discussed. Moreover, literature on
the quadratic estimator (QE) approaches that can be used to detect both anisotropic CB and
systematic effects is discussed.

Chapter 3 constitutes the first scientific content chapter. This chapter focuses on work
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that was carried out for Simons-Observatory (SO), forecasting the constraints that SO and
CMB-S4 could place on monopole birefringence. This work summarized in this chapter was
submitted as a logbook entry on the SO wiki. In the thesis chapter a fisher forecast of the
monopole CB effect.

The content in Chapter 4 is an adapted version of a paper published in JCAP [29] that I
wrote with Aditya Rotti and Richard Battye. The scientific content that went into this work
is largely my own work, carried out with guidance from my coauthors. This chapter focuses
on a comparison between two different methods that can be used to constrain CPR, a direct
likelihood approach using measurements of theB-mode power spectrum and a QE approach.
This chapter also includes forecast of the expected CPR constraints from the SO and LiteBIRD
experiments, as well as the levels of B-mode contamination from CPR that correspond to
these constraints.

The content in Chapter 5 is an adapted version of a paper published in JCAP [30] that
I wrote in collaboration with Nialh McCallum, Aditya Rotti, Dan Thomas, Richard Battye
and Michael Brown. The chapter, and the paper it is based upon, provides the first example
of a QE based blind systematic cleaning approach applied to a set of realistic time ordered
simulations. In this chapter we describe the QE approach that we use to not only diagnose
a differential gain systematic in realistic simulated maps, but remove the systematic effect
from these maps. In addition to this, we illustrate that this cleaning is capable of significantly
reducing the bias on the tensor-to-scaler ratio r. For this body of work I developed the QE,
associated QE code and cleaning pipeline used throughout the work, as well as applying the
QE to simulations provided by Nialh McCallum and Dan Thomas. My contribution also
includes the likelihood work carried out in the paper, and the introduction of a novel filtering
scheme used in the cleaning pipeline. The majority of the writing in [30] was carried out by
me, with descriptions of the simulations provided by Nialh McCallum and Dan Thomas.

The final scientific content chapter is Chapter 6. The work that is shown in this chapter
has been carried out in preparation for submission to a scholarly journal. In this chapter a
QE approach is used to place CB constraints using the Planck 2018 polarization data. In this
chapter we reconstruct the CB power spectrum, and map as well as placing model dependent
constraints on the CB power spectrum by applying likelihood approach.

Finally in Chapter 7 a general summary of this thesis is provided. This summary includes
discussing the key results presented in each chapter as well as their significance in the context
of the thesis as a whole. This is followed by a discussion of future avenues of research that
could follow on form this work.
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Chapter 2

A review of alternative sources of CMB

B-mode Polarization

2.1 Introduction

2.1.1 Electrodynamics

The physical behavior of light has been described by many theories, from Newtons Corpus-
cular theory of light to the modern theory of electrodynamics. Since the latter theory was
introduced by James Clerk Maxwell in his original paper in 1865 [31] there have been many
experiments that have confirmed the predictions made by Maxwell, as well as further theoret-
ical work that has advanced the understanding of electrodynamics. Electrodynamics stands
today as one of the best tested and most well understood theories of modern physics.

However, an important question that is often asked about many well understood theories
of physics is at what point do they fail? That is, is there some energy scale or length scale
at which the theory fails to describe the observed physics? If the answer to this question is
’yes’ then it is necessary to modify the original theory in some way to capture this new be-
havior. This question can be asked of Maxwell’s laws. Is there an energy or a length scale at
which they fail to describe the behavior of light? It so happens that electrodynamics seems
to match observations on all of the energy scales that have been tested so far. However, there
are a number of theoretical modifications to electrodynamics that predict behavior that could
be seen on cosmological length scales. This predicted behavior is known as cosmological
birefringence and refers to a rotation of the linear polarisation angle of photons as they prop-
agate through a vacuum. This is analogous to the birefringence of light as it passes through
optically active media.

Among the theories that predict cosmological birefringence are potential candidates for
theories of inflation. These theories involve an interaction between the photon gauge field
and an axion field [32][33][34][35]. Inflation is necessary to solve both the horizons and the
flatness problem in cosmology. As it plays a key role in the understanding of the evolution of
the Early Universe it is important to determine the mechanism for inflation. Observations of a
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cosmological birefringence angle of the orders of magnitude predicted by the axion inflation
theories could provide supporting evidence for these theories. Alternatively, failure to observe
the predicted birefringence effect would provide a strong test for these theories, potentially
ruling them out.

In addition to testing theories of inflation the cosmological birefringence effect is parity
violating, and can be Lorentz violating. Therefore, an observation of birefringence could
be a valuable tests of these important fundamental symmetries in nature [36]. Moreover, as
models predicting cosmological birefringence involve a coupling between axion-like particles
and the photon, constraints on the birefringence effect may provide constraints on the coupling
between axion-like particles and the gauge field.

2.1.2 The cosmological laboratory

While cosmological birefringence would act as a good test for a number of important theories
of inflation as well as a test for Lorentz and parity symmetry the effect is predicted to be very
small. It would be impossible to detect such a rotation in terrestrial laboratory experiments.
It could be, as mentioned previously, possible to detect a cosmological birefringence effect
on light propagating on cosmological scales. In this sense the Universe can be used as a
laboratory to test fundamental physics.

The two primary sources of polarised photons that are at a large enough distance to make
a detection of cosmological birefringence possible are distant radio galaxies and the cosmic
microwave background (CMB). The cosmic microwave background is favoured for obser-
vations of birefringence as it provides observations of the propagation of linearly polarised
photons on the largest length scales. Moreover, as there are many experiments and much ef-
fort focused on measuring the CMB polarisation it is likely that if the birefringence angle is
measured it will be measured through observations of the CMB.

A primary science goal of CMB polarization experiments is the search for primordial
tensor perturbations through the measurement of primordial B-modes of polarization [9],
[16], [37]. However, cosmological birefringence (in particular anisotropic birefringence) can
act as a non-standard mechanism of B-mode production, providing potential contamination
in primordial B-mode searches. So, while detecting cosmological birefringence may be an
important science goal, constraining the effect is also important in order to claim a robust
detection of primordial tensor perturbations.

In addition to beyond standard model physics,B-mode contamination can also be sourced
by systematic effects due to imperfections in the instrument. These systematics, like the
birefringence effect, must be well characterised before claims of B-mode detection can be
made.

One of the primary mathematical tools used in the detection of anisotropic birefringence
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is the quadratic estimator (QE) [38], [39]. This technique is commonly deployed in studies
of weak gravitational lensing of the CMB [15], [40], [41]. Both birefringence and weak
lensing distort the CMB maps and generate off diagonal correlations in the CMB covariance
matrix. The QE technique makes use of these off diagonal correlations in order to reconstruct
maps of the fields that source these distortions. In the case of birefringence this field is the
polarization rotation-angle field. As many systematic effects distort the CMB in a similar
way to both birefringence and lensing, generating diagonal CMB correlations, it may also be
possible to to employ quadratic estimators in order to diagnose such effects [28].

In this literature review the theoretical aspects of the cosmological birefringence effect
and the methods for detecting such an effect are discussed. Section 2.2 describes the methods
of modifying electrodynamics that lead to a rotation of the polarisation angle in linearly po-
larised electromagnetic waves. This description begins with a focus on a general modification
of electromagnetism that was introduced by Carroll, Field and Jackiw. Then an equivalent
modification, in which a pseudo-scalar field is coupled to electromagnetism, is described.
This equivalent modification is found in inflationary models which couple an axion field to
the gauge field in the electrodynamic Lagrangian. Section 2.3 describes an alternative picture
of the axion-gauge field coupling that involves a mixing between the axion field and linearly
polarised photons, introduced by George Raffelt. Section 2.4 describes how cosmological
birefringence can be measured through CMB polarisation observations. This section begins
with a description of methods used to estimate the birefringence angle from the cross cor-
relations of the temperature, E mode and B mode CMB anisotropies. Section 2.5 discusses
the effect of anisotropic birefringence on the CMB and how QEs can be applied to recon-
struct the anisotropic birefringence field. Finally, in section 2.6 the impact of systematics on
CMB polarization experiments is discussed, along with the relationship between instrument
imperfections and distortions in the CMB maps that it may be possible to reconstruct using
QEs.

2.2 Modifying Electrodynamics

2.2.1 Coupling electrodynamics to a general Chern-Simons term

In their work in 1990 - seen in [25] - Carroll, Field and Jackiw examined a Lorentz violating
modification to electrodynamics that predicted a rotation of the polarisation angle of linearly
polarised photons. This modification begins by coupling the gauge field to an arbitrary four-
vector pµ in the following Chern-Simons-like term,

LCS = −pµAνF̃ µν , (2.1)

where F̃ µν is the dual of the electromagnetic field strength tensor and has the form F̃ µν =

εµνρσFρσ/2, and Aν is the gauge field. This term is combined with the usual Lagrangian for
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electrodynamics to give a total Lagrangian,

L = LEM + LCS = −1

4
FµνF

µν − 4πAνJ
ν − pµAνF̃

µν , (2.2)

where a source term has been included. The Euler-Lagrange equations are used to arrive at
an equation of motion,

−∂µF µν + 4πJν + pµF̃
µν = 0 . (2.3)

This modification does not change the identity ∂aF̃ ab = 0. Using this identity and equation
(2.3) it is possible to write down a set of modified Maxwell’s equations,

∇ · B = 0 ,

∂tB +∇× E = 0 ,

−∂tE +∇× B = 4πJ − p0B + p × E ,

∇ · E = 4πρ − p · B .

(2.4)

Then a plane wave ansatz is used. For the source-free case, the third line of equation (2.4)
becomes,

−iωE0 − ik × B0 = −p0B0 + p × E0 . (2.5)

The second line of (2.4) is used to replace B0 with 1
ω

k×E0. Next, Lagrange’s formula is used
to rewrite (2.5) as,

(ω2 − k2)E0 + k(k · E0)− i(−p0k + ωp)× E = 0 . (2.6)

This can be written as a matrix equation, MijEj = 0, where,

Mij = (ω2 − k2)δij + k2k̂ik̂j − iεijk(ωpp̂l − p0kk̂l) . (2.7)

Note that for a photon traveling along the z-direction it is possible to write

k = k

 0

0

1

 ,p = p

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , (2.8)

where θ is the angle between k and p. The final matrix is then,

Mij =

 ω2 − k2 −i(ωp cos(θ)− p0k) iωp sin(θ) sin(φ)
i(ωp cos(θ)− p0k) ω2 − k2 −iωp sin(θ) cos(φ)
−iωp sin(θ) sin(φ) iωp sin(θ) cos(φ) ω2

 (2.9)

The determinant of this matrix should be equal to zero. It is possible to use a symbolic algebra
package like Mathematica to compute the determinant and to simplify the resulting equation,
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k4 +ω4 − k2(p20 +2ω2) + pω cos(θ)(2kp0 − pω cos(θ)) + p2(k2 −ω2) sin2(θ) = 0 . (2.10)

This can be expanded,

k4 + ω4 − 2ω2k2 + p2k2 sin2(θ)− p2ω2 sin2(θ) (2.11)

= p20k
2 − 2p0kpω cos(θ) + p2ω2 cos2(θ) . (2.12)

Simplifying (2.11) gives,

(ω2 − k2)2 − (ω2 − k2)p2 sin2(θ) = (p0k − pω cos(θ))2 . (2.13)

Rearranging (2.13) gives a dispersion relation of the form [25],

ω2 − k2 = ±(p0k − pω cos(θ))
[
1− p2 sin2(θ)

ω2 − k2

]− 1
2

. (2.14)

This dispersion relation is noticeably different to the usual dispersion relation for electrody-
namics in a vacuum. This can be expanded in terms of pα. The expansion has the form,

k = ω + p0a+ pb+O(p2) . (2.15)

squaring this gives,
k2 = ω2 + 2ω(p0a+ pb) +O(p2) . (2.16)

It is possible to infer from (2.14) and (2.16) that

2ω(p0a+ pb) +O(p2) = ∓(p0k − pω cos(θ))(1 +O(p)) . (2.17)

Substituting the expression in (2.15) in for k gives,

2ω(p0a+ pb) +O(p2) = ∓(p0ω − pω cos(θ) +O(p2))(1 +O(p)) . (2.18)

If higher order terms are neglected then a = ∓1
2

and b = ±1
2

cos(θ). The expanded dispersion
relation is therefore,

k = ω ∓ 1

2
(p0 − p cos(θ)) , (2.19)

which can be written as k = nω where the refractive index is,

n = 1∓ 1

2ω
(p0 − p cos(θ)) . (2.20)
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We can define a set of basis functions for linearly polarized light εx and εy. These basis
functions represented in terms of normalized Jones vectors are

εx =

 1

0

0

 , εy =

 0

1

0

 . (2.21)

This basis represents the horizontal and vertical components of the linear polarization. We
can introduce circular polarization basis functions εL and εR. The normalized Jones vector
representation of these basis functions is

εL =
1√
2

 1

+i

0

 , εR =
1√
2

 1

−i
0

 . (2.22)

These two sets of basis functions are easily related so that,

εL/R =
1√
2
(εx ± iεy)) (2.23)

As the linear polarization basis can be expressed as linear combinations of the circular po-
larization basis, any linearly polarised photon state can be written as a linear combination of
right-handed and left-handed circularly polarised photon states. The linearly polarised pho-
ton undergoes a birefringent rotation if there is a change in phase between the two circularly
polarised photon states. The rotation angle α is given as α = 1

2
(ξL − ξR), where ξL and ξR

are the phases of the left-handed and right-handed states respectively. It is also worth noting
that the − and the + in (2.19) correspond respectively to the right-handed, and left-handed
polarisation states. The phase change of a photon traveling a path lengthL is kL. The rotation
angle of the photon is therefore,

α =
1

2
(p0 − p cos(θ))L , (2.24)

as predicted in [25].

In order to see how this modification is Lorentz-violating note that under the
gauge transformation ∆Aµ = ∂µχ the Chern-Simons Lagrangian becomes ∆LCS =
1
4
χF̃ µν (∂µpν − ∂νpµ). For the Lagrangian to be gauge invariant ∂µpν − ∂νpµ must van-

ish. This will occur in all frames in flat spacetime if there is a frame in which ∂µpν = 0.
This requires pµ to be a constant four-vector. This is where the Lorentz violation occurs
as the prescence of a constant four-vector coupled to observable fields picks out a prefered
direction in spacetime. The Lorentz symmetry is also violated in curved spacetime. The
pµ vector picks out a prefered coordinate frame. In this frame ∂µpν = 0. So, in any frame
∂µpν−∂νpµ = ∇µpν−∇νpµ = 0. However, the four-vector pµ is still an arbitrary four-vector
with no physical meaning. This modification must be treated slightly differently in order to
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see how such rotations might arise in real physical settings.

2.2.2 Coupling of pseudo-scalar fields to electrodynamics

An equivalent way to formulate a Lorentz violating modification to modify electrodynamics
is by writing the Chern-Simons Lagrangian term is in terms of a pseudo scalar field φ. It is
possible to interpret this pseudo scalar field as being some theoretically predicted physical
field that couples to the gauge field such as quintessence field or the field for an axion like
particle. The Chern-Simons like term in this case is

LCS = − βφ

2M
F µνF̃µν . (2.25)

Here, M has dimensions of mass and represents the energy scales that were integrated out in
order to work in this low energy regime, and β is a dimensionless coupling term [27]. The
Euler-Lagrange equations for the modified Lagrangian are,

0 =
∂LEM
∂Ab

+
∂LCS
∂Ab

− ∂a
(
∂LEM
∂(∂aAb)

)
− ∂a

(
∂LCS
∂(∂aAb)

)
. (2.26)

The first and second terms are zero. The third and fourth term are more interesting, with the
third term taking the form,

−1

4
∂a
(
∂(F µνηµσηνρF

σρ)

∂(∂aAb)

)
= ∂aFba , (2.27)

and the fourth term taking the form,

− β

4M
∂a
(
∂(φF µνεµνσρF

σρ)

∂(∂aAb)

)
= −βφ

M
εabσρ∂

aF σρ − β

M
εabσρF

σρ∂aφ . (2.28)

However, εabσρ∂aF σρ can be written as ∂[bF σρ] which is zero. Therefore, the resulting equa-
tions are

∂aFba +
β

M
εbσρaF

σρ∂aφ = 0 . (2.29)

The vanishing anti-symmetric term εabσρ∂
aF σρ, representing the homogeneous part of the

relativistic Maxwell’s equations, can be conveniently expressed as the derivative of the dual
of the electromagnetic tensor so that,

∂aF̃ab = 0 . (2.30)
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As Ei = −F 0i and Bi = −εijkFjk, equations (2.29) and (2.30) become

∇ · B = 0 ,

∂tB +∇× E = 0 ,

∇ · E − β

M
B ·∇φ = 0 ,

∇× B − ∂tE +
β

M
(E ×∇φ− B ∂tφ) = 0 .

(2.31)

If φ is uniform in space and we choose plane wave solutions for B and E then the final equation
in (2.31) becomes

ik × B0 + iωE0 =
β

M
B0 ∂tφ . (2.32)

It is possible to infer from this that the presence of the changing pseudo-scalar is inducing a
change in the electric field in the direction of the magnetic field [42]. It is, however, possible
to go further, and calculate a modified dispersion relation. First, the cross product of k and
equation 2.32 is taken. By using the identity for the vector triple product, and using the first
and second equation in (2.31) this cross product can be written as

(ω2 − k2)B0 + i
β

M
k × B0 ∂tφ = 0 . (2.33)

This derivation is similar to that presented in the previous subsection. However, here we
choose to approach this in an alternative way in order to more clearly demonstrate the effect
of this interaction with the left and right handed circular polarization states. Note that linearly
polarized light is composed of a superposition of the two circular polarization states. These
polarisation states can be represented explicitly by the normalised Jones vectors. For the right
handed circular polarisation,

B0 =
B0√
2

 1

−i
0

 . (2.34)

To consider what will happen to right hand circular polarized modes in this modified regime
we insert this Jones vector into equation (2.33),

(
ω2 − k2

)
B0

 1

−i
0

 =
β

M
k ∂tφB0

 1

−i
0

 . (2.35)

The Jones vector for the left handed circular polarisation is the same, except there is a positive
i. Inserting, this into equation (2.33) gives,

(
ω2 − k2

)
B0

 1

i

0

 = − β

M
k ∂tφB0

 1

i

0

 . (2.36)
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From (2.34) and (2.36) it is possible to infer that,

ω2 − k2 = ± β

M
k ∂tφ , (2.37)

where now it is more clear that the + and - respectively refer to the right and left handed circu-
lar polarisation states. Here, k = |k|. A more intuitive picture is found when the dispersion
relationship is expanded in terms of ∂tφ,

ω − k = ± β

M
a∂tφ+O((∂tφ)

2) , (2.38)

where a is an unknown expansion coefficient. Rearranging (2.38) and squaring the expression
gives

ω2 = k2 ± 2k

(
β

M
a∂tφ

)
+O((∂tφ)

2) . (2.39)

Neglecting higher order terms it is possible to infer from (2.37) and (2.39) that 2k
(
β
M
a ∂tφ

)
=

β
M
k∂tφ. Therefore, given that a = 1

2
, the expansion of the dispersion relation to first order is,

k = ω ∓ β

2M
∂tφ . (2.40)

This can be rewritten in the more familiar k = nω form of the dispersion relation. Here, the
refractive index n has the form,

n = 1∓ β

2ωM
∂tφ . (2.41)

As before, the linearly polarised photon state can be treated as a superposition of right handed
and left handed circularly polarised photon states. Therefore, the rotation angle of the linearly
polarised photon in terms of the changing scalar field is [43],

α =
β

M

∫
∂φ

∂η
dη , (2.42)

where the numerical factor of 1
2

is absorbed into the arbitrary coupling β and the path length
for the photon is L =

∫
adη. Here η represents conformal time, and a is the cosmological

scale factor. This rotation would effect the light from the CMB uniformly across the whole
sky. The linear polarisation modes of the CMB would be rotated completely isotropically by
angle α. It is entirely possible that the scalar field may not be spacially uniform. If that is the
case then equation (2.42) instead becomes [44]

α(n̂) =
β

M

∫
dη

(
∂

∂η
+ n̂ · ∇

)
φ . (2.43)

In this case the rotation angle would not be uniform across the sky; there would be an
anisotropy in the rotation angle of linearly polarised light traveling cosmological distances.
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2.3 Axion-Photon Mixing

2.3.1 Axions and photons in strong magnetic fields

It is possible for photon-axion mixing to occur for photons traveling in the presence of a strong
magnetic field Be as shown in [45]. The equations of motion for axion-photon interactions
are needed in order to understand how this mixing takes place. The Lagrangian that will be
useful in deriving the equations of motion is as follows:

L = −1

4
FµνF

µν +
1

2

(
∂µa∂

µa−m2
aa

2
)
+

1

4M
FµνF̃

µνa

+
α2

90m4
e

[
(FµνF

µν)2 +
7

4

(
FµνF̃

µν
)2]

, (2.44)

where the first two terms are the normal Lagrangians for electromagnetism and scalar fields
respectively, the third term is an interaction term between the axions and the photons, and
the fourth term is a photon self-interaction term. Here, a is used to represent the pseudo-
scalar axion field and ma represents the mass of this field. The fourth term only holds in the
limit where photon frequencies are much smaller than the electron mass me. Perturbing the
Lagrangian leads to an equation of motion for the axion,

−∂µ∂µa−m2
a +

1

4M
FµνF̃

µν = 0 , (2.45)

and for a propagating photon,

−∂αFαβ +
1

2M
εαβρσFρσ∂αa+

4α2

45m4
e

∂α (FαβFµνF
µν)

+
7α2

45m4
e

∂α

(
F̃αβFµνF̃

µν
)
= 0 . (2.46)

The photon can be taken to be propagating in the z direction with two linear photon po-
larisation states, Ax and Ay. The chosen convention is that the polarisation vectors point in
the direction of the electric field. The y axis can be chosen such that the projection of the
strong, constant magnetic field Be that is perpendicular to the z axis points along the y axis.
if this is the case then Bx = 0 and By = |Bt| = Be sin θ. So, Ay = A‖ and Ax = A⊥, where
the notation ‖ and ⊥ represent polarisations parallel and perpendicular to the external field
respectively [46]. A new term ξ is defined as follows:

ξ =
α

45π

(
Be

Bcrit

)2

, (2.47)

where Bcrit =
m2

e

e
= 4.41× 1013G [45]. Note the units used are natural, rationalized electro-

magnetic units (or Lorentz-Heaviside units). In these units h = c = 1 and α = e2

4π
≈ 1

137
.
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The ⊥ photon state is even under CP transformations, whereas the ‖ photon state is odd
under CP transformation. Morevover, Be is invariant under CP interactions so the equations
of motion should be CP-conserving. As the axion plane wave states are odd it only mixes
with the A‖ photon state. If the equation of motion for the axion in (2.45) is restricted using
the mixing conditions, and the choice that the magnetic field must point along the y-axis then
the equation of motion becomes

ω2a+ ∂2za−m2
aa+

Byω

M
A‖ = 0 . (2.48)

In a similar way constraints can be applied to equation (2.3.1). It is required that the external
magnetic field acts along the y-axis, moreover the perpendicular photon polarisation mode
A⊥ does not mix with the axion field. With these constraints in place the equations of motion
for the perpendicular photon modes reduce to

(
ω2 + ∂2z

)
A⊥ +

4αe2ω2

45πm4
e

B2
yA⊥ = 0 . (2.49)

Similarly, given that the axion and parallel photon modes do mix, it is found that

(
ω2 + ∂2z

)
A‖ +

7αe2ω2

45πm4
e

B2
yA‖ +

Byω

M
a = 0 . (2.50)

The wave equation isω2 + ∂2z +

 Q⊥ 0 0

0 Q‖
Byω

M

0 Byω

M
−m2

a



 A⊥

A‖

a

 = 0 , (2.51)

where using the expression for ξ in (2.47)

Q⊥ = 4ω2ξ sin2 θ, Q‖ = 7ω2ξ sin2 θ . (2.52)

A useful approximation can be made using the dispersion relation for propagating light. A
dispersion relation has the form k = nω. However, in this case n ≈ 1, leading to the ap-
proximation k = ω. Moreover, as ω2 + ∂2z = (ω + i∂z)(ω − i∂z) = (ω + k)(ω − i∂z), the
approximation can be applied so that ω2+∂2z = 2ω(ω−i∂z). Equation (2.51) can be rewritten
using this approximation, and both sides of the equation can be divided by 2ω leading to the
following new equations of motionω − i∂z +

 ∆⊥ 0 0

0 ∆‖ ∆M

0 ∆M ∆a



 A⊥

A‖

a

 = 0 . (2.53)

32



The new ∆i components have been defined as

∆M =
Be

2M
sin θ ,

∆⊥ = 2ωξ sin2 θ ,

∆‖ =
7

2
ωξ sin2 θ ,

∆a = −m
2
a

2ω
,

where the diagonal components represent the difference in momentum between the different
modes, and the counterparts to those modes if no magnetic field was present. The refractive
indices, as given by the dispersion relation ki = niω, are ni = 1 + ∆i

ω
.

To see how this equation of motion leads to mixing between the parallel photon modes and
the axion the lower right hand quadrant of (2.53) must be diagonolised. This is done through
a rotation R which, when applied to the A‖ and a fields, leads to mixed A′

‖ and a′ fields,(
A′

‖

a′

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

)(
A‖

a

)
. (2.54)

Considering the lower quadrant the equation of motion is

[ω − i∂z +M ]

(
A‖

a

)
= 0 , (2.55)

where

M =

(
∆‖ ∆M

∆M ∆a

)
. (2.56)

The rotation R is applied to the equations of motion,

R [ω − i∂z +M ]

(
A‖

a

)
= 0 , (2.57)

which can be written as

R [ω − i∂z +M ]RTR

(
A‖

a

)
= 0 . (2.58)

This is allowed because the rotation matrix is an orthogonal matrix so RTR = RRT = I .
The rotation matrix on the right hand side rotates A‖ and a into the primed fields, giving the
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following equations of motion for the primed fields

R [ω − i∂z +M ]RT

(
A′

‖

a′

)
= 0 . (2.59)

The rotation matrix and its transpose have no effect on the first two terms, however they act
to diagonalise the matrix M . Explicitly calculating RMRT gives(

cosϑ sinϑ
− sinϑ cosϑ

)(
∆‖ ∆M

∆M ∆a

)(
cosϑ − sinϑ
sinϑ cosϑ

)
=(

∆‖ cos2 ϑ+∆a sin2 ϑ+∆M sin 2ϑ 1
2
∆a sin 2ϑ− 1

2
∆‖ sin 2ϑ+∆M cos 2ϑ

1
2
∆a sin 2ϑ− 1

2
∆‖ sin 2ϑ+∆M cos 2ϑ ∆‖ sin2 ϑ+∆a cos2 ϑ−∆M sin 2ϑ

)
.

(2.60)

As this operation must diagonalise M it is necessary to set the off diagonal components to
zero to find the mixing angle,

−1

2
∆‖ sin 2ϑ+

1

2
∆a sin 2ϑ+∆M cos 2ϑ = 0 . (2.61)

Rearanging this expression leads to

1

2
tan 2ϑ =

∆M

∆‖ −∆a

, (2.62)

which characterizes the strength of the mixing. Now, it is necessary to simplify the diagonal
terms, writing them entirely in terms of ∆‖, ∆a, and ϑ. The upper left hand term in the
diagonalised matrix in (2.3.1) will be labeled ∆′

‖, as it is the matrix element that acts on A′
‖.

Equation (2.62) is used to substitute for ∆M in ∆′
‖,

∆′
‖ = ∆‖ cos2 ϑ+∆a sin2 ϑ+

1

2
tan 2ϑ(∆‖ −∆a) sin 2ϑ . (2.63)

This is rewritten as

∆′
‖ = ∆‖ cos2 ϑ+∆a sin2 ϑ+ (∆‖ −∆a)

1− cos22ϑ

2 cos 2ϑ
, (2.64)

which is the same as

∆′
‖ = ∆‖ cos2 ϑ+∆a sin2 ϑ+

(∆‖ −∆a)

2 cos 2ϑ
− 1

2
(∆‖ −∆a) cos 2ϑ . (2.65)

Now, using the trigonometric identity for cos 2ϑ, (2.65) can be expanded to give

∆′
‖ = ∆‖ cos2 ϑ+∆a sin2 ϑ+

(∆‖ −∆a)

2 cos 2ϑ
+

∆‖

2
−∆‖ cos2 ϑ+

∆a

2
−∆a sin2 ϑ . (2.66)
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Therefore, ∆′
‖ simplifies to the following expression,

∆′
‖ =

(∆‖ +∆a)

2
+

(∆‖ −∆a)

2 cos 2ϑ
. (2.67)

In a similar way, the bottom right expression from the diagonalised matrix can be relabled as
∆′
a and simplified giving

∆′
a =

(∆‖ +∆a)

2
−

(∆‖ −∆a)

2 cos 2ϑ
. (2.68)

The equation of motion for the mixed states is then[
ω − i∂z +

(
∆′

‖ 0

0 ∆′
a

)](
A′

‖

a′

)
= 0 . (2.69)

Consider the beam of photons propagating in the z direction. It is possible to simplify the
description by taking all modes to be measured with respect to the phase of the unmixed A‖

mode. If this is the case then the perpendicular mode propagates as follows:

A⊥(z) = e−i
(
∆⊥−∆‖

)
zA⊥(0) . (2.70)

The parallel and axion mixing modes must be treated slightly differently. They propagate as(
A‖(z)

a(z)

)
= M(z)

(
A‖(0)

a(0)

)
. (2.71)

Here M(z) is

M(z) =

(
cosϑ − sinϑ
sinϑ cosϑ

)(
e
−i

(
∆′

‖−∆‖

)
z

0

0 e−i
(
∆′

a−∆‖
)
z

)(
cosϑ sinϑ
− sinϑ cosϑ

)
.

(2.72)
It is easy to see why this is the case when the mixing matrix M(z) is applied explicitly in
equation (2.71),(

A‖(z)

a(z)

)
=

(
cosϑ − sinϑ
sinϑ cosϑ

)(
A′

‖(0)e
−i

(
∆′

‖−∆‖

)
z

a′(0)e−i
(
∆′

a−∆‖
)
z .

)
(2.73)

From this it follows that (
A‖(z)

a(z)

)
=

(
A‖(0)e

−i
(
∆′

‖−∆‖

)
z

a(0)e−i
(
∆′

a−∆‖
)
z

)
(2.74)
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2.3.2 Weak mixing and birefringence

In the case of a weak mixing, that is ϑ � 1 the mixing matrix can be expanded to second
order

M(z) = M0(z) + ϑM1(z) + ϑ2M2(z) . (2.75)

It is easier if ∆osc is defined as ∆osc = ∆‖ − ∆a and the term ζ = ∆oscz is defined. By
performing the expansion explicitly an expression for M(z) is found

M0(ζ) =

(
1 0

0 eiζ

)
, M1(ζ) =

(
1− eiζ

)( 0 1

1 0

)
,

M2(ζ) =

(
−iζ −

(
1− eiζ

)
0

0
(
1− eiζ

)
+ iζeiζ

)
.

(2.76)

In this case the birefringence effect arises due to the magnetic field if the photons are prop-
agating along the direction of the field lines and no axions are present. This is the Faraday
effect and is due to a phase shift between the ‖ and ⊥ polarisation modes. This phase shift
is given as ϕ(z) = (∆‖ − ∆⊥)z. However, in the presence of the axion field there is an
extra contribution to the rotation of the angle of plane polarisation for the photons. This extra
contribution is given by the imaginary part of the upper left hand term in the mixing matrix
M(11)(z) and is

ϕa(z) = ImM(11)(z) = ϑ2(∆oscz − sin∆oscz) . (2.77)

Moreover, there is a reduction in the magnitude of A‖ due to the conversion of photons in to
axions. Assuming no axions are present to begin with this reduction is by a factor of 1− ε(z)

where
ε(z) = 1− ReM(11)(z) = 2ϑ2 sin2

(
∆oscz

2

)
. (2.78)

The rotation of the angle of plane polarisation is then ε(z)/2 if it is assumed the angle of
plane polarisation is initially at an angle of 45◦ to the external field Be. Therefore, there is a
birefringence effect due to the magnetic field and the conversion of photons into axions.

2.4 Observing Birefringence in Cross Correlations in the CMB

If these modifications of electrodynamics are correct and there is an induced uniform ro-
tation of linearly polarised light then it will have an effect on the linearly polarised light of
the CMB. Such an effect would produce a non zero signal in the CTB

l and CEB
l cross corre-

lation power spectra. These cross correlation moments are, as will be shown below, zero if
no birefringence effect is present. So, in order to measure the birefringence angle the cross
correlation should be measured.
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2.4.1 E and B modes

In order to understand how to measure the cross correlations between temperature and B
modes, and between E andB modes it is first important to understand where the cross corre-
lations come from. It is also important to understand why CEB

l and CTB
l are zero when there

is no birefringence, and what the E and B mode signals are. Understanding the latter two
points provides insight into why a rotation of the linear polarised light from the CMB leads
to a non-zero cross correlation signal. The origin of the E andB modes and the null value of
CEB
l and CTB

l is explained in detail by Kamionkowski, Kosowsky, and Stebbins in [9]. Here,
we summarize their work and review some of the concepts discussed in Chapter 1.

The polarisation of light can be described by the set of Stokes parameters,

I ≡
〈
a2x
〉
+
〈
a2y
〉
,

Q ≡
〈
a2x
〉
−
〈
a2y
〉
,

U ≡ 〈2axay cos (θx − θy)〉 ,

V ≡ 〈2axay sin (θx − θy)〉 ,

(2.79)

where ax and ay are the x and y components of the amplitude of the electric field of an
electromagnetic wave that propagates in the z direction. The I Stokes parameter indicates
the radiation intensity, the Q and U parameters describe linear polarisation modes, and the
V parameter describes circular polarisation modes. As the Compton scattering process that
produces the polarisation in the CMB does not produce circular polarisation the V parameter
is not important. The Q and U parameters refer to modes that are orthogonal, however they
are dependent on the choice of coordinate system. From the Q and U modes it is possible
to construct coordinate independent E and B modes. First, it must be noted that Q and U
transform as independent components of a symmetric, trace free tensor. This can be seen by
noting that under a rotation of angle ϑ the transformation is given as

Q′ = Q cos 2ϑ+ U sin 2ϑ ,

U ′ = −Q sin 2ϑ+ U cos 2ϑ .
(2.80)

It is possible to write down this symmetric trace free polarisation tensor Pab(n̂), which fully
describes the linear polarisation states. For a full sky map of the CMB polarisation the po-
larisation tensor in spherical coordinates is

Pab(n̂) =
1

2

(
Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)
, (2.81)
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and the metric for a 2-sphere S2 is

gab =

(
1 0

0 sin2 θ

)
. (2.82)

In analogy to the expansion of the temperature contrast into a set of orthonormal spherical
harmonics, the polarisation tensor can be expanded into a complete set of orthonormal basis
functions. The expansion that is appropriate for a tensor that is symmetric, trace free and on
a 2-sphere is

Pab(n̂)
T0

=
∞∑
l=2

l∑
m=−l

[
aE(lm)Y

E
(lm)ab(n̂) + aB(lm)Y

B
(lm)ab(n̂)

]
, (2.83)

where T0 is the statistical mean of the CMB temperature map.

The reason that there are two sets of basis functions, as opposed to the one set for the
temperature contrast, is that any symmetric trace free tensor in two dimensions can be de-
composed into a curl free part, A;ab− 1

2
gabA

c
;c , and a curl containing part, B;acε

c
b+B;bcε

c
a.

HereA andB are scalar functions. Note that here semicolons, “;”, are used in order to denote
derivatives on S2 rather than the covariant derivative in four dimensions [9]. As the spherical
harmonics, Ylm, form a complete basis of scalar functions on a 2-sphere it is possible to write
the basis functions for the curl free part of the polarisation tensor as

Y E
(lm)ab = Nl

(
Y(lm);ab −

1

2
gabY

c
(lm);c

)
, (2.84)

and the curl containing part as

Y B
(lm)ab =

Nl

2

(
Y(lm);acε

c
b + Y(lm);bcε

c
a

)
. (2.85)

Nl is merely a normalization factor and is defined as

Nl ≡

√
2(l − 2)!

(l + 2)!
. (2.86)

The parts of the decomposition of Pab are labeled E and B in analogy to the electric and
magnetic fields which are curl free and curl containing respectively. Now, the expansion
coefficients are given as

aE(lm) =
1

T0

∫
dn̂Pab(n̂)Y E ab ∗

(lm) (n̂) ,

aB(lm) =
1

T0

∫
dn̂Pab(n̂)Y B ab ∗

(lm) (n̂) .
(2.87)

Using the explicit definition of theE andB basis functions, and differentiating by parts gives
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the expansion coefficients as

aE(lm) =
Nl

T0

∫
dn̂Y ∗

(lm)(n̂)P
;ab

ab (n̂),

aB(lm) =
Nl

T0

∫
dn̂Y ∗

(lm)(n̂)P
;ac

ab (n̂)ε b
c .

(2.88)

Therefore, given the origin of the E and B mode decomposition it is possible to go on to
calculate the value of theCEB

l =
〈
aE(lm)a

B ∗
(l′m′)

〉
andCTB

l =
〈
aT(lm)a

B ∗
(l′m′)

〉
cross correlations,

and ultimately see that they are zero.

2.4.2 Calculating the cross correlations

In order to demonstrate that the CTB
l and CEB

l vanish they must be calculated for both scalar
metric perturbations, and tensor perturbations separately. Starting with the scalar perturba-
tions the Stokes parameters are expanded in terms of Legendre polynomials,(

Q(k, n̂)
T0

)2

=
1

4

∞∑
j=0

(2j + 1)Pj(k̂ · n̂)∆s
Qj(k) cos 2ξ′ ,

(
U(k, n̂)
T0

)2

=
1

4

∞∑
j=0

(2j + 1)Pj(k̂ · n̂)∆s
Qj(k) sin 2ξ′ ,

(2.89)

where ∆s
Qj are the Legendre coefficients that correspond to the perturbation of the photon

polarisation brightness distribution due to scalar metric perturbations. For a more detailed
picture of this expansion see Kosowsky’s work in [20]. Here, ξ′ is the angle required to rotate
the coordinate system for each k mode so that the k modes can be summed in a consistent
way, as Q and U are coordinate dependent. The orientation of the coordinate system in the
n̂ direction is different for each k mode. Therefore, ξ′ is the angle required to rotate the
coordinate system of the k modes so that they coincide with those for n̂, in order to ensure
that they are consistent for the summation. The termsQ(k, n̂) and U(k, n̂) are just the Stokes
parameters induced in the direction n̂ by a single k mode. The k mode is taken to be pointing
in the ẑ direction, in which case ξ′ can be chosen to be zero. Therefore,(

Q(k, n̂)
T0

)2

=
1

4

∞∑
j=0

(2j + 1)Pj(k̂ · n̂)∆s
Qj(k) ,

U(k, n̂)
T0

= 0 . (2.90)

By substituting (2.90) into the definition of the polarisation tensor in (2.81) Pab(k, n̂) can
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be written as

Pab(k, n̂)
T0

=
1

8

∞∑
j=0

(2j + 1)Pj(k̂ · n̂)∆s
Qj(k)

(
1 0

0 − sin2 θ

)
,

=
1

8

∞∑
j=0

(2j + 1)∆s
Qj(k)M(j)ab(k̂, n̂) ,

(2.91)

where Mab is defined such that

Mab(k̂ = ẑ, n̂) = Pj(cos θ)

(
1 0

0 − csc2 θ

)
. (2.92)

This expression for the polarisation tensor can be substituted into the expression for aB(lm) in
(2.88). This gives

aB,slm (k) =
Nl

8

∞∑
j=0

(2j + 1)∆s
Qj(k)

∫
dn̂Y ∗

(lm)(n̂)Mab
(j);ac(n̂)εcb . (2.93)

Then Mab
(j);ac(n̂)εcb can be calculated explicitly,

Mab
;acε

c
b = sin θ

(
M θφ

,θθ +Mφφ
,φθ

)
− csc θ

(
M θθ

,θφ +Mφθ
,φφ

)
− cot θ csc θM θθ

,φ

+5 cos θM θφ
,θ + 3 cos θMφφ

,φ + 3(cos θ cot θ − sin θ)M θφ . (2.94)

Given the explicit form of Mab(k̂ = ẑ, n̂) in (2.92) it is clear that Mab
;acε

c
b = 0. Therefore

aB(lm) = 0. So,
CXB
l =

〈
aX∗
(lm)a

B
(lm)

〉
= 0 , (2.95)

where X ∈ {T,E}.

Now, the cross correlation must be shown to be zero for the tensor modes. This is less
trivial and involves calculating the expansion coefficients for the temperature and theE andB
modes for both the + and × tensor perturbation polarisation states. Starting with temperature
and remembering that

aT(lm) =
1

T0

∫
dn̂T (n̂)Y ∗

(lm)(n̂) . (2.96)

For a k mode that points along the ẑ direction that is generated by the + polarisation of
the tensor metric perturbations, the contribution to the temperature anisotropy expanded in
Legendre polynomials is

T (k, n̂)
T0

=
1

4

∑
j

(2j + 1)Pj(k̂ · n̂) sin2 θ cos 2φ∆̃+
Ij(k) , (2.97)

where ∆̃+
Ij(k) are the Legendre coefficients corresponding to the perturbation of the photon

brightness that is induced by the tensor mode k. This is substituted into the definition of aT(lm)
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to give

aT,+(lm)(k) =
1

4

∑
j

(2j + 1)∆̃+
Ij(k)

∫
dn̂Pj(k̂ · n̂)Y ∗

(lm)(n̂) sin2 θ cos 2φ . (2.98)

It’s possible to use the relation P (cos θ) =
√

4π
2j+1

Yj0 in (2.98) giving

aT,+(lm)(k) =
1

4

∑
j

(2j + 1)∆̃+
Ij(k)

∫
dn̂
√

4π

2j + 1
Y(j0)(n̂) sin2 θ cos 2φY ∗

(lm)(n̂) . (2.99)

Angular momentum raising and lowering operators can be employed in order to rewrite
sin2 θ cos 2φY(j0) as

sin2 θ cos 2φY(j0) =
1

2

{[
(j + 1)(j + 2)(j + 3)(j + 4)

(2j + 1)(2j + 3)2(2j + 5)

] 1
2 (
Y(j+2,2) + Y(j+2,−2)

)
−2

√
j(j − 1)(j + 1)(j + 2)

(2j − 1)(2j + 3)

(
Y(j,2) + Y(j,−2)

)
+

[
j(j − 1)(j − 2)(j − 3)

(2j − 3)(2j − 1)2(2j + 1)

] 1
2 (
Y(j−2,2) + Y(j−2,−2)

)}
. (2.100)

Now, this can be substituted into (2.99) giving

aT,+(lm)(k) =
1

8
(δm,2 + δm,−2)

∑
j

(2j + 1)

√
4π

2j + 1
∆̃+
Ij(k)

×

{[
(j + 1)(j + 2)(j + 3)(j + 4)

(2j + 1)(2j + 3)2(2j + 5)

] 1
2

δl,j+2 − 2

√
j(j − 1)(j + 1)(j + 2)

(2j − 1)(2j + 3)
δl,j

+

[
j(j − 1)(j − 2)(j − 3)

(2j − 3)(2j − 1)2(2j + 1)

] 1
2

δl,j−2

}
. (2.101)

Applying the Kronecker deltas to rewrite (2.4.2) in terms of l and simplifying gives a useful
expression for aT(lm)(k),

aT,+(lm)(k) =
1

8
(δm,2 + δm,−2)

√
(l + 2)!

(l − 2)!

×

[
∆+
I,l−2(k)

(2l − 1)(2l + 1)
−

2∆+
I,l(k)

(2l + 3)(2l − 1)
+

∆+
I,l+2(k)

(2l + 3)(2l + 1)

]
. (2.102)

For the × polarisation the expression is exactly the same except that ∆+
I,l(k) → ∆×

I,l(k), and
(δm,2 + δm,−2) → −i (δm,2 − δm,−2).

Now, moving on to the polarisation, the Stokes parameters induced by a tensor mode k, in
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the case of the + polarisation are given as

Q(k, n̂)
T0

=
1

4

∑
j

(2j + 1)Pj(cos θ)(1 + cos2 θ) cos 2φ∆̃+
Qj(k) ,

U(k, n̂)
T0

=
1

4

∑
j

(2j + 1)Pj(cos θ)2 cos θ sin 2φ∆̃+
Qj(k) .

(2.103)

Once again, making the substitution of (2.103) into the definition of the polarisation tensor
in equation (2.81) gives

Pab
+ (k, n̂)
T0

=
1

8

∑
j

(2j + 1)∆̃+
Qj(k)M

ab
j (n̂) , (2.104)

where

Mab
(j)(n̂) = Pj(cos θ)

(
(1 + cos2 θ) cos 2φ −2 cot θ sin 2φ
−2 cot θ sin 2φ −(1 + cos2 θ) csc2 θ cos 2φ

)
. (2.105)

This is substituted into the definition of the expansion coefficients for the E modes found in
(2.88) to give

aE,+(lm)(k) =
Nl

8

∑
j

(2j + 1)∆̃Qj(k)

∫
dn̂Y ∗

(lm)(n̂)Mab
(j);ab(n̂) . (2.106)

Explicitly performing the covariant derivative as follows,

Mab
(j);ab =M θθ

,θθ + 2M θφ
,θφ +Mφφ

,φφ − sin θ cos θMφφ
,θ + 2 cot θM θθ

,θ

+4 cot θM θφ
,φ + (1− 3 cos2 θ)Mφφ −M θθ , (2.107)

leads to the expression

Mab
(j);ab = cos 2φ[12(1− cos2 θ)Pj(cos θ) + 8 cos θ(1− cos2 θ)P ′

j(cos θ)

+(1− cos4 θ)P ′′
j (cos θ)] . (2.108)

For the × tensor mode polarisation, cos 2φ→ sin 2φ. Now, the identities,

Pm
l (x) = (−1)m(1− x2)

m
2
dm

dxm
[Pl(x)] , (2.109)

(2l + 1)
√
1− x2 Pm−1

l (x) = Pm
l−1(x) + Pm

l−1(x) , (2.110)

(1 + x2)Pj(x) =
P 2
j+2(x)

(2j + 1)(2j + 3)
−

2P 2
j (x)

(2j − 1)(2j + 3)
+

P 2
j−2(x)

(2j + 1)(2J − 1)
, (2.111)
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are used to rewrite (2.4.2). The identity (2.111) is used to rewrite the first term in (2.4.2), the
identity (2.109) is used to rewrite the final term, and a combination of (2.109) and (2.110)
are used to rewrite the second term. After rewriting entirely in terms of P 2

l it is found that

Mab
(j);ab = cos 2φ

[
(j + 3)(j + 4)P 2

j+2(cos θ)
(2j + 1)(2j + 3)

+
6j(j + 1)P 2j(cos θ)
(2j + 3)(2j − 1)

+
(j − 2)(j − 3)P 2

j−2(cos θ)
(2j + 1)(2j − 1)

]
. (2.112)

Now, the following identity is employed,

Y(lm)(θ, φ) =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimφ . (2.113)

This is used by noting that

cos 2φP 2
l (cosθ) =

1

2

(
ei2φP 2

l (cos θ) + e−i2φP 2
l (cosθ)

)
=

1

2

√
4π

(2l + 1)

(l + 2)!

(l − 2)!
(Yl,2+Yl,−2) .

(2.114)
This expression is used to rewrite the Legendre polynomials in (2.4.2) in terms of spherical
harmonics. Then the new expression for Mab

(j);ab(n̂) is substituted into the integral in (2.106)
giving

∫
dn̂Y ∗

(lm)(n̂) = (δm,2 + δm,−2)

√
π

(2l + 1)

(l + 2)!

(l − 2)!

[
(j + 3)(j + 4)

(2j + 1)(2j + 3)
δl,j+2

+
6j(j + 1)

(2j + 3)(2j − 1)
δl,j +

(j − 2)(j − 3)

(2j + 1)(2j − 1)
δl,j−2

]
. (2.115)

Then, (2.4.2) is substituted into (2.106) giving

aE,+(lm)(k) =
1

8

∑
j

(δm,2 + δm,−2)∆̃
+
Q,j(k)

√
2(l − 2)!

(l + 2)!

√
π

(2l + 1)

(l + 2)!

(l − 2)!

×

[
(j + 3)(j + 4)(2j + 1)

(2j + 1)(2j + 3)
δl,j+2 +

6j(j + 1)(2j + 1)

(2j + 3)(2j − 1)
δl,j +

(j − 2)(j − 3)(2j + 1)

(2j + 1)(2j − 1)
δl,j−2

]
.

(2.116)

The Kronecker deltas that contain j and l are applied, the first and third term in square brackets
are multiplied by 2l+1

2l+1
, and the expression is simplified,

aE,+(lm)(k) =
1

8
(δm,2 + δm,−2)

√
2π(2l + 1)

[
(l + 1)(l + 2)

(2l − 1)(2l + 1)
∆+
Q,l−2(k)
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+
6l(l + 1)

(2l + 3)(2l − 1)
∆+
Q,l(k) +

l(l − 1)

(2l + 1)(2l + 3)
∆+
Q,l+2(k)

]
. (2.117)

For the × polarisation the equation is the same, however as cos 2φ → sin 2φ then (δm,2 +

δm,−2) → −i(δm,2 − δm,−2).

A similar calculation is used to obtain the expansion coefficients for the B modes. The
result of the calculation is

aB,+(lm)(k) = − i

4
(δm,2 − δm,2)

√
2π

2l + l
[(l + 2)∆+

Q,l−1(k) + (l − 1)∆+
Q,l+1(k)] . (2.118)

Again, for the × polarisations −i(δm,2 − δm,−2) → −(δm,2 + δm,−2).

Now, it is important to notice that for CXB,+
l =

〈
aX∗,+
(lm) a

B,+
(lm)

〉
there will be a product of

the remaining Kronecker delta terms, (δm,2 + δm,−2)(δm,2 − δm,−2), which, after summing
over over m, is equal to zero. The product of the Kronecker deltas is the same for the ×
tensor mode polarisations, however the minus sign swaps places. So, the EB and TB cross
correlations vanish for both the tensor modes and the scalar modes. That is,

CXB
l = 0 , (2.119)

where X ∈ {T,E}. For the original calculation see [9] and [20].

2.4.3 The cross correlations under the birefringence effect

It is worth noting that the vanishing of the EB and TB cross correlations occurs in the pri-
mordial power spectra,CXB

l . However, in the presence of a uniform birefringence the linearly
polarised light is rotated and mixing of the E and B modes occurs in the observed spectra,
CXB,obs
l [47].

The effect of the rotation on the cross correlations is seen by applying a uniform rotation
of birefringence angle α to the E and B mode expansion coefficients to find the observed
value of the expansion coefficients,

aB,obs(lm) = aB(lm) cos 2α + aE(lm) sin 2α ,

aE,obs(lm) = −aB(lm) sin 2α + aE(lm) cos 2α .
(2.120)
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Therefore, the observed spectra for the self and cross correlations become

CTE,obs
l = CTE

l cos 2α ,

CTB,obs
l = CTE

l sin 2α ,

CEB,obs
l =

1

2
(CEE

l − CBB
l ) sin 4α; ,

CBB,obs
l = CBB

l cos2 2α + CEE
l sin2 2α ,

CEE,obs
l = CBB

l sin2 2α + CEE
l cos2 2α .

(2.121)

Measuring the deviation from zero of the EB and TB cross correlations is the best way
to measure the uniform rotation angle induced by the cosmological birefringence effect
[47][48][49].

2.4.4 Estimating errors in CMB experiments

In order to successfully forecast the CMB spectra in the presence of birefringence effects the
potential errors and noise must be taken into account. Kamionkowski, Kosowsky, and Steb-
bins [9], and Zaldarriaga and Seljak [50] lay out much of the analysis required for forecasting
the noise and errors for a temperature and polarisation map for a given CMB experiment. It
is important to note that the CMB temperature and the polarisation maps are pixelized. If
each pixel subtends the same area of sky then the expansion coefficients for the pixelized
temperature map are

dT(lm) =

∫
dn̂
(
Tmap(n̂
T0

)
Y(lm)(n̂)

' 1

T0

Npix∑
j=1

4π

Npix
Tmap
j Y(lm)(n̂j) .

(2.122)

Here, Tmap is the temperature map and Tmap
j is the temperature as measured by pixel j in

the direction n̂j [51]. The d(lm)s include the effects of both pixel noise and finite beam size.
In reality d(lm) ' a(lm) would be true if there were no pixelization noise. In reality Tmap

j =

Tj+T
noise
j where Tj is the observed temperature because of the true CMB signal. It is assumed

that each pixel has the same root mean square (rms) noise and it is assumed that there is no
correlation between temperature noise on each pixel and the cosmological temperature signal
measured by each pixel,

〈
T noise
i T noise

j

〉
= T 2

0 (σ
T
pix)

2δij,
〈
TiT

noise
j

〉
= 0 . (2.123)

Then it is possible to take the correlation of the expansion coefficients,

〈
dT(lm)d

T ∗
(l′m′)

〉
=
〈
aT(lm)a

T ∗
(l′m′)

〉
+
〈
aT,noise
(lm) aT,noise ∗

(lm)

〉
= |W b

l |2CT
l δll′δmm′ +

〈
aT,noise
(lm) aT,noise ∗

(l′m′)

〉
.

(2.124)
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The W b
l term accounts for the beam smearing. The beam is usually given by a Gaussian

window function W b
l ≈ exp(−l2σ2

b/2). Here σb = θFWHM/8 ln 2, where θFWHM is full width
of the beam at half maximum [10]. Now, the second term in (2.124) is found using the
definition of Tmap

j in terms of Tj and Tnoise, and using equation (2.122),

〈
aT,noise
(lm) aT,noise ∗

(l′m′)

〉
=

1

T 2
0

Npix∑
i=1

Npix∑
j=1

(
4π

Npix

)2 〈
T noise
i T noise

j

〉
Y(lm)(n̂i)Y ∗

(l′m′)(n̂j) . (2.125)

We then make a substitution of the ensemble average of the noise per pixel into the expression
for the noise in harmonic space. This substitution of equation (2.123) is substituted into
(2.125) gives

〈
aT,noise
(lm) aT,noise ∗

(l′m′)

〉
=

4π

Npix
(σTpix)

2

Npix∑
i=1

4π

Npix
Y(lm)(n̂i)Y ∗

(l′m′)(n̂i) =
4π(σTpix)

2

Npix
δll′δmm′ .

(2.126)
So finally the power spectrum,

〈
dT(lm)d

T ∗
(l′m′)

〉
=
(
|W b

l |2CT
l + w−1

T

)
δll′δmm′ , (2.127)

is obtained. The w−1
T factor is the noise power spectrum given in equation (2.126) [50].

This process must be repeated for polarisation. The correlations for the noise on the Stokes
parameters are 〈

Qnoise
i Qnoise

j

〉
=
〈
U noise
i U noise

j

〉
= T 2

0 (σ
P
pix)

2δij〈
Qnoise
i U noise

j

〉
=
〈
Qnoise
i T noise

j

〉
=
〈
U noise
i T noise

j

〉
= 0 .

(2.128)

Now, the noise polarisation tensor for a pixel i is denoted Pnoise
ab (n̂i). Using the Stokes pa-

rameter correlations and the tensor product it is found that

〈
Pnoise
ab (n̂i)Pnoise

cd (n̂j)
〉
=

1

4
T 2
0 (σ

P
pix)

2(gacgbd − εacεbd) ,〈
T noise
ab (n̂i)Pnoise

cd (n̂j)
〉
= 0 .

(2.129)

Now, it is possible to calculate the noise spectrum for the polarisation,

〈
aX,noise
(lm) aX

′,noise
(l′m′)

〉
=

(
4π

NpixT0

)2 Npix∑
i=1

Npix∑
j=1

Y X ab
(lm) (n̂i)Y X′ cd

(l′m′) (n̂i)
〈
Pnoise
ab (n̂i)Pnoise

cd )(n̂j)
〉

=
1

4

(
4πσPpix

Npix

)2 Npix∑
i=1

2Y X ab ∗
(lm) (n̂i)Y X′

(l′m′)ab(n̂i)

=
8π

Npix
(σPpix)

2δll′δmm′δXX′ ,

(2.130)
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where X,X ′ ∈ {E,B}. After a substitution for the expression for 〈Pnoise
ab (n̂i)Pnoise

cd (n̂j)〉
found in (2.129) is made the identity MabN cdεacεbd = −MabNab is used to reach the second
line in (2.129). Now, an expression for the power spectrum

〈
dX(lm)d

X′ ∗
(l′m′)

〉
can be written as

〈
dX(lm)d

X′ ∗
(l′m′)

〉
=
(
|W b

l |2CXX′

l + w−1
XX′

)
δll′δmm′

≡ DXX′

l δll′δmm′ .
(2.131)

These are the ensemble averages of the pixelized temperature and polarisation maps including
the pixelization noise [9]. Here, the w−1

XX′ terms are defined as

w−1
T =

4π(σTpix)
2

Npix
, w−1

EE = w−1
BB =

8π(σPpix)
2

Npix
. (2.132)

Now, X andX ′ have been redefined such thatX,X ′ ∈ {E,B, T}. These can be rewritten as
noting that (σpix)

2 = Npix(NET)2/tobs where tobs is integration time for the experiment, and
NET is the detector sensitivity in units of µKs1/2. So, w−1

T and w−1
P are

w−1
T =

4π(NET)2

tobs
, w−1

EE = w−1
BB =

8π(NET)2

tobs
. (2.133)

Up to this point only the power Cl and Dl values that have been considered are found
by taking the average of the ensemble of possible realizations of the random process that
produces the CMB power spectrum. However, there is only one observable universe that can
be measured and therefore only one realization. Therefore, the true ensemble average cannot
be found directly from measurements of the CMB power spectrum. Instead it is necessary
to construct estimators for Cl and Dl using the measured alms and dlms respectively. The
estimators are found by taking the mean over the 2l + 1 measured alm or dlm values,

CX̂X′
l =

1

2l + 1

l∑
m=−l

aX ∗
(lm)a

X′

(lm), DX̂X′
l =

1

2l + 1

l∑
m=−l

dX ∗
(lm)d

X′

(lm) . (2.134)

These two estimators are related to each other as follows [50]:

CX̂X′
l =

l∑
m=−l

(
DX̂X′
l − w−1

XX′

)
|W b

l |−2 . (2.135)

There are three different sets of d(lm) coefficients for six sets of the measured Dl moments.
Therefore, there will be some covariance between the measuredDl moments. It is possible to
construct a covariance matrix that describes the covariances between different Dl moments,

ΞAA′ ≡
〈
ĈA
l Ĉ

A′
l

〉
− CA

l C
A′

l

=
(〈
D̂A
l D̂

A′
l

〉
−DA

l D
A′

l

)
|W b

l |−4 ,
(2.136)
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where A = XX ′. It is now necessary to find
〈
D̂A
l D̂

A′
l

〉
in a more useful form. Begin by

noting that for Gaussian random variables
〈
x2ix

2
j

〉
= σ2

iiσ
2
jj−2σ2

ij . Now, starting with the TT ,
EE and BB elements of the covariance matrix, the first term in the second line of equation
(2.136) is 〈

D̂XX
l D̂X′X′

l

〉
=
∑
mm′

〈
|dX(lm)|2|dX

′

(lm)|2
〉

(2l + 1)2
. (2.137)

This can then expanded by treating the dlm coefficients as Gaussian random variables,

〈
D̂XX
l D̂X′X′

l

〉
=

1

(2l + 1)2

∑
mm′

[〈
dX(lm)d

X
(lm)

〉 〈
dX

′

(lm′)d
X′

(lm′)

〉
+ 2

〈
dX(lm)d

X′

(lm′)

〉2]
.

(2.138)
Then the definition of Dl can be used to give〈

D̂XX
l D̂X′X′

l

〉
=

1

(2l + 1)2

∑
mm′

[
DXX
l DX′X′

l + 2(DXX′

l )2δmm′

]
= DXX

l DX′X′

l +
2

2l + 1
(DXX′

l )2 .

(2.139)

Now, the XX ′, XX ′ components must be found,〈
D̂XX′
l D̂XX′

l

〉
=

1

(2l + 1)2

∑
mm′

〈
dX ∗
(lm)d

X′

(lm)d
X ∗
(lm′)d

X′

(lm′)

〉
. (2.140)

Using a similar procedure to before, this becomes〈
D̂XX′
l D̂XX′

l

〉
=

1

(2l + 1)2

∑
mm′

[
DXX
l DX′X′

l + 2(DXX′

l )2
]
δmm′ + (1− δmm′)(DXX′

)2

=
1

2l + 1

[
(DXX′

l )2 +DXX
l DX′X′

l

]
+ (DXX′

l )2 .

(2.141)
Now, the final set of terms are the

〈
D̂XX
l D̂XX′

l

〉
terms which are

〈
D̂XX
l D̂XX′

l

〉
=

(
2

2l + 1
+ 1

)
DXX
l DXX′

l . (2.142)

From all these terms and equation (2.136) it is possible to construct the full 6× 6 covariance
matrix [50][52]. The covariance matrix is useful as it can be used to calculate the Fisher ma-
trix [53]. The components of the Fisher matrix, Fij , for a given set of cosmological parameter
xi are

Fij =
∑
l

∑
A,A′

∂CA
l

∂xi
[Ξ−1]AA′

∂CA′

l

∂xj
, (2.143)

whereA isXX andXX ′ [54]. It is desireable to be able to include the effect of only mapping
a fraction of the sky. If the noise is taken to not be correlated between different multipoles
then the Fisher matrix is just multipled by the fsky, which is the fraction of the sky that has
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been surveyed [55]. This gives

Fij = fsky
∑
l

∑
A,A′

∂CA
l

∂xi

[
Ξ−1

]
AA′

∂CA′

l

∂xj
(2.144)

The inverse of this matrix provides useful information about the uncertainties of the cosmo-
logical parameters,

[F ]−1 =

(
σ2
i σij

σij σ2
j

)
(2.145)

where σi and σj are the uncertainties for the ith and jth parameters respectively. If the ith
parameter was Ωk the 1-σ uncertainty of this parameter would then be σΩk

=
√
[F−1]ii.

Here the other parameters have been marginalized over. That is, this is the uncertainty if the
other parameters are allowed to take any value [56]. Using the Fisher matrix it is possible to
estimate the precision with which a CMB map will be able to recover particular cosmological
parameters. Therefore, using the Fisher matrix, the covariance matrix, and the equations
for the estimators for the power spectrum it is possible to forecast how well an experiment
will measure the CMB power spectrum, and how precisely it will measure the cosmological
parameters.

2.4.5 Data from the CMB

There have been a number of different experiments that have attempted to measure the bire-
fringence rotation angle. However, it is very difficult to calibrate such an experiment. This
is because the majority of CMB polarisation experiments test calibration assuming that the
EB and TB cross correlation spectra are zero. However, as these are also the spectra that
are used to measure the rotation angle this means that a different calibration method must
be used. Inaccuracies in these calibration methods lead to problematic systematics in bire-
fringence angle measurements. A discussion of some of the calibration methods used by
CMB polarisation experiments is contained in [57]. These difficulties have lead to a range of
measured values for a uniform birefringence angle as seen in table 2.1. Upcoming CMB ex-
periments that may measure the CMB polarisation angle to a greater accuracy include CMB
S4, LiteBIRD, BICEP array, and Simons Observatory.

It is also possible that the birefringence rotation angle is not uniform but anisotropic as
seen in equation (2.43). A number of more recent works have attempted to measure this
anisotropy. However, these experiments so far have found the anisotropy of the birefringence
angle to be heavily constrained and consistent with zero [43][67][68].
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Experiment Frequency (Ghz) l range α (degrees)
WMAP7[58] 41 + 61 + 94 2 - 800 −1.1± 1.4 (±1.5)
WMAP9[59] 53 2-800 −0.36± 1.24 (±1.5)
BOOM03[58] 143 150 - 1000 −4.3± 4.1

QUaD[60] 100 200 - 2000 −1.89± 2.24 (±0.5)
QUaD[60] 150 200 - 2000 +0.83± 0.94 (±0.5)

BICEP1[61] (DSC) 100+150 30 - 300 −2.77± 0.86 (±1.3)
BICEP1 (grid)[61] 100+150 30 - 300 −1.71± 0.86 (±1.3)

BICEP1 (design)[61] 100 + 150 30 - 300 −1.27± 0.86 (±1.3)
POLARBEAR[62] 150 500 - 2100 −1.08± 0.2 (±0.5)

BICEP2[63] 150 30 - 300 α ≈ −1± 0.2a

ACTPol[64] 146 500 - 2000 α = −0.2± 0.5
Planck[65] Multiple 2 - 29 & 30 - 2500 0.0± 1.3 (±1)

Planck + BKP[65] Multiple 2 - 29 & 30 - 2500 0.32± 0.26 (±1)
Planck [66] Multiple, SMICA map based α < 0.72◦

Table 2.1: This table contains the rotation angles from CMB polarisation with 1σ statistical
and (systematic) uncertainty. In the final row the 95% C.L. constraint is presented.

a Systematic error is unpublished.
[57]

2.5 Using the CMB to detect anisotropic birefringence

2.5.1 Sources of anisotropic birefringence

In the case of anisotropic cosmological birefringence the cosmic polarization rotation angle α
varies across the sky. This field of rotation angles is denotedα(n̂). It is helpful to quantify this
field in terms of its power spectrum, Cαα

L . It is then possible to make comparisons between
observed spectrum and that predicted by theoretical models in order to test such models.
There are two major scenarios in which an anisotropic cosmic birefringence effect could be
produced.

The first is the case of anisotropic birefringence generated by a spatially varying pseudo
scalar field φ as seen in equation (2.43). In the simplest scenario the pseudo scalar field is
effectively massless during inflation leading to the scale invariant power spectrum for the
cosmic polarization rotation field, α(n̂) [44],

L(L+ 1)

2π
Cαα
L =

(
HI

2πfa

)2

, (2.146)

where HI is the Hubble constant during inflation and fa is the coupling strength between the
photon and a. The second case is the case of birefringence generated by Faraday rotation in
the presence of primordial magnetic fields;

α(n̂) =
3

16π2eν2

∫
dl · τ̇b . (2.147)

Here, b is the comoving magnetic field, ν is the observed frequency, and τ̇ is the differential
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Experiment ACB × 10−4 [rad2]
WMAP 3.0 [77]

Planck (2018 release) 0.32 [78]
POLARBEAR 3.1 [43]
BICEP/Keck 0.33 [68]

SPTpol 0.1 [79]
ACT 0.1 [80]

Table 2.2: The 95% confidence limit (C.L.) upper bounds on ACB, the amplitude of a scale
invariant form of Cαα

L . Note that the result presented here, and in the source literature for
WMAP is the 68% C.L. result.

optical depth. The scale invariant power spectrum in this case is [69]

L(L+ 1)

2π
Cαα
L = 2.3× 10−5

(
30GHz
ν

)4(
B

1 nG

)2

. (2.148)

It is possible to write both of these more generally as [70]

L(L+ 1)

2π
Cαα
L = ACB , (2.149)

where ACB is a measured amplitude parameter. An anisotropic cosmological birefringence
effect would distort the CMB polarization maps with a direction dependent rotation of the
linear polarization angle of the photons propagating from the surface of last scatter. It is
possible to search for these distortions in order to reconstruct α(n̂).

2.5.2 Current constraints on anisotropic Birefringence from recent experiments

Data from range of satellite and ground based CMB experiments have been to used to place
constraints on the amplitude, ACB, for the anisotropic birefringence power spectrum, Cαα

L .
These limits assume a scale invariant form for Cαα

L (see equation (2.149).These experiments
include the Wilkinson Microwave Anisotropy Probe (WMAP) [71], Planck [72], POLAR-
BEAR [73], SPTpol [74], BICEP/Keck [75], and the Atacama Cosmology Telescope (ACT)
[76]. These constraints are found by exploiting the distortions of the CMB polarization gen-
erated by the anisotropic birefringence field. Therefore, unlike in the case of uniform bire-
fringence, constraints on anisotropic birefringence are not limited by the absolute calibration
angle error.

The constraints for the aforementioned experiments are listed in Table 2.2. The best con-
straints, to date, come from the SPTpol, and ACT data. In the vast majority of these experi-
ments a QE based technique is used to estimate the birefringence spectrum, Ĉαα

L . The details
of QEs used to perform this estimation are presented in Section 2.5.3-2.5.4. In the case of the
Planck analysis the power spectrum was estimated using a large-pixel approach. In this ap-
proach the sky was separated into small patches or “pixels”. The uniform birefringence angle
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was calculated for each of these “pixels”. These values were then used produce a map of the
direction dependent birefringence field α(n̂). From this map Ĉαα

L was inferred [67], [78]. In
both the QE approach and the large-pixel approach likelihood analysis was then employed in
order to calculate the upper bounds on ACB [43], [68], [77]–[81].

2.5.3 The anisotropic birefringence QE in the flat sky limit

The majority of the CMB experiments which seek to either detect or place constraints on
anisotropic birefringence have used a QE in order to reconstruct a map ofα(n̂). These QEs ex-
ploit the off diagonal correlations in the CMB covariance matrix, 〈alma∗l′m′〉, that are sourced
by direction dependent distortions of the CMB maps [82].

The POLARBEAR [43], SPTpol [79], and BICEP/Keck [68] surveys all have a small
enough sky-coverage that a flat-sky approximation can be used. Here, we will follow the
approach found in [83] to summarize the derivation of a flat-sky QE. To begin constructing
a QE it is necessary to understand how an anisotropic rotation of linear polarisation, α(L),
affects the polarisation modes. In the flat sky limit the E(l) and B(l) modes are written as
fields in l-space, where l is the multipole vector. The observed Stokes parameters are used to
construct the E(l) and B(l) fields in a Fourier basis,

[Ẽ ± iB̃](l) = −
∫
dn̂[Q± iU ](n̂)e∓2iφle−in̂·l , (2.150)

where Q(n̂) and U(n̂) are the Stokes parameters at angular position n̂, and φl is the angle of
the multipole vector. This angle is measured from the axis which is defined with respect to
the Q parameter. The exponential rotation term containing the angle of the multipole vector
is necessary to transform the Q̃(l) and Ũ(l) Stokes parameter into Ẽ(l) and B̃(l) the flat sky
terms analogous to aElm and aBlm. This rotation is often written in matrix form [84];(

Ẽ(l)
B̃(l)

)
=

(
cos 2φl sin 2φl

− sin 2φl cos 2φl

)(
Q̃(l)
Ũ(l)

)
. (2.151)

In analogy to this rotation the effect of cosmological birefringence on the Q(n̂) and U(n̂)
Stokes parameter is also introduced through an exponential rotation term [70],

[Q̆± iŬ ](n̂) = e∓2iα(n̂)[Q± iU ](n̂) . (2.152)

When this rotation is introduced (2.150) becomes

[Ĕ ± iB̆](l) = −
∫
dn̂e∓2iα(n̂)[Q± iU ](n̂)e∓2iφle−in̂·l . (2.153)

As the α parameter is constrained to be small it is possible to Taylor expand this expression
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in terms of α to first order, leading to

[Ĕ ± iB̆](l) = [Ẽ ± iB̃](l) +
∫
dn̂

d2L
(2π)2

± 2iα(L)[Q± iU ](n̂)e∓2iφle−in̂·lein̂·L . (2.154)

Here, α(n̂) has been rewritten using α(n̂) =
∫

d2L
(2π)2

α(L)ein̂·L. Taking the Fourier transform
of the final term in (2.154) and writing Q and U as a rotation of E and B gives

[Ĕ ± iB̆](l) = [Ẽ ± iB̃](l) +
∫

d2L
(2π)2

± 2iα(L)[Ẽ ± iB̃](l − L)e±2i(φl−L−φl) . (2.155)

Euler’s formula is employed to rewrite (2.155) as

[Ĕ ± iB̆](l) = [Ẽ ± iB̃](l) +
∫

d2L
(2π)2

2α(L)[−B̃(l − L) cos 2φl−L,l − Ẽ(l − L) sin 2φl−L,l

±iẼ(l − L) cos 2φl−L,l ∓ iB̃(l − L) sin 2φl−L,l] , (2.156)

where φl−L,l = φl−L − φl. So the full rotated Ĕ(l) and B̆(l) fields are

Ĕ(l) = Ẽ(l) + Eα(l) ,

B̆(l) = B̃(l) +Bα(l) ,
(2.157)

where the rotation introduces the corrections Eα(l) and Bα(l) which are given as

Eα(l) = −
∫

d2l′

(2π)2

[
B̃(l′) cos 2φl′,l + Ẽ(l′) sin 2φl′,l

]
2α(L) ,

Bα(l) =
∫

d2l′

(2π)2

[
Ẽ(l′) cos 2φl′,l − B̃(l′) sin 2φl′,l

]
2α(L) ,

(2.158)

where the relabeling l′ = l − L has been used.

To find the variance on α it is important to know the values of the ensemble averages of
the rotated fields. For and unrotated field x̃(l), where x̃(l) ∈ {Ẽ(l), B̃(l), T̃ (l)},

〈x̃(l)〉 = 0 , 〈x̃∗(l)x̃′(l′)〉 = (2π)2δ(l − l′)C̃xx′

l . (2.159)

To look at how the ensemble averages of the rotated fields behave, for a fixed value of α(L)
it is useful to look at the case of

〈
Ĕ∗(l1)B̆(l2)

〉
, where

〈
Ĕ∗(l1)B̆(l2)

〉
=
〈
Ẽ∗(l1)B̃(l2)

〉
+
〈
Eα(l1)B̃(l2)

〉
+
〈
Ẽ∗(l1)Bα(l2)

〉
+ 〈Eα(l1)Bα(l2)〉 .

(2.160)
Using the sifting property of the Dirac delta to negate sine containing terms, and using the
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property that
〈
Ẽ∗(l1)B̃(l2)

〉
= 0 this reduces to

〈
Ĕ∗(l1)B̆(l2)

〉
=

∫
d2l′1
(2π)2

[〈
Ẽ(l′1)Ẽ(l2)

〉
cos 2φl′1,l2 −

〈
B̃(l′1)B̃(l2)

〉
cos 2φl′1,l2

]
,

(2.161)
which, after taking the integral, gives〈

Ĕ∗(l1)B̆(l2)
〉
= 2

[
C̃EE
l1

− C̃BB
l2

]
cos 2φl1,l2 . (2.162)

For brevity the term on the right hand side of the equation is denoted fEB(l1, l2). In general
[85]

〈x̆∗(l)x̆′(l′)〉 = 〈x̃∗(l)x̃′(l′)〉+ fxx′(l, l′)α(L) , (2.163)

where for the E(l) and B(l) fields

fEE(l1, l2) = 2
[
C̃EE
l1

− C̃EE
l2

]
sin 2φl1,l2 ,

fBB(l1, l2) =
[
C̃BB
l1

+ C̃BB
l2

]
sin 2φl1,l2 .

(2.164)

It is now possible to invert (2.163) in order to construct the unbiased estimator for α(L).
As seen in [86] this can be written as

α̂xx′(L) = Axx′(L)

∫
d2l1
(2π)2

[x̆(l1)x̆′(l2)− 〈x̃(l1)x̃′(l2)〉]Fxx′(l1, l2) , (2.165)

where the normalisation term is defined as

Axx′(L) =

[∫
d2l1
(2π)2

fxx′(l1, l2)Fxx′(l1, l2)
]−1

, (2.166)

and the L vector is defined as L = l2 − l1. The normalization term, and the speccific form of
the Fxx′(l1, l2) term, defined as

Fxx′(l1, l2) =
fxx′(l1, l2)
Cxx
l1
Cx′x′
l2

, (2.167)

are found by minimizing the variance of the estimator in (2.165). The Cxx
l terms are con-

structed from the observed maps. The variance on Cαα
L is then

〈α̂(L)α̂∗(L′)〉 − 〈α̂(L)〉2 = ∆Cαα
L = (2π)2δ(L − L′) [Cαα

L + AEB(L)] , (2.168)

giving the variance for anisotropic birefringence in the flat sky limit.
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2.5.4 The anisotropic birefringence QE in the full sky formalism

For experiments with a larger sky coverage, such as WMAP [77], Planck [78] and ACT [80],
the flat-sky approximation is not valid. In this case a full-sky QE is needed. Note, that for the
Planck analysis in [67] and [78] a QE was not used to reconstruct α(n̂). A full-sky QE can be
found by following the approach outlined in in [39] and [38]. This approach is summarized
here.

As in the flat sky case it is necessary to understand how anisotropic birefringence affects
the E and B modes. First the Q(n̂) and U(n̂) Stokes parameters are rotated by the direction
dependent rotation angle α(n̂) as(

Qobs(n̂)
Uobs(n̂)

)
=

(
cos 2α(n̂) sin 2α(n̂)
− sin 2α(n̂) cos 2α(n̂)

)(
Q(n̂)
U(n̂)

)
. (2.169)

As seen in equation (2.81) it is possible to write the Stokes parameters as a symmetric, trace-
free polarisation tensor Pab(n̂). Recall that the polarisation tensor has the form

Pab(n̂) =
∞∑
l=2

l∑
m=−l

[
ElmY

E
(lm)ab(n̂) +BlmY

B
(lm)ab(n̂)

]
, (2.170)

where a minor change of notation has been introduced such that Elm ≡ aElm and Blm ≡ aBlm.
As the effect of anisotropic birefringence on the polarisation tensor must be small [43], it is
possible to write the effect as a perturbation;

Pab(n̂) → Pab(n̂) + δPab(n̂) . (2.171)

For simplicity it is assumed that at the surface of last scatter the polarisation tensor is made
of purelyE mode. The perturbation is then formed of pureE mode that have rotated by α(n̂)
into a B mode. This is expressed as [39]

δPab(n̂) = 2α(n̂)P r
ab(n̂) , (2.172)

where P r
ab(n̂) is the original, pure E mode containing polarisation tensor rotated 45◦ com-

pletely into a pure B mode. The P r
ab(n̂) tensor is therefore expressed as

P r
ab(n̂) =

∞∑
l=2

l∑
m=−l

ElmY
B
(lm)ab . (2.173)

The anisotropic rotation can be expanded in spherical harmonics as it a direction dependent
scalar field. Therefore,

α(n̂) =
∑
LM

αLMYLM(n̂) . (2.174)
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The αLM coefficient is useful as it is possible to use it to construct the Cαα
L power spectrum.

However, it is important to relate the αLM and the variance of the estimator of this coefficient
to the observed polarisation modes. The orthonormality properties the spherical harmonics
mean that it is possible to express the change in polarisation modes due to the rotation as

δBlm =

∫
dn̂δPab(n̂)Y B∗,ab

(lm) (n̂) ,

δElm =

∫
dn̂δPab(n̂)Y E∗,ab

(lm) (n̂) .
(2.175)

Inserting the explicit expression for α(n̂) and δPab(n̂) gives

δBlm = 2
∑
LM

∑
l2m2

αLMEl2m2

∫
dn̂Y B∗,ab

(lm) Y(LM)Y
B
(l2m2)ab

,

δElm = 2
∑
LM

∑
l2m2

αLMEl2m2

∫
dn̂Y E∗,ab

(lm) Y(LM)Y
B
(l2m2)ab

.

(2.176)

As seen in Section 2.4.1 the Y B
(lm)ab and Y E

(lm)ab are respectively expressed as curl-containing
and curl free derivatives of the spherical harmonics. These derivatives can be more simply
expressed in terms of spin weighted spherical harmonics. Expressing Y B

(lm)ab and Y E
(lm)ab in

terms of spin weighted spherical harmonics its possible to write

Y B∗,ab
(lm) Y B

(l2m2)ab
=

1

2

[(
−2Y

∗
(lm) × −2Y(l2m2)

)
+
(
+2Y

∗
(lm) × +2Y(l1m2)

)]
,

Y E∗,ab
(lm) Y B

(l2m2)ab
=
i

2

[(
+2Y

∗
(lm) × +2Y(l2m2)

)
−
(
−2Y

∗
(lm) × −2Y(l1m2)

)]
.

(2.177)

It is possible to use these expressions to rewrite the integrals in (2.176). Note, that it is
possible to express the integral of three spin weighted spherical harmonic in terms of Wigner-
3j symbols and that Y(LM) is a spin weighted spherical harmonic with a spin of 0 (that is
Y(LM) = 0Y(LM)). Therefore, the integral in the expression for δBlm is written as

∫
dn̂Y B∗,ab

(lm) Y(LM)Y
B
(l2m2)ab

=
1

2
(−1)m

√
(2l + 1)(2L+ 1)(2l2 + 1)

4π

×

[(
l L l2

−2 0 2

)
+

(
l L l2

2 0 −2

)](
l L l2

−m M m2

)
. (2.178)

A convenient notation is defined,

ξLMlml2m2
≡ (−1)m

√
(2l + 1)(2L+ 1)(2l2 + 1)

4π

(
l L l2

−m M m2

)
,

HL
ll2

≡

(
l L l2

2 0 −2

)
.

(2.179)

A compact expression for the change in the polarisation B mode due to direction dependent
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rotation is
δBlm = 2

∑
LM

∑
l2m2

αLMEl2m2ξ
LM
lml2m2

HL
ll2
, (2.180)

where the nonzero terms in the sum are those where l+ L+ l2 is even. Similarly the change
in the E mode can be written

δElm = 2i
∑
LM

∑
l2m2

αLMEl2m2ξ
LM
lml2m2

HL
ll2
, (2.181)

where the only surviving nonzero terms in the sum are those for which l + L+ l2 is odd.

As the effect of birefringence on the E and B modes is expressed Elm + Elm,0 + δElm

and Blm = δBlm, where Elm,0 is Elm at the surface of last scattering, the primordial power
spectrum for Elm is expressed as

〈
Elm,0E

∗
l′m′,0

〉
= CEE

l δll′δmm′ . (2.182)

Therefore, it is possible to write expressions for the full polarisation power spectra and the
cross spectra, including the effects of anisotropic cosmological birefringence, in terms of the
unrotated power spectra. For example, the full EB cross correlation can be written, to first
order in αLM , as

〈BlmE
∗
l′m′〉 = 2

∑
LM

αLMC
EE
l′ ξLMlml′m′HL

ll′

=
1√
π
α00C

EE
l′ δll′δmm′

+ 2
∑
L≥1

L∑
M=−L

αLMC
EE
l′ ξLMlml′m′HL

ll′ ,

(2.183)

These off-diagonal correlations in this CMB covariance can be exploited to to reconstruct
αLM using a quadratic estimator. Now it is possible to define shorthand expression for m
independent terms in the full power spectra. In general this term can be defined

DLM,A
ll′ ≡ 2αLMZ

A
ll′H

L
ll′ , (2.184)

where A ∈ {BE,EB, TB,BT, TE,ET,EE} for l 6= l′ and A ∈ {BE, TE, TB,EE} for
l = l′. In the case of the BE cross correlation it is easy to see from equation (2.183) that
ZBE
ll′ = CEE

l′ . There are similar expressions for the otherZA
ll′ . UsingDLM,A

ll′ , equation (2.183)
can be neatly re-expressed as

〈BlmE
∗
l′m′〉 =

∑
LM

DLM,BE
ll′ ξLMlml′m′ . (2.185)
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More generally,
〈Xlm(X

∗
l′m′)′〉 =

∑
LM

DLM,XX′

ll′ ξLMlml′m′ , (2.186)

whereX ∈ {T,E,B}. The next step is to find an estimator forDLM,A
ll′ . This begins by noting

that if DLM,XX′,map
ll′ is built from spherical harmonic coefficients obtained from a map then

DLM,XX′,map
ll′ = DLM,XX′

ll′ W b
lW

b
l′ (2.187)

where W b
l is the beam window function defined as W b

l = exp(−l(l + 1)σ2
b/2) and σb =

θFWHM/8 ln 2. As seen in [87] in the minimum variance estimator forDLM,XX′,map
ll′ is obtained

by multiplying both sides of the expression in (2.186) by ξL′M ′

lml′m′ and taking the sum over m
and m′ to give

D̂LM,XX′,map
ll′ =

[∑
mm′

(ξLMlml′m′)2

]−1∑
mm′

Xmap
lm Xmap

l′m′ξ
LM
lml′m′ . (2.188)

Note that the Xmap
lm are the harmonic space fields that correspond to the observed real space

maps, and are therefore convolved with a Gaussian beam. To simplify the notation,

GL
ll′ ≡

∑
mm′

(ξLMlml′m′)2 =
(2l + 1)(2l′ + 1)

4π
. (2.189)

The final term in this expression is shown to be true in the appendix of [38]. The estimator
D̂LM,XX′,map
ll′ is a useful quantity as it is a measured quantity from which the value αLM

can be found. This is the case because DLM,A
ll′ is directly related to αLM as seen in (2.184).

Therefore, it is straightforward to infer from equation (2.184) that the estimator for αLM is
related to D̂LM,XX′,map

ll′ as

(α̂LM)All′ =
D̂LM,A,map
ll′

FL,A
ll′

, (2.190)

where
FL,A
ll′ ≡ 2ZA

ll′H
L
ll′W

b
lW

b
l′ . (2.191)

Defining the estimator for αLM in this way is useful as (α̂LM)A is proportional to D̂LM,A,map
ll′

meaning that the covariance of (α̂LM)A is found entirely in terms of the covariance of the
estimator D̂LM,A,map

ll′ scaled by factors of FL,A
ll′ . The covariance of D̂LM,A,map

ll′ is defined as

Cll′AA′ ≡ GL
ll′

(〈
D̂LM,A,map
ll′ D̂LM,A′,map

ll′

〉
−
〈
D̂LM,A,map
ll′

〉〈
D̂LM,A′,map
ll′

〉)
. (2.192)

The total minimum variance estimator α̂LM is found by summing (α̂LM)A overA, and inverse
variance weighting this sum by the total covariance. Therefore, the total estimator is

α̂LM = σ2
αLM

∑
l′≥l

∑
AA′

FL,A′

ll′ D̂LM,A,map
ll′

[
(Cll′)−1

]
AA′

, (2.193)
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and the noise for the estimator is

σ2
αLM

=

(∑
l′≥l

GL
ll′

∑
AA′

FL,A
ll′ FL,A′

ll′

[
(Cll′)−1

]
AA′

)−1

. (2.194)

This is the value of the noise on the anisotropic birefringence power spectrum if it is measured
using information from the range of polarisation maps and cross spectra. It is often necessary
to know the variance for the estimator when αLM is found using single power spectrum or
cross correlation spectrum. In the case of the EB cross correlation, the estimator is

α̂LM = σ2
αLM

∑
l′≥l

(1 + δll′)
−1GL

ll′

(
FL,BE
ll′ D̂LM,BE,map

ll′

CBB,map
l CEE,map

l′

+
FL,EB
ll′ D̂LM,EB,map

ll′

CEE,map
l CBB,map

l′

)
, (2.195)

with a variance of

σ2
αLM

=

[∑
l′≥l

(1 + δll′)
−1GL

ll′

(
(FL,BE

ll′ )2

CBB,map
l CEE,map

l′

+
(FL,EB

ll′ )2

CEE,map
l CBB,map

l′

)]−1

. (2.196)

This QE is then used to estimate, α̂LM and, therefore, α(n̂). From α̂LM the power spectrum
Ĉαα
L is found and a model dependent likelihood approach is used to constrain the amplitude

of Ĉαα
L [43], [81].

There are a range of different combinations of correlation that can be used in the QE.
However, the EB correlations result in a comparatively lower variance than other choices of
correlations in the majority of cases. Moreover, including other choices of correlations does
not offer significant improvement over using EB alone [29].

2.6 Instrument systematics and the CMB B-modes

2.6.1 The importance of systematics diagnosis for B-mode detection

As the sensitivity of CMB polarization experiments continues to improve, with upcoming
experiments such as LiteBIRD [88] and Simons Observatory [16] predicting unprecedent-
edly low levels of statistical instrument noise, a major concern in the search for primordial
B-modes are systematic effects arising from imperfections in the instrument. With the low
levels of expected instrument noise in future and contemporary experiments, systematic ef-
fects that generate distortions in the CMB maps are expected to have a relatively large impact
on measurements of CMB polarization. Indeed, many systematic effects such as a differen-
tial detector gain can generate a spurious B-mode signal [89]. Therefore it will be important
to diagnose and remove these systematics in order for robust claims of primordial B-mode
detection to be made, or for strong constraints to be placed on the value of the tensor-to-scalar
ratio, r.
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It may be possible to use the CMB distortions generated by systematic effects in the instru-
ment to diagnose the systematic effects using a QE, and potentially remove these distortions
from the CMB maps [28]. In order to carry this out one must be able to correctly relate the
distortions to their corresponding instrument systematics. There are two parts to this pro-
cess; (i) characterizing a particular CMB distortion in terms of its corresponding instrument
systematic and the instrument scan, and (ii) characterizing the effect of the distortion on the
CMB maps, and the power spectra of these maps.

2.6.2 The instrument systematic and the scan

In order to assess the impact a systematic will have on the CMB maps, it is necessary to un-
derstand the relationship between a given systematic and the distortion it produces. This dis-
tortion in the CMB is sourced by a coupling between a particular imperfection in instrument
design and the scan pattern of the instrument [89]. A comprehensive formalism describing
this coupling is outlined in [90]; this expands on some of the work seen in [89]. The details
that are relevant to this thesis are summarised below.

One begins by writing the signal detected in a given pixel as a function of orientation,
Sd(ψ, n̂), in terms of the scan, h(ψ, n̂) and the signal in a pixel for a given crossing of that
pixel, S(ψ, n̂),

Sd(ψ, n̂) = h(ψ, n̂)S(ψ, n̂) . (2.197)

Here, n̂ = (θ, φ), and represents the on-sky latitude and longitude of each pixel respectively,
and ψ represents the orientation of the focal plane of the detector with respect to north; the
three angles together form the Euler angles for the pointing of the telescope [89]. An arbitrary
scan may be described as

h(ψ, n̂) =
2π

Nhits(n̂)
∑
j

δ(ψ − ψj(n̂)) , (2.198)

where Nhits(n̂) is the number of crossings of a given pixel in the n̂ direction and j represents
a discrete element in a set of angles of detector plane orientation for that pixel.

Both the detected signal and the scan may be decomposed as Fourier series into compo-
nents of different spin, k. Written as a series of spins, the signal in the detectors is

Sd(ψ, n̂) =
∑
k

kS̃
d(n̂)e−ikψ . (2.199)

Much like the real space scan field in (2.198), the Fourier space scan can be written explicitly
as a sum over the detector orientations,

h̃k(n̂) =
1

Nhits(n̂)
∑
j

eikψj(n̂) . (2.200)
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The Fourier space detector signal, kS̃d(n̂), is then a convolution of the Fourier space scan,
h̃k(n̂), and Fourier space signal for each crossing, S̃k(n̂) so that

kS̃
d(n̂) =

∞∑
k′=−∞

h̃k−k′(n̂)S̃k′(n̂) . (2.201)

The effect of given instrument systematic coupling to a given scan can then be translated into
a detected on-sky signal. That is, this convolution allows the characterization of a systematic
sourced CMB distortion in terms of the scan and an instrument effect.

This can be illustrated using the example of a differential detector gain present between two
detector pairs. Consider the case where pair differencing is used to extract the polarization
signal from the detected CMB signal. Note that the polarization forms the spin-2 portion of
the detected signal. By calculating S̃k(n̂) in the presence of a differential gain it is possible,
using equation (2.201), to write down the resulting spin-2 portion of the detected signal in
terms of the scan strategy and differential detector gain for the two detector pairs used in the
pair differencing [90]. This gives

2S̃
d(n̂) = h̃0(n̂)P (n̂) +

1

2
h̃2(n̂)(δg1 − iδg2)T (n̂)

+
1

4
h̃0(n̂)(gA1 + gB1 + gA2 + gB2 )P (n̂) +

1

4
h̃4(n̂)(gA1 + gB2 − gA2 − gB2 )P

∗(n̂) . (2.202)

Here, T (n̂) andP (n̂) represent the temperature and polarization parts of the CMB signal. The
gains of the detectors in detector pair i are denoted either gAi or gBi , with the A and B used to
distinguish between the detectors in a given pair. The term δgi represents the differential gain
in detector pair i and is defined so that δgi = gAi − gBi . The first term on the right hand side
of (2.6.2) represents the polarization signal, unaffected by any distortion. The second term,
1
2
h̃2(n̂)(δg1− iδg2)I(n̂), represents leakage from temperature to polarization. The remaining

terms represent a distortion in the form of an overall amplification of the polarization, however
they have a significantly smaller impact in comparison to the temperature to polarization
leakage as the temperature signal is significantly larger in amplitude than the polarization
signal.

2.6.3 Müller matrices and distortion field

The next step is to characterize how a particular distortion, or a complex set of distortions
may impact CMB measurements at the map level, and by extension the measurement of the
primordialB-mode signal. To do this a Müller matrix approach can be used. A Müller matrix
formalism, used to calculate the impact of particular distortion on the CMB power spectra is
described in [91].

Much of this section will follow the analysis found in [91]. The Müller matrix approach
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describes the observed Stokes vector sobs = (Tobs, Qobs, Uobs, Vobs)
T as follows:

sobs = Ms , (2.203)

where the Müller matrix is defined as

M ≡


MTT MTQ MTU MTV

MQT MQQ MQU MQV

MUT MUQ MUU MUV

MV T MV Q MV U MV V

 , (2.204)

and s is the Stokes vector defined as s ≡ (T,Q, U, V )T . When no systematic errors are present
M is merely the identity matrix. Systematics act as small perturbations to the identity matrix
giving the different elements of the Müller matrix.

In the simulation the Müller matrix is applied to the Stokes vector formed from the sim-
ulated T , Q, and U maps after they have been rotated by α(n̂) to give an observed Stokes
vector according to (2.203). By applying different configurations of the systematics in the
matrix then calculating the value of Cαα

L from the observed maps it is possible to see which
systematic effects will have the most profound effect on the measurements of cosmological
birefringence.

An expression for the effect of instrument systematics on the cross correlation between the
E and B fields is used as an example as to how particular distortions translate to the CMB
poer spectra. It is prudent to rewrite the Müller matrix so that it acts on a complex Stokes
vector p = (T, P, P ∗, V )T . The elements of this Stokes vector have a defined spin, as do
the elements of the Müller matrix when using this Stokes vector. Now, equation (2.203) is
replaced with

pobs =


MTT MTP MTP ∗ MTV

MPT MPP MPP ∗ MPV

MP ∗T MP ∗P MP ∗P ∗ MP ∗V

MV T MV P MV P ∗ MV V

p . (2.205)

Here, P (x) is defined as

P ≡ (Q+ iU)(n̂) =
∫
d2l

2π
[E(l) + iB(l)]e2iφleil·n̂ . (2.206)

As calculating the observed Stokes field just involves convolving the true Stokes fields with
the Müller matrix, it is possible to write the Fourier space expression [91],

pobs(l) = 2πMeff(−l)p(l) . (2.207)
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The E and B fields have the following expression in terms of the spin-2 polarization terms:

E(l) =
1

2

[
P (l)e−2iφl + P ∗(l)e2iφl

]
, (2.208)

B(l) =
1

2i

[
P (l)e−2iφl − P ∗(l)e2iφl

]
. (2.209)

The estimator for the band-crossspectra for E and B is

ĈEB
b, obs =

1

2fsky
∫
b
ldl

∫
b

d2lEobs(l)B
∗
obs(l) . (2.210)

From (2.208) and (2.209) it is easy to see that

Eobs(l)B
∗
obs(l) =

1

4i

[
e−2iφlPobs(l)Pobs(l)e

−2iφl − e−2iφlPobs(l)P
∗
obs(l)e

2iφl

+ e2iφlP ∗
obs(l)Pobs(l)e

−2iφl − e2iφlP ∗
obs(l)P

∗
obs(l)e

2iφl
]
. (2.211)

It is possible to relate this to pobs. First the matrix Λ(φl) can be defined as Λ(φl) ≡
diag(1, e−2iφl , e2iφl). Then, consider the matrix Λ(φl)pobs(l)p

†
obs(l)Λ

†(φl) with the follow-
ing form:

Λ(φl)pobs(l)p
†
obs(l)Λ

†(φl) = T (l)T (l) T (l)P ∗(l)e2iφl T (l)P (l)e−2iφl

e−2iφlP (l)T (l) e−2iφlP (l)P ∗(l)e2iφl e−2iφlP (l)P (l)e−2iφl

e2iφlP ∗(l)T (l) e2iφlP ∗(l)P ∗(l)e2iφl e2iφlP ∗(l)P (l)e−2iφl


obs

. (2.212)

It is clear from this explicit form thatEobs(l)B
∗
obs(l)) can be written as a sum over the elements

in the matrix seen in (2.212),

Eobs(l)B
∗
obs(l)) =

1

4i

3∑
j,j′=2

(−1)j
′+1
[
Λ(φl)pobs(l)p

†
obs(l)Λ

†(φl)
]
jj′

. (2.213)

For convenience the matrix in (2.213) is relabeled so that

Cobs(l) ≡
[
Λ(φl)pobs(l)p

†
obs(l)Λ

†(φl)
]
. (2.214)

Now it is possible to rewrite pobs(l) in terms of the Müller matrix and p(l) using the convo-
lution in equation (2.207). By also inserting the identity matrix between the Müller matrices
and Stokes vectors one finds the following expression for Cobs(l):

Cobs(l) = 4π2
[
Λ(φl)Meff(−l)Λ†(φl)C(l)Λ(φl)M†

eff(−l)Λ†(φl)
]
, (2.215)

where C(l) has the same form as Cobs(l) but contains the true Stokes vector on the sky, p(l),
instead of the observed Stokes vector, pobs(l).
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By inserting this into (2.210) and taking the ensemble average over realisations of T , Q,
and U one finds an expression for the relationship between the EB cross-spectrum effected
by the systematics and the true values of the power-spectra and cross-spectra. The form of
the expression,

〈
ĈEB
b, obs

〉
= A

3∑
j,j′=2

(−1)j
′+1

∫
b

ldldφl

[
Λ(φl)Meff(−l)Λ†(φl) 〈C(l)〉Λ(φl)M†

eff(−l)Λ†(φl)
]
jj′

,

(2.216)
where the normalization factor, A, is given by

A =
π2

2ifsky
∫
b
ldl

(2.217)

can be simplified further by taking the integral over the radial extent of the band, but before
this is possible it is necessary to examine 〈C(l)〉. Note that this matrix is made up of the true
power-spectra and cross-spectra. After taking the integral over the radial extent of the band
-and noting that the Müller matrices do not vary over the radial extent of the band- this matrix
is instead made up of band power-spectra and cross-spectra. This matrix is labeled Fl and has
the form

Fl =

 CTT
b CTE

b − iCTB
b CTE

b + iCTB
b

CTE
b + iCTB

b CEE
b + CBB

b − iCEB
b + iCBE

b CEE
b − CBB

b + iCEB
b + iCBE

b

CTE
b − iCTB

b CEE
b − CBB

b − iCEB
b − iCBE

b CEE
b + CBB

b + iCEB
b − iCBE

b

 .

(2.218)
After taking this integral the expression in (2.216) simplifies to

〈
ĈEB
b, obs

〉
=
π

2i

3∑
j,j′=2

(−1)j
′+1

∫
b

dφl

[
Λ(φl)Meff(−l)Λ†(φl)FlΛ(φl)M†

eff(−l)Λ†(φl)
]
jj′

.

(2.219)
It is then possible to use any possible effective Müller matrix to extract a relatively simple
expression for the observed cross-correlation given a known set of systematics parameters.

This formula can be used to capture the effect of distortions on the cross-spectra under for
different simple scan strategy cases. In the case of the raster scan the instrument is always
treated as being in the fiducial basis. A set of spacial Muller matrix elements which deviate
from identity for the receiver can be defined as [91],

MPT = γ1 + iγ2 , (2.220)

MPP = 1 + a+ 2iω , (2.221)

MPP ∗ = f1 + if2 . (2.222)

Here, ω represents a rotation of the polarisation orientation, a represents an incorrect cali-
bration of the polarisation amplitude, f1 and f2 represent a mixing of Q and U , and γ1 and

64



γ2 represent a leakage from intensity into polarisation. Inserting these into (2.219) gives a
simple analytical formula for the observed CEB

b, obs cross-spectrum,

CEB
b, obs =

[
(1 + a)2 − 4ω2

]
CEB
b + 2ω(1 + a)(CEE

b − CBB
b ) . (2.223)

An interesting feature of this equation is that it indicates that intensity leakage has no effect on
the measurement of CEB

b, obs. While this derivation follows a flat sky approach it is possible to
carry out the derivation on using the full curved sky approach, however, the form of equation
(2.223) does not change.

The expression in (2.223) is true only for distortions that do not vary across the sky. How-
ever, it is possible to consider anisotropic elements in the Müller matrices that is sky varying
distortion fields. If (2.205) is expanded then the individual elements of pobs can be examined
in real and harmonic space. As can be seen in [28], when one translates the results of this
expansion to harmonic space the anisotropic distortions generate off diagonal correlations
in the CMB covariance matrix, 〈alma∗l′m′〉. These off diagonal correlations are analogous to
those generated by weak gravitational lensing [92], [93]. Therefore, as is discussed in [28], it
may be possible to exploit these off diagonal correlations using a QE approach to reconstruct
and remove the distortion fields in analogy to lensing reconstruction and internal delensing
[86], [94], [95].

2.7 Conclusions

While electrodynamics appears to be well understood and well tested it is possible to mod-
ify Maxwell’s laws so that a cosmological birefringence effect is predicted. It may be possible
to observe such an effect and a number of CMB experiments have attempted to make such
observations. However, better experiments with greater precision are required in order to
constrain both a uniform and anisotropic birefringence signal further.

Experiments that will attempt to do so include Simons Observatory, and CMB S4, indeed
forecasting for observations of the birefringence anisotropies for CMB S4 has already been
carried out [70]. However, forecasting for a uniform birefringence effect must still be carried
out for CMB S4. Moreover, forecasting for observations of both a uniform and an isotropic
birefringence effect must still be carried out for Simons Observatory.

There has been a thorough theoretical investigation of the modifications that lead to the cos-
mological birefringence effect. However, it may still be necessary to further investigate other
cosmological implications of the various models that predict cosmological birefringence in
order to understand the physical implications of such models better. It may be possible that
a number of such models may be ruled out by observations unrelated to birefringence. This
would narrow the list of potential science targets for birefringence experiments, and possibly
constrain the expected range of polarisation rotation angles. Further constraints on the cos-
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mological birefringence effect - both uniform and anisotropic - will place further constraints
on parity and possibly Lorentz violations, on models of axion inflation, and on the coupling
between axion-like particles and the gauge field.

Quadratic estimators will play a large role in the constraint or potential detection of the
birefringence effect. These tools are used as standard in CMB lensing research, and can
be deployed whenever an effect induces non-zero correlations in the off-diagonal modes of
the CMB covariance. It may also be possible to extend the use quadratic estimators to di-
agnose and remove distortions sourced by instrument systematics. This would compliment
existing systematics cleaning techniques by quantifying the effectiveness of existing cleaning
techniques and diagnosing and removing any residual distortions after traditional systematics
mitigation has been carried out.

It is also worth noting that for the Planck experiment, a QE was not used to reconstruct
the anisotropic birefringence field [67], [78]. Carrying out a QE analysis on the Planck data
would provide an important compliment to the existing constraints as well as acting as an
additional cross check of the existing constraints. Additionally, as the technique that has
already been applied to the Planck data to search for anisotropic birefringence does not probe
off diagonal correlations in the CMB covariance a QE will be required to detect any possible
signatures of birefringence, other new physics, or unknown instrument systematics that may
be encoded in these correlations.
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Chapter 3

Uniform Birefringence Forecast

3.1 Introduction

In the coming years a number up upcoming CMB experiments will attempt to place con-
straints on the primordial CMB B-mode polarization signal. Two significant experiments
that are under development are the Simons Observatory (SO), and CMB-S4. SO is expected
to have first light in 2022 and begin its five year survey in 2023 [96], while CMB-S4 is still in
the project development phase [37]. However, both promise to provide a measurement of the
CMB polarization with unprecedented levels of precision and by measuring the primordial
B-mode signal they promise to probe the tensor-to-scalar ratio r down to r > 3× 10−3 in the
case of SO [16] and down to r > 1× 10−3 in the case of CMB-S4 [97].

However, while these experiments seek to detect B-modes sourced by primordial gravita-
tional waves, this is not the only source of B-mode polarization. In Chapter 2 of this thesis
we saw that modifications to electrodynamics could generate a rotation of linearly polarized
photons as they propogate on cosmological scales in an effect called cosmological birefrin-
gence (CB). Such a rotation would induce mixing between the E- and B-modes resulting in
B-mode power in addition to the primordial signal.

This modification to electrodynamics was discussed in detail in Chapter 2 and involves the
inclusion of a Chern-Simons term in the electrodynamics Lagrangian [25], [27],

LCS = − βφ

2M
FµνF̃

µν , (3.1)

where Fµν is the electromagnetic field strength tensor, F̃ µν is the dual of the field strength
tensor, β is a coupling constant, φ is a pseudo scalar, and M is a parameter with dimensions
of mass that is dependent on the particular origin for this coupling between a pseudo scalar
and the photon [27], [42], [44]. If this field does not vary spatially then this modification to
Maxwell’s laws will lead to a rotation of linearly polarized photons with rotation angle,

α =
β

M

∫
∂φ

∂η
dη , (3.2)

where η is conformal time. This indicates that the rotation is dependent only on the initial
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and final amplitude of the pseudo scalar so that

α =
β

M
δφ . (3.3)

A more general approach is to consider a spatially varying pseudo scalar then this rotation
angle is replaced by a direction dependent rotation field ᾱ(n̂) with

ᾱ(n̂) =
β

M

∫
dη

(
∂

∂η
+ n̂ · ∇

)
φ(η, n̂) . (3.4)

This field can be thought of as a background uniform rotation field with direction dependent
perturbations such that

ᾱ(n̂) = α0 + α(n̂) . (3.5)

Here, the background rotation α0 is equivelant to the rotation angle for a spatially invariant
field with the same dependence on φ. Throughout the rest of this chapter we denote the
uniform CB angle α0

As the possible models for the φ [27], [42] predict that it will vary on cosmological
timescales we expect that α0 would only have an observable rotational effect on polarized
photons sourced at extremely high redshift, such as CMB photons. Indeed, it may be possi-
ble to use observations of the CMB power spectra to measure the uniform rotation angle by
looking for mixing between the CEE

l , and CBB
l power-spectra, and non zero CEB

l and CTB
l

cross-spectra due to this mixing. As SO and CMB-S4 are expected to make highly sensitive
measurments of the CMB polarization and the corresponding CMB spectra they will be well
placed to probe this rotation angle.

The focus of this chapter will be on forecasting the sensitivity that both SO and CMB-S4
will have to the uniform CB angle. This will amount to a forecast of the constraint on α0 in the
case of no detection of any rotation. Section 3.2 describes the Fisher forecast technique we
employ, and the instrument setup assumed for SO and CMB-S4. In Section 3.3 we present
the results of the forecast for both the SO Small Aperture Telescope (SAT) and the Large
Aperture Telescope (LAT). Where the LAT is designed for better angular resolution, the SAT
has a larger field of view, and is expected to be able to provide better control over noise from
the atmosphere giving more precise measurments on larger angular scales [16]. Along with
these forecasts we discuss which spectra are likely to give the best constraining power for both
the LAT and SAT. Finally, in Section 3.3.4 we present the forecast for CMB-S4 along with
an analysis of where the constraining power for S4 is likely to be the strongest.
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3.2 The Fisher forecast for uniform cosmic rotation

3.2.1 Estimating the parameter sensitivity of CMB experiments

In order to successfully forecast the sensitivity of a particular experiment to CB effects we
must take into account degeneracy between different cosmological parameters, and α0. It
is possible to use a technique called Fisher analysis to do this. Fisher analysis involves the
construction of a Fisher matrix, which corresponds to the second order term in an expansion
of the log of the likelihood for a given set of parameters in theory space [55]. From the Fisher
matrix it is possible to directly calculate the estimate an experiment may have to a given
parameter by marginalising over the other parameters. This is done by inverting the Fisher
matrix to give [56]

[F ]−1 =

(
σ2
i σij

σij σ2
j

)
, (3.6)

noting that the diagonal terms give the errors of each parameters marginalized over the others.
In this example σi is the 1σ uncertainty on parameter i marginalized over parameter j [56].

For cosmological parameters the Fisher matrix can be constructed from a covariance ma-
trix which contains the covariances between different power spectra and cross correlation
spectra. Constructed in this way the Fisher matrix is [50]

Fij = fsky
∑
l

∑
A,A′

∂CA
l

∂xi

[
M−1

]
AA′

∂CA′

l

∂xj
. (3.7)

Here, fsky is used when taking into account the increased variance due to partial sky coverage,
and here, A ∈ [TT,EE,BB, TE, TB,EB]. The parameters are xi. In the case of uniform
birefringence forecasts one parameter will be α0 and the other parameters will be the set of
six standard cosmological parameters. The covariance matrix MAA′ is defined as [9]

MAA′ ≡
〈
ĈA
l Ĉ

A′
l

〉
− CA

l C
A′

l , (3.8)

the ĈA
l terms are estimators and the CA

l are the full ensemble averages CA
l =

〈
aXlm(a

X′ ∗
lm )′

〉
.

The estimators are defined as [9]

ĈXX′

l =
1

2l + 1

l∑
m=−l

aX ∗
(lm)a

X′

(lm) , (3.9)

where, X,X ′ ∈ [T,E,B] so that A = XX ′. For practical purposes in our forecast we
calculate the form of the elements of the covariance matrix analytically, in terms of theory
spectrum for the fiducial model, C̃XX′

l and noise spectrum for the relevant instrument,NXX′

l .
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For example, the on diagonal element for temperature MTTTT is

MTTTT =
2

2l + 1
(C̃TT

l +NT
l )

2 . (3.10)

For details of how these elements are calculated see Section 2.4.4 in Chapter 2 or see the
covariance matrix calculation in [9].

For the Fisher forecast we use numerical derivatives, which, for the parameter xi, have the
form

∂CA
l (xi)

∂xi
≈ CA

l (xi + δxi)− CA
l (xi − δxi)

2δxi
, (3.11)

where the power spectrum CA
l (xi) is a function of the parameter xi, and δxi is a perturbative

change to the parameter. For the standard cosmological parameters in our forecast we com-
pute CA

l (xi ± δxi) by injecting the perturbed parameter values xi ± δxi into the Boltzmann
package CAMB [98] and computing the corresponding spectra.

As CB is non-standard cosmology there is no corresponding parameter in CAMB. Instead
for the α0 parameter we begin by noting that in our fiducial model α0 = 0. This means we
will only need the spectra for rotation angles of±δα0. In order to findCA

l (±δα0)we compute
the theory spectra for the fiducial model, C̃A

l , using CAMB. From these, we calculate the CB
rotated spectra, CA

l (±δα0), directly. The CMB spectra for rotation angles of ±δα0 are [47],
[49],

CEE
l (±δα0) = C̃EE

l cos2(±2δα0) + C̃BB
l sin2(±2δα0) , (3.12)

CBB
l (±δα0) = C̃EE

l sin2(±2δα0) + C̃BB
l cos2(±2δα0) , (3.13)

CTE
l (±δα0) = C̃TE

l cos(±2δα0) , (3.14)

CTB
l (±δα0) = C̃TE

l sin(±2δα0) , (3.15)

CEB
l (±δα0) =

1

2

(
C̃EE
l − C̃BB

l

)
sin(±4δα0) . (3.16)

These derivatives combined with the covariance for the particular instrument model consid-
ered are used to produce the Fisher matrix and therefore the CB forecast.

3.2.2 Instrument setup and fiducial cosmology

The particular instrument noise and beam, fiducial cosmology, and choice of l mode range
all form the key inputs in our forecast. The particular fiducial cosmological model we use,
as presented in Table 3.1 are based on the Planck 2018 parameter results [99]. We attempt
to emulate the forecasting setups of SO [16] and CMB-S4 [97] as closely as possible. We
set our l ranges in accordance with the guidelines in the CMB-S4 science book [14], and SO
parameter forecasts in [16].

For SO LAT and SAT we use the SO-V3 noise code to generate noise curves for the 93GHz
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and 145GHz frequency channels for the threshold, baseline, and goal noise settings . The fore-
cast is carried out for these channels as they are predicted to provide the strongest constraints
on physical parameters [16]. We list the instrument sensitivities that correspond to these noise
curves in Table 3.1. This code is designed not only to take into account the instrument sensi-
tivity and beam but also atmospheric contributions to the noise. Note that while we include
the threshold noise case in our forecast, at the time of writing of this thesis SO has ceased
including the threshold case in their own forecasting, as it is anticipated that the instrument
will far exceed this more pessimistic noise projection [16]. As with the SO forecast in [16]
we use a different l range for the temperature and polarization spectra for the LAT.

The multipole range and sky coverage for the CMB-S4 forecasting requirements are sim-
ilar to what is used for the SO LAT forecast [97]. For CMB-S4 no noise modeling code is
provided. Instead we assume a simple noise spectrum consisting of the instrument sensitivity
and the beam such that,

NP
l =

√
2NT

l = 2w−2
T |W b

l |−2 , (3.17)

where NP
l is the polarization noise spectrum, NT

l is the temperature noise spectrum, w−1
T is

the temperature sensitivity and W b
l is the beam window function. Note that in this chapter

we present the noise sensitivity, w−1, in units of [µK arcmin] as is common in the literature
[16], [37], [88]. The values for the temperature sensitivity, beam, sky coverage, and multipole
coverage are summarized in Table 3.1.

We include the effect of combining the Planck data with SO LAT and CMB-S4 by
building an ad-hoc Planck instrument model. For this model we generate a Fisher ma-
trix that can then be combined with the SO and S4 Fisher matrices. We used the noise
and beam characteristics summarized in [100]. The Planck model includes noise and
beam characteristics for each of the individual channels. The included channels are ν ∈
[100GHz, 143GHz, 217GHz, 353GHz, 545GHz, 857GHz]. The effective temperature and po-
larization sensitivity, w−1

T/P and the average effective beam full width at half maximum
(FWHM), θFWHM, avg., is given in Table 3.1. Also included in this table are the instrument
characteristics and l ranges for SO LAT, SO SAT, and CMB-S4.

We validate our Fisher code and instrument models by comparing the forecast uncertainty,
σxi , for the fiducial model parameters, excludingα0, to the existing SO and CMB-S4 forecasts.
We find that results that our values for σxi match the existing forecasts to within less than
10% for SO and CMB-S4. Any difference in the predictions are due to differences between
the methods used to include Planck data in the forecasts. However, we do not expect these
differences to have a significant impact on the validity of our forecasts as we find a negligible
difference in σα0 between predictions made with Planck and predictions made without Planck.
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parameter value
cosmological H0

[
km s−1Mpc−1

]
69.0

Ωbh
2 0.0222

Ωch
2 0.120

τ 0.06

ns 0.966

As 2.2× 10−9

α 0.0
SO LAT instrument lmin 30

lTmax 3000
lPmax 5000

w−1
t [µK arcmin] 7.54

w−1
b [µK arcmin] 6.26

w−1
g [µK arcmin] 4.25
θFWHM [arcmin] 2.2

SO SAT instrument lmin 30
l
T/P
max 400

w−1
t [µK arcmin] 3.72

w−1
b [µK arcmin] 2.81

w−1
g [µK arcmin] 1.89
θFWHM [arcmin] 30

CMB-S4 instrument lmin 30
l
T/P
max 5000

w−1
T [µK arcmin] 1
θFWHM [arcmin] 3

Ad-hoc Planck instrument lmin fsky = 0.8 1
l
T/P
max fsky = 0.8 30
lmin fsky = 0.2 30
l
T/P
max fsky = 0.2 2500

w−1
T [µK arcmin] 19.7

w−1
P [µK arcmin] 27.1

θFWHM, avg. [arcmin] 6.46

Table 3.1: The fiducial cosmological model parameters for the Fisher forecast for CB for
SO and CMB-S4. There parameters are based on the Planck 2018 results [99]. Also shown
are the l ranges, white noise, and beam for CMB-S4, SO and Planck. The w−1

t , w−1
b , and

w−1
g are the temperature sensitivities for the threshold, baseline and goal cases respectively.

For SO and CMB-S4 the polarization sensitivity is w−1
P =

√
2w−1

T . Note that for SO LAT a
separate lmax value is used for temperature and polarization (indicated respectively with a T

and P superscript).

3.3 Forecast results

3.3.1 The SO LAT forecast

For the SO LAT forecast we make predictions for 1σ α0 constraints for three different values
of sky coverage, including a 10% sky patch, a 20% sky patch and a 40% sky patch. The
expected sky coverage of the LAT is 40%. Sky coverage will have an impact on the number
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of noise modes included in the measurement of the parameter, and will increase the variance
of the measurement due to the reduced number of modes included in the measurement. That
is, the SO-V3 noise code calculates the noise as a function of integration time, noise effective
temperature, σNET, and sky area surveyed so that

NT
l =

(
4πfskyσ

2
NET

t
+ Aatm

)
|W b

l |−2 . (3.18)

Here, Aatm is the atmospheric contribution to the noise and t is integration time. The ampli-
tude of the noise power spectrum will increase as sky coverage increases proportional to fsky,
and the overall variance will decrease by a factor of f−1/2

sky . This leads to the behavior we see
in the highest noise threshold, and baseline cases in Figure 3.1. For both of these settings the
contribution of NT

l to the variance is proportionally larger than the contribution of cosmic
variance when compared with the goal case. In both the baseline and threshold cases NT

l

becomes the dominant contribution to the variance, and as NT
l increases with fsky so does

the variance, once fsky > 0.25. In the goal case, the dominant contribution to the variance is
cosmic-variance. As this is the case the overall variance is seen to decrease with increasing
fsky.

We find an expected constraint of σα0 ∼ 10−2 [degrees]. The strongest constraint that
we forecast, from the most optimistic goal noise setting and largest sky coverage is σα0 =

6.06 × 10−3 [degrees]. The sky coverage does not appear to have as significant an impact
on the constraint as different levels of noise. This is positive, as any loss of sky coverage
during the scan should not significantly impact the SO LAT constraint on α0. This forecast
is unchanged when the Planck Fisher data is not included, possibly indicating that it may not
be necessary to included Planck in further forecasts for birefringence.

To further test the behavior of σα0 with different noise levels we carry out our forecast while
varying the amplitude of the LAT noise curves. This is equivalent to varying the instrument
sensitivity for the 93GHz and 145GHz channels. We use the same values of fsky as in the
previous forecasts. We see in figure 3.2 a more interesting relationship between the constraint
and fsky that what was initially seen in Figure 3.1. The constraint on α0 is more sensitive to
noise for smaller values of fsky. That is, the constraint appears to weaken more quickly with
increasing instrument sensitivity when the sky coverage is smaller.

3.3.2 Where is the LAT’s constraining power

In order to investigate which power spectrum provides the largest contribution to the constraint
onα0 from the LAT we calculate the signal-to-noise (S/N) ratio for the different possible CMB
power spectrum and cross correlations. By calculating the S/N per l value we can see which
modes are contributing the most to this constraint. The signal to noise for a given spectrum
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Figure 3.1: The forecast uncertainty on α0, σα0 plotted for fsky = 0.4, 0.2, and 0.1. We
show the uncertainty for three LAT sensitivity modes of the SO-V3 noise code including

the most pessimistic threshold mode (blue), the baseline mode( orange), and the most
optimistic goal mode (green).

is given as (
S

N

)2

=
∑
l

(
CXX′,rot
l − CXX′

l

∆CXX′,rot
l

)2

. (3.19)

HereX ∈ {T,E,B}, CXX′,rot
l indicates the spectrum after it has been affected by cosmolog-

ical birefringence equivalent and is equivalent to CA
l (α0). We carry out this study assuming

α0 = 10−2 [degrees] for the rotated spectrum. This is the same order of magnitude as the
constraint from LAT. Here, CXX′

l is a spectrum unaffected by the birefringence equivalent to
CA
l (0). The ∆CXX′,rot

l term indicates the standard deviation the CB rotated spectrum,

∆CXX′,rot
l =

√
1

fsky(2l + 1)

[
(CXX′, rot

l +NXX′

l )2

+ (CXX, rot
l +NXX

l )(CX′X′, rot
l +NX′X′

l )
] 1

2
.

(3.20)

For the purpose of calculating the S/N ratio we set the l range to 30 ≤ l ≤ 5000 for both
the temperature and polarization spectrum, and fix the sky coverage to the expected value of
fsky = 0.4 for the LAT. When calculating the standard deviation we use the baseline noise
mode. The resulting S/N for α0 from each spectrum is displayed in Table 3.2. It is easy to
infer from these results that the best constraining power comes from CEB

l , with the highest
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Figure 3.2: The uncertainty on α0 as a function of polarization noise sensitivity, w−1
P , for

the SO LAT. We show curves for 40% (green), 20% (orange), and 10% (blue) sky coverage.

XX’ S/N
EE 8.88× 10−5

BB 1.0× 10−3

TE 8.88× 10−5

TB 0.35
EB 1.06

Table 3.2: The S/N ratios for α0 as found using each CMB power spectrum or cross
correlation expected to be measured using the LAT. Here, the noise mode is set to baseline

and fsky = 0.4. We used a fixed multipole range of 30 ≤ l ≤ 5000.

signal to noise. However, while the S/N of CTB
l is ∼ 1/3 of the CEB

l S/N, it is still large
enough that we expect it to make a significant contribution to the constraint on α0. As the
remaining spectrum have a significantly smaller S/N they are not expected to provide signif-
icant additional constraining power. For the best possible constraints on α0 both CEB

l and
CTB
l should be used.

We can go beyond calculating which spectrum provides the largest contribution to the
constraint and also consider which specific l modes have the strongest constraining power.
We do this by examining the S/N at each l, as shown in figure 3.3. We find that the best
constraining power for the LAT should come from the CEB

l cross correlation in a range of
30 ≤ l ≤ 2000 with a significant reduction in constraining power with increasing l when
l & 2000.

75



0 1000 2000 3000 4000 5000

l

10−19

10−16

10−13

10−10

10−7

10−4

(S
/N

)2 l

(S/N)2
l,TB

(S/N)2
l,EB

(S/N)2
l,EE

(S/N)2
l,BB

(S/N)2
l,TE

Figure 3.3: The square of the signal to noise ratio at each l for α0 from SO LAT
observations of the CTB

l (blue), CEB
l (orange), CEE

l (green), CBB
l (red), and CTE

l (purple)
spectra. The modes for which the square of S/N is largest provide the strongest contribution

to the constraint on α0. Here, fsky = 0.4, the noise mode is set to baseline and
30 ≤ l ≤ 5000.

3.3.3 The SO SAT forecast

In order to assess which of the SAT or LAT will provide the strongest constraint we carry out
a σα0 forecast for the SAT. We once again carry out our forecast for the 1σ constraints, for the
143GHz and 93GHz channels. The SAT temperature noise is not included in the V3 code as
the it is not expected that the temperature spectrum will be used in scientific analysis of SAT
data[16]. Therefore, we do not include the correlations with the temperature spectrum in our
forecast. For the SAT forecast σα0 we use the threshold, baseline, and goal sensitivity modes.
The V3 code allows the setting of an optimistic and pessimistic modes for the 1/f noise [101]
for the SAT. The 1/f noise is expected to have a significant contribution on larger angular
scales, most relevant to the SAT [16]. The 1/f noise generates an additional l dependent
contribution to the overall polarization noise spectrum, which is modeled in the V3 code as
[16]

N
1
f

l = NP
w

(
l

lknee

)αknee

|W b
l |−2 , (3.21)

where NP
w is w−2 re-scaled from units of

[
µK2 arcmin2

]
into

[
µK2 rad2

]
. The αknee and

lknee are dimensionless parameters in the SO 1/f noise model [16]. For the 93GHz and
145GHz channels we study αknee = −2.5 and αknee = −3 respectively. Note that there is no

76



relationship between α0 and αknee, the symbolic similarity is coincidental. The pessimistic
and optimistic 1/f noise setting varies the value of lknee between lknee = 50 for the pessimistic
setting and lknee = 25 for the optimistic setting.

The fsky for this forecast is fixed to the expected coverage for the SAT of fsky = 0.1. Our
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Figure 3.4: The forecast uncertainty on α0, σα0 plotted for 0.1. We show the uncertainty for
three SAT sensitivity modes of the SO-V3 noise code including the most pessimistic

threshold mode (blue), the baseline mode( orange), and the most optimisitic goal mode
(green). We consider both the optimistic, lknee = 25, and the pessimistic, lknee = 50, 1/f

noise settings.

forecast, shown in Figure 3.4, suggests that variations in the 1/f noise profile may not have a
significant impact on the performance of the SAT constraint. We see a weaker constraint from
the SAT than from the LAT. We forecast constraints of σα0 & 1.4 × 10−2 for all three SO-
V3 sensitivity settings. This is a worse expected σα0 than that for all three of the sensitivity
settings of the LAT.

We calculate the S/N for each spectrum used in the SAT forecast. We fix the fiducial α0 to
the same value as in the LAT S/N study,α0 = 10−2 [degrees], set the sensitivity to the baseline
mode and assume a pessimistic 1/f noise mode. The l range and fsky for this calculation are
the same as is used in the forecast. As we did not carry out forecasts for the correlations with
CMB temperature only the S/N for polarization spectra are included. The S/N values shown
in Table 3.3 confirm that the constraining power for the SAT comes from the CEB

l spectrum,
as is was the case for the LAT. We find the total S/N from the combination of the polarization
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XX’ S/N
EE 1.08× 10−5

BB 1.68× 10−3

EB 0.52

Table 3.3: The S/N ratios for α0 as found using each CMB power spectrum or cross
correlation expected to be measured with the SAT. Here the noise mode is set to baseline

and fsky = 0.1. We used a fixed multipole range of 30 ≤ l ≤ 400.

spectra is less than O(1). This is not unexpected as the constraint from the baseline SAT
mode is a factor of ∼ 1.8 larger than than the fiducial rotation angle, α0 = 10−2 [degrees].

Our SAT forecast, along with the study of S/N values for each instrument and each spec-
trum suggest that the best constraints will come from the LAT for SO. We expect that both
the CEB

l and CTB
l spectra will make significant contributions to constraints on α0. These

forecasts are preliminary however, as the impact of foregrounds and systematics on SO have
not been considered. The largest systematic impact on α0 constraints is expected to come
from the absolute polarization angle calibration error. This error will be dependent on the
particular polarization angle calibration method utilized by SO [60], [102].

3.3.4 The CMB-S4 Forecast

We repeat our Fisher forecast for the 1σ CB angle, α0, constraint for the CMB-S4 experiment.
The details of the instrument and cosmological setup are described in Section 3.2.2. The
CMB-S4 instrument is most naturally comparable to the LAT, rather than the SAT, as it is
expected to be a high resolution instrument with a similar sky coverage and beam width. We
perform our forecast for the same range of fsky as was used for SO LAT. These are fsky ∈
[0.1, 0.2, 0.4]. The uncertainty on α0 is found to be σα0 = 1.8 × 10−3 [degrees] for the
expected 40% sky coverage and targeted sensitivity of w−1

T = 1 [µK arcmin]. This order of
magnitude improvement is not unexpected for the higher anticipated sensitivity of the CMB-
S4 instrument.

We also investigate how the constraint will vary if the noise sensitivity does not meet the
CMB-S4 mission requirements. In figure 3.5 we show the relationship between instrument
sensitivity and forecast uncertainty in order to give an indication of the expected constraint
for sensitivities equal to or greater than the CMB-S4 goal sensitivity. As in the case of the
LAT, the constraint may be more sensitive to increased noise for smaller overall sky coverage.

3.3.5 The constraining power for CMB-S4

We once again investigate the S/N of α0 for CMB-S4 for each of the CMB spectra used in the
constraint. For the CMB-S4 experiment we find similar results to those for SO. We once again
find that CEB

l has the largest S/N, followed by a significant S/N for CTB
l , with significantly
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Figure 3.5: The uncertainty on α0 as a function of polarization noise sensitivity, w−1
P , for

the CMB-S4. We show curves for 40% (green), 20% (orange), and 10% (blue) sky
coverage. The smallest value for polarization sensitivity we show in this figure is

w−1
P =

√
2w−1

T =
√
2 [µK arcmin], which is the expected sensitivity of of the CMB-S4

instrument [37].

smaller values for the remaining spectra. We show the S/N for each spectrum in Table 3.4.
The fiducial birefringence angle used in this calculation is α0 = 1.8 × 10−3 [degrees] (i.e.
the predicted error for α for CMB S4), the l range used is 30 ≤ l ≤ 5000, and fsky = 0.4

As we expect, the S/N for this value of α0 is O(1). Our results suggest that the majority of
the constraining power for CMB-S4 will come from CEB

l with some additional contribution
from CTB

l .

XX’ S/N
EE 1.15× 10−6

BB 1.79× 10−6

TE 1.15× 10−6

TB 0.29
EB 0.95

Table 3.4: The S/N ratios for α0 as found using each CMB power spectrum or cross
correlation expected to be measured with the CMB-S4. The instrument temperature noise

sensitivity is w−1
T = 1 [µK arcmin] and fsky = 0.4. We used a fixed multipole range of

30 ≤ l ≤ 5000.

By comparing the S/N values for each spectrum at each value of l, shown in Figure 3.6,
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we find that the constraining power for CMB-S4 should come from the range 30 ≤ l ≤ 3000.
For l . 3000 the S/N of CEB

l decreases rapidly. As CEB
l is expected to contribute the most

to the constraint, the l range which we expect to provide the largest contribution is that where
the CEB

l S/N is largest.
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Figure 3.6: The square of the signal to noise ratio at each l for α0 from CMB-S4
observations of the CTB

l (blue), CEB
l (orange), CEE

l (green), CBB
l (red), and CTE

l (purple)
spectra. The modes for which the square of S/N is largest provide the strongest contribution

to the constraint on α0. Here, fsky = 0.4, the temperature noise sensitivity is
w−1
T = 1 [µK arcmin] and 30 ≤ l ≤ 5000.

As in the case of SO we have not considered the particular foreground effects and sys-
tematics that may have an impact on the α0 constraints. We expect that α0 constraints from
CMB-S4 will be no less sensitive to absolute angle calibration error than any other CMB
experiment [60], and that the exact level of uncertainty will be dependent on the calibration
method [102]. As this source of uncertainty is expected to have the largest impact on CB con-
straints it will be important to factor it into constraints once the calibration method is known,
or to use the new techniques discussed in [103]–[106] to mitigate this source of error.

3.4 Conclusions

The CB effect, which stems from a modification to electrodynamics, could be observed by
CMB experiments. Several CMB experiments are well placed to attempt to measure this ef-
fect when they begin to take data. It has been forecast that CMB-S4 and SO will be able
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to measure the uniform rotation effect with unprecedented precision. We have applied a
Fisher forecasting method to ascertain the constraints that SO and CMB-S4 will be able
to place on the uniform CB effect. For SO we forecast that the constraint on α0 will be
σα0 = 6.06×10−3 [degrees]. For the more sensitive, future CMB-S4 experiment we forecast
an even stronger constraint of σα0 = 1.8×10−3. We have also analyzed the S/N of each spec-
trum involved in the constraint and found that the S/N for α0 from CEB

l was largest for both
SO and CMB-S4, followed by a smaller but comparable S/N from CTB

l . This suggests that
the majority of the constraining power may come from CEB

l with a significant contribution
from CTB

l for both experiments. For SO and CMB-S4 this constraining power is expected to
be in the range 30 ≤ l ≤ 2000 and 30 ≤ l ≤ 3000 respectively.

It is important to note, however, that in our forecast we have assumed perfect absolute
polarization angle calibration. It is expected that for both SO, and for CMB-S4 there will be
a systematic error associated with the absolute angle calibration that will the limiting factor
on the uniform birefringence constraint [16], [37], [60]. This associated error will vary de-
pending on the angle calibration method that is chosen for each experiment. An interesting
technique used to mitigate this absolute angle calibration error by using foregrounds to break
the degeneracy between angle calibration error and uniform birefringence has been proposed
and developed in [103]–[105]. In [106] this technique was been applied to experimental data
in the form of the Planck 2018 data.

It will be important to constraint the uniform CB effect for future experiments. As the pres-
ence of a uniform polarization rotation across the sky will result in mixing of the CEE

l and
CBB
l this effect could contaminate measurements of the primordial B-mode spectra. Such

contamination must be removed before any claim of primordial B-mode detection is made.
Beyond its role as a contaminant detection or constraint this effect is itself an important sci-
entific goal. A uniform CB angle would indicate the presence of new and exciting beyond
standard model physics, and may hint at a coupling between the photon field and a pseudo-
scalar field in the early universe such as the axion.

Moving beyond the uniform CB effect it is possible that the rotation has a direction depen-
dent component. Such a component would generate additional correlations normally uncor-
related modes in the CMB. It may be possible to exploit these modes to reconstruct maps of
this direction dependent rotation, and to constraint this anisotropic CB effect. The potential
methods to constrain anisotropic CB, as well as the potential contamination that anisotropic
CB might contribute to the B-mode power spectrum are investigated in detail in the next
chapter of this thesis.
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Chapter 4

Constraining cosmic polarization

rotation and implications for primordial

B-modes

4.1 Introduction

The temperature and polarization anisotropies in the Cosmic Microwave Background
(CMB)[107] have been measured to high precision by the Wilkinson Microwave Anisotropy
Probe (WMAP) and Planck satellite, placing very tight constraints on the cosmological pa-
rameters [99], [108], [109]. These observations have confirmed the standard ΛCDM cos-
mology, and are compatible with the predictions of inflation. The current observations (the
temperature anisotropies, E-modes of polarization and B-modes sourced by weak lensing)
primarily probe the scalar density perturbations. Most inflation models also predict the gen-
eration of tensor perturbations (gravitational waves). However, the predicted range of ampli-
tudes, characterized typically by the ratio of power in tensor perturbations to power in scalar
perturbations ‘r’, has no lower bound. These tensor perturbations source very specific B-
mode of polarization patterns, with a fairly well known spectral shape, which has the most
power on degree scales around ` ∼ 80. The ongoing (BICEP/Keck, Spider, PolarBear, ACT,
SPT [62], [110]–[113]) and upcoming CMB (CMB) experiments (Simons Observatory (SO),
LiteBIRD, CMB-S4 [16], [37], [88]) will measure the polarized CMB sky with an unprecen-
dented precision and with exquisite control over systematics over the next decade; a robust
detection of r being one of their primary science goals. These experiments are projected to
improve the upper limits on r from the current limit of r < 0.061 [114] to r . 10−3.

These programs of research assume that B-modes are only produced by inflationary grav-
itational waves. However, we know from previous chapters of this thesis that there may be
other non-standard mechanisms which also generate B-modes. If these alternate sources of
B-modes exist, then these could potentially act as contaminants to measurements of B-modes
specifically induced by inflationary tensor perturbations and it is important to develop anal-
ysis techniques which allow us to distinguish between these different sources.
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A well known example is that of B-mode generation due to weak gravitational lensing of
the CMB[15]. Weak lensing results in the subtle remapping of the microwave polarization
vectors, which in effect leaks some of the E-mode power into B-modes. To detect r ∼ 10−3 it
is imperative to “de-lens” the polarized sky in order to separate the primordial B-modes from
those generated due to weak lensing. Consequently, a significant effort has been invested to
carry out robust “de-lensing” [40], [115]–[117].

However, we have previously discussed an alternative mechanism to this: B-modes gen-
erated due to cosmic polarization rotation (CPR) which could be sourced by so called Cos-
mological Birefringence [25], [27]. In the previous chapter of this thesis we focused on the
uniform cosmological birefringence (CB) effect, its impact on the CMB and the constraints
that Simons observatory and CMB-S4 may be able to place on its value. In this chapter
however, we focus on the anisotropic CB effect, in which the CMB is rotated by a direction
dependent field sourced by modifcations to the electromagnetic Lagrangian [25], [27] While
we use this as our primary motivation to carry out this study, the constraints and methods
discussed in this chapter are also applicable to other mechanism that results in a rotation of
the CMB polarization.

4.1.1 Modified Electrodynamics

Parity violations are common place in the weak sector of the standard model, with many
observational examples. However, the electromagnetic sector of the standard model as it is
currently understood is not expected to contain parity violating interactions [47]. Despite this,
the search to understand the dark sector and inflation has introduced a plethora of potential
pseudo-scalar fields, such as the axion [118]. As was discussed in Chapter 2, such a pseudo-
scalar is a Pseudo-Nambu-Goldstone Boson (PNGB) which can can couple to the gauge field
through a Chern-Simons term [25], [27], [42], [119]

LCS = − βφ

2M
FµνF̃

µν , (4.1)

where β is a dimensionless coupling constant, M is the vacuum expectation value of the
broken global symmetry, Fµν is the electromagnetic field strength tensor and F̃µν is its dual.

In this case the parity violating physics introduced by the additional Chern-Simons term
induces a difference between the effective refractive indexes for the right-handed and left-
handed circular polarisation states of light. Linearly polarised light can be written as the
superposition of the two circular polarisation states with a polarisation angle proportional
to the difference in phase between the two states. The resulting change in phase during the
propagation of light, due to difference in the effective refractive index for the different circu-
lar polarization states will cause a change in the linear polarisation angle [25]. This effect is
known as cosmological birefringence and the resulting change in polarisation angle in direc-
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tion n̂ is [44]

ᾱ(n̂) =
β

M

∫
dη

(
∂

∂η
+ n̂ · ∇

)
φ(η, n̂) , (4.2)

where η conformal time and ᾱ(n̂) = α0 +α(n̂). Here the integration is along the space-time
path of the photon. Note, that this angle is direction dependent only if the gradient of the
scalar field is also spatially varying. Otherwise the rotation angle is direction independent,
ᾱ(n̂) = α0. The power spectrum for this spatially dependent field is expected to have a simple
form,

Cαα
L = ACB

2π

[L(L+ 1)]β
, (4.3)

where the constant ACB is the amplitude of the power spectrum, a parameter which CMB
experiments might seek to constrain. It is assumed that as long as the pseudo-scalar field that
sources CB does not obtain a mass during the inflationary epoch then the power spectrum
will be scale invariant, corresponding to β = 1 [44]. While some models predict oscillatory
damping of the CB spectrum at high multipoles [120], [121], this scale invariant assumption
is expected to remain valid in the spectral ranges probed by the experiments considered in this
analysis. The true spectral shape of the CB spectrum remains unknown, so we have allowed
for perturbation around scale invariance by including the additional free parameter β.

4.1.2 Birefringence and the CMB

The CMB polarisation anisotropies were generated in the Early Universe during the epoch
of recombination via Thomson scattering. Approximately 10% of these CMB photons are
linearly polarised. The high redshift origin of these polarised photons makes the CMB an
ideal candidate for the detection of CB.

CB affects CMB polarization maps in a manner analogous to weak lensing modifications
to the maps. Therefore CB not only modifies the angular power spectra (i.e. the diagonal of
the harmonic space covariance matrix : 〈aX`maY`′m′〉) but also encodes information in the off-
diagonal elements of the covariance matrix. The monopole component of the CB rotation
angle causes mixing between the different angular power spectra at first order in α0 - the
uniform CB rotation angle. The anisotropies in the CB rotation angle also modify the different
angular power spectra but leading order corrections appear only at second order (α2). The
anisotropies in the CB rotation angle are also encoded in the off-diagonals of the covariance
matrix, and these are at first order (α) and these therefore can be reconstructed using the well
known quadratic estimator (QE) technique [38], [39], [43], [83].

It is therefore possible to put constraints on CB affects in CMB polarization maps using
two complementary methods. One can look for excess power in direct measurement of the
polarization angular power spectra. The details of the modification to the polarization angular
power due to CB are summarized in Section. 4.2.1. Alternately, one can use the QE technique,
where α(n̂) is reconstructed, and the power spectrum of the reconstructed map is compared
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to the null hypothesis of it being consistent with noise. Relevant details relating to the QE are
discussed in Section. 4.2.2. It is important to note that constraining uniform birefringence
is limited by the level of absolute polarisation angle calibration possible [57], however, such
limitations do not apply when placing constraints on anisotropic birefringence. In this chapter
we assume that any monopole birefringence effects have already been removed using self cal-
ibration [122] and focus on deriving constraints on anisotropic birefringence from upcoming
CMB experiments using the two complementary methods discussed above. In Section. 4.3
we discuss the likelihoods we use, and the experimental configurations for BICEP/Keck, SO
and LiteBIRD to derive constraints for each of these two methods.

Many CMB experiments have already placed constraints on both uniform and anisotropic
CB [43], [57], [67], [68], [77], [123]. The current best constraint on the uniform CB rotation
angle, α0, comes from Planck whose 68% confidence limit is α0 < 0.5◦ [124]. The best con-
straint on anisotropic birefringence is a 95% confidence limit constraint on the amplitude of
the CB power spectrum ofACB ≤ 0.10×10−4 rad2, set by analysis on recent ACT, assuming
a scale invariant power spectrum for CB (i.e. β = 1) [125]. In Section. 4.4 we present a
forecast of the CB constraints from BICEP/Keck, SO and LiteBIRD. A qualitatively similar
study was carried out in [126] and we find consistent results under similar settings. Further
to the presentation of this forecast we compare the relative constraints one may be able to ob-
tain using both the QE technique, and by looking for excess power in the polarization angular
power spectra.

Due to the relationship between the CB and the coupling strength between the photon
and the PNGB it is possible to forecast constraints for this coupling using constraints on CB.
As the observable for CB, rotation of the CMB linear polarization angle, is the same as the
observable for primordial magnetic fields (PMFs) it is possible to also use CB constraints to
place constraints on the field strength of PMFs [127]–[129]. Forecasts for constraints on both
physical phenomenon for BICEP/Keck, SO, and LiteBIRD are presented in Section. 4.4.

A measurement of the primordial B-modes, originating from tensor perturbations to the
metric as predicted by most models of inflation, is one of the primary science goals of many
observational programs. Since CB can induce excess B-mode power which can be potentially
confused with these primordial B-modes it is important to understand the constraints on CB
attainable via different experiments. This will be an important aspect of interpreting the B-
mode measurements of the future. With this motivation, in Section 4.4 we compare the CB
induced B-mode allowed by the forecasted upper bounds on CB for BICEP/Keck, SO small
aperture telescope (SAT) and large aperture telescope (LAT), and LiteBIRD. An analogous
theoretical study was performed in [120], where the was focus was on estimating induced B-
modes sourced by CB spectra corresponding to different coupling strengths between a PNGB
and CMB photons. We emphasize that here we estimate the B-mode power that cannot be
ruled out, even after taking into account the best upper limits on CB that will be placed by
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the corresponding experiments1.

4.2 Constraining CB using CMB polarisation

The affects of anisotropic CB on the CMB polarisation are expected to be small and hence
can be treated perturbatively. The CMB polarization is written in terms of the maps of the
Stokes parameters Q(n̂) and U(n̂) on the sky. Defining the complex Stokes parameters,

±P (n̂) ≡ (Q± iU)(n̂) , (4.4)

the rotation of the polarisation due to birefringence is given by: ±P (n̂) = ±P̃ (n̂)e∓i2α(n̂).
Note that tilde’d variables are used to denote the primordial (un-rotated) CMB fields. We
reiterate that we focus only on anisotropic CB and assume that the monopole CB (or angle
miscalibration) has already been corrected using self calibration. Treating this perturbatively
and retaining terms to second order in α yield the following correction to the polarization
vector,

±P (n̂) = ±P̃ (n̂)
[
1∓ i2α(n̂)± 2α2(n̂) +O(α3)

]
. (4.5)

The E and B fields are an equivalent, but scalar (spin 0) representation of CMB polar-
ization. In the following section we summarize how these CB corrections propagate to the
harmonic space covariance of the scalar E and B fields.

4.2.1 The effect of CB on the B-mode power-spectrum

As previously mentioned, the dominant corrections to the CMB polarization angular power
spectra, due to anisotropic CB rotation angle, appear at second order in α. These corrections
result in mixing of power between different multipoles and also in mixing of power between
the E and B mode of polarization.

The correction to the angular power spectrum of B-mode of polarization is given by [130],

δCBB
` =

1

π

∑
L

Cαα
L (2L+ 1)

∑
l2

(2l2 + 1)C̃EE
l2

(HL
ll2
)2 + TB(B → B) , (4.6)

where only modes that satisfy the triangularity condition l+L+ l2 = Even contribute to the

sum and HL
ll′ =

(
l L l′

2 0 −2

)
is a Wigner symbol. Similarly the correction to the angular

power spectrum of the E-mode of polarization has the following form [130],

δCEE
` =

1

π

∑
L

Cαα
L (2L+ 1)

∑
l2

(2l2 + 1)CEE
l2

(HL
ll2
)2 + TE(B → E) , (4.7)

1Here we implicitly assume that no significant detection of CB is made by the corresponding experiment.
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where only modes that satisfy the triangularity condition l + L+ l2 = Odd contribute to the
sum. For brevity the explicit form for additional corrections TB and TE are not given here,
since these are sub-dominant. Unlike in the case of monopole birefringence, the anisotropic
birefringence does not generate CEB

l when including corrections up to second order in α.

Since the power in the E-modes is significantly larger than in the B-modes, the dominant
corrections result from mixing of E-mode power across multipoles and across polarization
states. This is also the reason why the additional corrections (TB & TE) sourced by B-mode
power are sub-dominant. On evaluating the correction to the CMB polarization power spec-
trum (Eq. 4.7 & Eq. 4.6), with Cαα

L consistent with the current constraints on anisotropic CB,
it is seen that the corrections to the E-mode power spectrum are more than an order of mag-
nitude below cosmic variance. This indicates that the E-mode power spectrum cannot place
interesting constraints on CB. On the contrary corrections to the B-mode power spectrum are
comparable to primordial B-mode power expected from the range of tensor to scalar ratio
being targeted by current and upcoming CMB experiments. This indicates that the measured
B-mode power spectrum can be used to place interesting constraints on CB.

4.2.2 The Quadratic Estimator

As noted previously, CB induces coupling between off-diagonal elements of the covariance
matrix2, at leading order in α, that can be measured from data and combined in an optimal
manner, using the (QE) technique, to yield a map of α. This is entirely analogous to the more
well known case of QE reconstruction of the weak lensing potential [131]. While the details
of constructing these QE for CB can be found in [38], [39], here we summarize the QE details
relevant to this chapter.

In practice, one carries out the CB reconstruction by extracting information from the each
of the following covariance matrices: EB, EE, BB, TE & TB and finally combining the recon-
struction from each estimator in an optimal way, duly accounting for the correlations between
the different estimates. However, it is seen that the final result is dominated by the EB QE
and the explicit form of this estimator is given by,

α̂LM = −2NL

∑
ll′

C̃EE
l′

CBB
l CEE

l′

∑
mm′

BlmE
∗
l′m′ξLMlml′m′ , (4.8)

where C̃l represents the true primordial CMB power spectrum that is calculated using a Boltz-
mann code, such as CAMB, with an assumed fiducial cosmology, Cl denotes the observed
power spectrum: Cl = C̃l+C

noise
l ,Elm andBlm are beam deconvolved harmonic space fields,

2In the absence of CB the off-diagonal correlations are zero, except when considering analogous couplings induced by weak lensing
of the CMB.
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ξLMlml′m′ represents the geometric kernel that is given by the following expression,

ξLMlml′m′ = (−1)m
√

(2l + 1)(2L+ 1)(2l′ + 1)

4π

(
l L l′

−m M m′

)
HL
ll′ , (4.9)

and NL is the reconstruction noise power spectrum. NL is the expected power spectrum
of the reconstructed map in the absence of any CB and is given by the following expression,

NL =

[
4
∑
ll′

√
(2l + 1)(2l′ + 1)

4π

(C̃EE
l′ HL

ll′)
2

CBB
l CEE

l′

]−1

. (4.10)

The derivation of this quadratic estimator is summarized in detail in Chapter 2, though the
final result is presented in a slightly different form.

It is important to note that, owing to parity conditions for the EB QE estimator, the sums
in the estimator and the reconstruction noise only receive non-zero contribution when the
condition l + l′ + L = Even is satisfied. To make forecasts using the QE technique, one
only needs to evaluate NL using Eq. 4.10, which requires the fiducial CMB power spectra,
the noise and instrument beam for each experiment as an input.

4.3 Forecast methodology for ACB

We employ a likelihood based approach to constrain the amplitude of the CB power spec-
trum, ACB, using both the QE approach, and using direct observations of the B-mode power
spectrum (BB). We forecast the upper bound onACB using both these QE and BB techniques
for SO, LiteBIRD, and a simulated version of BICEP/Keck. As a robustness check we also
derive ACB limits using QE and BB techniques using actual BICEP/Keck band-power data
and compare them against those quoted by BICEP/Keck [68].

For these analyses we work with a null hypothesis for primordial B-modes (i.e. r = 0).
The maximum multipole is fixed to the same value for all experimental configurations. By
so doing, the different multipole contributions to the likelihood are naturally determined by
the noise in the respective measurements. The likelihood is given by L = N e−

1
2
χ2 and the

χ2 has the following general form,

χ2(ACB) = ∆dlM
−1
ll′ ∆d

′
l , (4.11)

where ∆dl =
[
Cobs
l − Cmodel

l (ACB)
]

and Mll′ is the covariance matrix evaluated at a fixed
fiducial cosmology. Note that even for the model power spectra ACB is the only parameter
that is allowed to vary while other cosmological parameters are held fixed. The CB power
spectrum is assumed to be a power law (see Eq.4.3) and we study the constraints by allowing
the slope to vary by 15% around a scale invariant power spectrum.
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In the following sub-sections we provide the specifics of the model spectra, observed spec-
tra and covariance matrices used to define the BB and QE likelihoods.

4.3.1 The BB likelihood for ACB

As discussed in Section 4.2.1 a non-vanishing CB effect will result in excess B-mode power,
analogous to how weak lensing generates B-mode power by leaking some of the E-mode
power. It is possible to put constraints on ACB by searching for this excess power in the
measured B-mode power spectrum. To do this we use the following definition of the model
spectrum to evaluate the likelihood function [43],

Cmodel
` (ACB) = ACBC

BB,CB
` + AlensC

BB,lens
` , (4.12)

where CBB,CB
` is the CB induced BB power spectrum which is evaluated by injecting the CB

power spectrum, given in Eq. 4.3, into Eq. 4.6 for ACB = 1 and a range of values of β. The
covariance matrix, M``′ , then has the following form,

M``′ =
2

(2`+ 1)fsky

[
AlensC

BB,lens
` + CBB,noise

` W−2
`

]2
δ``′ , (4.13)

where, CBB, lens
` is the B-mode power spectrum induced by lensing, Alens generally char-

acterizes the lensing power post de-lensing, CBB,noise
` is the instrument noise power spec-

trum and W` is the beam window function. When using this method we also derive con-
straints for different amounts of de-lensing, which is done by simply using different values,
Alens ∈ {1, 0.75, 0}3, as this considerably changes the effective noise in the measurements of
the BB power spectrum.

4.3.2 The QE likelihood for ACB

In addition to inducing excess B-mode power, CB would also induce specific signatures in
the off-diagonal elements of the covariance matrix and these can be used to reconstruct the
CB rotation field, α, as discussed in Section 4.2.2. For the QE likelihood Cobs

l would be the
power spectrum of the reconstructed αmap which we denote byCαα, rec

L . The model spectrum
is then given by [68],

Cmodel
L (ACB) = ACBC

αα, ref
L +NL , (4.14)

where Cαα, ref
L denotes a reference CB power spectrum and is assumed to have the same form

as in. Eq. 4.3. NL denotes the reconstruction noise power spectrum which can be evaluated
3Alens = 1 means no de-lensing, while Alens = 0 means perfect de-lensing.
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using Eq. 4.10. Note that NL can be evaluated given only the theoretical CMB spectra and
the instrument noise power spectrum. The covariance matrix Mll′ for the QE likelihood has
the following form,

MLL′ =
2

(2L+ 1)fsky
N2
LδLL′ . (4.15)

Unlike in the BB analysis where we derive constraint for different values of Alens, here
we keep Alens = 1 fixed. We estimate the reconstruction noise by optimally combining the
reconstruction noise for all the QE (EE, BB, EB, TE, TB) estimators. For all experimental
configurations we find that this net reconstruction noise offers little improvement on ACB
constraints compared to those derived from using the reconstruction noise corresponding to
the EB estimator alone.

4.3.3 Experimental configurations

The multipole ranges, sky coverage, noise and beam for the three experiments considered in
this chapter are summarised in Table 4.1. Instead of artificially varying the lmax cutoff for each
experiment, the maximum multipole of lmax = 3000 was chosen so that the cutoff is instead
where the signal becomes saturated by noise for each experiment.

Instrument `min `max fsky noise rms θFWHM
[µKarcmin] [arcmin]

BICEP/Keck 30 3000 0.01 3.0 30
SO SAT 93GHz 30 3000 0.1 3.8 30
SO LAT 93GHz 30 3000 0.4 16.3 2.2

LiteBIRD 2 3000 0.7 2.5 30

Table 4.1: Instrument specifications used in construction of the respective likelihood
functions. For BICEP/Keck, noise curves were fit to publicly available noise data. For SO
the noise curves were produced using a publicly available SO noise forecast code. For both
SO and BICEP/Keck the noise rms presented is the average value for these noise curves in
the range 30 ≤ ` ≤ 3000. The noise curves for LiteBIRD were calculated directly from the

beam and noise rms values.

The noise power spectrum used and the instrument beams for each analysis carried out in
this chapter were chosen with the following prescriptions/reasons:

• BICEP/Keck actual band-power data: The publicly available 150GHz binned noise data was
chosen [68] and the model spectra were identically binned using the prescription presented
in [132].

• BICEP/Keck simulated forecast: The Gaussian noise model was fitted to the publicly avail-
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able 150GHz channel binned noise4[68]. We ensured that this fitted noise model closely
resembles the BICEP noise. This procedure allows us to use an extended multipole range
for making a forecast. The limit of `min = 30 for the simulated forecast was chosen to
emulate the baseline QE analysis performed in [68].

• SO forecast: A publicly available noise curve code5 was used to generate noise curves for
the 93GHz channel. This channel was chosen as it gives the strongest constraint on ACB
[16]. Both the SAT and LAT noise curves were generated using the “baseline” mode of
the noise code 6. In addition to instrument noise, these noise curves include additional
contributions from atmospheric noise. While for forecasts, we use these simulated noise
curves, the rms noise quoted in Table 4.1 are estimated from fitting the amplitude of the
Gaussian noise model to the simulated noise curved. The value of `min = 30 was chosen in
order to be consistent with the ` range used for the SO forecasts presented in [16].

• LiteBIRD forecast: A noise curve was constructed using the average beam width and the
rms noise values quoted in [88].

4.4 Results

4.4.1 Forecasted constraints on ACB

We carry out the analysis described in section 4.3 for BICEP/Keck, SO, and LiteBIRD. The
likelihood curves for ACB are depicted in Fig. 4.1. We show the curves for β = 1 in order to
draw easier comparisons with current constraints. Using these likelihood curves we calcu-
lated the 95% upper limit on ACB and these are summarized in Table. 4.2. Below we discuss
the salient features of the derived ACB constraints for each of the experiments we study in
this chapter, comparing the results of the QE and BB techniques for each experiment.

BICEP/Keck: TheACB limits presented by BICEP/Keck are derived using the QE method
using a maximum CMB multipole of lmax = 700 [68]. In our BICEP/Keck simulated forecast,
on using the inputs from Table 4.1 and evaluating the 95% upper limits on ACB from the QE
likelihood, we find that the resulting upper limit matches the limits found by BICEP/Keck, as
seen in the top left panel of Fig. 4.1. Specifically note that in our setup we have lmax = 3000

and the corresponding instrument beam and noise in the measurements naturally determine
the weighting for the different modes. Using an identical setting we also evaluate the BB
likelihood and find that the constraint on ACB is only 1.4 (Alens = 1) times larger than the
QE constraint. Naturally we find that the BB constraint could be improved if the B-mode
map were to be de-lensed (by a factor of 1.5 in the case of perfect de-lensing). However

4The BICEP/Keck binned noise and band power data is available at http://bicepkeck.org/bk15_2018_release.html.
5The noise curves for the SO LAT and SAT telescopes can be found at https://simonsobservatory.org/assets/

supplements/20180822_SO_Noise_Public.tgz.
6The “one over f” mode in the noise code was set to “optimistic”
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Figure 4.1: Forecasted likelihoods and 95% confidence limits for ACB for the LAT and
SAT SO 93GHz channels, BICEP/Keck, and LiteBIRD. The current experimental upper
bound on ACB of ACB < 0.33× 10−4 rad2from [68] is indicated as the red vertical line.
The forecasted constraint from the QE is shown in blue, whereas the forecast constraint
from BB when no de-lensing is present is indicated in orange. The expected constraints
from BB when Alens = 0.7 is indicated in green, and for perfect de-lensing (Alens = 0) is

indicated in black. The constraint from the actual BICEP/Keck B-mode bandpower data is
indicated in magenta. For the reference spectra used to calculate both the QE and BB

likelihood curves shown β = 1. For the ground based experiments, BICEP/Keck and SO,
the multipole range for the forecast is 30 ≤ ` ≤ 3000 and 30 ≤ L ≤ 3000, whereas, for

LiteBIRD `min = 2 and Lmin = 1. We also present the constraint for L ≥ 30 in grey in order
to provide a comparison with the other two experiments and indicate the effect that access
to lower multipoles has on the QE constraint. The forecasted 95% confidence limits are

noted with dashed vertical lines. The 95% upper limits are presented in table 4.2.

this finding contrasts the claim in [68], that constraints on ACB using the BB technique are
significantly worse than those derived using QE. In order to understand the origin of this con-
trasting conclusion, we also evaluate the BB likelihood using publicly available BICEP band
power data[133] and find a relatively weaker constraint on ACB = 7.51× 10−5rad2, a factor
of 2.6 worse than the QE constraint. This weakening of the constraints can be understood as
a consequence of using a truncated multipole range in the BB likelihood analysis7. Finally
we also checked that using the lmax = 332 when carrying out the simulated forecast results
in a constraint that is consistent with that derived from the BICEP band power data. These

7BICEP used lmax = 332 for the BB likelihood, however it uses an lmax = 700 for evaluting their QE likelihood
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tests and checks allow us to benchmark our forecasting tools with published constraints hence
allowing us to now perform reliable forecasts for upcoming experiments.

Simons Observatory: As seen in both Figure 4.1 and Table 4.2, for the SO SAT the ACB
constraints derived from the BB likelihood are comparable to those derived from QE. These
constraints are similar to the current best upper limits from ACT of ACB = 1.0× 10−5 rad2,
derived using the QE method [125]. However, for LAT, the QE analysis gives a significantly
better constraint on ACB than BB and is also 2.6 times better than the QE limits achievable
from the SAT.

De-lensing has a significant impact on the BB constraints achievable using the SAT, with
perfect de-lensing yielding an improvement on BB constraints from the SAT by a factor of
1.76. For the LAT perfect de-lensing can also improve BB limits, however, the QE constraints
continue to be better, as seen in Table 4.2. In summary, the best constraints for SO come from
the QE analysis on the LAT. Therefore, in analogy to weak lensing, carrying out QE analysis
on the LAT to place the best possible constraint on CB, is likely the best strategy for putting
limits on CB induced B-mode power. It is possible to apply the QE analysis on de-lensed
B-mode skies but we have not explored this analysis strategy8.

LiteBIRD: LiteBIRD is a space based experiment, and hence it significantly differs from
both BICEP and SO/SAT, owing to its significantly larger sky coverage.

This immediately implies access to the largest angular scales on the sky, and this signifi-
cantly enhances the constraints on ACB from the QE likelihood, since the scale invariant CB
power spectrum has more power at lower multipoles. Consequently we find that LiteBIRD
will be able to place constraints on ACB that are better than all other experiments considered
in this chapter.

The white noise is expected to be smaller for LiteBIRD than that of BICEP/Keck and SO,
as seen in Table 4.1. Owing to this the constraints on ACB from the BB likelihood, even
assuming no de-lensing, yields a constraint that is better than the best constraints achievable
by any other experiment considered in this study. However, for LiteBIRD, the constraints on
ACB from the QE method yield constraints which are better by a factor of ∼ 16 than those
achievable from BB with perfect de-lensing.

To better appreciate the gains from being able to use the large angle modes, we also de-
rive ACB constraints that would be achievable by ignoring multipoles L < 30 in the QE
likelihood analysis and the resultant constraints are presented in Table 4.2. We find that the
ACB constraints degrade by a factor of ∼ 30 and become only marginally better than the QE
constraints for SO LAT. We also carry out a similar exercise for the BB likelihood and find
insignificant changes to the ACB constraints.

8A careful treatment would require using revised noise estimates on the de-lensed B-mode maps.
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Instrument ACB [rad2] B1Mpc [nG] gφγγ [H
−1
I ]

QE BICEP/Keck 3.32× 10−5 30 7.24× 10−2

SO LAT 3.96× 10−6 10.4 2.83× 10−2

SO SAT 1.03× 10−5 16.8 4.03× 10−2

LiteBIRD 6.84× 10−8 1.4 4.65× 10−3

(L > 30) LiteBIRD 2.31× 10−6 8.0 1.90× 10−2

ACT 1.0× 10−5 16.6 (est.) 4.0× 10−2

BB BICEP/Keck 4.65× 10−5 36 8.57× 10−2

Alens = 1 BK data 7.51× 10−5 46 1.09× 10−1

SO LAT 1.63× 10−5 19.1 4.56× 10−2

SO SAT 1.25× 10−5 18.5 4.43× 10−2

LiteBIRD 2.91× 10−6 9.0 2.14× 10−2

BB-DL BICEP/Keck 4.24× 10−5 34 8.18× 10−2

Alens = 0.7 SO LAT 1.30× 10−5 18.9 4.53× 10−2

SO SAT 1.11× 10−5 17.5 4.18× 10−2

LiteBIRD 2.46× 10−6 8.2 1.97× 10−2

BB-NL BICEP/Keck 3.12× 10−5 29 7.01× 10−2

Alens = 0 SO LAT 1.26× 10−5 18.6 4.45× 10−2

SO SAT 7.12× 10−6 14.0 3.35× 10−2

LiteBIRD 1.12× 10−6 5.6 1.33× 10−2

Table 4.2: Forecasted 95% upper bounds on ACB, which is converted into a limit on PMF
field strength, with a reference frequency of ν = 150 GHz, or a PNGB-photon coupling, for
both QE and BB calculated with β = 1. For BB this is carried out for Alens = 1, Alens = 0.7

(BB-DL) and Alens = 0.0 (BB-NL). These constraints are calculated for BICEP/Keck, SO,
and LiteBIRD. The constraint from the analysis of the BICEP/Keck B-mode data is also

presented (BK data). The values for ACT presented here are from [125] except the
constraint on B1Mpc, which is estimated from the ACT constraint on ACB.

4.4.2 Constraints on Physical Phenomena

While the focus till now has been on constraining CB, the origin and motivation for this
chapter, the forecasted constraints can be used to place constraints on a more broad range of
phenomena which result in CPR.

One possible cause of CPR could be Faraday rotation induced by PMFs [69], [127], [129].
The PMF amplitude is related to the CB power spectrum via the following relation [43], [68]:

B1Mpc = 2.1× 104 nG
( ν

30GHz

)2√L(L+ 1)Cαα
L

2π
. (4.16)

Here, ν is the observed photon frequency. Assuming a scale invariant form for the CB power
spectrum results in the following relation between the PMF strength and ACB,

B1Mpc = 2.1× 104 nG
( ν

30GHz

)2√
ACB . (4.17)

Note that the above equation is independent of multipole and can be used to translate ACB
constraints to those on the amplitude of the PMF. We invert Eq. 4.17 at ν = 150 GHz to
derive the upper limits on the primordial magnetic field strength for the different experiments
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and these are tabulated in Table 4.2. Not surprisingly the constraint we forecast on the PMF
strength, B1Mpc, using the QE method matched the limits presented by BICEP/Keck[68].

We find from the forecasts for the QE method that LiteBIRD could improve upon the
existing BICEP/Keck limits by a factor of ∼ 21. While there is no quoted constraint on
PMF amplitude from ACT, we translate ACB constraints from ACT in [125] using the same
prescription as above and the resultant PMF constraint is given in Table 4.2. Comparing this
estimate to the QE forecast for LiteBIRD suggests that LiteBIRD may also be able to improve
on any potential constraints ACT might place on B1Mpc by nearly a factor of ∼ 12. We find
that the LiteBIRD experiment is expected to give a PMF constraint that is a factor of ∼ 8

better than the PMF constraint expected from SO LAT, and a factor of ∼ 12 better than the
PMF constraint expected from SO SAT.

The primary motivation for this chapter, cosmological birefringence, is usually attributed
to the coupling of a PNGB to the gauge field. There are a variety of exciting and physically
well motivated physical candidates for the PNGB including the dark matter axion, therefore
constraining the strength of the coupling between the PNGB and the photon is of great interest.
One can convert to an axion photon coupling, gφγγ = β/2M and the relationship between
gφγγ and the CB power spectrum is [44], [68],

gφγγ =
4π

HI

√
L(L+ 1)Cαα

L

2π
, (4.18)

or, according to (4.3) assuming the PNGB does not obtain a mass during inflation,

gφγγ =
4π

HI

√
ACB . (4.19)

Here, HI is the Hubble parameter during inflation. We have also used the forecasted con-
straints on ACB to place possible upper bounds on gφγγ for Simons Observatory, and Lite-
BIRD and these are presented in Table 4.2. As a test case, we compute an upper bound on
gφγγ using the QE method for BICEP/Keck and find that it matches the existing QE bound
found in [68].

The best constraint on gφγγ is expected to come, once again, from LiteBIRD. Morever,
the LiteBIRD experiment could significantly improve upon existing bounds by nearly a factor
of ∼ 16 over the BICEP/Keck bound [68] and nearly a factor of ∼ 9 over the ACT bound
[125]. LiteBIRD may give a constraint on gφγγ that is a factor of ∼ 6 better than the forecasted
constraint from SO LAT and a factor of ∼ 9 better than the forecasted constraint from SO
SAT .
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4.4.3 Effect of birefringence on primordial B-modes

As seen in Eq. (4.6) additional B-mode power is induced by CB. We argued and demon-
strated how this can be used to place constraints on CB from the measurements of CBB

l . We
now turn our attention to understanding the potential implications of the CB constraint study
on measurement of primordial B-modes, since this is a primary science goal for the experi-
ments considered in this chapter. Under the assumption that CB exists, we characterize the
contamination by evaluating the induced B-mode power spectrum from the best 95% upper
limits placed on ACB for all experiments. That is, we take the best 95% confidence limits
on ACB for each experiment, use them as the amplitude for CB spectra and compute the
B-mode induced by each of these spectra. To gain some insight on the dependence on the
slope of the CB spectra, we extend our analysis by estimating the QE likelihood constraints
on ACB, for CB spectra which deviate from the scale invariant form, specifically assuming
β = [0.85, 1.15]. Note that when deriving constraints on ACB for these non-scale invariant
spectra, we re-normalize Cα

L to match the scale invariant spectra amplitude at the pivot mul-
tipole L0 = 1. While we do not provide these constraints here, we use these to evaluate the
corresponding induced B-mode spectra, which are depicted in Fig. 4.2.

Since the shape of the B-mode spectra induced by CB differs from that induced by tensors,
we compare the amplitudes at ` ∼ 80. For all the ground based experiments, the CB induced
B-mode power spectra can constitute of order 1 to a few ten percent of the total primordial
B-mode for r ∈ [10−2, 10−3] as can be seen in Fig. 4.2. Further we note that the shallower
CB spectrum (β = −0.85) results in a induced B-mode spectrum with a smaller amplitude
while a steeper CB spectrum (β = −1.15) results in a B-mode spectrum with a larger am-
plitude. This, as we now argue, is quite counter intuitive. With pivoting at L0 = 1 and
ACB = 1, it is clear that the CBB

` induced by a shallower CB spectrum will have an overall
higher amplitude than one induced by a steeper CB spectrum, owing to greater amplitude of
the shallower spectrum than the steeper spectrum at most multipoles (except at L0). Since
QE analyses are highly sensitive to low multipoles, on reducing access to the large angle
modes, the ACB constraints on a steeper CB spectrum are more weakened than they are for
a shallower CB spectrum. This weakening of constraints results in the induced CBB

` from
a steeper CB spectrum having a higher amplitude than that induced from the shallower CB
spectrum, when evaluated for the bestACB limits derived from the QE likelihood, resulting in
the corresponding ordering of the induced B-mode spectrum - explaining the counter intuitive
trend.

For LiteBIRD the story is significantly different, owing to enhanced sensitivity and access
to low multipoles, theACB constraints are more stringent. Therefore the CB induced B-mode
spectra have a very low amplitude and cannot act as major contaminants to measurements
of primordial B-modes with the corresponding target amplitudes. Here it is interesting to
note that the steeper CB spectrum induces a smaller B-mode spectrum than the shallower
CB spectrum, as one may have expected. In this case, since the ACB constraints are driven
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Figure 4.2: Maximum CB induced B-modes spectra, for varying CB spectral slopes:
Cαα
L ∝ (L(L+ 1))−0.85 (dashed lines), scale-invariant Cαα

L ∝ (L(L+ 1))−1 case (solid
lines) and Cαα

L ∝ (L(L+ 1))−1.15 (dot-dashed lines), with best ACB upper limits derived
using the QE likelihood. The CBB,CB

` are compared to the primordial C̃BB
` when the tensor

to scalar ratio r is in the range ∼ 10−2 − 10−3. The CB induced CBB,CB
l allowed by the

most recent ACT constraint is shown as a dotted maroon line.

dominantly low multipoles, there is relatively smaller variation in the ACB limits and the B-
mode spectra induced by CB spectra of different slopes follow the expected trend.

4.5 Conclusions

Future prospects for the detection and constraint of CB by the upcoming LiteBIRD and SO
experiments, and current constraints on CB from the contemporary BICEP/Keck experiment
have been discussed. The constraints these experiments should be able to place on CB, or
more generally CPR, using both a QE and BB approach have been compared. It was found that
the QE approach yields the strongest constraints. However, it was also found that in the SO
SAT and BICEP/Keck forecast that the QE approach will yield only a marginal improvement
over the constraint found using the BB method. In such cases, the computational expense and
relative complexity of the QE method may make the use of the BB approach a much more
favourable option for placing constraints on anisotropic CB. As long as the CB signal is found
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to be consistent with zero using BB, no QE investigation is needed. However, if in these cases
a non-zero CB signal is found using the BB method, a QE method must be used to verify this
signal is in fact sourced by CB.

The much weaker constraint from the BICEP/Keck band-powerB-mode data compared to
the strength of the constraint in the forecast BICEP/Keck case, along with the degradation in
quality of the forecast constraint when the multipole range is limited, suggests that limits in
multipole range may have lead to the lower quality BICEP/Keck constraint from BB analysis
mentioned in [68]. The strongest constraint is expected to come from the LiteBIRD experi-
ment using a QE approach. The LiteBIRD is expected to offer roughly an order of magnitude
improvement over the other experiments included in this analysis when using a QE approach.
This improvement will be due to the improved sky coverage a low multipole access of the
instrument.

The constraints on CPR were also used to predict constraints on the possible physical
sources of CPR, both primordial magnetic fields and cosmological birefringence. More
specifically, we calculated upper bounds on both the field strength for primordial magnetic
fields, and for the PNGB-photon coupling. Stronger constraints on ACB will yield stronger
constraints on both the PNGB-photon coupling and PMF field strength, and it was found that
LiteBIRD is expected to be able to place the strongest constraint on both of these physical pa-
rameters. It is expected that the strong constraints are due to the large expected sky coverage
of the LiteBIRD instrument. In a later chapter of this thesis we will discuss the application
of a QE approach to reconstruct the CB map and power spectrum using data from Planck,
another full-sky satellite experiment.

In previous searches for primordial CMB B-mode the cosmological birefringence effect
has been seen as largely irrelevant. The perspective has been that, while it is may be an inter-
esting prospect to detect such an exotic physical effect, CB has little or no bearing on more
mainstream CMB cosmology. However, as CMB experiments continue to probe primordial
B-modes with more and more sensitivity, and as de-lensing techniques become more effi-
cient CB may become a significant potential contaminant toB-mode science that needs to be
excluded. In this chapter we have shown that the presence of an anisotropic CB effect with a
power spectrum of an amplitude allowed by current upper bounds will indeed induce a large
enough B-mode signal to act as a contaminant in future surveys seeking to constrain the ten-
sor to scalar ratio in the range r ∼ 10−2 to r ∼ 10−3. Therefore, it will be necessary to truly
ensure that such a contaminant is indeed not present. For future experiments such as SO it
will be important to perform a QE based analysis to ensure that any detected B-mode signal
is not from a CB contaminant. If a significant CB is detected, its influence on primordial
B-mode studies can be removed by first de-rotating the polarization sky to remove the effects
of CB, using techniques that bear strong resemblance to the de-lensing analysis [38], [39].
A detected CB signal would be an exciting prospect and a signal of new exciting physics.
However, such a detection would warrant the removal of additional induced B-mode power
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in order to recover the true primordial B-mode signal.

The QE techniques discussed in this chapter may have an application beyond the recon-
struction and constraint of the CB signal. It may be possible to apply these QE techniques to
diagnose systematic effects sourced by imperfections in CMB instruments and to apply tech-
niques analogous to delensing to remove these systematics at the map level [28]. In the next
chapter we will apply this approach to a realistic set of time ordered simulations to demon-
strate its viability for systematics removal and unbiased B-mode recovery.
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Chapter 5

Blind Map Level Systematics Cleaning:

A Quadratic Estimator Approach

5.1 Introduction

The Cosmic Microwave Background (CMB) intensity and polarization are key observables
for cosmology. The frontiers of cosmology have been pushed back by progressively more sen-
sitive measurement of the CMB delivered by Cosmic Background Explorer (COBE) [134],
the Wilkinson Microwave Anisotropy Probe (WMAP) [135], and Planck [136]. Future sur-
veys, including satellite and ground-based, will measure the CMB sky with unprecedented
sensitivities, with the primordial B-mode polarization spectrum as one of the primary targets.
With these ever increasing sensitivities, precision control over systematics and their removal
will become increasingly important.

Robust measurement of the primordial B-mode signals will require overcoming a number
of analysis challenges, including foreground removal, removal of the weak-lensing B-mode
signal and potential contamination from instrument systematic effects, as well as B-mode
contamination from the cosmological birefringence (CB) effect mentioned in the previous
chapters. Recent studies have shown that the upcoming experiments in principle have suffi-
cient sensitivity and frequency coverage for robust recovery of B-mode signal corresponding
to r ∼ 10−3 [16], [137]. Similarly other studies have examined how well B-mode skies may
be de-lensed [e.g. 95], and in the previous chapter we discussed how well upcomming ex-
periments will be able to recover and constrain the CB effect. Much of the previous chapter
focused on the application of a Quadratic Estimator (QE) approach to the recovery of CB. In
this chapter we extend this approach, focusing our attention on systematics from instruments.

Common approaches to the removal of instrument systematics require complex modeling
and prior knowledge of the instrument itself. An appealing aspect of a QE approach is that it in
principle allows a largely agnostic approach to dealing with instrument systematics. That is,
the effect of systematics on the CMB data can be modeled as a set distortions to the CMB data.
Reconstructing these distortions using a QE does not require prior knowledge or modeling
of the instrument sourcing the distortions. QE cleaning and reconstruction is therefore a
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promising complimentary approach to traditional systematic modeling techniques.

Previous works have suggested the use of QE as a method to quantify the level of system-
atics in CMB maps [e.g 28], formulating QE for a variety of instrumental systematics. These
included gain fluctuations, differential systematics, and instrumental polarisation rotation, to
list a few among a much longer list of possible instrument systematics. QEs are most com-
monly employed in reconstruction of the lensing potential map [e.g. 138] but have also been
used to constrain cosmological birefringence [43], [68], [77]. QE studies frequently draw
from understanding gained from lensing reconstruction. We improve upon previous studies
of QEs as applied to systematic effects by considering an estimator in the full sky regime,
accounting for realistic scan patterns, and testing whether certain aspects of the conventional
wisdom from lensing studies apply. We consider two scenarios throughout this chapter: (i)
a no lensing, noise, and beam free scenario which we refer to as the “ideal case”, and (ii) a
scenario we refer to as the “more realistic, non-ideal case” that includes the effect of lensing
on the CMB spectra, a gaussian white noise of w−1

TT = 2.7µK arcmin and a full width at half
maximum of θFWHM = 30′. This is motivated by the effective noise and beam expected for
the LiteBIRD experiment [88].

The QE approach would, in principle, leave us to deal with many systematics. In prac-
tice, to understand the most relevant ones it is useful to use rough estimates of the expected
contamination sources and then deal with those that are most prominent. A potentially large
source of CMB contamination is a temperature to polarization (T to P) leakage caused by
a differential gain systematic. Since the CMB temperature anisotropy signal is 3-4 orders
of magnitude larger than primordial B-mode signal, even a small leakage can induce large
B-mode power. Therefore, this systematic may be a large hindrance for primordial B-mode
studies. In this chapter we will refine aspects of analysis presented in [28], with our detailed
scrutiny limited to focusing on this systematic.

We reiterate that, while all tasks necessary for controlling and understanding this instru-
ment systematic will be performed, it is essential that these efforts be complemented with
refined analysis methods that allow mitigation of the such systematics in the observed maps.
At the very least, these methods will serve as important null tests, which will need to be
performed to claim a robust primordial B-mode signal.

This paper is organized as follows: We begin with a review of different map level instru-
ment systematics in Section 5.2, indicating the levels of contamination that may be induced
by different types of distortion fields. We then discuss the details of the respective QE in
Section 5.3. The iterative cleaning process which we employ in this chapter is presented in
Section 5.4. Here we also introduce a semi-analytical forecasting procedure that allows us
to predict the expected cleaning of B-mode maps. In Section 5.5 we present details of the
simulation where the differential gain systematic is injected and discuss why realistic scan
strategy is needed to give credible results. The results from QE analysis on simulated data
are presented in Section 5.6. We do this for the ideal case to show the limits of the QE method
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and for the more realistic, non-ideal case. We further quantify the results in Section 5.7 where
we discuss the impact on cleaning on the inferred tensor to scalar ratio r using a likelihood
based approach.

5.2 Distortions of the CMB

In an ideal setting the true CMB polarisation signal would be isolated and easily measured
without introducing any distortions. However, in practice the measurement are subject to a
number of measurement artefacts which need to be controlled and corrected post measure-
ment via some modelling. These contaminants can be typically characterised by their spin
dependence and, as such, readily written in to a set of distortion fields.

Both [28] and [139] use a Müller matrix approach [91] to describe the various systematic
and cosmological signals that could affect measurements of the CMB polarization using a
series of distortion fields. These distortions can be written as a coupling between different
spin combinations of the instrument and observable fields,

±δX(n̂) =[a± i2ω](n̂)±X̃(n̂) + ±f(n̂)∓X̃(n̂) + ±γ(n̂)T̃ (n̂) + σ+1p(n̂) · ∇X̃(n̂;σfwhm)

+ σ±d(n̂)±ðT̃ (n̂;σfwhm) + σ2q(n̂)±ð2T̃ (n̂;σfwhm) + ...

(5.1)

where ±X̃(n̂) = (Q̃± iŨ)(n̂) is the spin ±2, uncontaminated cosmological polarisation sig-
nal, T̃ represents the cosmological temperature signal, and ±δX(n̂) denotes the total induced
distortion, where ±ð denote the spin raising/lowering operators respectively. The a(n̂) and
ω(n̂) terms are scalar fields describing an amplitude scaling and a polarisation plane rotation
respectively, and ±f(n̂) is a spin ±4 field which couples the conjugate polarisation fields.
The ±γ(n̂) field is spin ±2 field and couples the temperature to polarisation directly.The ±1p
term is a spin ±1 deflection field that describes direction changes of the photons, the bold
face indicating the vector nature of this quantity. Here, ±d(n̂) is a spin ±1 field and q(n̂) is a
scalar field that couple the first and second derivatives of the temperature field to the polar-
isation respectively. Since ±X(n̂) is a spin ±2 field the distortions to this must also be spin
±2.

Equation 5.1 has been constructed such that the top line corresponds to mixing between
polarisation and temperature in a known direction on the sky. The bottom line presents terms
which involve mixing in a local region of the sky with some directional dependence such that
they leak the derivative of the CMB fields, such as a pointing error or lensing. The length
scale σfwhm corresponds to the width of a Gaussian beam that is smoothing the CMB fields.
The terms in the second line are sourced by a simple first order Taylor expansion of the CMB
fields around n̂.

There are no known processes that cause T to P conversion along the line of sight. There-
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Figure 5.1: The left column shows maps of the spin-2 (γQ + iγU)(n̂) distortion field
sourced by a 1% differential gain systematic which causes a T leakage into the polarisation.
The second and third columns show the spin-1 (1d1 + i1d2)(n̂) and spin-3 (3d1 + i3d2)(n̂)
distortion fields sourced by a 0.1′ differential pointing systematic which causes a leakage of
the derivative of the temperature into the polarisation. These levels of gain and pointing are

typical of those found in recent CMB experiments [e.g. 62], [140].

fore, each of the T̃ (n̂) containing terms can be attributed to some systematic. Some example
distortion fields are depicted in Figure 5.1. Here it is important to note that the form of these
distortion fields depends on the scanning strategy and therefore a realistic scan should be em-
ployed when assessing the importance of different systematics. We will revisit this detail in
Section 5.5.5.

Note that we only consider CMB fields and their distortions in this chapter. In particular,
we do not include foreground fields; We expect that foregrounds would be removed using
standard techniques [141], [142], and we leave any complications arising from interactions
between the two methods for future work.

In this paper we will focus on the T to P leakage mediated by the field ±γ(n̂), which is
sourced by differential gain variations in the detector [62], [140] coupled with the instrument
scan. Earlier work noted that the ±γ(n̂) field poses the largest potential obstruction to the
robust primordial B-mode recovery [28]. Specific details on inclusion of these systematics
in the simulated CMB maps will be presented in Section 5.5.
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5.2.1 Additional distortion terms

There exist other systematics that contribute at leading order to the distortions described in
Equation (5.1). These have been ignored in previous literature [28]. For completeness, here
we briefly discuss these ‘new’ terms; these are encoded in the following expression,

±δX
New(n̂) = σ−1p(n̂) · ∇±X̃(n̂;σ) + σ3p(n̂) · ∇∓X̃(n̂;σ) + σ5p(n̂) · ∇∓X̃(n̂;σ)

+ σ3d(n̂)∓ð T̃ (n̂;σ) + σ2
4q(n̂)∓ð2T̃ (n̂;σ).

(5.2)

where symbols in bold-face are vector quantities.

In particular, note that a differential pointing systematic, which would contribute to the
terms containing the ±d(n̂) and 1p(n̂) field in Equation (5.1), also contributes to a number of
terms in Equation (5.2). This includes additional coupling of the conjugate of the derivative
of the temperature field with the polarisation through the spin-3 3d(n̂) field. From Figure 5.1,
it is clear that this contributes a systematic at a level comparable to the spin-1 contribution,
1p(n̂), and as such may not be neglected. In addition the differential pointing will also con-
tribute to the terms containing the fields −1p(n̂), 5p(n̂), and 3p(n̂) which induce polarisation
mixing as detailed in [90].

The bias sourced by these additional systematics could in principle hinder a robust claim of
primordialB-mode detection. Neglecting these terms can potentially lead to distortion fields
sourced by some systematics remaining undiagnosed, but we leave more detailed explorations
of these new systematics to future work.

5.3 Quadratic estimators

For a statistically isotropic (SI) CMB sky, the off-diagonal correlation of the harmonic
space covariance matrix 〈XlmX

′
l′m′〉 ∝ δll′δmm′ , for X,X ′ ∈ [T,E,B]. However, secondary

anisotropies and measurement artifacts such as the distortion fields described in Section 5.2
can induce off-diagonal correlations. Therefore, by measuring and combining optimally com-
bining these off-diagonal correlations it is possible to draw inferences on the fields that induce
deviations from SI. This is commonly referred to as the quadratic estimator (QE) technique
and it has been very successfully used to measure the subtle signatures of weak lensing in
the CMB and deduce the lensing deflection angle map [93], [95], [143], to test deviations
from the standard cosmological assumption of isotropy [144] and also to seek signatures of
non-standard physics [29], [68], [125]. Some aspects of QE can be discussed quite generally
without specific details about the systematics that source the distortions fields, and we refer
the reader to [28] for such a discussion. In this chapter we focus out attention to the QE
required to reconstruct the spin-2 γ fields which mediates the T to P leakage, the details of
which we discuss next.

104



5.3.1 Quadratic estimator for the spin-2 γ field

We improve on the work presented in [28], by first deriving the full sky QE (i.e without
making the flat sky approximation) and then presenting its efficient real space form. We
begin by writing the map level model for the observed, distorted CMB sky which is given by
the following expression,

±X(n̂) = ±X̃(n̂) ? B(n̂) + ±γ(n̂)[T̃ (n̂) ? B(n̂)] +N(n̂) , (5.3)

where, ? represents a convolution operation, B denotes the beam, ±γ(n̂) represents the T to
P leakage fields, and finally N(n̂) represents the measurement noise. Given that ±X and ±γ

are spin two fields, they can be decomposed in the spin weighted spherical harmonic basis as
follows,

±X(n̂) ≡
∑
lm

±Xl1m1 ±2Yl1m1(n̂) = Q(n̂)± iU(n̂) , (5.4a)

±γ(n̂) ≡
∑
LM

±γLM ±2YLM(n̂) = γQ(n̂)± iγU(n̂) , (5.4b)

where the spherical harmonic coefficients can be expressed in terms of the scalar E and
pseudo scalar B as follows,

El1m1 = −1

2
(+Xl1m1 + −Xl1m1) ; Bl1m1 = − 1

2i
(+Xl1m1 − −Xl1m1) , (5.5a)

γELM = −1

2
(+γLM + −γLM) ; γBLM = − 1

2i
(+γLM − −γLM) . (5.5b)

Given these definition the harmonic space coefficients of expansion of the contaminant spin-2
field is given by,

±δXl1m1 =
∑
LM

∑
l2m2

±γLM T̃l2m2

∫
dn̂ ±2YLM(n̂)Yl2m2(n̂)±2Y

∗
l1m1

(n̂) ,

=
∑
LM

∑
l2m2

±γLM T̃l2m2 ±I
Ll2l1
Mm2m1

, (5.6)

where that both ±δXl1m1 and T̃l2m2 fields are beam convolved. We note that the integral
±I

Ll2l1
Mm2m1

has the property: +I
Ll2l1
Mm2m1

= (−1)`−I
Ll2l1
Mm2m1

where ` ≡ L + l1 + l2. Motivated
by this property we define the even and odd parity projection operators as: Pe/o =

(
1±(−1)`

)
2

,
which as we will see allows to condense a lot of the algebra that follows. Given all the defi-
nitions, Equation (5.6) can be re-expressed in the following form,

δEl1m1 = −1

2

∑
LM

∑
l2m2

(
+γLM T̃l2m2 +I

Ll2l1
Mm2m1

+ −γLM T̃l2m2 −I
Ll2l1
Mm2m1

)
, (5.7a)

δBl1m1 =
i

2

∑
LM

∑
l2m2

(
+γLM T̃l2m2 +I

Ll2l1
Mm2m1

− −γLM T̃l2m2 −I
Ll2l1
Mm2m1

)
. (5.7b)
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The above equations can be further reduced to be expressed in terms of the γELM and γBLM ,
which after some simple algebra can be expressed in the following form,

δEl1m1 =
∑
LM

∑
l2m2

[
γELM T̃l2m2 +I

Ll2l1
Mm2m1

Pe + iγBLM T̃l2m2 +I
Ll2l1
Mm2m1

Po

]
, (5.8a)

δBl1m1 =
∑
LM

∑
l2m2

[
γBLM T̃l2m2 +I

Ll2l1
Mm2m1

Pe − iγELM T̃l2m2 +I
Ll2l1
Mm2m1

Po

]
. (5.8b)

The polarization contamination in the measuredE orB fields generated by the γBLM and γELM
fields can be treated separately by choosing a specific parity. For example, δBl1m1 for the
` = even parity is given by,

δBl1m1 =
∑
LM

∑
l2m2

γBLM T̃l2m2 +I
Ll2l1
Mm2m1

Pe , (5.9)

from which we will derive an estimator that will allow us to reconstruct γBLM . Choosing the
odd parity mode for δB will allow us to derive a QE that will allow us to reconstruct γELM .
Note that QE derivations for other mode combinations follow a near identical procedure. To
illustrate the key points we now carry forward the derivation of the QE for γBLM starting from
Equation (5.9).

The cross correlation between the observed temperature anisotropy map with the observed
B-mode maps, under an ensemble average is given by the following expression,〈

Bobs
l1m1

(T obs
l′1m

′
1
)∗
〉
=
∑
LM

γBLM C̃
TT
l′1 +I

Ll′1l1
Mm′

1m1
Pe . (5.10)

where we have implicitly assumed that the correlation between the true temperature and the
true B-mode map is zero owing to parity arguments1. Throughout this chapter C̃TT

l represents
the beam convolved power spectrum of the primordial CMB temperature signal. We now
introduce another identity (see Appendix A for details) associated with the integral I ,

∑
m1m2

±I
Ll2l1
Mm2m1 ±I

L′l2l1
M ′m2m1

=
(HL

l2l1
)2

2L+ 1
δLL′δMM ′ , (5.11)

where HL
l2l

is defined in terms of Wigner-3j symbol as, HL
l2l1

≡√
(2L+1)(2l2+1)(2l1+1)

4π

(
L l2 l1

−2 0 2

)
. Using this identity, the estimator for the cor-

relation in equation (5.10) can be shown to reduce to the following form,

∑
m1m′

1

Bobs
l1m1

(T obs
l′1m

′
1
)∗+I

Ll′1l1
M ′m′

1m1
= γ̂BLM C̃

TT
l′1
Pe

(HL
l′1l1

)2

2L+ 1
. (5.12)

Note that the ensemble average from (5.10) is no longer included here. In reality, we only
1For this particular TB QE it is important to note that this estimator does not suffer from any mean field bias and therefore we will

not address this detail further.
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have access to a single realization of the observed polarization fields when estimating γBLM
and γELM . This is also why it is necessary to replace the γBLM symbol in (5.10) with the symbol
for the estimate γ̂BLM in (5.12). We can easily invert equation (5.12) to construct an estimator
for γBLM given by,

(γ̂BLM)l1l′1 =

∑
m1m′

1
Bobs
l1m1

(T obs
l′1m

′
1
)∗ +I

Ll′1l1
M ′m′

1m1

FL
l′1l1

, (5.13)

where FL
l′1l1

≡ C̃TT
l′1
Pe

(HL
l′1l1

)2

2L+1
. This however is only an estimator for γBLM from a single mul-

tipole pair (l, l′). It is now possible devise a minimum variance estimator (MVE) by carrying
out the inverse variance weighted sum of the estimator across all possible multipole pairs.
For this purpose we begin by evaluating the variance of the estimator for a given multipole
pair and this is given by the following expression,

CLl1l′1 ≡
〈
γ̂BLM(γ̂BL2M2

)∗
〉
=
∑
m1m′

1

∑
m2m′

2

Bobs
l1m1

(T obs
l′1m

′
1
)∗(Bobs

l2m2
)∗T obs

l′2m
′
2
+I

Ll′1l1
M ′m′

1m1
+I

L2l′2l2
M ′

2m
′
2m2

FL
l′1l1
FL2

l′2l2

,

=
(2L+ 1)

(HL
l′1l1

)2

ĈBB
l1
ĈTT
l′1

C̃TT
l′1
C̃TT
l′1

(Pe)2
.

The ĈTT
l1

and ĈBB
l1

terms are the power spectra estimated from the observed temperature and
B-mode polarization fields respectively

Performing an inverse variance weighted sum of the estimator in (5.13) over l1l′1 yields the
MVE QE,

γ̂BLM = NγB

L

∑
l1m1

∑
l′1m

′
1

Bobs
l1m1

(T obs
l′1m

′
1
)∗C̃TT

l′1
+I

Ll′1l1
Mm′

1m1
Pe

ĈBB
l1
ĈTT
l′1

, (5.14)

whereNγB

L is a normalization, which is also the reconstruction noise (i.e. the power spectrum
of the noise in the reconstructed γBLM map) which is given by inverse of the variances of all
the modes added in parallel, specifically,

NγB

L =

∑
l1l′1

(HL
l′1l1

)2

(2L+ 1)

(C̃TT
l′1
Pe)

2

ĈBB
l1
ĈTT
l′1

−1

. (5.15)

Note that in Equation (5.14) and Equation (5.15) only the even parity modes (i.e. L+l1+l′1 →
Even) contribute, which only corresponds to only half the elements in the harmonic space
covariance matrix. One can show that the other half of the TB harmonic space covariance
matrix encodes information on the E-modes of the spin-2 γ field. Following the same proce-
dure as described above, considering the ` = Odd modes, it can be shown that the estimator
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Figure 5.2: The left panel shows the reconstruction noise estimated for the respective QE
assuming Alens = 1. The reconstruction noise for the combination of all the estimators is
indicated with a black dashed line. The right panel shows the how the TB reconstruction

noise varies as a function of Alens. Both plots assume instrument noise and beam
characteristics compatible with the LiteBIRD instrument. Here we display only NγB

L , as
NγE

L shows the same trends.

for γELM is given by the following expression,

γ̂ELM = −iNγE

L

∑
l1m1

∑
l′1m

′
1

Bobs
l1m1

(T obs
l′1m

′
1
)∗C̃TT

l′1
+I

Ll′1l1
Mm′

1m1
Po

ĈBB
l1
ĈTT
l′1

, (5.16)

with the reconstruction noise, analogously given by the following expression,

NγE

L =

∑
l1l′1

(HL
l′1l1

)2

(2L+ 1)

(C̃TT
l′1
Po)

2

ĈBB
l1
ĈTT
l′1

−1

. (5.17)

While the forms of the reconstruction noise for γ̂BLM and γ̂ELM are nearly the same, they differ
in the parity of modes that contribute to the sum and therefore their numerical values are
not identical values. These are curved sky equivalents of the flat sky estimators presented in
Equation (10) of [28].

5.3.2 The reconstruction noise

When reconstructing the distortion fields, in our case γELM and γBLM , the reconstruction noise
determines which harmonic modes of these fields can be recovered. Multipoles that are dom-
inated by reconstruction noise cannot be properly reconstructed. Therefore, it is important
to perform the reconstruction with as little noise as possible. While the reconstruction noise
can be generally reduced by decreasing the measurement noise and increasing the angular
resolution of the measurements, we will be interested in minimizing the reconstruction noise
for a fixed instrument configuration.

The reconstructions can be performed using QE constructed from a variety of cross cor-
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relations: EE, TE, TB & EB and by optimally combining all of them. The reconstruction
noise resulting from combining all the estimators naturally is the best. However this requires
significant more effort which may not be warranted. This can be assessed by estimating the
reconstruction noise for each of the estimators and performing a relative comparison.

We perform this test in three different settings: (i) in the cosmic variance limited ideal case,
(ii) in the more realistic, non-ideal case with a noise sensitivity of w−1

TT = 2.7µK arcmin and
a full-width at half-maximum of θFWHM = 30′, and (iii) assuming the CMBpol configuration
with w−1

TT = 1.4µK arcmin and θFWHM = 4′. The results from this exercise, for the w−1
TT =

2.7µK arcmin, and θFWHM = 30′ case study, are summarized in Figure 5.2. In all three cases
we find the reconstruction noise associated with the TB QE is the lowest and closely matches
the estimated reconstruction noise expected from optimally combining all the different QE.
Motivated by this observation we derive all our results using only the TB estimator.

These findings differ from the conclusions drawn in [28] where it is stated that for the
CMBpol configurations the EB QE yields the lowest reconstruction noise. This highlights
the importance of using detailed case studies for specific distortion fields in order to test the
conventional wisdom when applying quadratic estimators. The highest sensitivity choice of
correlations for any given distortion field depends on the details of the estimator and it is there-
fore important to check which choice of correlations yields the most desirable reconstruction
noise for each distortion field separately.

Impact of de-lensing on reconstruction noise

The B-modes generated by weak lensing of the CMB act as a competing signal for mea-
surement of primordial B-mode signal sourced by tensor perturbations. Therefore many up-
coming analysis strategies necessarily include a de-lensing procedure, thereby reducing the
additional variance introduced by the lensing signal and consequently improving the mea-
surements or upper bounds on r. CMB B-mode power induced by lensing also contributes
to the reconstruction noise for the TB correlations. The blind systematic cleaning being pro-
posed in this chapter can also potentially2 benefit from the reduced impact of lensing on the
observed B-mode spectrum. Note that we do not carry out the de-lensing procedure, but
model it simply by scaling the lensing power spectrum with an amplitude Alens.

In the cosmic variance limited case the reconstruction noise scales very simply with dif-
ferent amounts of delensing such that Nγ

L = AlensN
γ
L|Alens=1

. This simple relationship breaks
down in a realistic scenario where the dominant contribution to the B-mode variance at high
l comes from the instrument noise. This results in de-lensing having little impact on the re-
construction noise for high L modes. In the more realistic, non-ideal case this translates to
modes greater than L ∼ 600, as is seen in Figure 5.2. De-lensing can still reduce theB-mode

2In principle there might be an additional coupling between the lensing and distortion fields which may bias the lensing reconstruc-
tion. We leave the exploration of this subtlety to future work.
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variance for modes where the instrument noise is not the dominant contribution, and this will
be encoded as a reduction in reconstruction noise for lower multipoles.

It is possible to further minimise the impact of the reconstruction noise by carrying out
iterative cleaning of the CMB maps and by constructing the optimal filter for γ̂ELM and γ̂BLM
and we will return to discussing this in Section 5.4.

5.3.3 Efficient real space estimators

These harmonic space estimators derived above involve large sums over multipoles (scaling
roughly as ∼ (lmax)

4. and also requires evaluation of the Wigner symbols, therefore they
are not very computationally efficient. These estimators appear as convolutions in harmonic
space and one therefore expects to be able to express them as direct products of some real
space fields. This procedure exists and is routinely implemented for the weak lensing esti-
mators [92]. Here we derive an analogous real space operator for reconstructing the spin-2
γ field. By using the explicit integral form of ±I

Ll′1l1
Mm′

1m1
we can rewrite Equation (5.14) and

Equation (5.16), which after some algebra can be expressed in the following form,

γ̂BLM =
NγB

L

2

∫
dn̂
[
(+2AB∗(n̂))∗ATTT ∗ (n̂)+2YLM(n̂)

+ (−2AB∗(n̂))∗ATTT ∗ (n̂)−2YLM(n̂)
]
, (5.18)

γ̂ELM =
−iNγE

L

2

∫
dn̂
[
(+2AB∗(n̂))∗ATTT ∗ (n̂)+2YLM(n̂)

− (−2AB∗(n̂))∗ATTT ∗ (n̂)−2YLM(n̂)
]
. (5.19)

where ∗ indicates the complex conjugate and the real space fields are defined as follows,

±2AB∗(n̂) =
∑
l1m1

1

ĈBB
l1

(Bobs
l1m1

)∗±2Yl1m1(n̂) , (5.20)

ATTT ∗ (n̂) =
∑
l1m1

C̃TT
l1

ĈTT
l1

(T obs ′

l1m1
)∗Yl1m1(n̂) , (5.21)

where X,Y ∈ [T,E,B]. Since these real space fields can be computed independently and
merely involve a few spin harmonic transforms, as opposed to explicit multipole sums and
evaluations of Wigner symbols, these are significantly more numerically efficient.
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5.4 Iterative cleaning

The QE technique detailed in the previous section provides an excellent tool for diagnosis
and reconstruction of potential contaminants, which we demonstrate in Section 5.6. However,
in this section we shift our attention to discussing how the reconstructed distortion fields can
be used to optimally de-contaminate the observed CMB maps. A cleaned CMB map has
a lower reconstruction noise, which in effect allows for uncovering the components of the
distortions fields that were noise dominated in the original map. These additional components
of the reconstructed distortion fields can then be fed back to the cleaning algorithm. This
translates to the cleaning of additional contaminated modes. We will refer to this procedure
as iterative cleaning; this procedure allows for a more detailed recovery of the distortion fields.
We now discuss how the reconstructed distortion fields can be optimally combined with the
contaminated maps to yield de-contaminated maps.

5.4.1 Optimally de-contaminating the CMB maps

The residual contamination in the de-contaminated B-mode map is given by,

Bres
lm = δBlm − δB̂lm . (5.22)

where δB denotes the true contamination and δB̂ is the estimated map of contamination.
δB̂ sourced by the B-mode component of the γ field can be estimated using the following
expression,

δB̂l1m1 =
∑
LM

∑
l2m2

γ̂BLM T̃l2m2+I
Ll2l1
Mm2m1

fLl2 , (5.23)

which is the same as Equation (5.8b), except that the distortion field is replaced by the esti-
mated distortion field using the QE as described in Section 6.2 and we have introduced the
weights fLl2 which need to be determined. We define an optimal cleaning algorithm as one
that minimizes the power spectrum of the residual contamination after each iteration of clean-
ing. Given Equation (5.23), the angular power spectrum of the residual contamination map
is given by the following expression,

CBB, res
l1

=
∑
Ll2

(HL
l2l
)2

(2l2 + 1)

[
C̃γBγB

L C̃TT
l2

− 2C̃γBγB

L C̃TT
l2
fLl2 + ĈγBγB

L ĈTT
l2

(fLl2)
2
]
, (5.24)

and the optimal δB̂ can be estimated by solving for the weights fLl2 that minimize Equa-
tion 5.24. Taking the derivative with respect to fLl2 to calculate the minimum of the residual,
CBB, res
l , results in a filter of the form,

fLl2 =
C̃γBγB

L C̃TT
l2

C γ̂B γ̂B

L ĈTT
l2

. (5.25)
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It is useful to think of this filter as being composed of two separable parts fLl2 = fγ
B

L fTl2 ,
where

fγ
B

L =
C̃γBγB

L

ĈγBγB

L

; fTl2 =
C̃TT
l2

ĈTT
l2

, (5.26)

which can be understood as being the corresponding Wiener filters for γBLM and Tlm fields,
on noting that Ĉl = C̃l +Nl. A similar calculation can be carried through for estimating the
contamination sourced by the E-mode component of the γ field. This parallels closely the
algorithm followed in de-lensing of the CMB sky [95].

Given the Wiener filtered maps γ̂E,WF, γ̂B,WF and TWF, the decontaminated polarization
maps are given by the following estimator,

±X
clean, i(n̂) = ±X

i(n̂)− ±γ̂
WF, i(n̂)TWF, i(n̂) , (5.27)

where we have again used the intergral form of ±I to express the multipole sum in Equa-
tion 5.23 in its equivalent and efficient real space form. Note that throughout this derivation
we work with the beam convolved fields.

The index ‘i’ in the above equation indicates the cleaning iteration. For each iteration of the
cleaning beyond the zeroth, the cleaned polarization fields from the previous iteration become
the new observed fields to be passed to the QE as well as the cleaning estimator. As expected,
the temperature field remains unaltered through this cleaning process. Note that since the
reconstructed γ fields and the corresponding reconstruction noise estimates are continuously
updated, the Wiener filters must be freshly estimated at each iteration. This cleaning process
is repeated until the reconstruction noise and the B-mode power spectrum converges to their
respective floors. We reiterate that in this case study we focus on the details of the iterative
cleaning algorithm for the T to P leakage distortion sourced by differential gain, however, this
can be generalized to the full range of distortions described in Section 5.2.

Gaussian Filters

While it is important that the filters lead to the smallest residual contamination after each
iteration of the cleaning, it is also important that the filter prevents the cleaning process from
introducing excess bias. While we have shown that the Wiener filters are the optimal filters
that minimize CBB, res

l , in our numerical experiments working with idealized low noise sim-
ulations we find that Wiener filters tend to overestimate the contamination for modes where
the reconstruction noise is high, thereby making the iterative procedure have an undesirable
non-convergent behaviour. We understand this to be a special feature of a T to P leakage
systematic in which T >> B and therefore even a small error in the reconstructed γ maps
can lead to a large errors in the de-contaminated the B-mode maps in particular. To prevent
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this we propose a Gaussian filtering scheme,

fγL = A exp

−

[
Ĉγγ
L

Ĉγγ
L −Nγ

L

]2 , (5.28)

where the normalization A is set such that max(fγl ) = 1. In our numerical simulations we
perform, we find this to be a convergent scheme in all cases (unlike Wiener filtering), as it
is more aggressive in suppressing modes that are contaminated by noise, thereby preventing
excess bias from being introduced into the cleaning.

5.4.2 Forecasting the reconstruction noise and CBB
l floors

Due to the imperfect reconstruction of the γ fields, it is in practice not possible to perfectly
decontaminate the polarization maps using this procedure. To answer this question we have
devised a forecasting procedure that enables us to predict the reconstruction noise and CBB

l

floors that the iterative cleaning procedure should in principle achieve.

Making these forecasts involves evaluating the following algorithm. We begin by making
an estimate of the reconstruction noise under the assumption that polarization map can be
perfectly cleaned. After this initialization we iterate over the following steps until conver-
gence:

• Use the estimated reconstruction noise to simulate Weiner filtered γ maps, using the true
systematic maps as input.

• Use the filtered γ maps to perform cleaning on a simulation of contaminated polarization
maps using the same procedure prescribed in Section 5.4.1.

• Use the mock cleaned maps to make revised estimates of the reconstruction noise.

TheB-mode calculated from the mock cleaned maps, and the estimates of the reconstruction
noise were found to converge after five iterations of the above process. This procedure pro-
vides a forecast for both the reconstruction noise floor as well as the cleaned power spectrum
characterizing the polarization maps. We can compare these estimates to the reconstruction
noise and the polarization power spectra derived from employing the iterative cleaning pro-
cedure to assess if the blind cleaning is performing as expected.

Note that this procedure uses information from the true CMB and systematics maps and
as such is only useful for testing the analysis pipeline. For an actual experiment, where we
can assume no prior knowledge of the contaminants, we will not have the liberty of carrying
out such validation tests. For actual data analysis we would carry out iterations until the
reconstruction noise converges, as we will demonstrate in Section 5.6.
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5.5 Simulating Temperature to Polarization Leakage

5.5.1 Systematic - Differential Gain

In upcoming experiments, both satellite- and ground-based, control of T to P leakage will
be essential. The relative amplitudes of the signals means that even temperature leakage at
the percent level could be a significant contaminant to the B-mode signal. This section will
describe the simulation of T to P leakage and the scan strategy we consider for our differential
gain case study, following the approach of [89], [90]; see those works for a more exhaustive
discussion. We reiterate that the quadratic estimator approach is applicable to a wide range
of distortions, we are just choosing this systematic for our detailed case study as it generates
the γ distortion field that was found to be most important in [28].

The signal observed by a single detector contains both the temperature and modulated
polarisation signals and may be written as

dX = (1 + δgX)T̃ (n̂) + Q̃(n̂) cos(2ψ) + Ũ(n̂) sin(2ψ) , (5.29)

whereX denotes which detector is being considered, and ψ is the crossing angle (the orienta-
tion of the focal plane on the sky). We have represented a possible constant gain or calibration
factor by δgX , but for our case study we only apply this factor to the temperature signal. A
calibration or gain difference can also cause other effects, such as an amplifcation of the po-
larisation signal, but we focus on this as it is the most significant problem and is the one that
can manifest as a γ type distortion.

We consider a pair-differencing experiment, consisting of co-located detector pairs that are
oriented 90 degrees apart. whose observed signals are differenced. Ideally the temperature
signal would be completely removed by this procedure, however, any mismatch in the detector
gain δgX between the two detectors will result in leakage of the temperature signal into the
polarisation map. We write the differenced signal for a detector pair i as

di =
1

2

(
dAi − dBi

)
=
1

2

[
(δgAi − δgBi )T̃ (n̂) + 2Q̃(n̂) cos(2ψ) + 2Ũ(n̂) sin(2ψ)

]
,

where A and B denote each detector in the co-located pair. The temperature leakage will
occur if δgi = δgAi − δgBi 6= 0, and is given by

δdgi =
δgi
2
T̃ (n̂) , (5.30)

which is a spin-0 quantity. This will combine with the spin-2 part of the scan strategy to create
a spurious spin-2 signal that contaminates the polarisation measurement. We may describe a
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given scanning strategy by a real space field (again, see [89], [90] for more details)

h̃k =
1

Nhits(θ, φ)

∑
j

eikψj(θ,φ) , (5.31)

where ψj is the jth crossing angle of a given pixel, and Nhits is the total number of measure-
ments in that pixel. The survey mask is described by h̃0, while h̃2 and h̃4 naturally appear in
simple map-making, and various k values contribute to different systematic effects (see e.g.
[89], [90], [145]. In the differential gain case considered here, the systematic couples to h̃2
[89], [90], so the spurious signal due to a detector pair i is

2(δd
g
i ) =

1

2
h̃2(n̂)(δgi) T̃ (n̂) . (5.32)

In particular for our simulations, we will use a focal plane with two such pairs of detectors,
oriented at 45 degrees to one another to allow simultaneous measurement of both Q̃ and Ũ
signals. The combined systematic contribution from the two detector pairs is given by

2(δd
g) =

1

2
h̃2(n̂)(δg1 − iδg2) T̃ (n̂) (5.33)

where the factor of i in the second detector term is due to the rotated orientation of 45 degrees.

For simplicity we choose a setup where each pair of the detectors experiences the same
differential gain, δg1 = δg2 = 10−2, which corresponds to a 1% differential gain. This
simplification will not affect the generality of the QE results presented, but one may expect
slightly different levels of gain mismatch for different focal plane setups. 3

By comparing equation (5.1) to (5.33), we can see that the differential gain be related to
the γ distortion as

(γQ ± iγU)(n̂)T̃ (n̂) =
1

2
h̃±2(n̂)(δg1 ∓ iδg2) T̃ (n̂) . (5.34)

5.5.2 Differential gain r-bias

We examine the expected biases on r that correspond to a range of levels of differential gain.
We define the bias sourced by the systematic, δr, as the difference between the mean of the
posterior of the contaminated and uncontaminated spectra. In Figure 5.3 we show the bias
on r, δr, for differential gains in the range δg = 10−5 → 10−2, in the presence of a noise
sensitivity of w−1

TT = 2.7µK arcmin and a full-width at half-maximum of θFWHM = 30′. We
calculate the biases for a fiducial tensor-to-scalar ratio of r = 10−3. For δg . 7 × 10−4 the
bias is smaller than the 1σ statistical variance on r and cleaning would not be necessary. For

3There are other methods for handling differential systematics [36], [146], however here we study the QE approach in detail rather
than performing a comparison of methods. One alternative method being investigated is rotating half wave plates, in which case it is not
clear whether detector differencing should be used [147], [148]. We note that the important systematics in a HWP setup are likely to be
different, and it is unclear to what extent our distortion field setup will capture the important systematics. We leave the investigation of
the utility of QE in such a situation to future work.
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Figure 5.3: The bias on a fiducial tensor-to-scalar ratio of r = 10−3 for levels of differential
gain of δg = 10−6 → 10−2 in the presence of a white noise level of w−1

TT = 2.7µK arcmin
and a full-width at half-maximum of θFWHM = 30′. For values of δg ∼ 1.4× 10−5 the bias

is δr = 0 to machine precision.

values greater than this the bias becomes significant, increasing to ∼ 100 times the fiducial
r value for δg ∼ 10−2. In this range the bias will have a significant impact on the robustness
of attempts to measure r. While the QE cleaning process we present here is able to remove
the bias for a range of levels of differential gain, we present results for δg = 10−3 in order to
demonstrate that it is possible to remove even very large levels of contamination sourced by
differential detector gain. Note that this larger level of differential detector gain is typical for
a number of contemporary ground-based CMB experiments [e.g. 62], [140], for which we
also expect the QE approach to be valuable.

5.5.3 Scan Strategy

We choose to adopt the Experimental Probe of Inflationary Cosmology (EPIC) satellite scan
strategy [145]. This will be representative of other future CMB satellite surveys. The design
of the EPIC scan strategy optimises crossing angle coverage and is defined by its boresight
angle (50◦), precession angle (45◦), spin period (1 min), and precession period (3 hrs) (for
further details see [89] and [149]). This scan is represented as a list of hits, i.e. datapoints,
where each hit is specified by its location on the sky (RA and Dec) and parallactic angle (ψ).
We expect the QE technique to be equally useful for ground based CMB surveys however,
because of the role of the scan strategy in the simulations, we have used a satellite survey for
two reasons. Firstly, because no ground-based survey covers the whole sky, and we wanted
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to avoid complications due to partial sky coverage. Secondly, because ground based surveys
differ more between experiments and cannot be simply described by a few parameters as
satellite scans can, since they depend on complicated constraints and detailed scheduling
choices.4

151 1626

Figure 5.4: The hit map of the EPIC scan strategy. This survey has been designed to
maximise crossing angle coverage, and the hit map is well filled across the full sky with

many observations at different orientations. Note that the ecliptic poles have been
prioritised to aid the understanding of foregrounds.

The scan strategy of EPIC provides a relatively uniform distribution of hits and cross-
ing angles which should reduce scan coupled differential systematics fairly well. The eclip-
tic poles are observed more frequently to aid in foreground analysis, which results in some
structure appearing in the survey fields as seen in Figure 5.4. The h̃±2 field (equation (5.31))
encodes the spin-2 part of the scan that turns the gain systematic into a spurious spin-2 signal.
This field is shown in Figure 5.5 for the EPIC scan strategy. The h̃2 is dominated by its large
scale features, and this will result in a low l dominated systematic.

5.5.4 Simulation

We use a modified version of the code used in [89]. The input to the time ordered data (TOD)
simulation code consists of maps of the CMB T̃ , Q̃ and Ũ fields which are generated using
the SYNFAST routine of the HEALPIX package [151]. The input CMB power spectra were
created in CAMB using a six parameter ΛCDM cosmological model, specified in Table 5.1

4Although see [150] for some simple approaches to approximate ground-based scan strategies that capture the features relevant for
studies such as this one.
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Figure 5.5: The real (left panel) and imaginary (right panel) parts of the h̃2 field (defined in
equation 5.31), which encodes the spin-2 part of the scan that turns the gain systematic into

a spurious spin-2 signal. The h̃2 field is dominated by its large scale features, which will
result in a low l dominated systematic.

[152]. For the simulations including noise, we include a Gaussian beam post process. A
white noise is applied to the data at map level, where a noise is added to each pixel of the
level w−1

TT = 2.7µK arcmin [88].

Simulation Inputs
Cosmology H0 = 67.4

Ωbh
2 = 0.022

Ωch
2 = 0.120

τ = 0.06
ns = 0.97
109As = 2.2
r = 0.001

Map-making Nside = 2048
`max = 3000
|δg1| = 0.01
|δg2| = 0.01

Table 5.1: The fiducial cosmological parameters and the map-making inputs for the TOD
simulations. The simulated maps are smoothed by a Gaussian beam and noise is added per

pixel.

The simulation computes values for each of the four detectors for each hit as described in
equation (5.29), using HEALPIX interpolation to observe the input sky maps at the appro-
priate location, and using the corresponding parallactic angle ψ for that hit, generated from
the EPIC scan strategy. As described in section 5.5, the ψ values are offset by 90◦ for the two
detectors within a pair, and by 45◦ between the two pairs of detectors. The differential gain
systematic is added for each pair of detectors by increasing the signal by a factor (1− δgi) in
the second detector dBi in each pair, where we use |δg1| = |δg2| = 0.01 for the simulations in
this chapter [153]. This level of systematic is indicative of the differential gain seen in recent
CMB surveys [e.g. 62], [140], and corresponds to an r bias of ∼ 30σ .

Maps are made from the time streams according to a simple binning map making tech-

118



101 102 103

L

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

L
(L

+
1
)

2
π

C
γ
E
γ
E

L

Realistic Scan Cγ
EγE

L

AD = 2.3× 10−3 σD = 10′

AD = 6.0× 10−4 σD = 120′

AD ≈ 4.8× 10−4 σD = 10′

AD ≈ 1.3× 10−4 σD = 120′

Figure 5.6: The E-mode spectrum of the ±γ(n̂) distortion fields, the orange and green lines
show the spectra plotted for the AMax

D amplitudes of [28] for coherences scales of 10′ and
120′ respectively, the red and purple lines show the spectra plotted for the AMin

D amplitudes
of [28] for the CMBPol satellite estimate corresponding to r=0.005 for coherences scales of
10′ and 120′ respectively. The blue line shows the realistic spectrum calculated from the a

combination of the systematic and the EPIC scan strategy that we adopt for our
simulations. It is clear here that the approximation used for the distortion power spectra

does not describe the realistic case well at higher multipoles. It overestimates the power at
high multipoles in comparison to the realistic case for small coherence scales. Additionally

the sharp drop off in power after the peak is not consistent with the realistic spectra as is
evident for all sets of curves showing the approximation.

nique,(
Q

U

)
=

(
〈cos2(2ψi)〉 〈cos(2ψi) sin(2ψi)〉

〈sin(2ψi) cos(2ψi)〉 〈sin2(2ψi)〉

)−1(
〈di cos(2ψi)〉
〈di sin(2ψi)〉

)
, (5.35)

where the angle brackets 〈〉 denote an average over the measurements in a pixel, and the dj
here correspond to the detector measurements (i.e. the sum of the timestreams from the two
differenced pairs) each with its an associated angle ψj .
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5.5.5 Realistic Systematic Spectra

In previous studies [e.g. 28], [139] the distortion fields of equation 5.1 have been assumed to
be statistically isotropic and Gaussian, and defined by power spectra of the form

CDD
l = A2

De
−l(l+1)σ2

D/8 ln 2 , (5.36)

where AD represents the root mean squared of the distortion field, and σD represents a co-
herence scale beyond which the distortion power spectrum becomes white noise. We show
a comparison between this spectrum and the realistic spectrum from our simulations in fig-
ure 5.6. There are significant differences apparent between the approximation of equation
5.36 for the power spectra describing the distortion fields used in previous literature, and the
realistic distortion field that is derived from the more realistic simulation used in our study.

Although the spectrum generated from equation 5.36 results in most of the power being
at low multipoles similar to the realistic spectra, it does not capture the high l nature of the
realistic distortion fields. The realistic distortion fields have an initial much sharper drop off,
before levelling out, compared to the more gradual drop off of the approximation. In figure
5.6 we show that the two extreme coherence scales used in [28] both suffer from the same
issue that they accrue too much power at high l compared to the realistic spectra, hence the
results found will be biased by this. In our analysis in Section 5.6 we reconstruct the distortion
power spectrum up to L = 800 and, as can be seen in figure 5.6, the shapes of the realistic and
approximate spectra differ significantly for this range of multipoles. This shows the advantage
of carrying out detailed case studies on individual distortions.

We note that the smallest Amin
D ≈ 1.3× 10−4 for σD = 120′ quoted from [28] corresponds

to a gain mismatch of 6.4× 10−4 (0.064%). This is significantly smaller than a realistic gain
mismatch of 0.01 (1%), in the analysis in [28] it was found that the QE technique would still
be effective for this small value of the systematic.

5.6 Reconstructing and removing the temperature to polarization leak-

age

Here we discuss the results of employing the statistical analysis methods developed in
Section 6.2 and Section 5.4 to contaminated CMB maps simulated as in Section 5.5. Note
that we include lensing effects only at the power spectrum level, implying that the off-diagonal
elements sourced by weak lensing are not included in our simulations. This is not expected
to influence our inference of the reconstruction and removal of the T to P leakage systematic,
owing to different spins associated with the two effects5.

5Note that this is not generally true for other instrument systematics. As an example a differential pointing systematic directly cou-
ples to the weak lensing effect and in a analogous study the weak lensing induced correlations cannot be ignored.
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Parameter Ideal Non-ideal
lmax 1400 1400
Lmax 800 800
Nside 1024 1024
w−1

TT 0 2.7µK arcmin
θFWHM 0 30′

r 10−3 10−3

Alens 0 1

Table 5.2: This table summarizes the QE parameter settings used in all our analyses and
also the simulation settings for the two different sets of simulations used in results

presented in this section.

In all our analyses we iterate over the following steps until convergence:

• Reconstruct map of systematics given some input [T,Q, U ] maps using the QE algorithm.
In the first iteration the inputs correspond to the observed maps, while for the subsequent
iterations these correspond to the contamination cleaned maps.

• Clean the input maps using the reconstructed γ maps following the optimal cleaning pro-
cedure discussed in Section 5.4.1.

Here we reemphasize that the cleaning analysis is agnostic to details of the particular system-
atic, as evident by the fact that the cleaning procedure only works with the observed maps as
inputs. All QE evaluations required in the blind cleaning process are carried out assuming
the parameter settings summarized in Table 5.2. We make forecasts for the reconstruction
noise and the CBB

l spectrum that one expects to recover from the iteratively cleaned maps,
following procedures outlined in Section 5.4.2. We use these forecasted power spectra as
benchmarks for our blind cleaning analysis.

We present the results of this analysis on two different set of simulations, the ideal case and
the more realistic, non-ideal case, in sections 5.6.1 and 5.6.2 respectively. A discussion with
particular emphasis on the measurement of tensor to scalar ratio r is presented in Section 5.7.

5.6.1 The cosmic variance limits of the blind cleaning algorithm

Here we discuss the results derived from analyses on simulations which are ideal in the sense
that they include no measurement noise & beam smoothing and also do not include any lens-
ing induced B-modes. These simulations allow us to probe the limitations of the blind clean-
ing algorithm in this extreme setting, in process highlighting how well this procedure could
in principle work.

The reconstructed γ maps at some example iterations of the analysis are depicted in
Fig. 5.7. Here we note that the systematics reconstructed from the original observed maps are
quite noisy as inferred by comparing the top and middle panels of Fig. 5.7. This observation
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Reconstructed γQ(n̂) iteration 0

-0.00320106 0.00338554

Input γQ(n̂)

-0.0034135 0.00343214

Reconstructed γQ(n̂) iteration 10

-0.00298664 0.00306639

Reconstructed γU(n̂) iteration 0

-0.00347164 0.00323889

Input γU(n̂)

-0.00346373 0.00343214

Reconstructed γU(n̂) iteration 10

-0.00299354 0.00297502

Figure 5.7: This figure depicts the γQ(n̂) and γU(n̂) systematic maps that mediate the T to
P leakage. The top panels depicts the true systematic maps used to simulate the

contaminated CMB maps. The middle panels shows the QE reconstruction of the γ maps
from the observed CMB maps for the 0th iteration. The bottom panels depict the

reconstructed γ maps after 10 iterations of cleaning and reconstructing of the systematic
maps.

is better quantified in Fig. 5.8, where by inspecting the reconstruction noise for the 0th itera-
tion and comparing it to the true γ power spectrum, it is clear that only L . 30 multipoles of
the γ map can be reliably recovered. The reconstruction noise being high is due to the excess
B-mode power sourced by the systematics in the observed CMB maps as seen in Fig 5.9.

We now use these reconstructed γ maps together with the observed temperature anisotropy
map to remove part of the contamination, sourced by modes in the γ maps that have been reli-
ably recovered. This procedure involves using the high SNR modes of the temperature and γ
maps, the formal details of which are discussed in Section 5.4.1. In the case of these idealized
simulations, we find that the conventional Wiener filtering scheme causes the iterative scheme
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Figure 5.8: The left panel shows the evolution of the reconstruction noise for different
iterations of the algorithm. Note that the reconstruction noise reduces with iterations and

approaches that predicted using the forecasting procedure. The right panel shows the power
spectra of the true and reconstructed and filtered γ maps. The corresponding reconstruction
noise curves are plotted for reference. Note that the Wiener filtered, ĈγBγB ,WF

L , spectrum is
most reliably recovered for modes where CγBγB

L is much greater than NγBγB

L . Similar
results found for γE , not show here for brevity.

to diverge after few initial iterations. We suspect this behaviour arises from the fact that the
Wiener filter does not sufficiently suppress modes that have a noisy recovery, which com-
bined with the fact that T >> B, leads to a faulty cleaning of the polarization maps, in effect
adding more power to the B-mode map as opposed to subtracting it. This eventually leads
to run away behaviour. We deal with this issue by employing the Gaussian filtering scheme
instead (see Section 5.4.1 for details) which mitigates this issue by imposing a stronger sup-
pression of the noisy modes, leading to more stable and convergent results. The right panel
of Fig. 5.8 depicts the power spectrum of the γB maps after the Gaussian and Weiner filters
are applied to them, where notably the Weiner filtered maps retain a lot of power from the un-
reliably recovered modes, as opposed to the Gaussian filtered map where these noisy modes
are more heavily suppressed.

After the first cleaning (i.e. cleaning iteration 0), the B-mode power spectrum reduces
compared to the spectrum estimated from the observed B-mode map as seen in Fig 5.9. This
results in the reconstruction noise of the QE to reduce as can be understood by comparing
the curves corresponding to ”iteration 0” and ”iteration 1” in Fig. 5.8. This reduction in the
reconstruction noise, facilitates the recovery of modes in the γmap that were dominated by the
reconstruction noise in the previous iteration. These newly recovered modes of the systematic
map are then fed to the cleaning algorithm to further remove the contamination from the
polarization maps. This whole process is repeated until we observe no further improvements
in either the reconstruction noise and/or the CBB

` spectrum.

On repeating this procedure we see that the contamination in the CMB polarization maps
is progressively removed as indicated by the systematic reduction in the amplitude of CBB

l

amplitude in Fig. 5.9. Note that initial iterations show relatively big reductions in power, with
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Figure 5.9: This figure depicts the B-mode power spectrum corresponding to the systematic
ridden maps, the true cosmological primordial signal and the evolution of the estimated
power spectrum across different iterations of the cleaning algorithm. The left and right
panels show the cleaning for r = 10−3 and r = 10−2 respectively. Also shown is the

prediction for the B-mode power spectrum expected post cleaning evaluated using the
forecasting procedure.

subsequent iterations resulting in more subtle improvements and the final few iterations show
no appreciable updates to the spectrum. The performance of the cleaning process improves
if the amplitude of the uncontaminated B-mode spectrum increases. For the ideal case this
translates to improved performance for larger values of r. We note that even in this perfect
setting of no instrument and lensing noise, the recovered B-mode spectrum is not perfectly
cleaned. This can be interpreted as an intrinsic limitation to how well the cleaning can in prin-
ciple perform. Nonetheless, the proposed blind cleaning procedure enables robust removal
of contamination power that is roughly two orders of magnitude larger than the injected sig-
nal, and yields an unbiased recovery of the true signal at most multipoles. This systematic
reduction in the B-mode power is only possible due to the simultaneously reduction in the
reconstruction noise (sourced by reduction inCBB

` ) as seen in Fig. 5.8, which results in robust
recovery of the higher multipole of the γ maps (which in turn facilitates more cleaning of the
polarization maps). To contrast the effect of iterative cleaning note that while the ”iteration
0” only allowed for recovery of the modes L . 30, the reconstruction noise associated with
the final iteration of cleaning allows robust recovery of modes up to L ' 800 as can be seen
in right panel of Fig. 5.8. This stark improvement in the recovery of high L modes of the
γ maps can be better appreciated by simultaneously comparing the recovered total γ maps
shown in the bottom panels of Fig. 5.7 to those depicted in the panels above. Note that the to-
tal systematic maps is recovered by adding together the filtered maps of systematics estimated
at each iteration6. The input maps have a higher amplitude than those reconstructed which is
primarily a consequence of our maps being filtered and the reconstruction being terminated
at Lmax = 800.

Here, it is also important to appreciate the non-monotonic nature of the true Cγγ
L which

6The γ maps recovered at each iteration do not include the modes that were in effect subtracted from the polarization data in the
previous iteration.
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Figure 5.10: The left panel shows the reconstruction noise NγB

L for one iteration of the
reconstruction and cleaning process. After a single iteration the cleaning reconstruction

noise converges with the forecasted reconstruction noise. The right panel shows ĈγBγB

L for
the reconstructed and filtered γ maps before cleaning and after ten iterations of cleaning
(green) and the true CγBγB

L is also shown for comparison. Corresponding reconstruction
noise shown for reference.

features a prominent jump in power at L ∼ 400. This is a consequence of using realistic scan
maps in our simulations. There is a corresponding feature in the cleaned B-mode spectra in
Figure 5.9. This feature is present because not all modes below L . 800 are reconstructed, as
some intermediate modes which are dominated by reconstruction noise are suppressed. We
reiterate that this would not have been observed in studies using the approximate spectra, [28],
[139], generated using equation (5.36) because of the difference in shape between the realistic
and approximate spectra. It is necessary to carry out detailed case studies systematics in order
to observe these important details. Unlike in weak lensing studies, for instrument systematics
it is not possible to make a generic forecasts as was done in [28].

Finally, we note that the spectrum converges to the prediction from our forecasting proce-
dure. This is true both for CBB

l as well asNγγ
L as seen in Fig. 5.9 and Fig. 5.8 respectively. It

is important to note this near consistency for two reasons, (i) it serves as a validation of our
blind cleaning algorithm (ii) the actual analysis is performed using the Gaussian filter, while
our forecasting procedure continues to use Wiener filters, and the near equivalence of the two
solutions suggests that the Gaussian filtering is close to optimal.

5.6.2 Employing blind systematic cleaning for a non-ideal experiment

Here we discuss results simulations that incorporate weak lensing induced B-modes as well
as the measurement noise and beam smoothing in the previously described more realistic,
non-ideal case. The assumed measurement noise and beam are summarized in Table 5.2 and
correspond to the foreground cleaned Q/U maps that will result from linearly combining the
multi-frequency measurements. Unlike in the previous section where these were ignored,
here we treat the lensing B-modes as an important cosmological signal that we recover by
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Reconstructed γQ(n̂) iteration 0

-0.00346818 0.00336205

Reconstructed γQ(n̂) iteration 10

-0.00381288 0.00350503

Reconstructed γU(n̂) iteration 0

-0.00306844 0.0032561

Reconstructed γU(n̂) iteration 10

-0.00353981 0.00348575

Figure 5.11: The top panels show the reconstructed filtered γ maps recovered from
simulated observations, while the bottom panels show those recovered after a few iterations

of cleaning. Note that even in the presence of instrument and lensing noise the iterative
procedure helps with extracting bits of information on the systematics.

carrying out the iterative de-contamination procedure.

We carry out an analysis, identical to that described in the previous section, on these more
realistic simulations. The simulations used here primarily differ from those used in the previ-
ous section by inclusion of the relatively high noise in the observed maps due to inclusion of
lensing and measurement noise. We note that for these relatively high noise simulations, the
Wiener filtering schemes is stable and convergent, and the results are very similar to those
found when using the Gaussian filtering. We however continue to present results derived
from employing the Gaussian filtering scheme through the rest of the paper. The relatively
high noise results in a higher QE reconstruction noise floor, which consequently limits the
reliable reconstruction of the γ maps to only the large angle modes L . 20, even after ten
iterations of cleaning as seen in Fig. 5.10. This is even reflected in the total reconstructed γ
maps as seen in Fig. 5.11. However note that the carrying out a number of iterative cleaning
procedures does help in recovering some additional features in the reconstructed γ maps, the
sharpening of the features in the equatorial plane in the bottom left panel of Fig. 5.11 is par-
ticularly noticeable. As we will see in Section 5.7 these subtle improvements in recovery of
the systematic maps will play a crucial role in more robust removal of contaminations from
the observed maps.

We now shift our attention to the evolution ofCBB
l across the cleaning iterations. Carrying
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Figure 5.12: The left panel shows cleaned B-mode power spectra for 1 and 10 iterations of
cleaning. The right panel shows the evolution of the relative difference

∆l = (CBB, clean
l − CBB, true

l )/CBB, true
l with iterations.

out higher iterations of cleaning does make small improvements to the convergence. These
subtle but important improvements are highlighted in the right panel of Fig. 5.12, where the
relative differences between the spectra derived from the cleaned maps at different iterations
and true spectrum are depicted. In Section 5.7 we will highlight the importance of these
subtle corrections in the context of measurement of tensor to scalar ratio r.

5.7 Recovering the tensor-to-scalar ratio

In the previous section we demonstrated that blind systematic cleaning method proposed
here can yield nearly un-biased recovery of the true CMB B-mode power spectrum. Upcom-
ing experiments aim to recover r ∈ [10−2, 10−3] [16], [88]. Here we demonstrate that the
blind cleaning technique can yield nearly un-biased recovery of r.

To demonstrate this we carry out a likelihood analysis for which we assume this specific
form of the log-likelihood [81], [154], which accounts for the non-Gaussian nature of the
power spectrum at low multipoles,

−2 lnL(r) =
∑
l

(2l + 1)

[
ĈBB
l

r CBB,GW
l + CBB, lens

l +NBB
l

+ ln
(
r CBB,GW

l + AlensC
BB, lens
l +NBB

l

)
− 2l − 1

2l + 1
ln
(
ĈBB
l

)]
+ const. ,

(5.37)

where ĈBB
l denotes the power spectrum estimated from the simulated data, corrected for the

instrument beam, CBB,GW
l is theB-mode signal generated by primordial gravitational waves

evaluated for r = 1, CBB, lens
l denotes the lensing induced B-mode spectrum and NBB

l is
the instrument noise power spectrum. We evaluate this likelihood analysis on power spectra
derived from the cleaned maps at a number of different iterations and compare the estimated
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Figure 5.13: The evolution of the r-posterior across different cleaning iterations using the
Wiener filter. The bias on r reduces with each iteration and is remarkably consistent with
the posterior derived from the systematic free simulation. There is a bias on the profile

likelihood for the iteratively cleaned spectra as we do not marginalize over the
reconstructed T to P leakage.

posteriors on r to those derived from an analysis on a contamination free simulation.

We begin by noting that the r inferred from the contaminatedB-mode simulations returns
a highly biased measurement of r ∼ 10−1, off-set by two orders of from the true value.
However, on repeatedly applying the iterative cleaning algorithm to it using either the Wiener
or the Gaussian filter, the bias in the measurement of r reduces. The reduction in r-bias is
largest in the non-ideal setup when using Wiener filtering. As seen in Fig. 5.13, after 2
iterations we find that the measured value of r is consistent with the true value to better than
1σ. This corresponds to a near perfect removal of a bias of order ∼ 100. Beyond the 2nd
iteration of cleaning there is no further change to the likelihood. Note that this cleaning also
reduces the uncertainty on r by a similar order of magnitude. With lower values of Alens,
corresponding to delensed maps, r is still consistent with the true value. However, more
iterations are required to achieve convergence after delensing, as the reconstruction noise floor
is lowered. Delensing does not significantly improve the level of cleaning that it is possible
to achieve with the more realistic, non-ideal case. A joint study of delensing and systematics
cleaning could become more relevant in the case of higher sensitivity experiments such as
PICO [155].
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iteration r r− r+
Contaminated - 113 111 115

0 4.03 3.58 4.53
Cleaned 1 1.19 0.972 1.5

2 1.61 1.41 1.88
3 1.61 1.41 1.88

True - 1.44 1.16 1.86

Table 5.3: This table presents the central value of r, and 68% CI upper and lower bounds in
units of 10−3. These results assume no de-lensing i.e. Alens = 1.

5.8 Conclusions

Systematic effects originating in the instrument pose a major challenge for upcoming CMB
experiments seeking to measure the primordial CMB B-mode of polarization. Many of the
existing techniques for mitigating these effects rely on complex instrument modeling and
detailed knowledge of the instrument design. We have presented a detailed case study, im-
plementing a QE approach to carry out cleaning of the CMB B-mode without detailed prior
knowledge of the instrument. We have shown that this QE technique can successfully remove
a T to P leakage sourced by a differential detector gain systematic, resulting in a near opti-
mum recovery of the primordialB-mode and the reduction of the bias on the tensor-to-scalar
ratio by ∼ 2 orders of magnitude. Our robust implementation builds on the previous work by
carrying out systematic recovery and map correction on a full TOD simulation including the
effects of a realistic satellite scan strategy, and by the use of newly-derived efficient full-sky
estimators. In our recovery and map correction we use a novel Gaussian filter which we find
to be an effective alternative in cases where the Wiener filter caused the map correction to
fail.

Our case study involved two scenarios. The first scenario, with no noise, beam or lensing,
was used to illustrate the absolute limit to the cleaning process in an ideal world when there
are no complications. The second scenario provides a more realistic, non-ideal example of
the cleaning for a contemporary CMB experiment by using realistic levels of noise and beam
comparable to those expected for the LiteBIRD instrument [88]. It was necessary to test the
iterative cleaning scheme used in our map correction. We carried out this testing using a
semi-analytical forecast for the ideal and realistic cleaning. Our cleaning was successful as it
was found to be consistent with the forecast

We used our case study to test the conventional wisdom applied in previous studies of
this approach [28] and from CMB weak lensing research. We find that in specific cases this
wisdom does not hold. For example, previous studies suggest that using EB will result in
the best reconstruction of T to P leakage. However, we find that the TB correlations provide
the best reconstruction. In some cases using the Wiener filter, the optimum filter that is used
in delensing, resulted in divergence when cleaning. The aforementioned Gaussian filter was
found to avoid this divergence. These examples, where the conventional wisdom does not
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apply in the case of systematics cleaning, show the importance of carrying out this case study.

A number of complications exist which will need addressing for this method to be vi-
able that we leave to future work to consider. These complications include the inclusion of
foregrounds, and the presence of multiple different systematics. It may be possible to re-
construct and remove these systematics simultaneously. Moreover, is may be possible break
the degeneracy between some cosmological signals and systematics using a QE approach in
combination with prior knowledge of the scan strategy.

Despite the additional complications that need to be considered, this detailed study of
the QE reconstruction and the improvements made to the iterative cleaning process are an
important step towards implementing QEs to reconstruct and remove systematic effects from
upcoming CMB surveys. We suggest that this QE technique should be used to compliment
traditional systematic correction techniques to diagnose and remove residual contamination
in the data not corrected by other methods.

Many different contributions to the B-mode signal must be considered by any modern
CMB experiment before a measurement of primordial B-modes is claimed. Up till now in
this thesis we have considered only forecasts for constraints on these B-mode sources, and
theoretical studies of ways to detect and constrain them. However, in the next chapter we go
beyond the theoretical and apply the QE technique to attempt to reconstruct, and constrain
the CB effect using the Planck 2018 polarization data. We believe this study may produce
CB constraints that improve upon those found by applying non QE reconstruction techniques
to Planck, and may be competitive with QE constraints that come from more recent CMB
experiments such as BICEP2/Keck and ACTpol.
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Chapter 6

Quadratic Estimator Constraints on

Cosmological Birefringence from Planck

2018 Data

6.1 Introduction

In the previous chapter of this thesis we discussed systematic effects that could contami-
nate the primordial CMBB-mode signal, and in Chapter 4 we discussed the potentialB-mode
contamination that cosmological birefringence (CB) may source. However, now we will shift
emphasis from the contamination of primordial to B-modes to the corresponding cosmolog-
ical sources themselves. The CB effect, and in general cosmic polarization rotation (CPR),
may represent an exciting observable for extensions to the theory of electromagnetism, and
for the presence of primordial magnetic fields (PMFs).

The theory of electromagnetism is extremely well understood, and has undergone rigor-
ous lab-based and astrophysical tests. It has long been known that it is a parity symmetric
theory. However, it is important to test such symmetries in order to see if they are broken
under extreme conditions, such as on cosmological scales. Parity symmetry has been shown
to be broken in the weak sector, and it is possible to show that it could be broken in the elec-
tromagnetic sector through a simple extension to the standard model with a Chern-Simons
term [25]. This is discussed at length in Chapter 2. However, here we offer a brief review of
the concepts that are relevant to this chapter.

The Chern-Simons term is an additional contribution to the Lagrangian for electromag-
netism of the form [27], [47]

LCS = −gφγγ
2
φFµνF̃

µν , (6.1)

where φ is a pseudo-Nambu-Goldstone-boson (PNGB) field, gφγγ is the coupling strength
between the PNGB and the photon, Fµν is the electromagnetic field strength tensor, and F̃ µν

is its dual. The Maxwell’s equations are modified as a result of the inclusion of the this term
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in the Lagrangian. Such modifications would lead to a rotation of the linear polarization
angle of photons in direction n̂ from the observer. This rotation, sourced by parity violating
modifications to electrodynamics, is known as CB [25]. The rotation angle is dependent on
the coupling strength and the fluctuations of the PNGB between the source of the observed
polarized photons and the observer [44],

ᾱ(n̂) = gφγγ

∫
dη

(
∂

∂η
+ n̂ · ∇

)
φ(η, n̂) . (6.2)

We can write this rotation in terms of direction dependent, α(n̂), and monopole, α0, compo-
nents, so that ᾱ(n̂) = α0 + α(n̂).

This extension to the standard model is motivated by a number of models where the PNGB
in the Chern-Simons term is an axion or an axion-like particle [42], [118]. For a PNGB that
is massless during the epoch of inflation the direction dependent map of the rotation angle
along the line of sight, n̂, is expected to have a scale invariant power spectrum of the form
[44], [156]

Cαα
L = ACB

2π

L(L+ 1)
(6.3)

whereACB is the amplitude of the power spectrum and is related to the coupling strength and
the Hubble constant during inflation, HI , as [44], [156],

ACB =

(
HIgφγγ
4π

)2

. (6.4)

Another physical phenomenon that may source the direction dependent rotation field, α(n̂)
is the presence of the aforementioned PMFs [69], [83], [129]. These primordial magnetic
fields can induce Faraday rotation of polarized photons as they propagate from sources in the
early universe. The rotation angle of photons propagating along the line of sight n̂ on the sky
is [43], [157], [158]

α(n̂) =
3c2

16π2e
ν−2

∫
τ̇ B · dl . (6.5)

Here, ν is the photon frequency, τ̇ is the differential optical depth, B is the magnetic field
strength, and dl is the infinitesimal length element along the trajectory of the photon. Both the
magnetic field strength and length element are in comoving coordinates. This effect would
also result in a scale invariant power spectrum of the same form as (6.3). In this case the
amplitude would be [43]

ACB =

[
B1Mpc

(2.1× 102 nG)(ν/30GHz)2

]2
, (6.6)

where B1Mpc is the magnetic field strength smoothed over 1Mpc.

In the case of both axion-photon coupling and PMFs, if one is able to place a constraint on
ACB from reconstruction of the Cαα

L power spectrum from observations, then it is possible
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to use this constraint to place an upper bound on these physical phenomenon by rewriting
equations (6.4) and (6.6) to give [44], [156]

gφγγ =
4π

HI

√
ACB , (6.7)

for the axion photon coupling strength and

B1Mpc = 2.1× 102 nG
( ν

30GHz

)2√
ACB , (6.8)

for the primordial magnetic field strength. The frequency dependence of the term in (6.8)
would allow the separation of the PMF effect from the rotation generated by a pseudo-scalar
coupling to the photon field. However, this frequency dependence also renders it difficult to
place PMF constraints using component separated maps which use combinations of CMB
map measurements taken from multiple frequency channels [159].

It is possible to place a constraint on ACB by reconstructing Cαα
L by using observations

of the CMB polarization. A rotation of the linear polarization angle of photons will generate
distortions in the CMB polarization maps of the Q(n̂) and U(n̂) Stokes parameters. When
written in the spin weighted complex form, ±P (n̂) = (Q ± iU)(n̂), the distortion of the
Stokes parameters by this rotation can be written as

±P (n̂) = ±P̃ (n̂)e∓2iα(n̂); . (6.9)

Here, the tilde denotes the unrotated Stokes parameters. A distortion of the CMB polarization
of this form will generate non-zero off-diagonal correlations in the CMB covariance matrix,
〈alma∗l′m′〉.

It is possible to use a quadratic estimator (QE) approach to leverage these off-diagonal
correlations to reconstruct the α(n̂) map and the Cαα

L power spectrum, using existing obser-
vations of the CMB polarization1. While this has been done for a number of contemporary
ground based experiments such as POLARBEAR [43], BICEP/Keck [68] and ACT [125], a
QE approach to reconstruct α(n̂) has not been applied to the Planck polarization data [136].
As the expected shape of Cαα

L suggests there may be more power in larger scale modes it
may be advantageous to use data from a full-sky satellite experiment in order to reconstruct
α(n̂). The results in Chapter 4 suggest that full-sky experiments, with access to larger scale
scales, may be able to place stronger constraints on the amplitude of Cαα

L than partial-sky
experiments with comparable sensitivity.

While the Planck data has been used to reconstruct α(n̂) and constrain ACB in both [67]
for the 2015 release data and [78] for the 2018 release data, neither work employed a QE
approach. Instead an alternative approach, described in [67], was employed in both studies.
This approach involves using the CMB polarization spectra to measure uniform CB in small

1In Section 2.5.4 of Chapter 2 we discuss the generation of off-diagonal correlations by CB, and summarize the derivation of the
corresponding QE.
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patches of the sky, and then combining these patches to form a map of α(n̂). The constraint
achieved using the 2015 release data wasACB ≤ 2.74×10−5

[
rad2

]
within 95% C.L. [67]. A

consistent, but stronger 95% C.L. constraint was found using the 2018 release data to ACB ≤
2.59 × 10−5

[
rad2

]
. However, by applying a QE approach it may be possible to improve

upon the existing constraints from Planck. Additionally, a QE approach will not be subject
to absolute angle calibration error [102]. This error primarily effects studies of uniform CB.
However, as studies of anisotropic CB which use the technique described in [67], [78] involve
taking measurements of uniform CB on small patches of the sky they may also be vulnerable
to this calibration error for the measurements in each patch. Recent attempts have been made
to circumvent absolute calibration error in the uniform CB study presented in [106], leading
to exciting new hints of a CB signal present in the Planck data. Therefore, it is prudent to
carry out further investigate into anisotropic CB using Planck, applying the QE approach with
the 2018 release data for the first time. This is the primary focus of this work.

In Section 6.2 of this chapter we focus on the analysis pipeline for our study, including
the efficient QE, the map processing techniques, and the likelihood for ACB. We follow this,
in Section 6.3, with the results of tests we use to validate our QE pipeline and likelihood
code. Finally, in Section 6.4 we present the results of our QE analysis of the Planck 2018
SMICA maps [159]. These results include new stronger Planck constraints on ACB and the
axion-photon coupling strength gφγγ .

6.2 Analysis Techniques

6.2.1 The quadratic estimator

A direction dependent distortion of the CMB polarization, like the one shown in equa-
tion (6.9), will result in non-zero off-diagonal modes in the CMB covariance matrix in har-
monic space. Normally, the CMB covariance is only non-zero on the diagonal. Quadratic
estimators (QEs) use the information encoded in the off-diagonals in order to reconstruct the
distortion field. The full-sky QE for the rotation field sourced by CB was first derived in
[38] and [39]. Here, we will summarize the important practical details pertaining to the re-
construction of CB using QEs. We will also introduce the efficient form of the QE for CB,
in analogy to the efficient lensing estimators introduced in [160]. We primarily employ an
estimator that makes use of the 〈ElmB∗

l′m′〉 cross correlations, as these are expected to give
the smallest reconstruction noise [70], [83].

The quadratic estimator for the reconstructed harmonic space CB field, α̂LM , as derived
in [38] and [39] and discussed in detail in Chapter 2 has the form [29]

α̂LM = −2Nαα
L

∑
ll′

C̃EE
l′

CBB,map
l CEE,map

l′

∑
mm′

BlmE
∗
l′m′ξLMlml′m′ pe` , (6.10)
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where Nαα
L is the reconstruction noise and has the form

Nαα
L =

4∑
ll′

√
(2l + 1)(2l′ + 1)

4π

(
C̃EE
l′ HL

ll′ p
e
`

)2
CBB,map
l CEE,map

l′


−1

. (6.11)

Here, the parity-even operator, pe` ≡ (1 + (−1)`)/2, enforces the condition ` ≡ l + l′ + L =

Even. The C̃EE
l terms are theory power spectra. It is assumed that the C̃EE

l spectrum is well
measured by existing CMB experiments. In this work, for all theory spectra we use the Planck
best fit ΛCDM spectra from the baseline Planck likelihood [161]. The CXX,map

l spectra are
spectra calculated directly from the data maps themselves.

The geometric kernel term ξLMlml′m′ encodes the geometric behavior of the spin-weighted
spherical harmonics and is written, in terms of Wigner-3j symbols, as

ξLMlml′m′ = (−1)m
√

(2l + 1)(2L+ 1)(2l′ + 1)

4π

(
l L l′

−m M m′

)
HL
ll′ , (6.12)

where,

HL
ll′ =

(
l L l′

2 0 −2

)
. (6.13)

In this form the estimator is a convolution in harmonic space. However, it is more efficient
to rewrite it as a product of real-space fields. To do this we first rewrite the geometric kernel
explicitly in terms of the spherical harmonics so that

2ξLMlml′m′pe` =

∫
dn̂ [+2Y

∗
lm(n̂)YLM(n̂)+2Yl′m′(n̂) + −2Y

∗
lm(n̂)YLM(n̂)−2Yl′m′(n̂)] . (6.14)

Substituting equation (6.14) into the estimator in (6.10) gives the expression

α̂LM =−Nαα
L

∫
dn̂

[∑
lm

1

CBB,map
l

Blm+2Y
∗
lm(n̂)

∑
l′m′

C̃EE
l′

CEE,map
l′

E∗
l′m′+2Yl′m′(n̂)

+
∑
lm

1

CBB,map
l

−2Y
∗
lm(n̂)

∑
l′m′

C̃EE
l′

CEE,map
l′

E∗
l′m′−2Yl′m′(n̂)

]
YLM(n̂) .

This is easily written as the spherical harmonic transform of a product of real-space fields,

α̂LM = −Nαα
L

∫
dn̂ [(+2AB∗(n̂))∗ +2AE∗E∗(n̂) + (−2AB∗(n̂))∗ −2AE∗E∗(n̂)] YLM , (6.15)

where the real-space fields are defined as
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±2AB∗(n̂) =
∑
lm

1

CBB,map
l

B∗
lm±2Ylm(n̂) , (6.16)

±2AE∗E∗(n̂) =
∑
lm

C̃EE
l

CEE,map
l

E∗
lm±2Ylm(n̂) . (6.17)

In this form the quadratic estimators are significantly more computationally efficient than
in (6.10), where multidimensional sums over large ranges of modes must be carried out. This
efficient form of the estimator was used in the full sky WMAP anisotropic birefringence
analysis [77].

6.2.2 The analysis pipeline

In this work we use the same analysis pipeline for our tests, and our data analysis. This is
to ensure that the data analysis we carry out is consistent with our validation test, and our
validation tests are carried out in conditions as close to the real data analysis as possible. The
summary of the steps taken in the pipeline is as follows:

1. Beam Deconvolution: The maps that we analyze first undergo beam deconvolution, by
transforming the maps to harmonic space maps and multiplying by the inverse of the beam
window function. This is done as the QE code we use assumes beam deconvolved maps.

2. Masking: A mask is applied to the beam deconvolved maps to remove high intensity po-
larization sources and the galactic plane.

3. Passing data maps and theory spectra: The masked, beam deconvolved maps are passed
to the QE code. We also pass theory spectra described in Section 6.2 to the code.

4. Process the returned maps: The QE code returns estimated harmonic and real-space fields.
Before we calculate the CB power spectrum remove the monopole as we are only interested
in the anisotropic CB effect in this chapter.

5. Calculate the CB power spectrum: The CB power spectrum is estimated from the pro-
cessed α̂(n̂) map and the QE pipeline is complete.

Note that when estimating the CB power spectrum we define the noise biased spectrum esti-
mated directly from the processed maps as

C α̂α̂
L =

1

fsky(2L+ 1)

∑
M

|α̂LM |2 . (6.18)

We use Ĉαα
L to indicate the spectrum with the noise bias Nαα

L subtracted and to distinguish it
from the noise-biased C α̂α̂

L spectrum so that C α̂α̂
L is equivalent to Ĉαα

L +Nαα
L . Note that Nαα

L
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as calculated using equation (6.11) only accounts for the isotropic noise bias. Anisotropic
noise that biases the off-diagonals of the CMB covariance are not accounted for using (6.11).
In addition to providing information about the power of the α̂(n̂) map on different scales
the estimated power spectra can be used in model dependent likelihood analysis in order to
constrain the amplitude of the scale invariant spectrum introduced in equation (6.3).

6.2.3 Model dependent analysis

We carry out likelihood analysis for the estimated spectra in order to estimate/constrainACB,
the amplitude of the model dependent CB power spectrum. This is a model dependent anal-
ysis since how we choose to model the CB spectrum, that is what spectral shape we choose,
will directly impact the constraint we place on the amplitude of the spectrum using the like-
lihood approach. In this analysis we vary the amplitude of a reference spectrum, C ref

L . We
choose a CB model with a scale invariant power spectrum as shown in equation (6.3). The
scale independent spectrum is commonly chosen in the literature [43], [68], [77], [125] when
placing model dependent constraints on anisotropic CB. We use the likelihood described in
[81], adapting it for use with the CB spectrum,

−2 lnL(ACB) =
∑
L

(2L+ 1)

[
C α̂α̂
L

ACBC
ref
L + Cfid

L

+ ln (ACBC ref
L + Cfid

L )− 2L− 1

2L+ 1
C α̂α̂
L

]
.

(6.19)
Here, Cfid

L is the fiducial model spectrum. We also assume a fiducial model where no CB is
present and the fiducial spectrum consists entirely of reconstruction noise.

This form of the likelihood assumes use on the full sky. For a realistic CMB sky where
a mask is applied this is adapted according to the procedure seen in [162]. In this case we
write the likelihood as

−2 lnL(ACB) =
∑
LL′

Cfid
L g(xL)M

−1
LL′ g(xL′)Cfid

L′ , (6.20)

where M−1
LL′ is the inverse covariance matrix, the function g(xL) is defined as

g(xL) = sign(x− 1)
√

2(xL + lnxL − 1) , (6.21)

and xL is constructed from the data, model and reference spectra and takes the form

xL =
C α̂α̂
L

ACBC
ref
L + Cfid

L

. (6.22)

By defining the likelihood explicitly in terms of the covariance matrix, it is possible to ac-
count for the extra variance introduced by only including data from a fraction of the sky, fsky.
In our likelihood we consider low L modes. As the majority of the power in our model is on
large angular scales the low L modes are particularly important for the likelihood constraint.
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These modes are expected to have a non-Gaussian distribution [154]. The form of the likeli-
hood presented in [81] includes additional corrections to take into account this non-Gaussian
distribution of the low L modes.

6.3 Simulation tests

In order to validate our pipeline we carry out a series of blind tests of the QE using α(n̂)
maps that are drawn from two fiducial Cαα

L spectra, each with a different ACB. One of these
maps is for the null scenario where no CB is present, that is ACB = 0. These α(n̂) maps are
used to rotate a set of simulated CMB polarization maps. We then pass these to the analysis
pipeline, blind to the injected ACB. We do this in order to test whether we are able to recover
α(n̂) map, power spectrum and ACB from an unseen data map, with no foreknowledge of
what the signal should look like. This emulates the process of reconstructing the CB signal
from actual data, where one does not know what the true signal is.

After the conclusion of the analysis the injected ACB, and corresponding Cαα
L spectra and

α(n̂) maps are revealed. These are then compared to reconstructed spectrum and map, and
the mean ACB resulting from likelihood analysis. The simulated CMB maps emulate the
Planck 143GHz channel noise and beam, as this has a simple noise and beam profile when
compared with component separated Planck maps such as the SMICA map [159]. Note that
only the CMB maps are rotated by the injected CB signal, and not the noise components of
those maps, which are applied after the rotation. For the QE analysis we used lmax = 1024,
both with and without masking in order to test for possible bias introduced by masking. The
masks we study are summarized as follows:

• The Planck common confidence masks. Separate polarization and intensity masks are in-
cluded. The sky coverage after these non apodized masks are applied is ∼ 78%.

• The combined Planck galactic plane mask and common confidence mask with ∼ 76% sky
coverage.

• The combined Planck non galactic plane mask and common confidence mask with ∼ 68%
sky coverage.

• The combined Planck galactic plane mask and common confidence mask with ∼ 59% sky
coverage.

It is important to be able to reconstruct the α(n̂) map using the QE. We compare the
injected map, with ACB = 5 × 10−5, to the masked and full sky reconstructed maps in Fig-
ure 6.1. We compare the Wiener filtered [41] maps to better distinguish features of the recon-
structed α̂(n̂) maps from reconstruction noise. The Wiener filter dampens modes which are
dominated by reconstruction noise but preserves modes with a strong signal-to-noise ratio.
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input α(n̂)

-0.0289345 0.0279346

reconstructed α̂(n̂), fsky = 1

-0.03006 0.0279889

reconstructed α̂(n̂), fsky = 0.78

-0.0233979 0.0197184

Figure 6.1: The Wiener filtered α(n̂) map drawn from an input Cαα
L spectrum with

ACB = 5× 10−5
[
rad2

]
. This is compared to the Wiener filtered α̂(n̂) map reconstructed

with no mask, and the Wiener filtered α̂(n̂) map reconstructed with the common confidence
mask with fsky = 0.78.

We find that the QE can successfully reconstruct larger scale features for angular scales asso-
ciated with modes where the reconstruction noise does not dominate over the reconstructed
signal.

100 101 102

L

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
α
α

L

×10−5

fsky = 1.00

fsky = 0.78

fsky = 0.76

fsky = 0.68

fsky = 0.59

reconstruction noise

100 101 102

L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
α
α

L

×10−4

Injected spectrum

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ACB ×10−5

0.0

0.2

0.4

0.6

0.8

1.0

L(
A
C
B

)/
L m

ax

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
ACB ×10−4

0.0

0.2

0.4

0.6

0.8

1.0

L(
A
C
B

)/
L m

ax

injected ACB

Figure 6.2: The power spectra and likelihoods for two different sets of CMB polarization
maps rotated by a simulated α(n̂) map that corresponds to an injected ACB value. This
value was selected blindly, and was only seen after the analysis pipeline had concluded.
Also included in the upper right panel is the theory Cαα

L , from which the α(n̂) map is
drawn, combined with the reconstruction noise Nαα

L in order to be compared to the
reconstructed Ĉαα

L +Nαα
L spectra. The injected amplitudes are ACB = 0.0 (left panels),

ACB = 5× 10−5 (right panels). In the lower panels, on the left we show the 1σ or 68%
C.L. upper bounds as vertical dashed lines, and on the right we show the injected ACB as a

brown, vertical dashed line.

Our likelihood analysis is carried out as described in Section 6.2.3. When calculating
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the covariance for this test we assume a fiducial model with no CB present, with a diagonal
covariance matrix consisting only of the fiducial variance, σ2

L, where

σL =

√
2

fsky(2L+ 1)
Nαα
L . (6.23)

The injected values are ACB = 0.0, ACB = 5× 10−5. We see from our likelihood and power
spectra, shown in Figure 6.2, that in both cases the measured value of ACB is consistent with
the injected value corresponding well within 1σ, and the reconstructed and injected spectra
match to within 1σ variance limits. We list the recovered ACB values and errors on those
values for the full sky, and masked analyses in Table 6.1. We find that in comparison with
the full sky case, the masked cases lead to a small bias. However, it is small enough that the
masked and full-sky cases are consistent with each other for both of the injected ACB values.
The introduction of a mask also leads to an increased variance and widening of the likelihood,
which is expected with reduction of sky coverage. In the null case (ACB = 0.0) this resulted
in an error that was ∼ 1.5 times larger when using the common mask than for the full-sky
case.

ACB = 0 ACB = 5.0
fsky ACB +σACB

ACB −σACB +σACB

1.0 0.0 0.39 4.27 0.94 1.43
0.78 0.0 0.60 5.25 1.23 1.81
0.76 0.0 0.54 5.25 1.27 1.80
0.68 0.0 0.56 5.50 1.33 1.98
0.59 0.0 0.70 5.50 1.46 2.09

Table 6.1: The mean recovered ACB values and 1σ errors, given in units of ×10−5
[
rad2

]
,

for two blindly injected CB signals. We show these for a range of different masks, and for
reconstruction carried out on the full-sky maps.

We have used a variety of masks to ensure that our constraints are stable with choice of
mask. We find that our recovered ACB values for both sets of injected signals do not vary
significantly with different choices of mask. The lack of significant bias from different choices
of mask is important as we will use a range of masks in our SMICA data analysis. We do this
in order to ensure minimal bias from foregrounds or foreground residuals in our constraints.
If we do not see significant variation in our constraints with changes in our mask and sky
coverage then we can infer that foregrounds are not significantly biasing our results.
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Figure 6.3: The α̂(n̂) map constructed from α̂LM with the monopole removed. The maps
are reconstructed for lmax = 1440. We apply the Planck common confidence mask with
fsky = 0.78, and for the combination of the galactic plane and the Planck common

confidence mask for fsky = 0.76, fsky = 0.68, and fsky = 0.59.

6.4 SMICA analysis

6.4.1 The CB power spectrum reconstruction

For the initial data analysis we applied the QE to the SMICA polarization maps. The SMICA
maps are generated from the linear combination of data from different frequency channels
while utilising a multipole dependent weighting of this data in order to achieve foreground
cleaned maps. The SMICA map files include intensity and polarization beams, which have
an effective beam of θFWHM = 5′ and θFWHM = 10′ respectively.

In a similar way to our blind simulation tests, in order to avoid results that depend on either
lmax or the mask, we carry out our analysis for a range of masks and lmax cutoffs. We carry
out the analysis for the masks explored in Section 6.3 and for lmax ∈ {512, 768, 1024, 1440}.
We consider this range of lmax values as we do not see significant improvement in constraints
beyond lmax = 1440. We seek stable results for different choices of masks. This is to ensure
that our constraints are not impacted by bias from foregrounds or foreground residuals.

While it appears from these figures that the reconstructed spectra may have a non-zero
amplitude, ACB, it is necessary to carry out likelihood analysis to confirm whether or not the
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Figure 6.4: The Ĉαα
L +Nαα

L , reconstructed using the SMICA maps, for the common mask
with fsky = 0.78 (blue), and the combined common mask and galactic plane mask with
fsky = 0.76 (orange), fsky = 0.68 (green) and fsky = 0.59 (red). Also shown as a dashed

black line is the reconstruction noise, Nαα
L . We show the spectrum without the

reconstruction noise bias subtracted in order to compare the reconstructed spectra to the
reconstruction noise. There is an insignificant difference between the reconstruction noises
for different masks at each value of lmax. Therefore, we only show the reconstruction noise
for the fsky = 0.78 mask. Here, the spectra shown were reconstructed for four different lmax

values as displayed above each figure panel. Of the four choices of lmax the smallest
reconstruction noise is found for lmax = 1440.

amplitude of Ĉαα
L is truly consistent with zero.

6.4.2 SMICA model dependent analysis

We carry out a likelihood analysis for the amplitude of Cαα
L in order to establish what the

most probably ACB value is for the reconstructed Ĉαα
L , and to establish a constraint if ACB

is found to be consistent with zero. For this analysis we fit for the scale invariant spectrum
seen in equation 6.3. As such, we apply the likelihood discussed in Section 6.2.3, for the full
reconstructed spectra (1 ≤ L ≤ 512), using the reference spectrum C ref

L = 2π/L(L+ 1). In
our fiducial model we assume no CB, therefore, the fiducial model spectrum consists of the
reconstruction noise power spectrum Nαα

L only. The covariance is assumed to consist of the
diagonal variance elements σ2

L only, where σL takes the form seen in equation (6.23).

Our data spectra are the reconstructed C α̂α̂
L spectra discussed in Section 6.4.1, where we

carry out analysis for the same range of lmax values and for the same set of masks. In Figure 6.5
we see that, while the meanACB is not centered at zero,ACB is consistent with zero within the
2σ bound. The strongest constraint,ACB ≤ 1.97×10−5

[
rad2

]
within 95% C.L., comes from
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Figure 6.5: The likelihood and 95% C.L. for ACB from the SMICA maps for the common
confidence mask fsky = 0.78 (blue), and the combined galactic plane and common

confidence mask with fsky = 0.76 (orange), fsky = 0.68 (green) and fsky = 0.59 (red). The
95% C.L. is displayed as a dashed line. The data spectra for these likelihoods are the

reconstructed Ĉαα
L spectra for four different lmax values. These are displayed above their

corresponding likelihoods. These likelihoods are carried out with 1 ≤ L ≤ 512.

the power spectrum reconstructed using lmax = 1440, using the combined galactic plane and
common confidence mask, with an associated sky coverage of fsky = 0.68. This constraint
translates to a constraint on the axion-photon coupling strength of gφγγ ≤ 5.58×10−2

[
H−1
I

]
.

If this constraint had come from analysis of 150GHz channel maps then it would translate to
an equivalent PMF strength of B1Mpc ≤ 23.3 [nG]. However, as we have used combined
channel, component separated maps it is not possible to directly translate our results to a
PMF constraint. The full list of constraints and mean ACB values are presented in Table 6.2
along with a full list of constraints on the axion-photon coupling strength.

6.5 Conclusions

The Planck polarization maps are the best full-sky satellite measurements of the CMB
polarization to date. This provides a great opportunity to study the CB effect, which is ex-
pected to have high power on the largest angular scales, encoded in polarization modes that
are most easily accessible with full-sky observations. We have, for the first time, applied a QE
to Planck data in order to reconstruct the CB map and power spectrum, and have used these
spectra to place a constraint on ACB, the amplitude of a scale invariant CB power spectrum.
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fsky ACB 95% C.L. gφγγ
lmax = 512 0.78 0.63 3.25 7.16× 10−2

0.76 0.04 3.18 7.09× 10−2

0.68 0.00 3.16 7.07× 10−2

0.59 0.00 3.34 7.27× 10−2

lmax = 768 0.78 0.76 2.47 6.24× 10−2

0.76 0.87 2.60 6.40× 10−2

0.68 0.85 2.71 6.55× 10−2

0.59 1.26 3.53 7.46× 10−2

lmax = 1024 0.78 0.98 2.55 6.34× 10−2

0.76 1.02 2.62 6.43× 10−2

0.68 0.89 2.53 6.31× 10−2

0.59 1.20 3.13 7.03× 10−2

lmax = 1440 0.78 0.46 1.99 5.61× 10−2

0.76 0.63 2.18 5.86× 10−2

0.68 0.35 1.97 5.58× 10−2

0.59 0.66 2.45 6.23× 10−2

Table 6.2: The mean ACB values and the 95% C.L. constraints in units of ×10−5
[
rad2

]
.

The list of means and constraints is for power spectra reconstructed using four different
listed lmax values, using the Planck common confidence mask with fsky = 0.78, and the

combined Planck galactic plane and common confidence masks with fsky = 0.76,
fsky = 0.68 and fsky = 0.59. Also shown, are the constraints on the axion-photon coupling

strength gφγγ in units of
[
H−1
I

]
.

We have first validated our code with a set of blind tests that included a null test. We
find that we are able to reconstruct the injected maps, and power spectra with both full-sky,
and masked maps. The QE code we employ is able to recover the details of the injected
α(n̂) map for angular scales that are not dominated by reconstruction noise. By employing
a Hamimeche and Lewis likelihood [81] we were able to recover the amplitude of the power
spectrum for the injected CB maps for both full-sky and masked polarization maps. We find
that choice of mask does not significantly bias the results of this test.

We then applied our successfully validated QE estimator code to both the Planck SMICA
CMB polarization maps. For these maps we applied a variety of masks to the polarization
maps and found that the combined common confidence mask and galactic plane mask with
fsky = 0.68 performed the best. The power spectra that were reconstructed for both SMICA
and are consistent with zero within 1σ bounds for the majority of modes, however, for some
modes this increased to 2σ.

Using a likelihood approach we have placed a model dependent constraint on ACB using
the CB power spectrum reconstructed for the SMICA maps. We find the strongest 95% C.L.
constraint to be ACB ≤ 1.97 × 10−5

[
rad2

]
. This is comparable to constraints from recent

CMB experiments such as BICEP/Keck [68] and ACT [125], and offers a factor of ∼ 1.4

improvement over the existing constraint from the Planck 2015 polarization data [67] and a
factor ∼ 1.3 improvement over the existing constraint from the Planck 2018 polarization data
[78]. This constraint translates to constraints on physical phenomenon such as a constraint
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on the axion-photon coupling of gφγγ ≤ 5.58× 10−2
[
H−1
I

]
.

In future work it will be necessary to apply the QE estimator to a range of data channels in
order to test whether features in the reconstructed CB spectra have frequency dependence, and
in order to place constraints on PMFs. It will also be necessary to apply the QE estimator that
employs 〈TlmB∗

l′m′〉 correlations as this may provide a constraint onACB that is competitive to
that from the 〈ElmB∗

l′m′〉 correlations. Utilizing both sets of correlations in the CB estimator
may reduce the variance of the reconstructed spectrum and map, leading to stronger ACB
constraints. In order to better debias the CB spectrum, and to better model the variance
of this spectrum, future study should include the use of fiducial Markov-Chain Monte-Carlo
simulations of the data maps, passed through the same map construction and analysis pipeline.
If these simulations are able to include potential foreground, and systematic effects then will
be possible to remove not only the isotropic bias, but also bias in the off-diagonal correlations.

Moving beyond the existing set of CMB surveys future satellite CMB experiments such as
LiteBIRD [88] and ground based experiments such as the Simons Observatory [16] will probe
an even larger parameter space than Planck. As these experiments seek to place constraints
on primordial B-modes they will need to constrain the CB effect to ensure that it does not
bias the measurements of these B-modes. This is an exciting prospect as stronger constraints
on ACB would result in stronger constraints on the axion-photon coupling strength, and a
detection of a non-zero CB signal would indicate new and exotic physics.
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Chapter 7

Conclusions

7.1 Summary and discussion of thesis results

7.1.1 Overview

The search for primordial B-modes is an important one, with many upcoming experiments
setting their sights on becoming the first to detect this hard sought after signal that may pro-
vide the first constraints on the energy levels of inflation and a clearer understanding of the
nature of this important early universe epoch. Examples of these experiments include Si-
mons Observatory (SO) [16], LiteBIRD [88] and the proposed CMB-S4 [37]. The precision
of such experiments is expected to be unprecedented and, in the next decade, they may be able
to probe the B-mode signal to levels with an equivalent tensor-to-scalar ratio of r ∼ 10−3

[16], [88].

However, a number of challenges to the detection of primordial B-modes exist in the
form of systematics, and cosmological signals that source spurious signals, contaminating
the B-mode and adding confusion to the search for the primordial signal. Such contamina-
tion must be characterized and removed before a valid detection of of primordial B-modes
can be claimed. Further to this, the cosmological sources of contamination are themselves an
important signature of exotic physics. For example, detection of cosmic polarization rotation
(CPR), or cosmological birefringence (CB) would hint at extensions to the electromagnetic
sector of the standard model or the presence of primordial magnetic fields (PMFs) in the early
universe.

The detection and characterization of additional mechanisms ofB-mode production, both
cosmological and instrument based, has been the primary focus of this thesis. We have con-
sidered the different approaches by which the CB effect may be detected and constrained, as
well as the levels of constraints on CB for both uniform and anisotropic CB. Additionally, we
have studied the potential levels ofB-mode contamination for upcoming experiments if a CB
signal is present that is consistent with these constraints. One method of detection of CB is
by quadratic estimators (QEs) which are often employed in weak gravitational lensing stud-
ies [15], [40], [115], [116]. In this thesis we have considered an extension of the application
of QEs, deploying them to diagnose and remove systematic effects that may interfere with
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primordial B-mode detection and bias r. Beyond both the theoretical studies into CB con-
strains and systematics cleaning we have also taken an observational approach by applying a
QE to Planck 2018 data, providing real constraints on the CB effect from experimental CMB
data. In this chapter we provide a general summary the key results from each of the previous
scientific chapters. We will follow this with a discussion of the potential future avenues of
research that go beyond the work presented in this thesis.

7.1.2 Chapter 3 - Uniform birefringence forecast

In Chapter 3 the focus was on the uniform CB effect. The main body of work that was included
was a forecast of the constraints on uniform CB that are expected for SO and CMB-S4. This
was supplemented with a study of the constraining power of each measured CMB spectra,
with the aim of determining which spectra should be used to give the strongest constraint on
CB, as well as which l modes provide the best constraining power.

The fisher forecast for SO and S4 resulted in projected 1σ constraints of α0 ≤ 6.06 ×
10−3 [degrees] and α0 ≤ 1.8×10−3 [degrees] respectively. Of the SO instruments, we expect
that the large aperture telescope (LAT) will perform the better than the SAT. We also expect
that the strongest constraint will from the CEB

l cross spectrum. The modes that we expect to
contribute most to the constraining power for SO LAT and CMB-S4 are in the range 2 ≤ l .

2000 and 2 ≤ l . 3000 respectively.

Crucially the constraints that were forecast in this chapter were made assuming perfect
polarization angle calibration. It is expected that the limiting factor for the uniform CB con-
straint will be the precision to which the absolute polarization angle can be calibrated [60].
It may be possible to mitigate some of this error by applying technique described in [103]–
[106] to simultaneously determine the absolute polarization angle calibration error and the
CB angle.

7.1.3 Chapter 4 - Constraining cosmic polarization rotation and implications for pri-

mordial B-modes

The primary focus of Chapter 4 was a comparison between two different methods of constrain-
ing anisotropic CB. The methods were a QE approach, and a method that involved directly
examining the observed B-mode power spectrum and comparing it to the expected spectrum
induced by a CB effect; we denote the latter approach the BB approach. An additional focus
was on the contamination that could be present for anisotropic CB with amplitudes lower than
the forecast constraint for SO, BICEP/Keck and LiteBIRD.

One of the most interesting results of this study is the large difference in constraining power
that LiteBIRD had in comparison to the other experiments considered with similar levels of
sensitivity, such as the SO small aperture telescope (SAT) instrument. Despite the expected

147



noise rms of SO SAT being only a factor of ∼ 1.5 larger than that projected for LiteBIRD, the
best constraint that is forecast for LiteBIRD is a factor of ∼ 100 better than that forecast for
SO SAT. This may be due to the larger sky coverage of LiteBIRD. As CB is expected to have
a scale invariant spectrum with large power at low L, then we would expect that CB would
be best constrained by larger angular modes.

Another interesting result was the relative performance of the BB approach when com-
pared to using a QE for BICEP/Keck and SO SAT. For these experiments we forecast only a
marginal improvement when using a QE as opposed to the BB approach. It may be sufficient
to place constraints using a BB approach for these experimental configurations, avoiding the
relatively complex, and computationally expensive QE approach.

We found that the possible contaminant for a CB effect with amplitudes consistent with
the constraints for SO SAT, SO LAT and BICEP/Keck may be significant. TheB-modes that
can be sourced by CB allowed by the upper bounds that we forecast are of the same order
of magnitude as primordial B-modes consistent with a tensor to scalar ratio in the range
r ∼ 10−3 → r ∼ 10−2.

7.1.4 Chapter 5 - Blind Map Level Systematics Cleaning: A Quadratic Estimator Ap-

proach

In the case study we described in Chapter 5 we showed that, for a realistic set of time ordered
data (TOD) simulations, it is possible to apply a QE approach to diagnose and remove sys-
tematic effects. Our focus in this chapter was on the diagnosis and removal of a temperature
to polarization (T-to-P) leakage sourced by a differential detector gain using a QE approach.
Applying QEs to clean systematics was first discussed in [28]. We were able to improve upon
this work through the use of realistic time ordered simulations and by carrying out a detailed
study into the iterative cleaning process required to remove the reconstructed T-to-P leakage.

Using the QE approach are successfully able to diagnose the contamination, recovering
maps of the T-to-P distortion that was generated by a simulated 1% differential detector gain
differential gain. We found that, by applying the iterative cleaning process to remove the
diagnosed contamination, we are able to reduce the bias on r by a factor of ∼ 100 and recover
r to within less than 1σ of the value injected into the simulations. We also introduced a novel
new Gaussian filter which improves the stability of cleaning for very low noise simulations.

We suggest that this QE method could be used to compliment existing systematic mitiga-
tion techniques. A QE diagnosis could be carried out after these methods are applied in order
to confirm no residual contamination remains. Additionally, iterative cleaning could be used
in order to remove any residual contamination that may still be present in the CMB maps.
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7.1.5 Chapter 6 - Quadratic Estimator Constraints on Cosmological Birefringence from

Planck 2018 Data

Planck iss the foremost full-sky satellite CMB experiment. As such the public release of the
Planck 2018 data provides a great opportunity to study and place constraints on CB from
from real observations. In Chapter 6 we applied a QE to the Planck 2018 data to reconstruct
the CB map and power spectrum, and to place constraints on the amplitude of the CB power
spectrum,ACB. We specifically focused on the foreground removed SMICA processed maps.

We were able to validate our QE pipeline using a blind analysis where two sets of maps
were passed to the pipeline, each set with an unknown injected CB signal. The recovered
ACB values, maps, and corresponding power spectra were compared to the blindly selected
injected values. We successfully recovered the injected ACB value for both sets of maps.
One set was a null case with no injected signal, and the other had an injected signal with
ACB = 5× 10−5

[
rad2

]
.

By carrying out a QE analysis on the Planck data we were able to place a constraint of
ACB ≤ 1.97 × 10−5

[
rad2

]
, within 95% C.L., on the amplitude of the CB power spectrum.

This is a factor of ∼ 1.3 improvement over the best existing constraints from the Planck 2018
data [78]. This can be linked to constraints on actual physical phenomenon in the form of the
coupling between the photon and the axion, gφγγ ≤ 5.58× 10−2

[
H−1
I

]
. We found that our

results were consistent with no CB signal to within less than 2σ.

7.2 Future work

In this thesis we have studied sources of non-inflationary B-mode CMB polarization.
These studies have included both cosmological sources in the form of uniform and anisotropic
CB and instrument based systematic sources. We have carried out analysis on real data and
made theoretical forecasts using simulations. We have studied techniques to remove some
sources of B-mode contamination, and considered others as important science goals. The
range of different studies in this work opens up a wide avenue for future research.

With upcoming experiments such as SO, LiteBIRD and the later CMB-S4 it will be possi-
ble to use CMB power and cross spectra to improve constraints the uniform CB effect. It will
be important to reduce impact of the absolute polarization angle calibration error, as this will
have the largest impact on future constraints on uniform CB [60]. Promising techniques to
reduce this error have been introduced in [103], [104], and [105], and applied to the Planck
2018 data in [106]. If these techniques can be applied to SO, LiteBIRD and S4 then it will be
possible to place strong constraints on, or even make a detection of the uniform CB effect.

Beyond the uniform CB effect, future experiments will be able to place stronger constraints
on the anisotropic CB effect. It will be important for any future experiments to constrain the
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CB effect in order to claim a robust detection of primordial B-mode due to the potential of
CB sourced contamination. Any detection of B-modes, not sourced by lensing, will need
to be accompanied by the application of a QE for CB in order to confirm that CB is not the
source of this signal.

A future experiments are expected to have small enough statistical noise that the dominant
source of error will come from instrument systematics it will be vital to diagnose and remove
these in the search for primordial B-modes. Existing approaches could be supplemented by
the QE approach we have discussed in this thesis. However, there is more work to be done
to understand certain aspects of this approach. It will be necessary to study the impact of
foregrounds on the effectiveness of this technique. In addition, estimators for a range of
systematics would be need to be developed to render this an effective tool. Work must be
done to understand the interaction between these estimators and off-diagonal correlations in
the CMB covariance generated by weak lensing. Moreover, use of partial sky maps can also
generate off diagonal correlations. Work must be done to understand how this will impact the
use of this technique. If these challenges can be overcome then this approach may become a
promising tool to compliment existing techniques.

While our analysis of the Planck data has produced a strong constraint on the amplitude
of the CB power spectrum, a deeper analysis of the Planck data is possible. In our analysis
we restricted ourselves to using variance and model spectra determined by the reconstruction
noise of our spectra. A more thorough approach would involve the use of Markov-Chain
Monte-Carlo simulations in order to establish a fiducial model spectrum and to estimate the
variance on our measurements. Further work, using simulations, would allow for proper
debiasing of the reconstructed CB spectrum and produce a more robust constraint on CB.

Future detection of either the primordial B-mode signal or a signal from cosmological
effects such as CB is an exciting prospect. In the former case such a detection would allow
better understanding of inflation, including a constraint on inflationary models and the energy
scale at which inflation occurs. In the latter case this would provide an exciting observational
signature of beyond standard model physics. Both cases would result in a significant alter-
ation to our understanding of the fundamental physics of our universe, its evolution, and its
origins.
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Appendices

Appendix A

Geometric identity

The QEs, as derived in Section 6.2, rely on geometric couplings between the modes of
spin-2 and spin-0 fields. Here, we present details of the important geometric terms used
in the QE derivations, and derive the identity found in equation (5.11). We begin with the
integral of the spherical harmonic terms. In general this term can be written in terms of the
Wigner-3j symbols,

∫
dn̂ s1Yl1m1(n̂)s2Yl2m2(n̂)s3Yl3m3(n̂) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×

(
l1 l2 l3

m1 m2 m3

)(
l1 l2 l3

−s1 −s2 −s3

)
.

(A.1)

Using this identity we see that the geometric term, ±I
Ll2l
Mm2m

, that was introduced in equation
(5.6) is explicitly written as

±I
Ll2l1
Mm2m1

=

∫
dn̂ ±2YLM(n̂)Yl2m2(n̂)±2Y

∗
l1m1

(n̂)

=(−1)m1

√
(2L+ 1)(2l2 + 1)(2l1 + 1)

4π

(
L l2 l1

M m2 −m1

)(
L l2 l1

∓2 0 ±2

)
.

(A.2)

We can use the coupling parity, ` ≡ L+ l2 + l1, and the HL
l2l1

term,

HL
l2l1

≡
√

(2L+ 1)(2l2 + 1)(2l1 + 1)

4π

(
L l2 l1

−2 0 2

)
, (A.3)
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to simplify equation (A.2) giving

±I
Ll2l1
Mm2m1

= (−1)m1(±1)`HL
l2l1

(
L l2 l1

M m2 −m1

)
. (A.4)

The identity in equation (5.11) can then be derived starting with

∑
m2m1

±I
Ll2l1
Mm2m1 ±I

L′l2l1
M ′m2m1

=

∑
m2m1

(±1)`+`
′
HL
l2l1

HL′

l2l1

(
L l2 l1

M m2 −m1

)(
L′ l2 l1

M ′ m2 −m1

)
. (A.5)

Carrying out the sum on the right hand side and applying the property of the Wigner-3j sym-
bols, ∑

m1m2

(2L+ 1)

(
l1 l2 L

m1 m2 M

)(
l1 l2 L′

m1 m2 M ′

)
= δLL′δMM ′ , (A.6)

simplifies the right hand side of (A.5), giving the identity in (5.11),

∑
m2m1

±I
Ll2l1
Mm2m1 ±I

L′l2l1
M ′m2m1

=

(
HL
l2l1

)2
2L+ 1

δLL′δMM ′ . (A.7)
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