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Abstract

MODELLING AND CALIBRATION OF STOCHASTIC PROCESSES WITH
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In this thesis, we build and calibrate models of stochastic processes with application
to solar energy, finance and other fields.

With population growth and technology development, the demand for electricity
has increased dramatically. Due to the climate emergency including the greenhouse
effect and depreciation of fossil fuels, renewable energy sources are encouraged by
governmental policy and investment. Compared with other renewable sources, solar
energy has the most potential around the world. Hence, accurate models are required
that can provide not just solar power estimates but also capture the uncertainty in random
processes.

In Chapter 2, we propose a regime switching model of stochastic models (with
jumps) for solar irradiance, and calibrate the model using solar data from Mauritius.
Additionally, we develop a simulation method, which combines the Mycielski method
with a Markov chain, to simulate and forecast future scenarios of solar irradiance. Based
on historical data, our regime switching model and simulation method can give a good
simulation and forecasting to the time variation of solar irradiance.

We then derive the Fokker-Planck equation for a generalized Ornstein-Uhlenbeck
process in Chapter 3. We present a Crank-Nicolson method to solve this (singular) ver-
sion of the Fokker-Planck equation. Furthermore, we investigate the version proposed
by Chang and Cooper, which has been used extensively in the past to solve numerical
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results for Fokker-Planck equations. We develop two improved Chang-Cooper meth-
ods, and compare these methods with our Crank-Nicolson method. We show that all
three methods can give more accurate results and require less CPU time compared with
Monte Carlo simulations, and our Crank-Nicolson method can give the most accurate
results, but it requires more CPU time than two improved Chang-Cooper methods.

In Chapter 4, we derive the Fokker-Planck equations with jumps to model the regime
switching. We construct a partial integro-differential equation system, and then develop
numerical schemes to solve this system. We then apply the numerical scheme to the
solar irradiance data from Mauritius. We compare numerical results with Monte Carlo
simulations, and we confirm the numerical results of the system can give a good esti-
mation for the probability density function of the solar irradiance model, and it requires
quite less CPU time than Monte Carlo simulations.

In Chapter 5, we summarize the work and list the future work in jump size distribu-
tions, solar energy pricing and the 2-dimensional Fokker-Planck equation.
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Chapter 1

Introduction

The aim of this thesis is to present my research work and contributions during my PhD
studies. In this thesis, we build and calibrate models of stochastic processes with appli-
cation to solar energy, finance and other fields.

We propose a regime switching model of stochastic processes with jumps for solar
irradiance, and calibrate the model using solar data from Mauritius. We also develop a
novel method, which combines the Mycielski method with a standard Markov chain, to
simulate and forecast future scenarios based on historical data. Furthermore, we derive
the Fokker-Planck (F-P) equation of the generalized Ornstein-Uhlenbeck (OU) process
and the regime switching model with jumps. We develop numerical schemes of finite
difference methods to solve the F-P resulting equations, and utilize these numerical
methods also Monte Carlo (MC) simulations to estimate the probability density function
(PDF) of the solar irradiance model.

1.1 Background

With population growth and technology development, the demand for electricity has
increased dramatically, and its consumption will grow rapidly in the future especially
in developing countries. Furthermore, the issues of declining fossil fuels and the im-
plications of greenhouse gas emission stimulate people to improve the technology of
renewable electricity to develop cheaper and more reliable electricity. The U.S. Energy
Information Administration reports that electricity generation from renewable sources
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including solar, wind, hydroelectric, wood, geothermal and other biomass sources will
be increasing competitive due to declining costs from 2020 to 2050 [2].

Among renewable sources, geothermal and hydro power have strong limitations,
which is that they are restricted to highly specific locations. Therefore, the cost of
electricity distribution will only increase for geothermal and hydro power [3]. Biofuels
and hydro have a huge potential to develop, however, this needs to be supported by the
relevant policy and legislative framework [4]. Wind generation has been integrated into
power systems in order to reduce carbon emissions, with current projections indicating
that 100 GW of wind capacity every year will be delivered by offshore wind energy
power in UK from 2019 [5]. However, electric power generated by wind turbines is
highly erratic, and therefore the issues of intermittent supply and matching peak demand
can lead to problems related to the operation of power systems [6]. Compared with other
renewable sources, solar power is more sustainable with less restriction on location.
By the end of 2012, Solar Photovoltaic (PV) crossed a big milestone reaching a total
capacity of 100 GW and took its position as the third largest renewable source after
hydro and wind energy [7]. These systems use PV cells that convert solar irradiation
into electric power, and can be used in stand-alone and grid-connected systems to supply
power for home appliances, lighting, and commercial and industrial equipment [8].

1.2 Research Objectives

As it has been aforementioned, solar energy is one of the most promising electricity
sources and is increasing worldwide. However, the prediction of solar energy is hard
due to the uncertainty around weather conditions. [9] shows that weather conditions,
especially humidity, play an influential role in solar energy forecasting. Hence, the fore-
casting of PV production will be especially helpful for grid operators in order to better
accommodate the variable generation of electricity in their scheduling, dispatching and
regulation of power.

We aim to utilize stochastic differential equation (SDE) models to allow the simu-
lation of long term forecasts of solar energy and power, and hence the calculation of
investments and trades in the financial market. The main goals of this are summarised
below:
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1. Achieve more realistic and representative results by validating the robustness of
SDE models developed to real data. This essential step will examine whether the
underlying stochastic models can capture the characteristics of complex systems
in the real world. Only then we will know if the optimal strategies and valuations
computed have real meaning.

2. Develop numerical methods to estimate and simulate the PDF of stochastic pro-
cesses, examine the performance of these methods and apply to the solar irradi-
ance field.

3. Forecast the PDF of solar irradiance in the future and examine the feasibility of
solar power forecasting so that future investments may become profitable.

To accomplish the above goals, the following objectives have been determined.

1. Solar irradiance models

• Collect empirical data for solar irradiance.

• Eliminate the seasonal, location and daily cycle effects of solar irradiance.

• Propose and validate a suitable stochastic solar irradiance model based on
real data.

• Classify the periods of solar irradiance into different regimes.

• Estimate and calibrate the parameters in the model.

• Simulate and forecast future scenarios based on the model.

2. Estimate the PDF of a generalized OU process

• Derive the F-P equation for a generalized OU process.

• Propose a method to handle the (singular) behaviour for the F-P equation.

• Compare the proposed method with previous methods.

3. Forecast the PDF of solar irradiance model with jumps in the future

• Add jumps into the F-P equation and derive the corresponding F-P equations
for the solar irradiance model.
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• Develop a numerical method to solve F-P equations with jumps.

• Apply numerical methods to the solar irradiance data, and examine their
performance.

1.3 Contribution

The main contributions of this research are summarized below.
At first, we review previous literature, and the existing models for solar irradiance

which mostly focus on the hourly, daily and monthly solar irradiance, although it is
not clear how such models could be used to generate long-term simulated scenarios,
capturing the yearly, seasonal, daily and hourly variations down to minute by minute
scales. In this thesis, we propose and calibrate a robust Markov regime switching model
for solar irradiance, which can create long-term scenarios for 1-minute solar irradiance.
In this model, we tackle these problems:

• Propose a Markov regime switching model using SDEs, which can simulate and
forecast the solar irradiance more accurately using a hidden Markov chain based
on the historical data.

• Calibrate and improve the threshold-based method in [10] to filter jumps from the
data series, to obtain better results.

• Fit the model against real data to achieve a more robust description of annual
trends.

• Test the statistical performance of the model by comparing simulated and ob-
served solar irradiance.

After modelling solar irradiance, we then propose a simulation method utilizing the
hidden Markov chain with the solar irradiance model for the future scenarios, which is
then combined with the Mycielski method in [11, 12]. We apply this method to real
data, and test the statistical performance for the simulation results.

We then investigate the F-P equation, which is a candidate for generating the PDF
of a stochastic process at any given time [13]. To estimate the PDF of solar irradiance
in the future scenarios, the contributions are shown as follow:
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• Derive the F-P equation for the generalized OU process using log(x) transforma-
tion, which can address the singularity problem at x = 0.

• Apply finite difference methods for the F-P equation, and check the status of the
conservation law, which is a intrinsic property of the F-P equation.

• Improve the Chang-Cooper method proposed in [14], which has been used exten-
sively in the past to solve numerical results for F-P equations.

• Test the stability, accuracy, efficiency and robustness of these numerical methods.

• Add jumps into F-P equations and derive F-P equations for the solar irradiance
model.

• Propose a numerical method to solve the F-P equation with jumps corresponding
to the solar irradiance model.

• Test the statistical performance and total energy status of the numerical results for
the future scenarios based on solar irradiance data.

There are four chapters following in the thesis, and these are outlined below.
In chapter 2, we propose a regime switching model of SDEs with jumps for the solar

irradiance, and we examine the model using the solar irradiance data from Mauritius.
Furthermore, we propose a forecasting method to simulate future scenarios based on the
solar irradiance model.

In chapter 3, we investigate the F-P equation, which is a well-known model in nat-
ural science, and can be applied to describe the time evolution of a PDF of a stochastic
process without jumps [15]. We derive the F-P equation for the generalized OU process
and propose a numerical finite difference method using a transformation to solve the sin-
gularity of numerical schemes. Furthermore, we develop two improved Chang-Cooper
methods, which has been used extensively in the past to obtain numerical results for F-P
equations, and compare all numerical methods with MC simulations.

In chapter 4, we add jumps to F-P equations, and derive a resulting partial integro-
differential equation (PIDE) system of F-P equations corresponding to the regime switch-
ing model. We then develop a Crank-Nicolson scheme to compute the time varying PDF
of the regime switching model of the solar data.
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In chapter 5, we summarize the research work on modelling of stochastic processes
with solar irradiance data, and discuss some future work on applications of financial
field such as solar energy pricing and high dimensional F-P equations.

1.4 Other Works: Calibration of Distribution Theory
with Application to Real Data Sets

Besides that, we also perform some work on the calibration of statistical distribution
theory including finance and physics in my 1st-year PhD study, which has either been
published in or submitted to referred journals. According to these work, we can improve
and extend the solar irradiance model we proposed. The contributions of these works
are as follows:

• On the distribution of quotient of random variables conditioned to the pos-
itive quadrant In this paper, we motivate the work on the quotient of normal
distributions in [16], and derive the exact ratio distributions, which are X/Y , con-
ditioned on X > 0, Y > 0 for twelve classes of distributions, including the bivari-
ate normal, bivariate alpha skew normal, bivariate Cauchy, bivariate t, bivariate
exponential, Arnold and Strauss’ bivariate exponential, Balakrishna and Shiji’s
bivariate exponential, Mohsin et al.’s bivariate exponential, Morgenstern type bi-
variate exponential, bivariate gamma exponential, bivariate Pareto and bivariate
Lomax distributions. Furthermore, we also discuss areas of application for these
distributions.

This paper has been published in Communications in Statistics - Theory and
Methods.
https://doi.org/10.1080/03610926.2019.1576893

• Composite lognormal distributions for cosmic voids in simulations and mocks
The work in this paper is motivated by [17], which used a three-parameter log-
normal distribution to model the void size of the CVC. The void size distribu-
tions of the CVC have been analysed by many authors using a variety of mod-
els, and in this paper, we show that composite lognormal distributions provide
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consistently better fit than the commonly used three-parameter lognormal distri-
bution. We assess these distributions by some statistical characteristics, such as
histograms, density plots, P-P plots, Q-Q plots, Kolmogorov-Smirnov (K-S) test,
Cramer von Mises (CvM) test, Anderson-Darling (AD) test, Akaike information
criterion (AIC) and Bayesian information criterion (BIC). The composite lognor-
mal distributions are shown to perform better with respect to each criteria.

This paper is currently under review for possible publication in Monthly Notices

of the Royal Astronomical Society.

• New models for extramarital affairs data In modern society, a high propor-
tion of first marriages end in separation or divorce, whilst remarriage with new
partners is not less prone to dissolution [18]. There are many causes leading to
divorce, and one main reason is extramarital affairs [19]. In some societies, an
extramarital affair is an illicit or sexual relationship outside of marriage, and [1]
provided a extramarital affair data set in 1978, which is popular in the economet-
ric literature. This data set has been analysed by many authors using a variety of
models. In this paper, we propose two new models for the data, which provide
better fits than many of the known models by AIC, residual plots and some formal
tests, and we analyse the main factors of affairs behind the models, and discuss
and compare with previous models.

This paper has been published in Applied Economics.
https://doi.org/10.1080/00036846.2021.1975632.



Chapter 2

Stochastic Model for Solar Irradiance

Part of the work in this chapter is published in Applied Energy:
https://doi.org/10.1016/j.apenergy.2021.117457

2.1 Introduction

As governments around the world declare a climate emergency, renewable energy sources
(RES) must be actively encouraged both by governmental policy and investment in or-
der to phase out a reliance on fossil fuels for generating electricity. RES, such as solar,
wind, hydropower and geothermal energy, have been identified as solutions to this prob-
lem and as such reflect the future of energy advancement [20]. Compared with other
RES, solar energy is one of the most abundant and has the largest potential to be used
as an energy source around the world. By the end of year 2012, solar power generation
crossed a significant milestone as it reached a total capacity of 100 GW and took its
position as the third largest renewable source after hydro and wind energy [7]. These
generators use PV cells that convert solar irradiation into electric power, and can be
used in stand-alone and grid-connected systems to supply power for home appliances,
lighting, and commercial and industrial equipment [8]. Hence, we believe that fore-
casting PV production will be especially helpful for grid operators in order to better
accommodate the variable generation of electricity in their scheduling, dispatching and
regulation of power. Accurate models that can provide not just solar power estimates
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but also capture the uncertainty in the random processes are necessary to address de-
cision problems such as stochastic optimal power flow [21], probabilistic power flow
studies [22], designing microgrids [23], solar power shaping [24] and reserve planning.
Current state-of-the-art forecasting techniques for solar energy have focused on point
estimates, that is the most likely, or the average outcome. More recently there has been
a move towards more probabilistic approach to the field, which comes with problems
associated with benchmarking those methods [25]. In this chapter, we aim to add to the
growing field of probabilistic methods by describing a way in which one can generate
statistically accurate simulations of solar power over any time scale, at any resolution,
using a data driven approach to train our models on empirical data. Such simulations
can provide a variety of benefits to the community, for instance they may be used to bet-
ter understand the effects of including large scale PV generation into an energy network
(see [26], for an example of how similar models have worked with wind power), or as
a tool to value future investments, or even allowing for a cost-benefit analysis of market
subsidies to be carried out.

The proposed model in this chapter differs somewhat from the standard approach,
which has been to look at point forecasts. In general, the literature on forecasting can
be classified by either a physical approach or a statistical approach. In the physical ap-
proach, the forecast is based on the use of weather variables, mainly radiation and tem-
perature, which are obtained by numerical weather prediction (NWP), sky imagery and
satellite imaging [20]. The objective of the NWP tool is to provide information about
atmospheric conditions for a given time-scale. [27] presented a state-of-the-art review
of five NWP-based approaches, including time-series models based on on-site measured
data, models based on the detection of cloud motion in satellite images or ground-based
sky images, and NWP-based models, to predict and forecast the hourly solar irradiance
in Germany, Switzerland, Austria and Spain. Furthermore, they used statistical error
measures such as root mean square error (RMSE), mean absolute error (MAE) and Bias
to analyse the results. They found a strong dependence of the forecast accuracy on the
climatic conditions, which means that sunny days generally show smaller forecast er-
rors than cloudy ones. Apart from NWP, sky imagery and satellite imaging models are
applied in solar irradiance prediction as well. These methods are implemented in short
horizons, one of the most popular being based on artificial neural network models using
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the NWP as an input to the model. [28] developed an hourly resolution solar irradi-
ance forecast by applying a satellite-image analysis and a hybrid forecasting approach
using the exponential smoothing state space model and a back-propagation multilayer
perceptron (MLP) model. The solar irradiance was evaluated based on the cloud cover
index prediction with back-propagation MLP, and the proposed model performances
were analysed by measuring the error of nRMSE, R2, and normalized mean bias error
and compared to other forecasting models i.e., autoregressive integrated moving aver-
age, linear exponential smoothing, simple exponential smoothing and random walk. The
simulation results show enhancement in the forecasting model of 6% as compared to the
best forecast accuracy of other statistical models. [29] developed a short-term solar ir-
radiance estimation technique for a novel 3D cloud detection and tracking system based
on multiple total sky imagers (TSIs). Firstly, a supervised classifier was developed to
recognize clouds at the pixel level and the output cloud mask. Secondly, an intelligent
algorithm was implemented to measure the block-wise base height and the motion of
every cloud layer based on the images captured from multiple TSIs. This information
was then posted out to stitch pictures together into larger views that were used for solar
prediction. This system can robustly recognize clouds and track layers. The statistical
metrics of MAE and RMSE were evaluated to measure the forecasting performance on
the whole dataset. The proposed model [29] shows at least a 26% improvement for
irradiance prediction between 1 and 15-min in comparison with a persistence model.
More recently focus has diverted to using machine learning techniques to forecast solar
power, for example see [30] and [31].

Statistical approaches in the literature often focus on the modelling of short hori-
zons using time-data series, such as autoregressive models, moving average models and
autoregressive moving average models. Very short term models using statistical models
combined with machine learning have been to shown to perform very well [32]. How-
ever, these methods cannot forecast long-term solar power in the future, and when it
comes to economic forecasting and valuing financial instruments or investments, they
are not always applicable. As a consequence, SDEs are also a useful way to model
energy power, and they particularly important when facing financial problems. Such
models have proven popular in other renewable energy contexts, for instance [33] pro-
poses a SDE for wind speed and a calibrated function to convert it into power, and they
were able to verify results for the data from Spain by using statistical tests. Going some
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way to address the aim of our chapter, [34] proposed SDE framework for modelling
the uncertainty associated with the solar irradiance point forecast. They used a train-
ing dataset to fit three different SDE models, which were subsequently evaluated on a
one-year test set. In comparison to our model, the final model they proposed is able
to describe deviations from a given forecast, but does not detail how one might develop
such a forecast over a long-time horizon. There are other examples of probabilistic fore-
casting models, such as [35], who use ensemble methods to construct a forecast in such
a way that an uncertainty interval around it is produced. Again, it is difficult to see how
such a model would be able to reconstruct a long term time series for use in scenario
analysis, something that comes almost for free in our model. Furthermore, [36] devel-
oped a new solar irradiation model and implemented it in a sun irradiance photovoltaic
cell/module simulator, which used stochastic methods to generate the hourly distribu-
tion of solar irradiation on a horizontal or inclined surface utilizing monthly irradiation
values on the horizontal surface at a selected location, and was verified using measured
irradiance data in Ljubljana. This is similar to the manner in which we propose a long-
term forecast, but our method attempts to combine the stochastic equations of [34] with
the forecasts of [36] as a regime switching or hidden Markov model (HMM). Using such
models has some popularity in solar radiation process modelling, but not so much in the
past few years. Some early attempts at constructing a switching model were carried out
by [37] and [38]. [37] applied a mixture of Dirichlet distributions to classify daily dis-
tributions of the clearness index Kt into four classes: clear sky days, intermittent clear
sky days, cloudy sky days and intermittent cloudy days according to the solar radiation
data from Guadeloupe. They also used a hidden Markov chain of classes to forecast
solar radiation. [38] calibrated an SDE model with a hidden Markov process based on
solar radiation data from Guadeloupe and La La Réunion. They performed an expecta-
tion maximization method to estimate the parameters, and used a HMM to simulate and
forecast short-term solar irradiation. More recently, [39] proposed a regime-switching
process for the depiction and prediction of solar PV power, which divided the weather
into three periods: sunny, overcast and partly cloudy. After calibrating to data, the
model is able to provide accurate short term forecasts. Most of these models work on
hourly data, but there are some recent models looking at minute by minute data. [40]
used Markov chain models to model clearness index data at the minute by minute level,
looking to accurately predict the clearness index up to 5 minutes in the future. An novel
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adaptation of the Markov chain model is the so called Mycielski-Markov model, ini-
tially used to predict wind speed (see [11] and [41]), and later applied to solar power
[12]. [12] used a novel hybrid model (Mycielski-Markov) for hourly solar radiation
forecasting using the global solar radiation data from the Afyonkarahisar and Antalya
regions. In particular this algorithm finds the longest matching sequence in the histori-
cal time series, and then randomly selects from these historical occurrences to generate
the next value in the time-series. It is this method we choose to build on in this chapter,
combining it with SDEs to deliver forecasts at any timescale.

Existing literature has developed many models for solar irradiance but most focus
on short term forecasts of the hourly, daily and monthly solar irradiance, and so it is not
clear how such models could be used to generate long-term simulated scenarios, cap-
turing the yearly seasonal, daily and hourly variations down to minute by minute scales.
For the main contribution of this chapter, we outline how several existing methods from
the literature can be combined to create a model that can simulate minute by minute
solar irradiance over any time scale. The method can broadly be explained as follows.
We first split the data into periods during each day, which can be classified into different
regimes using stochastic properties (mean, variance, jump intensity) of the 1-minute so-
lar irradiance. Next, using this historical time-series of regimes we calibrate a Markov
transition matrix and use it in combination with the Mycielski-Markov model [12] to
create a forecast of the time series of regimes over a long time horizon, which can be
used to identify the regimes needed to simulate the appropriate SDEs using MC meth-
ods. Potentially any number of scenarios can be simulated, maintaining the statistical
properties of the original data. As a further contribution, we show how this complex
model can be calibrated using real data, and how simulations can create long-term fore-
cast scenarios. We are able to verify the method using in-sample and out-of-sample
tests, to show that statistical properties are captured in the MC simulations. The dataset
includes the 1-minute daytime solar Global Horizontal Irradiance (GHI) data from Rose
Hill, Mauritius, from January 1st, 2018 to July, 31st, 2018 (see [42]). Details of the mea-
suring apparatus (and a discussion related to measuring solar radiation in general) are
described in [43], [44] and [45]. Indeed, on account of its climate and geographical lo-
cation, Mauritius is an obvious candidate for high penetration of solar generation [46].
More data driven methods have already been shown to work in other parts of the world,
for example Greece [47].
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The remainder of this chapter is organised as follows: In Section 2.2, the basic theory
of solar irradiance and stochastic processes utilised in our model are stated. Section 2.3
presents our model of solar irradiance. In Section 2.4, the data set we use is introduced.
In Section 2.5, an observed case study application is presented where the solar irradiance
model is fitted. Section 2.6 includes the simulation results and analyse the results by
statistical tests. Furthermore, Section 2.7 investigates parameter sensitivity. In Section
2.8, an case study application of future scenario simulations is given, before finally,
Section 2.9 concludes and outlines possible future work including potential applications
of the proposed model.

2.2 Theoretical foundation

In the following subsections we outline some of the theoretical techniques required
for our models. First in subsection 2.2.1 we cover how to remove seasonality in the
observed data. Next, in subsection 2.2.2, we introduce the basis of stochastic differential
processes. Then, in subsection 2.2.3, we outline a method by which missing data can be
filled in for a time-series modelled as a mean-reverting process. The method uses the
so-called Brownian Bridge, adapted to mean reverting processes. Clustering techniques
to identify hidden regimes are discussed in subsection 2.2.4, before briefly outlining
Markov Regime-Switching models in subsection 2.2.5.

2.2.1 Clearness Index

The common features of solar radiation time series are intermittency and non-stationarity,
and in general terms, there are two main modelling approaches to deal with the latter,
clearness index and clear-sky index. The first of these approaches is based on solar ge-
ometry, in which we remove the observed seasonality by means of the clearness index,
defined as the ratio of irradiance at ground level with respect to extraterrestrial irradi-
ance [48]. If additional information on atmospheric conditions is available, the second
approach of clear sky models can be used to estimate the global irradiance in clear sky
conditions [49].

We opted to use the clearness index to measure solar irradiance because it does
not require additional modelling, unlike the clear-sky index. In addition, GHI series
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have usually been studied as a function of the clearness index, which is the ratio of
GHI to top-of-atmosphere irradiance on the same plane [50]. Hence, clearness index
values generally lie between 0 and 1, so that small values close to 0 indicate a cloudy
atmosphere whereas a clear atmosphere will mean that values are close to 1. However,
measurements can reveal some peak values exceeding 1, a phenomenon known as cloud
enhancement (over-irradiance). This occurs when sunlight is reflected by surrounding
clouds and is more likely in regions with low wind speeds [51].

The formula for the clearness index Kt is shown below:

Kt =
GHI(t)

G(t)
(2.1)

where

• GHI(t) is the global horizontal irradiance (W/m2) recorded at time t;

• G(t) is the extraterrestrial irradiance on the horizontal plane, and

G(t) = I0E0 cosθ(t),

where

– I0 is the solar constant given by 1367 W/m2;

– E0 is the eccentricity correction factor;

– θ(t) is the zenith angle (in radians).

The eccentricity factor and the zenith angle obviously depend on the geographic
location of the observer and on astronomical relationships. These can be calculated
analytically using various known astronomical parameters. Calculating the eccentricity
correction factor E0 has been a popular pursuit for academics, and we choose the one
proposed by [52], the formula being

E0 = 1+0.033cos
( n

365
×2π

)
, (2.2)

where n is the day number of the year.
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The zenith angle θ(t), which is the angle of incidence on a horizontal surface, is
defined as [53]

cosθ = cosφcosδcosω+ sinφsinδ, (2.3)

where

• φ is the latitude angle (in radians), which is positive north of the Equator and
negative south of the Equator.

• δ is the solar declination angle (in radians). This denotes the angle between the
Equator and a line joining the centres of the earth and the sun. An approximate
equation for this angle is given by:

δ = 0.4092797sin
(
(n+284)

365
×2π

)
. (2.4)

• ω is the hour angle (in radians), which represents the angular displacement be-
tween the local and Greenwich meridians.

ω =

(
AST −720 minutes

4 mins

)
× 2π

360
,

where AST is the apparent solar time (in minutes).
The Earth rotates on its axis at 15◦ per hour, which means that it spends 4 minutes
to move one degree of longitude. Hence, the solar time can be calculated by

AST = LST +4(LST M−LONG)+E,

where

– LST is local standard time or clock time for that time zone;

– LONG is the local longitude;

– LST M is local longitude of standard time meridian.

LST M = 0.2618×
[

LONG
0.2618

]
,
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where [·] denotes the nearest integer.

– The equation of time in minutes, is approximated by

E = 229.2(0.000075+0.001868cosB−0.032077sinB

−0.014615cos2B−0.04089sin2B),

where B = n−1
365 ×2π.

2.2.2 Basis of Stochastic Differential Equations

As well as the recent use of SDEs in solar irradiance modelling, SDEs have been used
extensively in financial modelling [54, 55] and also in biology and physics [56]. In
general, an SDE is of the form [56, 57]

dKt = µ(Kt , t)dt +σ(Kt , t)dWt , (2.5)

where Kt is a stochastic process satisfying the above equation, µ(Kt , t) is the drift of
the SDE (deterministic term), σ(Kt , t) is the associated stochastic term describing the
diffusion of Kt and dWt is a Wiener process [55, 56]. Here, we use Kt to represent the
stochastic process for the clearness index.

If we define an associated diffusion process Zt = F(Kt , t), where Kt satisfies Eq.
(2.5) and F is a function at least once differentiable in time t and at least twice differen-
tiable in Kt , then by Itô′s lemma, Kt satisfies the following SDE [55, 56]

dZt =

(
∂F(Kt , t)

∂t
+µ(Kt , t)

∂F(Kt , t)
∂Kt

+
1
2

σ
2(Kt , t)

∂2F(Kt , t)
∂K2

t

)
dt

+σ(Kt , t)
∂F(Kt , t)

∂Kt
dW. (2.6)

A special case of an SDE is a mean-reverting stochastic O-U process, given as [55]

dKt = θ(µ−Kt)dt +σdWt , (2.7)

where θ is the speed of the mean reversion, i.e. the rate at which Kt reverts towards
the mean level µ, and σ and dWt have the same interpretation as before. If Kt is less
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(greater) than µ, then it is more likely that the value of Kt will rise (fall) towards µ. In
addition, the higher the value of θ, the less likely Kt will drift far from the mean level µ.

2.2.3 Ornstein-Uhlenbeck Bridge

A Brownian bridge is a Wiener process Kt over [0,T ] conditioned on K0 = a,KT = b.
An OU process is a simple mean-reverting stochastic process KOU

t given by the SDE

dKOU
t = θ(µ−Kt)dt +σdWt

for some standard Wiener process Wt , where µ is the mean and θ is the mean reversion
rate. An OU bridge is an OU process over a closed interval conditioned on the values at
the endpoints [58].

The steps for the construction of an OU bridge are outline by [59] and reproduced
here:

1. We need to construct a Brownian bridge Bt at first, which can be obtained by

Bt =
b−a

T
t +Wt−

WT

T
t,

where Wt is a Wiener process with variance σ2 and W0 = 0.

2. Then we set K′0 = a−µ and simulate the SDE

dK′t =−θK′t dt +
2θ(beθ(t+T )−K′t e

2θt)

e2θT − e2θt dt +dBt

3. Finally, µ+K′t is an OU bridge with variance σ2 between a and b.

2.2.4 k-Means Clustering

The k-means clustering is a frequently used method that aims to minimise the total
within-cluster sum of squares, which measures the compactness of the clustering based
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on a set of k means µ1,µ2, · · · ,µk:

min
k

∑
j=1

W (C j) = min
k

∑
j=1

∑
xi∈C j

(xi−µ j)
2 (2.8)

where

• (x1, · · · ,xn) is a set of observations, where each observation is a d-dimensional
real vector.

• µ j is the mean value of the points assigned to the cluster C j.

To identify the optimal number of clusters k, the main techniques are the elbow,
silhouette and gap statistic methods. When compared to the other techniques, the gap
statistic is the more sophisticated method as it can deal with data with no obvious clus-
tering, and we follow the method outlined by [60]. This technique compares the total
intracluster variation for different values of k with their expected values under null ref-
erence distribution of the data, and this reference dataset is generated using MC simu-
lations of the sampling process. For the observed data and the reference data, the total
intracluster variation is computed using different values of k. The gap statistic for a
given k is defined as follows:

Gapn(k) = E?
n [log(Wk)]− log(Wk), (2.9)

where E?
n denotes the expectation under a sample size n from the reference distribution,

and is defined via bootstrapping by generating B copies of the reference datasets and,
by computing the average log(W ?

k ). The gap statistic measures the deviation of the
observed Wk value from its expected value under the null hypothesis. The estimate of
the optimal clusters (k̂) will be the value that maximizes Gapn(k). The algorithm is:

1. Cluster the observed data with the different numbers of clusters from k= 1, · · · ,kmax,
and compute the corresponding Wk.

2. Generate B reference data sets and cluster each of them with varying number
of clusters k = 1, · · · ,kmax. Compute the estimated gap statistics presented in
Eq.(2.9).
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3. Let w̄= 1
B ∑b log(W ?

kb), compute the standard deviation sd(k)=
√

(1/b)∑b(log(W ?
kb)− w̄)2

and define sk = sdk×
√

1+1/B, where b = 1, · · · ,B.

4. Choose the number of clusters as the smallest k such that

Gap(k)≤ Gap(k+1)− sk+1.

2.2.5 Markov Regime Switching Model

The idea of the Markov regime switching model is to describe the different M separate
states or regimes. This is not the first one to apply Markov regime switching models to
solar energy, as [61] also used k-means clustering to identify the regimes where different
distributions can describe the data. The key difference here is that we use SDEs in
the fixed time periods (rather than statistical distributions). Regimes are modelled by
different underlying processes (Kt, j)t≥0, j=1,··· ,M, and each process evolves according to
its current state Rt :

dKt =



dKt,1 if Rt = 1,

dKt,2 if Rt = 2,

· · · · · ·

dKt,M if Rt = M.

(2.10)

The standard switching procedure between the regimes is based on the Markov chain
(Rt)t≥0, which is controlled by a transition matrix P. This includes the probabilities pi j

of changing from Regime i at time t to Regime j at time t +1:

P = (pi j) =


p11 p12 · · · p1M

p21 p22 · · · p2M
...

... . . . ...
pM1 pM2 · · · pMM

 . (2.11)

There are two groups of Markov regime switching models that are employed in
energy modelling. These models contrast in terms of the type of dependence between
the regimes. The first group comprises dependent regimes where the stochastic process
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in all regimes are of one type while only the parameters of the model change according
to the Markov chain (Rt)t≥0, e.g. [37]. On the other hand, the second group comprises
the individual regimes following independent stochastic processes. This approach was
introduced by [62] to describe econometric data which can be seen as an example of a
general class called HMMs, e.g. [63]; [64]. Such models provide more flexibility by
assigning different dynamics in each regime which is the approach we follow in this
chapter, and is discussed in the next section.

2.3 The Proposed Model

Primarily, we propose a model for Kt using a mean-reverting stochastic process with
jumps. The standard Brownian motion aims to pick up slight variations in cloud cover,
whilst the jumps describe the passing or arrival of large thick clouds. Having analysed
the data we recognise that there are periods during the day when the meteorological
conditions dominate the stochastic properties of Kt . This could be a period of clear
skies, indicating low variance and high mean, or it could be partly cloudy in which
case there will be large variance and high jump intensity as clouds pass over. Therefore
we build in regime switching into our model in which the parameters of the SDE will
change from period to the next according to some transition probability matrix.

We approach this in a purely data driven way, by dividing the day into N fixed pe-
riods and then fitting each of those periods with a mean, variance and jump intensity,
so that they can be assigned a regime (using k-means clustering) best fitting the data.
In doing so, we are able to derive the number of regimes M with distinct sets of pa-
rameters corresponding to our SDE. However, we do encounter a problem in that some
periods are clearly not mean-reverting in nature, which can cause our parameter fits to
return negative mean reversions. To avoid this (it would cause a problem when taking
expectations over a long time horizon), we change the underlying model of those SDEs
with negative mean reversion to simpler arithmetic Brownian motions in effect creating
a new regime. Therefore we double the number of possible regimes to 2M, and refit the
model; a precise description of this process is provided later.

Next we move onto present the underlying SDE for solar irradiance. Then, we give
a brief overview on the k-means clustering method used to classify periods into different
regimes, and how the regime switching model will work in detail.
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2.3.1 Stochastic Differential Equation

First consider that we divide each day into N periods. During each period, the process
of solar irradiance Kt will follow one of the SDEs given by

dKt =

θ j(µ1, j−Kt)dt +σ1, jdWt +dJt, j, if j ≤M

µ2, jdt +σ2, jdWt +dJt, j, if j > M
, (2.12)

where Wt is a Brownian Motion and

Jt, j =
Nt

∑
n=1

Yn, j

is a compound Poisson process where the jump sizes Yn, j are independent random vari-
ables. Such processes are commonly used to model financial time series, but less so
in energy related fields. [20] is one of the few studies to use a similar style of model.
To determine Yn, j, we define ν(Kt−,y) as the PDF for a jump of size y given the level
of the clearness index just before the jump Kt− . The number of jumps Nt is a Poisson
process with jump intensity λ j ∈ R+. The index j refers to the regime identity, which
will stay constant during the period. If j≤M, it indicates that this regime was identified
as having (positive) mean reversion, so that θ j > 0, µ1, j and σ1, j are constants within
a particular regime. Otherwise if j > M, we revert to the simpler arithmetic Brownian
motion case, and µ2, j and σ2, j are constants for that particular regime.

Now, when calibrating the model we found that the level of the clearness index is
highly influential on the sign of the resulting jumps, so some extra modelling must be
done. Assume that the process Kt− = y at time t−. In order to reach the new position
Kt = x, ν is defined as

ν(Kt−,y) =

P(Kt−)F+(x− y) if x > y,

(1−P(Kt−))F−(x− y), if x < y.
(2.13)

where 0 ≤ P(Kt−) ≤ 1 determines the probability of a positive jump, and F+, F− are
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standard PDFs such that ∫
Rd

F+(y)dy =
∫

Rd
F−(y)dy = 1.

Having identified all the jumps in the dataset, we use the logistic regression model
to classify this probability

log
(

P(Kt)

1−P(Kt)

)
= β0 +β1Kt , (2.14)

where β0 and β1 are constant coefficients. As [65] has shown, we can use a maximum
likelihood approach to estimate the unknown coefficients β0 and β1 in Eq. (2.14), and
the likelihood function is given by

l(β0,β1) = ∏
i:x>y

P(ki) ∏
i′:x<y

(1−P(ki′)). (2.15)

This outlines the model for a particular regime and is valid within a single time
period. However we still need to specify how we transit between different regimes at
the end of one time period and the beginning of a new one.

2.3.2 The Dynamics of the Regime Switching Process

Once our cluster regimes have been identified, we obtain a Markov chain of regime
labels for each period. Let pi j denote the probabilities of switching from Regime i at
time t to Regime j at time t + 1, for 1 ≤ i ≤ 2M,1 ≤ j ≤ 2M. Due to the Markov
property, the existing Regime Rt at time t of a Markov chain is based on the past only
through the most recent value Rt−1.

We then assume that Rbtc is a discrete Markov chain where btc is the integer part of
t. Later on, when we discuss subdividing the day into periods, we scale t according to
the formula N t−tstart

tend−tstart
where N is number of periods and tstart and tend are the beginning

and end of the day (more precisely see Eq. (2.24)). Regime switches occur at the end
of each defined period.

Further, we confine ourselves to the time-homogeneous Markov chain (Rt)t≥0. From
this we obtain the probability of switching from Regime i at time btc to Regime j at time
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bTc:

P(RbTc = j|Rbtc = i) = P(Rb(T−t)+tc = j|Rbtc = i)

= p(T−t)
i j , (2.16)

where the probability p(T−t)
i j is the i jth element of the (T − t)th power of the transition

matrix P shown as Eq. (2.11). This gives us the standard regime switching model as has
been used many times in the literature with SDEs. We present now a new way to gen-
erate the next regime in the sequence by combining the Mycielski-Markov model [12]
into a standard Markov regime switching process, so that the probability of switching
from Regime i at time t to Regime j at time t−1 is given by:

P(Rt = j|Rt−1 = i) = ρQ(Rt−1,Rt−2, · · ·)+(1−ρ)pi j, (2.17)

where ρ is a constant weight coefficient, Q(Rt−1,Rt−2, · · ·) =P(Rt |k) and k is the ending
regime of the previous longest chain

k := argmax
L

(Rk = Rt−1,R(k−1) = R(t−2), · · · ,R(k−L+1) = R(t−L)), (2.18)

and (pi j) is the i jth element of the transition matrix P shown in Eq. (2.11).

2.3.3 Performance metrics

The statistical performance of the regime switching model is analysed using the root
mean square error, normalized root mean square error, mean absolute error, maximum
absolute error and mean absolute percentage error. Among them, the root mean square
error, mean absolute error and maximum absolute error have been applied to analyse
the stochastic model for wind speed in [33].

1. Root mean square error (RMSE) measures global error between the predicted and
actual values is given as

RMSE =

(
1
N

N

∑
i=1

(Pi−Ai)
2

) 1
2

(2.19)
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where Pi and Ai are the predicted and actual values, respectively. N is the total
number of points in the dataset.

2. Normalized root mean square error (NRMSE) is often expressed as a percentage,
where lower values indicate less residual variance. The metric is defined as

NRMSE =
RMSE

Amax−Amin
×100%. (2.20)

3. Mean absolute error (MAE) refers to the average distance between the predicted
and actual values, and is given as

MAE =
1
N

N

∑
i=1
| Pi−Ai | . (2.21)

4. Maximum absolute error (MaxAE) represents the biggest prediction error. This
metric is

MaxAE = max
i
| Pi−Ai | . (2.22)

5. Mean absolute percentage error (MAPE) is used to assess uniform prediction er-
rors. The metric is expressed as

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Ai−Pi

Ai

∣∣∣∣ . (2.23)

2.4 Data

In this section, we analyse minute by minute observed data collected in Mauritius, and
demonstrate some properties of the data.

For our historical dataset, we used 1-minute solar GHI from Rose Hill which is situ-
ated at latitude 20.2230◦ South and longitude 57.4684◦ East in Mauritius, from January
1st, 2018 to July, 31st, 2018. It should be noted that from April 1st, 2018 to April 16th,
2018, the data appears erroneous, possibly due to faulty apparatus or other technical
problems, so we have ignored this period in our analysis. This GHI data is measured
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Figure 2.1: The one-minute GHI plot from Rose Hill from January 1st, 2018 to July,
31st, 2018 (excluding April 1st, 2018 - April 16th, 2018)

in W/m2 using a pyranometer at a sampling frequency of 1 minute. If there was any
instance of a data point missing, we used linear interpolation to fill in gaps, so that we
have an equidistant time series.

The full 1-minute GHI data from January 1st, 2018 to July 31st, 2018, is displayed
in Fig. 2.1. It is obvious that the peak/maximum value of the solar irradiance in the
summer time is larger than the winter time because of the seasonal effect of sunlight.
To remove the observed seasonality, we use Eq. (2.1) in Section 2.2 to calculate the
clearness index Kt from the raw GHI data. However, we observed that Kt is abnormally
high or low around sunrise and sunset, which is because the values of G(t) are partic-
ularly low. Given that solar power generation is likely to be low during these periods,
we consider the start and end time for a day tstart and tend to be when G(t) reaches 10%
of the maximum extraterrestrial radiance for that day. This means that tstart < tend must
satisfy

G(t)−0.1max
t

(G(t)) = 0. (2.24)

The values of tstart and tend can be found as the roots of this equation.
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Figure 2.2: The one-minute clearness index Kt plot from Rose Hill from January 1st,
2018 to July, 31st, 2018 (excluding April 1st, 2018 - April 16th, 2018)

Figure 2.3: The one-minute clearness index Kt plot on January 1st, 2018; The blue line
indicates the one-minute clearness index data and the red line presents the mean value
of the clearness index on January 1st, 2018
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After calculation, we can observe that most of values lie between 0 and 1. However,
due to the climate in Mauritius, summer time is wetter, while winter time is drier, which
cause more situations that the clearness index is above 1 as Fig. 2.2 shows. In this
chapter, we work on the data from January 1st to July 31st, 2018 except April 1st to
April 16th, 2018, which is erroneous as discussed.

We then move to investigate some properties of the clearness index in the daily
period. From initial investigations, we observe the clearness index is mean-reverting by
the effect of cloud as Fig. 2.3 shown. If the weather is passing cloudy, the clearness
index will steeply increase or decrease when the cloud cover the sun. However, the
value of the clearness index will not too far from the mean level, which means that the
clearness index will jump back when it keeps away from the mean level as the red line
shown in Fig. 2.3. Furthermore, we find that due to the cloud moving, sometimes the
clearness index will change a lot in one time step. As Fig. 2.3 shown, at around 10
am, the clearness index dropped from 0.7596 to 0.3400, then it went back to 0.7668 by
mean-reverting property. Besides that, the clearness index fluctuates more wildly in the
high level of clearness index, which indicates that it is more likely to become less sunny
if it is very sunny (close to 1), and vice versa. Hence, we believe that if the clearness
index larger than the mean level, it has a high probability to cause a negative jump in
the jump process.

Thanks to the properties of the clearness index data above, we apply the model (2.12)
to analyse the data. Next we move to the parameter estimation.

2.5 Parameter Estimation

In this section, we show how to estimate the parameters of the jump, mean reversion
and random walk components. Then, we use k-means clustering to assign parameters to
each regime label.

2.5.1 Jump Component

To analyse this mean-reverting jump diffusion process, we need to identify jumps from
within the data. This is a critical part of the whole methodology, and is somewhat dif-
ficult to implement. Various jump detection techniques have been proposed in different
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fields of research. One such technique is the one by [66] whereby a maximum likelihood
estimation (MLE) method is used. Statistical tests such as in [67] use the realized vari-
ance and bipower variation to isolate jumps. However, [68] argue that a good estimation
of the realized variance is obtained only when dealing with high-frequency data and not
with regular daily data. Furthermore, the authors showed that when applied to an Eu-
ropean Energy Exchange (EEX) power series, the method of [66] classifies 30% of the
data as jumps when in fact this number should have been less than 10%. Consequently,
[68] favour the use of threshold-based methods to identify jumps. Such methods have
been frequently applied to electricity price series to detect jumps, see for example [10].
[10] used the mean-reverting jump diffusion process to analyse the historical electricity
price and applied the model to generate realistic price paths by MC simulation. Since
our focus is also on a mean-reverting jump diffusion process, we explore the possibility
of using this methodology to detect jumps in the clearness index series. The outline of
the algorithm is as follows:

1. Choose a scale factor Ω and a window number w suitable for the index series Kt .
Here w corresponds to the number points within the time window.

2. Compute the moving average mw and standard deviation σw based on the window
number w. Hence, for a window including Kt−w, Kt−w+1, · · · , Kt−1,

mw =
∑

w
s=1 Kt−s

w
,

σw =
∑

w
s=1 (Kt−s−mw)

2

w
.

3. For the observation clearness index Kt , if the absolute difference between the data
point Kt and the moving average mw, which is based on the data Kt−w, Kt−w+1,

· · · , Kt−1, is greater than Ωσw, Kt is identified as a large deviation. Kt is a positive
signal if Kt > mw, otherwise, it is classified as a negative signal. Furthermore,
note that if all the data points within the window (Kt−w, Kt−w+1, · · · , Kt−1) have
already been removed, we cannot consider if there is a signal at Kt .

4. Once we have stepped though the entire dataset, the detected points are removed
from the dataset, and the filtered time series is obtained. Next, mw and σw are
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updated using the filtered series and the experiment above is repeated until all
large deviation are detected.

5. To classify the jumps, we define a further threshold Θ for the jumps. For each
large deviation detected at, say the tth observation, the distance between two clear-
ness index values is ∆ = Kt+1−Kt . Only if ∆ > Θ is the large deviation classified
as a jump.

6. After we have identified the location of jumps utilizing the algorithm above, we
noticed that some jumps would immediately follow on from another jump but
in the opposite direction. This we believe is a false positive, because actually we
have a mean-reverting process that will result in the clearness index reverting back
to the mean level. So after a jump is located, we reverse our identification of any
jumps with the opposite sign in the following τ minutes, which we believe would
naturally revert under the influence of the diffusion component in Eq. (2.12).

The first four steps above are from [10], and to obtain better results, we have added
the final two steps to further distinguish jumps from natural variations, and identify and
reverse false positives in jumps following immediately after jumps.

In the following results, we find the parameter values w = 10, Ω = 1.5, Θ = 0.1 and
τ = 5 to be an acceptable choice, which we later verify to be suitable values in Section
2.7. Once these choices are in place, we can estimate the jump frequency directly using
the number of jumps detected over the total time. This jump frequency λ is important
because we use it to distinguish between different regimes.

Next, we investigate the classification of jump signs by the logistic regression model,
which is shown as Eq. (2.14). To determine the threshold P(Kt−), we count the clearness
index values Kt− at t, which are the times when both positive and negative jumps occur
separately. Then, the estimates β̂0 and β̂1 are chosen to maximize the likelihood function
Eq. (2.15), and our estimates of these parameters are shown in Table 2.1. Furthermore,
the predicted results of jump sign are shown in Table 2.2 in which we find that the
logistic regression correctly predicts the signs of jumps 78.01% of the time.

Finally, we move to assess the distribution of the jump sizes, where we test the fit
of the PDFs of positive F+ and negative F− jump sizes separately, to normal, expo-
nential and lognormal distributions. We use all of the jumps that were filtered out of
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Table 2.1: The estimated coefficients of the logistic regression model that predicts the
probability of jump signs using the clearness index data from January 1st, 2018 to July,
31st, 2018 (excluding April 1st, 2018 - April 16th, 2018)

Coefficient Std. Error Z-statistic P-value

β̂0 4.4062 0.0889 49.54 < 2×10−16

β̂1 -7.5330 0.1441 -52.27 < 2×10−16

Table 2.2: A confusion matrix comparing the predictions of the logistic model to the
true jump sign status for the clearness index dataset from January 1st, 2018 to July,
31st, 2018 (excluding April 1st, 2018 - April 16th, 2018)

True
-1 +1 Total

Predicted
-1 4080 1082 5162
+1 1102 3668 4770

Total 5182 4750 9932

the data based on the threshold method. To illustrate which distribution best fits, we
drew histograms, cumulative distribution functions (CDFs), probabilityprobability (P-
P) and quantile-quantile (Q-Q) plots in Figs 2.4 and 2.5. It appears that the exponential
(green) and normal (red) distributions cannot capture the shape of the distribution for
either the positive jumps (Fig. 2.4) or the negative jumps (Fig. 2.5). From the graphs, it
appears that the lognormal (blue) distribution would be the best fit. The histograms and
CDFs can also prove it. Furthermore, we use statistical methods such as goodness-of-fit,
shown in Table 2.3, and the results in this table confirm our assertion that the lognormal
is the preferred distribution for both positive and negative jump sizes.

Whilst it would have been possible to fit more general distributions to the data, such
as the kernel density models and other heavy tail distributions, we felt that a simple
model for the jumps should be preferred to a more complex one in this chapter. In
Chapter 1, we present three papers I performed in my 1st-year PhD study. In Composite

lognormal distributions for cosmic voids in simulations and mocks and New models

for extramarital affairs data, we explored several heavy tail distributions and discussed
the potential applications. We can utilize these distributions especially the composite
lognormal-lognormal distribution to improve both positive and negative jump size in
the future work. From Table 2.1, we can see that there are only 9932 jumps detected in
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Table 2.3: Statistics and criteria for jump size distributions

Positive Jump Size Negative Jump Size
Normal Exponential Lognormal Normal Exponential Lognormal

Kolmogorov-Smirnov 0.1311 0.2974 0.0747 0.1078 0.2697 0.06858
Cramer-von Mises 28.5498 76.8841 8.5630 19.7975 84.9425 9.4346
Anderson-Darling 174.7657 439.6942 61.7533 127.0886 490.9461 67.5974

AIC -3721.11 -2480.74 -5442.75 -3605.35 -1499.97 -4605.54
BIC -3708.18 -2474.28 -5429.81 -3592.24 -1493.42 -4592.44

total from January 1st to July 31st, 2018 (minute-by-minute), so on average around 7%
of time periods have jumps. Hence, a simple model such as the lognormal distribution
should be able to capture the features that jumps bring to the resulting model.

2.5.2 Classifying Regimes

Given data as variable as the one we are working with that has so many features, it is
clearly difficult to identify periods of the data with similar summary statistics, as the fre-
quent jumps in the data can lead to significant differences in statistical characteristics,
especially the skewness and kurtosis. To resolve this problem, we evaluated the clear-
ness index series by its mean level, standard deviation and jump frequency, the latter
calculated as outlined in Section 2.5.1. Here we choose the number of periods each day
to be N = 16. Since there are approximately 659 minutes each day, shown in Table 2.4,
when we divide the clearness index data Kt into 16 equal time periods every day, each
of them lasts around 41 minutes. We can then calculate the mean, standard deviation
and estimate the jump frequency within each period. During the seven months, mean
values of the data in each period are between 0.0107 and 1.0788, however the ranges
of standard deviation and jump frequency are [0.0010, 0.3880] and [0, 0.3684], respec-
tively. Now k-means clustering approach predicts the regime of a test observation by
minimizing the total within-cluster sum of squares, which is shown as Eq. (2.8). Hence,
the variables which are on a large scale will have a larger effect on the distance when we
calculate the total within-cluster sum of squares. In our data, the mean has much larger
numeric values relative to the standard deviation and jump frequency. To handle this
problem, we standardize the three criteria (mean, variance and jump intensity), so that
all variables are given a mean of zero and a standard deviation of one. Then we apply
k-means clustering method on the normalised values to distinguish between periods.
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Figure 2.4: The histogram, CDF, P-P and Q-Q plots for positive jump sizes filtered by
threshold-based method for the data from January 1st, 2018 to July, 31st, 2018 (exclud-
ing April 1st, 2018 - April 16th, 2018); The red, green and blue points (lines) indicate
the fitted normal, exponential and lognormal distributions respectively
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Figure 2.5: The histogram, CDF, P-P and Q-Q plots for negative jump sizes filtered by
threshold-based method for the data from January 1st, 2018 to July, 31st, 2018 (exclud-
ing April 1st, 2018 - April 16th, 2018); The red, green and blue points (lines) indicate
the fitted normal, exponential and lognormal distributions respectively
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Table 2.4: Estimated number of minutes each day from January 1st, 2018 to July, 31st,
2018 (excluding April 1st, 2018 - April 16th, 2018)

Min Q1 Median Mean Q3 Max

607.0 614.0 639.0 659.2 706.2 738.0

Figure 2.6: The plot of gap statistic method (B=100) for the k-means clustering based
on the data from January 1st, 2018 to March 20th, 2018; The dotted line indicates that
the optimal number of clusters is 5
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To determine the appropriate number of clusters to use, we apply the gap statistic
method as in Eq. (2.9). From Fig. 2.6, we found that the gap statistic increases dramat-
ically from 0.4457 to 0.7468 with the number of clusters increasing from 1 to 3, then
it increases slightly to 0.7563 when the number of clusters is k = 4. After that, the gap
statistic value decreases a little and remains stable for k > 8. Hence, this seems to indi-
cate that the optimal choice to give an appropriate number of distinct regimes is M = 4.
Thus taking into account some of those regimes may not be mean-reverting at all, the
total number of regimes for our model (2.12) is at most 2M = 8 (as Fig. 2.7 shows).
Interestingly the number of regimes 4 we derive in a data driven way mimics the choice
of other authors such as [37] that had developed their framework in a more heuristic
manner. The model in [37] applied a mixture of Dirichlet distributions to classify daily
distributions of the clearness index into four classes according to the solar radiation data
from Guadeloupe.

Once we have identified a set of regimes, we can then create a new set of time series
that combines the data from the same regime. Only then are we able to estimate the
parameters of the SDE stated in (2.12), namely θ j,µ1, j,σ1, j,µ2, j and σ2, j for each of the
different regimes j.

2.5.3 Mean Reversion Component

Given a time series for a particular regime, we first remove all the jumps from the clear-
ness index series Kt , and we obtain an unequally spaced set of observations X̃0, · · · , X̃n

satisfying

dX̃t = θ(µ1− X̃t)dt +σ1dWt . (2.25)

According to Eq. (2.6), we can solve the SDE by f (X̃t , t) = X̃teθt ,

d f (X̃t , t) = θµ1eθtdt + eθt
σ1dWt . (2.26)

We then can obtain

X̃t = X̃t−1e−θδt +µ1(1− e−θδt)+σ1

∫ t

t−δt
e−θ(t−s)dWs. (2.27)
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Hence, the conditional distribution of X̃t given X̃t−1 is

X̃t |X̃t−1 ∼ N{X̃t−1e−θδt +µ1(1− e−θδt),
1
2

σ
2
1θ
−1(1− e−2θδt)},

and the stationary distribution is N(µ1,
1
2σ2

1θ−1). The conditional mean and variance of
X̃t given X̃t−1 are

E(X̃t |X̃t−1) = X̃t−1e−θδt +µ1(1− e−θδt), (2.28)

Var(X̃t |X̃t−1) =
1
2

σ
2
1θ
−1(1− e−2θδt). (2.29)

Therefore, the log-likelihood function of (µ1,θ,σ1) for the set of observations (X̃t),
for t = 0,1, · · · ,n is

l(µ1,θ,σ1|X̃) = −1
2

n

∑
i=1

(log(2πVar(X̃t |X̃t−1))+
(X̃t−E(X̃t |X̃t−1))

2

Var(X̃t |X̃t−1)
) (2.30)

where E(X̃t |X̃t−1) and Var(X̃t |X̃t−1) are shown in Eqs. (2.28) and (2.29).
To solve the MLEs of µ,θ and σ, the set of observations (X̃t) must have the equidis-

tant time space δt for the times t0 < t1 < · · · < tn, as shown by [69]. We use the OU
bridge to fill in gaps in the time series as described in Section 2.2.3, so that we have a
time series observed at equidistant times.

Following [70], the explicit MLEs µ̂1, θ̂ and σ̂1 are

µ̂1 =
S1S00−S0S01

S0S1−S2
0−S01 +S00

, (2.31)

θ̂ =
1
δt

log
S0−µ1

S1−µ1
, (2.32)

σ̂
2
1 =

1
nβ(1− 1

2θβ)

n

∑
i=1

(
X̃t−E(X̃t |X̃t−1)

)2
, (2.33)
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where

S0 =
1
n

n

∑
i=1

X̃t−1, S1 =
1
n

n

∑
i=1

X̃t ,

S00 =
1
n

n

∑
i=1

X̃2
t−1, S01 =

1
n

n

∑
i=1

X̃t−1X̃t ,

and β = 1
θ
(1− exp(−θδt)).

The standard errors can be computed by using the Fisher matrix, which following
[69] can be calculated as:

−E(
∂2l

∂(µ1,θ,σ1)2 |µ1,θ,σ1)

= −E




∂2l
∂µ2

1

∂2l
∂µ1∂θ

∂2l
∂µ1∂σ1

∂2l
∂θ∂µ1

∂2l
∂θ2

∂2l
∂θ∂σ1

∂2l
∂σ1∂µ1

∂2l
∂σ1∂θ

∂2l
∂σ2

1




=


nθ2β2

σ2
1(β+

1
2 θβ2)

0 0

0 e 0
0 0 2n

σ2
1

 , (2.34)

where we have assumed that the times are equidistant as indicated earlier.

2.5.4 Random Walk Component

Thanks to the mean reversion model, the reverting rate θ̂ must be positive. However,
for some periods after removing the detected jumps, the estimated reverting rate θ̂ < 0,
which means that the base component of X̃(t) is not a mean-reverting process. To
resolve this problem, we identify such special periods and label these new regimes j =

j′+M where j′ is the old regime label. This means we ascribe an SDE according to the
second case in (2.12), which is just arithmetic Brownian motion plus jumps. We then
choose the Ordinary Least Squares method (OLS) to estimate the parameters µ2 and σ2.

Hence for θ̂ < 0, after removing the jumps from the data we have unequally spaced
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observations X̃1, · · · , X̃N ,

X̃ti− X̃ti−1 = µ2(ti− ti−1)+ εti−ti−1, (2.35)

where εti−ti−1 is normally distributed with mean 0 and variance σ2
2(ti− ti−1). This is

equivalent to

X̃ti− X̃ti−1√
ti− ti−1

= µ2
√

ti− ti−1 + ε̃i, (2.36)

where ε̃i ∼ N(0,σ2
2), and so we obtain a linear regression setup of the form

ỹi = β2x(1)i + ε̃i, (2.37)

with

ỹi =
X̃ti−X̃ti−1√

ti−ti−1
, (2.38)

x(1)i =
√

ti− ti−1, (2.39)

which we can estimate by the OLS procedure. Then the estimated parameter

µ̂2 = β̂2. (2.40)

Noting that

ε̂i = ỹi− β̂2x(1)i , (2.41)

so we can estimate the variance parameter by

σ̂
2
2 =Var(êi). (2.42)

Since {X̃t} are the sequence of time series data, the residuals must not be autocorre-
lated, i.e. there is no correlation of the time series with lags of itself. We apply the Q-Q
and autocorrelation function plots to verify this is indeed the case, so we can ensure
that the residuals are normal distributed and no autocorrelation, which are satisfied the
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assumption of OLS.
Given the extra regimes that we have added into our model, we now have to divide

the clearness index data into 2M state regimes (M using the mean reversion model and
another M using the random walk model). The steps of the algorithm to determine the
state regimes are shown below:

1. Cluster the whole data into M regimes by the k-means clustering using the pro-
portion of mean, standard deviation and estimated jump frequency of each period
as before.

2. Identify periods with negative θ. Then remove these from their regimes, and move
into another additional clustering regime with label j = j′+M.

3. The final time series of the clustering state regimes is the combined data from the
previous two steps, leading to at most 2M regimes.

Once the data is classified into at most 2M regimes, we can obtain a sequence of the
regime changing process {R1,R2, · · · ,RT} as they appear throughout the day, and T is
the total number of periods of the dataset, which is equal to the number of periods each
day N multiplied by the total number of days D in the data set. As an example, with
M = 4 the optimal number of clusters in our data, Fig. 2.7 plots the sequence of regimes
over the course of several months. We obtain 8 regimes for the GHI data from January
1st to July, 31st, 2018. We see that most of periods are in the regimes 1,2,3,4 and 5,
with relatively few periods that are in Regime 6 and 7. Of the others, only 3 periods are
in Regime 8.

We calculate the parameters λ̂ j, θ̂ j, µ̂1, j, σ̂1, j, µ̂2, j and σ̂2, j in the 2M regimes, and
take the average values of each of the parameters in each regime. Next we characterise
positive and negative jumps filtered in all periods for each regime separately, and fit
the jumps in each regime using a lognormal distribution. The parameters including both
positive and negative jumps in each regime are shown in Table 2.5. This table shows that
jumps only occurred in regimes 1, 2, 3, 6, 7 and 8, and that there are only positive jumps
in Regime 7. The speed of mean reversion and volatility are quite small in Regime 1,
with values of θ̂ = 0.2002 and σ̂1 = 0.0126. As the mean µ̂1 = 0.7659 of this region
is quite large, we can suppose that this captures sunny weather conditions. The next
two regimes seem to capture unsettled weather conditions, with Regime 2 having a
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Figure 2.7: Sequence of regimes for the data from January 1st, 2018 to July, 31st, 2018
(excluding April 1st, 2018 - April 16th, 2018); 16 periods each day

mean value in the middle µ̂1 (0.5887), Regime 3 has a similar value of µ̂1 (0.5905).
Further, we can speculate that Regime 2 seems to capture more unsettled weather, with
a slightly larger jump intensity λ̂ (0.1220) and volatility σ̂1 (0.1223) than Regime 3 with
λ̂ (0.1053) and σ̂1 (0.0737). Furthermore, Regime 4 has the smallest reversion rate θ̂

(0.0870) and µ̂1 (0.2724), respectively, so this probably represents heavy cloud. Regime
5 is quite an unusual one, in that it has neither jumps nor mean reversion, so the GHI
will stay pretty much constant given the initial value at the start of the period. Both
drift and diffusion values are smaller in Regime 6 with a small drift value (µ̂2 = 0.0101)
and volatility (σ̂2 = 0.0485), while there is a larger drift (µ̂2 = 0.0203) and volatility
values (σ̂2 = 0.0682) in Regime 8. Finally, the drift (µ̂2 = 0.0027) and volatility values
(σ̂2 = 0.0058) are close to 0 in Regime 7.

2.6 Simulation Results & Discussion

Simulating the process must be undertaken in two stages, since we must generate a set
of regimes for the whole time period before simulating the diffusion/jump process in
each time period given the appropriate regime. Let us first assume that the regimes are
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Table 2.5: The estimated parameters of 7 regimes based on the clearness index data from
January 1st, 2018 to July, 31st, 2018 (excluding April 1st, 2018 - April 16th, 2018)

Regime λ θ µ1 σ1 µ2 σ2 µ+ σ+ µ− σ−

1 0.0444 0.2002 0.7659 0.0126 - - -1.8085 0.1690 -1.3299 0.3119
2 0.1220 0.2324 0.5887 0.1223 - - -1.2305 0.4650 -1.1884 0.4783
3 0.1053 0.2458 0.5905 0.0737 - - -1.5400 0.3642 -1.3732 0.4020
4 0.0000 0.0870 0.2724 0.0178 - - - - - -
5 0.0000 - - - 0.0034 0.0089 - - - -
6 0.0530 - - - 0.0101 0.0485 -1.6724 0.3288 -1.5060 0.4657
7 0.0119 - - - 0.0027 0.0058 - - -1.1233 0.0717
8 0.0909 - - - 0.0203 0.0682 -1.6087 0.4423 -1.4157 0.3983

given (as identified by our clustering classification) and we can then just focus on the
diffusion process simulation.

We use an Euler method for the clearness index series Kt in SDE (2.12). For the
regime process, we assume that j = Rbt ′c is given where t ′ = N t−tstart

tend−tstart
and bt ′c is the

integer part of t ′. Depending on the current regime, if j ≤M,

Kt+δt = Kt +θ j(µ1, j−Kt)δt +σ1, jKtδWt +δJt, j, (2.43)

and if j > M we use,

Kt+δt = Kt +µ2, jδt +σ2, jδWt +δJt, j, (2.44)

where

• δt = ti+1− ti for i = 0,1, · · · ;

• δWt ∼ N(0,δt).

We choose the time step δt = 1 (minute) and simulate the total number of time steps
according to the tstart and tend, which satisfy Eq. (2.24). For the jump process term, we
use a simple and efficient algorithm to simulate the jump times from a Poisson process,
before randomly assigning a jump size.

Now, we need to simulate the diffusion process within the nth time period which has
a fixed regime, i.e.

tstart +
n
N
(tend− tstart)≤ t < tstart +

n+1
N

(tend− tstart),
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where the regime is j = Rn. The simulation steps may therefore be outlined as:

1. To start set n = 0, t = tstart and j = R0.

2. Simulate the jump times according to a Poisson process with intensity λ̂ j, the
jump frequency in Regime j.

(a) If a jump occurs at time t, then use probability P(Kt) to randomly assign
the jump to be either positive or negative. Simulate the jump size ν using
a random draw from the lognormal distribution with different parameters
µ+,σ+ and µ−,σ− for positive and negative jumps accordingly. Set δJt, j = ν.

(b) If no jump occurs, then δJt, j = 0

(c) Update Kt+δt according to Eq. (2.43) or Eq. (2.44) given the current regime
j = Rn.

(d) Update t = t +δt and go to (a) until

t = tstart +
n+1

N
(tend− tstart).

3. Update the period n = n+1, set j = Rn to get the next regime and return to 2.

This outlines how to generate Kt if we are given a sequence of regimes for each
time period, such as a sample from the set of regimes derived through clustering which
are shown in Fig. 2.7. Furthermore, to ensure that we maintain realistic values for the
clearness index, we limit the range of Kt to between 0 and 1.5 by re-sampling dKt if it
goes out of this range, which appears sufficient given the historical values. Finally, we
transfer the clearness index Kt back to GHI(t) based on Eq. (2.1).

As before, we use the data from January 1st to July 31st, 2018, with examples of
the simulation results shown in Fig. 2.8, and the plots of regime labels corresponding to
the simulation plots shown in Fig. 2.9. In these initial simulations we take the regime
process as the historically observed regimes from the data i.e. they are not simulated.
In all of these plots, the blue lines indicate the real GHI data and the grey bands mean
the 5%− 95% quantile of 10000 simulation paths. It is clear that the simulation plots
have the similar characteristics to the real GHI series on these days, which indicates that
our regime switching process can capture variations during the day. However, because
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Table 2.6: Distributional characteristics of 1-minute simulated GHI series with the ob-
served data on January 1st, March 2nd, May 1st and July 26th, 2018

Observed Simulation
2018.01.01 2018.03.02 2018.05.01 2018.07.26 2018.01.01 2018.03.02 2018.05.03 2018.07.26

Mean 619.66 408.16 468.39 431.56 618.46 498.69 454.08 412.54
S.d 315.98 330.29 317.67 261.03 291.29 300.87 263.81 218.28

Skewness -0.1880 1.3426 0.1236 0.3920 -0.1481 0.5973 0.0932 0.0789
Kurtosis 1.8844 3.8092 1.6007 2.2850 2.2439 2.8488 2.0836 2.5683

Jump intensity - - - - 0.0589 0.0800 0.0751 0.0675
Pos jump int - - - - 0.0240 0.0409 0.0361 0.0317
Neg jump int - - - - 0.0349 0.0391 0.0391 0.0358

of the regimes clustered by the data from January 1st to July 31st, 2018, we cannot
guarantee that the specific variation of the simulated solar data is same with the real
data. Hence, we can observe that some peaks and troughs seem to be under-estimated or
over-estimated respectively (e.g. 13:00 - 14:00 on July 26th, 2018), which imply that the
variation in the real data is heavier than the simulated results during this period. We can
observe that the most of GHI data are in the 5%−95% quantile band, which indicates
that the simulation results capture the trends and variations of the real data. Since we
cluster the regimes by the data from January 1st to July 31st, 2018, the simulated model
is more general.

To test the performance of our model, we calculate basic distributional characteris-
tics for four randomly selected days. The results of those days are shown in Table 2.6.
As can be seen from this table, the mean values of simulated results are close to the
observed values especially on January 1st, 2018, and the maximum difference between
observed and simulated results appears on March 2nd, 2018 (90.53). For the standard
deviation, the simulated results are a little smaller than the observed values on these four
days. Furthermore, the differences of the skewness between the observed and simulated
results are similar on January 1st and May 1st, 2018, but on July 26th, the simulation
results are more right-skewed than the observed GHI data.

Besides that, we can apply some statistical metrics including the RMSE, NRMSE,
MAE, MaxAE and MAPE to test the simulation performance in Table 2.7. The RMSE
and MAE were calculated using Eq.s. (2.19) and (2.21) and were found to be equal to
around 240 and 170 respectively on these selected days. According to Fig. 2.1, we can
observe that the daily GHI data varied between 0 and 1200, so the RMSE and MAE
indicate that there is only a small difference between the simulation results and the real
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(a) January 1st, 2018

(b) March 2nd, 2018

(c) May 1st, 2018

(d) July 26th, 2018

Figure 2.8: The one-minute simulated GHI plots on January 1st (2.8a), March 2nd
(2.8b), May 1st (2.8c) and July 26th, 2018 (2.8d); the blue line indicates the historical
GHI series; the grey bands mean the 5%−95% quantiles of 1000 simulation paths
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(a) January 1st, 2018

(b) March 2nd, 2018

(c) May 1st, 2018

(d) July 26th, 2018

Figure 2.9: The regime changing plot are corresponding to the GHI on January 1st
(2.9a), March 2nd (2.9b), May 1st (2.9c) and July 26th, 2018 (2.9d)
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Table 2.7: The statistical metrics including the root mean square error, normalized root
mean square error, mean absolute error , maximum absolute error and mean absolute
percentage error between simulated and actual GHI on January 1st, March 2nd, May
1st and July 26th, 2018

2018.01.01 2018.03.02 2018.05.01 2018.07.26
RMSE 201.67 342.48 243.58 229.67

NRMSE 63.82% 103.69% 76.68% 87.99%
MAE 148.72 247.34 173.99 166.58

MaxAE 862.96 1234.81 902.90 837.45
MAPE 0.2690 0.9129 0.6700 0.4331

GHI data. However, the MaxAE value on March 2nd, 2018 is equal to 1234.81 W/m2

revealing that the largest absolute error between the estimated and the observed results
is quite significant. According to Fig. 2.8b, we can see that the GHI series fluctuated
heavily from around 10:30 to 11:30. Furthermore, these periods are in Regime 2, which
means that the jump frequency is 0.1220 and the reverting rate is 0.2324, resulting in
the large differences in one single time step. Hence, the MaxAE value is large. Fur-
thermore, because of the regimes clustered by the data from January 1st to July 31st,
2018, we cannot guarantee that the specific variation of the simulated solar data is same
with the real data, so the NRMSE and MAPE indicate discrepancies between the real
and simulated data. To resolve this problem, we need more data set to fit in the simula-
tion model, and we can also reduce the residuals and discrepancies through increasing
regime numbers, but it may cause more difficulty and estimated errors in the forecasting
process of the future scenarios of solar irradiance.

To further verify the simulation results, we compare the PDF of our simulation ver-
sus the real data. The histogram plots corresponding to the simulation plots (Fig. 2.8)
are shown in Fig. 2.10. We can observe that the observed data for the other three days
are right-skewed (the exception being January 1st, 2018). Furthermore, the histogram
of the GHI data on May 1st, 2018 show two peaks, which are around 80 W/m2 and
900 W/m2 respectively. The blue lines in the plots show the kernel density function of
the real GHI data, and the dashed red lines denote the simulation results. In Fig.2.10b,
we can find that the observed PDF is higher when the GHI is around 250 W/m2 while
lower when GHI> 500 W/m2 compared with the simulated PDF, which can confirm
the smaller mean value of observed data in Table. 2.6. Furthermore, in Fig. 2.10c,
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(a) January 1st, 2018 (b) March 2nd, 2018

(c) May 1st, 2018 (d) July 26th, 2018

Figure 2.10: The histogram plot are corresponding to the GHI on January 1st (2.10a),
February 3rd (2.10b), March 8th (2.10c) and July 26th, 2018 (2.10d); the solid blue line
expresses the observed PDF estimated by Kernel density function and the simulated
PDF is shown in the dashed red line

both observed and simulated PDFs have two peaks, however, the larger simulated PDF
peak is around 500 W/m2 while the observed value is around 900 W/m2. That can that
the mean and skewness values of observed data are slightly larger than the simulation
results on May 1st, 2018 in Table 2.6. Fig.2.10d shows a similar multimodal distribu-
tion with May 1st, 2018, however, the two modes are around 80 W/m2 and 380 W/m2.
Compared with the simulated PDF, we can confirm the larger mean value and skewness
of simulated data in Table. 2.6.

Although the results are not too encouraging if our aim was to forecast, this analysis
can show the model is fitted adequately to simulate scenarios for a single or several
days with a known or deterministic regime switching process. Now as Fig. 2.7 shows,
we have sufficient observations of regime switches to estimate the transition matrix
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Figure 2.11: The one-minute simulated GHI plots from January 1st to July 31st, 2018
(excluding April 1st, 2018 - April 16th, 2018); the blue line indicates the historical GHI
series; the red lines express the simulation GHI series

Eq. (2.11). This together with the Mycielski method and Eq. (2.12) can then be used
to simulate the solar irradiance and generate future scenarios with a random regime
switching process. Due to the data limitation, we have to clarify that all the simulation
and forecasting results are using the same dataset from January 1st to July 31st, 2018.
Although the model has only been verified at a single location in Mauritius, because of
clearness index, which already eliminate many of the effects of location and season, we
could apply the model in any location if the prevailing weather patterns were similar.

Next, we give examples of in-sample simulations. As before, we use the data from
January 1st to July 31st, 2018 to calibrate the parameters in each regime and calculate
the Markov transition matrix. We are able to use this method to generate a random
simulation of regimes, and then following the method described at the beginning of the
section, to simulate the GHI data. We generate 1000 simulated GHI series based on the
7-month solar irradiance dataset from January 1st to July 31st, 2018 because multiple
simulated dataset can help to reduce discrepancies between real and simulated results.
An example of our simulation is shown in Fig. 2.11, and we compare the simulation
with the observed GHI series. The pattern of results seems encouraging, as in Fig.



CHAPTER 2. STOCHASTIC MODEL FOR SOLAR IRRADIANCE 67

Figure 2.12: The histogram plot are corresponding to the GHI from January 1st to July
31st, 2018 (excluding April 1st, 2018 - April 16th, 2018); the solid blue line expresses
the observed PDF estimated by Kernel density function and the simulated PDF is shown
in the dashed red line; The number of periods is 16

2.11, we observe a strong correlation between the models. This indicates that our SDE
is capturing the trends in the underlying data and generating realistic scenarios. The
histogram plot in Fig. 2.12 shows the simulation results of the data. Compared with the
kernel density function, we see the simulation results are not significantly different for
high and low levels of GHI, but when 450 < GHI < 750 (W/m2), the simulation density
is higher than the observed values, and lower when GHI is larger than 1000 W/m2 and
smaller than 250 W/m2. However, the total solar irradiance of simulation results is just
3.4982% larger than what we observed in the real data during this time period.

In the next section, to get a better idea of the performance of the model, we show re-
sults that test and compare the results obtained by different combinations of parameters
used in the model.
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2.7 Parameter Sensitivity Analysis

In this section, we test and optimize the parameters of the threshold-based method used
to identify jumps, and the number of time periods N at which regime switches can
occur. To examine the results, we simulate the GHI series based on the data under
consideration, and then perform statistical analysis of PDFs and some statistical metrics
as described in Section 2.3.3 to compare with the observed GHI data.

2.7.1 Jump Filter

In Section 2.5.1, we introduced the threshold-based method to filter the jumps from the
clearness index series, for which there are four arbitrary parameters Ω, w, Θ and τ. To
carefully choose these parameters, we investigate different pairs of parameter values,
and observe the statistical characteristics and metrics to evaluate the results. As the
parameters change, the optimal number of regimes may change as well. We perform
the gap statistic method Eq. (2.9) to optimize the number of regimes (M) for each pair
of parameters, and the values found are shown in Table. 2.8. This table shows that
as Ω (the scale factor on standard deviation to initially identify a jump) increases, the
jump intensity decreases from 5.04% to 1.59%. Furthermore, when we decrease the
distance threshold Θ from 0.2 to 0.05, the jump frequency increases from 3.38% to
7.75%, but the jump frequency is insensitive to the window number w. Now when we
decrease the following minutes τ from 5 to 3, the jump frequency remains unchanged.
However, when we increase τ to 7, the jump frequency decreases to 4.79%. We then
perform error tests to analyse these combinations above, but the results of the tests are
not significantly different, suggesting that our calibration process is robust. Now, since
a choice needs to be made, the values of RMSE, NRMSE, MAE and MAPE suggest that
the best combination of parameters is w = 10, τ = 5, Θ = 0.1, Ω = 1.5. So to capture
maximum effect with the minimise the number of regimes, we choose these parameters
in the jump filtering process.
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Table 2.8: The statistical metrics for the simulation period GHI series compared with
the observed GHI data from January 1st to July 31st, 2018 (excluding April 1st, 2018 -
April 16th, 2018)

Empirical

Ω = 1.5
w = 10
τ = 5

Θ = 0.1

w = 10
τ = 5

Θ = 0.1

Ω = 1.5
w = 10
τ = 5

Ω = 1.5
τ = 5

Θ = 0.1

Ω = 1.5
w = 10
Θ = 0.1

Ω = 3.5 Ω = 5.5 Θ = 0.05 Θ = 0.2 w = 15 w = 25 τ = 3 τ = 7

Regime numbers - 8 6 11 14 8 8 8 8 8
Mean 415.30 429.75 437.10 435.45 430.41 432.96 429.85 429.69 430.29 430.03
S.d 304.86 267.05 269.36 275.99 275.08 270.54 267.44 268.19 267.44 266.58

Skewness 0.7503 0.4979 0.4494 0.4492 0.5400 0.5132 0.5041 0.5167 0.5071 0.4940
Kurtosis 2.8048 2.7088 2.5408 2.4637 2.8044 2.6982 2.7363 2.7687 2.7462 2.7103

Jump intensity - 0.0504 0.0301 0.0159 0.0775 0.0338 0.0520 0.0521 0.0522 0.0479
RMSE - 225.34 220.53 215.33 223.16 226.90 226.44 227.4 226.81 225.07

NRMSE - 73.92% 72.36% 70.62% 73.2% 74.44% 74.26% 74.65% 74.40% 73.82%
MAE - 154.37 150.32 140.63 149.61 154.33 155.32 155.69 154.77 154.42

MaxAE - 1562.07 1396.90 1470.92 1750.41 1533.90 1604.09 1548.47 1670.80 1569.64
MAPE - 0.7265 0.7366 0.6210 0.6788 0.7366 0.7260 0.7298 0.7275 0.7286

2.7.2 Period Number N

An important choice to make when calibrating the model is how to split each day into N

fixed time periods, during which the regimes remain constant. Here we investigate how
changing N affects the calibration process and the resulting simulations. We follow
the same method to calibrate the models as before, but now we vary the parameter
N =4, 8, 12, 16, 20 and 24. We then simulate 100 paths each day, and compare the
simulation results with the observed data. For other parameters in the jump filtering
process, we choose w = 10,τ = 5,Θ = 0.1 and Ω = 1.5, which appears to be the best
combination. For the k-means clustering stage, when choosing N =4, 8, 12, 16, 20 and
24, we obtained 12, 10, 8, 8, 8 and 14 regimes, respectively based on the gap statistic
method.

From Table 2.9, we can see that the RMSE, NRMSE, MAE and MAPE values are
smaller than other choices when choosing N = 24, but the number of regimes is 14,
which is larger than any other choices. To obtain robust simulation results, we believe
that choosing to minimize the number of regimes provides the best strategy. Further-
more, when choosing N = 16 periods, all the error tests show that it is superior to N =4,
8, 12. The RMSE and MAE values of N =16 are smaller than other three pairs, and al-
though all 4 pairs have similar NRMSE values, the N =16 simulation performs slightly
better on this metric. We can observe the MaxAE value of N =16 is 1548.47 W/m2,
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Table 2.9: The error tests for different values of period number for the clearness index
data from January 1st to July 31st, 2018 (excluding April 1st - April 16th, 2018)

Period
4 8 12 16 20 24

Total Regime 12 10 8 8 8 14
RMSE 250.28 245.59 238.93 227.46 215.78 200.10

NRMSE 82.10% 80.60% 78.40% 74.65% 70.80% 65.65%
MAE 176.11 167.42 163.09 155.69 146.48 128.22

MaxAE 1678.30 1626.48 1628.50 1548.47 1420.11 1495.96
MAPE 0.8451 0.8212 0.7961 0.7298 0.7267 0.5474

which is around 80 W/m2 smaller than the second case (N =8). In addition, there is
no significant difference between N =16 and N =20. Hence, we conclude that the best
choice for number of periods is to set N =16 each day.

From the tests above, we find the parameters in both jump filter and period numbers
are less sensitive, which implies usefully that this model is quite robust when it comes
to fitting parameters. We choose the best combination of parameters (w= 10,τ= 5,Θ=

0.1,Ω = 1.5 and N = 16), which was our choice of the parameters in Section 2.5.

2.8 Future Scenario Simulation

After modelling the clearness index by clustering, we then go on to simulate the clus-
tering regimes for the future data. Because we want to provide an accurate valuation
of solar investments and the value of electricity contracts which can be bought or sold
by solar power operators. Hence, it is significant to simulate any scenario based on the
historical data in the future.

Compared with simulation results including in-sample tests in Section 2.6, it is hard
to simulate and forecast future scenarios of solar irradiance because we cannot know
the regime switching process behind our model. To resolve it, we can simulate the
solar irradiance to generate future scenarios using MC methods according to the regime
changing process as Fig. 2.7 shows. We claim a dynamics of the regime switching
process in Section 2.3.2, which is a forecast method combined the Mycielski method
with a Markov transition matrix. We applied this method to generate future scenarios
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based on the historical data.
For the next regime Rn+1, the regime simulation steps may therefore be outlined as:

1. Search and find the longest repeating sequence of regime switching process {R1,R2, · · · ,Rn},
and obtain the probability matrix of the next regime Q(Rn,Rn−1, · · ·) as Eq. (2.18)
shows.

2. Combine Q(Rn−1,Rn−2, · · ·) with the Markov transition matrix P as Eq. (2.17)
shows.

3. Simulate the next regime Rn+1 from the total probability matrix according to Rn.

4. According to the regime Rn+1, simulate the clearness index Kt and GHI(t) as
Section 2.6 shows.

5. Update the Markov transition matrix P and the sequence of regime switching
process, n = n+1, and return to 1.

In Eqs. (2.17) and (2.18), we proposed a novel method to generate the regime chang-
ing process through the Mycielski-Markov model and the standard Markov regime
switching process. Due to the properties of solar irradiance (i.e. seasonal and daily
cycle), the solar data has the high correlation with the historical data. Hence, the
Mycielski-Markov model can reduce the randomness of the Markov regime switching
process and increase the correlation with the historical data. We tested ρ using differ-
ent values, and we found there is no significant difference between these results, which
means that the hybrid method is robust to ρ. In this chapter, we fixed ρ constant as 0.5,
and we leave the optimization of ρ in the future work.

We then present two examples of out-of-sample simulations. Firstly, we choose the
GHI data from January 1st to January 31st, 2018 for the training set to calibrate regimes
switching probabilities and parameters, and then simulate the 1-minute GHI series from
February 1st to February 28th, 2018. We generate 50 paths, and one of the simulation
and histogram plots are shown in Figs. 2.13 and 2.14 respectively. As compared with
the observed data, the average value of the 50 simulated GHI paths is different for some
days, however, the histogram plot shows that the total simulation GHI in February is
similar with the observed data, and the mean (401.96 against 430.82), standard deviation
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Figure 2.13: The one-minute simulated GHI plots from February 1st to February 28th,
2018; the blue line indicates the historical GHI series; the red lines express the simula-
tion GHI series

(277.37 against 346.00), skewness (0.9534 against 0.8931) and kurtosis (3.23 against
2.79). Furthermore, the total simulation GHI is 7% larger than the historical GHI.

Secondly, we test the simulation performance in a long-term out-of-sample simu-
lations. We choose the GHI data from January 1st to June 30th, 2018 for the training
set to calibrate regimes switching probabilities and parameters, and then simulate the
1-minute GHI series from July 1st to July 31st, 2018. We also generate 50 paths, and
one of the simulation and histogram plots are shown in Figs. 2.15 and 2.16 respectively.
As compared with the observed data, the average value of the 50 simulated GHI paths
is different for some days, however, the histogram plot shows that the total simulation
GHI in July is similar with the observed data, and the mean (401.25 against 368.64),
standard deviation (259.01 against 223.70), skewness (0.3050 against 0.3271) and kur-
tosis (1.9956 against 2.1018). Furthermore, the total simulation GHI is 8% smaller than
the historical GHI.

We have therefore verified that the model presented here in this chapter can simulate
any number (infinitely many in fact) of scenarios resulting in a minute by minute time
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Figure 2.14: The histogram plot are corresponding to the GHI from February 1st to
February 28th, 2018; the solid blue line expresses the PDF estimated by Kernel density
function and the simulated PDF is shown in the dashed red line

Figure 2.15: The one-minute simulated GHI plots from July 1st to July 31st, 2018; the
blue line indicates the historical GHI series; the red lines express the simulation GHI
series
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Figure 2.16: The histogram plot are corresponding to the GHI from July 1st to July 31st,
2018; the solid blue line expresses the PDF estimated by Kernel density function and
the simulated PDF is shown in the dashed red line

series of solar irradiance. Clearly this is beneficial to other fields, especially energy eco-
nomics where the simulated outputs from future electricity grids is required for future
planning. Although the model has only been verified at a single location in Mauritius,
because the simulation use clearness index rather than GHI data, which already elimi-
nate many of the effects of location and season, in theory we could simulate GHI in any
location if the prevailing weather patterns (cloud cover etc) were similar. Also, as we
estimate the parameters in our model by MLE and OLS, compared with machine learn-
ing, our results cannot be said to be more accurate, but they do need much less input
data (and also computation time) to train the parameters. As our model fits only use a
small data set to estimate the parameters, this could be very important when gathering
such data in new locations could be time consuming and very costly.
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2.9 Summary

In this chapter, we have developed a Markov regime switching model for one-minute
solar irradiance data using stochastic differential equations, and have used k-means clus-
tering to obtain the parameters for different regimes. We then calibrated the model
against Mauritian historical solar irradiance data, finding that the best number of peri-
ods to split the day into was N = 16, and the resulting number of regimes was 8. Even
though we used a data driven approach, those 8 regimes reduce down to mirror four
typical weather conditions, with the dominant regimes being sunny (Regimes 1), sunny
intervals/light cloud (Regimes 2 and 3) and heavy cloud (Regime 4). The final common
regime 5, can be interpreted as a persistent or settled regime, in which the irradiance at
the beginning of the period does not change much. The other regimes 6-8 were only
seen infrequently in the data, and therefore do not have much effect on the results.

Furthermore, we verified that a threshold-based method can filter jumps from the
solar irradiance data, and we applied it to analyse the jump frequency and size distri-
butions. We found log-normally distributed jumps provide the best fit to the data, and
our simulation studies showed that the characteristic features of the observed data are
well captured by the model. When carrying out an in-sample test for Global Horizontal
Irradiance data in the time period January 1st to July 31, 2018, the total solar irradi-
ance is on average just 3.4982% larger than the observed during these seven months.
In addition, we also demonstrated how to simulate Global Horizontal Irradiance data
for any future scenarios based on the historical data, and the results indicate that the
model can simulate realistic future scenarios capturing the statistical properties of the
data. When verifying the calibration techniques, we observed that the effect of changing
parameters only changed the results simulation distribution by less than 5% across any
of the benchmarks. As a result we can see that the methodology is quite insensitive to
choices made when filtering out jumps or setting the number of periods, indicating that
this is a robust process. Although this chapter has focused (necessarily) on one (large)
dataset from Mauritius, the application of the proposed methodology is of course wide,
particularly given the global prevalence of solar energy production.

The model we present in this chapter has the potential to become an important tool
for analysis in several fields. The model can be directly applied in energy economics to
model electricity markets driven by solar energy (in the spirit of [71] for wind energy).
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For example, we can generate solar power outputs that could be combined at a grid level
to predict peak output and the variance in production. This ability to take an observed
set of data (given that it is sufficiently large), and then generate randomised sets of fu-
ture scenarios should be important to any risk analysis or financial investment planning
around energy grids anywhere in the world. Variations on the underlying model could
easily be applied to other types of data with similar features, for example electricity
spot price, to accurately forecast quantities such as the volatility or the probability of
price spikes. Such forecasts can be useful for risk management purposes, option pricing
and for other applications. Finally, in this chapter we have focused on solar irradiance,
rather than any prediction for solar power (although the former is obviously a very major
factor in determining the latter); the performance of photovoltaic systems has itself been
the subject of much interest (see [46]), and therefore in the aforementioned comments
regarding electricity markets, this will of necessity, have to be a component of further
modelling.

More details of Coding are shown in Appendix A.



Chapter 3

Fokker-Planck Equation for
Generalized Ornstein-Uhlenbeck
process

3.1 Introduction

In last chapter, we proposed a regime switching model for solar irradiance, and we
showed how to apply the novel method, which combines the Mycielski-Markov method
and the standard Markov regime switching process, to simulate and forecast future sce-
narios based on the historical data. We then used Monte Carlo simulation methods to
estimate the PDF of the regime switching model for solar irradiance such as Fig. 2.10.
To obtain the PDF more accurately especially in the future, we introduce the F-P equa-
tion in our model.

The F-P equation is a well-known model in natural science, and it can be applied to
describe the time evolution of a PDF of a stochastic process without jumps [15]. There
are two classes of methods to solve the numerical solutions of F-P equations, finite
difference methods and MC simulations [72]. [72] summarized and compared six finite
difference methods through the stability, accuracy, efficiency and robustness, and they
believed the fully implicit Chang-Cooper method is most robust. The Chang-Cooper
method is a kind of numerical finite difference method, which is proposed by [14]. It
changes the normal difference scheme to guarantee a second order accurate of ∆x and

77
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non-negative spectra. Furthermore, [15] proved and verified the stability, accuracy and
conservation of the Chang-Cooper scheme in first and second-dimensional cases, and it
had been developed to solve a jump-diffusion process [73].

There are two stochastic processes in the regime switching model with jumps, we
simplify and only discuss the mean reversion process without jumps in this chapter. We
extend and assume that we have an SDE of a generalized OU process

dx = κ(θ− x)dt +σxγdW, (3.1)

where 0≤ γ≤ 1.
This kind of the SDE is normally applied in financial application especially to de-

scribe general short-term interest rate models such as Merton, Vasicek and CIR model.
[74] used CKLS model to represent this general type of OU processes, and they esti-
mated the parameters by the generalized method of moments of Hansen.

In this chapter, to explore the PDF of SDE (3.1), we derive the F-P equation of this
generalized OU process, but it causes a singular problem at x→ 0 when γ < 0.5. Hence,
we propose a finite difference method to solve the singular problem, and we improve the
Chang-Cooper scheme to fit in this condition. Furthermore, we compare the stability,
accuracy, efficiency and robustness of these models through statistical methods.

In this chapter, we use x instead of K to represent stochastic processes in last chapter.

3.2 Mathematical Formulation

3.2.1 F-P Equation

When modelling the energy field with an SDE, the F-P equation is a candidate for gen-
erating the PDF at any given time [13]. The F-P equation has been used in wind ap-
plications to derive stochastic dynamic models for representing the state variables of a
wind turbine [75]. [34] proposed an SDE framework for forecasting the solar irradiance
compared with the F-P equation.

In contrast to the simulation of SDEs based on MC techniques [76], we examine the
stochastic problem by considering its PDF u(xt , t). The PDF characterizes the statistics
of x over its entire space-time range and its time evolution is modelled by the F-P or
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forward Kolmogorov equation [55], which plays a fundamental role in many problems
involving random quantities. This equation has been first applied to problems with
randomness given by Brownian motion, i.e. not containing jumps; in this case, this
equation is governed by a partial differential equation (PDE) of parabolic type as follows

∂u
∂t

=−∂(µ(xt , t)u)
∂x

+
∂2(D(xt , t)u)

∂x2 . (3.2)

The derivation of the F-P equation for the generalized form SDE (2.5) can be found
in [55]. For this general PDE, D(xt , t) = 1

2σ2(xt , t) and µ(xt , t) remains as SDE (2.5)
defined.

In general, it is difficult to find solutions of F-P equations analytically, but there
exist reliable numerical schemes for this purpose [77, 78]. The derivation of the F-
P equation, some methods of solution and its application to diffusion models can be
found in [79, 80]. In this chapter, we will introduce and show the two main classes of
numerical methods, finite difference and MC methods to solve the F-P equation of the
generalized OU process (3.1).

Furthermore, F-P equations obey a energy conservation law at any time [14]. Hence,
we need to check the conservation property of F-P equation at time t by

E =
∫

∞

−∞

u(x, t)dx = 1. (3.3)

3.2.2 Finite Difference Method

Finite difference methods are one of the most popular approaches to attaining numerical
solutions to PDEs in modern mathematics, especially financial mathematics [81]. In
finite difference methods, we need to construct a enough grid for the domain of the
problem at first, which can allow for most possible movements in both x and t. If we
consider a simple problem where we have one variable in space x∈ [0,xmax] and another
variable in time t ∈ [0,T ], then we can divide the domain of space and time into (M+1)
and (N +1) equally spaced points, respectively. We denote ∆x as the step size in space,
∆t as the step size in time, x j as the node jth in the space grid and t i as the ith node in
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the time grid. Hence, we can write

∆x =
xmax

M
, x j = j∆x, (3.4)

∆t =
T
N
, t i = i∆t. (3.5)

If we denote the value function of the problem as u(x, t), then the approximated value
function can be denoted by

u(x j, t i) = ui
j.

There are a number of different finite difference methods that can be used each with
their own properties including the explicit, implicit and Crank-Nicolson method. We
use the F-P equation Eq. (3.2) as an example PDE. To simplify the problem, we set

µ(xt , t) = 1, D(xt , t) = 1.

And the F-P equation is as follow:

∂u
∂t

=−∂u
∂x

+
∂2u
∂x2 (3.6)

Explicit Method

In the explicit finite difference method, the space derivatives are approximated using
central differences whilst the time derivative is approximated using a forward difference.
Hence, we can solve the approximations for the small differences for the value function
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u(Xt , t) in X and t by a Taylor series. The approximations are given by:

∂u
∂t

(x, t i) =
u(x j, t i +∆t)−u(x j, t i)

∆t
+O(∆t) (3.7)

≈
ui+1

j −ui
j

∆t
∂u
∂x

(x, t i) =
u(x j +∆x, t i)−u(x j−∆x, t i)

2∆x
+O((∆x)2) (3.8)

≈
ui

j+1−ui
j−1

2∆x
∂u
∂x2 (x, t

i) =
u(x j +∆x, t i)−2u(x j, t i)+u(x j−∆x, t i)

(∆x)2 +O((∆x)2) (3.9)

≈
ui

j+1−2ui
j +ui

j−1

(∆x)2

We then replace the partial derivatives in the F-P equation (3.6) using Eq. (3.7), (3.8)
and (3.9), and we can rewrite the equation by

ui+1
j −ui

j

∆t
=−

ui
j+1−ui

j−1

2∆x
+

ui
j+1−2ui

j +ui
j−1

(∆x)2 (3.10)

The Eq. (3.10) can be arranged to solve ui+1
j by the three known values ui

j−1, ui
j and

ui
j+1 at time step t = i, and we can find out all the values ui+1 at the time step t = i+1

by this equation.
From Eq. (3.7), (3.8) and (3.9), we can find that this method is accurate with a

convergence rate of first order in ∆t and second order in ∆x. However, if the rounding
errors are magnified at each iteration, the system (3.10) will lead to a stability problem.
Hence, in order to give stable solutions, ∆t and ∆X chosen need to satisfy [82]

0 <
∆t

(∆x)2 ≤
1
2
.

Implicit Method

In the implicit finite difference method, the space derivatives are approximated using
central differences as the implicit method. However, for the time derivative, we ap-
proximate it using a backward difference instead of forward difference in the implicit
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method. Hence, the derivative approximations are calculated at the time step t = i+1.
The approximations are given by:

∂u
∂t

(x, t i+1) =
ui+1

j −ui
j

∆t
+O(∆t) (3.11)

∂u
∂x

(x, t i+1) =
ui+1

j+1−ui+1
j−1

2∆x
+O((∆x)2) (3.12)

∂u
∂x2 (x, t

i+1) =
ui+1

j+1−2ui+1
j +ui+1

j−1

(∆x)2 +O((∆x)2) (3.13)

Then, the F-P equation (3.6) can be approximated by

ui+1
j −ui

j

∆t
=−

ui+1
j+1−ui+1

i−1

2∆x
+

ui+1
j+1−2ui+1

j +ui+1
j−1

(∆x)2 (3.14)

In Eq. (3.14), there are three unknown values ui
j−1, ui

j and ui
j+1 at the time step j and

only one know value ui+1
j at the time step j+ 1. Hence, the implicit method requires

the solution of systems of equations. We can apply LU decomposition method to solve
the systems, which we will introduce in subsection 3.2.3 later. Due to the system solver,
the implicit method requires more calculation time than the explicit method, especially
when the number of time steps is larger. However, the explicit finite difference scheme
is unconditionally stable, which means that there is no restriction on ∆x and ∆t.

Crank-Nicolson Method

For both explicit and implicit schemes, they can only obtain first order accurate in ∆t.
The Crank-Nicolson finite difference method is used to improve the convergence in ∆t

to second order accurate [83]. The Crank-Nicolson method takes the average of both
explicit and implicit schemes to approximate the derivatives at the time step t = i+1/2.
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Hence, the approximations are given by

∂u
∂t

(x, t i+1/2) =
ui+1

j −ui
j

∆t
+O((∆t)2)

∂u
∂x

(x, t i+1/2) =
1
2

(
ui

j+1−ui
j−1

2∆x
+

ui+1
j+1−ui+1

j−1

2∆x

)
+O((∆x)2)

∂u
∂x2 (x, t

i+1/2) =
1
2

(
ui

j+1−2ui
j +ui

j−1

(∆x)2 +
ui+1

j+1−2ui+1
j +ui+1

j−1

(∆x)2

)
+O((∆x)2)

In the Crank-Nicolson scheme, there are three known values and three unknown values,
so we require to solve this system by some system solvers as LU decomposition and
Successive Over-Relaxation (SOR) or Thomas algorithm, which need to take more cal-
culation time. However, this method is more accurate than the other two methods due
to the convergence rate of ∆t.

3.2.3 LU Decomposition

LU decomposition is an useful method to solve the system of linear equations. Suppose
we have the system of equation

AX = B. (3.15)

Because the triangular system of equations is easier to be solved, the aim of the LU
decomposition method is to find a product of a lower triangular matrix and an upper
triangular matrix for matrix A, which is as

A = LU. (3.16)

Then we substitute Eq. (3.16) into Eq. (3.15), we can obtain

LUX = B. (3.17)

After that, we let Y =UX , and we can solve the triangular system of Y by

LY = B. (3.18)
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Finally, we solve the triangular system UX = Y for X .

3.2.4 The Trapezium Rule

The trapezium rule is a useful integration rule. Under this rule, the area under a curve is
evaluated by dividing the total area into N little trapezoids rather than rectangles. Hence,
let f (x) be continuous on [a,b], and we can evaluate the integral using trapezium rule
for non-uniform grids which is as follow

∫ b

a
f (x)dx≈ 1

2

N

∑
k=1

(xk+1− xk)( f (xk+1)− f (xk)). (3.19)

If the grid is equal-spaced, we can simplify Eq. (3.19) as

∫ b

a
f (x)dx≈ 1

2
∆x f (x1)+∆x f (x2)+∆x f (x3)+ · · ·+∆x f (xN)+

1
2

∆x f (xN +1) (3.20)

3.2.5 Lagrange Interpolation

Given k+1 pairwise data points (x0,y0),(x1,y1), · · · ,(xn,yn), we can estimate y∗ given
by x∗ using the Lagrange interpolation technology, which is

y∗ =
n

∑
k=0

yklk(x∗),

where
lk(x) = ∏

0≤ k ≤ n

k 6= j

x− xk

x j− xk
.

3.3 Model

Since we have an SDE (3.1), we wish to find the PDF function u(xT ,T |xt , t), which is
the probability density of being at xT at time T given xt at time t. It can be shown that f
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satisfies the F-P equation

∂u
∂t

+
∂

∂x

{
κ(θ− x)u

}
− ∂2

∂x2

{1
2

σ
2x2γu

}
= 0 (3.21)

with initial condition
u(x, t = 0) = δ(x− x0) (3.22)

at time t = 0.
Note that the PDE can be rewritten as

∂u
∂t

+
∂

∂x

{
κ(θ− x)u− 1

2
σ

2 ∂

∂x

{
x2γu

}}
= 0, (3.23)

and further simplified to

∂u
∂t

+
(
κ(θ− x)−σ

22γx2γ−1) ∂u
∂x
− 1

2
σ

2x2γ ∂2u
∂x2 −

(
κ+

1
2

σ
22γ(2γ−1)x2γ−2

)
u = 0.

(3.24)
We then utilize Crank-Nicolson method to solve PDE (3.23), and the discretisation

scheme will show in the next section.

3.4 Discretization Scheme

We organize the PDE (3.23), and we obtain

∂u
∂t

=
∂F
∂x

, (3.25)

where the flux
F =−κ(θ− x)u+

1
2

σ
2 ∂

∂x
{x2γu}. (3.26)

Assume x ∈ [xmin,xmax], where 0≤ xmin < xmax.
In this section, we discuss the discretisation scheme in different regimes (γ≥ 1

2 and
γ < 1

2 ) in subsections 3.4.1 and 3.4.2, respectively. After that, we describe and solve the
initial value problem of the discretisation scheme in subsection 3.4.3.
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3.4.1 γ≥ 1
2

When γ≥ 1
2 , we can solve SDE (3.23) by Crank-Nicolson method directly.

Assume that the grid mesh is equally space in x and t, so that

∆t = T
n , t i = i∆t, i = 0,1, · · · ,n;

∆x = xmax−xmin
m x j = xmin + j∆x, j = 0,1, · · · ,m.

Then, we can discretise PDE (3.25) by

ui+1
j −ui

j

∆t
=

1
∆x

(
1
2

F i+1
j+1/2−

1
2

F i+1
j−1/2 +

1
2

F i
j+1/2−

1
2

F i
j−1/2

)
, (3.27)

where the flux

Fj =
[
−κ(θ− x j)+σ

2
γ(x j)

2γ−1]u j +
1
2

σ
2(x j)

2γ ∂u
∂x

. (3.28)

Then, we can discretise Eq. (3.28) by

u j+1/2 =
u j +u j+1

2
,

∂u j+1/2

∂x
=

u j+1−u j

∆x
.

We set

A j = −κ(θ− x j)+σ
2
γ(x j)

2γ−1, (3.29)

B j =
σ2

∆x
(x j)

2γ, (3.30)

and Eq. (3.27) becomes

Ã jui+1
j−1 + B̃ jui+1

j +C̃ jui+1
j+1 = D̃i, (3.31)
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where

Ã j =
∆t

4∆x

(
A j−1/2−B j−1/2

)
, (3.32)

B̃ j = 1− ∆t
4∆x

(A j+1/2−B j+1/2−A j−1/2−B j−1/2), (3.33)

C̃ j = − ∆t
4∆x

(
A j+1/2 +B j+1/2

)
, (3.34)

D̃i = −Ã jui
j−1 +(2− B̃ j)ui

j−C̃ jui
j+1. (3.35)

For the strict conservation shown as Eq. (3.3), we require∫ xmax

xmin

u(x, t i)dx =
∫ xmax

xmin

u(x, t i+1)dx = 1 ∀i. (3.36)

Looking at Eq. (3.27) we can find

1
∆t

m

∑
k=0

(
ui+1

k −ui
k
)

=
1

2∆x

m

∑
k=0

(
F i+1

k+1/2−F i+1
k−1/2 +F i

k+1/2−F i
k−1/2

)
(3.37)

m

∑
k=0

(
ui+1

k −ui
k
)

=
∆t

2∆x

(
F i+1

m+1/2−F i+1
−1/2 +F i

m+1/2−F i
−1/2

)
= 0. (3.38)

Hence, to guarantee the conservation property of the F-P equation, we need

F t
m+1/2 = F t

−1/2 = 0 ∀t. (3.39)

At x0 = xmin, the boundary condition is

(1− Ã1)ui+1
0 +C̃0ui+1

1 = (1+ Ã1)ui
0−C̃0ui

1, (3.40)

and at xm = xmax, the boundary condition is

Ãmui+1
m−1 +(1−C̃m−1)ui+1

m =−Ãmui
m−1 +(1+C̃i+1

m−1)u
i
m. (3.41)

3.4.2 γ < 1
2

Under this regime, we assume xmin = 0. However, ∂2

∂x2 x2γu will cause a singularity at
x = xmin = 0 when γ < 1

2 . Hence, we set u(x, t) = x−2γv(x, t) to solve the problem of the
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singularity, and PDE (3.25) becomes

∂x−2γv
∂t

=
∂

∂x

{
−κ(θ− x)x−2γv+

1
2

σ
2 ∂v

∂x

}
(3.42)

∂v
∂t

= x2γ ∂

∂x

{
−
(
κθx−2γ−κx1−2γ

)
v+

1
2

σ
2 ∂v

∂x

}
. (3.43)

We then set X = ln(x), which means

∂

∂x
=

∂

∂X
· ∂X

∂x
= e−X ∂

∂X
. (3.44)

Hence,

∂v
∂t

= e(2γ−1)X ∂G
∂X

, (3.45)

where
G =−

(
κθe−2γX −κe(1−2γ)X

)
v+

1
2

σ
2e−X ∂v

∂X
. (3.46)

Assume that the grid mesh is equally space in x and t, so that

∆t = T
n , t i = i∆t, i = 0,1, · · · ,n;

∆X = ln(xmax)−ln(xmin)
m X j = ln(xmin)+ j∆X , j = 0,1, · · · ,m,

where xmin and xmax are still the smallest and largest values of x, respectively.
We can discretise Eq. (3.45) by

∂v
∂t

=
vi+1

j − vi
j

∆t
,

∂G
∂X

=
1

2∆X

(
Gi+1

j+1/2−Gi+1
j−1/2 +Gi

j+1/2−Gi
j−1/2

)
,

v j+1/2 =
v j + v j+1

2
,

∂v j+1/2

∂X
=

v j+1− v j

∆X
.
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We set

A j = e−(1−2γ)X j , (3.47)

B j = −κθe−2γX j +κe(1−2γ)X j , (3.48)

C j =
1
2

σ
2e−X j , (3.49)

and Eq. (3.45) becomes

Ã jvi+1
j−1 + B̃ jvi+1

j +C̃ jvi+1
j+1 = Di, (3.50)

where

Ã j = − 1
2A j∆X

(
−

B j−1/2

2
+

C j−1/2

∆X

)
, (3.51)

B̃ j =
1
∆t
− 1

2A j∆X

(
B j+1/2

2
−

C j+1/2

∆X
−

B j−1/2

2
−

C j−1/2

∆X

)
, (3.52)

C̃ j = − 1
2A j∆X

(
B j+1/2

2
+

C j+1/2

∆X

)
, (3.53)

Di =
1

2A j∆X

(
−

B j−1/2

2
+

C j−1/2

∆X

)
vi

j−1

+

[
1
∆t

+
1

2A j∆X

(
B j+1/2

2
−

C j+1/2

∆X
−

B j−1/2

2
−

C j−1/2

∆X

)]
vi

j

+
1

2A j∆X

(
B j+1/2

2
+

C j+1/2

∆X

)
vi

j+1. (3.54)

Finally, we can obtain u(x, t) from v(X , t) by

u(x, t) = e−2γX v(X , t), x = eX .

Furthermore, we also need to check the conservation property at any time t, and we
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apply the trapezium rule to approximate the integral in Eq. (3.3),

E =
∫ ln(xmax)

ln(xmin)
x−2γv(X , t)eX dX (3.55)

=
∫ ln(xmax)

ln(xmin)
e(1−2γ)X v(X , t)dX (3.56)

≈ 1
2

e(1−2γ)X0∆Xv0 +
m−1

∑
k=1

e(1−2γ)Xk∆Xvk +
1
2

e(1−2γ)Xm∆Xvm. (3.57)

When xmin = 0, ln(xmin)→ −∞, which means that the no-flux condition at X =

ln(xmin) do not exist, so we utilize the conservation condition as Eq. (3.57) instead
of the no-flux condition at X = ln(xmin), and we can obtain the boundary condition at
X = ln(xmin)

1
2

e(1−2γ)X0∆Xv0 +
m−1

∑
k=1

e(1−2γ)Xk∆Xvk +
1
2

e(1−2γ)Xm∆Xvm = 1. (3.58)

At X = ln(xmax), we still use the no-flux condition with Gm+1/2 = 0. Hence, we can
obtain

vi+1
m − vi

m
∆t

=
1

2Am∆X

(
Gi+1

m+1/2−Gi+1
m−1/2 +Gi

m+1/2−Gi
m−1/2

)
(3.59)

Ãmvi+1
m−1 +

[
1
∆t
− 1

2Am∆X

(
−

Bm−1/2

2
−

Cm−1/2

∆X

)]
vi+1

m =

−Ãmvi
m−1 +

[
1
∆t

+
1

2Am∆X

(
−

Bm−1/2

2
−

Cm−1/2

∆X

)]
vi

m. (3.60)

3.4.3 Initial Value Problem

For the initial condition, normally we will use Dirac delta function at t = t0,

u(x = x0, t = t0) = δ(x− x0), (3.61)

and we can apply this to initialize u(x = x0, t = t0) when γ ≥ 1
2 as we show in Section

3.4.1.
However, when γ < 1

2 , due to the singular problem at x = 0, we need to transform
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u(x, t) to v(X , t) to solve the F-P equation (3.23), and we can obtain

v0
j =

{
1

∆Xe(1−2γ)X0
if X j− 1

2∆X < X0 ≤ X j +
1
2∆X

0 if X0 ≤ X j− 1
2∆X or X0 > X j +

1
2∆X

. (3.62)

Furthermore, the accuracy of these initialization strongly depends on the position of
the grid point j∗ nearest X0 so that

v(X , t = 0) =

{
v0

j +O((∆X)2) if X0 = j∗∆X

v0
j +O(∆X) if X0 6= j∗∆X

. (3.63)

Normal Distribution Estimation

Because the accuracy of Eq. (3.63) strongly depends on the position of the grid point
j∗ nearest X0, we cannot guarantee the second order accuracy for any initial value x0

or X0. To solve this initial value problem for different grid mesh, we apply the normal
distribution to estimate Dirac delta function δ(x0).

We assume u(x = x0, t = t0)∼ N(x0,2t0), and we have

u(x = x0, t = t0)→ δ(x0) as t0→ 0. (3.64)

Hence, we can obtain the initial value v(X , t0) at t = t0

v(X , t0) = e2γX u(x, t0) (3.65)

=
1

2
√

πt0
e−

(eX−x0)
2

4t0
+2γX

. (3.66)

We can check and verify the conservation property of the numerical results of the
F-P equation by

E =
∫ xmax

xmin

u(x, t)dx (3.67)

= Φ(
xmax− x0√

2t0
)−Φ(

xmin− x0√
2t0

) (3.68)

≈ 1, (3.69)

where Φ(·) is the CDF of the Gaussian distribution.
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Hence, we need to pick a small value t0 to guarantee the conservation property, and
we can calibrate the energy loss at t = t0 for initial values u(x, t0) and v(X , t0).

3.5 Chang-Cooper Method

To investigate the numerical results of F-P equation, we showed the pioneering work of
Chang and Cooper. The Chang-Cooper method provided the numerical results by the
scheme for space discretisation and first- and second-order backward time differencing
[14]. They also proved that the resulting space-time discretisation schemes are accurate,
conditionally stable, conservative, and preserve positivity.

In this section, we describe the basis of the Chang-Cooper method in subsection
3.5.1, and we give two improved Chang-Cooper methods to solve the singular problem
for PDE (3.25) in subsections 3.5.2 and 3.5.3, respectively.

3.5.1 Definition

In the Chang-Cooper scheme of the F-P equation

∂u
∂t

=
1

A(x)
∂

∂x

[
B(x, t)u+C(x, t)

∂u
∂x

]
, (3.70)

and the flux F is

F i+1
j+1/2 =

[
(1−δ j)B j+1/2 +

1
∆x

C j+1/2

]
ui+1

j+1−
(

1
∆x

C j+1/2−δ jB j+1/2

)
ui+1

j , (3.71)

where

• A,B,C are all positive functions;

• δ j =
1

ω j
− 1

exp(ω j)−1 ;

• ω j = ∆x
B j+1/2
C j+1/2

.

Since A,B and C are all positive functions of their arguments, we can easily show
that δ j is monotonically decreasing from 1

2 to 0 as ω j goes from 0 to ∞.
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In last section, we have shown that when γ < 1
2 , a singularity at x = 0 in PDE (3.23).

To solve this problem, we calibrate two improved Chang-Cooper method by using mid-
point rule and X transformation, respectively.

3.5.2 Mid-point rule

To solve the singular problem at x = 0, we move the discretisation grid mesh of x using
mid-point rule, and we have

∆t = T
n , t i = i∆t, i = 0,1, · · · ,n;

∆x = xmax−xmin
m+1 x j = xmin +( j+ 1

2)∆x, j = 0,1, · · · ,m.

Hence, xmin = x0 =
1
2∆x, which can address the singularity at x = 0 when γ < 1

2 .
Hence, we can use the Crank-Nicolson method to discretise the PDE (3.25) as fol-

low:
ui+1

j −ui
j

∆t
=

1
∆x

(
F i+1

j+1/2−F i+1
j−1/2 +F i

j+1/2−F i
j−1/2

)
, (3.72)

where

Fj = −κ(θ− x j)u j +
1
2

σ
2 ∂

∂x
{x2γu} (3.73)

=
[
−κ(θ− x j)+σ

2
γ(x j)

2γ−1]u+
1
2

σ
2(x j)

2γ ∂u
∂x

. (3.74)

We set

B j = −κ(θ− x j)+σ
2
γ(x j)

2γ−1, (3.75)

C j =
σ2

2
(x j)

2γ, (3.76)

and Eq. (3.72) becomes

−Ã jui+1
j+1 + B̃ jui+1

j −C̃ jui+1
j−1 = D̃i, (3.77)
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where

Ã j =
∆t

(∆x)2C j+1/2Wj expω j, (3.78)

B̃ j =
∆t

(∆x)2

(
C j+1/2Wj +C j−1/2Wj−1 expω j−1

)
+1, (3.79)

C̃ j =
∆t

(∆x)2C j−1/2Wj−1, (3.80)

D̃i = Ã jui
j+1 +(2− B̃ j)ui

j +C̃ jui
j−1 (3.81)

Wj =
ω j

expω j−1
, (3.82)

δ j =
1

ω j
− 1

exp(ω j)−1
, (3.83)

ω j = ∆x
B j+1/2

C j+1/2
.n (3.84)

3.5.3 X Transformation

To solve the singularity, we convert u(x, t) tov(X , t) in the Chang-Cooper method using
u = x−2γv(x, t) and X = ln(x), which is X transformation as shown in Section 3.4.2.

We set

∆t = T
n , t i = i∆t, i = 0,1, · · · ,n;

∆X = ln(xmax)−ln(xmin)
m X j = ln(xmin)+ j∆X , j = 0,1, · · · ,m,

where Xmin = X0 = ln(xmin) is the smallest value of X .
Hence, we can discretise Eq. (3.45) by implicit method as follow:

vi+1
j − vi

j

∆t
=

1
A j∆X

(
Gi+1

j+1/2−Gi+1
j−1/2

)
, (3.85)
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where

A j = e(1−2γ)X j , (3.86)

G is as the definition Eq. (3.46), (3.87)

B j+1/2 =−κθe−2γX j+1/2 +κe(1−2γ)X j+1/2, (3.88)

C j+1/2 =
1
2

σ
2e−X j+1/2. (3.89)

Hence, Eq. (3.85) becomes

−Ã jvi+1
j+1 + B̃ jvi+1

j −C̃ jvi+1
j−1 = vi

j, (3.90)

where

Ã j =
∆t

A j(∆X)2C j+1/2Wj expω j, (3.91)

B̃ j =
∆t

A j(∆X)2

(
C j+1/2Wj +C j−1/2Wj−1 expω j−1

)
+1, (3.92)

C̃ j =
∆t

A j(∆X)2C j−1/2Wj−1, (3.93)

Wj =
ω j

expω j−1
, (3.94)

δ j =
1

ω j
− 1

exp(ω j)−1
, (3.95)

ω j = ∆X
B j+1/2

C j+1/2
. (3.96)

Finally, we can obtain u(x, t) from v(X , t) by u(x, t) = e−2γX v(X , t) and x = eX .
Furthermore, we can check and verify the conservation property of F-P equation at

any time t using the trapezium rule as Eq. (3.57) shown. Hence,

E ≈ 1
2

e(1−2γ)X0∆Xv0 +
m−1

∑
k=1

e(1−2γ)Xk∆Xvk +
1
2

e(1−2γ)Xm∆Xvm = 1. (3.97)
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3.6 Monte Carlo Simulation

We next consider MC simulation methods we utilize to estimate the PDF u(x,T ). We
propose a MC simulation using X transformation, which can give more details near the
singular point x = 0 when γ < 0.5 compared with the MC simulation utilizing the Euler
method,

Euler Method

We applied the Euler method to simulate N paths of x from SDE (3.1), and we can
estimate the PDF u(x,T ) at time t = T using the results of these paths. The simulation
steps are shown below:

1. Set the initial value x = x0 at t = t0.

2. Loop the time step ti from t1 to tn, and at the time step ti:

• Generate a random variable dW ∼ N(0,dt), and define

xi−1 +κ(µ− xi−1)∆t + xγ

i−1σdW ∈ [xmin,xmax];

• Due to the bounded interval x ∈ [xmin,xmax], if the value above is out of
range, reset dW ∼ N(0,dt) until the value is in the range [xmin,xmax];

• Set xi = xi−1+κ(µ−xi−1)∆t+xγ

i−1σdW and move to the next time step ti+1.

3. Simulate N paths and store the final value xm at tn = T in each path. We can then
estimate the kernel density distribution of u(x, t) based on these.

X Transformation

To obtain more accurate results and more details as x→ 0 when γ < 1
2 , we transform x

to X , and use Euler method to simulate the paths of X . Then, we can estimate the PDF
u(x,T ) at time t = T using the results of X paths.
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At first, we need to calculate the SDE of X . Since X = logx, we applied Itô’s lemma
according to SDE (3.1):

dX = d(logx) =
∂X
∂x

dx+
1
2

∂2X
∂x2 (dx)2 (3.98)

=

[
κθe−X −κ− 1

2
σ

2e(2γ−2)X
]

dt +σe(γ−1)X dWt (3.99)

Hence, the MC simulation steps are as follows:

1. Set the initial value X0 = log(x0) at t = t0.

2. Loop the time step ti from t1 to tn, and at the time step ti:

• Generate a random variable dW ∼ N(0,dt), and define

Xi−1+

[
κθe−Xi−1−κ− 1

2
σ

2e(2γ−2)Xi−1

]
dt+σe(γ−1)Xi−1dWt ∈ [ln(xmin), ln(xmax)];

• Due to the bounded interval X ∈ [ln(xmin), ln(xmax)], if the value above is out
of range, reset dW ∼N(0,dt) until the value is in the range [ln(xmin), ln(xmax)],
and store the value in Xi.

3. After finishing the whole path of X , we transform the series {X} back to {x}.

4. Simulate N paths and store the final value in each path, xm at tn = T . Then, we
can estimate the kernel density distribution of u(x, t) based on these.

3.7 Parameter Sensitivity Analysis

In this section, we test the influence of the size of time steps ∆t and x(X) steps ∆x(∆X),
along with the expire time T . The three numerical methods for the F-P equation (3.23)
we compare with are as follows:

• Method CNXT : Crank-Nicolson method using X transformation as proposed in
Section 3.4.2, and we use orange lines to indicate the numerical results of this
method;
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• Method CCMP: Chang-Cooper method using mid-point rule calibrated in Section
3.5.2, and we use blue lines to indicate the numerical results of this method;

• Method CCXT : Chang-Cooper method using X transformation calibrated in Sec-
tion 3.5.3, and we use green lines to indicate the numerical results of this method.

Because of the transformation, we set the grid schemes of v(X , t) with ∆t and ∆X

for methods CNXT and CCXT , and set a grid scheme of u(x, t) with ∆t and ∆x for the
method CCMP.

We also simulate 50000 paths using the MC method we introduced in Section 3.6,
and we then monitor the energy loss (following particle physics notation, which uses
F-P ideas extensively, and as adopted by [14]) and specific point tracking to compare
and optimize the numerical parameters.

The CPU times of these four methods (including the MC simulation) are calculated
using a 2015 MacBook Pro with 2.2 GHz Quad-Core Intel Core i7.

To verify the performance of these methods for the singular problem (γ < 1
2 ), we

set the parameters κ = 1.5,θ = 0.5,σ = 1,γ = 0.2,T = 10,X0 = ln(0.2), t0 = 0.01 and
X ∈ [−10, log(10)]. Hence, the PDF u(x,T ) is right-skewed and exhibits a singularity
around the lower boundary x = 0. We then change ∆t, ∆x (∆X) and T separately, and
compare results of these methods using convergence rates and energy loss.

Since γ < 1
2 , u(x = 0,T )→∞, so we pick a specific point at x = 0.09, which is close

to the lower boundary of u(x,T ) at x = 0, and we examine the energy loss through time
t. We choose a particular point in the grid, say u(x = x∗, t = T ;m), and calculate how
this changes with successive grids according to the formula

R =
u(x, t; m

2 )−u(x, t; m
4 )

u(x, t;m)−u(x, t; m
2 )

. (3.100)

The ratio of differences in successive grid refinements is a common approach used
to empirically estimate the rate of convergence, for instance see [84]. If the numerical
scheme has smooth second-order convergence, R→ 4 for large m, and R→ 2 if the
scheme is first-order convergence.

When x∗ is not on the mesh grid, we apply Lagrange interpolation with k = 4, which
was published by Lagrange in 1795 [85], to estimate the specific value of u(x∗, t) as
Section 3.2.5 shows. We pick k = 4 because it can imply that there is little additional
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error from the calculation of finite difference methods and can give accurate results.
Furthermore, to obtain the more accurate result of u(x = 0.09,T ) when R→ 4, we

calculate an extrapolated result using Richardson extrapolation

ue(x, t;n,m) =
1
3

(
4u(x, t;m)−u(x, t;

m
2
)
)
. (3.101)

3.7.1 Test of time step ∆t & X (x) step ∆X (∆x)

Here we investigate how changing the grid affects the calibration process, and compare
methods CNXT , CCMP and CCXT . At first, we vary the parameters ∆t and ∆x (∆X)
separately, and then we increase both together. We calculate and track numerical and
extrapolated results u(x,T ) and ue(x,T ) at a specific point (x = 0.09), separately, and
we also monitor energy losses and convergence rates. Table 3.1, Table 3.2 and Table 3.3
present these results of three methods CNXT , CCMP and CCXT , respectively.

In Table 3.1, we show the numerical results of the method CNXT , and we can ob-
serve that R≈ 4, which indicates that the convergence rate of ∆X is second order. Fur-
thermore, the values of u(x,T ) and ue(x,T ) are converged when both n and m larger than
1600, which indicates ∆t < 0.0062 and ∆X < 0.0077. However, the method CNXT re-
quires longer CPU times through n and m increasing. For example, it needs more than
one minute to calculate the extrapolated result for ∆t = 0.0062,∆X = 0.0077.

The numerical results for CCMP are shown in Table 3.2. We can observe that the
convergence rate is negative (NA) when both ∆t and ∆x are larger than 0.0062, which
indicates the numerical results are not monotonically convergent. When both ∆t and ∆x

are smaller than 0.0031, we can find that the difference between u(x,T ) and ue(x,T ) is
less than 0.01, but the convergence rate of ∆x is only first order (R→ 1.5). Furthermore,
the energy losses are less than 10−10 for all pairs of n and m, which are rounded-off
errors of calculations, so the conservation property of F-P equations can be guarantee in
this method.

In Table 3.3, we show numerical results for CCXT , and we can find that the values
of u(x,T ) and ue(x,T ) are converged when both ∆t < 0.0031 and ∆X < 0.0038, and the
CPU time in this method is quite faster compared with CNXT and CCMP. Furthermore,
we observe that R ≈ 4 for large ∆X , which indicates that the convergence rate of ∆X

is second order. However, R values decrease through m increasing, especially when
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n m ∆t ∆X
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

100 100 0.0999 0.1230
1.04149647

(0.0230)
1.04056530

(0.0276) 3.7221

1600 100 0.0062 0.1230
1.04149481

(0.1709)
1.04056403

(0.2196) 3.6668

6400 100 0.0016 0.1230
1.04149481

(0.6982)
1.04056403

(0.8898) 3.6668

100 50 0.0999 0.2461
1.04428996

(0.0058)
1.04082406

(0.0074) NA

100 200 0.0999 0.0615
1.04080266

(0.0656)
1.04057140

(0.0792) 4.0264

100 400 0.0999 0.0308
1.04062974

(0.3005)
1.04057209

(0.3617) 4.0121

100 800 0.0999 0.0154
1.04058655

(2.1614)
1.04057216

(2.4600) 4.0046

100 1600 0.0999 0.0077
1.04057576
(21.2990)

1.04057216
(23.1920) 4.0005

200 200 0.0500 0.0615
1.04079889

(0.1267)
1.04056672

(0.1605) 4.0098

400 400 0.0250 0.0308
1.04062422

(1.0186)
1.04056622

(1.1962) 4.0034

800 800 0.0125 0.0154
1.04058073

(6.8319)
1.04056623

(8.1162) 4.0013

1600 1600 0.0062 0.0077
1.04056986
(56.6341)

1.04056623
(68.0077) 4.0002

Table 3.1: Numerical results of u(x,T ) for the method CNXT , with different pairs of
∆t and ∆X ; κ = 1.5,θ = 0.5,σ = 1,γ = 0.2,T = 10,X0 = ln(0.2), t0 = 0.01 and X ∈
[−10, log(10)]
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n m ∆t ∆x 1−
∫

u(x,T )
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

100 100 0.0999 0.0990 −2.5×10−14 1.06558829
(0.0031)

1.07250628
(0.0045) 1.3040

200 100 0.0500 0.0990 −4.1×10−14 1.06558829
(0.0061)

1.07250628
(0.0090) 1.3040

100 50 0.0999 0.1961 −1.5×10−14 1.04483432
(0.0017)

1.05385568
(0.0024) NA

100 200 0.0999 0.0498 5.8×10−14 1.04876382
(0.0075)

1.04315567
(0.0116) NA

100 400 0.0999 0.0249 −3.7×10−14 1.04984063
(0.0151)

1.05019956
(0.0217) NA

100 800 0.0999 0.0125 3.8×10−13 1.04678044
(0.0330)

1.04576038
(0.0454) NA

100 1600 0.0999 0.0062 −5.4×10−13 1.04443149
(0.1088)

1.04364850
(0.1502) 1.3028

100 3200 0.0999 0.0031 3.4×10−12 1.04279505
(0.3081)

1.04224958
(0.3929) 1.4354

100 6400 0.0999 0.0016 7.1×10−12 1.04169875
(1.1159)

1.04133332
(1.4037) 1.4927

100 12800 0.0999 0.0008 −3.2×10−12 1.04097270
(3.6587)

1.04073068
(4.6934) 1.5099

200 200 0.0500 0.0498 8.9×10−14 1.04876382
(0.0122)

1.04315567
(0.0183) NA

400 400 0.0250 0.0249 −4.7×10−14 1.04978294
(0.0439)

1.05012264
(0.0657) NA

800 800 0.0125 0.0125 5.0×10−13 1.04667922
(0.1790)

1.04564465
(0.2679) NA

1600 1600 0.0062 0.0062 −8.7×10−13 1.04435284
(0.6909)

1.04357737
(1.0225) 1.3341

3200 3200 0.0031 0.0031 2.1×10−12 1.04274428
(2.7610)

1.04220809
(4.0281) 1.4463

6400 6400 0.0016 0.0016 6.2×10−12 1.04166920
(10.8245)

1.04131084
(15.9635) 1.4962

12800 12800 0.0008 0.0008 −3.7×10−12 1.04095748
(45.7821)

1.04072024
(68.5022) 1.5105

25600 25600 0.0004 0.0004 −7.5×10−11 1.04048783
(185.2594)

1.04033128
(273.9735) 1.5154

Table 3.2: Numerical results of u(x,T ) for the method CCMP with different pairs of ∆t
and ∆x; the integral is approximated by the trapezium rule; κ = 1.5,θ = 0.5,σ = 1,γ =
0.2,T = 10,x0 = 0.2, t0 = 0.01 and x ∈ [exp(−10),10]
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n m ∆t ∆X 1−
∫

u(x,T )
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

100 100 0.0999 0.1230 3.2×10−5 1.03918171
(0.0025)

1.04053871
(0.0037) 3.8771

1600 100 0.0062 0.1230 3.2×10−5 1.03918166
(0.0390)

1.04053866
(0.0596) 3.8772

6400 100 0.0016 0.1230 3.2×10−5 1.03918166
(0.1531)

1.04053866
(0.2307) 3.8772

25600 100 0.0004 0.1230 3.2×10−5 1.03918166
(0.6579)

1.04053866
(0.9796) 3.8772

100 50 0.0999 0.2461 6.4×10−5 1.03511074
(0.0021)

1.04037194
(0.0029) 4.8610

100 200 0.0999 0.0615 1.6×10−5 1.04021150
(0.0051)

1.04055476
(0.0076) 3.9532

100 400 0.0999 0.0308 8.0×10−6 1.04047340
(0.0094)

1.04056070
(0.0143) 3.9319

100 800 0.0999 0.0154 4.0×10−6 1.04054098
(0.0205)

1.04056350
(0.0320) 3.8755

100 1600 0.0999 0.0077 2.0×10−6 1.04055891
(0.0401)

1.04056488
(0.0593) 3.7689

100 3200 0.0999 0.0038 1.0×10−6 1.04056391
(0.0742)

1.04056557
(0.1103) 3.5859

200 200 0.0500 0.0615 1.6×10−5 1.04021146
(0.0100)

1.04055473
(0.0150) 3.9532

400 400 0.0250 0.0308 8.0×10−6 1.04047335
(0.0395)

1.04056066
(0.0585) 3.9320

800 800 0.0125 0.0154 4.0×10−6 1.04054093
(0.1423)

1.04056345
(0.2108) 3.8756

1600 1600 0.0062 0.0077 2.0×10−6 1.04055886
(0.5515)

1.04056483
(0.8210) 3.7692

3200 3200 0.0031 0.0038 1.0×10−6 1.04056386
(2.1472)

1.04056553
(3.2161) 3.5844

6400 6400 0.0016 0.0019 4.8×10−7 1.04056540
(8.5533)

1.04056592
(12.7098) 3.2356

12800 12800 0.0008 0.0010 1.9×10−7 1.04056595
(36.8069)

1.04056613
(54.9294) 2.9410

Table 3.3: Numerical results of u(x,T ) for the method CCXT with different pairs of ∆t
and ∆X ; the integral is approximated by the trapezium rule; κ = 1.5,θ = 0.5,σ = 1,γ =
0.2,T = 10,X0 = ln(0.2), t0 = 0.01 and X ∈ [−10, log(10)]
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∆t = 0.0008,∆X = 0.0010, R < 3. Furthermore, the energy losses are larger than 10−7

for all pairs of ∆t and ∆X , which indicate poor conservation properties. Hence, the
numerical results of the method CCXT should be less accurate compared with numerical
results of the method CNXT shown in Table 3.1.

As these tables show, we can find that all three methods can converge quickly
through decreasing grid sizes, and the extrapolated values ue(x,T ) can give highly accu-
rate estimations. However, the energy losses are highest for the method CCXT , which
reaches 3.2× 10−5 for ∆X = 0.1230 through time t. Compared with this, the method
CCMP has quite small energy losses at the expiration time T . Due to the conservation
boundary condition we apply to the method CNXT , the conservation property is always
obeyed, but it leads to longer CPU time compared with the other two methods because
we cannot utilize simple Thomas algorithm to solve the grid scheme in this method.

To verify the performance of these three methods, we vary both ∆t and ∆x (∆X), and
we calculate the error between the numerical results ue(x= 0.09,T ) with the benchmark
value 1.040566, which is calculated by the method CNXT with n = 25600 and m =

25600. We also simulate the PDF u(x = 0.09,T ) using the MC simulation using the X

transformation, which we show in Section 3.6, and we increase the time steps n from
400 to 6400. As Fig. 3.1 shows, we can observe that the three methods are much more
accurate and faster than MC simulations. For the numerical values of these methods,
the method CCXT can give the best estimation of PDE (3.23), but CNXT can give even
more accurate results using extrapolated values using Eq. (3.101). However, compared
with two Chang-Cooper methods CCMP and CCXT , CNXT requires more CPU time,
and the difference between CPU times becomes larger with increasing both n and m.
For the two Chang-Cooper methods, the CPU times are quite similar, but the CCXT can
give more accurate results for all grids compared with the method CCMP.

To sum up, according to convergence and accuracy, we believe that ∆t = 0.0016
and ∆x = 0.0031 (∆X = 0.0038) are the optimal combination of parameters to set the
grid scheme for these three methods, separately. Furthermore, we show that the method
CNXT is best, which can give results with very high accuracy and no energy loss, but
it requires more CPU time. Hence, we will choose ∆t = 0.0016 and ∆X = 0.0038 for
both methods CNXT and CCXT , ∆t = 0.0016 and ∆x = 0.0031 for CCMP in the next
section to address the F-P equation (3.23) for the different combinations of parameters.
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Figure 3.1: The plot of logarithm values of the error of ue(x = 0.09,T ) against the loga-
rithm values of CPU time for methods CNXT , CCMP, CCXT and MC simulations with
different grids; black points indicate the numerical values of u(x = 0.09,T ) using the
MC simulation using X transformation; orange and red points indicate the numerical
and extrapolated results calculated by the method CNXT respectively; light and dark
blue points indicate the numerical and extrapolated results calculated by the method
CCMP; light and dark green points indicate the numerical and extrapolated results cal-
culated by the method CCXT ; the parameter values are κ = 1.5,θ = 0.5,σ = 1,γ =
0.8,T = 10,X0 = ln(0.1), t0 = 0.01 and X ∈ [−10, ln(10)]; for three numerical methods,
we decrease ∆t from 0.0999 to 0.0062 and ∆x(∆X) from 0.0990 (0.1230) to 0.0062
(0.0077); For the MC simulation, we decrease ∆t from 0.0025 to 0.0016
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n m T
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

640 3200 1
1.18079708
(227.3924)

1.18079679
(261.4084) 4.0001

3200 3200 5
1.04067963
(453.1904)

1.04067873
(543.3818) 4.0001

6400 3200 10
1.04056714
(798.2007)

1.04056623
(968.6243) 4.0001

32000 3200 50
1.04056712
(3096.0454)

1.04056622
(3881.5370) 4.0001

64000 3200 100
1.04056712
(5509.9637)

1.04056622
(6868.1814) 4.0001

Table 3.4: Numerical results of u(x,T ) for the method CNXT with different pairs of ∆t
and ∆X ; the integral is approximated by the trapezium rule; κ = 1.5,θ = 0.5,σ = 1,γ =
0.2,T = 10,X0 = ln(0.2), t0 = 0.01 and X ∈ [−10, log(10)]

3.7.2 Test of the expiration time T

Here we track and test the energy losses through different expiration times T in the
calculation process for the PDF u(x,T ). We vary T = 1,5,10,50 and 100, and keep
∆t = 0.0016, ∆x = 0.0031 (∆X = 0.0038) fixed, which we verified to be suitable values
in the last subsection. The results of methods CNXT,CCMP and CCXT are shown in
Table 3.4, Table 3.5 and Table 3.6, respectively.

In Table 3.4, we can find that the total energy obey the strict conservation property
even for large T , and the convergence rate R ≈ 4 for all combinations, so the conver-
gence rate is second-order for CNXT schemes.

In Table 3.5, we show the energy losses of the method CCMP through the time. With
T increasing, the energy losses increase to (just) 1.4× 10−11, which indicates CCMP

can guarantee the conservation property of the F-P equations for large time t. However,
R values are less than 4 even 1.5, which indicates that the numerical grid scheme for the
method CCMP can give only first-order accuracy of ∆x.

In Table 3.6, we can observe that R≈ 4, so the convergence rate of ∆X is generally
second order for the method CCXT . However, the total energy losses for CCXT are
larger than the other two methods, which are larger than O(10−6) for all T values.

As these tables show, we can find that the CPU time is more than 100 times longer
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n m T 1−
∫

u(x,T )
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

640 3200 1 −2.8×10−14 1.18306820
(0.7348)

1.18251218
(1.0440) 1.4383

3200 3200 5 −1.7×10−13 1.04285507
(2.6837)

1.04231930
(3.9621) 1.4462

6400 3200 10 2.2×10−12 1.04274428
(5.2320)

1.04220809
(7.7848) 1.4463

32000 3200 50 1.5×10−12 1.04274426
(26.3116)

1.04220808
(39.3609) 1.4463

64000 3200 100 1.4×10−11 1.04274426
(52.1317)

1.04220808
(77.8819) 1.4463

Table 3.5: Numerical results of u(x,T ) for the method CCMP with different pairs of ∆t
and ∆x; the integral is approximated by the trapezium rule; κ = 1.5,θ = 0.5,σ = 1,γ =
0.2,T = 10,x0 = 0.2, t0 = 0.01 and x ∈ [exp(−10),10]

n m T 1−
∫

u(x,T )
u(x = 0.09,T )

(CPU time)
ue(x = 0.09,T )

(CPU time) R

640 3200 1 1.2×10−6 1.18121792
(0.4788)

1.18121841
(0.7007) 2.5369

3200 3200 5 1.0×10−6 1.04067774
(2.3416)

1.04067940
(3.4855) 3.5840

6400 3200 10 1.0×10−6 1.04056386
(4.8499)

1.04056552
(7.0971) 3.5901

32000 3200 50 1.1×10−6 1.04056379
(22.9915)

1.04056544
(34.5210) 3.6201

64000 3200 100 1.2×10−6 1.04056360
(44.8872)

1.04056518
(67.6675) 3.8059

Table 3.6: Numerical results of u(x,T ) for the method CCXT with different pairs of ∆t
and ∆X ; the integral is approximated by the trapezium rule; κ = 1.5,θ = 0.5,σ = 1,γ =
0.2,T = 10,X0 = ln(0.2), t0 = 0.01 and X ∈ [−10, log(10)]
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for CNXT compared with the other methods, especially for grids with small ∆t and ∆x

(∆X). Furthermore, we can observe that R≈ 4 for all T values for the method CNXT in
Table 3.4, so the convergence rate of ∆X is second order. We conclude that both CNXT

and CCMP can obey the strict conservation property, and the method CNXT can give
more accurate results. However, the energy loses are larger than 1.2×10−6 for CCXT .

3.8 Simulation Analysis

In this section, we test methods CNXT , CCMP, CCXT and MC simulations in different
regimes of γ, γ≥ 1

2 and γ < 1
2 , separately. To make sure the initial value of u(x, t0) is on

the grid mesh, we applied the normal distribution to estimate the Dirac delta function as
described in Section 3.4.3.

We test the accuracy, efficiency, energy conservation and robustness of these meth-
ods. For the accuracy test, we also estimate the histogram plots of u(x,T ) using MC
simulations and compare the numerical results for all methods. We also track the vari-
ation of u(x∗, t), where x∗ is around the peak of the PDF u(x,T ) at t = T . When x∗ is
not on the mesh grid, we also apply Lagrange interpolation with k = 4 to estimate the
specific value of u(x∗, t) as Section 3.2.5 describes. Furthermore, we calculate the total
energy loss of these methods to monitor the conservation property of F-P equations.

3.8.1 γ≥ 1
2

When γ ≥ 1
2 , there is no singular problem at x = 0, and the mean reversion component

can always dominate SDE (3.1). Hence,

u(x, t) = 0 as x→ 0, ∀t

is a suitable boundary condition.
In this regime, we can obtain accurate numerical results quite easily as Section 3.4.1

shows. However, to verify the universality, we test and compare the numerical results
of methods CNXT , CCMP, CCXT and MC simulations.

We set X ∈ [−10, ln(10)], which implies x ∈ [exp(−10),10], and utilize the MC
simulation method using the X transformation to simulate 50000 paths. Then, we pick
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Figure 3.2: The histogram plot of u(x,T ) at t = T ; the histogram shows the PDF u(x,T )
estimated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP (∆x = 0.0031); green line indicates
the numerical result calculated by the method CCXT (∆X = 0.0038); the parameter val-
ues are κ = 1.5,θ = 0.5,σ = 1,γ = 0.8,T = 10,X0 = ln(0.1), t0 = 0.01,∆t = 0.0016 and
X ∈ [−10, ln(10)]

three examples including the PDF median close to the lower boundary at X = ln(xmin) =

−10, median close to the cap boundary at X = ln(xmax) = ln(10), and median near the
centre of domain x (X).

Median close to the lower Boundary

We set the parameters κ= 1.5,θ= 0.5,σ= 1,γ= 0.8,T = 10,X0 = ln(0.1), t0 = 0.01,∆t =

0.0016 and ∆x = 0.0031(∆X = 0.0038). In this regime, we can observe that u(x, t) is
right-skewed and median close to the lower boundary.

Fig. 3.2 shows the histogram plot of u(x,T ) estimated by MC simulations and nu-
merical results for methods CNXT,CCMP and CCXT . We can verify u(x, t) = 0 as
x→ 0. Furthermore, we observe that all four numerical methods can give a good esti-
mation, and the results are not significantly different.

We see that u(x,T ) has a peak value around x = 0.28. Hence, to further verify the
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(a) The tracking plot of u(x∗, t) in the meth-
ods CNXT (orange), CCMP (blue) and
CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.3: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038), respectively;
x∗ = 0.28 and the parameter values are κ = 1.5,θ = 0.5,σ = 1,γ = 0.8,T = 10,X0 =
ln(0.1), t0 = 0.01,∆t = 0.0016 and X ∈ [−10, ln(10)]

numerical results, we pick this as a particular point x∗, and we track u(x∗, t) through
t ∈ [0,T ]. Fig. 3.3a shows that the numerical values of u(x∗, t) for these three methods
all asymptote before t = 3, but there is also no significant difference between these
methods.

To monitor the difference between the results, we calculate the difference between
CCMP and CNXT , CCXT and CNXT , CCMP and CNXT , respectively. In Fig. 3.3b,
we can observe that these three methods converge quickly, and the difference between
numerical results of methods CCMP and CNXT is small for all time t in this regime.
Furthermore, both the difference between the methods CCXT and CNXT , CCMP and
CCXT are larger than 0.002 initially, and they decrease to 0 sharply.

We also monitor the conservation law of these methods. Because we utilize the
conservation boundary condition for the method CNXT , the numerical results for the
method CNXT can guarantee the strict energy conservation at any time t. As Table 3.2
and 3.5 show, the method CCMP only has round-off error, which implies that it obeys
the conservation law as well. We then show the energy loss plot of CCXT .

Fig. 3.4 presents the total energy loses to −2.5×10−7 dramatically for the method
CCXT around t = t0, and it asymptotes to around −2.49×10−7 after that.
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Figure 3.4: The energy loss plot for the method CCXT (green) against time t; the pa-
rameter values are κ = 1.5,θ = 0.5,σ = 1,γ = 0.8,T = 10,X0 = ln(0.1), t0 = 0.01,∆t =
0.0016,∆X = 0.0038 and X ∈ [−10, ln(10)]

Median close to the Cap Boundary

We set the parameters κ = 1,θ = 8,σ = 1.2,γ = 0.7,T = 10,X0 = ln(5), t0 = 0.01,∆t =

0.0016 and ∆x = 0.0031(∆X = 0.0038). In this regime, we can observe that u(x, t) is
left-skewed and median close to the cap boundary.

In Fig. 3.5, we can observe that all of the three numerical results exhibit similar
trends to the MC results, but the value of u(x,T ) calculated by the method CCXT is
smaller than the other two methods especially at the peak nearly x = 5.8.

We track u(x = 5.8, t) through t ∈ [0,T ], which is close to the peak value of u(x,T ).
Fig. 3.6a shows that the numerical values of u(x = 5.8, t) for these three methods all
converge before t = 1.2, and the values of u(x = 5.8, t) for CCXT are slightly smaller
than the other two methods.

To investigate the difference between the results, we calculate their differences. In
the Fig. 3.6b, we can also observe that these three methods asymptote before t = 1.2,
and the difference between numerical results of methods CNXT and CCMP is close to
0 (< 0.00002) in this regime, and compared with the methods CNXT and CCMP, the
numerical results for the method CCXT is a little smaller (< 0.0005).
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Figure 3.5: The histogram plot of u(x,T ) at t = T ; the histogram shows the PDF u(x,T )
estimated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP (∆x = 0.0031); green line indicates
the numerical result calculated by the method CCXT (∆X = 0.0038); the parameter
values are κ = 1,θ = 8,σ = 1.2,γ = 0.7,T = 10,X0 = ln(5), t0 = 0.01,∆t = 0.0016 and
X ∈ [−10, ln(10)]
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(a) The tracking plot of u(x∗, t) in the meth-
ods CNXT (orange), CCMP (blue) and
CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.6: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038); x∗ = 5.8 and
the parameter values are κ = 1,θ = 8,σ = 1.2,γ = 0.7,T = 10,X0 = ln(5), t0 =
0.01,∆t = 0.0016 and X ∈ [−10, ln(10)]

Figure 3.7: The energy loss plot for the method CCXT (green) against time t; the pa-
rameter values are κ = 1,θ = 8,σ = 1.2,γ = 0.7,T = 10,X0 = ln(5), t0 = 0.01,∆t =
0.0016,∆X = 0.0038 and X ∈ [−10, ln(10)]



CHAPTER 3. FPE FOR GENERALIZED OU PROCESS 113

Figure 3.8: The histogram plot of u(x,T ) at t = T ; the histogram shows the PDF u(x,T )
estimated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP ∆x = 0.0031; green line indicates the
numerical result calculated by the method CCXT (∆X = 0.0038); the parameter val-
ues are κ = 0.5,θ = 5,σ = 0.5,γ = 0.6,T = 10,X0 = ln(4), t0 = 0.01,∆t = 0.0016 and
X ∈ [−10, ln(10)]

As we mentioned in Section 3.7, CNXT and CCMP always obey the conservation
property of the F-P equation. However, Fig. 3.7 indicates that the energy of the method
CCXT increases above 1.75×10−3 at t = T .

Median near the Centre of Domain

We set the parameters κ= 0.5,θ= 5,σ= 0.5,γ= 0.6,T = 10,X0 = ln(4), t0 = 0.01,∆t =

0.0016 and ∆x = 0.0031(∆X = 0.0038). In this regime, u(x, t) is bell-shaped with the
median close to the centre of domain x (X).

In Fig. 3.8, we clearly see that the resulting F-P equation (3.23) is bell-shaped, and
the peak value is at around x = 4.52. We can observe that all of the three numerical
results have similar trends to the MC results, and there is little difference between these
methods.

To further compare these methods, we track u(x = 4.52, t), through t ∈ [0,T ], and



CHAPTER 3. FPE FOR GENERALIZED OU PROCESS 114

(a) The tracking plots of u(x∗, t) in the
methods CNXT (orange), CCMP (blue)
and CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.9: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038); x∗ = 4.52 and
the parameter values are κ = 0.5,θ = 5,σ = 0.5,γ = 0.6,T = 10,X0 = ln(4), t0 =
0.01,∆t = 0.0016 and X ∈ [−10, ln(10)]

Figure 3.10: The energy loss plot for the methods CCXT (green) against time t; the
parameter values are κ = 0.5,θ = 5,σ = 0.5,γ = 0.6,T = 10,X0 = ln(4), t0 = 0.01,∆t =
0.0016,∆X = 0.0038 and X ∈ [−10, ln(10)]
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Fig. 3.9a shows that the numerical values of u(x = 4.52, t) all asymptote for these three
methods before t = 2.5.

To discriminate between these results, we calculate the differences. In the Fig. 3.9b,
we can observe that all these methods converge before t = 2, and the final difference
between these methods are not significant, which implies all these methods work well
in this regime.

For the conservation test, methods CNXT and CCMP can ensure the energy conser-
vation in this regime, however, in Fig. 3.10, the energy loss increases above 4.2×10−5

for CCXT at t = T .

3.8.2 γ < 1
2

When γ < 1
2 , there is a singular point at x = 0, and the mean reversion never dominates

in the limit x→ 0 in SDE (3.1). Hence,

u(x, t)→ ∞ as x→ 0.

In this regime, we will show and compare the numerical results of the three methods
CNXT,CCMP and CCXT , respectively.

We also set X ∈ [−10, ln(10)], which implies x ∈ [exp(−10),10], and also simulate
50000 paths using the MC simulation using X transformation. Then, we pick three
examples including the PDF median close to the lower boundary at X = ln(xmin) =−10,
median close to the cap boundary at X = ln(xmax) = ln(10), and median near the centre
of the x (X) domain.

Median close to the lower Boundary

We set the parameters κ= 1.5,θ= 0.5,σ= 1,γ= 0.3,T = 10,X0 = ln(2), t0 = 0.01,∆t =

0.0016 and ∆x = 0.0031(∆X = 0.0038).
In this regime, u(x, t) is right-skewed and the median is close to the lower boundary,

which is similar with the regime median close to the lower boundary when γ ≥ 0.5 in
Section 3.8.1. However, as Fig. 3.11 shows, we can see u(x, t)→ ∞ as x→ 0. We can
also observe that all of the three methods can give good estimations of u(x,T ) and it is
hard to see any significant difference between these methods.
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Figure 3.11: The histogram plot of u(x,T ) at t = T ; the histogram shows the PDF u(x,T )
estimated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP (∆x = 0.0031); green line indicates
the numerical result calculated by the method CCXT (∆X = 0.0038); the parameter val-
ues are κ = 1.5,θ = 0.5,σ = 1,γ = 0.3,T = 10,X0 = ln(2), t0 = 0.01,∆t = 0.0016, and
X ∈ [−10, ln(10)]
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(a) The tracking plot of u(x∗, t) in the meth-
ods CNXT (orange), CCMP (blue) and
CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.12: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038); x∗ = 0.085
and the parameter values are κ = 1.5,θ = 0.5,σ = 1,γ = 0.3,T = 10,X0 = ln(2), t0 =
0.01,∆t = 0.0016 and X ∈ [−10, ln(10)]

Figure 3.13: The energy loss plot for the method CCXT (green) against time t; the
parameter values are κ = 1.5,θ = 0.5,σ = 1,γ = 0.3,T = 10,X0 = ln(2), t0 = 0.01,∆t =
0.0016,∆X = 0.0038 and X ∈ [−10, ln(10)]
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Hence, we track a single point x to measure the difference between these results.
Since γ < 1

2 , u(x = 0,T )→ ∞, so we pick a specific point at x = 0.085, which is close
to the lower boundary, and we can track u(x = 0.085, t) through t ∈ [0,T ]. As shown in
Fig. 3.12a, the numerical values of u(x = 0.085, t) for these three methods all asymptote
before t = 4, but the values of u(x = 0.085, t) calculated by the method CCMP are
slightly larger than other two methods.

To monitor the difference between the results, we calculate the difference between
these methods. In the Fig. 3.12b, we can observe that these three methods converge
quickly, and the difference between numerical results of methods CNXT and CCXT is
small. However, the numerical results for method CCMP are slightly different.

For the conservation test, methods CNXT and CCMP obey the energy conservation
property. However, Fig. 3.13 indicates the energy loss for CCXT increases above 2.7×
10−6 at t = T .

Median close to the Cap Boundary

We set the parameters κ = 1,θ = 9,σ = 1.2,γ = 0.2,T = 10,X0 = ln(7), t0 = 0.01,∆t =

0.0016 and ∆x= 0.0031(∆X = 0.0038). In this regime, u(x, t) is left-skewed and median
close to the cap boundary.

In Fig. 3.14, the histogram shows a left-skewed PDF with median close to the cap
boundary at x = ln(xmax) = ln(10), which is u(x,T ) estimated by the MC simulation
method. We can observe that all of the three methods can give good estimations of
u(x,T ) but the values of u(x,T ) calculated by the method CCXT are slightly smaller
than the other two methods especially near the peak x = 8.83.

We then track u(x = 8.83, t) through t as shown in Fig. 3.15a. The numerical values
of u(x = 8.83, t) for these three methods all asymptote before t = 2.5, and the values of
u(x = 8.83, t) for the method CCXT are slightly smaller than the other two methods. In
the Fig. 3.15b, we observe that the difference between CNXT and CCMP is small at
t = T . However, the results for the method CCXT are slightly different from the other
two methods.

As shown in Fig. 3.16, the energy loss for CCXT increases above 0.0053 at t = T .



CHAPTER 3. FPE FOR GENERALIZED OU PROCESS 119

Figure 3.14: The histogram plot of u(x,T ) at t = T ; the histogram shows u(x,T ) es-
timated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP (∆x = 0.0031); green line indicates
the numerical result calculated by the method CCXT (∆X = 0.0038); the parameter
values are κ = 1,θ = 9,σ = 1.2,γ = 0.2,T = 10,X0 = ln(7), t0 = 0.01,∆t = 0.0016 and
X ∈ [−10, ln(10)]
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(a) The tracking plots of u(x∗, t) in the
methods CNXT (orange), CCMP (blue)
and CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.15: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038); x∗ = 8.83
and the parameter values are κ = 1,θ = 9,σ = 1.2,γ = 0.2,T = 10,X0 = ln(7), t0 =
0.01,∆t = 0.0016 and X ∈ [−10, ln(10)]

Figure 3.16: The energy loss plot for the method CCXT (green) against time t; the
parameter values are κ = 1,θ = 9,σ = 1.2,γ = 0.2,T = 10,X0 = ln(7), t0 = 0.01,∆t =
0.0016,∆X = 0.0038 and X ∈ [−10, ln(10)]
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Figure 3.17: The histogram plot of u(x,T ) at t = T ; the histogram shows the PDF u(x,T )
estimated by the MC simulation using X transformation; orange line indicates the nu-
merical result calculated by the method CNXT (∆X = 0.0038); blue line indicates the
numerical result calculated by the method CCMP (∆x = 0.0031); green line indicates
the numerical result calculated by the method CCXT (∆X = 0.0038); the parameter val-
ues are κ = 0.5,θ = 5,σ = 0.5,γ = 0.1,T = 10,X0 = ln(4), t0 = 0.01,∆t = 0.0016 and
X ∈ [−10, ln(10)]

Median near the Centre of Domain

We set the parameters κ= 0.5,θ= 5,σ= 0.5,γ= 0.1,T = 10,X0 = ln(4), t0 = 0.01,∆t =

0.0016 and ∆x = 0.0031(∆X = 0.0038). In this regime, u(x, t) is bell-shaped, which is
similar with the corresponding regime γ≥ 0.5 shown in Section 3.8.1.

In Fig. 3.17, the histogram of the MC simulation results u(x,T ) shows a bell-shaped
PDF, and we can observe that all of the three other methods can give good estimations
of u(x,T ) and there is little difference between these results from three methods.

Furthermore, we can find that u(x,T ) exhibits a peak value near x = 5, so we
track u(x = 5, t) through t ∈ [0,T ], and Fig. 3.18a shows that the numerical values of
u(x = 5, t) for these three methods all converge before t = 4, and there is no significant
difference between these results from three methods.

To discriminate between the results, we calculate the difference between these meth-
ods, and in the Fig. 3.18b, we can see that the difference between methods CCMP and
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(a) The tracking plots of u(x∗, t) in the
methods CNXT (orange), CCMP (blue)
and CCXT (green), separately

(b) The difference of u(x∗, t) between the
methods CCMP and CNXT (blue), CCXT
and CNXT (green), CCMP and CCXT
(black), separately

Figure 3.18: The tracking plot of u(x∗, t) and the difference between the methods
CNXT (∆X = 0.0038),CCMP(∆x = 0.0031) and CCXT (∆X = 0.0038); x∗ = 5 and the
parameter values are κ = 0.5,θ = 5,σ = 0.5,γ = 0.1,T = 10,X0 = ln(4), t0 = 0.01,∆t =
0.0016 and X ∈ [−10, ln(10)]

CCXT is small for all time t. The numerical results for the method CNXT is a little
smaller than these from the other two methods initially, but asymptote to be similar to
the other two methods after t = 7.5.

For the conservation test, even CCXT has the round-off error, which is less than
10−13, in this regime as well.

To sum up, in both γ≥ 0.5 and γ< 0.5 regimes, all these three methods can give good
estimations of u(x,T ), but due to the X transformation, the method CNXT and CCXT

can give finer details in the singular regimes as at x→ 0 when γ < 0.5. Furthermore, re-
garding energy losses, the method CCXT cannot strictly satisfy the conservation law in
all the cases especially when γ < 0.5. For the other two methods, these strictly obey the
energy conservation, but the method CNXT is better because we apply the conservation
boundary condition explicitly in the discretisation scheme. Hence, we believe that the
method CNXT is the best of these three methods.
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3.9 Summary

In this chapter, we derive the F-P equation for a generalized OU process (3.1), and for
the different regimes of the parameter γ, we utilize finite difference methods to estimate
the numerical results. To address the singular problem at x = 0 when γ < 1

2 , we convert
u(x, t) to v(X , t) which is regular, as x→ 0. Furthermore, we compare the numerical
results with two improved Chang-Cooper methods through stability, accuracy, efficiency
and robustness.

We find that the X transformation is helpful to solve the singular problem, it convert
the singularity at x = 0 to X →−∞ in the X transformation methods, and we applied
the conservation boundary conditions in the Crank-Nicolson method using the X trans-
formation, it can guarantee that the numerical results follow the conservation property
of F-P equations at any time t. In the two Chang-Cooper methods, the Chang-Cooper
method using mid-point rule can always guarantee the conservation property as well,
but the Chang-Cooper method using X transformation will cause the energy loss espe-
cially when the median close to the lower or cap boundary. Furthermore, the Crank-
Nicolson method using the X transformation can give the most accurate results in all
regimes compared with the Chang-Cooper methods CCMP and CCXT , but it requires
more CPU time as Fig. 3.1 shows. However, the CPU time in all three methods are
quite faster than MC simulations and these methods can give more accurate results as
well.

The generalized OU process is popular in the financial market especially to describe
general short-term interest rate models such as Merton, Vasicek and CIR model, and
it normally occurs zero or even negative interest rate nowadays. Hence, when we face
a singularity, the Crank-Nicolson method using the X transformation we describe in
this chapter has the potential to become an important tool in this field. Furthermore,
the Crank-Nicolson method using the X transformation is the best choice compared
with the Chang-Cooper methods using mid-point rule and X transformation according
to stability, accuracy, efficiency and robustness, so we can also apply this model in the
physics field to improve the Chang-Cooper schemes.

More details of Coding are shown in Appendix A.



Chapter 4

Fokker-Planck Equation for Solar
Irradiance Model with Regime
Switching

In Chapter 2, we calibrate a regime switching model (2.12) for solar irradiance. To
investigate and forecast more accurately solar irradiance in the future, we need to cal-
culate the PDF for the regime switching model with a high degree of accuracy. In this
chapter, we derive the F-P equation corresponding to the regime switching model with
jumps (2.12), and based on this, we compare and analyse the estimated PDF with MC
results also with regime switching. The outline of this chapter is given below.

In the following section 4.1, we give some foundational information we need in this
chapter. Next, in Section 4.2, we describe the problem of the partial integro-differential
equation (PIDE) including the mean reversion and random walk processes with jumps
in the regime switching model (2.12), and the associated boundary conditions. In Sec-
tion 4.3, we describe the discretisation scheme for the regime switching model, and we
monitor the conservation property of the F-P equation to ensure the accuracy of numeri-
cal solutions. Furthermore, numerical results are given in Section 4.4. Finally in Section
4.5, the summary and conclusions are given.

124
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4.1 Mathematical Formulation

This section presents essential information regarding stochastic processes. First, in sub-
section 4.1.1, we cover how the jump process modifies in the SDE. In subsection 4.1.2,
we describe the Kolmogorov-Smirnov (K-S) test, which we use to analyse the numerical
results.

4.1.1 Jump Process

Jump processes can be used to model the behaviour of energy and financial fields. [86]
introduced a jump process into the Black-Scholes equation, which assumes that a stock
price follows a geometric Brownian motion process, and it can explain the behaviour
in the real world for stocks. [87] presented a general jump-diffusion process to model
the PV power based on the diffusive and jump characteristics of solar power, and [88]
utilized the general jump-diffusion process to represent the clear-sky index.

First, a Poisson process dJ can be defined by

dJ =

{
0, with probability 1−λdt

1, with probability λdt
, (4.1)

where λ is the Poisson arrival intensity.
Hence, a jump occurs between two time steps dt with a probability λdt in the regime

switching model (2.12), and the pure jump process is described by

dK
K

= (η−1)dJ, (4.2)

where η−1 is the impulse function producing a jump in the clearness index from K to
Kη.

4.1.2 The Kolmogorov-Smirnov test

The two-sample K-S test is a standard non-parametric method used to determine if two
datasets are significantly different. It evaluates the distance between the empirical distri-
bution functions of two samples, and it returns a D statistic and a p-value corresponded.
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The D statistic is the absolute maximum distance between the CDFs of the two samples.
When the p-value is larger than 0.05 in the K-S test, there is no evidence to reject the
null hypothesis that the two samples are from the same distribution at the significance
level of 95%.

The K-S test is often applied to test the goodness of fit in the energy field. [89] utilize
the K-S test to test the performance of N-state Markov-chain mixture distributions with
clear-sky index generators using data from Norrköping, Sweden, and Oahu, Hawaii,
USA. [90] examine the Kumaraswamy or the Beta distribution for the marginal distri-
bution of solar irradiance from Athens, Greece using the K-S, CvM and AD goodness
of fit tests.

In this chapter, we utilize the K-S test to examine the performance of the numerical
results of F-P equations according to the regime switching model (2.12).

4.2 The PIDE System of F-P Equation

In our clearness index model (2.12), we have two types of stochastic processes for differ-
ent regimes, mean reversion process with jumps and random walk process with jumps.
In subsection 4.2.1 and subsection 4.2.2, we show the F-P equations corresponding to
the mean reversion and random walk processes with jumps in model (2.12) separately.
Furthermore, in subsection 4.2.3, we describe the boundary problems of jumps and flux
components.

4.2.1 Mean Reversion Process

In our regime switching model (2.12), we have a mean reversion process with jumps of
clearness index Kt in the regime j ( j ≤M), which is given by{

dKt = θ(µ1, j−Kt)dt +σ1, jdWt +dJt, j

Kt0 = K0
, (4.3)

where θ,µ1, j,σ1, j are defined as Eq.(2.12) shows, and dJt, j is a Poisson process with
constant jump intensity λ, and the PDF of the jump size ν(k,y) as Eq. (2.13) shows.
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Here the function ν(k,y) represents the probability that the clearness index at posi-
tion y at time t jumps to position k at time t+. Therefore, we must have

∫ kmax

kmin

ν(k− y)dk = 1 ∀y, (4.4)

where k ∈ [kmin,kmax] = [0,1.5] in the regime switching model (2.12).
Based on [73], we can obtain the F-P equation for the jump component dJt, j in SDE

(4.3)

λ

[∫ kmax

kmin

u(y, t)ν(k− y)dy−u(k, t)
]
. (4.5)

According to SDE (3.2), we can obtain the F-P equation for the mean reversion
component in SDE (4.3). Hence, the F-P equation for SDE (4.3)

∂u(k, t)
∂t

=
∂

∂k

[
−θ(µ1, j− k)u(k, t)+

1
2

σ
2
1, j

∂u(k, t)
∂k

]
+λ

[∫ kmax

kmin

u(y, t)ν(k− y)dy−u(k, t)
]

(4.6)

with the initial condition
u(k, t = 0) = δ(k−K0) (4.7)

at t = 0.
The F-P equation (4.6) is a PIDE system, which can be decomposed as follow

PIDE = PDE + an integral term,

and it can be rewritten as

∂u
∂t

=
∂F
∂k

+λ

[∫ kmax

kmin

u(y, t)ν(k− y)dy−u(k, t)
]
, (4.8)

where the term F can be interpreted as the flux

F(k, t) =−θ(µ1, j− k)u+
1
2

σ
2
1, j

∂u
∂k

. (4.9)



CHAPTER 4. FPE FOR SOLAR IRRADIANCE MODEL 128

Next, we consider the second stochastic process namely the random walk process
with jumps in our solar irradiance model (2.12).

4.2.2 Random Walk Process

In our regime switching model (2.12), we propose a random walk process with jumps
when j > M, of the form{

dKt = µ2, jdt +σ2, jdWt +dJt, j

Kt0 = K0
, (4.10)

where µ2, j,σ2, j,dJ are defined in Eq.(2.12).
Hence, similar to the work in subsection 4.2.1, we can derive the F-P equation cor-

responding to Eq. (4.10)

∂u(k, t)
∂t

=
∂

∂k

[
−µ2, ju(k, t)+

1
2

σ
2
2, j

∂u(k, t)
∂k

]
+λ

[∫ kmax

kmin

u(y, t)ν(k− y)dy−u(k, t)
]

(4.11)

with the same initial condition

u(k, t = 0) = δ(k−K0) (4.12)

at t = 0.
The F-P equation (4.11) can be rewritten as

∂u(k, t)
∂t

=
∂F2

∂k
+λ

[∫ kmax

kmin

u(y, t)ν(k− y)dy−u(k, t)
]
, (4.13)

where the flux F2 is

F2 =−µ2, ju+
1
2

σ
2
2, j

∂u
∂k

. (4.14)
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4.2.3 Boundary Conditions

Considering the clearness index we introduced in Chapter 2, we need to derive the F-P
equations related to the one-dimensional process Eq. (4.3) and Eq. (4.10) with range in
a bounded domain k ∈ [kmin,kmax]. We then have the no-flux conditions

F(k, t) = 0, k < kmin (4.15)

and

F(k, t) = 0, k > kmax. (4.16)

Furthermore, we need to control the domain of jumps as well. Hence, we can sim-
plify Eq. (4.4) by

∫ kmax

kmin

ν(k− y)dk = 1 ∀y, (4.17)

which means that for the clearness index located at the point y ∈ [kmin,kmax], it can only
land within the bounded interval [kmin,kmax].

4.3 Discretisation Scheme of the PIDE

In this section, we introduce the discretisation scheme of our PIDE system. The ini-
tial condition is given in subsection 4.3.1. Next, jump and flux schemes are given in
subsection 4.3.2 and 4.3.3 respectively. Then, in subsection 4.3.4, we outline the full
numerical scheme for our PIDE system. Finally, we confirm that the conservation law
and boundary conditions are satisfied in subsection 4.3.5.

Before the PIDE system discretisation, we assume that the grid mesh is equally
spaced in k and t. Generally we assume that

k j = kmin + j∆k

and
t i = i∆t,
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so that
∆k =

kmax− kmin

m
and k0 = kmin where m+1 is the number of points on the k grid (0,1,2, · · · ,m).

However, to ensure second order convergence we modify the grid using mid-point
rule, which is similar as to the CCMP method we introduced in Section 3.5.2, so the
grid is

k0 = kmin +
1
2

∆k,

km = kmax−
1
2

∆k,

and
∆k =

kmax− kmin

m+1
. (4.18)

If we are solving at T minutes then,

∆t =
T
n
, (4.19)

where n is the number of time steps.
Now we write

u(k j, t i) = ui
j (4.20)

and

ν(k j− yk) = ν j,k. (4.21)

4.3.1 Initial Condition

For the initial condition, we use a approximation to the Dirac delta function as Eq. (4.7)
shows, which is

u0
j =

{
1

∆k if k j− 1
2∆k < K0 ≤ k j +

1
2∆k

0 if K0 ≤ k j− 1
2∆k or K0 > k j +

1
2∆k

. (4.22)

This can only approximate the initial condition, and the accuracy depends on the
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position of the grid point j∗ nearest to K0 so that

u(k = K0, t = 0) =

{
u0

j +O((∆k)2) if K0 = j∗∆k

u0
j +O(∆k) if K0 6= j∗∆k

. (4.23)

4.3.2 Integral Component

In our clearness index model (2.12), the jump sizes are log-normally distributed with
different parameters for positive and negative jumps respectively. We assume that the
clearness index process k is at y at time t (kt = y), in order to reach the new position at
time t+, the jump size is bounded in (kmax−y,kmin−y), which means that both positive
and negative jump sizes are truncated log-normally distributed, respectively. Hence,
corresponding to Eq. (2.13), the jump size ν is

ν(k− y) =


(1−P(y)) F−(y−k)∫ 0

kmin−y F−(−z)dz
, k < y

P(y) F+(k−y)∫ kmax−y
0 F+(z)dz

, k > y
, (4.24)

where

• P(y) is the probability that positive jumps occur when the clearness index locates
at y. Hence, if there are only positive jumps in the regime j, we set P(y) = 1;
if there are only negative jumps in the regime j, we set P(y) = 0. However, if
both jumps occur during this regime, we utilize the logistic regression model Eq.
(2.14) to define the sign of jumps.

• F+ and F− are log-normally distributed for positive and negative jump sizes sep-
arately, which are given by

F+(x;µ,σ) = F−(x;µ,σ) =

{
1

xσ
√

2π
exp
(
− (lnx−µ)2

2σ2

)
, x > 0

0, x≤ 0
.

We then need to apply numerical integration methods to perform the integration
which cannot be expressed in the closed form. Under the midpoint rule, the area under
a curve is evaluated by dividing the total area into little rectangles. Hence, the integral
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component of the PIDE system (4.8) can be approximated by

∫ kmax

kmin

ν(k− y)dy =
m

∑
j=0

ν(k− y j)∆k+O((∆k)2), (4.25)

where

y j = kmin +( j+
1
2
)∆k, j = 0,1,2, · · · ,m.

Hence, the integral part in PIDE (4.8) can be approximated by

λ

∫ kmax

kmin

u(y, t)ν(k j− y)dy = λ

∫ kmax

k j

u(y, t)(1−P(y))
F−(y− k j)∫ 0

kmin−y F−(−z)dz
dy

+λ

∫ k j

kmin

u(y, t)P(y)
F+(k j− y)∫ kmax−y

0 F+(z)dz
dy (4.26)

= λ

m

∑
l′= j

ui
l′(1−P(kl′))

F−(kl′− k j)∫ 0
kmin−kl′

F−(−z)dz
∆k

+λ

j

∑
l=0

ui
lP(kl)

F+(k j− kl)∫ kmax−kl
0 F+(z)dz

∆k

+O((∆k)2) (4.27)

or

Qi
j = λ

j

∑
l=0

ui
lP(kl)

F+(k j− kl)∫ kmax−kl
0 F+(z)dz

∆k (4.28)

Pi
j = λ

m

∑
l′= j

ui
l′(1−P(kl′))

F−(kl′− k j)∫ 0
kmin−kl′

F−(−z)dz
∆k. (4.29)

4.3.3 Flux Component

For the flux component, we can discretise and write

∂F
∂k

=
1

∆k

[
αDi

j +(1−α)Di+1
j

]
+O((∆k)2), (4.30)
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where
Di

j = F i
j+1/2−F i

j−1/2. (4.31)

According to Eq. (4.9) and Eq. (4.14), we obtain

F i
j+1/2 =

 −θ(µ1− k j+1/2)
ui

j+ui
j+1

2 + 1
2σ2

1
ui

j+1−ui
j

∆k , Regime Rt ≤M

−µ2
ui

j+ui
j+1

2 + 1
2σ2

2
ui

j+1−ui
j

∆k , Regime Rt > M
(4.32)

and

F i
j−1/2 =

 −θ(µ1− k j−1/2)
ui

j−1+ui
j

2 + 1
2σ2

1
ui

j−ui
j−1

∆k , Regime Rt ≤M

−µ2
ui

j−1+ui
j

2 + 1
2σ2

2
ui

j−ui
j−1

∆k , Regime Rt > M
, (4.33)

where Rt is the regime number of the solar irradiance series in our regime switching
model (2.12).

4.3.4 Full Numerical Scheme

According to the F-P equation PIDE (4.8) and (4.13), we can obtain a general full nu-
merical discretisation scheme of the F-P equation corresponding to the regime switching
model (2.12)

1
∆t

(ui+1
j −ui

j) =
1

∆k

[
αDi+1

j +(1−α)Di
j

]
+β(Qi+1

j +Pi+1
j −λui+1

j )

+(1−β)(Qi
j +Pi

j−λui
j). (4.34)

If α = 1
2 and β = 1

2 , this becomes the Crank-Nicolson method, and the PIDE (4.34)
can be simplified by

1
∆t

(ui+1
j −ui

j) =
1

2∆k

(
Di+1

j +Di
j

)
+

1
2
(Qi+1

j +Pi+1
j −λui+1

j )

+
1
2
(Qi

j +Pi
j−λui

j)+O((∆k)2,(∆t)2), (4.35)

where Di
j,P

i
j,Q

i
j are defined respectively by Eqs. (4.31), (4.29), (4.28).
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4.3.5 Conservation & Boundary Conditions

To keep the intrinsic properties, we need to verify whether the conservation property of
F-P equation is still valid with jumps. According to Eq. (4.35), we calculate the sum of
u(k, t) at two adjacent time steps t i and t i+1,

m

∑
j=0

(ui+1
j −ui

j) =
∆t

2∆k

m

∑
j=0

(
Di+1

j +Di
j

)
+

∆t
2

m

∑
j=0

(Qi+1
j +Pi+1

j −λui+1
j ) (4.36)

+
∆t
2

m

∑
j=0

(Qi
j +Pi

j−λui
j)

=
∆t

2∆k

(
F i

m+1/2−F i
−1/2 +F i+1

m+1/2−F i+1
−1/2

)
(4.37)

+
∆t
2

λ

∫ k j

kmin

u(y, t i)P(y)
∑

m
j=0 F+(k j− y)∫ kmax−y

0 F+(z)dz
dy

+
∆t
2

λ

∫ kmax

k j

u(y, t i)(1−P(y))
∑

m
j=0 F−(y− k j)∫ 0

kmin−y F−(−z)dz
dy

+
∆t
2

λ

∫ k j

kmin

u(y, t i+1)P(y)
∑

m
j=0 F+(k j− y)∫ kmax−y

0 F+(z)dz
dy

+
∆t
2

λ

∫ kmax

k j

u(y, t i+1)(1−P(y))
∑

m
j=0 F−(y− k j)∫ 0

kmin−y F−(−z)dz
dy

−∆t
2

λ

m

∑
j=0

ui
j−

∆t
2

λ

m

∑
j=0

ui+1
j .
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According to the midpoint rule Eq. (4.25) and the distributions of jump sizes F+ and
F−, we can simplify the equation to

∆t
2∆k

(
F i

m+1/2−F i
−1/2 +F i+1

m+1/2−F i+1
−1/2

)
(4.38)

+
∆t

2∆k
λ

∫ k j

kmin

u(y, t i)P(y)
∑

m
j=0 F+(k j− y)∆k∫ kmax−y
0 F+(z)dz

dy

+
∆t

2∆k
λ

∫ kmax

k j

u(y, t i)(1−P(y))
∑

m
j=0 F−(y− k j)∆k∫ 0
kmin−y F−(−z)dz

dy

+
∆t

2∆k
λ

∫ k j

kmin

u(y, t i+1)P(y)
∑

m
j=0 F+(k j− y)∆k∫ kmax−y
0 F+(z)dz

dy

+
∆t

2∆k
λ

∫ kmax

k j

u(y, t i+1)(1−P(y))
∑

m
j=0 F−(y− k j)∆k∫ 0
kmin−y F−(−z)dz

dy

−∆t
2

λ

m

∑
j=0

ui
j−

∆t
2

λ

m

∑
j=0

ui+1
j

=
∆t

2∆k

(
F i

m+1/2−F i
−1/2 +F i+1

m+1/2−F i+1
−1/2

)
(4.39)

+
∆t

2∆k
λ

∫ kmax

kmin

u(y, t i)P(y)+u(y, t i)(1−P(y))dy− ∆t
2

λ

m

∑
j=0

ui
j

+
∆t

2∆k
λ

∫ kmax

kmin

u(y, t i+1)P(y)+u(y, t i+1)(1−P(y))dy− ∆t
2

λ

m

∑
j=0

ui+1
j

=
∆t

2∆k

(
F i

m+1/2−F i
−1/2 +F i+1

m+1/2−F i+1
−1/2

)
(4.40)

+
∆t

2∆k
λ

∫ kmax

kmin

u(y, t i)dy− ∆t
2∆k

m

∑
j=0

ui
j∆k+

∆t
2∆k

λ

∫ kmax

kmin

u(y, t i+1)dy− ∆t
2∆k

m

∑
j=0

ui+1
j ∆k

' ∆t
2∆k

(
F i

m+1/2−F i
−1/2 +F i+1

m+1/2−F i+1
−1/2

)
. (4.41)

Hence, to guarantee the conservation law, we must set

F i
m+1/2 = F i

−1/2 = 0 ∀i (4.42)

to stop any diffusion leakage from the system including flux and jump components.
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According to the conservation condition Eq. (4.42), we obtain the boundary condi-
tion at j = 0,

1
∆t

(ui+1
0 −ui

0) =
1

2∆k

(
F i+1

1/2 +F i
1/2

)
+

1
2
(Qi+1

0 +Pi+1
0 −λui+1

0 )+
1
2
(Qi

0 +Pi
0−λui

0)

(4.43)
and at j = m, the boundary condition is given by

1
∆t

(ui+1
m −ui

m)=
1

2∆k

(
−Di+1

m−1/2−Di
m−1/2

)
+

1
2
(Qi+1

m +Pi+1
m −λui+1

m )+
1
2
(Qi

m+Pi
m−λui

m).

(4.44)

4.4 Numerical Results

In this section, we describe the process to solve the numerical solution of the PIDE
system (4.35), and we use the results to estimate the PDF of the regime switching model
(2.12) at different times. We give examples on a specific day to estimate and obtain
the PDF of the solar irradiance process with known regimes introduced in Section 2.6,
and we analyse and compare the estimated PDF with MC simulations using statistical
methods.

First, we outline the estimation steps of the variation of PDF u(k, t) at any time t

corresponding to the regime switching model (2.12) in a single day as:

1. Initialize u(k = K0, t = 0) = u0
j as Eqs. (4.22) and (4.23) show, and set the period

number n = 0.

When we set the initial values for the clearness index data set, we cannot guar-
antee the initial values are second-order accurate as Eq. (4.23) shows. However,
when we change grids with decreasing ∆k, the initial values will become second-
order accurate.

2. Based on the regime Rn, apply the parameters θ,µ1,Rn,σ1,Rn,µ2,Rn ,σ2,Rn ,λ,µ+,σ+,µ−,σ−
during the period n, and set the time step δt and T .

3. Utilize the Crank-Nicolson method to calculate ui
j by the discretisation scheme of

the PIDE system shown as Eq. (4.35) using the parameters during the period n.
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4. Update the period n = n+ 1 and regime Rn+1. Store u(k, t) as the initial values
for the next period.

5. Return to step 2 until n = N, which is the total number of periods in a single day.

We apply this method to estimate the PDF of the regime switching model (2.12)
u(k, t) at any time t given a sequence of regime switching processes.

In this section, we select the parameters of the threshold-based method w = 10,τ =
5,Θ = 0.1, Ω = 1.5 and the number of periods N = 16, which are the best combination
of parameters to filter jumps and estimate the solar irradiance as subsection 2.7.1 and
2.7.2 show, respectively.

Referring to the regime switching model (2.12), we set k ∈ [kmin,kmax] = [0,1.5].
In Chapter 2, we set δt = 1 (minute). However, to make sure ∆t is small enough, we
assume the total time T = 1 unit of time in each period. Because we obtain 620 1-minute
GHI records on July 26th, 2018, there are around 39 records in each period. We then
repeat the whole process to estimate parameters for the clearness index data set from
January 1st, 2018 to July, 31st, 2018 according to Section 2.5.

We pick the clearness index data on July 26th, 2018, as an example to estimate the
PDF u(k, t) varying through time t. Hence, as Section 2.5 shows, we can obtain the
sequence of regime changing processes for the data set shown in Fig. 2.7. There are 8
regimes (4+4) in total, and the regime changing process corresponding to the clearness
index data on July 26th, 2018 is shown in Fig. 4.1. We can observe that there are 4
regimes of the mean reversion process with jumps and 1 regime of the random walk
process with jumps on this particular day.

The clearness index data set in this day is shown in Fig. 4.2. In this plot, we split the
clearness index data into 16 periods, and we utilize different colours indicating different
regimes in these periods. We can see that the clearness index fluctuates heavily through
out the whole day especially in the regimes in purple (Rt = 2), blue (Rt = 3) and red
(Rt = 1). However, in the green regime (Rt = 7), the clearness index series increase
monotonically with only small fluctuations, which can confirm the random walk process
we applied in our model (2.12).

Referring to Section 3.7, we undertake the analysis for different grids with different
pairs of ∆t and ∆k. We calculate and track numerical and extrapolated values u(k, t) and
ue(k, t) at a specific point k as Eq. (3.101) shows. We then choose a particular point
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Figure 4.1: The regime changing plot of the GHI series on July 26th, 2018.

Figure 4.2: The one-minute clearness index Kt plot on July 26th, 2018
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on the grid to calculate the convergence rate R following Eq. (3.100). Furthermore, we
also examine the energy loss through time t.

We pick the end time steps of period 1 (t = 1) and 16 (t = 16) on July 26th, 2018 as
examples. To examine the performance of numerical results, we choose the points near
the peaks in the PDFs of clearness index at time t. According to Fig. 4.4, we select the
points K∗ = 0.27 and K∗ = 0.75 at the end time steps of period 1 (u(k = 0.27, t = 1))
and 16 (u(k = 0.75, t = 16)) on July 26th, 2018, respectively. To obtain specific values
of u(k = K∗, t), we refer to the Lagrange interpolation method discussed in Section
3.2.5, and we pick k = 4, which can imply that there is little additional error from finite
difference methods.

The CPU times are also calculated using a 2015 MacBook Pro with 2.2 GHz Quad-
Core Intel Core i7.

Table 4.1 presents the numerical results of u(k, t) with different grids. We can ob-
serve that generally R≈ 4, which means that the convergence rate of ∆k is second order
especially for small ∆k. Furthermore, the values of u(x,T ) and ue(x,T ) converge well,
especially when ∆t = 0.0013 and ∆k = 0.0009, but this requires more CPU time to solve
the scheme. In these different grids, energy losses are always less than 10−9, which is
comparable to round off the error.

Hence, we choose ∆t = 0.0013 and ∆k = 0.0009 as the best combination of param-
eters according to the energy loss and numerical results. Because of T = 1 and N = 16,
we obtain around 39 records of the clearness index data in each period, and there are 20
time steps between two adjacent records of the data.

The MC simulation process follows the simulation process shown in Section 2.6,
and we utilize 50000 paths of clearness index series, and estimate the PDF u(k, t) at a
specific time point t according to these paths. In this section, we compare the numerical
results of the Crank-Nicolson method with the PDF estimated by MC results.

In Fig. 4.4, the histogram plots show the PDF of the clearness index series at the
end time steps of each period 1 (u(k, t = 1)), 2 (u(k, t = 2)), 3 (u(k, t = 3)), · · · , 16
(u(k, t = 16)) on July 26th, 2018. From the graphical representation, the dashed red
lines indicate estimated PDFs of Kt by the PIDE system (4.35), and the histograms and
blue solid lines denote estimated PDFs of Kt obtained from MC simulations. We can
see that all numerical results of the PIDE system (4.35) are bell-shaped on this day, and
the histogram plots are similar. For example, we know the first two periods are in the
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∆t ∆k 1−
∫

u(k, t = T )
u(k = 0.27, t = 1)

(CPU time)
ue(k = 0.27, t = 1)

(CPU time)
u(k = 0.75, t = 16)

(CPU time)
ue(k = 0.75, t = 16)

(CPU time) R

0.0256 0.0038 −6.7696×10−11 8.82817913
(0.2279)

8.82469461
(0.2688)

12.59003638
(0.2050)

12.56635886
(0.2397) 4.4935

0.0051 0.0038 3.2265×10−12 8.82707721
(0.4395)

8.82358906
(0.5411)

12.59003638
(0.4059)

12.56635890
(0.4868) 4.4935

0.0026 0.0038 1.0320×10−11 8.82704254
(0.7584)

8.82355428
(0.9334)

12.59003638
(0.6308)

12.56635890
(0.7770) 4.4935

0.0013 0.0038 1.3520×10−12 8.82703387
(1.3044)

8.82354558
(1.6290)

12.59003638
(1.1402)

12.56635890
(1.4215) 4.4935

0.0026 0.0075 6.8624×10−12 8.83750731
(0.1749)

8.82183287
(0.2235)

12.66106893
(0.1462)

12.54142600
(0.1821) 3.2715

0.0026 0.0019 −5.8985×10−10 8.82475686
(3.6931)

8.82399497
(4.4515)

12.57435665
(3.2768)

12.56913010
(4.5302) 4.5784

0.0256 0.0188 1.4614×10−12 8.91033776
(0.0052)

8.86253248
(0.0070)

13.30570764
(0.0038)

12.91762606
(0.0049) 7.4035

0.0013 0.0009 4.6803×10−10 8.82437571
(36.5518)

8.82425158
(42.5865)

12.57058468
(30.7260)

12.56932736
(35.8834) 4.1569

Table 4.1: Numerical results of the PDF u(k, t) with different pairs of grids ∆t and ∆k;
the integral is approximated by mid-point rule; ω = 10,τ = 5,Θ = 0.1,Ω = 1.5,T =
1,N = 16

same regime (Rt = 4) from Fig. 4.1, and in Fig. 4.4a and 4.4b, we can observe that the
PDF of u(k, t = 1) and u(k, t = 2) are quite similar. Furthermore, we can observe that
the numerical results of the PIDE system (4.35) have similar trends with the histograms
and blue solid lines, which indicates that numerical solutions of F-P equations can give
good estimations of the PDF of the regime switching model (2.12). At the end times of
periods 5− 15, we can observe MC results are little smaller than numerical results of
PIDE system (4.35) around the peak points in the histogram plots respectively, which
means that the MC results have smaller kurtosis, but there is no significant difference of
means and trends between them.

Furthermore, Fig. 4.3 shows the total energy loss of the PIDE system through pe-
riods, on July 26th, 2018. We can observe that the total energy loss keeps around 0
during first 5 periods (t < 5). After that, the energy loss increases to 4.68×10−10 until
time t = T . However, the energy loss during each period is less than 10−10 and the total
energy loss is less than 10−9, which can be rounded off. Hence, the total energy loss
asymptotes 0 during the whole day, which indicates that the conservation property is
held for the PIDE system (4.35).

In addition, we consider the Q-Q plots of two estimated PDF results at the end time
of each period in Fig. 4.5. From Figs. 4.5a and 4.5b, we can find that all the points lie on
the base lines, which indicates that the MC results are not significantly different from
the numerical results of PIDE system (4.35) in regime 4, and these plots confirm the
histogram plots as shown in Figs. 4.4a and 4.4b. Furthermore, as Figs. 4.5c, 4.5d, 4.5n,
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Figure 4.3: The energy loss plot on July 26th, 2018.

4.5o and 4.5p indicate, there is no evidence to show any significant difference between
the two PDF results in regimes 1 and 7, respectively. However, in Figs. 4.5e - 4.5m, we
can see that the points are under the base line at the low quantiles range and above the
base line at the high quantiles range, which can confirm the conclusions in Figs. 4.4e -
4.4m, and there are still no significant differences between these two results in regimes
2 and 3, separately.

To further examine the statistical similarity of the two estimated PDFs, we utilize
the error tests shown in subsection 2.3.3, and a two-sample K-S test in subsection 4.1.2
to analyse the results. In Table 4.2, we observe that all p-values in the K-S test are larger
than 0.05 (selected confidence interval 95%) even as large as 0.4, which means that there
is no evidence to show the PDFs estimated by F-P equations and MC simulations are
significantly different. The RMSE and MAE values between the two numerical results
are less then 0.02 at all time steps, respectively, which confirms the conclusions of the
K-S test. Furthermore, NRMSE values are around 7% and MAPE values are under
0.02, which can confirm that the two PDFs are not significantly different as well. The
MaxAE values are less than 0.03 at most of the end time of periods except at periods 6 -
13, which implies the difference between two estimated PDFs are small at all quantiles.

Above all, we can confirm and show that the estimated PDF from the PIDE system
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Table 4.2: The statistical metrics including the K-S test, root mean square error, normal-
ized root mean square error, mean absolute error, maximum absolute error and mean
absolute percentage error between the PDF results of MC simulations and PDF results
of the PIDE system at the time points at the end of 1st, 2nd, 3rd, · · · , 10th period on July
26th, 2018, respectively

Period K-S (P-value) RMSE NRMSE MAE MaxAE MAPE
1st 0.7944 0.0033 7.1% 0.0022 0.0224 0.0083
2nd 0.9135 0.0034 7.4% 0.0021 0.0262 0.0073
3rd 0.9541 0.0019 9.1% 0.0008 0.0112 0.0010
4th 0.7944 0.0032 6.8% 0.0023 0.0150 0.0024
5th 0.5727 0.0142 10.4% 0.0104 0.0860 0.0186
6th 0.7226 0.0133 6.3% 0.0099 0.1048 0.0248
7th 0.6476 0.0192 14.1% 0.0114 0.1945 0.0336
8th 0.5727 0.0168 8% 0.0121 0.1384 0.0385
9th 0.4005 0.0164 7.7% 0.0131 0.0598 0.0256

10th 0.5004 0.0101 7.9% 0.0070 0.0786 0.0158
11th 0.4005 0.0114 8.8% 0.0069 0.0711 0.0142
12th 0.6099 0.0077 6.1% 0.0053 0.0561 0.0105
13th 0.6099 0.0183 8.5% 0.0115 0.0711 0.0392
14th 0.4005 0.0022 10.5% 0.0011 0.0150 0.0014
15th 0.4324 0.0023 10.9% 0.0012 0.0150 0.0015
16th 0.5004 0.0017 8.8% 0.0007 0.0112 0.0009



CHAPTER 4. FPE FOR SOLAR IRRADIANCE MODEL 143

of F-P equations with jumps can give an excellent approximation to the PDF of the
regime switching model (2.12). Furthermore, when we apply MC method, we need
to spend more time to simulate different paths, but the estimated PDF from the PIDE
system of F-P equations with jumps is computed faster as Fig. 3.1 shows. Because we
utilize finite difference methods in PIDE system, we can obtain more accurate results
when we reduce ∆t and ∆x. When ∆t → 0 and ∆x→ 0, results should be the same as
real values in theory. Hence, compared with the MC simulation method, this numerical
method is faster computationally and much more accurate.

4.5 Summary

In this chapter, we derive the F-P equations with jumps corresponding to our regime
switching model (2.12), and we utilize a finite difference method to solve the numerical
results of the resulting PIDE system. Furthermore, we give examples using solar irradi-
ance data set, and compare the results with the PDF estimated by MC simulation results
using statistical tests.

In the PIDE system, we add jump components in F-P equations, and it shows a good
estimation of our regime switching model. Furthermore, we track numerical values of
PIDE system, and compare the results with the MC simulation method by goodness of
fit and error tests. We confirm and show that the numerical results of PIDE system can
give a very good estimation for the PDF of the solar irradiance model at any time. The
PIDE system can obey the conservation property of F-P equations, and numerical results
are more accurate and computationally faster than MC simulations. According to these
characteristics, we can apply it to improve the simulation results of solar irradiance es-
pecially in the future. For example, we show 5%− 95% quantiles of simulation paths
in specific days in Fig. 2.8, and we can observe that the quantiles bands are rough espe-
cially when the regime switching processes change. When we utilize the PIDE system
to calculate quantiles, the results will be smoother because we track the time evolution
of the regime switching model including SDEs with jumps, which is the definition of
F-P equations. Furthermore, we can calculate the PDF of solar irradiance in the future
easily. When we apply the forecasting method, which combines the Mycielski method
with a Markov chain, we need to simulate more than 1000 even 10000 simulation paths
to obtain the PDF of solar irradiance. However, it is normally to forecast the volume and
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price of solar irradiance in a long-term future in the financial market, such as 10 years.
The MC simulations and forecasting method need higher time costs, and the results are
not accurate due to the randomness of SDEs. The PIDE system can solve this problem.
We can obtain the PDF of solar irradiance at any time in the future, and it will calculate
faster and more accurately than MC results.

More details of Coding are shown in Appendix A.
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(a) u(k, t = 1) (b) u(k, t = 2)

(c) u(k, t = 3) (d) u(k, t = 4)

(e) u(k, t = 5) (f) u(k, t = 6)

(g) u(k, t = 7) (h) u(k, t = 8)
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(i) u(k, t = 9) (j) u(k, t = 10)

(k) u(k, t = 11) (l) u(k, t = 12)

(m) u(k, t = 13) (n) u(k, t = 14)

(o) u(k, t = 15) (p) u(k, t = 16)

Figure 4.4: The PDF results of MC simulations (solid blue lines) along with the his-
tograms and the PDF results of the PIDE system (dashed red line) at the end time
steps of 1st (4.4a), 2nd (4.4b), 3rd (4.4c), · · · , 16th (4.4p) period on July 26th, 2018;
∆t = 0.0013,∆k = 0.0009,T = 1 and N = 16
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(a) u(k, t = 1) (b) u(k, t = 2)

(c) u(k, t = 3) (d) u(k, t = 4)

(e) u(k, t = 5) (f) u(k, t = 6)

(g) u(k, t = 7) (h) u(k, t = 8)
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(i) u(k, t = 9) (j) u(k, t = 10)

(k) u(k, t = 11) (l) u(k, t = 12)

(m) u(k, t = 13) (n) u(k, t = 14)

(o) u(k, t = 15) (p) u(k, t = 16)

Figure 4.5: The two-sample Q-Q plots for the numerical PDF results of the PIDE system
against the numerical PDF results of MC simulations at the end time steps of 1st (4.5a),
2nd (4.5b), 3rd (4.5c), · · · , 16th (4.5p) period on July 26th, 2018; ∆t = 0.0013,∆k =
0.0009,T = 1 and N = 16



Chapter 5

Overview & Future Work

In this thesis, we consider how to model and forecast scenarios for solar irradiance.
In Chapter 2, we propose a regime switching model of SDEs with jumps matching the
stochastic properties of solar irradiance, and we calibrate the model using historical GHI
data from Rose Hill, Mauritius. We are able to verify the performance of the model
by a variety of statistical methods. Furthermore, we provide a forecasting method to
simulate future scenarios according to the regime changing process of historical data
for the regime switching model. During this process, we optimize the best combination
of parameters, finding that the best number of periods to split the day into was N = 16,
and the resulting number of regimes was 8. We use the GHI data from January 1st to
January 31st, 2018, to generate the 1-minute GHI series from February 1st to February
28th, 2018, and the total simulation GHI values are just 7% larger than the historical
data.

Next, in Chapter 3, to give a more accurate estimation of the PDF of solar irradiance
for the future, we derive the F-P equation for a generalized OU process x, and propose
a finite difference method using a transformation, to address the singular problem as
x→ 0. Furthermore, we also developed two improved Chang-Cooper methods to work
around this singular problem. We compare these three numerical methods, and test
the stability, accuracy, efficiency and robustness of the numerical results. All three
methods can give better estimations and CPU times are faster than MC simulations,
and we show that our Crank-Nicolson scheme is the best one, which can give the most
accurate numerical results, but it requires a little more CPU time compared with the two

149
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improved Chang-Cooper methods.
In Chapter 4, we derive the F-P equations with jumps corresponding to the regime

switching model of solar irradiance. We construct a PIDE system, and then develop a
finite difference method to solve this system, and give examples when parameters are
calibrated to the GHI data, to examine the model performance. We perform relevant
comparisons with the MC simulations of the regime switching model. We can confirm
and show that the numerical results of the PIDE system are a good approximation to the
PDF of the regime switching model, and lends to more accurate results compared with
MC simulations, whilst the CPU time is quite faster.

5.1 Future Work

5.1.1 Jump Size Distributions

In Chapter 2, we discussed the distributions of positive and negative jump size, sepa-
rately. We selected from normal, exponential and lognormal distributions, and chose
lognormal distributions of both positive and negative jump size. However, P-P and Q-
Q plots shown lognormal distributions cannot fit well at tails in Figs 2.4 and 2.5. In
Chapter 1, we present three papers I performed in my 1st-year PhD study. In Compos-

ite lognormal distributions for cosmic voids in simulations and mocks and New models

for extramarital affairs data, we explored several heavy tail distributions and discussed
the potential applications. We can utilize truncated and composite lognormal distribu-
tions especially composite lognormal distributions to improve both positive and negative
jump size in the future work.

5.1.2 Solar Energy Pricing

When it comes to how we see our models being used, we imagine that the forecast
scenarios easily generated by the methods outlined in this thesis can be used to plan
investments and price financial contracts depending on solar energy.

For instance, the solar energy output can be easily calculated being the forecast GHI
data. Given 1-minute GHI data, we can obtain the total solar energy output P(t,T )
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during the time period between t and T as

P(t,T ) =
∫ T

t
η(τs)GHI(s)ds, (5.1)

where

• η(τs) is the factor of PV energy output, which is the solar energy generated per
solar unit;

• τs is the PV cell temperature in the current time step s;

• GHI(s) is the global horizontal irradiance (W/m2) recorded at time s, which is
defined in Eq. (2.1).

Now, due to the formula of the clearness index (2.1), we can also write this as

P(t,T ) =
∫ T

t
η(τs)G(s)Ksds, (5.2)

where

• G(s) is the extraterrestrial irradiance on the horizontal plane and Ks is the clear-
ness index, which are defined as Eq. (2.1).

The conversion factor η(τs) of PV energy system is strongly correlated with the
temperature of the PV cell, and the general temperature measured for the PV system
is over the range of 25− 75◦C. This factor has been analysed and measured in many
authors. In [52], the temperature coefficient of power can be approximated by

η(τs)≈
µVoc

Vmp
, (5.3)

where

• µVoc is the temperature coefficient of the open-circuit voltage [V/◦C];

• Vmp is the voltage at the maximum power point under standard test conditions [V ].

If we assume the factor of solar energy output η(τs) = C during the time period
between t and T , where C is constant and C ∈ [0,1]. Then, we can simplify the total
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solar energy P(t,T ) by the integration of solar irradiance during the time period t and T

P(t,T ) =
∫ T

t
CG(s)Ksds. (5.4)

Given Ks is stochastic, we may want to know expected energy output

P̄(t,T ) = E
[∫ T

t
CG(s)Ksds

]
(5.5)

=
∫ T

t

∫ kmax

kmin

u(k,s)CG(s)kdkds. (5.6)

Since we can estimate the PDF u(Ks,s) of the future solar irradiance at time s by the
F-P equation (with jumps), we would then be able to price a variety of financial contracts
depending on the power output. One obvious example that would be easily integrated
into our methods would be to look at calculating the rate limited output. Consider a solar
farm is placed in a location where the delivery to the grid is capped at some maximum
value Pmax, then the total energy delivered can be calculated as

P̄(t,T ) =
∫ T

t

∫ kmax

kmin

u(k,s)min(CG(s)k,Pmax)dkds, (5.7)

where kmax and kmin are maximum and minimum values of the clearness index Ks and
are equivalent to 1.5 (for example) and 0 in our regime switching model (2.12), respec-
tively.

Similarly, if there were to be a lower bound on output, i.e. a minimum stable export
limit Pmin, this can be calculated as follows

P̄(t,T ) =
∫ T

t

∫ kmax

kmin

u(k,s)max(CG(s)k,Pmin)dkds, (5.8)

where kmax and kmin are maximum and minimum values of the clearness index Ks as Eq.
(5.7).

Obviously once we start talking about financial contracts, this is only half the story,
as we must also consider the price received for delivering the energy to the market. So
this leads us towards extending the model to include stochastic prices as well. Given that
electricity prices in the future could be highly correlated with weather conditions, we
would need to consider a joint model and calculate probability distributions that factor
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in models for solar energy and the price of electricity.

5.1.3 The 2-dimensional F-P Equation

Now let us briefly outline what a model including both solar energy and electricity price
might look like if we were to try and calculate the joint probability distribution using a
F-P formulation. The solution of such a problem might be an appropriate starting point
for a new research project.

Consider the N-dimensional F-P equation of the generalised OU process:

∂u
∂t

+
N

∑
n=1

(
∂

∂xn
(κn(θn− xn))u

)
− 1

2

N

∑
n=1

N

∑
m=1

(
∂2

∂xn∂xm
(σnσmρnmxγn

n xγm
m u)

)
= 0, (5.9)

where ρmm = 1, and ρnm = ρmn.
Consider the case N = 2, with (x1,x2), then Eq. (5.9) becomes

∂u
∂t

+
∂

∂x1
{(κ1θ1−κ1x1)u}+

∂

∂x2
{(κ2θ2−κ2x2)u}−

1
2

σ
2
1

∂2

∂x2
1
{x2γ1

1 u}

−σ1σ2ρ12
∂2

∂x1∂x2
{xγ1

1 xγ2
2 u}− 1

2
σ

2
2

∂2

∂x2
2
{x2γ2

2 u}= 0. (5.10)

We set u(x1,x2, t) = x−2γ1
1 x−2γ2

2 v(x1,x2, t) to address singular behaviours, then we obtain

x−2γ1
1 x−2γ2

2
∂v
∂t

+
∂

∂x1
{(κ1θ1−κ1x1)x

−2γ1
1 x−2γ2

2 v}+ ∂

∂x2
{(κ2θ2−κ2x2)x

−2γ1
1 x−2γ2

2 v}

−1
2

σ
2
1

∂2

∂x2
1
{x−2γ2

2 v}−σ1σ2ρ12
∂2

∂x1∂x2
{x−γ1

1 x−γ2
2 v}− 1

2
σ

2
2

∂2

∂x2
2
{x−2γ1

1 v}= 0. (5.11)

Hence,

∂v
∂t
− 1

2
σ

2
1x2γ1

1
∂2v
∂x2

1
− 1

2
σ

2
2x2γ2

2
∂2v
∂x2

2
+
[
κ1(θ1− x1)+σ1σ2ρ12γ2xγ1

1 xγ2−1
2

]
∂v
∂x1

+
[
−2γ1κ1θ1x−1

1 − (1−2γ1)κ1−2γ2κ2θ2x−1
2 − (1−2γ2)κ2−σ1σ2ρ12γ1γ2xγ1−1

1 xγ2−1
2

]
v

+
[
κ2(θ2− x2)+σ1σ2ρ12γ1xγ1−1

1 xγ2
2

]
∂v
∂x2
−σ1σ2ρ12xγ1

1 xγ2
2

∂2v
∂x1∂x2

= 0. (5.12)
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If we set x1 = eX1 and x2 = eX2 (analogical with Chapter 3), then

∂v
∂x1

= e−X1
∂v

∂X1
, (5.13)

∂v
∂x2

= e−X2
∂v

∂X2
, (5.14)

∂2v
∂x1∂x2

= e−X1e−X2
∂2v

∂X1∂X2
, (5.15)

∂2v
∂x2

1
= e−2X1

∂2v
∂X2

1
− e−2X1

∂v
∂X1

, (5.16)

∂2v
∂x2

2
= e−2X2

∂2v
∂X2

2
− e−2X2

∂v
∂X2

. (5.17)

Eq. (5.12) becomes

∂v
∂t

+

[
1
2

σ
2
1e(2γ1−2)X1 +κ1(θ1e−X1−1)+σ1σ2ρ12γ2e(γ1−1)X1+(γ2−1)X2

]
∂v

∂X1

+

[
1
2

σ
2
2e(2γ2−2)X2 +κ2(θ2e−X2−1)+σ1σ2ρ12γ1e(γ1−1)X1+(γ2−1)X2

]
∂v

∂X2

+
[
−κ1(2γ1θ1e−X1 +1−2γ2)−κ2(2γ2θ2e−X2 +1−2γ2)−σ1σ2ρ12γ1γ2e(γ1−1)X1+(γ2−1)X2

]
v

−σ1σ2ρ12e(γ1−1)X1+(γ2−1)X2
∂2v

∂X1∂X2
− 1

2
σ

2
1e(2γ1−2)X1

∂2v
∂X2

1
− 1

2
σ

2
2e(2γ2−2)X2

∂2v
∂X2

2
= 0. (5.18)

Furthermore, the conservation condition of this 2-dimensional F-P equation be-
comes ∫ x1max

x1min

∫ x2max

x2min

u(x1,x2, t)dx1dx2 (5.19)

=
∫ X1max

X1min

∫ X2max

X2min

e(1−2γ1)X1+(1−2γ2)X2v(X1,X2, t)dX1dX2 (5.20)

= 1, (5.21)

where

• x1min and x1max are the minimum and maximum values of x1, respectively. X1min =

logx1min and X1max = logx1max. Hence, if x1min = 0, X1min =−∞;

• x2min and x2max are the minimum and maximum values of x2, respectively. X2min =
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logx2min and X2max = logx2max. Hence, if x2min = 0, X2min =−∞.

With the help of a 2-dimensional F-P equation, we could analyse the data set in
financial market. For example, [91] utilized a 2-dimensional F-P equation to describe
the volumes on both queue dynamics for large tick assets, and analysed five stocks on
the NASDAQ platform. [92] presented the dynamics and forecasting of trades in a
sliding window by a 2-dimensional F-P equations, and verified the model by the rows
indices trading on the Ukrainian stock market including quotation price, trading volume
and spread.

Above all, we could apply our regime switching model (2.12) and F-P equations
to analyse, simulate and forecast the solar irradiance and energy data, and price the
contracts in the energy and financial fields.
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Appendix A

Coding

Please see more details of coding in my GitHub: https://github.com/mbbxwxs2/PhD.
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