
NONLINEAR EIGENVALUE PROBLEMS:
THEORY AND ALGORITHMS

A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2021

Gian Maria Negri Porzio
Department of Mathematics

CONTENTS

list of figures 3

list of tables 5

abstract 6

declaration 7

copyright statement 8

acknowledgements 9

publications 10

1 introduction 11

1.1 Prerequisites 12

1.2 The Nonlinear Eigenvalue problem 16

1.3 Applications 23

1.4 Structure of the thesis and contributions 28

2 contour integral methods for meromorphic eigenvalue
problems 30

2.1 Introduction 30

2.2 Theoretical background 32

2.3 The RIM algorithm 50

2.4 Beyn’s algorithm 61

3 practical considerations on contour integral methods 85

3.1 Introduction 85

3.2 The NLEVP 4.x library 86

3.3 The choice of the parameters 88

3.4 The influence of the quadrature rules 94

3.5 The refinement strategies 110

3.6 Final remarks 120

4 robust rational approximations of nonlinear eigenvalue
problems 122

4.1 Error analysis of approximated eigenpairs 123

4.2 A brief overview of current rational approximation techniques 127

4.3 A two-phase algorithm for black-box functions 140

4.4 Robustness of the rational approximants 151

4.5 Comparison with the contour solver algorithm 161

4.6 Final remarks 168

5 tropical roots of tropical laurent series 170

5.1 Introduction 171

5.2 From tropical polynomials to tropical series 174

5.3 Tropicalization of analytic functions 187

5.4 Applications 202

5.5 Final remarks 206

6 conclusions 208

Word count: 70268

2

L I ST OF F IGURES

Figure 1.1 The scheme of the buckling problem in rigid-jointed triangu-
lated shaped plane frame. 24

Figure 1.2 The phase-conjugate of the laser wave is reflected back by the
mirror as a feedback. 26

Figure 1.3 The core (light grey) and the cladding (dark grey) of an optical
fiber. 27

Figure 1.4 One dimensional scheme with contacts starting at x “ xL and
x “ xR. 28

Figure 2.1 On the left, a symmetric region Ω with respect to the real line
and S “ 4: RIM returns two approximations (orange circles)
for each real eigenvalue (blue stars); on the right, the same
region with S “ 9: the real eigenvalues are now approximated
with a single value. 54

Figure 2.2 The different lattices of contour integrals if one uses a different
number of subregions. The choice S “ 4 return complex con-
jugate pairs instead of real eigenvalues. The small red points
are the approximated eigenvalues. 56

Figure 2.3 RIM integrals to compute the butterfly eigenvalues with ε “
0.05. 57

Figure 2.4 An edge scenario which shows that a robust and fast imple-
mentation of the cleaning strategy is quite difficult. The blue
stars are the eigenvalues, the orange circles are the standard
returned approximations, while the green circle the “cleaned”
approximations. 58

Figure 3.1 Error of the approximation of the moments Ak P R64ˆ64 (left)
and backward error of the eigenpairs in Ω1 (right) for the
butterfly problem. 97

Figure 3.2 Error of the approximation of the moments Ak P R30ˆ30 (left)
and backward error of the eigenpairs in Ω1 (right) for the
hadeler problem. 97

Figure 3.3 The forward error of the approximation pλ to the eigenvalue
λ “ 0 for different values of the pole ξ P r0.5, 1r. 101

Figure 3.4 Absolute values of the filter functions b0pzq and bσpzqwith N “

32, σ “ 2. 107

Figure 3.5 Left plot: Backward errors of the eigenpairs computed by the
Hankel algorithm (top) and the Loewner algorithm (bottom)
for different positions of the outer eigenvalues. Right plot: the
profile of |b0pzq| and |bσpzq|. 109

Figure 3.6 112

Figure 3.7 113

Figure 3.8 The backward error of the 25 eigenpairs of the pdde_symmetric

problem with different kind of refinements. 119

3

4 list of figures

Figure 4.1 Demonstration of four different choices for the contour BΩ0 (a
circle of centre 0 and radius αρ) for the Cauchy approximation
of G in (4.8) on Ω, the disk of centre 0 and radius ρ “ 3. 140

Figure 4.2 Demonstration of four different choices for the rational ap-
proximation of a scalar function, including our proposed d-
cyclic Leja–Bagby procedure (d “ 10). 148

Figure 4.3 The set Σ, the interpolation nodes σi and the poles ξi nearest
to Σ for a subset of the problems in Table 4.3. 160

Figure 4.4 The backward error for all the algorithms and the problems in
Table 4.8. 165

Figure 4.5 The timings in second for the algorithms to return the eigen-
pairs. We can see that the contour algorithms are generally
faster. See also Table 4.9. 167

Figure 5.1 The plot of t̂ f pxq (5.1) and its tropical roots αj in 5.1a and a
zoomed in in 5.1b, where we can clearly see that αj are the
points of nondifferentiability. 178

Figure 5.2 Examples of possible scenarios for g2pxq (black dashed line).
In 5.2a the new non differentiable point is the rightmost one,
hence it becomes a distinct tropical root with multiplicity one.
In 5.2b it superposes with a previous one, hence the multiplic-
ity of the rightmost tropical root is larger than one. 181

Figure 5.3 The Newton polygon of t̂ f pxq. The two tropical roots α˘8 are
clearly visible. 189

Figure 5.4 The (truncated) Newton polygon of t̂ f pxq. The slopes con-
verge from below to 0. 189

Figure 5.5 Lines considered by the Graham Scan algorithm in Example 5.6.
The algorithm does not terminate within a finite number of
slope comparisons. 200

Figure 5.6 In Figure 5.6a the Newton polygon of t̂ ex (in blue) and the
one associated with t̂ gpxq (in red). In Figure 5.6b the exclu-
sion annuli obtained from Theorem 5.16 and the approximated
roots. 203

Figure 5.7 In Figure 5.7a the Newton polygon of t̂ f45pxq (in blue) and the
one associated with t̂ gpxq (in red). In Figure 5.7b the exclu-
sion annuli obtained from Theorem 5.16 and the approximated
roots. 204

Figure 5.8 The (truncated) Newton polygon of t̂ Gpxq. We can see the
first 3 tropical roots. 207

L I ST OF TABLES

Table 2.1 Summary of the most important symbols used in this chap-
ter. 42

Table 3.1 New problems in NLEVP version 4.0 and 4.1. 88

Table 4.1 Backward errors for approximate eigenpairs of Gpzq in (4.8)
computed as eigenpairs of Rpmqpzq. 126

Table 4.2 Absolute and relative errors for approximate eigenvalues of
Gpzq in (4.8) computed as eigenvalues of Rpmqpzq. 127

Table 4.3 List of benchmark examples from the NLEVP collection, their
type and size, the target set Ω (disc or half disc), and the num-
ber of eigenvalues in Ω. For the canyon_particle problem,
γ “ ´9ˆ 10´2 ` 10´6i. The fiber and sandwich_beam prob-
lems are holomorphic on their respective target set if we re-
move the negative real numbers. Similarly, schrodinger_abc
is holomorphic on Ωzr´15,´10r. 153

Table 4.4 Degree of Rpmqpzq for ε “ 10´7 and 24 problems. The low-
est degrees are highlighted in bold/blue, including any within
one of the lowest. We excluded those corresponding to a failed
required accuracy and we provided them within square brack-
ets. A ’‹’ indicates that the algorithm reached the maximum
number of steps. 156

Table 4.5 Accuracy
∥∥F´ Rpmq

∥∥
Σ
{‖F‖

Σ
for ε “ 10´10 and 21 problems.

Any relative error above ε is highlighted in red and consid-
ered as a fail. A ’‹’ indicates that the algorithm reached the
maximum number of steps, i.e., 60. 157

Table 4.6 Degree of Rpmqpzq for ε “ 10´10 and 21 problems. The lowest
degrees are highlighted in bold/blue including any within one
of the lowest and excluding those corresponding to a failed re-
quired accuracy that are provided within square brackets). A
’‹’ indicates that the algorithm reached the maximum number
of steps, i.e., 60. 158

Table 4.7 Degree of Rpmqpzq for ε “ 10´13 and 21 problems. The lowest
degrees are highlighted in bold/blue including any within one
of the lowest and excluding those corresponding to a failed re-
quired accuracy that are provided within square brackets). A
’‹’ indicates that the algorithm reached the maximum number
of steps, i.e., 60. 159

Table 4.8 Number of eigenvalues retrieved by the algorithms, with max-
imum and minimum backward error. In purple we highlighted
the problems where the rational approximant algorithms used
eigs as eigensolver. In red we highlighted the entries where
the incorrect number of eigenvalues is returned. See also Fig-
ure 4.4. 166

Table 4.9 The timings. In red we highlighted the entries larger than 10
seconds. See also Figure 4.5 for a visual representation. 167

5

ABSTRACT

In this thesis we focus on the theoretical and computational aspects of nonlinear
eigenvalue problems (NEPs), which arise in several fields of computational science
and engineering, such as fluid dynamics, optics, and structural engineering. In the
last twenty years several researchers devoted their time in studying efficient and
precise ways to solve NEPs, which cemented their importance in numerical linear
algebra. The most successful algorithms developed towards this goal are either based
on contour integrals, or on rational approximations and linearizations.

The first part of the thesis is dedicated to contour integral algorithms. In this frame-
work, one computes specific integrals of a holomorphic function Gpzq over a contour
BΩ and exploits results of complex analysis to retrieve the eigenvalues of Gpzq inside
Ω. Our main contribution consists in having expanded the theory to include mero-
morphic functions, i.e., functions with poles inside the target region Ω. We showed
that under some circumstances, these algorithms can mistake a pole for an eigenvalue,
but these situations are easily recognised and the main results from the holomorphic
case can be extended. Furthermore, we proposed several heuristics to automatically
choose the parameters that are needed to precisely retrieve the eigenpairs.

In the second part of the thesis, we focus on rational approximations. Our goal
was developing algorithms that construct robust, i.e., reliable for a given tolerance
and scaling independent, rational approximations for functions given in split form
or in black-box form. In the first case, we proposed a variant of the set-valued AAA,
named weighted AAA, which guarantees to return an approximation with the chosen
accuracy. In the second one, we built a two-phase approach, where an initial step
performed by the surrogate AAA is followed by a cyclic Leja–Bagby refinement. We
concluded the section with numerous numerical experiments based on the NLEVP
library, comparing contour integral and rational approximation algorithms.

The third and final part of the thesis is about tropical linear algebra. Our research
on this topic started has a way to set the parameters of the aforementioned contour
integral algorithms: in order to do that, we extended the theory of tropical roots
from tropical polynomials to tropical Laurent series. Unlike in the polynomial case,
a tropical Laurent series may have infinite tropical roots, but they are still in bijection
with the slopes of the associated Newton polygon and they still provide annuli of
exclusion for the eigenvalues of the Laurent series.

6

DECLARAT ION

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other
institute of learning.

7

COPYR IGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has from
time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written permis-
sion of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=
24420), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.library.

manchester.ac.uk/about/regulations) and in The University’s Policy on Pre-
sentation of Theses.

8

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations
http://www.library.manchester.ac.uk/about/regulations

ACKNOWLEDGEMENTS

This thesis marks the end of my PhD, hence is the perfect place to ponder on my
three years and half spent at the University of Manchester. First, I would like to ex-
press my deepest gratitude to my supervisor, Prof. Françoise Tisseur. She has always
been supportive and ready to give precious advice. I could not have wished for a
better mentor, both humanly and professionally. Further, I would like to thank all the
other members of the NLA Group, especially Prof. Nicholas J. Higham and Dr. Stefan
Güttel, whom I had the pleasure to work with and have been continuous sources of
inspirations. I also thank my examiners, Dr. Marcus Webb and Prof. Marc Van Barel,
who helped me improve this work with their advice.

I thank my parents, Oriana and Luigi, who have always been there during all this
time, from when I was a child to the entirety of my academic career. If I became the
man I am today, I owe it all to them. Similarly, I cannot forget my extended family,
so I am grateful to Gianfilippo, Tiziana, Gianluca and Luana for the precious time we
spent together, even if it was not a lot given the distances across us.

The pandemic was a hard toll on everyone of us and we will remember it for our
lifetime, from when we thought it would end in a couple of months to when we got
used to work and teach from home. Writing the thesis far away from the Department
and without the everyday routine added another layer of difficulty. Nevertheless, I
consider myself lucky because I finally had the possibility to live with my girlfriend,
Lucia. Thank you, my dear: without you this period would have been unbearable.

I shared Office 2.111 with fantastic people. Thank you Mante, Mila, Tom, Michael,
Bob, and Xynie for all the nice time we spent on solving problems – and all the other
moments I should not mention here. A special thank goes to Massimiliano, with
whom I shared many late night sessions, where we thought about our research be-
tween Korean take-away or a home-made dinner.

My last acknowledgements go to my other colleagues. Marco, thanks for your
support, the experiences and the trips together; Natasha and Gab, you have been
wonderful flatmates; Dom, Floriana, and Filippo, thank you for all the sports and the
dinners we organised. Finally, my apologies go to all the people that left a mark on
my life in Manchester, but I could not include in these pages. Even if your name does
not appear, I surely recall with joy every moment we spent together. If you ever read
these pages, I wish all of you a bright and happy future.

9

PUBL ICAT IONS

‚ Chapter 2 is partially based on the manuscript: Gian Maria Negri Porzio and
Françoise Tisseur. Contour integral methods for meromorphic eigenvalue problems,
currently under preparation.

‚ Chapter 3 is partially based on the manuscript above-mentioned and on the
technical report: Nicholas J. Higham, Gian Maria Negri Porzio, and Françoise
Tisseur. An Updated Set of Nonlinear Eigenvalue Problems. MIMS EPrint
2019.5, Manchester Institute for Mathematical Sciences, The University of Manch-
ester, UK, 2019.

‚ Chapter 4 is based on the article: Stefan Güttel, Gian Maria Negri Porzio, and
Françoise Tisseur. Robust Rational approximations of Nonlinear Eigenvalue
Problems. Submitted to SIAM J. Sci. Comput., currently under revision.

‚ Chapter 5 is based on the manuscript: Gian Maria Negri Porzio, Vanni Noferini,
and Leonardo Robol. Tropical Laurent series, their tropical roots, and localiza-
tion results for the eigenvalues of nonlinear matrix functions. Submitted to
Mathematics of Computation.

10

http://eprints.ma.man.ac.uk/2699
http://eprints.maths.manchester.ac.uk/2796/1/gnt20.pdf
http://eprints.maths.manchester.ac.uk/2796/1/gnt20.pdf
https://arxiv.org/pdf/2107.07982.pdf
https://arxiv.org/pdf/2107.07982.pdf

1 I NTRODUCT ION

Often during my experience as a PhD student, family and friends asked what I was

studying and what I was working on. At the beginning, my answers were a mix of

babbling and hesitation: how could I have explained nonlinear eigenvalue problems

to them? Nevertheless, after a while I became an expert of this art and, in hind-

sight, the solution was natural: eigenvalue problems are everywhere around us and

bringing examples is the best way to explain what we study to non-technical acquain-

tances. For instance, the PageRank algorithm transformed the way people surf on

the web; quadratic eigenvalue problems lie behind most of the model of mechanical

systems, such as vibration analysis and fluid dynamics; exponential problems are

used to model delay-differential equations (DDE), for example, in electronic devices.

In the last twenty years researchers have made great strides in linear, but also poly-

nomial and rational eigenvalue problems. Therefore it is in human nature to tackle

generalisations and asking further questions.

The goal of this thesis is adding another piece to the puzzle that are the nonlinear

eigenvalue problems, with the hope of enlightening the next small section of the

knowledge path to future researchers. This chapter serves as a smooth transition to

the technical parts of the thesis. It is structured as follows. In Section 1.1 we revise

the mathematical background the reader should master before approaching the core

of the thesis. In Section 1.2 we describe the nonlinear eigenvalue problem, mainly

pointing out the differences with its simpler linear counterpart. Finally, Section 1.3

is dedicated to the descriptions of real world applications, while in Section 1.4 we

delineate the structure of the thesis.

11

12 introduction

1.1 prerequisites

The main goal of this section is setting the necessary definitions and notation that we

will be using throughout the thesis. We start with the basics: given a matrix A P Cnˆn,

we say that λ P C is an eigenvalue of A if

detpA´ λIq “ 0,

or, equivalently, if there exists a right eigenvector and a left eigenvector v, w P Cnˆnzt0nu

such that

pA´ λIqv “ 0n,

w˚pA´ λIq “ 0˚n.
(1.1)

We will usually drop the adjective “right” and we will say the “eigenvector v” [GV96,

Chapter 2]. This does not cause any loss of generality, because the left eigenvectors

w of A are the right eigenvectors of A˚. The set

ΛpAq :“ tλ : detpA´ λIq “ 0u

is called the spectrum of A and consists of all the eigenvalues of A [GV96, Chapter 7].

It is evident that the number of distinct eigenvalues, say s, is always less or equal

than n. Further, the multiplicity of λ as a root of detpA´ λIq is called the algebraic

multiplicity of λ. Similarly, the eigenvectors of λ, together with the zero vector, form a

subspace of Cnˆn, which is called the eigenspace of λ. The dimension of the eigenspace

is called the geometric multiplicity of λ and one can prove that it is always less or equal

than its algebraic multiplicity. We say that an eigenvalue is simple when the algebraic

multiplicity is equal to 1, and it is semisimple when the geometric multiplicity is equal

to the algebraic one. When it is strictly less, we can find the so-called generalised eigen-

vectors; the subspace spanned by the eigenvectors and all the generalised eigenvectors

of λ is equal to the algebraic multiplicity. In addition, (generalised) eigenvectors of

1.1 prerequisites 13

different eigenvalues are independent from each other. Hence, all together they form

a basis of Cn and allow us to decompose A in its Jordan Canonical Form.

Definition 1.1 (Jordan Canonical Form [GV96, Chapter 7]). Consider A P Cnˆn. Then

there exists an invertible matrix U such that

A “ U´1 JU “ diagpJ1, . . . , Jpq

where Jk is a Jordan block and has the form

Jk “

»

—

—

—

—

—

—

—

–

λk 1
.

. . . 1

λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Further, J is unique up to block permutations.

Now we focus our attention on a target complex region Ω Ă C. If not specified

otherwise, Ω is a nonempty, open, simply connected, bounded set. Furthermore, we

assume its contour BΩ is piecewise C1, so that we can compute integrals over it. In

addition, we assume Ω0 Ą Ω is an open neighbourhood of Ω. The canonical example

of Ω is an open disk centered in γ with radius ρ ą 0, which we denote with Dpγ, ρq.

Matrix-valued functions are the second main ingredient. We write

G : Ω0 Ñ Cnˆn.

z ÞÑ Gpzq “
řs

j“1 gjpzqAj,
(1.2)

and we say that Gpzq is in split form if we have direct access to the scalar functions

gjpzq and to the matrix coefficients Aj. Alternatively, we say that Gpzq is in black-box

form if we are only allowed to compute its values at specific points zi and we have no

information on the scalar functions gjpzq or the matrix coefficients Aj.

We mainly work with a specific class of smooth functions.

14 introduction

Definition 1.2 (Holomorphic functions [Car95]). Let G : Ω0 Ñ Cnˆn be a matrix-

valued function. If the derivative of Gpzq at the point z0

G1pz0q “ lim
zÑz0

Gpzq ´ Gpz0q

z´ z0

is well-defined at every z0 P Ω0, we say that Gpzq is a holomorphic function (from Ω0 to

Cnˆn) and we write G P HpΩ0, Cnˆnq or G P HpΩ0q when there are no ambiguities.

Simple examples of holomorphic functions are the polynomials, the exponential,

the sine, and the cosine. Rational functions are generally not holomorphic, because

their derivative is not defined at the points where they are equal to infinity. More

precisely, given Gpzq as in (1.2), we say that ξ is a pole of Gpzq if there exists j such

that 1{gjpξq “ 0. A function with this property is said to be meromorphic.

Definition 1.3 (Meromorphic functions [Car95]). Consider F : Ω0 Ñ Cnˆn. If Fpzq is

holomorphic on Ω0 except on a set of isolated poles, then we say that Fpzq is a mero-

morphic function (from Ω0 to Cnˆn) and we write Fpzq P MpΩ0, Cnˆnq or alternatively

Fpzq PMpΩ0q when there are no ambiguities.

From now on, we will use the letter G when we want to underline that the function

is holomorphic, while the letter F will be suited for the meromorphic case. Let ξ P Ω0

be a pole of Fpzq. The multiplicity of ξ is defined as the smallest integer c ě 1 such

that pz´ ξqcFpzq is holomorphic at ξ; if c is equal to one, we say that ξ is simple.

Notice that we can always write a meromorphic function f pzq as f pzq “ g1pzq{g2pzq,

with gipzq P HpΩ0, Cq. Further, assume Fpzq P MpΩ0, Cnˆnq: given that the set of

poles of Fpzq is always discrete, then it is compact in Ω :“ Ω Y BΩ, hence there

always exists a polynomial gpzq P Crzs whose roots are the poles of Fpzq in Ω such

that Gpzq :“ gpzqFpzq P HpΩ, Cnˆnq.

These two classes of functions have several properties. For example, all the deriva-

tives Gpnqpzq exist, even though Definition 1.2 requires only the first one to be defined.

This allows us to define gpAq thanks to the Jordan canonical form.

1.1 prerequisites 15

Definition 1.4 (Matrix function via Jordan Canonical Form [Hig08, Chapter 1]). Let

gpzq P HpΩ0, Cq, let A have the Jordan canonical form A “ U´1 JU, and assume that

ΛpAq Ă Ω. Then

gpAq :“ U´1gpJqU,

where

gpJijq “

»

—

—

—

—

—

—

—

—

–

gpλiq g1pλiq . . . gpmi,j´1q
pλiq

pmi,j´1q!

gpλiq
. . .

...
. . . g1pλiq

gpλiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cmi,jˆmi,j

It is possible to define gpAq in another way, but first we need to state two important

results by Cauchy.

Theorem 1.1 (Cauchy’s Integral Theorem [AF21]). Let gpzq P HpΩ0, Cq. Then

ż

BΩ
gpzq dz “ 0.

Theorem 1.2 (Cauchy’s Integral Formula [AF21]). Let gpzq P HpΩ0, Cq, a P Ω. Then

gpaq “
1

2πi

ż

BΩ

gpzq
z´ a

dz.

Cauchy’s integral formula naturally extends to matrices A P Cnˆn and hence we

have the following elegant statement of gpAq for g P HpΩ0, Cq, which is equivalent to

Definition 1.4.

Theorem 1.3 (Matrix function via Cauchy’s Integral Formula [Hig08, Chapter 1]). Let

gpzq P HpΩ0, Cq and let A P Cnˆn such that ΛpAq Ă Ω. Then

gpAq :“
1

2πi

ż

BΩ
gpzqpzI ´ Aq´1 dz.

16 introduction

Theorem 1.4 (Identity theorem [AF21]). Let F1pzq, F2pzq PMpΩ0, Cnˆnq and let pzjqjPN Ă

Ω be a sequence with an accumulation point in Ω. If F1pzjq “ F2pzjq for every j P N, then

F1pzq ” F2pzq in Ω.

The previous results underline how smooth holomorphic functions are. Cauchy’s

integral formula tells us that as soon as we know their values on BΩ, then we know

their values in all Ω. Similarly, the Identity theorem reveals that we only have to

know the values of Fpzq on a sequence with an accumulation point to identify it. This

also implies that all the zeros of a nonzero meromorphic function are discrete, just

like their poles. Finally, we can say a lot more on the number of zeros (and poles) of

f pzq PMpΩ0, Cq in Ω: it only depends on the values of f pzq and f 1pzq on BΩ.

Theorem 1.5 (Cauchy’s argument principle [AF21]). Let f pzq PMpΩ0, Cq and assume

it has nr zeros and np poles in Ω and no poles nor zeros on BΩ. Then

nr ´ np “
1

2πi

ż

BΩ

f 1pzq
f pzq

dz.

1.2 the nonlinear eigenvalue problem

Definition 1.5 (Nonlinear eigenvalue problem). Consider Fpzq P MpΩ0, Cnˆnq. The

nonlinear eigenvalue problem (NEP) consists in finding all the scalars λ P Ω where Fpzq

is well-defined, the eigenvalues, and the corresponding nonzero vectors v, w P Cnzt0u,

the right and left eigenvectors, such that

Fpλqv “ 0, w˚Fpλq “ 0. (1.3)

The pair pλ, vq is a right eigenpair of F, while pλ, w˚q is a left eigenpair.

1.2 the nonlinear eigenvalue problem 17

Remark 1.1. Asking that Fpzq is well-defined at the eigenvalue λ is a technicality to

avoid the edge-case scenario where λ is a pole, but also satisfies (1.3). For example,

without that hypothesis λ “ 0 would be an “eigenvalue” of

Fpzq “

»

—

–

z z´1

0 z´1

fi

ffi

fl

with e1 as an eigenvector. In addition, (1.3) would not be equivalent to detpFpλqq “ 0.

We can easily see that (1.3) is a generalisation of (1.1), where Fpzq “ A´ zI. Hence,

most of the terminology for the nonlinear eigenvalue problem comes directly from

its linear counterpart. For instance, the algebraic and the geometric multiplicity

of an eigenvalue λ are defined in the same way, and the same is true for simple

and semisimple eigenvalues. Finally, we denote the spectrum of Fpzq by ΛpFq, the

eigenspace of λ by nullpFpλqq, and we say that Fpzq is regular if detpFpzqq does not

vanish identically in Ω.

Remark 1.2. The regularity condition implies that the set of eigenvalues of Fpzq is

finite in Ω. In fact, if it were not finite, then it would have an accumulation point in

Ω, which would yield that detpFpzqq ” 0 in Ω by the Identity theorem 1.4.

There have been intermediate steps between pA ´ λIqv “ 0 and Fpλqv “ 0. As

mentioned, everything started with the

‚ linear eigenvalue problem (LEP)

pA´ λIqv “ 0,

where A P Cnˆn. One of the most well-studied problems in linear algebra,

nowadays the golden standard to solve it for small, dense, and unstructured

matrices is the QR algorithm [Fra61a; Fra61b; Kub61], while the Arnoldi algo-

rithm with its generalisations is best suited for large and sparse matrices, where

only a small subset of the eigenpairs is needed. When the identity matrix is sub-

stituted by any matrix B P Cnˆn, then we have the generalised eigenvalue problem.

18 introduction

Similar procedures can be used for the GEP, such as the QZ algorithm by Moler

and Stewart [MS73].

‚ The next step is the quadratic eigenvalue problem (QEP)

pλ2M` λC` Kqv “ 0,

where M, C, K P Cnˆn. Quadratic eigenvalue problems usually appear in second-

order differential equations, fluid dynamics, and vibration systems, hence the

M, C, K are the ordinary letters used in these problems, because they represent

the mass term, the damping term, and the stiffness term matrix, respectively.

We direct the reader to the monumental survey by Tisseur and Meerbergen

and its references for the properties of the QEP [TM01]. In 2013 Hammarling,

Munro, and Tisseur introduced the quadeig algorithm, which is backward sta-

ble for problems which are not too heavily damped [HMT13]. In 2014, Zeng

and Su used a tropical scaling in conjunction with a modification of quadeig to

develop an algorithm which is always backward stable [ZS14].

‚ Quadratic eigenvalue problems are a subclass of the polynomial eigenvalue prob-

lem (PEP)

¨

˝

d
ÿ

j“0

λj Aj

˛

‚v “ 0,

where Aj P Cnˆn. Similarly to the QEPs, they often appear in fluid dynam-

ics [Ors71], optics [ZL08], and plasma physics [TKL05]. A standard algorithm

to solve them is linearization, where the original nˆ n problem becomes a larger

linear one with the same spectral structure. We refer to [ACL09; Cha+19]

and [Mac+06b; Mac+06a] for further details.

‚ Rational eigenvalue problems (REP) have the form

¨

˝

k
ÿ

j“1

njpλq

djpλq
Aj

˛

‚v “ 0,

1.2 the nonlinear eigenvalue problem 19

where Aj P Cnˆn and njpzq, djpzq are scalar polynomials. We refer to [SB11] for

applications and a general overview of this type of problems.

The term “nonlinear” in Definition 1.5 is somewhat ambiguous. First, Equation (1.3)

is indeed nonlinear in the eigenvalue λ, but is linear in the eigenvector v. Problems

where the nonlinearity appears in the eigenvector as well go beyond the scope of this

thesis. Furthermore, some works use this term for matrix-valued functions that are, in

fact, “nonlinear”, hence polynomials and rational functions are included; others, this

thesis included, focus on problems where linearization techniques cannot be directly

applied, thus excluding polynomials and rational functions. Probably “holomorphic

eigenvalue problems” (HEP) or “meromorphic eigenvalue problems” (MEP) would

be better, non-ambiguous choices: unfortunately, they never became established in

the numerical linear algebra community. Finally, we remark that the abbreviation

NEP is not universal: in the literature one may find NLEP, NLEVP, or IEVP (interior

eigenvalue problem [Mor20]). In this thesis we chose NEP for the symmetry with the

other classes of eigenvalue problems.

1.2.1 Eigenvalues and eigenvectors

Another way to see (1.3) is as a generalisation of the root finding problem in higher

dimensions: given a sufficiently smooth function f : C Ñ C, find λ such that f pλq “ 0.

This point of view shows one of the major differences when focusing on NEPs: while

for the other classes of eigenvalue problems the number of eigenvalues is a function

of the size n (e.g., a matrix polynomial of degree d has always dn eigenvalues in

CY t8u), this is no longer true in the nonlinear case. In fact, a regular nonlinear

problem may have

‚ zero eigenvalues, e.g., f pzq “ ez;

‚ finitely many eigenvalues, e.g., f pzq “ ez ´ z4 ` 2;

‚ countably infinite eigenvalues, e.g., f pzq “ cospzq.

20 introduction

Concerning the algebraic and geometric multiplicity of the eigenvalues, as in the

linear case the latter is smaller than the former. However, it is no longer true they

are bounded by the dimension n, see, for instance, f pzq “ zd. Furthermore, the

(generalised) eigenvectors of different eigenvalues are neither independent from each

other (e.g., f pzq “ zpz´ 1q). We will focus more on these aspects at the beginning of

Chapter 2.

Example 1.1. Consider the matrix-valued function

Fpzq “

»

—

–

eiz2
1

1 1

fi

ffi

fl

, (1.4)

which first appeared in [GT17] and is available in the NLEVP library since version 4.0 as

nep1 [Bet+11]. Its spectrum consists of the points t˘
?

2πk | k P Zu, with e1 ´ e2 being

an eigenvector for all of them. All the eigenvalues except for λ0 “ 0 are simple, while the

algebraic multiplicity of λ0 is 2, and the geometric multiplicity is 1.

1.2.2 Classes of algorithms

Even though it does not exist yet a clear best solver for nonlinear eigenvalue prob-

lems, each algorithm broadly falls in one of the following categories: solvers based

on Newton’s method, solvers based on contour integrals, and solvers based on lin-

earisations. In this section we briefly review them and recommend further readings

or previous works on these topics.

Algorithms based on the Newton-Raphson method

The Newton-Raphson’s (or simply Newton’s) method is a natural way to find eigen-

values and eigenvectors of nonlinear functions. In its simplest form, it is an iterative

method to find the simple roots of a scalar function f pzq given the initial point z0.

The iteration reads

zk`1 “ zk ´
f pzkq

f 1pzkq
.

1.2 the nonlinear eigenvalue problem 21

If the initial guess z0 is close enough and the function is at least C1, then the conver-

gence is quadratic. Hence, it seems a valid algorithm to find nonlinear eigenpairs.

In turn, Newton’s methods can be either applied on a scalar function, such as

det Fpzq, in order to find only the eigenvalues; or to the original eigenproblem it-

self to extract both the eigenvalues and the eigenvectors. In the former category

we have the Newton-trace iteration by Lancaster [Lan02], the Newton-QR iteration

by Kublanovskaya [Kub70], or the BDS (border, deletion, substitution) method by

Andrew, Chu, and Lancaster [ACL95]. In the latter we recall the nonlinear inverse

iteration, which was mentioned in 1950 by Unger [Ung50] and deeply analysed by

Ruhe in 1973 [Ruh73].

Among the three categories of nonlinear eigensolvers, the ones based on Newton’s

method present the most serious disadvantages. Even though they only require one

parameter to start, i.e., the initial guess z0, it is fundamentally important: if it is too

far away from the target eigenvalue, then we may not converge there. In addition,

they compute only a single eigenvalue each time we complete a set of iterations,

therefore it may become painfully slow if our goal is computing a large chunk of the

spectrum. In Section 3.5 of Chapter 3 we will discuss some of these methods with

further details.

Algorithms based on linearizations

Since many years linearisation techniques allow to reformulate any polynomial eigen-

value problem as a larger linear eigenvalue problem [ACL09; Mac+06b; Mac+06a]. In

2011, Su and Bai proposed a linearization for rational eigenvalue problems which

preserved the low-rank structure of the matrix coefficients [SB11]. Since then, several

other linearizations have been proposed for rational eigenproblems (see, for instance,

[Güt+14]). It is therefore alluring to locally approximate Fpzq P MpΩ0, Cnˆnq in Ω

with a rational function Rpzq and then use the eigenpairs of Rpzq as the eigenpairs of

Fpzq [Güt+14; Hoc17; EG19]. We can say that these methods are composed by two

independent steps: the rational approximation of Fpzq and the solution of the eigen-

problem related to Rpzq « Fpzq. Chapter 4 is mostly dedicated to the former part.

22 introduction

There we propose algorithms that upon successful execution always return rational

approximations Rpzq such that their eigenvalues in Ω correspond to the eigenvalues

of Fpzq in Ω.

Algorithms based on contour integrals

An elegant way to solve Gpλqv “ 0 for Gpzq P HpΩ0, Cnˆnq is based on Keldysh’s

theorem, which was proved for polynomials in [Kel71] and in [GS71] for holomorphic

functions. It states that for any function Gpzq P HpΩ0, Cnˆnq, we can write

Gpzq´1 “ VpzI ´ Jq´1W˚ ` Rpzq,

for z P Ω, where Rpzq P HpΩ, Cnˆnq, V and W are right and left generalised eigenvec-

tor matrices, and J is a Jordan matrix, i.e., a block-diagonal matrix of Jordan blocks,

whose eigenvalues are the eigenvalues of Gpzq in Ω. Together with Theorem 1.1 it

follows that

ż

BΩ
gpzqGpzq´1 dz “ VgpJqW˚, (1.5)

for any function gpzq P HpΩ, Cq. Several algorithms were hence developed from the

previous result. Here we recall the Sakurai-Sugiura (SS) and its modifications [Asa+09;

Asa+10; Che+17], Beyn’s algorithm [Bey12; BEG20], and FEAST [Pol09; GMP18],

among the most famous ones. The main advantage the authors usually underline

is the incredible versatility they allow. First, they only require a black box form of

Gpzq, since nowhere in the algorithms an explicit knowledge of the matrix coeffi-

cients is needed. Further, they can both be used to retrieve all (or many) eigenvalues

of medium-sized eigenproblems, or only few of them if Gpzq is large and sparse (and

in that case Gpzq´1 is projected on a small subspace). In addition, they guarantee

the discovery of all the eigenvalues in the target region Ω, as opposed to the New-

ton method and to the linearization ones, where we are computing the eigenpairs of

an approximation. Finally, they are highly parallelisable: in fact, we can divide Ω

in smaller subregions Ω1, . . . , Ωs and each of the subproblems will be independent;

1.3 applications 23

furthermore, when (1.5) is approximated with a quadrature rule, each linear system

is independent from each other and thus it can be solved by a different processor.

We will deeply analyse this class of algorithms in Chapters 2 and 3, therefore we

direct the reader to the specific introductions for further details.

1.3 applications

We already hinted that nonlinear eigenvalue problems lie at the heart of many tech-

nologies of our world. In this section we explore some examples from optics, electron-

ics, and mechanics. All of them are included in the “Nonlinear Eigenvalue Problems”

(NLEVP) library since version 4.0 [Bet+11; HNT19].

1.3.1 The buckling of a plane frame

When a solid structure, such as a column, a plane frame or a steel beam, is subjected

to a heavy load, it may suddenly deform and change its shape. In structural engi-

neering, this phenomenon is called buckling. Euler was among the first studying this

subject. He proved that a slender column of length L compressed by a longitudinal

force P maintains its shape until the load reaches

Pn “
n2πEI

L2 , n “ 1, 2, . . . , (1.6)

where E is elasticity coefficient of the column material and I is the moment of inertia.

Nowadays, Pn is known as the n-th mode of Euler’s critical load.

If a finite elements formulation is used, then the buckling problem can be stated as

a generalised eigenvalue problem (see, for instance, [Ant11; BW73]).

Wittrick and Williams avoided this pathway and proposed an algorithm to find the

eigenvalues and eigenvectors of a NEP which correspond to the critical load and the

displacement components of the buckled structure [WW71; WW73]. In Figure 1.1

24 introduction

Figure 1.1: The scheme of the buckling problem in rigid-jointed triangulated shaped plane
frame.

we show a rigid-jointed triangulated plane frame subject to symmetrical loads Wi “

λP1 for i “ 1, . . . , 4, similar to the ones in [WW73, Section V]. We assume that the

beams are inextensible, hence there are no translational displacements. We denote

with θi, for i “ 1, . . . , 5 the rotations of the joints during the buckling: due to the

symmetries in the problem, the buckling must be either symmetric (hence θ3 “ 0) or

antisymmetric. In the latter case, we can identify θ4 with θ1, and θ5 with θ2. Thanks

to physical considerations the nonlinear eigenvalue problem becomes

Fpλq “

»

—

—

—

—

–

f pλq ` 10 f pλqgpλq 2

f pλqgpλq f pλq ` 4 2

2 2 8

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

θ1

θ2

θ3

fi

ffi

ffi

ffi

ffi

fl

“ 0,

where f pλq, gpλq are the stability functions defined by the relationships

f pλqp1` gpλqq “
2λ2 sin λ

sin λ´ λ cos λ
, f pλqp1´ gpλqq “ 2λ cot λ

which are sometimes denoted by spλq and cpλq respectively [LC56]. The NLEVP

library contains a simplified version of this problem, called buckling_plate.

1.3 applications 25

1.3.2 Time-delay systems

Several physical systems need to be modelled through Delay-Differential Equations

(DDE) of the form

9xptq “ A0xptq `
s
ÿ

k“1

Akxpt´ τkq. (1.7)

For instance, every time we input a command in an electronic device, the electric

signal takes some time to reach its destination; during a traffic jam, drivers do not

immediately accelerate or brake when the car in front starts again or stops.

Substituting the sample solution xptq “ eλtv in (1.7) yields the nonlinear eigenvalue

problem

pλI ´ A0 ´

m
ÿ

k“1

Ake´λτkqv “ 0. (1.8)

Retrieving the eigenvalues of (1.8) gives us important information on the stability of

the underlying physical system. See, for example, [Jar12; JM10] or [MN07] and the

references therein. An interesting example is given by a semiconductor laser subject

to a delayed phase-conjugate feedback caused by a reflective mirror, as schematised

in Figure 1.2 [GW06, Section 5]. The equations of the model are

$

’

’

’

&

’

’

’

%

1
τ

dE
dt
“

1
2

”

´iGNpNptq ´ Nsolq `

´

Gptq ´ τ´1
p

¯ı

Eptq ` kE˚pt´ 1q,

1
2

dN
dt

“
I
q
´

Nptq
τe

´ Gptq|Eptq|2,

where Eptq is the complex electric field, Nptq represents the population inversion of

the laser, and Gptq is the nonlinear gain of the electric field, while the other param-

eters are physical constants. It is assumed that the feedback is quite weak, hence

only a single delay term is considered. A linearization of Gptq then leads to a 3-by-3

problem of the form of (1.8) with m “ 1. The name of this problem in the NLEVP

library is laser.

26 introduction

Figure 1.2: The phase-conjugate of the laser wave is reflected back by the mirror as a feed-
back.

1.3.3 Design of optical fibres

Optical fibres are omnipresent in current technologies and allow data transfer at

much higher bandwidth than electrical cables. They are composed by a glass core,

which act as a waveguide for the light, surrounded by a transparent material, the

cladding, with a lower index of refraction, as depicted in Figure 1.3.

Huang, Bai, and Su considered an ideal cylindrical optical fibre, where the cladding

radius R is much larger than the core radius Rc [HBS10]. In the cylindrical coordinate

system pr, θ, zq, Maxwell’s equation for the guided wave function f prq becomes

„

1
r

d
dr

ˆ

r
d
dr

˙

´
m2

r2 ` pk
2prq ´ k2

clq



f “ pβ2 ´ k2
clq f , (1.9)

where m is a positive integer, β is an unknown propagation constant, kcl “ 2πηcl{l

is the wave number in the cladding, l is the light vacuum wavelength, and ηcl is the

cladding refractive index; in addition, kprq “ 2πηpr, lq{l is the wave number in the

glass core, with ηpr, lq being the core refractive index.

Under the model assumptions, the guided wave function has the form

f prq “ aKmpµrq,

where a is an unknown constant, µ “
b

β2 ´ k2
cl, and Km is the m-th order modified

Bessel function of the second kind (see, for example, [AS64, Chapter 9]).

The boundary conditions

f p0q “ 0, f pRq “ µ
K1mpµRq
KmpµRq

1.3 applications 27

Figure 1.3: The core (light grey) and the cladding (dark grey) of an optical fiber.

along with a finite element method of n` 2 equispaced points allow to reinstate (1.9)

as the nonlinear eigenvalue problem

rA´ λI ` spλqeneT
n sv “ 0,

where A is a symmetric tridiagonal matrix and

spzq “
ˆ

1`
1

2n

˙

?
z

K1mpn
?

zq
Kmpn

?
zq

.

Finding the smallest positive eigenvalue λ is then equivalent to retrieving the con-

stant β. This is the first step in studying the chromatic dispersion, which severely

limits the transmission distances and causes signal distortion [Kar00]. The name of

this problem in the NLEVP library is fiber.

1.3.4 Canyon particle

Solving the electronic transport in semiconductive material requires the study of

the Poisson, Schrödinger, and transport equations. However, if the model assumes

that the collisions of the electrons are negligible, then solving the single-particle

Schrödinger equation with transmitting boundary conditions determines the current

of the system [LK90; Van+14]. In the case of a system with contacts, the Schrödinger

equation can be cast as the nonlinear eigenvalue problem

r´∇2 `Upxqsψpxq “ λψpxq. (1.10)

28 introduction

Figure 1.4: One dimensional scheme with contacts starting at x “ xL and x “ xR.

Uprq is the potential energy, while the eigenvalues λ are the bound states, and the

eigenvectors the wave functions. In Figure 1.4 we schematise the one dimensional

problem. A finite element discretization of (1.10) for the two-dimensional case yields

¨

˝H ´ λI `
nz
ÿ

j“1

ei
?

mpλ´αjqLkU˚
k

˛

‚v “ 0,

where H P Rnˆn is a symmetric matrix, m is the mass of the particle, nz is the number

of mesh points, αj are physical parameters, and Lk, Uk are low-rank matrices. A

detailed description of this problem can be found in [Van+14; Güt+14], while the

NLEVP library has a practical implementation named canyon_particle.

1.4 structure of the thesis and contributions

The thesis is structured as follows. Chapter 1 was dedicated to the introduction of

the work and to a review of the prerequisites needed to understand the thesis.

Chapters 2, 3, and 4 mirror Section 1.2.2. In Chapter 2 we generalise the theory

of contour integral algorithms from holomorphic to meromorphic functions and we

explain how the presence of the poles influences the convergence of the methods. Our

attention is mostly on small- to medium-sized eigenvalue problems, hence particular

focus is given to the case where the number of eigenvalues in Ω exceeds n.

Chapter 3 is dedicated to more practical considerations concerning contour inte-

grals and to our implementation of a contour eigensolver. First, we show the im-

1.4 structure of the thesis and contributions 29

provements and the new features between the NLEVP 3.0 and its current version

NLEVP 4.1. This library has been a fundamental tool to understand nonlinear eigen-

problems and we are sure the same will be true for other researchers. In addition,

contour solvers require the choice of multiple parameters (for example, the number

of quadrature points), which are often left to the final user. There we propose multi-

ple ways to implement an algorithm which automatically chooses these parameters,

hence allowing the user to only provide the region Ω and function Fpzq in black-box

form. Finally, we show that combining the Newton method or a similar refinement

with the core of the contour solver creates a very robust algorithm.

Chapter 4 is dedicated to eigensolvers based on linearisations. More precisely, we

focus primarily on the first step of these algorithms, i.e., the approximation of Fpzq

with a rational function Rpzq. First, we show how the backward error of the eigenpairs

of Fpzq is related to the backward error of the eigenpairs of Rpzq, provided that Rpzq

is a “good approximation” to Fpzq. This theoretical result allows us to propose two

robust algorithms to return Rpzq, one for Fpzq given in split form, another for Fpzq in

black-box form.

At the end of the chapter we test our algorithms with the state of the art ones

on the NLEVP collection and we show their approximations are better or at least as

good as the previous ones. Finally, we also compare them with the contour algorithm

proposed in Chapter 3.

Finally, Chapter 5 stands apart from the preceding ones. There we explore tropical

linear algebra, a relatively new branch of mathematics. Recent results by Sharify et

al. [Sha11] found a quantitative relationship between the roots of a scalar polynomial

and the so-called tropical roots of it. These results were later generalised to matrix

polynomials [NST15], and hence tropical roots where used as an initial approxima-

tion for their eigenvalues or as a way to scale the polynomial such as other algorithms,

like polyeig, could perform better [TV21; VT18]. We expand the theory from poly-

nomials to Laurent series and we show that similar results hold true in these general

settings as well.

2 CONTOUR INTEGRAL METHODS FOR

MEROMORPH IC E IGENVALUE PROBLEMS

2.1 introduction

In this chapter we analyse in greater depth contour integral solvers (or contour

solvers, for brevity) for nonlinear eigenvalue problems on a target region Ω. Since the

beginning of the XXI century, researchers in numerical linear algebra showed great

interest in this class of algorithms.

In 2003 Sugiura and Sakurai were the first to develop a contour solver for the lin-

ear eigenvalue problem [SS03]. In 2009 Polizzi implemented the FEAST algorithm for

the symmetric eigenvalue problem [Pol09]. It is now at its fourth release and since

2018 is able to tackle nonlinear problems [GMP18]. Still in 2009, Asakura, Sakurai

et al. updated the Sugiura–Sakurai (SS) [Asa+09] method to solve nonlinear prob-

lems. They named it block-SS and it is based on the Smith decomposition. In 2012

Beyn introduced his algorithm, which is based on Keldysh’s theorem and considered

also the case where the number of eigenvalues in Ω is larger than n [Bey12]. In

2013 Yokota and Sakurai proposed the SS-RR (Rayleigh–Ritz) for large scale systems,

whose core idea is projecting the problem on a smaller subspace and then use one

of the other nonlinear solvers for it [YS13]. In a recent ArXiv preprint, Krenner and

Polizzi introduced a similar idea, where they iteratively use FEAST on large prob-

lems to project them on smaller equivalent ones, which are then solved by Beyn’s

algorithm [BP20]. In the meantime, Huang, Su, et al. created the Recursive Integral

Algorithm (RIM) for the generalised eigenvalue problem [Hua+16]. As opposed to

the other algorithms mentioned above, RIM uses Cauchy’s Integral Theorem 1.1 and

its core is very easy to implement. It was mainly aimed at linear eigenvalue problems,

but it can be applied to the holomorphic case as well.

30

2.1 introduction 31

All the previous research concerning contour integrals required the function Gpzq

to be holomorphic. The main goal of this chapter is developing a solid theoretical

background of contour solvers for meromorphic eigenvalue problems (MEP). There

are two main reasons which serve as a backstory of this work. The first was a com-

ment by Beyn in the survey paper by Güttel and Tisseur, where he stated that this

kind of algorithms should work for this larger class of problems [GT17, Section 5.5].

Preliminary numerical experiments proved this to be right, but it was clear that there

was something deeper behind it. The second, probably a bit more naive, is the fact

that rational eigenvalue problems (REP) are not included in the class of holomorphic

eigenvalue problems (HEP). In Section 1.2 we saw the hierarchy of these classes. In

the first three cases, they were “exact” generalisations: a linear eigenvalue problem is

also polynomial, which in turn is rational; however, a rational problem is not gener-

ally holomorphic, because it may have poles in Ω. Hence, developing the theory for

the MEP will address this asymmetry.

The chapter is structured as follows. In Section 2.2 we recall the basic theory

needed to state Keldysh’s theorem and we introduce new definitions that will al-

low to study the meromorphic eigenvalue problem through contour integrals. The

main one is the holomorphization of a meromorphic function Fpzq PMpΩ, Cnˆnq. This

purely theoretical tool allows us to understand how the poles of Fpzq influence con-

tour solver algorithms. Furthermore, we propose a way to compute the backward

error of eigenpairs for functions given in black-box form. In Section 2.3 we give a

brief review of the Recursive Integral Method in the holomorphic case and we calcu-

late its probabilistic computational cost, which was missing in the current literature.

Section 2.4 is dedicated to Beyn’s algorithm: first, we review its original description,

then we explain its Loewner interpretation, and finally we expand it to meromorphic

functions, both for simple eigenvalues and in the general case. There is no real con-

clusion section, because in Chapter 3 we continue developing these themes under an

algorithmic point of view.

32 contour integral methods for meromorphic eigenvalue problems

2.2 theoretical background

In Section 1.2.1 we hinted how a nonlinear problem may have generalised eigenvec-

tors which are neither linearly independent from the corresponding eigenvector nor

from eigenvectors of other eigenvalues. Even though in many real-life applications it

is assumed that all the eigenvalues are either simple or semisimple, hence removing

the burden of generalised eigenvectors, the analysis under these settings is neces-

sary to understand how contour integrals can be effectively used for meromorphic

eigenvalue problems.

In the undergrad course of linear algebra we have learned that for a given eigen-

value λ of a matrix A P Cnˆn, the sequence of vectors v0, . . . , vm´1 is called a Jordan

chain if

pA´ λIqv0 “ 0, pA´ λIqv1 “ v0, . . . pA´ λIqvm´1 “ vm´2, (2.1)

where v0 is, in fact, an eigenvector, while vj are the generalised eigenvectors of the

Jordan chain associated to v0. In 1968 Trofimov introduced the concept of root func-

tions vpzq “
řm´1

j“0 pz´ λqjvj and pointed out that the equalities of (2.1) are equivalent

to λ being a root of multiplicity at least m of pA´ zIqvpzq [Tro68]. This idea can be

simply generalised to the nonlinear case:

Definition 2.1 ([GT17, Definition 2.3]). Consider Gpzq P HpΩ0, Cnˆnq and let λ P Ω

being an eigenvalue of Gpzq.

1. A function v P HpΩ, Cnq is said to be a root function for Gpzq at λ if vpλq ‰ 0 and

Gpλqvpλq “ 0. The multiplicity of the root λ of Gpzqvpzq is denoted by spvq.

2. A tuple pv0, . . . , vm´1q is called a Jordan chain for Gpzq at λ if

vpzq “
m´1
ÿ

k“0

pz´ λqkvk

is a root function for Gpzq at λ and spvq ě m.

2.2 theoretical background 33

3. For any eigenvector v0 of λ, the rank of v0 is defined as

rpv0q “ maxtspvq : v is a root function for Gpzq at λ with vpλq “ v0u.

4. A system of vectors in Cn

Vλ :“ pvj
k : 0 ď k ď mj ´ 1, 1 ď j ď dq

is called a complete system of Jordan chains if the following conditions are met:

a) d “ dimpnullpGpλqq is the geometric multiplicity of λ and tv1
0, v2

0, . . . , vd
0u

is a basis of nullpGpλqq.

b) For 1 ď j ď d, pvj
0, vj

1, . . . , vj
mj´1q is a Jordan chain for Gpzq at λ.

c) For 1 ď j ď d, mj “ maxtrpv0q : v0 P nullpGpλqqz spantvν
0 : 1 ď ν ă juu.

The previous definition has got a lot to unpack. First, one can show that a com-

plete system of Jordan chains always exists and that
řd

j“1 mj is equal to the algebraic

multiplicity of λ [MM03, Propositions 1.6.4, 1.8.4]. In addition, we call m1 the index

of λ, while all the numbers m1 ě m2 ě ¨ ¨ ¨ ě md are the partial multiplicities of λ. It

follows that an eigenvalue is semisimple if m1 “ ¨ ¨ ¨ “ md “ 1, while it is simple if

d “ 1, and thus Vλ will be just the tuple of the eigenvector(s) of λ.

Definition 2.1 covers the case of the right generalised eigenvectors of Gpzq. Clearly,

the left complete system of Jordan chains Wλ is defined in the same way for G˚pzq.

Furthermore, if we set Vλ, then there exists a unique canonical Wλ which satisfies the

following conditions.

Theorem 2.1 ([MM03, Theorem 1.6.5]). Let λ P Ω be an eigenvalue of Gpzq P HpΩ0, Cnˆnq

and Vλ be

Vλ “ pv
j
k : 0 ď k ď mj ´ 1, 1 ď j ď dq

34 contour integral methods for meromorphic eigenvalue problems

a complete system of Jordan chains as defined in 2.1. Then there exists a unique system of

Jordan chains Wλ for G˚pzq

Wλ “ pw
j
k : 0 ď k ď mj ´ 1, 1 ď j ď dq

such that each eigenvector wj
0 has rank rpwj

0q “ mj and satisfies

ΨλpG, k, i, jq “
k
ÿ

α“0

mi
ÿ

β“1

wj˚
k´α

Gpα`βqpλq

pα` βq!
vi

mi´β “ δijδ0k, (2.2)

for 0 ď k ď mj ´ 1, and 1 ď i, j ď d, where δij is the Kronecker delta.

The normalisation conditions ΨλpG, k, i, jq in Theorem 2.1 are very complicated in

the general case, however they become much more reasonable when the eigenvalue

λ is semisimple, i.e., when all the partial multiplicities mi are equal to 1. If that is the

case, then the following corollary holds.

Corollary 2.2. Let λ P Ω be a semisimple eigenvalue of G P HpΩ0, Cnˆnq, and let tv1, . . . , vdu

be a basis of nullpGpλqq. Then there exists a unique basis tw1, . . . , wdu of nullpG˚pλqq such

that

w˚i G1pλqvj “ δij,

where δij is the Kronecker delta.

Armed with these results, we can now state Keldysh’s decomposition, the funda-

mental theorem for contour integral algorithms.

2.2.1 Keldysh decomposition

A very useful factorization that introduces Keldysh’s theorem is the Smith form. It

was first developed by Smith in 1861 to solve linear systems of Diophantine equa-

tions [SS61], while Frobenius later extended it to matrix polynomials [Fro79]. We

here report the general form found in [KM99] and [GT17], which uses the notion

2.2 theoretical background 35

of unimodular matrix-valued functions: we say Ppzq P HpΩ, Cnˆnq is unimodular if

det Ppzq P C is a nonzero constant or, equivalently, if P´1pzq P HpΩ, Cnˆnq.

Theorem 2.3 (Smith form). Consider Gpzq P HpΩ0, Cnˆnq and let λ1, . . . , λs be its distinct

eigenvalues in Ω with partial multiplicities mi,1 ě mi,2 ě ¨ ¨ ¨ ě mi,di . Then there exist two

unimodular matrix-valued functions Ppzq, Qpzq P HpΩ, Cnˆnq such that

PpzqGpzqQpzq “ Dpzq,

where Dpzq “ diagpδ1pzq, . . . , δnpzqq is a diagonal matrix with entries

δjpzq “ hjpzq
s
ź

i“1

pz´ λiq
mi,j , j “ 1, . . . , n,

where each hj P HpΩ, Cq does not have zeros in Ω and mi,j “ 0 when j ą di.

Now, denote by pjpzq and qjpzq the j-th column of the matrices Ppzq, Qpzq respec-

tively. Then we can write

Gpzq´1 “

n
ÿ

j“1

δjpzq´1qjpzqpjpzq˚,

and if we expand every single term of this sum as a Laurent series in some neigh-

bourhood U of λ1, we have

Gpzq´1 “

d1
ÿ

j“1

m1,j
ÿ

k“1

S1,j,kpz´ λ1q
´k ` R1pzq, z P Uztλ1u, (2.3)

where R1pzq P HpUq, and S1,j,k P Cnˆn. If we expand R1pzq recursively around λi for

i “ 2, . . . , s, identity (2.3) becomes

Gpzq´1 “

s
ÿ

i“1

di
ÿ

j“1

mi,j
ÿ

k“1

Si,j,kpz´ λiq
´k ` Rpzq, z P Uztλ1u, (2.4)

with Rpzq being holomorphic on the entire set Ω.

36 contour integral methods for meromorphic eigenvalue problems

The strength of Keldysh’s theorem lies in the characterisation of the matrices Si,j,k

in terms of generalised eigenvectors[GS71; GT17]. Let us denote the complete right

and left Jordan chains for an eigenvalue λi

pvij
k : 0 ď k ď mi,j ´ 1, 1 ď j ď diq, pwij

k : 0 ď k ď mi,j ´ 1, 1 ď j ď diq

and let Vij, Wij be the matrices

Vij “

„

vij
0 vij

1 . . . vij
mi,j´1



, Wij “

„

wij
mi,j´1 wij

mi,j´2 . . . wij
0



. (2.5)

If we define the Jordan blocks

Jij “

»

—

—

—

—

—

—

—

–

λi 1

λi
. . .
. . . 1

λi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cmi,jˆmi,j (2.6)

then we can state Keldysh’s theorem in the following form.

Theorem 2.4 (Keldysh). Consider Gpzq P HpΩ0, Cnˆnq under the hypotheses of Theo-

rem 2.3 and define m :“
řs

i“1
řdi

j“1 mi,j. Then there exist two nˆm matrices V, W, and a

mˆm Jordan matrix J such that

Gpzq´1 “ VpzI ´ Jq´1W˚ ` Rpzq

for a function Rpzq P HpΩ, Cnˆnq, where

J “ diagpJ1, ¨ ¨ ¨ , Jsq, Ji “ diagpJi1, ¨ ¨ ¨ , Jidiq,

V “ rV1, ¨ ¨ ¨ , Vss, Vi “ rVi1, ¨ ¨ ¨ , Vidis,

W “ rW1, ¨ ¨ ¨ , Wss, Wi “ rWi1, ¨ ¨ ¨ , Widis,

and Vij, Wij, Jij defined in (2.5–2.6).

2.2 theoretical background 37

Hypotheses 2.1. From now on we will constantly recall the spectral hypotheses of

Theorems 2.3 and 2.4. We summarise them here in order to avoid unnecessary and

distracting repetitions. If not specified otherwise, Gpzq P HpΩ0, Cnˆnq has λ1, . . . , λs

distinct eigenvalues in Ω with partial multiplicities mi,1 ě mi,2 ě ¨ ¨ ¨ ě mi,di . We set

m :“
řs

i“1
řdi

j“1 mi,j and we name the matrices V, W P Cnˆm the eigenvector matrices of

Gpzq (in Ω) and V, W, J the spectral matrices of Gpzq (in Ω).

We can see Keldysh’s theorem as a generalisation of the Jordan canonical form of

a matrix A in the nonlinear case. Indeed, if A “ V JV´1 is the Jordan decomposition,

then Gpzq´1 :“ pzI ´ Aq´1 “ VpzI ´ Jq´1V´1, where Rpzq ” 0 and W˚ “ V´1. In

addition, if we have stricter hypotheses on the nature of the eigenvalues, then The-

orem 2.4 becomes easier to state and understand. For instance, this is the version

chosen by Van Barel and Kravanja in [VK16].

Corollary 2.5 (Keldysh’s theorem for simple eigenvalues). Consider Gpzq P HpΩ0, Cnˆnq

and let λ1, . . . , λs be its distinct, simple eigenvalues in Ω. Then there exists a holomorphic

function R P HpΩ, Cnˆnq such that

Gpzq´1 “

s
ÿ

j“1

vjw˚j
z´ λj

` Rpzq,

where v1, . . . , vs and w1, . . . , ws are right and left eigenvectors satisfying w˚j G1pλjqvj “ 1.

As anticipated, we want to apply contour integral algorithms to meromorphic func-

tions. In order to do so, we have to slightly generalise the theorems and corollary

described above.

First of all, let us fix some settings. Let F PMpΩ0, Cnˆnq denote a regular meromor-

phic matrix-valued function with λ1, . . . , λs distinct eigenvalues in Ω and ξ1, . . . , ξr

distinct poles in Ω. In addition, we assume that no eigenvalues and no poles lie on

BΩ. As written in Definition 1.5 of nonlinear eigenvalue problem, we do not consider

the degenerate case where a pole coincides with an eigenvalue, such as for

Fpzq “

»

—

–

z´1 pz´ 3q´1

0 zpz´ 1q

fi

ffi

fl

, (2.7)

38 contour integral methods for meromorphic eigenvalue problems

where z “ 0 is both an eigenvalue and a pole. Note that det Fpzq “ z´ 1, hence a

pole of Fpzq does not need to be a pole of det Fpzq, as it happens for z “ 0 or z “ 3

in (2.7).

As anticipated in Section 1.1, it is always possible to find a polynomial gpzq P Crzs

such that Gpzq :“ gpzqFpzq is holomorphic (at least) in Ω. It is important to point out

that the original poles of Fpzq may or may not be eigenvalues of Gpzq. For example,

consider

F1pzq “

»

—

–

z´2pz´ 1q 3

0 z´2pz´ 2q

fi

ffi

fl

, F2pzq “

»

—

–

z´2pz´ 1q pz´ 2q´3

0 z´1

fi

ffi

fl

. (2.8)

Then we can define g1pzq “ z2 and g2pzq “ z2pz´ 2q3, so that both Gkpzq “ gkpzqFpzq

for k “ 1, 2 are holomorphic. However, while G1pzq has the same eigenvalues of F1pzq,

ξ1 “ 0, ξ2 “ 2 are eigenvalues of G2pzq, but not eigenvalues of F2pzq. It makes sense

to introduce the following concept.

Definition 2.2 (Spurious eigenvalues). A pole ξ of Fpzq of multiplicity c is a spurious

eigenvalue of Fpzq if it is an eigenvalue of Gpzq :“ pz ´ ξqcFpzq. In addition, the

algebraic and geometric multiplicities of the spurious eigenvalue ξ of F are defined

as the algebraic and geometric multiplicities of ξ as eigenvalue of Gpzq.

Remark 2.1. Definition 2.2 is inspired by the definition of eigenvalues at infinity for

polynomial eigenvalue problems, where we say that λ “ 8 is an eigenvalue of a

degree c matrix polynomial Ppzq if λ “ 0 is an eigenvalue of the reversal zcPpz´1q.

Unfortunately, we cannot state many properties about spurious eigenvalues. First, as

witnessed in (2.8), the original poles may or may not become spurious eigenvalues.

Furthermore, there is no clear relationship between their multiplicity as poles of Fpzq

and their algebraic or geometric multiplicity as spurious eigenvalues. For example,

consider ξ “ 0 and

F1pzq “

»

—

—

—

—

–

z´2pz´ 1q 0 z´2

0 z´2pz´ 2q 0

0 0 z´2pz´ 3q

fi

ffi

ffi

ffi

ffi

fl

, F2pzq “

»

—

—

—

—

–

z´ 1 0 z´1

0 z´ 2 0

0 0 z´ 3

fi

ffi

ffi

ffi

ffi

fl

.

2.2 theoretical background 39

Then ξ is a double pole for F1pzq, but is not a spurious eigenvalue for G1pzq “ z2F1pzq.

On the other hand, ξ is a single pole for F2pzq, but it is a spurious eigenvalue of

G2pzq “ z2F2pzq with algebraic multiplicity equal to 3 and geometric multiplicity

equal to 2, hence G2pzq will have a 2ˆ 2 Jordan block with eigenvalue 0.

It is not too difficult to see that we can retrieve the spectral properties of the spuri-

ous eigenvalues of Fpzq by considering an auxiliary function Gpzq, which is holomor-

phic in Ω, as illustrated in the following lemma.

Lemma 2.6 (Holomorphization of a meromorphic function). Let Fpzq PMpΩ0, Cnˆnq

be a regular matrix-valued function with λ1, . . . , λs distinct eigenvalues in Ω and ξ1, . . . , ξr

distinct poles in Ω. Let ei P Rn be the ith column of the identity basis and write

Fpzq “
n
ÿ

i,j“1

fijpzqeieT
j . (2.9)

In addition, define ck as

ck :“ max
1ďi,jďn

tmultiplicity of the pole ξk in fijpzqu, k “ 1, . . . , r.

Then there exists a unique monic polynomial gpzq “
śr

k“1pz´ ξkq
ck with ck ą 0 such that

Gpzq :“ gpzqFpzq P HpΩ, Cnˆnq, and we say Gpzq is the holomorphization of Fpzq. Fur-

thermore, the eigenvalues of Gpzq are all and only the eigenvalues and spurious eigenvalues

of Fpzq and they have the same algebraic and geometric multiplicities.

Proof. First, we need to prove that Gpzq is holomorphic. In order to do so, note

that (2.9) is unique, because it is simply the entry-wise form of Fpzq. In addition, if

ξ is a pole of fijpzq, then it is a pole of Fpzq, because the matrices eieT
j are linearly

independent. This implies that ck is the multiplicity of ξ as a pole of Fpzq and that

Gpzq is holomorphic. Finally, we need to show that the eigenvalues of Gpzq have the

same spectral properties as the eigenvalues and spurious eigenvalues of Fpzq. First,

set G0pzq “ Fpzq and Gkpzq “ pz´ ξkq
ck Gk´1pzq for k “ 1, . . . , r. It is not difficult to

see that Gkpzq has the same eigenvalues of Gk´1pzq with the same properties and will

have at most ξk as a new eigenvalue if, by definition, ξk itself is a spurious eigenvalue

of Gk´1pzq, since ξk R ΛpGk´1q. The result then simply follows from Gpzq “ Grpzq.

40 contour integral methods for meromorphic eigenvalue problems

Note that Gpzq is not generally holomorphic on all Ω0. An easy example of why this

cannot be true is given by Fpzq “ sin
`

z´1
˘´1, with Ω0 “ Dp1, 1q and Ω “ Dp1, 0.9q.

The poles of Fpzq are k´1π´1 for k ě 1 and they accumulate in zero. Hence, we can

find a polynomial gpzq such that gpzqFpzq is holomorphic in Ω, but not in Ω0. We can

now state Keldysh’s theorem for meromorphic functions in a precise way.

Theorem 2.7 (Keldysh for meromorphic functions). Consider Fpzq PMpΩ0, Cnˆnq and

let Gpzq :“ gpzqFpzq P HpΩ, Cnˆnq be the holomorphization of Fpzq, with gpzq P Crzs

defined in Lemma 2.6. Let mξi ,1 ě mξi ,2 ě ¨ ¨ ¨ ě mξi ,dξi
be the partial multiplicities of ξi,

with dξi “ 0 if ξi is not a spurious eigenvalue and define

mλ “

s
ÿ

i“1

di
ÿ

j“1

mi,j, mξ “

r
ÿ

i“1

dξi
ÿ

j“1

mξi ,j.

Then there exist two pairs of matrices, qV, pW P Cnˆmλ , rV, rW P Cnˆmξ , and two matrices

pJ P Cmλˆmλ , rJ P Cmξˆmξ such that

Fpzq´1 “ gpzqpVpzI ´ Jq´1W˚ ` Rpzqq,

with Rpzq P HpΩ, Cnˆnq, where

V “

„

qV rV



, J “

»

—

–

pJ

rJ

fi

ffi

fl

, W “

„

pW rW



,

qV “

„

qV1 ¨ ¨ ¨ qVs



, pJ “

»

—

—

—

—

–

pJ1

. . .

pJs

fi

ffi

ffi

ffi

ffi

fl

, pW “

„

pW1 ¨ ¨ ¨ pWs



,

qVi “

„

qVi1 ¨ ¨ ¨ qVidi



, pJi “

»

—

—

—

—

–

pJi1

. . .

pJidi

fi

ffi

ffi

ffi

ffi

fl

, pWi “

„

pWi1 ¨ ¨ ¨ pWidi



,

and qVij, pWij, pJij are defined in (2.5–2.6), with the generalised eigenvectors satisfying the nor-

malisation conditions ΨλpG, ¨, ¨, ¨q (2.2). The matrices rV, rW and rJ are partitioned accordingly.

2.2 theoretical background 41

Proof. Without loss of generality, we can assume that all the poles ξi are spurious

eigenvalues, so that dξi ě 1. If that were not the case, we could just consider a subset

of the poles. Keldysh’s theorem 2.4 applied to Gpzq yields

Fpzq´1 “ gpzqVpzI ´ Jq´1W˚ ` gpzqRpzq, (2.10)

where R P HpΩq. Up to a permutation, the matrices J, V, and W have the block

structure

J “ diagppJ1, . . . , pJs, rJ1, . . . , rJrq,

V “

„

qV1 . . . qVs rV1 . . . rVr



,

W “

„

pW1 . . . pWs rW1 . . . rWr



,

where qVk, pWk, and pJk (rVk, rWk, and rJk, respectively) are defined in Theorem 2.4 for λk

(ξk, respectively) and each complete system of Jordan chain satisfies the normalisation

conditions ΨλkpG, ¨, ¨, ¨q (2.2). We can write

V “

„

qV rV



, W “

„

pW rW



, J “

»

—

–

pJ

rJ

fi

ffi

fl

, (2.11)

where qV, pW are n ˆ mλ matrices, while pJ is a mλ ˆ mλ Jordan matrix. Therefore,

substituting (2.10) in (2.11) yields the result.

Corollary 2.8 (Keldysh for meromorphic functions with simple eigenvalues). We con-

sider Fpzq P MpΩ0, Cnˆnq and let λ1, . . . , λs be its distinct, simple eigenvalues in Ω and

ξ1 . . . , ξr be its distinct poles. Let gpzq, Gpzq, mξi ,j, rV, rJ, rW, Rpzq be defined as in Theo-

rem 2.7. Then

Fpzq´1 “

s
ÿ

k“1

gpzqqvk qw˚k
z´ λk

` gpzqrVpzI ´ rJq´1
rW˚ ` gpzqRpzq

where qv1, . . . , qvs and qw1, . . . , qws be respectively the right and left eigenvectors such that

qw˚k G1pλkqqvk “ 1 for j “ 1, . . . , s.

42 contour integral methods for meromorphic eigenvalue problems

Table 2.1: Summary of the most important symbols used in this chapter.

Symbol Explanation

Fpzq The meromorphic function in MpΩ0, Cnˆnq

s, r Number of distinct eigenvalues and distinct poles
λi Eigenvalue of Fpzq in Ω
ξi Pole of Fpzq in Ω
ci Pole multiplicity of ξi

gpzq, Gpzq gpzq “
śr

i“1pz´ ξiq
ci , Gpzq “ gpzqFpzq P HpΩ, Cnˆnq

di Geometric multiplicity of λi
dξi Geometric multiplicity of ξi as spurious eigenvalue; dξi “ 0 if ξi not a spurious eigenvalue
mi,j mi,1 ě ¨ ¨ ¨ ě mi,di

partial multiplicities of λi
mξi ,j mξi ,1 ě ¨ ¨ ¨ ě mξi ,dξi

partial multiplicities of ξi as spurious eigenvalue

mλ, mξ
řs

i“1
řdi

j“1 mi,j,
řs

i“1
řdξi

j“1 mξi ,j

m mλ `mξ

P Probing matrix in contour integrals, P P Cnˆp

m Number of moments in Hankel matrix Brms0

We conclude this section with the standard notation and settings about meromor-

phic functions, both as a paragraph and as a table. We will constantly recall these

hypotheses, mostly in Section 2.4.1.

Hypotheses 2.2. If not specified otherwise, Fpzq P MpΩ0, Cnˆnq has λ1, . . . , λs dis-

tinct eigenvalues and ξ1, . . . , ξr distinct poles in Ω. We let gpzq “
śr

i“1pz´ ξiq
ci and

Gpzq :“ gpzqFpzq P HpΩ, Cnˆnq be the polynomial and holomorphization defined in

Lemma 2.6. Each pole ξi has a pole multiplicity equal to ci and we assume that all the

poles are spurious eigenvalues. We denote with mi,1 ě mi,2 ě ¨ ¨ ¨ ě mi,di the partial

multiplicities of λi and with mξi ,1 ě mξi ,2 ě ¨ ¨ ¨ ě mξi ,dξi
be the partial multiplicities

of ξi. We set mλ :“
řs

i“1
řdi

j“1 mi,j, mξ :“
řr

i“1
řdξi

j“1 mξi ,j and m “ mλ `mξ . Finally,

we define the spectral matrices of Fpzq to be pV :“ qVgppJq, pW, pJ and rV, rW, rJ, as defined

in Theorem 2.7.

2.2.2 Counting eigenvalues

In Chapter 3 we will see that estimating the number of eigenvalues s (more precisely,

the sum of algebraic multiplicities m) of a function inside Ω is a fundamental step

in most contour algorithms. For the sake of notation, in this section we assume the

eigenvalues are simple, so s “ m. Asakura, Sakurai et al. showed that the argu-

2.2 theoretical background 43

ment principle in Theorem 1.5 can be used to this goal for a holomorphic function

Gpzq [Asa+09; Asa+10]. In fact, if Gpzq P HpΩ, Cnˆnq, then

s “
1

2πi

ż

BΩ

pdet Gpzqq1

det Gpzq
dz,

and Jacobi’s formula pdet Gpzqq1 “ det Gpzq trpGpzq´1G1pzqq yields

s “
1

2πi

ż

BΩ
trpGpzq´1G1pzqq dz. (2.12)

Equation (2.12) is a bit costly when n " 1 if estimating the number of eigenvalues is

simply a preliminary step for contour algorithms. Even though this chapter mainly

focuses on relatively small eigenvalue problems, we believe that a brief review on

how to solve this issue is important for the general scope of the thesis.

In general, when n " 1, an exact count of s is not necessary, hence we may trade

some precision for speed. First of all, notice that we can rewrite

trpGpzq´1G1pzqq “
n
ÿ

j“1

eT
j Gpzq´1G1pzqej, (2.13)

where ej is the jth column of the identity matrix. Hence there are two main ways to

approximate (2.12).

‚ We stochastically estimate trpGpzq´1G1pzqqwith an appropriate random variable.

This approach was first proposed in [MFS11] and in many papers onwards, such

as [SFT13; Che+17; DPS16].

‚ We directly approximate eT
j Gpzq´1G1pzqej for j “ 1, . . . , n. In 2004 Guo and

Renaut propose to estimate uT f pAqv through a small number of steps of the

Arnoldi iteration for two given vectors u, v [GR04]. Under our settings, we

would have f pAq “ A´1, with A “ Gpzq, u “ ej, and v “ G1pzqej.

Here we focus on the first method. The upcoming lemma and proposition are a

generalisation of a result first appeared in [Hut90] for symmetric matrices.1

1 We thank Vanni Noferini for a private communication on this matter.

44 contour integral methods for meromorphic eigenvalue problems

Lemma 2.9. Let B P Rnˆn and let U be a random variable with zero mean, variance σ2 and

finite fourth moment. Decompose uniquely B “ D` H ` K, where D is diagonal, H “ HT

is symmetric with zero diagonal, and K “ ´KT is skew-symmetric. If u P Rn is a vector of

independent samples from U, then

EruTBus “ σ2 trpBq,

VarpuTBuq “ 2σ4‖H‖2
F ` pErU

4s ´ σ4q‖D‖2
F.

Proof. Denote the pi, jqth element of B with bij, and respectively hij, kij for H and K.

We have

EruTBus “
n
ÿ

j,k“1

Erujuksbjk “ σ2 trpBq.

Concerning the variance, it holds pEruTBusq2 “ σ4 řn
i,j“1 biibjj. In addition,

puTBuq2 “
n
ÿ

i,j,k,`“1

uiujuku`bijbk`. (2.14)

Thus, if we take the expected value of (2.14), most of the addenda disappear and we

get

ErpuTBuq2s “
n
ÿ

i“1

ErU4sb2
ii `

ÿ

i‰j

σ4biibjj `
ÿ

i‰j,k‰`

Eruiujuku`sbijbik, (2.15)

where the first sum corresponds to all indices being equal, and the second to i “ j

and k “ `. In the third sum two cases return a nonzero contribution: i “ k, j “ `, and

i “ `, j “ k. Therefore

ErpuTBuq2s “
n
ÿ

i“1

ErU4sb2
ii `

ÿ

i‰j

σ4biibjj `
ÿ

i‰j

σ4pb2
ij ` bijbjiq

“

n
ÿ

i“1

ErU4sb2
ii `

ÿ

i‰j

σ4biibjj `
ÿ

iąj

σ4pb2
ij ` b2

ji ` 2bijbjiq.

2.2 theoretical background 45

Noticing that pb2
ij ` b2

ji ` 2bijbjiq “ pbij ` bjiq
2 and that pbij ` bjiq “ 2hij when i ą j

yields

VarpuTBuq “
n
ÿ

i“1

ErU4sb2
ii `

ÿ

i‰j

σ4biibjj `
σ4

2
‖2H‖2

F ´ σ4
ÿ

i,j

biibjj

“
σ4

2
‖2H‖2

F ` pErU
4s ´ σ4q‖D‖2

F

as desired.

Proposition 2.10. Let B P Cnˆn and let u P Rn be as in Lemma 2.9. Decompose uniquely

B “ D ` H ` K, where D is diagonal, H “ H˚ is Hermitian with zero diagonal, and

K “ ´K˚ is skew-Hermitian. Then

Eru˚Bus “ σ2 trpBq,

Varpu˚Buq “
σ4

2
‖2H‖2

F ` pErU
4s ´ σ4q‖D‖2

F.

Proof. Write uniquely B “ A` iC, with A, C P Rnˆn. Since the variance of a complex

variable is the sum of the variances of its real and imaginary part, we have

Varpu˚Buq “
σ4

2
‖2HA‖2

F `pErU
4s ´ σ4q‖DA‖2

F `
σ4

2
‖2HC‖2

F `pErU
4s ´ σ4q‖DC‖2

F,

where A “ DA ` HA ` KA and C “ DC ` HC ` KC. But H “ HA ` iHC and similarly

for D, hence the result.

Proposition 2.10 corresponds to [Hut90, Proposition 1] for general matrices. The

most widely used random variables are Gaussian and Rademacher vectors. The

latter vectors have entries i.i.d. in t´1, 1u with equal probabilities and minimise

the variance in Proposition 2.10; on the other hand, Gaussian vectors have shown a

better numerically convergence to the exact value of the trace [AT11; RA15; WWZ14].

If we define

trLpBq :“
1
L

L
ÿ

j“1

u˚j Buj (2.16)

46 contour integral methods for meromorphic eigenvalue problems

to be the stochastic estimation of the trace with L random (either Gaussian or Rademacher)

vectors, a better measure of its quality instead of the variance is

Pr
!∣∣∣trpBq ´ trLpBq

∣∣∣ ě ε trpBq
)

ď δ, (2.17)

i.e., the probability that the relative error of the estimator is worse than a given ε ą 0

is less than δ ą 0. Until recently, the state of the art result by Ubaru, Chen, and Saad

for symmetric matrices stated that (2.17) is satisfied with a fixed probability δ when

L grows quadratically with respect to n [UCS17]. In the same paper, they showed

that the stochastic estimation can be used in pair with the Lanczos method in order

to approximate trp f pBqq. More precisely, given the i.i.d. vectors tuju
L
j“1, in the first

phase one uses m steps of the Lanczos algorithm to approximate f pBquj, while in

the second phase approximate the trace as trLp f pBqq. Under these settings, (2.17) is

satisfied with a linear growth of m and a quadratic one of L with respect to n.

Since trpBq is computed exactly in Opn2q operations, the fact that (2.17) is satisfied

when L grows quadratically with respect to n is not a good property. In 2020, Cortino-

vis and Kressner proved that the bound is satisfied with a linear growth of L [CK20].

We recall the result for Gaussian vectors and f pBq “ B, and we refer to the original

paper for the other results.

Theorem 2.11 ([CK20, Theorem 5]). Let B P Rnˆn be a symmetric matrix and let trLpBq

the stochastic estimator defined in (2.16) for Gaussian vectors. Then, for every ε ą 0,

Pr
!∣∣∣trpBq ´ trLpBq

∣∣∣ ě ε trpBq
)

ď e´Lε{p4‖B‖2
F`4ε‖B‖2q.

Specifically, if L ą 4ε´2p‖B‖2
F` ε‖B‖2q log

`

2δ´1
˘

, it holds Prt
∣∣trpBq ´ trLpBq

∣∣ ě ε trpBqu ď

δ.

Remark 2.2. The linear dependence of L on n is not entirely obvious on first sight.

Nevertheless, by defining the stable rank of B to be ρ :“ ‖B‖2
F{‖B‖2

2 it holds

4
ε2 pρ‖B‖2

2 ` ε‖B‖2q log
´

2δ´1
¯

ď
4
ε2 pn‖B‖2

2 ` ε‖B‖2q log
´

2δ´1
¯

.

2.2 theoretical background 47

Unfortunately, all the previous results show that the quality of the stochastic es-

timator depends on the off-diagonal elements of Gpzq´1G1pzq. Since the number of

eigenvalues s in Ω depends only on the diagonal elements, even assuming that the

same theorems hold for nonsymmetric matrices, it seems there is no way to relate the

growth of L with s.

In this section we showed how to estimate the number of eigenvalues when Gpzq is

a holomorphic function. If instead we have a meromorphic function Fpzq, then (2.12)

returns the difference between the sum of the algebraic multiplicities of the eigenval-

ues, say s, and the sum of the multiplicities of poles, say r, of the determinant. If r

is known or r ! s, then this same strategy allows us to retrieve a good estimate of s

nonetheless. However, if r « s then (2.12) does not have any practical use for contour

algorithms. We refer to Section 3.3 for a deeper look on how to solve this problem.

2.2.3 Backward errors

We are interested in exploring the best ways to compute the backward errors for

an approximate eigenpair ppλ, pvq of a function Gpzq P HpΩ, Cnˆnq given in black-box

form. First of all, we can define the backward error for ppλ, pvq as

ηGp
pλ, pvq :“ mintε : pGppλq ` ∆Gppλqqpv “ 0, ‖∆G‖

Ω
ď εαGu, (2.18)

where αG “ ‖G‖
Ω

if we consider the relative backward error, and αG “ 1 if we

consider the absolute backward error. This is a similar definition to the one in [GT17,

Chapter 2] for matrix-valued functions in split form. The following theorem provides

an explicit formula to compute (2.18).

Proposition 2.12. Let Gpzq : Ω0 Ñ Cnˆn be a matrix-valued function and Ω Ă Ω0. Let

ppλ, pvq be an approximate eigenpair of Gpzq with pλ P Ω. Then

ηGp
pλ, pvq “

∥∥∥Gppλqpv
∥∥∥

2
αG‖pv‖2

, (2.19)

48 contour integral methods for meromorphic eigenvalue problems

where ηGp
pλ, pvq is the backward error defined in (2.18).

Proof. By definition (2.18) pGppλq ` ∆Gppλqqpv “ 0, so we find that

∥∥∥Gppλqpv
∥∥∥

2
“

∥∥∥∆Gppλqpv
∥∥∥

2
ď

∥∥∥∆Gppλq
∥∥∥

2
‖pv‖2 ď ‖∆G‖

Ω
‖pv‖2 ď εαG‖pv‖2.

This already implies

ηGp
pλ, pvq ě

∥∥∥Gppλqpv
∥∥∥

2
αG‖pv‖2

.

Finally, consider the perturbation

∆Gpzq “ ´Gppλq
pvpv˚

pv˚pv
.

We have that pGppλq ` ∆Gppλqqpv “ 0, so the first constraint in (2.18) is satisfied. More-

over,

‖∆G‖
Ω
“ sup

zPΩ
‖∆Gpzq‖2 “

∥∥∥Gppλqpv
∥∥∥

2
‖pv‖2

“

∥∥∥Gppλqpv
∥∥∥

2
αG‖pv‖2

αG,

thus the proof is completed.

Remark 2.3. We point out that the explicit formula for the relative backward er-

ror (2.19) is not practical in real scenarios, because the denominator contains the

norm of Gpzq on the continuous set Ω. In numerical experiments we will always

substitute ‖G‖
Ω

with its best available lower bound. For instance, in this chapter we

will often approximate integrals along the contour BΩ with N quadrature points zj.

Hence we will use

max
1ďjďN

∥∥Gpzjq
∥∥

2 À ‖G‖
Ω

as an approximation to compute an upper bound on ηGp
pλ, pvq in the relative way.

A natural question is if we can use the relative backward error for meromorphic

functions Fpzq P MpΩ0, Cnˆnq. Unfortunately, definition (2.18) immediately breaks

2.2 theoretical background 49

down in that case, because ‖F‖
Ω
“ 8. We were not able to find a valid alternative

to ηFp
pλ, pvq in this situation, unless Fpzq is provided in split form, where we can recall

the result by Güttel and Tisseur that inspired us

ηFpλ, vq “
‖Fpλqv‖2

‖v‖2
řs

j“1

∥∥Aj
∥∥

F

∣∣ f jpλq
∣∣ ,

which measures the relative normwise backward error for Fpzq “
řs

j“1 f jpzqAj [GT17,

Chapter 2]. If we have to limit ourselves to the black-box form of Fpzq, then the only

way around is to consider the absolute backward error.

We point out that ηFp
pλ, pvq is a much better measure on the “goodness” of an eigen-

pair respect to the residual

∥∥∥Fppλqpv
∥∥∥

2∥∥∥Fppλq
∥∥∥

2
‖pv‖

2

, (2.20)

which is sometimes used in similar works. The following example will show that (2.20)

should be avoided at any cost.

Example 2.1. Let Ω be the unit disk Dp0, 1q and Fpzq be

Fpzq “

»

—

—

—

—

–

z´ 0.3 z´1 0

0 1 z´1

0 0 1

fi

ffi

ffi

ffi

ffi

fl

.

Assume that a given algorithm returns the eigenpairs

ppλ1, pv1q “ p0.3` 10´10, e1 ` 10´10 ¨ e2q,

ppλ2, pv2q “ p10´10, e1 ` 10´10 ¨ e2q,

50 contour integral methods for meromorphic eigenvalue problems

where ej is the jth column of the identity matrix. Note ppλ1, pv1q approximates the only

eigenpair of Fpzq, while ppλ2, pv2q “approximates” the pole in 0. If we compute the residual

with (2.20) we get

∥∥∥Fppλ1qpv1

∥∥∥
2∥∥∥Fppλ1q

∥∥∥
2
‖pv1‖2

“ 1.13ˆ 10´10,

∥∥∥Fppλ2qpv2

∥∥∥
2∥∥∥Fppλ2q

∥∥∥
2
‖pv2‖2

“ 7ˆ 10´11,

seemingly showing that the two “approximated eigenpairs” are computed with a comparable

backward error. However, when we use (2.19) in the absolute way, we get

ηFp
pλ1, pv1q “ 4.45ˆ 10´10,

ηFp
pλ2, pv2q “ 0.7,

correctly showing that ppλ1, pv1q is an approximated eigenpair, while ppλ2, pv2q is not.

2.3 the rim algorithm

The Recursive Integral Method appeared in a work by Huang, Su et al. in 2016 [Hua+16],

and was later improved in the following years by the same authors [HSY17; Hua19].

We emphasise that the RIM algorithm was developed to solve linear eigenvalue prob-

lems of the form Gpzq “ A´ zB, but its core principle can be applied more generally.

However, the later changes in [HSY17] and [Hua19] exploit the linearity hypothesis

and they cannot be generalised further.

Even though it is not the first contour algorithm to have appeared, its simplicity

and elegance make it the best choice as the first candidate to be introduced to. Finally,

we recall that RIM does not find the eigenpairs pλ, vq in Ω ˆ Cnzt0u, but only the

eigenvalues λ P Ω: more precisely, given ε ą 0, it returns rλ P Ω such that

∣∣∣rλ´ λ
∣∣∣ ă ε (2.21)

2.3 the rim algorithm 51

for λ P ΛpGq XΩ.

We start by considering the linear problem pA´ λBqv “ 0 and the contour integral

Ippq “ 1
2πi

ż

BΩ
pA´ zBq´1 p dz, (2.22)

where p is a uniformly distributed random vector with unit norm. It immediately

follows from Keldysh’s theorem 2.4 that

‖Ippq‖2 ‰ 0

if at least one eigenvalue λ P Ω has a left eigenvector w such that w˚p ‰ 0. If that

is the case, we say that Ω is an admissible region. This is the elegant observation that

already allows us to describe the RIM algorithm:

1. Start with a rectangle region Ω.

2. Approximate the contour integral (2.22) with a quadrature rule of N points

z1, . . . , zN and weights w1, . . . , wN :

Ippq “ 1
2πi

ż

BΩ
pA´ zBq´1 p dz «

1
2πi

N
ÿ

k“1

wkpA´ zkBq´1 p. (2.23)

‚ If ‖Ippq‖2 “ 0, then exit; otherwise, compute the size of the rectangle

Ω. If it is small enough, return its center as the desired eigenvalue λ,

else subdivide Ω in S subrectangles Ωk for k “ 1, . . . , S, and call RIM

recursively on each Ωk.

Even though its core is quite simple, there are two main obstacles to overcome. First,

computing (2.23) requires the solution of a linear system for each point zk, which

costs Opn3q. In addition, we need to distinguish when ‖Ippq‖2 is 0.

On one hand, reducing the computational cost does not seem possible in the gen-

eral nonlinear case. On the other hand, when Gpzq is linear the authors propose

using the Cayley transformation paired with the Arnoldi method [HSY17]. Similarly,

having a robust way to determine when ‖Ippq‖2 is zero is not obvious. Theoretically,

52 contour integral methods for meromorphic eigenvalue problems

Algorithm 2.1: Pseudocode for the RIM algorithm.
Input: G P HpΩ0, Cnˆnq, Ω Ă Ω0, S, ε, δ
Output: Set Λ of eigenvalues in Ω.

1 Compute χΩ as in (2.24)
2 if χΩ ă δ then
3 return tu
4 else if size of Ω ă ε then
5 return Λ Ð tcenter of Ωu;
6 else
7 Subdivide Ω in S regions Ωp1q, . . . , ΩpSq

8 return Λ Ð
ŤS

i“1 RIMpG, Ωpiq, S, ε, δq

it holds IpIppqq “ Ippq, however this is no longer true numerically. Hence, in the

original article [Hua+16], the authors suggest to use the indicator

χΩ :“
‖IpαIppqq‖2
‖Ippq‖2

, (2.24)

where α ą 0 is a real constant [Hua+16]. If there are no eigenvalues in Ω, then

χΩ “ opαq, while in the opposite scenario χΩ « α. The authors set a threshold δ to

distinguish the two cases. We summarise the algorithm with this indicator in 2.1.

Notice that (2.24) requires the solution of linear systems with different right-hand

side, which means that this indicator is not the optimal choice when one implements

RIM in the linear case with the Cayley transformation. Hence the authors later pro-

pose

rχΩ :“

∥∥IppqpNq∥∥2∥∥Ippqp2Nq
∥∥

2

, (2.25)

where IppqpNq is the contour integral approximated with N quadrature points [HSY17].

Assuming that the quadrature rule chosen converges exponentially, it holds

rχΩ “

$

’

&

’

%

Op1q if Ω is admissible,

Ope´cNq otherwise,

therefore (2.25) is another possible indicator, where the region Ω is admissible if

rχΩ “ Op1q, and rχΩ “ op1q otherwise.

2.3 the rim algorithm 53

There are other ways in addition to (2.22) to discern whether the target region

contains some eigenvalues. Another possibility consists in using the theory described

in Section 2.2.2. In fact, (2.12) showed that

s “
ż

BΩ
trpGpzqG1pzq´1q dz,

under the assumption that the eigenvalues are simple. Hence we can substitute (2.22)

and its indicators with

pχΩ :“
1

2πi

ż

BΩ
trpGpzq´1G1pzqq dz. (2.26)

There are some trade-offs between using Ippq with indicators χΩ or rχΩ , and pχΩ

in (2.26). First, pχΩ does not generalise well to the case when we consider a meromor-

phic function Fpzq PMpΩ0, Cnˆnq, as opposed to (2.22): if the number of eigenvalues

in the region Ω is equal to the number of poles of detpFpzqq, then pχΩ “ 0, while the

influence of poles on the other two indicators is not a significant issue. In addition,

the computational cost is higher, but still of the same order of magnitude if we trade

some memory space. Indeed, for each quadrature point zj there are n linear systems

to solve, thus if we save the LU factorization of Gpzjq, then the computation of pχΩ

costs Opn3q ` nOpn2q “ Opn3q. On the other hand, pχΩ returns an integer, hence there

is no trouble in understanding whether a region is admissible or not. Finally, return-

ing the correct number of eigenvalues in the holomorphic case instead of a single bit

of information (Ω is admissible or not) can be exploited in an important way, as we

will be showing in the upcoming paragraphs.

2.3.1 A clean-up strategy

The RIM algorithm and its variants have the quality of being very easy to implement

and to understand. However, they present some flaws that need to be addressed

if one desires to have a robust version. First of all, the original implementation

subdivides Ω in S “ 4 regions. Even though it seems a natural choice, it has a very

54 contour integral methods for meromorphic eigenvalue problems

Figure 2.1: On the left, a symmetric region Ω with respect to the real line and S “ 4: RIM re-
turns two approximations (orange circles) for each real eigenvalue (blue stars); on
the right, the same region with S “ 9: the real eigenvalues are now approximated
with a single value.

unpleasant consequence in a common scenario, which we can also witness in many

numerical examples in [Hua19]. When Ω is symmetric with respect to the real line,

then the first recursion cuts out all the real eigenvalues, which often are the most

interesting ones. It follows that for any real eigenvalue λ, RIM returns the conjugate

pair rλ˘ ic, where rλ « λ and c ă ε. On one hand, condition (2.21) still holds true, but

having a decoupling effect for real (and imaginary eigenvalues when Ω is symmetric

with respect to the origin) is not a desirable behaviour. One possible solution is

asking the end user to slightly shift Ω diagonally; however, this is not ideal, because

any eventual symmetry of Gpzq which could help speeding up the algorithm may be

lost as well. For instance, if Gp´zq P tGpzq,´Gpzqu or Gpzq P tGpzq,´Gpzqu, then the

algorithm would have to solve only half the linear systems when Ω is symmetric as

well. Hence the proposed fix consists in just changing the number of subregions from

S “ 4 to S “ 9, as depicted in Figure 2.1

The decoupling effect does not happen only on the real line. Preliminary numerical

examples 2.2 and 2.3 show that RIM may return a pair of eigenvalues, instead of one,

when the correct eigenvalue λ lies near the grid. Unfortunately, we did not find an

optimal solution to this issue, but we still propose a cleaning strategy to mitigate it.

When the algorithm returns two eigenvalues rλ1 and rλ2 from adjacent rectangles in

the finest grid, we can instead return rλ3 :“ prλ1 ` rλ2q{2.

2.3 the rim algorithm 55

As the reader may point out, this approach presents some flaws, as well. First, it

is not well-defined what the algorithm should do if there are either 3 or 4 adjacent

rectangles. Is this phenomenon caused by a single eigenvalue λ near the common

corners of the rectangles or by more eigenvalues? In addition, we can not know

whether rλ1, rλ2 are approximations of a single eigenvalue λ near the grid, or of two

distinct eigenvalues λ1 and λ2. Hence , this heuristic may encounter a false positive

and return just an eigenvalue (rλ3) instead of two (rλ1 and rλ2).

Example 2.2. We consider a random matrix A P C20ˆ20 and we look for the 19 eigenvalues

of the linear problem Gpzq :“ A ´ zI in the target set Ω “ r´1.5, 1.5s ˆ r´1.5, 1.5s. We

set the indicator function to be of pχΩ (2.26) with δ “ 0.1, and the threshold ε “ 10´3, as in

the experiments of [Hua+16]. In Figure 2.2a we plotted the grid of the integrals for S “ 4

and ε “ 0.05: there we can already see the decoupling effect on all the real and some complex

eigenvalues; in Figure 2.2b we have set S “ 9 and we witness that no complex conjugate

pairs are returned. Indeed, the algorithm returns 50 approximated eigenvalues when S “ 4,

but “only” 40 when S “ 9.

A basic implementation of the cleaning strategy proposed in the previous paragraphs re-

turns 23 and 19 eigenvalues when S “ 4 and S “ 9, respectively. This is much better than

doing nothing, but is far from perfect: it is clear that if the eigenvalues were laying differently

in Ω, then we would have had a different cleaned output. The algorithm takes about 6 seconds

to finish, for both choices of the number of subregions; similarly, we do not see a noticeable

acceleration when the indicator function is χΩ (2.24) or rχΩ (2.25).

Example 2.3. In this example we consider the butterfly problem

Gpzq “ z4B4 ` z3B3 ` z2B2 ` zB1 ` B0, Gpzq P R64ˆ64rzs,

from the NLEVP library [Bet+11]. The matrices B2 and B4 are symmetric, while B1 and B3

are skew-symmetric. The name butterfly comes from the peculiar shape of its spectrum. The

target set Ω “ r´2, 2s ˆ r´2, 2s contains all the 256 eigenvalues of Gpzq. The parameters

are the same as those in Example 2.2, except for the choice of ε, which was set to ε1 “ 0.05

for Figure 2.3 and to ε2 “ 0.01 for the numerical experiment. The algorithm returns 460

56 contour integral methods for meromorphic eigenvalue problems

(a) S “ 4 subregions every recursion. (b) S “ 9 subregions every recursion.

Figure 2.2: The different lattices of contour integrals if one uses a different number of subre-
gions. The choice S “ 4 return complex conjugate pairs instead of real eigenval-
ues. The small red points are the approximated eigenvalues.

uncleaned, and 148 cleaned eigenvalues for ε1 in about 45 seconds, while 572 and 270 for ε2 in

270 seconds. Once again, the raw outputs do not give us a good idea on the eigenvalues inside

Ω. On the other hand, at least when ε is small enough, the cleaned output still overestimates

the number of eigenvalues in Ω, but only by 14. Unfortunately, if the threshold ε is too large,

then neither of the two solutions mirrors the reality of the spectrum of Gpzq in Ω.

Examples 2.2 and 2.3 highlight two points:

1. the simple clean-up heuristic drastically improves the output, but it is still not

perfect;

2. if there are many eigenvalues in Ω, the RIM algorithm considerably slows

down.

Concerning the first point, a possible improvement lies in pχΩ . Given that pχΩ theoret-

ically returns the number of eigenvalues in Ω, it can decide when it is correct to return

all the approximated eigenvalues rλi or their mean, i.e., k´1 řk
i“1

rλi for k P t2, 3, 4u.

A robust, but fast implementation of this strategy is not easy in practice, due to

the several edge cases: for example, in Figure 2.4 we plotted a region Ω with 3

eigenvalues (blue stars), one of which lies near the grid. We assume there are 3 levels

2.3 the rim algorithm 57

Figure 2.3: RIM integrals to compute the butterfly eigenvalues with ε “ 0.05.

of recursion and that at the deepest level the algorithm returns the 4 centres (orange

circles) of the adjacent squares. At the previous level, the indicator pχΩ realises that

there are too many eigenvalues, hence returns the mean value (green circle) for each

pair of approximations. At the first level the indicator realises that there are too

many eigenvalues (4 instead of 3), but it cannot know which pair of approximated

eigenvalues was caused by the decoupling effect, whether the green or the orange

circles. The only possibility would lie in computing pχ
Ω1

, where Ω1 is the region

enclosed by the blue dashed line, however this would greatly increase the cost of the

strategy.

We did not focus more on this clean-up step because its scope is beyond the goal

of this thesis, and the timing problem seems an insurmountable obstacle, at least in

the nonlinear case where the Cayley transformation strategy cannot be used. Indeed,

the algorithms in the upcoming parts of the chapter can retrieve the eigenpairs of

Examples 2.2 and 2.3 to a much higher precision in fractions of a second. The differ-

ence in timings of orders of magnitude cannot be explained solely by an unoptimised

implementation. In fact, RIM needs to compute several integrals when Ω contains

58 contour integral methods for meromorphic eigenvalue problems

Figure 2.4: An edge scenario which shows that a robust and fast implementation of the clean-
ing strategy is quite difficult. The blue stars are the eigenvalues, the orange circles
are the standard returned approximations, while the green circle the “cleaned”
approximations.

many eigenvalues. A cost analysis of the algorithm was still missing in the current

literature, hence the next section is dedicated to cover this gap.

2.3.2 The expected computational cost of RIM

As we will see in later sections, the computational cost of the other contour algo-

rithms is predetermined by the size of the matrix function Gpzq and by the number

of eigenvalues inside Ω. Intuitively, this is not true for RIM. If the eigenvalues are

mainly clustered in a small subregion of Ω, then the number of integrals RIM has

to compute is smaller than if the eigenvalues were equally spread in Ω. Hence we

cannot know a priori the cost, because it will depend on the specific problem. Never-

theless, we can compute the expected value under the hypothesis that there are s ą 0

eigenvalues and they are uniformly and independently distributed in Ω. In addition,

for the sake of simplicity we assume that Ωp0q :“ Ω “ r´1, 1s ˆ r´1, 1s.

First of all, the main cost is the approximation of the contour integrals, hence we

will compute the expected value of the number of integrals X. Before continuing, we

2.3 the rim algorithm 59

need to set the notation. We denote by Ωp1q
i1

for i1 “ 1, . . . , S the S subregions of Ω

and recursively

Ωpkq
i1,...,ik

for ik “ 1, . . . , S,

the S subregions of Ωpk´1q
i1,...,ik´1

. In addition, we use NepΩq to denote the number of

eigenvalues in Ω.

Let Xpkq be the random variable of the number of integrals that RIM computes

exactly after the k-th level of recursion. For instance, Xp0q ” S because we have

assumed s “ NepΩq ą 0. If L is the number of times RIM is recursively called, then

ErXs “ 1`
L
ÿ

k“0

ErXpkqs, (2.27)

where the first addendum represents the first contour integral along BΩ. Now, we

have

ErXp1qs “
S
ÿ

i1“1

SPtNepΩ
p1q
i1
q ą 0u

“ S
S
ÿ

i1“1

´

1´PtNepΩ
p1q
i1
q “ 0u

¯

“ S2
´

1´PtNepΩ
p1q
1 q “ 0u

¯

,

(2.28)

where in the last equality we used the hypothesis that the eigenvalues are indepen-

dently distributed. On the other hand, the uniform distribution tells us that

PtNepΩ
p1q
1 q “ 0u “

ˆ

S´ 1
S

˙NepΩq

. (2.29)

In the general case, (2.28) becomes

ErXpkqs “
S
ÿ

i1,...,ik“1

SPtNepΩ
pkq
i1,...,ik

q ą 0u

“ SkS
´

1´PtNepΩ
pkq
1,...,1q “ 0u

¯

“ Sk`1

˜

1´
ˆ

Sk ´ 1
Sk

˙NepΩq
¸

,

(2.30)

60 contour integral methods for meromorphic eigenvalue problems

where

PtNepΩ
pkq
1,...,1q “ 0u “

ˆ

Sk ´ 1
Sk

˙NepΩq

,

is the generalisation of (2.29) after the k-th level of recursion. Hence, substitut-

ing (2.30) in (2.27) yields

ErXs “ 1`
L
ÿ

k“0

ErXpkqs “ 1`
L
ÿ

k“0

Sk`1

˜

1´
ˆ

Sk ´ 1
Sk

˙NepΩq
¸

.

Finally, the maximum level of recursion L only depends on the number of subregions

S and on the threshold ε. When the RIM algorithm exits, it returns the center rλ of a

subsquare ΩpLq
i1,...,iL

as the approximation of any eigenvalue λ P ΩpLq
i1,...,iL

. Thus we have∣∣∣rλ´ λ
∣∣∣ ă 2α, where α is half the length of ΩpLq

i1,...,iL
’s side. Then it is easy to check that

L “
R

´
2 log ε` log 2

log S

V

(2.31)

is the minimum value that ensures
∣∣∣rλ´ λ

∣∣∣ ă ε. We summarise this result in the

following proposition.

Proposition 2.13. Let Gpzq P HpΩ0, Cnˆnq and assume that the NepΩq eigenvalues of Gpzq

are uniformly and independently distributed in Ω :“ r´1, 1s ˆ r´1, 1s. Let X be the random

variable of the number of integrals approximated by the RIM algorithm 2.1. Then

ErXs “ 1`
L
ÿ

k“0

Sk`1

˜

1´
ˆ

Sk ´ 1
Sk

˙NepΩq
¸

ď 1` NepΩqSpL` 1q,

where L is defined in (2.31).

Proof. We only need to prove the bound. By using Bernoulli’s inequality, we have

p1´ S´kqNepΩq ě 1´ NepΩqS´k. Therefore

Sk`1

˜

1´
ˆ

Sk ´ 1
Sk

˙NepΩq
¸

ď Sk`1p1´ 1` NepΩqS´kq,

and then the final bound simply follows.

2.4 beyn’s algorithm 61

2.3.3 Final remarks

We have described and analysed how RIM works for a general holomorphic function

Gpzq and the differences with the original goal, i.e., linear problems. The simplicity

of the theory and of the implementation, which consists in few lines of Matlab code,

makes it an appealing choice for users who are just introduced to contour integral

methods. On the other hand, the lack of direct computation of the eigenvectors and

the slowdown in the presence of many eigenvalues are noteworthy downsides. Hence

the average user should prefer other kind of contour integral methods. The only ap-

plications where we could advise to use the RIM algorithm are either as preliminary

phase in a multi-step algorithm, or in a scenario where the final user already knows

that only few eigenvalues lies in Ω and the required absolute error (2.21) is not too

strict.

2.4 beyn’s algorithm

If RIM and its modifications are based on a divide et impera approach, Beyn’s al-

gorithm uses directly Keldysh’s theorem 2.4 to retrieve all the spectral information

in the target set Ω at the same time. In fact, consider the matrix-valued function

Gpzq P HpΩ0, Cnˆnq and any scalar function f pzq P HpΩ, Cq. Then, under the Hy-

potheses 2.1,

1
2πi

ż

BΩ
f pzqGpzq´1 dz “

1
2πi

ż

BΩ
f pzqVpzI ´ Jq´1W˚ dz`

1
2πi

ż

BΩ
f pzqRpzq dz

“ V f pJqW˚,
(2.32)

where in the first equality we used Keldysh’s theorem 2.4, while in the second

Cauchy’s Integral theorem and formula in Theorems 1.1 and 1.3. The goal of Beyn’s

contour algorithm is to approximate the left-hand side of (2.32) for two (or more)

functions f pzq P HpΩ, Cq to retrieve the right-hand side through some algebraic ma-

nipulations. Further, one usually considers Gpzq´1P, where P P Cnˆp is a random

62 contour integral methods for meromorphic eigenvalue problems

matrix with columns of unit norm and p ď n to reduce the computational costs

when m ă n.

In 2012, Beyn proposed this strategy to solve the nonlinear eigenvalue problem for

a holomorphic function Gpzq. As written in the introduction, Güttel and Tisseur re-

ported a private conversation with Beyn himself where they realised that the method

could work for meromorphic functions as well [GT17, Section 5.5]. Our goal is mak-

ing this idea precise. We start by recalling the algorithm for holomorphic functions.

2.4.1 The holomorphic case

Consider a function G P HpΩ0, Cnˆnq satisfying the Hypotheses 2.1 and a random

matrix P P Cnˆp, with p ď n. It follows from (2.32) that

1
2πi

ż

BΩ
f pzqGpzq´1P dz “ V f pJqW˚P. (2.33)

The founding bricks of the algorithm are the (projected) moments

Ak “
1

2πi

ż

BΩ
zkGpzq´1P dz “ V JkW˚P, k “ 0, 1, (2.34)

Remark 2.4. If Ω “ Dpγ, rq, one often considers the functions fkpzq “ ppz´ γq{rqk for

numerical stability. In this way we assure | fkpzq| “ 1 on BΩ and we avoid overflows

and underflows. The only change in the upcoming analysis happens at the very end,

where the eigenvalues computed must be shifted and stretched accordingly.

We divide the analysis in two cases:

‚ either m ď n and rankpVq “ m, i.e., the number of eigenvalues in Ω is less than

n and the matrix of the eigenvectors V is full rank or,

‚ m ą n or V is rank-deficient.

2.4 beyn’s algorithm 63

In the first scenario, we only consider A0 and A1, we write A0 “ VW˚P, and assume

that the (random) choice of P in (2.33)–(2.34) is such that

rankpW˚Pq “ rankpVq “ m. (2.35)

Once more, note that nonlinear problems do not need to have independent (gener-

alised) eigenvectors, therefore rankpVq “ m is in fact a necessary assumption. Now,

consider the reduced SVD of A0,

A0 “ V0Σ0W˚
0 ,

with V0 P Cnˆm, Σ0 P Cmˆm and W0 P Cpˆm. Given that range V0 “ range V, there

exists a nonsingular matrix X such that V “ V0X. Therefore W˚P “ X´1Σ0W˚
0 and

we can write

A1 “ V JW˚P “ V0XJX´1Σ0W˚
0 .

It follows that the matrix

M :“ V˚0 A1W0Σ´1
0 “ XJX´1

is equivalent to J and we can therefore retrieve the eigenpairs of the original problem.

In fact, if pλ, uq is an eigenpair of M, then λ is an eigenvalue of Gpzq and V0u is the

corresponding eigenvector.

Consider now the case m ą n or rankpVq ă m. Then, given m P N, we can build

the following pair of mnˆmp block-Hankel matrices

Brms0 :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

A0 A1 ¨ ¨ ¨ Am´1

A1 A2 ¨ ¨ ¨ Am

...
...

Am´1 Am ¨ ¨ ¨ A2m´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Brms1 :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

A1 A2 ¨ ¨ ¨ Am

A2 A3 ¨ ¨ ¨ Am`1

...
...

Am Am`1 ¨ ¨ ¨ A2m´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.36)

64 contour integral methods for meromorphic eigenvalue problems

which we call the (projected) Hankel matrices. The substitution of (2.34) in (2.36) yields

the following decompositions:

B0 “ OR, B1 “ OJR P Cmnˆmp, (2.37)

where

O “

»

—

—

—

—

—

—

—

–

V

V J
...

V Jm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cnmˆm (2.38)

and

R “
„

W˚P JW˚P ¨ ¨ ¨ Jm´1W˚P



P Cmˆmp (2.39)

are known as the observability matrix and reachability matrix in systems theory [AS01].

Furthermore, note that the decompositions (2.37) allows to write the (usually) rect-

angular pencil as zB0 ´ B1 “ OpzI ´ JqR. If the rank of O and R is maximum, i.e.,

rankpOq “ rankpRq “ m, then we can retrieve all the spectral information. Therefore

we assume that the pair pm, Pq P NˆCnˆp is such that

rankpOq “ rankpRq “ m. (2.40)

The natural question is if such condition is attainable, i.e., if there exists m such

that rankpOq “ m. The answer is positive, but we need the following definitions,

introduced by Beyn, Effenberger, and Kressner in 2011 [BEK11].

Definition 2.3 (Invariant pair). The pair pX, Λq P Cnˆk ˆCkˆk is called an invariant

pair for Gpzq if GpX, Λq “ 0, where

GpX, Λq “
ż

BΩ
GpzqXpzI ´Λq´1 dz. (2.41)

2.4 beyn’s algorithm 65

It is easy to see that pV, Jq is an invariant pair for Gpzq. However, Definition 2.3 is

not restrictive enough because every pair of the form p0, Jq is invariant. Therefore the

same authors introduced the concept of minimal pairs.

Definition 2.4 (Minimal pair, minimality index). Let pX, Λq P Cnˆk ˆ Ckˆk be an

invariant pair for Gpzq. Then pX, Λq is called a minimal pair if there exists an integer

m, called minimality index, such that

rankVmpX, Λq “ k,

where

VmpX, Λq “

»

—

—

—

—

—

—

—

–

X

XΛ
...

XΛm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.42)

It is now clear that O “ VmpV, Jq and that (2.40) is the condition for pV, Jq to be

a minimal pair. In general, if we choose m such that pm ´ 1qp ă m ď mp we may

reasonably assume that (2.40) holds true. More precisely, Beyn proved the following

bound on the minimality index for pV, Jq [Bey12, Lemma 5.1].

Proposition 2.14. Assume that Gpzq P HpΩ0, Cnˆnq satisfies Hypotheses 2.1. Then the

minimality index m satisfies

m ď

s
ÿ

j“1

mj,1.

From this point on, the procedure is identical to the first scenario, hence we sum-

marise how to retrieve the eigenpairs in the following theorem. In addition, a pseu-

docode version is available in Algorithm 2.2, where we assume that all the eigenval-

ues are simple, i.e., m “ s.

66 contour integral methods for meromorphic eigenvalue problems

Theorem 2.15 ([Bey12, Theorem 5.2]). Given the pair pm, Pq P NˆCnˆp, assume that

rank 0 “ rank R “ m, build the block Hankel matrices Brms0 , Brms1 defined in (2.36). Consider

the reduced SVD of Brms0 “ V0Σ0W˚
0 . Then

M :“ V˚0 Brms1 W0Σ´1
0 “ XJX´1

is equivalent to J. Furthermore, if pλ, uq is a right eigenpair of M, then pλ, vq is a right

eigenpair of Gpzq with v “ Vr1s0 u, where Vr1s0 is the upper nˆm block of V0.

Proof. We start by computing an economy-size SVD of Brms0

Brms0 “ V0Σ0W˚
0 ,

where V0 P Cmnˆm, W0 P Cmpˆm and Σ0 “ diagpσ1, . . . , mq is invertible due to the rank

conditions (2.40). Given that rangepV0q “ rangepOq, there exists a nonsingular matrix

X such that O “ V0X. Therefore we can write R “ X´1Σ0W˚
0 and it follows that

Brms1 “ OJR “ V0XJX´1Σ0R,

thus the matrix

M :“ V˚0 Brms1 W0Σ´1
0 “ XJX´1

is equivalent to J. Hence if pλ, uq is an eigenpair of M, then λ is an eigenvalue of Gpzq.

It is then easy to see that pλ, vq is a right eigenpair of Gpzq with v “ Vr1s0 u, where Vr1s0

is the upper nˆm block of V0.

Remark 2.5. Some authors (see, for instance, [Asa+09; Asa+10; GT17]) suggest to

use a projection matrix L˚ on the left side of Gpzq´1 to further reduce the size of

the problem. However, any choice of L˚ ‰ I does not allow to compute the right

eigenvectors. Hence this is a viable strategy when we are only interested in the

eigenvalues.

2.4 beyn’s algorithm 67

Algorithm 2.2: Pseudocode for the core of Beyn’s algorithm.
Input: G P HpΩ0, Cnˆnq, Ω Ă Ω0
Output: Eigenpairs pλ, vq P ΩˆCnzt0u.

1 Choose pm, Pq P NˆCnˆp s.t. (2.40) holds
2 Compute Ak, k “ 0, . . . , 2m´ 2
3 Build B0, B1
4 Compute reduced SVD B0 “ V0Σ0W˚

0
5 Compute M “ V˚0 B1W0Σ´1

0
6 Extract the eigenpairs pλ, uq of M
7 ΛΩ Ð tu, VΩ Ð tu

8 Vr1s0 “ V0p1 : n, 1 : NepΩqq
9 for pλi, uiq P ΛpMq ˆCnzt0u do

10 ΛΩ Ð ΛY tλiu

11 VΩ Ð VΩ Y tV
r1s
0 uiu

12 return ΛΩ , VΩ

2.4.2 The Loewner interpretation

In 2018 and later in 2020, Brennan, Embree, and Gugercin showed another inter-

pretation of Beyn’s algorithm [Bre18; BEG20]. They proved that computing contour

integrals as in (2.33) for Gpzq P HpΩ0, Cnˆnq can be seen from the point of view of the

Loewner framework and thus proposed a variation of the algorithm. In Section 3.4

we will analyse how the approximation of the integral influences the backward error

of the eigenvalues, therefore we need to summarise the main differences with the

original version.

We consider Gpzq P HpΩ0, Cnˆnq satisfying Hypotheses 2.1. From the spectral

matrices V, W, J we consider the function

Hpzq “ VpzI ´ Jq´1W˚,

which is sometimes known as the transfer function in the context of dynamical sys-

tems [AS01]. The authors realised that the core of Beyn’s algorithm, i.e., the compu-

68 contour integral methods for meromorphic eigenvalue problems

tation of the moment Ak, is equivalent to computing the coefficients of the transfer

function formally expanded at infinity. Indeed,

Hpzq “ VpzI ´ Jq´1W˚ “ z´1VpI ´ z´1 Jq´1W˚

“ z´1V

˜

8
ÿ

k“0

z´k Jk

¸

W˚ “

8
ÿ

k“0

V JkW˚z´pk`1q.

Note that the previous expansion is always formally correct, however the last two

equalities are well-defined as complex-valued functions only if
∥∥z´1 J

∥∥ ă 1 for any

vector-induced norm. Given this idea, they applied a different strategy: instead of

expanding Hpzq at 8, we can expand at specific points σ P CzΩ. In fact, it holds

1
2πi

ż

BΩ

1
σ´ z

Gpzq´1 dz “ VpσI ´ Jq´1W˚ “ Hpσq, (2.43)

where as usual we have applied Cauchy’s Integral Theorem and Formula (see Theo-

rems 1.1 and 1.3).

Assume now we have at our disposal two sets of r points, tθ1, . . . , θru, and tσ1, . . . , σru

in CzΩ, which are called the left interpolation points and right interpolation points, re-

spectively. Similarly, let t`1, . . . , `ru, and tr1, . . . , rru in Cn be the left and right directions

associated with the left and right interpolation points, respectively. Finally, we define

the so-called left (interpolation) data and right (interpolation) data to be

b˚j :“ `˚j Hpθjq, cj :“ Hpσjqrj.

Thanks to (2.43), we can compute them without explicitly knowing Hpzq with

b˚j “
1

2πi

ż

BΩ

1
θj ´ z

`˚j Gpzq´1 dz, cj “
1

2πi

ż

BΩ

1
σj ´ z

Gpzq´1rj dz.

It is possible now to retrieve Hpzq thanks to the interpolation data. Start by building

the Loewner matrices L, Ls P Crˆr defined by

Li,j “
b˚i rj ´ `˚i cj

θi ´ σj
, pLsqi,j “

θib˚i rj ´ σj`
˚
i cj

θi ´ σj

2.4 beyn’s algorithm 69

or, in explicit form,

L “

»

—

—

—

—

–

b˚1 r1´`
˚
1 c1

θ1´σ1
¨ ¨ ¨

b˚1 rr´`
˚
1 cr

θ1´σr

...
. . .

...
b˚r r1´`

˚
r c1

θr´σ1
¨ ¨ ¨

b˚r rr´`˚r cr
θr´σr

fi

ffi

ffi

ffi

ffi

fl

, Ls “

»

—

—

—

—

–

θ1b˚1 r1´σ1`
˚
1 c1

θ1´σ1
¨ ¨ ¨

θ1b˚1 rr´σr`
˚
1 cr

θ1´σr

...
. . .

...
θrb˚r r1´σ1`

˚
r c1

θr´σ1
¨ ¨ ¨

θrb˚r rr´σr`˚r cr
θr´σr

fi

ffi

ffi

ffi

ffi

fl

. (2.44)

Furthermore, group the interpolation data in the matrices

B “

»

—

—

—

—

–

b˚1
...

b˚r

fi

ffi

ffi

ffi

ffi

fl

P Crˆn, C “
„

c1 . . . cr



P Cnˆr. (2.45)

Define now the generalised observability matrix O P Crˆm and generalised reachability

matrix R P Cmˆr, which mirrors (2.38) and (2.39):

O “

»

—

—

—

—

–

`˚1 pVθ1 Im ´ Jq´1

...

`˚r Vpθr Im ´ Jq´1

fi

ffi

ffi

ffi

ffi

fl

, (2.46)

R “
„

pθ1 Im ´ Jq´1W˚r1 . . . pθr Im ´ Jq´1W˚rr



. (2.47)

As one may expect, the observability and the reachability matrix decompose the

Loewner and the shifted Loewner matrix.

Theorem 2.16 ([Bre18, Theorem 3.1.2]). Let L, Ls P Crˆr be the Loewner matrices defined

in (2.44) and let O, R be the matrices in (2.46–2.47). Then

L “ ´OR, Ls “ ´OJR.

Theorem 2.16 implies that Ls ´ zL “ OpzI ´ JqR. Hence, in the holomorphic case

the condition for the algorithm to work is simply

rankpLq “ rankpOq “ rankpRq “ m, (2.48)

70 contour integral methods for meromorphic eigenvalue problems

Algorithm 2.3: Pseudocode for the core of the Loewner algorithm.
Input: G P HpΩ0, Cnˆnq, Ω Ă Ω0
Output: Eigenpairs pλ, vq P ΩˆCnzt0u.

1 Draw 2r points tθiu
r
i“1, tσiu

r
i“1, 2r directions t`iu

r
i“1, triu

r
i“1 s.t. (2.48) holds

2 Compute Hpσiq, Hpθiq for i “ 1, . . . , r
3 Build L, Ls
4 Compute reduced SVD B0 “ V0Σ0W˚

0
5 Compute M “ V˚0 B1W0Σ´1

0
6 Extract the eigenpairs pλ, uq of M
7 ΛΩ Ð tu, VΩ Ð tu

8 Vr1s0 “ V0p1 : n, 1 : NepΩqq
9 for pλi, uiq P ΛpMq ˆCnzt0u do

10 ΛΩ Ð ΛY tλiu

11 VΩ Ð VΩ Y tV
r1s
0 uiu

12 return ΛΩ , VΩ

which mirrors exactly (2.40). We summarise the algorithm in the upcoming theorem,

which is the counterpart of Theorem 2.15, and in Algorithm 2.3.

Theorem 2.17. Given the left points tθiu
r
i“1 Ă CzΩ, the right points tσiu

r
i“1 Ă CzΩ, and

the associated directions t`niur
i“1 Ă Cn, triu

r
i“1 Ă Cn, build the matrices L, Ls in (2.44).

Assume that condition (2.48) is satisfied and compute the reduced SVD of L “ V0Σ0W˚
0 .

Then

M :“ V˚0 LsW0Σ´1
0

contains all the eigenvalues λi of Gpzq in Ω. Furthermore, if pλ, uq is a right eigenpair of M,

then pλ, vq is a right eigenpair of Gpzq with v “ Vr1s0 u, where Vr1s0 is the upper nˆm block

of V0.

Proof. The proof is identical to Theorem 2.15, so we omit it.

2.4 beyn’s algorithm 71

2.4.3 The meromorphic case

We now consider the meromorphic case and look at the differences with the former

one. We assume Fpzq PMpΩ0, Cnˆnq satisfies Hypotheses 2.2 and we use the notation

of Table 2.1.

The next result corresponds to Equation (2.32). However, it is not as obvious as its

holomorphic counterpart, hence it deserves its own theorem.

Theorem 2.18 (Contour integral for meromorphic matrix-valued functions). Consider

F P MpΩ0, Cnˆnq and let f pzq P HpΩ, Cq. Let Gpzq “ gpzqFpzq P HpΩ, Cnˆnq be the

holomorphization of Fpzq, with Gpzq and gpzq P Crzs defined in Table 2.1. Then

1
2πi

ż

BΩ
f pzqFpzq´1 dz “ pV f ppJq pW˚ ` rVgprJq f prJq rW˚ “ V f pJqW˚, (2.49)

with

V “

„

pV rVgprJq



, W “

„

pW rW



, J “

»

—

–

pJ

rJ

fi

ffi

fl

.

Furthermore, a complete system of Jordan chains in pV and pW of the eigenvalues λk of Fpzq

satisfy the normalisation conditions (2.2) ΨλkpF, ¨, ¨, ¨q for k “ 1, . . . , s, while a complete

system of Jordan chains of the spurious eigenvalues ξk in rV, rW satisfy the normalisation

conditions (2.2) ΨξkpG, ¨, ¨, ¨q for k “ 1, . . . , r.

In applications, we are more interested in functions with simple eigenvalues, there-

fore we state the following corollary, before providing its proof and the one of Theo-

rem 2.18.

Corollary 2.19. Assume Fpzq P MpΩ0, Cnˆnq has λ1, . . . , λs distinct, simple eigenvalues

in Ω and ξ1, . . . , ξr distinct poles with the properties summarised in Hypotheses 2.2 and

Table 2.1. In addition, let f pzq P HpΩ, Cq, and Gpzq “ gpzqFpzq P HpΩ, Cnˆnq be the

holomorphization of Fpzq, and gpzq P Crzs the corresponding polynomial. Then

1
2πi

ż

BΩ
f pzqFpzq´1 dz “

s
ÿ

k“1

f pλkqvkw˚k ` rVgpJq f pJq rW˚,

72 contour integral methods for meromorphic eigenvalue problems

where vk, and wk are the right and left eigenvectors of λk satisfying w˚k F1pλkqvk “ 1, while

the complete system of Jordan chains rV, rW for the spurious eigenvalues ξk satisfy the normal-

isation conditions (2.2) ΨξkpG, ¨, ¨, ¨q for k “ 1, . . . , r,

The main result of Theorem 2.18 is not obvious at first sight. In fact, it seems

that it is just a rewording of Equation (2.33). Nevertheless, it is slightly deeper: the

decomposition of Fpzq´1 by Keldysh’s theorem for meromorphic functions depends

on the polynomial gpzq defined in Lemma 2.6. However, as soon as we compute

the contour integral of Fpzq´1, then the dependence from gpzq on the eigenvalues

disappears and remains only for the spurious eigenvalues.

Finally, the only difference between the proof of Theorem 2.18 and the one of

Corollary 2.19 is the difficulty that rises with the general normalisation conditions. In

a sense, the reader should see Corollary 2.8 as a preparatory lemma for Theorem 2.7,

even though it logically follows from it. Therefore we start with the proof of the

former result.

Proof of Corollary 2.19. Following the notation of Keldysh’s corollary 2.8, we can de-

compose Fpzq´1 in Ω as

Fpzq´1 “

s
ÿ

k“1

gpzqqvk qw˚k
z´ λk

` gpzqrVpzI ´ rJq´1
rW˚ ` gpzqRpzq,

with qw˚k F1pλkqqvk “ gpλkq
´1 and the complete systems of Jordan chains of the spurious

eigenvalues ξk satisfying ΨξkpG, ¨, ¨, ¨q (2.2). By applying Cauchy’s integral formula to

the contour integral integral we have

1
2πi

ż

BΩ
f pzqFpzq´1 dz “

s
ÿ

k“1

gpλkqqvk qw˚k ` rVgprJq f prJq rW˚,

where the term related to gpzqRpzq disappears because it is holomorphic. The result

follows by defining vk :“ gpλkqqvk and wk :“ qwk and noting that

w˚k F1pλkqvk “ w˚k F1pλkqqvkgpλkq “ 1.

2.4 beyn’s algorithm 73

We can now prove Theorem 2.18. We inform the reader that the proof is a bit

technical, but not too difficult.

Proof of Theorem 2.18. We follow the steps of the proof of Corollary 2.19 and we ap-

ply Keldysh’s theorem for meromorphic functions and Cauchy’s integral formula in

order to get

1
2πi

ż

BΩ
f pzqFpzq´1 “ qVgpJq f pJq qW˚ ` rVgpJq f pJq rW˚, (2.50)

where the “reverse hat” matrices correspond to the eigenvalues of Fpzq, while the

“tilde” matrices to its spurious eigenvalues. For each eigenvalue λh, the complete

system of Jordan chains contained in the in the submatrix qVh defined in 2.4 satisfies

the normalisation conditions ΨλhpG, k, i, jq (2.2), i.e.,

ΨλhpG, k, i, jq “
k
ÿ

α“0

mh,i
ÿ

β“1

whj˚
k´α

Gpα`βqpλhq

pα` βq!
vhi

mh,i´β “ δijδ0k, (2.51)

for 0 ď k ď mh,j ´ 1, and 1 ď i, j ď dh. We will show that if we substitute qVhi

with pVhi :“ qVhigppJhiq, then we can substitute ΨλhpG, k, i, jq with ΨλhpF, k, i, jq and

rewrite (2.50) as in the result.

Before starting the core of the proof, we need some preliminary results. First, recall

that

qVhigppJhiq “

„

vhi
0 vhi

1 . . . vhi
mhi´1



»

—

—

—

—

—

—

—

–

gpλhq g1pλhq ¨ ¨ ¨
gpmhi´1qpλhq

pmhi´1q!

gpλhq
. . .

...
. . . g1pλhq

gpλhq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“: pVhi,

with the pk` 1qth column of pV1hi being

rpVhisk`1 “

k
ÿ

δ“0

gpδqpλhq

δ!
vij

k´δ (2.52)

74 contour integral methods for meromorphic eigenvalue problems

for k “ 0, . . . , mh,i ´ 1. Now, for the sake of notation, we fix the indices h, i, j, and

we drop them, writing ΨλhpG, k, i, jq “ ΨpG, kq. In addition, recall that if pvjq
m´1
j“0 is

a right Jordan chain for Gpλq, then by Definition 2.1 we have vpzq “
řm´1

j“0 pz´ λqjvj,

and pGpλqvpλqqpjq “ 0 for j “ 0, . . . , m´ 1. Furthermore, given that gpλq ‰ 0, it also

holds that

pFpλqvpλqqpjq “ 0, vpjqpλq “ j!vj, (2.53)

for j “ 0, . . . , m´ 1.

We are now ready to begin. Recall that Gpzq “ gpzqFpzq and write

ΨpG, kq “
k
ÿ

α“0

m
ÿ

β“1

w˚k´α

Gpα`βqpλq

pα` βq!
vm´β “

k
ÿ

α“0

m
ÿ

β“1

w˚k´α

α`β
ÿ

`“0

Fp`qpλq
`!

gpα`β´`qpλq

pα` β´ `q!
vm´β

It is not too difficult to see that
řm

β“1
řα`β

`“0 “
řα

`“0
řm

β“1`
řm`α

`“α`1
řm

β“`´α. Hence we

can rewrite the previous equation as

ΨpG, kq “
k
ÿ

α“0

wk´α

α
ÿ

`“0

Fp`qpλq
`!

m
ÿ

β“1

gpα`β´`qpλq

pα` β´ `q!
vm´β

`

k
ÿ

α“0

wk´α

m`α
ÿ

`“α`1

Fp`qpλq
`!

m
ÿ

β“`´α

gpα`β´`qpλq

pα` β´ `q!
vm´β.

(2.54)

Let us call the first addendum of (2.54) Ψ1pG, kq, and the second one Ψ2pG, kq. We are

going to show that Ψ1pG, kq “ 0, while Ψ2pG, kq “ ΨpF, kq. We start from the latter.

By substituting the index β with δ “ β` α´ ` it holds

Ψ2pG, kq “
k
ÿ

α“0

wk´α

m`α
ÿ

`“α`1

Fp`qpλq
`!

m`α´`
ÿ

δ“0

gpδqpλq
δ!

vm`α´`´δ.

From (2.52) it follows that

pvm`α´` :“ rqVhigppJhiqsm`α´` “

m`α´`
ÿ

δ“0

gpδqpλq
δ!

vm`α´`´δ,

2.4 beyn’s algorithm 75

where the indices h, i in pJhi and qVhi were dropped at the beginning of the proof. Hence

Ψ2pG, kq “
k
ÿ

α“0

w˚k´α

m`α
ÿ

`“α`1

Fp`qpλq
`!

pvm`α´` “ ΨpF, kq

by substituting β “ `´ α. We can now focus on Ψ1pG, kq. We have

Ψ1pG, kq “
k
ÿ

α“0

wk´α

α
ÿ

`“0

Fp`qpλq
`!

m
ÿ

β“1

gpα`β´`qpλq

pα` β´ `q!
vm´β.

It is not obvious at first sight, but we can write
řk

α“0
řα

`“0 “
řk

δ“0
řk´δ

`“0 with δ “ α´ `.

Hence

Ψ1pG, kq “
k
ÿ

δ“0

k´δ
ÿ

`“0

w˚k´δ´`

m
ÿ

β“1

gpβ`δqpλq

pβ` δq!
vm´β.

Now note that the sum indexed by β does not depend on ` and furthermore, by (2.53),

it holds

k´δ
ÿ

`“0

w˚k´δ´`

Fp`qpλq
`!

“

k´δ
ÿ

`“0

wpλqpk´δ´`q˚

pk´ δ´ `q!
Fp`qpλq

`!
“ pwpλqFpλqqpk´δq,

thus Φ1pG, kq “ 0, as claimed.

We point out that the spurious eigenvalues clearly depend on the polynomial gpzq

that define them. However, given a spurious eigenvalue ξk, if the size mk,i of any Jor-

dan block rJki is less than the pole multiplicity ck, then its contribution will disappear,

given that gprJkiq “ 0. The following examples and the upcoming proposition clarify

this aspect.

Example 2.4. We set Ω “ Dp0, 6q, f pzq ” 1 and consider

Fpzq “

»

—

–

z´1
pz´2qpz´3q

z´4
z2

0 z´5
z´2

fi

ffi

fl

ùñ Gpzq “

»

—

–

z2pz´ 1q pz´ 2qpz´ 3qpz´ 4q

0 z2pz´ 3qpz´ 5q

fi

ffi

fl

,

76 contour integral methods for meromorphic eigenvalue problems

with gpzq “ z2pz ´ 2qpz ´ 3q. Then λ1 “ 1, λ2 “ 5 are the original eigenvalues of Fpzq,

and ξ1 “ 0, ξ2 “ 3 are spurious eigenvalues. Following the notation of Theorem 2.18 we can

rewrite

pV pW˚ “

2
ÿ

j“1

vjw˚j ,

with w˚j F1pλjqvj “ 1. Now, the matrix rJ consists of the Jordan blocks with eigenvalues ξk,

for k “ 1, 2, 3. It is easy to see that ξ2, ξ3 are simple eigenvalues, and that the index of ξ1 is

at most 2. Hence gprJq “ 0 and the contour integral algorithm will only extract the original

eigenvalues of Fpzq.

Example 2.5. Consider the matrix-valued function

Fpzq “

»

—

—

—

—

–

z´ 1 0 z´1

0 z´ 2 0

0 0 z´ 3

fi

ffi

ffi

ffi

ffi

fl

.

from Remark 2.1 on the target set Ω “ Dp0, 4q. Then λj “ j are the original eigenvalues and

ξ “ 0 is the only spurious eigenvalue. It follows

rJ “

»

—

—

—

—

–

0 1 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

and hence gprJq “ rJ is not zero. Therefore the contour integral (2.49) will contain both the

original eigenvectors of Fpzq and also one eigenvector associated with the spurious eigenvalue

ξ “ 0.

Lemma 2.20. Let gpzq “ pz´ ξqc P Crzs and let J P Cmˆm be a Jordan matrix with d Jordan

blocks with eigenvalue ξ. Let m1 ě m2 ě ¨ ¨ ¨ ě md be the partial multiplicities that identify

J. Then

rankpgpJqq “
d
ÿ

j“1

pmj ´ cq`,

2.4 beyn’s algorithm 77

where k` “ maxp0, kq.

Proof. Denote with Ji P Cmiˆmi each Jordan block of J. Then, by definition of matrix

function 1.4, it holds rankpgpJiqq “ pmi´ cq` , since gpkqpξq “ 0 for k “ 0, . . . , c´ 1.

Proposition 2.21. Consider Fpzq PMpΩ0, Cnˆnq. Then it holds

rankpgprJqq “
r
ÿ

i“1

dξi
ÿ

j“1

pmξi ,j ´ ciq
`, rankprVgprJqq ď min

$

&

%

n,
r
ÿ

i“1

dξi
ÿ

j“1

pmξi ,j ´ ciq
`

,

.

-

,

where k` “ maxp0, kq.

Proof. The rank of gprJq is given by the sum of the rank of the matrices gprJiq for

i “ 1, . . . , r, where rJi is the direct sum of the Jordan blocks with eigenvalue ξ, be-

cause rJ is block-diagonal. Hence the first part of the result immediately follows from

Lemma 2.20. In addition, it holds

rVgprJq “
„

rV1gprJ1q rV2gprJ2q . . . rVrgprJrq



,

where

rVi “

„

rVi1 . . . rVidi



, rJi “

»

—

—

—

—

–

rJi1

. . .

rJidi

fi

ffi

ffi

ffi

ffi

fl

.

Hence, if we fix two indices i and j, we have that the pk` 1qth column of rVijgprJijq is

rrVijgprJijqsk`1 “

k
ÿ

`“0

gp`qpξiq

δ!
rvij

k´`.

for k “ 0, . . . , mξi ,j ´ 1. Given that gp`qpξiq “ 0 for ` “ 0, . . . , c´ 1, it follows that the

first ci columns of rVijgprJijq is zero, hence rankprVijgprJijqq ď mintn, pmξi ,j ´ ciq
`u. Thus

rankprVgprJqq ď min

$

&

%

n,
r
ÿ

i“1

di
ÿ

j“1

pmξi ,j ´ ciq
`

,

.

-

,

as claimed in the result.

78 contour integral methods for meromorphic eigenvalue problems

We can now show how the algorithm generalises to the meromorphic case. As in

the holomorphic case we consider the subcases where it suffices to just consider A0

and A1 or when it is necessary to compute more moments. In the first situation, we

require the following conditions to be satisfied:

rankppVq “ mλ, (2.55)

rangeppVq X rangeprVgprJqq “ t0u. (2.56)

First, note they are equivalent to (2.35) when the matrix-valued function is holomor-

phic. In addition, note that if mλ ą n, then (2.55) cannot be satisfied. Similarly, if

rankppVq ` rankprVgprJqq ą n, then (2.56) can no longer hold true. These equations for-

malise the intuition that the algorithm cannot work with only A0 and A1 if there are

either too many eigenvalues in Ω or too many spurious eigenvalues with algebraic

multiplicities larger than their pole multiplicity.

For the sake of notation, we set P “ I and we retrace the steps of the holomorphic

algorithm. Write

A0 “

„

pV rVgprJq



»

—

–

pW˚

rW˚

fi

ffi

fl

,

and consider its SVD

A0 “

„

pV0 rV0



»

—

–

pΣ

rΣ

fi

ffi

fl

»

—

–

pW˚
0

rW˚
0

fi

ffi

fl

,

where pV0, pW0 P Cnˆmλ , rV0, rW0 P Cnˆmξ , and pΣ P Cmλˆmλ , pΣ P Cmξˆmξ . We can assume

that rankpA0q “ mλ ` k, k P N due to (2.55)–(2.56). In addition, (2.56) implies there

exist two nonsingular matrices pX P Cmλˆmλ , rX P Cmξˆmξ such that pV “ pV0 pX and

rVgprJq “ rV0 rX. It follows that

»

—

–

pW˚

rW˚

fi

ffi

fl

“

»

—

–

pX´1

rX´1

fi

ffi

fl

»

—

–

pW˚
0

rW˚
0

fi

ffi

fl

2.4 beyn’s algorithm 79

and we can rewrite A1 as

A1 “

„

pV rV



»

—

–

pJ

rJ

fi

ffi

fl

»

—

–

pW˚

rW˚

fi

ffi

fl

“

„

pV0 rV0



»

—

–

pX

rX

fi

ffi

fl

»

—

–

pJ

rJ

fi

ffi

fl

»

—

–

pX´1

rX´1

fi

ffi

fl

»

—

–

pΣ

rΣ

fi

ffi

fl

»

—

–

pW˚
0

rW˚
0

fi

ffi

fl

.

Hence the matrix

M1 “

»

—

–

pV˚0
rV˚0

fi

ffi

fl

A1

„

pW0pΣ´1
rW0rΣ:



“

»

—

–

XpJX´1

XrJX´1

fi

ffi

fl

allows us to retrieve the original eigenvalues and eigenvectors of Fpzq, as we did in

the holomorphic case, plus a subset of the spurious eigenvalues. We underline the

fact that the algorithm does not really change: one always computes a reduced SVD

of size mλ ` k: the previous analysis only shows that it is still able to retrieve the

spectral information of Fpzq.

As we can generalise the holomorphic algorithm to the case where we need to

compute Ak for k ą 1, the same is true in the meromorphic case. The main difficulty

lies in finding m such that Brms0 and Brms1 contain the spectral information we are

interested in.

Definition 2.5 (Meromorphic minimality index). Consider Fpzq P MpΩ0, Cnˆnq. De-

compose Brms0 in

Brms0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

pV rVgprJq

pVpJ rVgprJqrJ
...

...

pVpJm´1
rVgprJqrJm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

pW˚
pJ pW˚ . . . pJm´1

pW˚

rW˚
rJ rW˚ . . . rJm´1

rW˚

fi

ffi

ffi

ffi

fl

“

«

pO rO
ff

»

—

—

—

–

pR˚

rR˚

fi

ffi

ffi

ffi

fl

,

80 contour integral methods for meromorphic eigenvalue problems

where pO, pR P Cnmˆmλ and rO, rR P Cnmˆmξ . We say that m is the meromorphic minimality

index if it is the smallest integer such that

rankp pOq “ mλ, (2.57)

rangep pOq X rangep rOq “ t0u. (2.58)

It is clear the meromorphic minimality index is bounded by
řs

j“1 mj,1 `
řr

j“1 mξ j,1

by applying Proposition 2.14 to Gpzq “ gpzqFpzq. However, since we are only inter-

ested in the original eigenvalues and not in the spurious ones, this bound is quite

loose. Consider, for instance,

Fpzq “

»

—

–

z´ 1 1

0 z´`

fi

ffi

fl

(2.59)

with ` P N and target set Ω “ Dp0, 2q. On one hand, Proposition 2.14 applied

to Gpzq “ z`Fpzq tells us that the minimality index is bounded by ` ` 1; on the

other, it is easy to see that the conditions (2.55-2.56) are satisfied because the spurious

eigenvalue ξ is filtered out by the contour integral. Therefore it is natural to ask

ourselves if there exists a sharper bound. The upcoming theorem, which mirrors

Proposition 2.14, gives a positive answer to this question.

Proposition 2.22. Let Fpzq P MpΩ0, Cnˆnq satisfying the Hypotheses 2.2. Then the mero-

morphic minimality index m for F is bounded from above by

m ď

s
ÿ

i“1

mi,1 `

r
ÿ

i“1

pmξi ,1 ´ ciq
`.

Proof. We follow the steps of [Bey12, Lemma 5.1]. Let M “
řs

i“1 mi,1 `
řr

i“1pmξi ,1 ´

ciq
` and assume that V J jx “ 0, for some x P Cn and j “ 0, . . . M ´ 1, with V “

rpV, rVgprJqs. For the sake of notation denote λs`i “ ξi for i “ 1, . . . r and

rmi,1 “

$

’

&

’

%

mi,1 i “ 1, . . . s,

mξi´s,1 ´ ci´s i “ s` 1, . . . s` r.

2.4 beyn’s algorithm 81

For any 1 ď i ď r` s and 0 ď β ď rmi,1, define the polynomial

Pi,βpzq “ pz´ λiq
β

r`s
ź

j“1,j‰i

pz´ λiq
rmi,1 .

By our assumption, it follows that VPi,βpJqx “ 0. We have to partition V “ rpV rVrJs,

J “ diagppJ, rJq, and xT “ rpxT
rxTs in the usual way:

px “

„

px1 . . . pxs



, pxi “

„

pxi1 . . . pxidi



, pxij “

„

pxij
0 . . . pxij

mi,j´1



,

pV “

„

pV1 . . . pVs



, pVi “

„

pVi1 . . . pVidi



, pVij “

„

pvij
0 . . . pvij

mi,j´1



,

pJ “

»

—

—

—

—

–

pJ1

. . .

pJs

fi

ffi

ffi

ffi

ffi

fl

, pJi “

»

—

—

—

—

–

pJi1

. . .

pJidi

fi

ffi

ffi

ffi

ffi

fl

,

where pJij is defined in (2.6) with the analogous for the tilde matrices rV, rJ, and vector rx.

Once more we denote with Ji :“ pJi for 1 ď i ď s and with Ji :“ rJi´s for s` 1 ď i ď r` s.

Now we fix an index i ď s. We recall that for j ‰ i it holds ppJj ´ λj Iq rmj1 “ 0 if j ď s

and that rVj´sgprJj´sqprJj´s´ ξ j´s Iqmξi ,1´ci if s ă j ď r. Thus we can rewrite 0 “ VPi,βpJqx

as

0 “
di
ÿ

`“1

Vi`

r`s
ź

j‰i
rmj,`´1ěβ

pJi` ´ λj Iq
rmj,1pJi` ´ λi Iqβxi`. (2.60)

Now we are going to prove by induction on β “ mi,1 ´ 1, . . . , 0 that

pxi`
δ “ 0, for β ď δ ď mi,` ´ 1. (2.61)

In the base case β “ mi,1 ´ 1, all the Jordan blocks of sizes strictly less than mi,1

disappear, hence (2.60) becomes

0 “
r`s
ÿ

j‰i

pλj ´ λiq
rmj,1

di
ÿ

`“1
mi,`“mi,1

vi`
0 xi`

mi,`´1,

82 contour integral methods for meromorphic eigenvalue problems

and (2.61) holds true because the vectors vi`
0 are linearly independent, as per Defini-

tion 2.1. Now it is time for the induction step. By putting β´ 1 in (2.60) and using

the induction hypothesis, it follows that

0 “
r`s
ÿ

j‰i

pλj ´ λiq
rmj,1

di
ÿ

`“1
mi,`ěβ

vi`
0 xi`

β´1,

therefore (2.61) is always true. Now fix an index 1 ď i ď r. Similarly to the previous

case we can rewrite 0 “ VPi,βpJq as

0 “
dξi
ÿ

`“1

rVpi´sq`gpJi`q

r`s
ź

j‰i
rmj,`´1ěβ

pJi` ´ λj Iq
rmj,1pJi` ´ λi Iqβxi`, (2.62)

and we are going to show by induction on β “ mξi ,1 ´ ci ´ 1, . . . , 0 that

xi`
δ “ 0, for β` ci ď δ ď mξi ,` ´ 1. (2.63)

Note that (2.63) and (2.63) together prove the result. In fact, they show that the first

mλ columns are independent, that the rank of the following mξ is

r
ÿ

i“1

dξi
ÿ

j“1

pmξi ,j ´ ciq
`,

and that they also are independent from each other.

For the base case of the induction β “ mξi ,1 ´ ci ´ 1, note that all the Jordan blocks

Ji` of size strictly less than mξi ,1 disappear, due to the contribution of

gpJi`q “ pJi` ´ λiq
ci

r`s
ź

j“s`1
j‰i

pJi` ´ λjq
cj .

Therefore (2.62) becomes

0 “
r`s
ÿ

j‰i

pλj ´ λiq
rmj,1

di
ÿ

`“1
mi,`“mi,1

vi`
0 xi`

mi,`´1,

2.4 beyn’s algorithm 83

Algorithm 2.4: Pseudocode for the core of Beyn’s algorithm in the meromor-
phic case.

Input: F PMpΩ0, Cnˆnq, Ω Ă Ω0
Output: Eigenpairs pλ, vq P ΩˆCnzt0u.

1 Choose pm, Pq P NˆCnˆp s.t. (2.57–2.58) hold
2 Compute Ak, k “ 0, . . . , 2m´ 2
3 Build B0, B1
4 Compute reduced SVD B0 “ V0Σ0W˚

0
5 Compute M “ V˚0 B1W0Σ´1

0
6 Extract the eigenpairs pλ, uq of M
7 ΛΩ Ð tu, VΩ Ð tu

8 Vr1s0 “ V0p1 : n, 1 : NepΩqq
9 for pλi, uiq P ΛpMq ˆCn do

10 if ‖Fpλq‖ ă 8 then
11 ΛΩ Ð ΛY tλiu

12 VΩ Ð VΩ Y tV
r1s
0 uiu

13 return ΛΩ , VΩ

and the base case holds once more for the linear independence of vi`
0 . Finally, the

induction step is identical: we insert β´ 1 in (2.62) and get

0 “
dξi
ÿ

`“1

rVpi´sq`gpJi`q

r`s
ź

j‰i
rmj,`ěβ

pJi` ´ λj Iq
rmj,1pJi` ´ λi Iqβ´1xi`.

By using the induction hypothesis (2.63) it holds that gpJi`qpJi` ´ λiq
β´1xi` “ xi`

β´1e1,

so that

0 “
r`s
ÿ

j‰i

pλj ´ λiq
rmj,1

di
ÿ

`“1
mi,`ěβ

vi`
0 xi`

β´1,

therefore (2.63) holds true and we have shown that all the components of x are zero,

except at most the ones corresponding to rxi`
δ for 1 ď i ď r, for 1 ď ` ď dξi , and for

0 ď δ ď mintmξi ,`, ci ´ 1u.

In Algorithm 2.4 we summarised the core of the procedure in the meromorphic

case. The only difference with Algorithm 2.2 arises in the final retrieval of the eigen-

pairs. Given that we may extract spurious eigenvalues ξ from the matrix M, we need

84 contour integral methods for meromorphic eigenvalue problems

to make sure that we do not return them to the final user. Theoretically, we should

check that all the entries of Fpξq are finite; in practice we discard ξ when by checking

‖Fpξq‖ and discarding ξ when max1ďi,jďn
∣∣rFpξqsij∣∣ " 1. As the reader may point out,

at the moment we left some details out. For instance, we did not focus on how well

to approximate the moments Ak or, more importantly, on how to choose m and P. It

is clear that this choice heavily depends on the number of eigenvalues of Fpzq, which

we cannot assume we know a priori. We were not able to find a sufficient number

of theoretical results to justify all our choices on the algorithm’s parameters. Hence,

we preferred to draw a line by ending the theoretical chapter here and create a new

chapter, where we explore the topics mentioned above from a numerical point of

view.

3 PRACT ICAL CONS IDERAT IONS ON

CONTOUR INTEGRAL METHODS

3.1 introduction

In the previous chapter we focused our attention on contour integral methods to

solve nonlinear eigenvalue problems. Our goal was showing how Beyn’s algorithm

changes when the input is a meromorphic function Fpzq P MpΩ0, Cnˆnq. The main

goal of this chapter is to describe a practical implementation of a contour algorithm

that will allow almost any end-user to solve small and mid-sized nonlinear eigen-

value problems without a deep knowledge of the numerical linear algebra that lies

behind it. In a sense, the philosophy behind it is the same of eig or \ in Matlab:

anybody can use them without knowing the precise algorithms they are based on.

Most of the solutions we present here are not based on theoretical results, but on

heuristics that we found through many numerical experiments. One of the initial

problems we had to face was the absence of a large set of examples which we could

calibrate our algorithm with. The NLEVP library is a collection of problems that

researchers can use to benchmark their software [Bet+11]. Unfortunately, the 3.0

version was dated back to 2013 and was mainly focused on quadratic and polynomial

eigenvalue problems. Hence we realised it was time to update it with newer problems

and newer features. Its 4.0 incarnation is the topic of Section 3.2.

Furthermore, we saw that the algorithms of the previous chapter require the choice

of multiple parameters in order to retrieve the eigenpairs: even excluding the quadra-

ture rule to use and the number of quadrature points, Beyn’s algorithm needs to set

the number m of moments to compute and the number p of columns of the probing

matrix P P Cnˆp; on the other hand, the Loewner interpretation has to set not only

the number r of interpolation points and directions, but also the interpolation points

σi and θi themselves. In Section 3.3 we show how we automatically set the many

85

86 practical considerations on contour integral methods

parameters Beyn’s algorithm needs without having the user to worry about them.

In Section 3.4 we analyse the influence of the quadrature approximation. There we

generalise the results of Beyn to the meromorphic case and we see how the presence

of poles changes the convergence to the exact value of the integrals. In Section 3.5

we cover the refinement strategies. Given the broad scope we have prefixed to our-

selves, hoping that we will always be able to retrieve the eigenpairs with satisfactory

precision is too optimistic. Hence we propose different refinement strategies to avoid

restarting the algorithm from scratch. Finally, we postpone most of the numerical

experiments to Section 4.4 of Chapter 4, where we compare this implementation to

the algorithms described there.

3.2 the nlevp 4.x library

In numerical analysis having access to a set of problems is a fundamental tool for

research. It helps tuning and benchmarking your own algorithms against a wide

range of situations. In addition, it allows researchers of different groups to test their

work on the same field.

The history of numerical linear algebra is filled with numerous problem collec-

tions. For example, the Matlab function gallery contains more than 50 examples

of matrices with interesting properties; similarly, the SuiteSparse Matrix Collection

(formerly known as the The University of Florida Sparse Matrix Collection) contains

more than 2800 sparse matrices [Dav97; DH11]. The NLEVP library was born on

the wave of the growing interest for nonlinear eigenvalue problems in 2008 and con-

tained 26 problems; two years later version 2.0 was released with the addition of

another 20 problems, and finally Betcke, Higham, Mehrmann, Schröder, and Tisseur

published 3.0 in 2011 for a total of 52 problems [Bet+11]. It was immediately widely

adopted and many problems, like gun, started to appear in several papers interested

in either eigenvalues or rational approximations. One of the main perk of the toolbox

3.2 the nlevp 4.x library 87

is the easiness of installation and use under Matlab. Given a matrix-valued function

named problem of the form

Fpzq “
s
ÿ

j“1

f jpzqAj

then the command

[coeffs, fun] = nlevp(’problem’)

would return a cell coeffs containing the matrices Aj, and a function handle array

fun with the scalar functions f j. In addition, all the problems were described by their

properties, such as real, sparse, or symmetric.

As hinted in the introduction, we realised it was time to update the library, in

order to add both new features and new nonpolynomial problems. In fact, we were

not the only one having this idea: in 2018 Jarlebring, Bennedich et al. developed Nep-

Pack, a Julia package for nonlinear eigenvalue problems [Jar+18]. In 2019 we finally

released version 4.0, which contained 22 new problems. We also introduced three

new identifiers, tridiagonal, banded, and low-rank, together with a third output:

the command

[coeffs, fun, F] = nlevp(’problem’)

now returns a matrix-valued function handle F for Fpzq. This substitutes the original

and slower inline call

F = @(z) nlevp(’eval’, name, z).

Finally, a fourth output, xcoeffs, is available for all the problems with the low-rank

identifier. It contains a 2ˆ s cell such that if the kth matrix coefficient Ak “ BkCk for

some rectangular matrices Bk, Ck, then xcoeffs{1,k} “ Bk and xcoeffs{2,k} “ Ck.

Since version 4.0, the library is hosted on Matlab File Exchange and on the GitHub

repository https://github.com/ftisseur/nlevp. This choice allows an easier way

for us to update and add other problems, but also for the researchers to download

and use it. The latest public version is the 4.1, which consists of 80 problems. In

Table 3.1 we have listed the ones we added since 3.0.

https://github.com/ftisseur/nlevp

88 practical considerations on contour integral methods

Table 3.1: New problems in NLEVP version 4.0 and 4.1.

Quadratic bcc_traffic circular_piston damped_gyro
deformed_consensus disk_brake100 disk_brake4669
elastic_deform utrecht1331

Rational photonic_crystal railtrack_rep railtrack2_rep

Nonlinear bent_beam bucking_plate canyon_particle
clamped_beam_1d distributed_delay1 nep1

nep2 nep3 neuron_dde
pdde_symmetric pillbox_cavity pillbox_small
sandwich_beam schrodinger_abc square_root
time_delay2 time_delay3

3.3 the choice of the parameters

In the previous chapter we generalised Beyn’s algorithm to meromorphic functions

Fpzq P MpΩ0, Cnˆnq. Furthermore, we saw that the same can be easily done for its

Loewner interpretation. It is clear that these two approaches share many similarities.

The former opened the paths of using contour integrals to solve eigenvalue prob-

lems, while the latter shed some light on the link between contour integrals and the

Loewner framework.

Here we mainly focus on the original interpretation. We consider Fpzq PMpΩ0, Cnˆnq

satisfying the Hypotheses 2.2. In addition, we assume:

1. the eigenvectors in pV are linearly independent when mλ ď n, i.e., when the

number of eigenvalues in Ω is less than n;

2. for each spurious eigenvalue ξi, ci ě mξi ,1, i.e., its pole multiplicity is greater

than the size of its largest Jordan block as spurious eigenvalue of Fpzq.

The first assumption is quite natural and it implies that the algorithm works with the

two moments A0 and A1 whenever the number of eigenvalues in Ω is smaller than n.

The second one implies that rVgprJq “ 0, therefore (2.58), i.e.,

rangep pOq X rangep rOq “ t0u,

3.3 the choice of the parameters 89

is always satisfied. In a sense, this assumption is a natural extension to working with

simple eigenvalues in the holomorphic case. Given these premises, the algorithm

necessitates (2.57) to be satisfied, i.e.,

rankp pOq “ rankppRq “ mλ.

A necessary condition for this to be true is that minpnm, mpq ą mλ. Given that it

would not make sense for P P Cnˆp to be a “fat” matrix, i.e., p ą n, the condition

becomes

mp ą mλ. (3.1)

It is therefore clear that estimating the number of eigenvalues in Ω is a fundamental

preliminary step of the contour algorithms. For sake of the notation we assume that

all the eigenvalues are simple, so that mλ “ s. In Section 2.2.2 we have seen that, for

a holomorphic function Gpzq P HpΩ0, Cnˆnq,

s “
1

2πi

ż

BΩ
trpGpzq´1G1pzqq dz. (3.2)

which can be stochastically estimated by

s « rs :“
1

2πiL

ż

BΩ

L
ÿ

k“1

u˚j Gpzq´1G1pzquj, dz, (3.3)

where uj are i.i.d random vectors with entries in t0, 1u. Given that rs is indeed an

estimation, we cannot be sure that rs ě s. Hence, every author that worked with con-

tour integrals added a “safety valve” before extracting the eigenvalues of M [Bey12;

Asa+10; BEG20]: if Brms0 is not full rank, then the deficiency is caused by the matrix J

and thus we will be able to retrieve the eigenpairs.

In the holomorphic case, if the estimation of rs is good enough, then it is quite rare

for Brms0 not to be rank-deficient. In the worst scenario, then one has to increase m

and/or p and recompute the SVD of the new Brms0 . Nevertheless, this is one of the

situations where Fpzq being a meromorphic function causes several difficulties. First

90 practical considerations on contour integral methods

of all, now (3.2) does not compute the number of eigenvalues, but the difference

between the number of eigenvalues and the poles of the determinant. Hence, (3.2)

may vastly underestimate the optimal m if these two quantities are approximately the

same. In addition, as we had seen in Remark 2.1, the poles of det Fpzq are generally

a strictly subset of the poles of Fpzq. Furthermore, the rank of Brms0 is influenced not

only by the original eigenvalues of Fpzq, but also from its spurious eigenvalues.

To conclude, we can always build a meromorphic function Fpzq such that (3.2)

does not give useful information about rankpBrms0 q. The only way to make sure we

have chosen a suitable m is computing the SVD of Brms0 and increase the number of

moments m or the size of the probing matrix P if Brms0 is not rank-deficient. Note that

recomputing the decomposition from scratch is not necessary in either cases. Indeed,

let P P Cnˆp and let Brms0 pPq P Cmnˆmp be the Hankel matrix Brms0 where we underline

the presence of P. In order to have a rank-deficient Hankel matrix, we can either

increase the number of moments or we can increase the size of the probing matrix

P. Let us say we choose the first option, i.e., we take m1 ą m and compute Ak for

k “ 2m´ 1, 2m, . . . , 2m1 ´ 2. Then we can write

Brm
1s

0 pPq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Am . . . Am1´1

Brms0 pPq
...

...

A2m´1 . . . Am`m1´2

Am . . . A2m´1 A2m . . . Am`m1´1

...
...

...
...

Am1´1 . . . Am`m1´2 Am`m1´1 . . . A2m1´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cm1nˆm1p

and Brm
1s

0 pPq is obtained from Brms0 pPq by adding pm1 ´ mqn rows and pm1 ´ mqp

columns. Hence, we obtain Brm
1s

0 from Brms0 with a pm1 ´mqpn` pq-rank update. In

general, we will add further moments when p “ n, hence the rank update will be

2pm1 ´mqn. When this quantity is not too large with respect to mn, then there exist

efficient ways to update the SVD of Brms0 to obtain the one of Brm
1s

0 (see, for instance,

[Bra06; HL08]). More precisely, Brand proved that one can perform a rank r update

of a uˆ v SVD in Opuvrq, if r2 ď mintu, vu [Bra06].

3.3 the choice of the parameters 91

If we decide to increase the size of the probing matrix, the strategy is similar. De-

note with AkpPq the k-th moment computed with P. Consider now a larger probing

matrix P1 “ rP Ps P Cnˆp1 , where P P Cnˆpp1´pq. Then

Brms0 pPq “

»

—

—

—

—

–

A0pPq . . . Am´1pPq
...

Am´1pPq . . . A2m´2pPq

fi

ffi

ffi

ffi

ffi

fl

, Brms0 pP1q “

»

—

—

—

—

–

A0pP1q . . . Am´1pP1q
...

Am´1pP1q . . . A2m´2pP1q

fi

ffi

ffi

ffi

ffi

fl

.

It is not too difficult to see that there exists a block-permutation matrix Π such that

ΠBrms0 pP1q “

»

—

—

—

—

–

A0pPq . . . Am´1pPq A0pPq . . . Am´1pPq
...

...

Am´1pPq . . . A2m´2pPq Am´1pPq . . . A2m´2pPq

fi

ffi

ffi

ffi

ffi

fl

“

„

Brms0 pPq Brms0 pPq



,

Therefore adding p1 ´ p columns to P and then rebuilding B0pP1q is equivalent to

adding pp1 ´ pqm columns to B0pPq. Once again, if pp1 ´ pqm is relatively small com-

pared to pm, then we can directly update the SVD of B0pPq, saving computational

time. In Algorithm 3.1 we summarise the procedure to choose p and m. Each time

we either increase p or m by one, but a generalisation is trivial. Furthermore, if

the sizes of the matrices are small, then recomputing the SVD might be faster than

updating.

Remark 3.1. In general, it is better to increase the size of the probing matrix P instead

of the number of moments m when p ă n. As we have seen, changing p so that mp

increases requires a lower rank update on B0. Furthermore, we will see in Section 3.4

that it is better for the backward error of the eigenpairs to have fewer moments m.

3.3.1 The computational cost

Every author who studied contour algorithms to solve eigenvalue problems (and we

are not an exception) has always underlined their natural parallelizability. If we di-

92 practical considerations on contour integral methods

Algorithm 3.1: Choose the parameters p and m so that Brms0 pPq is rank-deficient
its SVD.
Input: F PMpΩ0, Cnˆnq, Ω Ă Ω0, L
Output: Rank-deficient SVD of Brms0 pPq.

1 Draw L i.i.d vectors ui P t0, 1un

2 rs Ð 1
2πiL

ş

BΩ trpFpzq´1F1pzqq dz
3 m Ð 1, p Ð 1
4 while mp ď rs do
5 p Ð mintn, rprs` 1q{msu

6 if mp ď rs then // p “ n and m is not large enough

7 m Ð m` 1

8 Build random matrix P P Cnˆp

9 Compute AkpPq for k “ 0, . . . , 2m´ 1 and build Brms0 pPq
10 Compute reduced SVD B0 “ V0Σ0W˚

0
11 while Σ0 is full-rank do
12 if p ă n then
13 p1 Ð p` 1
14 else
15 m1 Ð m` 1
16 p1 Ð mintn, mpp` 1q{m1u

17 if p1 ď p then
18 P1 Ð Pp:, 1 : p1q
19 else
20 Build random P1 P Cnˆpp1´pq

21 P1 Ð rP P1s

22 Update SVD of Brms0 pPq to obtain SVD of Brm
1s

0 pP1q
23 P Ð P1, p Ð p1, m Ð m1

24 return V0, Σ0, W0

vide Ω in k subregions Ω1, . . . , Ωk, then each eigenvalue problem is independent from

the others; furthermore, the linear systems in the approximation of the moments Ak

can be solved independently as well. In our current world, where parallel computing

has become as important as (if not more than) sequential computing, these are funda-

mental qualities for an algorithm, and often overshadow traditional measures, such

as the computational cost expressed in flops. Nevertheless, a rigorous analysis of this

aspect helps us understand the sections of the algorithm that require more attention.

We analyse Beyn’s original formulation (see Algorithm 2.2), but the similarities

with its Loewner interpretation would allow us to draw similar conclusions time-wise.

First of all, suppose that each integral is approximated with N quadrature points. The

3.3 the choice of the parameters 93

first step is the estimation of the number of eigenvalues minus poles. Following the

notation of (3.3), this requires the solution of N nˆ n linear systems, where the right

hand side is a nˆ L matrix. Depending on the specific scenario, many algorithms can

be used to solve them. We assume that n is not too large and we can store the N LU

factorisations, which implies that this step costs Np2{3n3 ` LOpn2qq. Similarly, the

approximation of each moment Ak costs NpOpn2q and therefore building Brms0 pPq,

Brms1 pPq requires 2mNpOpn2q. Notice how the cost in n is quadratic because we

are using the fact that we have saved the LU factorisations. Finally, the SVD of

Brms0 pPq P Cmnˆmp costs 14mnm2 p2 ` 8m3 p3 “ 2m3 p3p7n{p ` 4q [Hig08]. Adding

everything together yields

2N
3

n3 ` 2m3 p3
ˆ

7n
p
` 4

˙

` Np1` 2m` L` pqOpn2q ` cost of eig. (3.4)

At first sight, this estimation does not seem very helpful because, as seen in the

previous paragraphs, p and m are chosen at runtime. Nevertheless, under the as-

sumptions that all the eigenvalues are simple and that ci ě mξi ,1 for any spurious

eigenvalue ξi, we have mp Á s. Hence, if we substitute mp “ s in (3.4) and leave out

the lower order terms we get

2N
3

n3 ` 2s3
ˆ

7n
p
` 4

˙

. (3.5)

Equation (3.5) clarifies an important aspect of contour algorithms: in a general

meromorphic eigenvalue problem, the two terms in (3.5) are independent from each

other, as written with greater details in Section 1.2.1. This is not true for the simpler

polynomial eigenvalue problem of degree d, where s is always bounded by nd. Ad-

mittedly, in most practical applications we will have n " s, but we cannot dismiss the

scenarios where the opposite is true. Hence, the algorithm could be very computa-

tionally expensive even if n is small, if there are several eigenvalues in Ω. Finally, the

same analysis works for the Loewner interpretation as well, providing we substitute

the product mp with the number of sample points r: we would then substitute again

r with s and arrive at the same formula, minus a constant factor.

94 practical considerations on contour integral methods

Remark 3.2. In the analysis above we are also assuming that the cost of finding the

“correct” m and p is negligible with respect to the other operations, which is equiv-

alent to assuming that either m and p are known a priori or the estimation of the

number of eigenvalues (3.3) is precise. An easy example where this is no longer

true is when the number of poles almost coincides with the number of eigenvalues.

Another possibility is when there are several spurious eigenvalues. Consider, for

instance, the following function Fpzq PMpC, Cnˆnq

Fpzq “

»

—

—

—

—

—

—

—

–

z hpzq´1

1
. . .
. . . hpzq´1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, hpzq “
r
ź

i“1

pz´ ξiq

with ξi ‰ 0 and ξi ‰ ξ j for i ‰ j. Assume it is given in black box form and that

we are interested in finding the eigenvalue λ “ 0 . The estimation of the number of

eigenvalues minus poles returns 1 (the poles ξi are not seen by detpFpzqq), but

rankpBrms0 q “ 1` rpn´ 1q,

due to its spurious poles. In the end, we will have to solve a linear eigenvalue

problem of size 1` rpn´ 1q, even though Fpzq has only one eigenvalue.

3.4 the influence of the quadrature rules

Approximating the contour integral is surely the most important step in the homonym

algorithms. The choice of the quadrature often falls into the trapezoidal rule. The rea-

son is twofold: not only it is very easy to implement, but it also offers an exponential

convergence to the true value of a closed integral when the integrand function is holo-

morphic in an open neighbourhood of BΩ. See, for example, [TW14, Theorem 2.2]

or [DR07]. Hence very few papers focus more on this point or more precisely on the

3.4 the influence of the quadrature rules 95

choice of the number N of quadrature points. Nevertheless, the next example shows

that it is a topic that requires the most careful scrutiny.

3.4.1 A motivating example

We consider the butterfly problem (see also Example 2.3) and the hadeler problem

G1pzq “ z4B4 ` z3B3 ` z2B2 ` zB1 ` B0, Bk P R64ˆ64,

G2pzq “ pez ´ 1qH2 ` z2H1 ´ 100I, Hk P R30ˆ30

from the NLEVP library [Bet+11; Had67]. The matrices Hk, B2 and B4 are symmetric,

while B1 and B3 are skew-symmetric. The respective target sets are

Ω1 “ Dp1` 3i, 4q “ Dpγ1, r1q, Ω2 “ Dp0, 5q “ Dpγ2, r2q.

The reason for the unusual choice of the target sets is that we want to avoid any

possible symmetry in the two problems. We are looking for a relationship between

the approximation of the moments Ak and the backward error of the eigenpairs. We

measure these two quantities as follows. We define

ApNqk :“
N
ÿ

j“1

wj,i

ˆ

zj,i ´ γi

ri

˙k

Fpzj,iq
´1P «

1
2πi

ż

BΩi

ˆ

z´ γi

ri

˙k

Fpzq´1P dz

to be the approximation of Ak with N trapezoidal quadrature points, where pzj,i, wj,iq
N
j“1

are the quadrature points and weights for the contour BΩi. Then, we set

EpN,2NqpAkq :“

∥∥∥Ap2Nq
k ´ ApNqk

∥∥∥
2∥∥∥Ap2Nq

k

∥∥∥
2

to be the relative error between two approximations of the integrals. In addition, let

ηpλ, vq “
‖Gpλqv‖2
‖G‖

Ωi
‖v‖2

,

96 practical considerations on contour integral methods

be the backward error of an eigenpair (see Section 2.2.3), where we approximate

‖G‖
Ωi

with

‖G‖
Ωi
« max

1ďjďN

∥∥Gpzj,iq
∥∥

2.

The set Ω1 contains all the 256 eigenvalues of G1pzq, hence we need to set p “ 64 and

m “ 4, thus we compute Ak for k “ 0, . . . , 7. In Figure 3.1a we plotted EN,2NpAkq for

k “ 0, . . . , 7 and N “ 8, 32, 128, while in Figure 3.1b the backward error ηpλ, vq for all

the 256 eigenpairs and the respective values of N. We can see that even though the

approximation of the moments is really rough for N “ 8 and N “ 32, the backward

errors are already at machine precision. We point out that A0, A1, and A2 are equal

to 0, and that is why the relative error has order of unity. In fact, let Dρ “ Dp0, ρq,

then

∥∥∥∥∥ 1
2πi

ż

BDρ

zkG1pzq´1

∥∥∥∥∥ À ρk`1´4 Ñ 0 as ρ Ñ8

if k ď 2. The residue theorem thus tells us that the sum of all the residues, i.e., the

eigenvalues of G1pzq, is zero. The assertion follows from the fact that Ω1 contains all

the eigenvalues.

Remark 3.3. The observation above easily extends to rational functions. If Gpzq is a

rational function of type pd1, d2q and Ω contains all the eigenvalues, then Ak “ 0 for

k “ 0, . . . , d1 ´ d2 ´ 2.

The hadeler problem shows the other side of the coin. The set Ω2 contains 54

eigenvalues, therefore we need to set p “ 30 and m “ 2. Figure 3.2 mirrors Figure 3.1:

in 3.2a we plotted the quadrature error EN,2NpAkq, while in 3.2b the backward error of

the eigenpairs. The differences are evident and staggering. The results for N “ 8 and

N “ 16 are not accurate at all: in the first case, some backward errors are of the order

of unity; in the latter, the algorithm even returns an incorrect number of eigenvalues.

Among the three choices of N, only N “ 128 returns a satisfactory output.

3.4 the influence of the quadrature rules 97

0 1 2 3 4 5 6 7
10 -15

10 -10

10 -5

10 0

(a)

0 50 100 150 200 250
10 -16

10 -15

10 -14

(b)

Figure 3.1: Error of the approximation of the moments Ak P R64ˆ64 (left) and backward error
of the eigenpairs in Ω1 (right) for the butterfly problem.

0 0.5 1 1.5 2 2.5 3
10 -4

10 -3

10 -2

10 -1

10 0

(a)

0 10 20 30 40 50

10 -20

10 -15

10 -10

10 -5

10 0

(b)

Figure 3.2: Error of the approximation of the moments Ak P R30ˆ30 (left) and backward error
of the eigenpairs in Ω1 (right) for the hadeler problem.

98 practical considerations on contour integral methods

These two examples show that one should not underestimate the importance of the

quadrature in the contour algorithms, even when they have the helpful property of

being exponentially convergent. Indeed, in the first case a really rough approximation

of the moments allows us to retrieve all the eigenpairs to machine precision. In the

second case, the same rough approximation is not able to do the same. Therefore,

we cannot solely rely on EN,2NpAkq to set a “correct” number of quadrature points

N, because we could either overestimate or underestimate this value. Nevertheless,

a Gaussian-Kronrod quadrature rule is implemented in our algorithm, together with

the more “standard” trapezoidal one.

3.4.2 The exponential error decay with the trapezoidal rule

There are noteworthy exceptions among authors who contributed to give us a better

understanding of the influence of the quadrature approximations. Among them,

Beyn gave a precise estimation of the exponential decay of the approximation error

of Ap [Bey12]. We aim to generalise those results to the meromorphic settings.

Consider φptq : r0, 2πs Ñ BΩ a 2π-periodic parametrization of the contour BΩ. In

addition, we assume it can be holomorphically extended on a strip

Spd´, d`q :“ tz P C : ´ d´ ă Imz ă d`u

such that

φpzq

$

’

&

’

%

P Ω, 0 ă Imz ă d`,

R Ω ´d´ ă Imz ă 0.
(3.6)

Then Beyn proved the following results.

3.4 the influence of the quadrature rules 99

Lemma 3.1 ([Bey12, Lemma 4.6]). Let φpzq be a parametrization satisfying (3.6). In addi-

tion, let λ P C and hpzq :“ z´ λ. Then there exist three positive constants C1, C2, and C3

(depending only on Ω, φ, j, and d) such that for distpλ, BΩq ă C3

EN

´

hpzq´j
¯

ď C1 distpλ, BΩq´je´NC2 distpλ,BΩq.

Theorem 3.2 ([Bey12, Theorem 4.7]). Let Gpzq P HpΩ0, Cnˆnq satisfying the Hypothe-

ses 2.1. Assume there exists a parametrization φpzq of BΩ satisfying (3.6). Finally, let

j “ max1ďiďs mi,1 be the largest index among the eigenvalues of Gpzq. Then there exist

positive constants C1, C2 (independent of N) such that the Hankel moments Ak and their

approximations satisfy

∥∥∥Ak ´ ApNqk

∥∥∥ ď C1dpGq´je´C2 NdpGq,

where dpGq “ minλPΛpGq distpλ, BΩq

It is not too difficult to see that the previous results rely on the approximation of

the scalar functions hpzq´j “ pz´ λq´j for j less or equal than the maximum index

of the eigenvalues of Gpzq in Ω. This can be easily generalised to the meromorphic

case Fpzq PMpΩ0, Cnˆnq satisfying the usual Hypotheses 2.2. Remember that we can

write

Fpzq´1 “

rs
ÿ

i“1

di
ÿ

j“1

mij
ÿ

k“1

pz´ λiq
´k

mij
ÿ

`“0

vij
` wij˚

mij´k´`

`

rr
ÿ

i“1

dξi
ÿ

j“1

mξ,ij
ÿ

k“1

gpzqpz´ ξiq
´k

mξ,ij
ÿ

`“0

vij
ξ,`w

ij˚
ξ,mij´k´`,

hence the generalisation of Lemma 3.1 must consider the terms

gpzq
pz´ ξiq

k “

r
ź

j“1,j‰i

pz´ ξ jq
cj

1
pz´ ξiq

k´ci
.

More precisely, in the generalisation of Lemma 3.1 we would have both pz ´ λiq
´j

for 1 ď j ď mi,di , and pz ´ ξiq
ci´j for 1 ď j ď mξi ,dξi

. The proof of the lemma does

100 practical considerations on contour integral methods

not change, therefore we refer to [Bey12] for the details. We can now generalise the

statement of Theorem 3.2 so that it covers the case of Fpzq PMpΩ, Cnˆnq.

Theorem 3.3. Let Fpzq PMpΩ0, Cnˆnq with the spectral properties of Notation 2.2. Assume

there exists a parametrization φpzq of BΩ satisfying (3.6). Finally, let j be

j “ maxtpj, rju, pj “ max
1ďiďs

mi,1, rj “ max
1ďiďr

pmξi ,1 ´ ciq.

Then there exist positive constants C1, C2 (independent of N) such that the Hankel moments

Ak and their approximations satisfy

∥∥∥Ak ´ ApNqk

∥∥∥ ď C1dpFq´je´C2 NdpFq,

where dpFq “ mint pdpFq, rdpFqu, and

pdpFq “ min
1ďiďs

distpλi, BΩq, rdpFq “ min
1ďiďr,mξi ,1ąci

distpξi, BΩq.

Example 3.1. In this example we consider the functions

F1pzq “

»

—

—

—

—

—

—

—

–

z 0 0 0

0 pz´ ξq´1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, F2pzq “

»

—

—

—

—

—

—

—

–

z pz´ ξq´1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

F3pzq “

»

—

—

—

—

—

—

—

–

z pz´ ξq´1 0 0

0 1 pz´ ξq´1 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, F4pzq “

»

—

—

—

—

—

—

—

–

z pz´ ξq´1 0 0

0 1 pz´ ξq´1 0

0 0 1 pz´ ξq´1

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

in the target set Ω “ Dp0, 1q and we investigate how the distance of the pole ξ from BΩ

influences the forward error of the only eigenvalue (λ “ 0) in Ω. It is easy to see that the

pole multiplicity of ξ is always c “ 1, while its geometric multiplicity as an eigenvalue of

Gipzq “ pz´ ξqFipzq is dξ “ 1 and its index mξ,1 “ i. We sampled 100 uniformly spaced

points ξ in r0.5, 0.997s and we computed the eigenvalue λ “ 0 through the contour integral

3.4 the influence of the quadrature rules 101

0.5 0.6 0.7 0.8 0.9 1

10 -15

10 -10

10 -5

Figure 3.3: The forward error of the approximation pλ to the eigenvalue λ “ 0 for different
values of the pole ξ P r0.5, 1r.

algorithm for all the values of ξ. In Figure 3.3 we plotted these results for N “ 6 and N “ 64

quadrature points. As explained by Theorem 3.3, we have dpFiq “ p1´ ξq1´i, hence the larger

the index of the spurious eigenvalue ξ, the larger the error will be. Finally, for i “ 1 we have

dpF1q “ 1 and in fact the forward error of λ “ 0 does not depend on ξ.

3.4.3 Quadrature approximations as filter functions

In 2016 Van Barel and Kravanja proposed a different point of view on the quadrature

approximations [Van16; VK16]. They link the approximation of ApNqp to the con-

struction of a so-called filter function bppzq whose absolute value decays exponentially

outside Ω. More recently, Brennan, Embree, and Gugercin found a similar filter func-

tion bσpzq in the Loewner case, but they did not provide an analysis for it yet, as far

as we know [BEG20]. The goal of this section is understanding if anything changes

when we consider a meromorphic function Fpzq PMpΩ0, Cnˆnq.

102 practical considerations on contour integral methods

First, let us recall the first steps walked by Van Barel and Kravanja in the holo-

morphic case. In this section we need stronger hypotheses on Ω0. They assume

Ω0 is simply connected, open, bounded and that there exists a holomorphic func-

tion T P HpΩ0, Cnˆnq (more precisely, in an open neighbourhood of Ω0); further-

more, they assume Tpzq has s simple eigenvalues in Ω and no eigenvalues neither

on BΩ nor BΩ0. Thanks to a quadrature rule with N points z0, . . . , zN´1 and weights

ω0, . . . , ωN´1, they rewrite

ApNqp “

N´1
ÿ

j“0

ωjz
p
j Tpzjq

´1. (3.7)

The core of the analysis is applying Keldysh’s theorem not on Ω, but on Ω0. Assuming

there are rs simple eigenvalues in Ω0, (3.7) becomes

N´1
ÿ

j“0

ωjz
p
j

rs
ÿ

k“1

vkw˚k
zj ´ λk

. (3.8)

Equations (3.7) and (3.8) already reveal the difficulties that arise when considering a

meromorphic function F P MpΩ0, Cnˆnq. In fact, when defining the holomorphiza-

tion Gpzq :“ gpzqFpzq P HpΩ, Cnˆnq we cannot assume that it is holomorphic in Ω0

as well, i.e., Fpzq has only poles in Ω. Given that our intention is applying Keldysh

theorem on both Ω and Ω0, we have to work with three functions:

‚ Fpzq, which may have poles in Ω and Ω0;

‚ Gpzq :“ gpzqFpzq, the holomorphization of Fpzq in Ω, which may have poles

only in Ω0zΩ;

‚ Tpzq :“ tpzqGpzq “ tpzqgpzqFpzq, the holomorphization of Fpzq in Ω0.

Now that we have clarified the need of these three functions, we can lay down the

other assumptions for this section. As in the article by Van Barel and Kravanja, we

suppose that all the eigenvalues, both the original of Fpzq and the spurious ones, are

3.4 the influence of the quadrature rules 103

simple. We also assume that Fpzq has s (rs) eigenvalues and r (rr) poles in Ω (Ω0), and

that all the poles are spurious eigenvalues. Under these hypotheses, it holds

Ap “ V JpW˚ “

s
ÿ

k“1

zp´1vkw˚k
z´ λk

,

where vk, wk are the eigenvectors of Fpλkq subjected to the condition

w˚k Fpλkq
1vk “ 1. (3.9)

Note that the spurious eigenvalues ξk in J disappear because gpξkq “ 0. Thus we

have

Ap « ApNqp “

N´1
ÿ

j“0

ωjz
p
j Fpzjq

´1. (3.10)

Now we apply Keldysh theorem for meromorphic functions (see Theorem 2.7) on

Fpzq in Ω0. Hence

Fpzq´1 “

rs
ÿ

k“1

gpzqtpzq
z´ λk

rvk rw˚k `
rr
ÿ

k“1

gpzqtpzq
z´ ξk

rvξk
rw˚ξk
` Rpzq, (3.11)

where rvk, rwk and rvξk , rwξk are the eigenvectors corresponding to λk and ξk respectively,

subject to the conditions

$

’

&

’

%

rw˚k Tpλkq
1
rvk “ 1 ðñ rw˚k Fpλkq

1
rvk “ gpλkq

´1tpλkq
´1,

rw˚ξk
Tpξkq

1
rvξk “ 1.

(3.12)

By substituting (3.11) into (3.10) we get

ApNqp “

rs
ÿ

k“1

rvk rw˚k
N´1
ÿ

j“0

ωjz
p
j gpzjqtpzjq

zj ´ λk

`

rr
ÿ

k“1

rvξk
rw˚ξk

N´1
ÿ

j“0

ωjz
p
j gpzjqtpzjq

zj ´ ξk
`

N´1
ÿ

j“0

ωjRpzjq.

(3.13)

Before continuing, we need a technical lemma.

104 practical considerations on contour integral methods

Lemma 3.4 ([VK16, Section 3]). Let gpzq P Crzs be a polynomial and let zj “ e2πij{N be

the N unit roots for j “ 0, . . . , N ´ 1. Then

1
N

N´1
ÿ

j“0

zjgpzjq

zj ´ z
“

gpzq
1´ zN .

Proof. First of all, note that we have to prove the result only for a general monomial

gpzq “ zp. In fact, if that is the case, then for any polynomial gpzq “
řp

k“0 gkzk we

have

1
N

N´1
ÿ

j“0

zjgpzjq

zj ´ z
“

1
N

N´1
ÿ

j“0

řp
k“0 gkzk`1

j

zj ´ z
“

p
ÿ

k“0

1
N

N´1
ÿ

j“0

gkzk`1
j

zj ´ z

“

p
ÿ

k“0

gkzk

1´ zN “
gpzq

1´ zN .

Hence, we set gpzq “ zp. It is easy to see that

1
N

N´1
ÿ

j“0

zp`1
j

z´ zj
“

ppzq
zN ´ 1

,

for some polynomial ppzq yet to be determined. It follows that

Nppzq “
N´1
ÿ

j“0

zp`1
j

N´1
ź

k“0
k‰j

pz´ zkq.

We have to prove that ppzq “ zp. Fix 0 ď j1 ď N ´ 1, Then

Nppzj1q “ zp`1
j1

N´1
ź

k“0
k‰j

pzj1 ´ zkq “ zp`N
j1

N´1
ź

k“0
k‰j1

p1´ zk´j1q “ zp`N
j1

N´1
ź

k“1

p1´ zkq.

Since zk “ e2πik{N , then

N´1
ź

k“1

p1´ zkq “
zN ´ 1
z´ 1

∣∣∣∣
z“1

“ N.

Hence ppzjq “ zp
j for 0 ď j ď N ´ 1, and given that ppzq is at most a N ´ 1 degree

polynomial, ppzq “ zp.

3.4 the influence of the quadrature rules 105

If we choose the trapezoidal rule and Ω0 “ Dp0, 1q, then the quadrature points and

the weights are zj “ e2πij{N and ωj “ zj, respectively. Therefore, thanks to Lemma 3.4,

Equation(3.13) becomes

AN
p “

rs
ÿ

k“1

rvk rw˚k
1
N

N´1
ÿ

j“0

zp`1
j gpzjqtpzjq

zj ´ λk
`

rr
ÿ

k“1

rvξk
rw˚ξk

1
N

N´1
ÿ

j“0

zp`1
j gpzjqtpzjq

zj ´ ξk
`

1
N

N´1
ÿ

j“0

zjRpzjq

“

rs
ÿ

k“1

rvk rw˚k
λ

p
k gpλkqtpλkq

1´ λN
k

`

rr
ÿ

k“1

rvξk
rw˚ξk

ξ
p
k gpξkqtpξkq

1´ ξN
k

`
1
N

N´1
ÿ

j“0

zjRpzjq

“

rs
ÿ

k“1

rvk rw˚k
λ

p
k gpλkqtpλkq

1´ λN
k

`
1
N

N´1
ÿ

j“0

zjRpzjq,

(3.14)

where in the third equality the second sum disappears because gpξkqtpξkq “ 0 for

k “ 1, . . .rr.

Remark 3.4. The assumptions on the eigenvalues and spurious eigenvalues of Fpzq to

be semisimple are essential to arrive to (3.14). In the general case, we would have

Fpzq´1 “ gpzq
rs
ÿ

i“1

di
ÿ

j“1

mij
ÿ

k“1

pz´λiq
´k

mij
ÿ

`“0

vij
` wij˚

mij´k´``

rr
ÿ

i“1

dξi
ÿ

j“1

mξ,ij
ÿ

k“1

pz´ ξiq
´k

mξ,ij
ÿ

`“0

vij
ξ,`w

ij˚
ξ,mij´k´`,

and we could not use Lemma 3.4 or any reasonable generalisation.

Due to the normalisation conditions (3.9) and (3.12), it holds

AN
p “

rs
ÿ

k“1

rvk rw˚k
λ

p
k gpλkqtpλkq

1´ λN
k

`
1
N

N´1
ÿ

j“0

zjRpzjq

“

rs
ÿ

k“1

vkw˚k
λ

p
k

1´ λN
k
`

1
N

N´1
ÿ

j“0

zjRpzjq

“

rs
ÿ

k“1

vkw˚k bppλkq `
1
N

N´1
ÿ

j“0

zjRpzjq,

(3.15)

where we set

bppzq “
zp

1´ zN (3.16)

106 practical considerations on contour integral methods

to be the Hankel rational filter function for Ω “ Dp0, 1q, which is the exact function

defined by Van Barel and Kravanja [VK16]. As expected, under the hypotheses that

the spurious eigenvalues disappear, we obtain the same result of the holomorphic

case. Their analysis then continues and they define

Ωεpb0q :“ tz P C : |b0pzq| ě εu (3.17)

for ε ! 1. If sε is the number of eigenvalues in Ωεpb0q, and we reorder the eigenvalues

such that

|b0pλ1q| ě ¨ ¨ ¨ |b0pλsεq| ě |b0pλsε`1q| ě ¨ ¨ ¨ ě |b0pλ
rsq|

then one can rewrite

AN
p “

sε
ÿ

k“1

vkw˚k bppλkq ` ∆1 ` ∆2, with ‖∆i‖2 “ Opε1´p{nq, i “ 1, 2. (3.18)

This analysis gives an explanation of the examples of section 3.4.1: we saw that

we were able to retrieve the eigenvalues of the butterfly problem with very few

quadrature points because there were no eigenvalues outside the target set; on the

other hand, the computed moments for the hadeler problem suffered more from the

noise of the eigenvalues outside Ω.

Brennan, Embree, and Gugercin performed the first steps of this analysis for the

Loewner framework [BEG20]. They showed that (2.43) is approximated by

HNpσq “
rs
ÿ

k“1

wkbσpλkq `
1
N

N´1
ÿ

j“0

Rpzjq

σ´ zj
,

where

bσpzq “
1

σ´ z

ˆ

1
1´ zN ´

1
1´ σN

˙

,

with σ R Ω “ Dp0, 1q. The same analysis Van Barel and Kravanja performed for

Beyn’s algorithm [VK16] can be performed with bσpzq and one obtains the equivalent

3.4 the influence of the quadrature rules 107

(a) |b0pzq| and |bσpzq| on C.

-3 -2 -1 0 1 2 3
10 -15

10 -10

10 -5

10 0

(b) |b0pzq| and |bσpzq| on R.

Figure 3.4: Absolute values of the filter functions b0pzq and bσpzq with N “ 32, σ “ 2.

of (3.18) for HNpσq. However, things get more interesting when we investigate the

shape of Ωεpb0q and Ωεpbσq in (3.17). It is easy to see that Ωεpb0q is approximated by

the disk D “ Dp0, ε´1{Nq when ε ! 1. On the other hand, the shape of Ωεpbσq requires

a more careful analysis. Under the assumption that |σ| ą 1, |z| ą 1, the first order

approximation of bσpzq yields

∣∣σN ´ zN
∣∣

|σ´ z||σz|N
“ ε.

This functions has four different main regimens

‚ If σ « z, then |bσpzq| “ OpNz´N´1q.

‚ If
∣∣σN ´ zN

∣∣ “ δ ! 1, then |bσpzq| “ Op|σ´ z|´1σ´2Nδq.

‚ If |z| ă |σ|,then |bσpzq| “ Op|σ´ z|z´Nq.

‚ If |z| ą |σ|,then |bσpzq| “ Op|σ´ z|σ´Nq.

In Figure 3.4 we have plotted the graphs of the functions |b0pzq| and |bσpzq| to

highlight their differences. We set N “ 32 and σ “ 2. We can see their behaviour on

the complex plane in 3.4a, and on the real line in plot 3.4b. It is easy to see that while

bσpzq decreases slightly more steeply for small values of |z| ą 1, as soon as |z| ą |σ|,

the decay becomes linear. For example, if we set ε “ 10´13, then Ωε « Dp0, 2.548q,

but Ωε « Dp0, ρq, with ρ “ ε{σN « 2380. Hence many more eigenvalues contribute

to the noise of HN
σ than to the noise of AN

p .

108 practical considerations on contour integral methods

The next example shows that the errors on AN
p and HN

σ is reflected in the backward

error of the eigenvalues. Therefore, if one desires to compute the eigenvalues of a

function Fpzq with the Loewner algorithm and a backward error less than ε, then they

should choose the interpolation points σi such that

|σi| ă ε´1{N .

Noting that for a general disk Ω “ Dpγ, ρq we have

bσpzq “
1

σ´ z

¨

˚

˝

1

1´
´

z´γ
ρ

¯N ´
1

1´
´

σ´γ
ρ

¯N

˛

‹

‚

,

then the condition becomes

|σ´ γ| ă ρε´1{N . (3.19)

Example 3.2. In this example we show the influence of the outer eigenvalues with respect

to the final backward error of the computed eigenpairs. We consider the very simple matrix-

valued functions Gjpzq “ Aj ´ zI for j “ 1, . . . , 5. The matrices Aj P C40ˆ40 are built

such that they all have 20 eigenvalues uniformly distributed in r´0.9, 0.9s, while the other

20 eigenvalues lie on a circle of radius rj, where rj P t1.5, 2.5, 4, 6, 100u. We used N “ 32

trapezoidal points on the unit circle to retrieve the eigenvalues in the unit disk. The sampling

points σi for the Loewner method lay on the circle of radius 2.

In Figure 3.5 we show the influence of the outer eigenvalues on the backward error. In the

plots on the left we plotted the backward errors of the eigenpairs of Gj for the Hankel (top-left)

and the Loewner case (bottom-left); on the right we reported the graphs of |b0pzq| and |bσpzq|

from Figure 3.4b. We witness the following behaviours:

1. When the outer eigenvalues lie on r1 “ 1.5, Hankel and Loewner return comparable

backward errors of magnitude approximately equal to 10´5.

3.4 the influence of the quadrature rules 109

-1 -0.5 0 0.5 1

10 -10

10 0

-1 -0.5 0 0.5 1

10 -10

10 0

-4 -2 0 2 4
10 -20

10 -15

10 -10

10 -5

10 0

Figure 3.5: Left plot: Backward errors of the eigenpairs computed by the Hankel algorithm
(top) and the Loewner algorithm (bottom) for different positions of the outer
eigenvalues. Right plot: the profile of |b0pzq| and |bσpzq|.

2. In the Hankel case, the backward errors keep dropping exponentially as the outer eigen-

values move away from the target set, until they reach machine precision for r3 “ 4 and

r4 “ 6.

3. In the Loewner case, we have the exponential drop for r2 “ 2.5, but then the decay is

only linear, given that the interpolation points σi satisfy |σi| “ 2. In fact, we have to

set r5 “ 100 to notice the decay.

As expected, the decay of the backward errors follows the one of the filter functions. Finally,

it is important to point out that the linear decay in the Loewner case can easily be avoided:

one just needs to choose the interpolation points σi and the number of quadrature points N

such that (3.19) holds true for ε equal to the machine precision. In this example, drawing the

σi from the circle of radius 3 would have sufficed.

Remark 3.5. As far as we know, even though the previous analysis follows naturally

from the work of Van Barel and Kravanja [VK16] applied on the Loewner frame-

110 practical considerations on contour integral methods

work [BEG20], the fact that one needs to choose the interpolation points σi and the

number of quadrature points N such that (3.19) holds true is still missing in the

current literature.

3.5 the refinement strategies

In the introduction of this chapter, we stated that our main goal is proposing an algo-

rithm to efficiently compute the eigenpairs of small and medium-sized meromorphic

matrix-valued functions Fpzq P MpΩ0, Cnˆnq, ideally asking the user to specify only

Fpzq and Ω. It may happen that the automatic choice of the parameters at runtime

leads to some eigenpairs having a backward error larger than the given threshold ε.

In order to avoid to restart the algorithm from scratch we propose three refinement

strategies, each of them suited for a different scenario.

Let us fix some notation specifically for this section. We assume that all the eigen-

values are simple and that there exist sb eigenpairs prλi, rviq which have not been com-

puted accurately enough, i.e.,

ηprλi, rviq “

∥∥∥Fprλqrvi

∥∥∥
2

‖rvi‖2
ą ε (3.20)

for i “ 1, . . . , sb and a given ε ą 0. We refer to Section 2.2.3 for the reason why

we have to choose an absolute measure for the backward error. For the sake of

convenience, we call these eigenpairs “bad eigenpairs”. The refinement strategy to

be adopted heavily depends on the number sb: if sb is small, then the strategy would

differ from when sb is large.

3.5.1 Recursive calls

The first refinement we analyse is a recursive strategy already used in the literature,

such as in the FEAST algorithm [GMP18] and naturally by RIM algorithm (see Sec-

3.5 the refinement strategies 111

tion 2.3). If we assume that the sb eigenvalues are clustered in K subregions, we can

create K non overlapping subregions Ωi for i “ 1, . . . , K and solve K independent

subproblems. Note that the independence of the problems means that this kind of

refinement can be easily parallelised. A few questions now arise:

‚ Where should the algorithm put the subset Ωi?

‚ How do we set K if it is unknown?

‚ When is this strategy convenient?

The first question is the easiest to answer, but it requires the definition of the K-

means clustering problem.

Definition 3.1 (K-means clustering problem). Given a set of points Λ “ tλ1, . . . , λsbu Ă

C and an integer number 1 ă K ă sb, the K-means clustering problem requires the

partition of Λ in K subsets pSiq
K
i“1 of ni elements such that

Θpkq “
K
ÿ

i“1

ni
ÿ

j“1

∣∣λi,j ´ µi
∣∣2, µi “

ni
ÿ

j“1

λi,j

n

is minimised, where µi are the centroids of the clusters.

When K is unknown, the K-means clustering problem is NP-hard, even in the

planar case [GJW82; MNV09]. Nevertheless, when K is given, there exist heuristic

algorithms that converge to a local minimum in OpKsbq almost always [AV06]. This

answers how to place the subsets Ωi, but not how to choose K. If the user is super-

vising the algorithm at runtime, then they can choose K by looking at the plot of

the unrefined eigenvalues. Nevertheless, we wanted another way to find K without

outside assistance and we decided to use the so-called “elbow-method”. First of all,

observe that ΘK is decreasing with respect to K and it drastically drops as soon as K

is equal to the exact number of clusters of the problem, i.e., the “elbow”. Hence, we

can run the K-means algorithm for different values of K and then choose the optimal

one. For example, in Figure 3.6a we plotted 50 points in the plane subdivided in 5

clusters; in Figure 3.6b we plotted the quantity Θpkq with respect to k: the typical

112 practical considerations on contour integral methods

0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(a) Five clusters of points in the plane.

2 3 4 5 6 7 8

10 -1

10 0

10 1

(b) The typical “elbow” drop of the error Θpkq.

Figure 3.6

“elbow” shape is clearly visible, therefore it is reasonable to assume simply from 3.6b

itself that there are 5 clusters.

In the next example we show how the recursive refinement can improve the output

of the algorithm under some specific circumstances.

Example 3.3. We built a nonlinear problem Fpzq with three clusters of eigenvalues in the

disks Dpγi, 10´2q for γi P t´0.8i, 0, 0.8iu. Each cluster contains two randomly drawn eigen-

values, and four other randomly drawn eigenvalues lie on the circle of radius 1.5, for a total of

ten eigenvalues in Ω “ Dp0, 2q. Furthermore, we added a pole of double multiplicity at each

γi. The problem Fpzq is equivalent to

Dpzq “ diagpp1pzq, p2pzq, p3pzq, gpzq, qpzq´2q

where pipzq is a quadratic polynomial whose roots are the eigenvalues clustered in Ωi, gpzq is

a quartic polynomial whose roots are the other eigenvalues, while qpzq is a cubic polynomial

with roots γi. In Figure 3.7a we plotted the 10 eigenvalues: we highlighted in red the ones that

belong to the three clusters and lie near the poles of Fpzq, which have a worse forward error

than the eigenvalues in blue. In Figure 3.7b we plotted the forward error |λi´
rλi|{|λi|, where

λi are the exact clustered eigenvalues, while rλi the approximation returned by our algorithm,

with and without the recursive refinement. The algorithm run with 16 quadrature points for

the initial contour, 6 moments, and a threshold on the backward error equal to ε “ 10´15.

3.5 the refinement strategies 113

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) The eigenvalues of Fpzq in Ω.

1 2 3 4 5 6
10 -16

10 -15

10 -14

10 -13

(b) The forward error of the bad eigenvalues.

Figure 3.7

The recursive refinement has some downsides as well. For instance, if a cluster of

bad eigenvalues contains eigenvalues that were approximated well, we have to make

sure to keep the best approximation among the original one and the one computed

during the recursion. Similarly, if the clusters are not too spaced, it may happen that

the Ωi XΩj ‰ H, since we are working with circles and ellipses, hence we may refine

the same eigenvalue more than once. Finally, the refinement itself could be more

expensive than the original run: assume a “good” eigenvalue λi lies just outside

a given Ωi. Then we will need to approximate the contour integrals with many

quadrature points N1, and this quantity is unrelated to the number of quadrature

points N used on the original set Ω. For all the reasons mentioned above, the current

implementation of our solver adopts this refinement if and only if the user requires

it.

3.5.2 The Newton refinement

In the introduction of the thesis we recalled that the algorithms to solve nonlinear

eigenvalue problems are usually based on rational approximations (Chapter 4), con-

tour integrals (this chapter), and Newton-like methods. We also wrote that this latter

class has two main disadvantages: first, we need a starting point near each eigenpair,

because the convergence is only local; secondly, it is quite costly if there are many

eigenpairs to compute. Therefore it is natural to adopt this strategy if only a few

114 practical considerations on contour integral methods

eigenpairs have a large backward error. In addition, since prλi, rviq is already an ap-

proximation of the desired eigenpair, a couple of steps are usually sufficient to reach

the desired backward error.

Let us now be more precise. Consider prλi, rviq the approximation of pλi, viq and

assume that N : Cn ˆC Ñ Cn ˆC is a smooth function such that N pvi, λiq “ 0. Then

each Newton step reads

»

—

–

vk`1
i

λk`1
i

fi

ffi

fl

“

»

—

–

vk
i

λk
i

fi

ffi

fl

´

¨

˚

˝

JN

¨

˚

˝

»

—

–

vk
i

λk
i

fi

ffi

fl

˛

‹

‚

˛

‹

‚

´1

N

¨

˚

˝

»

—

–

vk
i

λk
i

fi

ffi

fl

˛

‹

‚

, (3.21)

where pλ0
i , v0

i q “ p
rλi, rviq and JN is the Jacobian of N . Ruhe analysed this approach

in [Ruh73], where he set

N

¨

˚

˝

»

—

–

v

λ

fi

ffi

fl

˛

‹

‚

“

»

—

–

Fpλqv

u˚v´ 1

fi

ffi

fl

, JN

»

—

–

v

λ

fi

ffi

fl

“

»

—

–

Fpλq F1pλqv

u˚ 0

fi

ffi

fl

with u P Cn is a given vector. We can expand (3.21) in a scalar form as

$

’

&

’

%

vk`1
i “ Fpλk

i q
´1pλk`1

i ´ λk
i qF

1pλk
i qv

k
i ,

u˚vk`1
i “ 1.

(3.22)

The scalar form (3.22) is equivalent to the nonlinear inverse iteration [Ung50],

which we summarise in Algorithm 3.2. Note that when λk is near λ, then Fpλkq

is nearly singular. Nevertheless, it is now well-known that the error in the computed

vector vk`1
i is almost parallel to the real solution (see, for example, [Ips97]), hence a

normalisation of vk`1
i at every step will correct this error and also prevent underflow

and overflow.

In order to avoid computing the same eigenpair pλi, viq more than once, we need

a deflation strategy. In our numerical experiments, the initial guess prλi, rviq provided

by the core of the contour solver is always good enough so that we return the cor-

responding eigenpair (and not one previously computed), however a solid deflation

strategy adds another layer of robustness. We decided to adopt the one proposed

3.5 the refinement strategies 115

Algorithm 3.2: Nonlinear Inverse iteration. The algorithm takes as input
the function Fpzq, an approximated eigenpair prλ, rvq, a threshold ε, a nonzero
vector u, and the maximum number of iterations M. It returns the refined
eigenpair pλ, vq.

Input: F, rλ, rv, u, ε, M
Output: Refined eigenpair pλ, vq.

1 pλ0, v0q Ð prλ, rvq k Ð 0, δ Ð ε` 1
2 while k ă M and δ ą ε do
3 Find vpk`1q such that Fpλpkqqvpk`1q “ F1pλpkqqvpkq

4 λpk`1q Ð λpkq ´ u˚vpkq
u˚vpk`1q

5 vpk`1q Ð vpk`1q{
∥∥vpk`1

∥∥
6 k Ð k` 1
7 δ Ð

∥∥Fpλpk`1qqvpk`1q
∥∥

8 return pλpkq, vpkqq

by Effenberger in [Eff13], which we briefly describe. In Definition 2.4 we introduced

the concept of minimal pair and minimality index to understand the minimum size

of the matrices Brms0 , Brms1 . Effenberger assumes we have computed a m-minimal pair

pV, Jq P Cnˆi ˆCiˆi and he wants to extend it to

pV, Jq :“

¨

˚

˝

„

V w



,

»

—

–

J v

0 µ

fi

ffi

fl

˛

‹

‚

In order to do that we can solve a larger nonlinear eigenvalue problem

0 “ Fpµqv “

»

—

–

Fpµq Upµq

Apµq Bpµq

fi

ffi

fl

»

—

–

w

v

fi

ffi

fl

, (3.23)

where

Apµq “
m
ÿ

k“0

µkpV Jkq˚, Upµq “
1

2πi

ż

BΩ
FpµqVpzI ´ Jq´1pz´ µq´1 dz,

Bpµq “
m
ÿ

k“1

pV Jkq˚Vqkpµq, qkpµq “
k´1
ÿ

j“0

µj Jk´j`1.

This result was proven in the following theorem.

116 practical considerations on contour integral methods

Theorem 3.5 ([Eff13, Theorem 3.8]). Let pV, Jq P Cnˆi ˆCiˆi be a minimal pair for Fpzq.

If pry˚ v˚s˚, µq is a minimal pair of (3.23), then

¨

˚

˝

„

V w



,

»

—

–

J v

0 µ

fi

ffi

fl

˛

‹

‚

is a minimal pair for Fpzq. Conversely, if

¨

˚

˝

„

V w



,

»

—

–

J v

0 µ

fi

ffi

fl

˛

‹

‚

is a minimal pair of Fpzq, then there exists a unique vector u such that

¨

˚

˝

»

—

–

w´Vu

v` µu´ Ju

fi

ffi

fl

, µ

˛

‹

‚

is a minimal pair of (3.23)

This strategy allows to refine successive eigenpairs without worrying to recompute

a previous one. The difference between Effenberger’s and our implementation is that

we call it only when necessary: as previously mentioned, our initial approximation

is meant to be good enough such that the Newton iteration will converge directly to

the desired eigenpair. We summarise it here below and in Algorithm 3.3. We assume

that we have sb eigenpairs prλi, rviq
sb
i“1 to refine and we perform the following cycle:

1. At the ith step, refine prλi, rviq with the classic Newton iteration (3.22) and obtain

ppλi, pviq. If ppλi, pviq ‰ p
pλj, pvjq for every j ď i´ 1, then set pλi, viq “ p

pλi, pviq, pVi, Jiq “

pvi, λiq and go to step 1.

2. If ppλi, pviq “ ppλj1 , pvj1q for some j1 ď i ´ 1, then use Theorem 3.5 to extract an

augmented minimal pair that we save as the new pVj1 , Jj1q and a new eigen-

pair ppλi, pviq. If ppλi, pviq is different from any other eigenpair, then go to step 1,

otherwise go to step 2.

3.5 the refinement strategies 117

In the implementation, discerning whether two eigenpairs ppλ1, pv1q and ppλ2, pv2q differ

requires careful attention. In order to do that, let |rpv1sk| “ ‖pv1‖8, where rpv1sj is the

jth component of the vector pv1. Then, define

rv1 :“
rpv2sk

|rpv2sk|
|rpv1sk|
rpv1sk

pv1,

and recall that ‖pvi‖2 “ 1. We set a tolerance ε and we say that the two eigenpairs

are the same if
∣∣∣pλ1 ´ pλ2

∣∣∣ ă ε
∣∣∣pλ1

∣∣∣ and ‖rv1 ´ pv2‖2 ă ε. Note that the definition of rv1 is

necessary to avoid the scenario where pv1 and pv2 differ because pv1 “ αpv2, with |α| “ 1.

Algorithm 3.3: Newton refinement. The algorithm takes as input the func-
tion Fpzq, the approximated eigenpairs prλi, rviq, a threshold ε, and a maximum
number of iterations. It then returns the refined eigenpairs pλi, viq.

Input: F, prλi, rviq
sb
i“1, ε, M

Output: Refined eigenpairs pλi, viq
sb
i“1 .

1 for 1 ď i ď s do
2 Draw a random vector u
3 ppλi, pviq “ Nonlinear Inverse IterationpF, rλi, rvi, u, ε, Mq (Alg. 3.2)
4 j Ð 1
5 while j ă i do
6 if ppλi, pviq “ pλj, vjq then
7 Use Thm. 3.5 to update pVj, Jjq

8 Update ppλi, pviq from pVj, Jjq

9 j Ð 1

10 else
11 j Ð j` 1

12 pλi, viq Ð ppλi, pviq

13 pVi, Jiq Ð pvi, λiq

3.5.3 The subspace update

If sb is too large, using the Newton method to refine each eigenpair becomes too ex-

pensive. Hence, we implemented a second type of refinement that takes inspiration

from the work of Asakura and Sakurai [Asa+10]. In a sense, we introduced it in

Section 3.3, when we described how to choose the suitable size of the matrix Brms0 pPq

118 practical considerations on contour integral methods

if the function Fpzq is meromorphic. The approach here is identical. Given the projec-

tion matrix P P Cnˆp and the number of moments m, if the eigenpairs obtained from

Brms0 pPq and Brms1 pPq have a large backward error, then we can increase the size of the

block-Hankel matrices and recompute the eigenpairs. If p ă n, then we would just

choose p ă p1 ď n; if p “ n, then one must increase the number of moments. In the

following examples we show how we can apply this refinement.

Example 3.4. We consider the pdde_symmetric problem

Fpzq “ pM` Aq ´ zI ` e´2zB

from the NLEVP library, where the matrices M, A, I are real of size 81ˆ 81. It arises from

the discretization of a partial delay differential equation with Dirichlet boundary conditions.

We look for the 25 eigenvalues in Ω “ Dp0, 1.5q and we want to see how the refinement

on P and m influences the backward error ηpλ, vq of the eigenpairs. We compare them with

another refinement approach that seems reasonable at first glance, i.e., using the approximated

eigenvectors V P C81ˆ25 as a new subspace matrix P. Let P1 P C81ˆ25 and P2 P C81ˆ12

be uniformly distributed random matrices. In Figure 3.8 we plotted the backward errors of

the eigenpairs under six choices: the four combinations of P P tV, P1u and m P t1, 2u; the

choice of m “ 1 and P “ rV P2s or P “ rP1 P2s. In 3.8a we have set N “ 32 trapezoidal

integration points, while in 3.8b N “ 128. Note that the algorithm would not increase the

number of moments until P becomes a square matrix, due to the computational costs, but we

chose these settings to provide further insights. The first thing we note is that with N “ 32

points and m “ 1, the algorithm misses one eigenvalue if a random matrix is used (blue

crosses) or even two when we refine with the eigenvector matrix V (red crosses). We point out

that under the default parameters the algorithm would use a larger probing subspace, because

A0pP1q and A0pVq would be full-rank, hence it would not miss any eigenvalue. In addition,

we can see that using two moments (the asterisk markers in the plots) produces the best

results. This should not come as a surprise, because Br2s0 pPq has twice the rows and columns

of Br1s0 pPq “ A0. Furthermore, we see that increasing the size of the probing subspace (light

3.5 the refinement strategies 119

0 5 10 15 20 25
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

(a) N “ 32.

0 5 10 15 20 25
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

(b) N “ 128.

Figure 3.8: The backward error of the 25 eigenpairs of the pdde_symmetric problem with
different kind of refinements.

blue crosses) provides a noticeable improvement of the backward errors for N “ 32, and a

very good one for N “ 128, comparable to add another moment (asterisk markers).

Now that we have described the refinement strategies, we have to explain how

the algorithm chooses which one to implement. As seen in Section 3.5.1, it opts

for the recursive one only if the user specifically requests for it, given its specificity.

We already mentioned that modifying the probing matrix P (or adding additional

moments Ak) works best when sb is large, while the Newton refinement shines if only

few eigenvalues need to be refined. Therefore we want to compute an estimation of

the numbers of floating point operations each refinement would do and then choose

the lowest one. It is important to point out that our choice is based on our current

Matlab implementation, which does not take advantage of parallelisation.

We denote with Cn the computational cost of the Newton refinement, and with

Cp the computational cost of updating the probing space. For the Newton method,

we assume that the deflation strategy is not needed and that two or three steps are

sufficient to reach the desired backward error. Hence we have

Cn « 3n3sb. (3.24)

If we increase the size of the matrix Brms0 pPq, we can either add p1 columns to the

matrix P if m “ 1, or add m1 moments if p “ n. In the first case, we spend 2Nn2 p1

flops to compute the moments AjpP1q for j “ 0, 1, because we have saved the LU

120 practical considerations on contour integral methods

decomposition of Fpzkq
´1 for k “ 0, . . . , N ´ 1. Furthermore, if p12 ď p ` p1, then

updating the SVD of A0 costs Opnp1pp` p1qq [Bra06]. On the other hand, if we add m1

moments we spend 2Nn2 pm1 flops to compute them and Opn3m1pm`m1q2q to update

the SVD of Brms0 when pm1nq2 ď pm`m1qn. Finally, in both cases we spend Ops3q flops

to solve the linear eigenvalue problem. Summing everything up we obtain

Cp «

$

’

&

’

%

2Nn2 p1 ` np1pp` p1q ` s3 if we add p1 columns to P,

2Nn2 pm1 ` n3m1pm`m1q2 ` s3 if we add m1 moments.
(3.25)

Therefore, if the user does not explicitly set one of the refinements proposed in this

section, we compare Cn and Cp and choose the one with the lower value. We are aware

that we have computed only an approximation of the true values of Cn and Cp, but

this would only matter when they are approximately equal, hence the choice between

one or the other is irrelevant (time-wise) in that circumstance. Finally, we point out

that the Newton refinement will always be the last stage of the algorithm, while the

update of the probing subspace can be applied more than once. This implies first

that we have to set a maximum number of times we can update the subspace, and

secondly that it may happen that we first refine by updating the subspace and then

by calling the Newton method.

3.6 final remarks

The main goal of Chapter 2 was showing that they can be used to solve meromor-

phic eigenvalue problems, even though up to now authors have limited themselves

to holomorphic ones. In many cases, an everyday user who invokes these algorithms

will not notice whether Fpzq does or does not have poles in Ω. However, the the-

ory we developed is necessary to understand the behaviour of the solvers in all the

circumstances. In addition, we showed how minor changes can lead to big improve-

ments to the Recursive Integral Method and we gave a probabilistic estimation of its

computational cost in the nonlinear case. Future works on this matter have two clear

3.6 final remarks 121

directions. The first one is going from the abstract settings, which were our main

topic, to more concrete applications. More specifically, one may consider difficult

problems coming from physics or structural engineering. The buckling_plate prob-

lem in NLEVP 4.0 has indeed this origin: it was the simplification of a challenging

application sent to us by Dr. Melina Freitag. The second road is continuing our path

of abstraction. For instance, we did not consider the degenerate case in (2.7), where

a point λ is both an eigenvalue and a pole for Fpzq. Another possibility is investi-

gating whether the results for meromorphic functions hold in the nonsquare case, as

Morikuni did in 2020 for holomorphic functions [Mor20].

In Chapter 3 we focused more on the practical aspects of the implementation. First,

we underlined the importance of having a collection of various problems to test our al-

gorithms, which lead to the release of a newer version of the NLEVP library. Then, we

analysed how the presence of poles in Ω influences the approximation of the contour

integral, and we continued the research started by Van Barel and Kravanja [VK16] on

the filter functions for the Loewner interpretation of Beyn’s algorithm. This led to

a relationship between the number of quadrature points N and the distance among

the sampling points σj and the contour BΩ. Finally, we implemented two refinement

steps which the solver relies on when the automatic choice of the parameters does

not lead to satisfactory results. We point out that this chapter does not contain a nu-

merical experiments section because we will compare our contour solver at the end

of Chapter 4 with the algorithms presented therein. We have two other directions in

mind for further research. The first is either looking for even better, more sophisti-

cate ways to choose the initial parameters, or developing an algorithm where the final

approximation of the eigenvalues can be always refined without restarting from the

beginning. The second lies more on the technical side. Our code, as most research

code in the field, is written in Matlab. If we ever want to have a fast and performing

program, we should translate it in another language, such as C++ or Julia. As far

as we are aware, the FEAST algorithm is the only famous C++ implementation of a

contour solver, but evidently it does not incorporate yet the results we discovered in

this thesis.

4 ROBUST RAT IONAL APPROX IMAT IONS OF

NONL INEAR E IGENVALUE PROBLEMS

As we explained in Section 1.2.2, a possible method to solve the nonlinear eigenvalue

problem for Gpzq P HpΩ0, Cnˆnq in Ω Ă Ω0 is providing a rational approximation

Rpzq such that Gpzq « Rpzq in some sense and then solving the simpler rational

eigenvalue problem, often by any linearization technique. We can write the rational

approximant as

Rpmqpzq “ b0pzqR0 ` b1pzqR1 ` ¨ ¨ ¨ ` bmpzqRm (4.1)

on the target set Ω Ă Ω0. The Rj P Cnˆn in (4.1) are constant-coefficient matrices and

the bj are polynomials of degree at most m or rational functions of type pm, mq, that

is, quotients of polynomials of degree at most m.

The main goal of this chapter is the numerical construction of a rational approxi-

mant Rpzq of Gpzq that is robust, i.e.,

‚ it is reliable for any given tolerance ε;

‚ it is scale-independent: if Rpzq is an approximant of Gpzq, then αRpzq is an

approximant of αGpzq, for any α P C.

More specifically, we use a discrete finite set Ω Ą Σ :“ tσ0, . . . , σMu, which is usually

a fine mesh of Ω or simply some randomly drawn points and we will propose some

algorithms that return a rational approximant Rpmqpzq such that

∥∥∥G´ Rpmq
∥∥∥

Σ
ď ε

∥∥∥Rpmq
∥∥∥

Σ
, (4.2)

where we recall

‖G‖
Σ

:“ sup
zPΣ

‖Gpzq‖2 “ max
zPΣ

‖Gpzq‖2. (4.3)

122

4.1 error analysis of approximated eigenpairs 123

In this chapter we change the hypothesis of Ω being open (see Section 1.1) to close.

This means that BΩ Ă Ω and that Ω is compact. Further, we will focus on both the

cases where Gpzq is provided in split form

Gpzq “
s
ÿ

j“1

gjpzqAj, (4.4)

with Aj P Cnˆn and gjpzq P HpΩ0, Cq, and the case where Gpzq is provided as a black

box that only returns evaluations Gpz0q for z0 P Ω. The structure is as follows. In

Section 4.1 we provide the error analysis for the eigenpairs of Gpzq computed through

a rational approximant Rpmqpzq; in Section 4.2 we give a brief overview of modern

algorithms that inspired us in developing our solution; in Section 4.3 we explain

our two-phase algorithm that satisfies (4.2); Section 4.4 is dedicated to the numerical

experiments that compare the proposed approximation algorithms with the state-of-

the-art on the problems from NLEVP 4.0 (see Section 3.2). Finally, in Section 4.5 we

compare the eigenvalues retrieved with the best algorithms of the previous section

and the ones from the contour solver described in Chapters 2 and 3.

4.1 error analysis of approximated eigenpairs

Let Gpzq : Ω0 Ñ Cnˆn and let Ω Ą Σ be the compact target set and its discrete mesh.

In addition, let Rpmqpzq be any rational approximant such that (4.2) is satisfied. In

general, the relative error will not be bounded on Ω as well, but we expect something

similar to hold if the functions Gpzq and Rpmqpzq are “smooth” enough. More precisely,

we expect that

‖G´ R‖
Ω
ď cΩ ε‖G‖

Ω
(4.5)

124 robust rational approximations of nonlinear eigenvalue problems

holds true for some constant cΩ ą 1. Indeed, if Gpzq and Rpmqpzq are uniformly

continuous on Ω, we have by [Che98, Lemma 2, p. 86] that

∥∥∥G´ Rpmq
∥∥∥

Ω
ď ωGpδq `ωRpmqpδq ` ε‖G‖

Ω
,

where

ωGpδq “ sup
|z1´z2|ďδ

‖Gpz1q ´ Gpz2q‖2

is the modulus of continuity of Gpzq (and likewise for Rpmqpzq) and

δ “ max
zPΩ

min
σPΣ

|σ´ z|

is the “density” of Σ in the target set Ω. By choosing δ such that

ωGpδq `ωRpmqpδq ď ε‖G‖
Σ

for a given ε, then (4.5) holds for cΩ “ 2. This means that if the functions are uni-

formly continuous on Ω, then we can control the error on Ω with the error on the

discretized set Σ, provided that δ is small enough, i.e., that Σ is dense enough in Ω.

A stronger argument holds when Gpzq and Rpmqpzq are holomorphic in Ω. In this

case, Σ can simply be a discretization of BΩ and (4.2) implies

∥∥∥G´ Rpmq
∥∥∥
BΩ
ď εc

BΩ‖G‖
Ω

,

where c
BΩ ą 1 is another positive constant. By the maximum norm principle, it

follows ‖G‖
Ω
“ ‖G‖

BΩ
and therefore

∥∥∥G´ Rpmq
∥∥∥

Ω
ď εc

BΩ‖G‖
Ω

.

In Section 2.2.3 we saw how to compute the backward error ηppλ, pvq of an eigenpair

of Gpzq in (2.19). Now assume that (4.5) holds true. What is the backward error of

the eigenpairs of Rpmqpzq used as eigenpairs of Gpzq? If ppλ, pvq is a computed eigenpair

4.1 error analysis of approximated eigenpairs 125

of a rational approximant Rpmqpzq that satisfies (4.5) with backward error ηRpmqp
pλ, pvq,

then the backward error with respect to Gpzq is given by

ηGp
pλ, pvq “

∥∥∥Gppλqpv
∥∥∥

2
‖G‖

Ω
‖pv‖2

“

∥∥∥Gppλqpv´ Rpmqppλqpv´ ∆Rpmqppλqpv
∥∥∥

2
‖G‖

Ω
‖pv‖2

ď

∥∥G´ Rpmq
∥∥

Ω

‖G‖
Ω

`

∥∥∆Rpmq
∥∥

Ω

‖G‖
Ω

ď cΣ ε`

∥∥Rpmq
∥∥

Ω

‖G‖
Ω

ηRpmqp
pλ, pvq, (4.6)

where in the first equality we used the definition of backward error (2.18).

In practice, if ppλ, pvq with pλ P Ω is a computed eigenpair of Rpmqpzq with backward

error ηRpmqp
pλ, pvq ď ε then we can expect ppλ, pvq to be an approximate eigenpair of Gpzq

with a backward error ηGp
pλ, pvq À ε when

∥∥Rpmq
∥∥

Ω
{‖G‖

Ω
« 1 and cΣ is not too large.

As already mentioned in Remark 2.3, the formula ηGp
pλ, pvq is not practical, due to

the presence of ‖G‖
Ω

, hence we have to substitute it with a lower bound. In the

numerical experiments of this chapter we will use

pηGp
pλ, pvq :“

∥∥∥Gppλqpv
∥∥∥

2
‖G‖

Σ
‖pv‖2

. (4.7)

This affects (4.6) by a factor ‖G‖
Ω
{‖G‖

Σ
ě 1.

Example 4.1. We consider the 2ˆ 2 matrix-valued function nep1 from the NLEVP library

Gpzq “

»

—

–

eiz2
1

1 1

fi

ffi

fl

, (4.8)

with eigenvalues

λ1,2 “ 0, λ3 “
?

2π, λ4 “ i
?

2π, λ5 “ ´i
?

2π, λ6 “ ´
?

2π

in the target set Ω “ Dp0, 3q. We generate 1000 random points in Ω and 200 points

uniformly distributed on BΩ as the discrete set Σ. Then we build four rational approxi-

mants of Gpzq on Σ with different relative errors and degrees m—see the first two columns

126 robust rational approximations of nonlinear eigenvalue problems

Table 4.1: Backward errors for approximate eigenpairs of Gpzq in (4.8) computed as eigen-
pairs of Rpmqpzq.

m
‖G´Rpmq‖

Ω
‖G‖

Ω

pηGp
pλ1, pv1q pηGp

pλ2, pv2q pηGp
pλ3, pv3q pηGp

pλ4, pv4q pηGp
pλ5, pv5q pηGp

pλ6, pv6q

14 3.3e-5 2.5e-8 2.6e-8 7.0e-7 1.6e-6 1.7e-6 1.2e-6
18 1.8e-7 1.4e-10 1.4e-10 2.0e-9 2.9e-9 4.8e-9 2.0e-9
22 3.6e-10 9.1e-14 9.1e-14 2.7e-12 7.8e-13 3.7e-12 3.2e-12

28 1.5e-14 1.4e-15 1.4e-15 3.4e-15 7.4e-16 1.5e-15 4.9e-15

of Table 4.1. The computed eigenpairs ppλj, pvjq of Rpmqpzq, with pλj P Ω, become the approx-

imate eigenpairs of Gpzq. We displayed the backward errors relative to Gpzq pηGp
pλj, pvjq in

Table 4.1, making sure that that pηRpmqp
pλj, pvjq ď 7ˆ 10´15. There we see that pηGp

pλj, pvjq ď ε,

with ε “
∥∥G´ Rpmq

∥∥
Σ
{‖G‖

Σ
, and the backward errors decrease as ε decreases, as predicted

by (4.6). Given that we know the exact eigenvalues, we compute the absolute error for the

double and defective eigenvalue in 0, and the relative errors for the other eigenvalues, and

we write them down in Table 4.2. Since in its first-order approximation the forward error

is bounded from above by the product of the condition number times the backward error, we

anticipate that the nonzero simple eigenvalues λ3, . . . , λ6 will have a condition number of

order 103. A normwise condition number for a nonzero simple eigenvalue λ P Ω of Gpzq with

eigenvector v, which is consistent with the backward error defined in (2.18) is

κGpλq “ lim sup
εÑ0

"

|∆λ|
ε|λ| : pGpλ` ∆λq ` ∆Gpλ` ∆λqqpv` ∆vq “ 0, ‖∆G‖

Ω
ď ε‖G‖

Ω

*

.

Following the proof of [GT17, Thm. 2.20] we get that

κGpλq “
‖G‖

Ω
‖w‖2‖v‖2

|λ||w˚G1pλqv| ,

were w is a left eigenvector of Gpzq with corresponding eigenvalue λ. Now for Gpzq in (4.8),

we have ‖G‖
Ω
« e9 « 8ˆ 103. Also, all the left and right eigenvectors are nonzero multiples

of r1, ´1sT. It is easy to see that

‖w‖2‖v‖2{p
∣∣λj

∣∣∣∣w˚G1pλjqv
∣∣q “ p2πq´1

so that κGpλjq « 1.3ˆ 103, j “ 3, . . . , 6 as anticipated from the numerical experiments.

4.2 a brief overview of current rational approximation techniques 127

Table 4.2: Absolute and relative errors for approximate eigenvalues of Gpzq in (4.8) computed
as eigenvalues of Rpmqpzq.

m
‖G´Rpmq‖

Ω
‖G‖

Ω

∣∣∣λ1 ´
pλ1

∣∣∣ ∣∣∣λ2 ´ pλ2

∣∣∣ ∣∣∣λ3´pλ3

∣∣∣
|λ3|

∣∣∣λ4´pλ4

∣∣∣
|λ4|

∣∣∣λ5´pλ5

∣∣∣
|λ5|

∣∣∣λ6´pλ6

∣∣∣
|λ6|

14 3.3e-5 1.7e-2 1.7e-2 6.4e-4 1.5e-3 1.5e-3 1.1e-3
18 1.8e-7 1.2e-3 1.3e-3 1.8e-6 2.7e-6 4.4e-6 1.8e-6
22 3.6e-10 3.2e-5 3.2e-5 2.5e-9 7.1e-10 3.4e-9 2.9e-9
28 1.5e-14 4.0e-6 4.0e-6 3.1e-12 6.8e-13 1.3e-12 4.5e-12

4.2 a brief overview of current rational approx-

imation techniques

In this section we give a brief overview of the approximation algorithms that influ-

enced this chapter the most.

4.2.1 NLEIGS

The fully rational Krylov method for nonlinear eigenvalue problems (NLEIGS) is an algo-

rithm proposed in [Güt+14] to solve nonlinear eigenvalue problems. It builds a ratio-

nal approximant Rpmqpzq in the form of Equation (4.1) and then returns its eigenvalues

through a rational Krylov method. Here we are more interested in the construction of

Rpmqpzq, but before going through the details, we need some background knowledge.

NLEIGS is a linearized rational interpolant, i.e., the sets of sampling points Σ and

poles Ξ are prescribed a priori. Linearized rational interpolants allow us to build

asymptotically optimal rational approximations, however a deep theoretical dive on

how this is possible goes beyond the scope of this thesis, therefore we direct the

interested reader to [Güt13]. Now assume for a moment that Σ, Ξ are general compact

sets in C at a positive distance one from the other. Then the pair pΣ, Ξq is called

condenser and related to it there is a positive real number cappΣ, Ξq named condenser

capacity [Bag67]. Computing this capacity for a given condenser is not a trivial task:

128 robust rational approximations of nonlinear eigenvalue problems

we direct to [Güt13] and [GT17] for some examples. Now we denote a rational nodal

function by

smpzq “
m
ź

j“0

pz´ σjq{

m
ź

j“1

pz´ ξ jq,

where σj P Σ and ξ j P Ξ. As proved in [LS94], any sequence of nodal functions is

bounded from below by

lim sup
mÑ8

ˆ

supzPΣ smpzq
infzPΞ smpzq

˙1{m

ě e´1{ cappΣ,Γq. (4.9)

Finding a sequence of nodal functions psmpzqqmPN such that the equality in (4.9) holds

is called the generalized Zolotarev problem, because it becomes the third Zolotarev prob-

lem when the condenser is formed by real intervals [Güt13]. In 2006 Levi and Saff

showed that the generalized Leja–Bagby points returns a sequence of optimal rational

functions for the Zolotarev problem [Bag69], [LS06]. We obtain these points with the

following greedy algorithm: we start with an arbitrary point σ0 P Σ, and then we

recursively define σj and ξ j as

σj`1 :“ arg max
zPΣ

∣∣sjpzq
∣∣, ξ j`1 :“ arg min

zPΓ

∣∣sjpzq
∣∣. (4.10)

We can explain the intuition behind the Leja–Bagby points in a particular case.

Assume that Ξ “ Γ is now a closed contour that encloses Σ. Then the Walsh–Hermite

formula tells us that

Rpmqpzq :“
1

2πi

ż

Γ

ˆ

1´
smpzq
smpζq

˙

Gpζq
ζ ´ z

dζ

is the unique rational matrix-valued function of type pm, mq that interpolates Gpzq at

the nodes σj counting their multiplicities [Wal35]. The approximation error reads

∥∥∥Gpzq ´ Rpmqpzq
∥∥∥

2
“

∥∥∥∥ 1
2πi

ż

Γ

smpzq
smpζq

Gpζq
ζ ´ z

dζ

∥∥∥∥
2

ď KpG, Ω, Γq
|smpzq|

minζPΓ |smpΓq|
,

(4.11)

4.2 a brief overview of current rational approximation techniques 129

where KpG, Ω, Γq ą 0 is a constant that depends only on G, Ω, and Γ. Therefore,

Equations (4.11) and (4.9) lead to

lim sup
mÑ8

∥∥∥G´ Rpmq
∥∥∥1{m

Σ
ď e´1{ cappΣ,Γq,

which means that choosing the Leja–Bagby points guarantees an exponential decay

of the approximation error.

In order to practically construct Rpmqpzq as in (4.1), we need to choose a series of

basis functions pbjpzqqjPN. NLEIGS opts for the degree-graded rational Newton basis

functions, which are recursively defined as

b0pzq “
1
β0

, bj`1pzq “
z´ σj

β j`1p1´ z{ξ j`1q
bjpzq, (4.12)

where pσjq
m
j“0 Ă Σ, pξ jq

m
j“1 Ă Ξ, and β j are nonzero parameters such that

∥∥bj
∥∥

Σ
“ 1.

Remark 4.1. The silent hypothesis ξ j ‰ 0 does not affect the generality of the method,

because if Gpzq had some poles in the proximity of the origin, we can simply consider

a shifted version.

Finally, the computation of the constant coefficients Rj of (4.1) follows from the

interpolation conditions Gpσjq “ Rpmqpσjq. When all the sampling points are distinct,

we have R0 “ β0Gpσ0q, while (4.12) leads to

Rj “
Gpσjq ´

řj´1
k“1 bkpσjqRk

bjpσjq
“

Gpσjq ´ Rpj´1qpσjq

bjpσjq
, j “ 1, . . . , m. (4.13)

In Algorithm 4.1 we wrote down the pseudocode for the first part of NLEIGS.

Güttel et al. [Güt+14], [EG19] truncate the approximation at step m when

‖Rm‖F ď ε‖R0‖F. (4.14)

Indeed, if the rational approximation is converging, then

∥∥∥G´ Rpmq
∥∥∥

Σ
“ max

zPΣ

∥∥∥ 8
ÿ

k“0

bkpzqRk ´

m
ÿ

k“0

bkpzqRk

∥∥∥
2
ď

8
ÿ

k“m`1

max
zPΣ

‖bkpzq‖2‖Rk‖2.

130 robust rational approximations of nonlinear eigenvalue problems

Algorithm 4.1: Pseudocode for the NLEIGS rational approximation.
Input: G, Σ, Ξ, mmax, ε
Output: Rpmqpzq.

1 σ0 Ð random point in Σ
2 R0 Ð Gpσ0q

3 b0pzq Ð 1, β0 Ð 1
4 s0pzq Ð z´ σ0, j Ð 0
5 while

∥∥Rj
∥∥

F ą ε max0ďkďj ‖Gpσkq‖F{3, and j ă mmax do
6 σj`1 Ð arg maxzPΣ

∣∣sjpzq
∣∣

7 ξ j`1 Ð arg minzPΞ

∣∣sjpzq
∣∣

8 bj`1pzq Ð bjpzqpz´ σjq{p1´ z{ξ j`1q

9 β j`1pzq Ð maxzPΣ
∣∣bjpzq

∣∣
10 bj`1pzq Ð bj`1pzq{β j`1

11 Build Rj`1 with Eq. (4.13)
12 sj`1pzq Ð sjpzqpz´ σj`1q{pz´ ξ j`1q

13 j Ð j` 1

14 return Rpmqpzq

By construction, ‖bk‖Σ
“ 1, thus

∥∥∥G´ Rpmq
∥∥∥

Σ
ď

8
ÿ

j“m`1

∥∥Rj
∥∥

2.

In addition, ‖G‖
Σ
ě n´1{2 max0ďkďm ‖Gpσkq‖F and since we are supposing we are in

the convergence regime, for m large enough it holds
∥∥Rj

∥∥
F ă ‖Rm‖F for j ą m and

ř8
j“m`1

∥∥Rj
∥∥

2 ď κ‖Rm‖F for some constant κ ą 1 (in our implementation, we use

κ “ 3). Hence, instead of (4.14) we suggest to stop when

‖Rm‖F ď
ε

κ
max

0ďkďm
‖Gpσkq‖F, (4.15)

which, once convergence has taken place, guarantees
∥∥G´ Rpmq

∥∥
Σ
ď ε‖G‖

Σ
.

Remark 4.2. Equation (4.15) is less strict than (4.14), given that R0 “ Gpσ0q. Therefore,

NLEIGS equipped with (4.15) as stopping criterion returns a rational approximant

with the required accuracy, but with a smaller degree m than when (4.14) is used.

If, on one hand, using the Leja–Bagby points leads to an exponential decay of

the approximation error, on the other hand it requires a good knowledge of the

singularities of the matrix-valued function Gpzq. In fact, the final approximation

4.2 a brief overview of current rational approximation techniques 131

cannot be good if the set Ξ is far away from the poles of Gpzq. Nevertheless, there

exist instances where this knowledge is unavailable. For example, Gpzq may be in

black-box form, or understanding where the singularities lie from the split form

could be too difficult; finally, the end-users may be more interested in a simpler

algorithm, where they do not need to specify many parameters. For these reasons,

algorithms where the poles do not need to be specified a priori are always welcomed

by the community. Among them, in recent years the Adaptive Antoulas–Anderson

(AAA) method has been having great success, and thus it is the topic of the next

section.

4.2.2 The AAA algorithm

In 2018 Nakatsukasa, Sète, and Trefethen proposed the Adaptive Antoulas–Anderson

(AAA) for the approximation of scalar functions [NST18]. It immediately surged in

popularity and several authors generalised it to matrix-valued functions Gpzq [Hoc17;

Lie+18].

The original AAA algorithm aims to approximate a scalar function gpzq : Ω Ñ C

with a sequence of rational functions

rpmqpzq “

m
ÿ

i“1

gpσiqwi

z´ σi

m
ÿ

i“1

wi

z´ σi

“ npmqpzq{dpmqpzq, (4.16)

where wi P C are weights, and pσiq
m
i“1 Ă Σ Ă Ω are nested sequences of sample/in-

terpolation points. Equation (4.16) is often called the barycentric representation of rpmq.

We summarise its properties in the next theorem [NST18].

Theorem 4.1. Consider the arbitrary distinct complex sample points σ1, . . . , σm. As the

complex values g1 :“ gpσ1q, . . . gm :“ gpσmq range over all complex values and the weights

w1, . . . , wm range over all the nonzero complex values, the functions rpmqpzq in (4.16) range

all over the set of the pm´ 1, m´ 1q rational functions that have no poles at the points σj.

Moreover, rpσjq “ gj for each j.

132 robust rational approximations of nonlinear eigenvalue problems

The core of the AAA procedure is a greedy selection of the points σi, one at a

time, from the set Σ :“ tσ1, . . . , σMu, where we assume M " 1. We summarise the

procedure in the upcoming paragraphs and in Algorithm 4.2. More precisely, at every

step m we will have an approximation rpmqpzq on the support points tσ1, . . . , σmu that

minimizes the 2-norm on

Σpmq “ Σztσ1, . . . , σmu, (4.17)

i.e., the points that are not yet the support ones. The goal is approximating

gpzq « rpmqpzq, z P Σ,

or equivalently

gpzqdpmqpzq « npmqpzq, z P Σpmq, (4.18)

where we substituted Σ with Σpmq, due to the presence of the poles of npmqpzq and

dpmqpzq. Now assume we have just completed the pm´ 1q-th iteration. Then the next

support point σm is chosen so that

max
σPΣpm´1q

∣∣∣gpσq ´ rpm´1qpσq
∣∣∣ “ ∣∣∣gpσmq ´ rpm´1qpσmq

∣∣∣, (4.19)

i.e., it is the point that maximises the residual on Σpm´1q. More precisely, we write

Σpmq “ rσpmq1 , . . . , σ
pmq
M´ms

T as a vector and we let Gpmq “ rgpmq1 , . . . , gpmqM´ms
T be the vector

of the evaluations gpΣpmqq. We are looking for a normalised vector (the weights)

w “
„

w1 . . . wm

T

, ‖w‖ “ 1,

that minimizes the 2-norm of

m
ÿ

j“1

wjpg
pmq
i ´ gjq

σ
pmq
i ´ σj

i “ 1, . . . , M´m. (4.20)

4.2 a brief overview of current rational approximation techniques 133

Equation (4.20) can be rewritten in matrix form as

min
‖w‖“1

∥∥∥Apmqw
∥∥∥

2
,

where

Apmq “

»

—

—

—

—

—

–

gpmq1 ´gpσ1q

σ
pmq
1 ´σ1

. . . gpmq1 ´gpσmq

σ
pmq
1 ´σm

...
. . .

...
gpmqM´m´gpσ1q

σ
pmq
M´m´σ1

. . .
gpmqM´m´gpσmq

σ
pmq
M´m´σm

fi

ffi

ffi

ffi

ffi

ffi

fl

P CpM´mqˆm. (4.21)

Finally, the vector of weights w is the final right singular vector of the reduced SVD

Apmq “ UΣV˚. The procedure then stops when

∥∥∥g´ rpmq
∥∥∥

Σ
“

∥∥∥g´ rpmq
∥∥∥

Σpmq
ď ε‖g‖

Σ
, (4.22)

for a given ε, where the norm on Σ defined in (4.3) reduces to ‖g‖
Σ
“ maxzPΣ |gpzq|

for a scalar function gpzq.

Remark 4.3. The AAA approximant can stagnate if the tolerance ε is too small. If that

is the case, then numerical Froissart doublets appear [Fro69]. These are poles with very

small residues or pairs of poles and support points that are so close together that they

almost cancel. In order to remove them, we first identify the spurious poles thanks

to their residues being smaller than a given threshold ε, say 10´13; then, we remove

the nearest support point from the set of support points, and finally we compute a

new SVD to solve the least-squares problem (4.20). We direct the reader to [NST18,

Section 5] for further details and references on this topic.

Remark 4.4. As opposed to NLEIGS, the greedy nature of the AAA algorithm and its

variants, it is able to approximate functions that are not holomorphic in Ω. Given that

in later sections we will use it as well as a first step of another approximation, we

will focus only on holomorphic functions. Nonetheless, in the numerical examples

we will provide examples of functions without this smoothness property.

134 robust rational approximations of nonlinear eigenvalue problems

Algorithm 4.2: Pseudocode for the AAA algorithm
Input: g, Σ, mmax, ε
Output: rpzq.

1 Σp0q Ð Σ
2 rp0qpzq Ð 0, np0qpzq Ð 0, dp0qpzq Ð 1
3 m Ð 1
4 while m ď mmax do
5 Compute σm “ arg maxzPΣpm´1q

∣∣gpzqdpm´1qpzq ´ npm´1qpzq
∣∣

6 Σpmq Ð Σpm´1qztσmu

7 Compute the SVD of matrix Apmq (4.21)
8 Retrieve the vector of weights w
9 Build rpmqpzq

10 if
∥∥g´ rpm´1q

∥∥
Σ
ă ε‖g‖

Σ
or m “ mmax then

11 return rpmqpzq

12 m Ð m` 1

The most appreciated feature of AAA is its speed: the expensive part is the compu-

tation of the pM´ jq ˆ j SVDs, with j “ 1, . . . m, therefore the cost is Opm3Mq, where

m is usually very small (m ă 50) [NST18]. Finally, in some applications retrieving the

zeros and the poles of rpmqpzq is fundamental, as we will show in Section 4.3. As op-

posed to other algorithms, these quantities are not readily available during the AAA

procedure. Nevertheless, computing them is as easy as solving two linear eigenvalue

problems:

»

—

—

—

—

—

—

—

—

—

—

—

–

0 w1 w2 . . . wm

1 σ1

1 σ2

...
. . .

1 σm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ λ

»

—

—

—

—

—

—

—

—

—

—

—

–

0

1

1
. . .

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.23)

gives us the zeros of dpmqpzq, i.e., the poles of rpmqpzq, while the pencil where we

substitute wj with gjwj returns the zeros of npmqpzq. This costs Opm3q as well, therefore

it does not increase the asymptotical complexity of the algorithm.

4.2 a brief overview of current rational approximation techniques 135

4.2.3 The set-valued AAA and the weighted AAA

Since the first article on the AAA algorithm for scalar functions appeared, many

researchers aimed to extend it to a set of multiple scalar functions, and thus to the

matrix-valued case. Hochman [Hoc17], and Lietaert et al. [Lie+18] proposed the

fastAAA and the set-valued AAA algorithms, respectively. They both require a split

form of the matrix-valued function Gpzq, and only few details differ from one and the

other, thus we will treat them as a single work. The first naive idea is approximating

each scalar function gjpzq of (4.4) with s calls of AAA on the set Σ. However, we will

end up with s ripzq functions whose support points are different subsets of Σ. For

numerical stability, it is more beneficial to find common support points for all the

functions at the same time. This leads to the rational approximants

rpmqj pzq “
m
ÿ

i“0

gjpσiqwi

z´ σi

N m
ÿ

i“0

wi

z´ σi
, j “ 1, . . . , s, (4.24)

just like in (4.16). This time the m-th support point is chosen such that

max
i,j

∣∣∣gipσjq ´ rpm´1qpσjq

∣∣∣
attains its maximum. The core of set-valued AAA is the same of the original one for

scalar functions, therefore we direct the interested reader to the cited references. We

only desire to point out that the Loewner matrix Apmq of (4.21) becomes much taller:

Apmq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

gpmq1,1 ´g1pσ1q

σ
pmq
1 ´σ1

. . .
gpmq1,1 ´g1pσmq

σ
pmq
1 ´σm

...
. . .

...
gpmq1,M´m´g1pσ1q

σ
pmq
M´m´σ1

. . .
gpmq1,M´m´g1pσmq

σ
pmq
M´m´σm

gpmq2,1 ´g2pσ1q

σ
pmq
1 ´σ1

. . .
gpmq2,1 ´g2pσmq

σ
pmq
1 ´σm

...
. . .

...
gpmq2,M´m´g2pσ1q

σ
pmq
M´m´σ1

. . .
gpmq2,M´m´g2pσmq

σ
pmq
M´m´σm

...
...

...
gpmqs,1 ´gspσ1q

σ
pmq
1 ´σ1

. . .
gpmqs,1 ´gspσmq

σ
pmq
1 ´σm

...
. . .

...
gpmqs,M´m´gspσ1q

σ
pmq
M´m´σ1

. . .
gpmqs,M´m´gspσmq

σ
pmq
M´m´σm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P CpM´mqsˆm (4.25)

136 robust rational approximations of nonlinear eigenvalue problems

It follows that each step of the procedure may become quite expensive when s

is large. Therefore they proposed a fast method to solve the least-squares prob-

lem (4.20) [Lie+18, Section 2.3]. We write Apm´1q “ QH, where Q P CpM´m`1qˆpm´1q

is orthonormal, and the right singular vectors of Apm´1q are the same of the matrix

H P Cpm´1qˆpm´1q. At the m-th step, we can update Q by adding the last column of

Apmq, by removing the s rows corresponding to the support point σm, and by reorthog-

onalizing this new matrix. This can be done cheaply: define Qs P Csˆm the matrix

whose rows are the rows removed from Q, and let rQ the matrix obtained from Q

after the removal of those s rows. The orthogonality of Q yields

rQ˚ rQ “ Im ´Q˚s Qs “ S˚S,

where S˚S is the Cholesky decomposition. It follows that rQS´1 is orthogonal and

p rQ, Hq Ð p rQS´1, SHq is the desired update. Unfortunately, this fast reorthogonaliza-

tion may fail at later steps of the algorithm when the threshold ε is small if there is

some stagnation. It is widely known that the Cholesky factorization is stable (see, for

example, [GV96; Hig90; Wil68] and the citations therein), nevertheless under these

circumstances the matrix Qs is nearly orthogonal, thus Im´Q˚s Qs may become numer-

ically positive semi-definite. When this happens, we have to go back to computing

the SVD of Apmq from scratch.

In the original set-valued algorithm the stopping criterion that follows from 4.22 is

max
1ďjďs

∥∥∥gj ´ rpmqj

∥∥∥
Σ
ď ε

∥∥gj
∥∥

Σ
. (4.26)

It springs to the eye that nowhere in (4.26) the matrix coefficients Aj appear, which

seems suboptimal. Intuitively, if
∥∥Aj

∥∥
2 is much smaller than the other coefficients,

then the approximant rpmqj pzq does not need to be very precise. Indeed, following the

analysis of Section 4.1, we get

∥∥∥G´ Rpmq
∥∥∥

Σ
“ max

zPΣ

∥∥∥ s
ÿ

j“1

pgjpzq ´ rpmqj pzqqAj

∥∥∥
2
ď

s
ÿ

j“1

∥∥∥gj ´ rpmqj

∥∥∥
Σ

∥∥Aj
∥∥

2.

4.2 a brief overview of current rational approximation techniques 137

So we propose to use the stopping criterion

s
ÿ

j“1

∥∥∥gj ´ rpmqj

∥∥∥
Σ

∥∥Aj
∥∥

F ď εβ, (4.27)

where β is a lower bound on ‖G‖
Σ

that we assume can be computed cheaply. Under

the assumption that (4.27) holds, we have

∥∥∥G´ Rpmq
∥∥∥

Σ
ď

s
ÿ

j“1

∥∥∥gj ´ rpmqj

∥∥∥
Σ

∥∥Aj
∥∥

2 ď

s
ÿ

j“1

∥∥∥gj ´ rpmqj

∥∥∥
Σ

∥∥Aj
∥∥

F ď εβ ď ε‖G‖
Σ
.

It follows that if all rpmqj pzqs satisfy (4.27), then the rational approximant Rpmqpzq sat-

isfies (4.2). Since the stopping criterion weights differently each scalar function gj,

we named the AAA approximant Rpmqpzq hereby obtained, the weighted AAA rational

approximant. On the other hand, the original stopping criterion (4.26) leads to

∥∥∥G´ Rpmq
∥∥∥

Σ
ď

s
ÿ

j“1

∥∥∥gj ´ rpmqj

∥∥∥
Σ

∥∥Aj
∥∥

2 ď

´

s max
1ďjďs

∥∥gj
∥∥

Σ

∥∥Aj
∥∥

2

¯

ε.

Since ps max1ďjďs
∥∥gj

∥∥
Σ

∥∥Aj
∥∥

2q{‖G‖
Σ
ě 1, Equation (4.2) will not generally hold. Con-

sequently, if the lower bound β on ‖G‖
Σ

is sharp, the construction of Rpmqpzq will stop

earlier with (4.27) than with (4.26). We will illustrate this behaviour in the numeri-

cal experiments of Section 4.4. Finally, weighted AAA is scaling independent. This

means it returns the same approximant when applied to the Gpzq in split form as

in (4.4) and to Gpzq “
řs

j“1 gjpzqBj with gjpzq “ αjgjpzq and Aj “ α´1
j Bj, αj ‰ 0. Also,

it returns αRpmqpzq when applied to αGpzq, where Rpmqpzq is the approximant to Gpzq.

Remark 4.5. A cheap way to compute a lower bound of ‖G‖
Σ

is the following. Con-

sider a normally distributed vector u P Cn with unit length, and let uj “ Aju, for

j “ 1, . . . , s. Then we define

β :“ max
zPΣ

∥∥∥∥∥∥
s
ÿ

j“1

gjpzquj

∥∥∥∥∥∥
2

ď ‖G‖
Σ
.

Note that an unlucky selection of u may lead to a lower bound of several orders of

magnitude smaller than ‖G‖
Σ
. This poor lower bound will cause the algorithm to

138 robust rational approximations of nonlinear eigenvalue problems

perform a few unnecessary steps, thus returning an approximant of degree larger

than needed.

4.2.4 The Cauchy approximation and a brief wrap-up

In Chapter 2 we saw how to use the Cauchy’s integral formula in Theorem 1.2 to

solve a meromorphic eigenvalue problem on Ω. Saad et al. realised they could take

advantage of the same result to return a rational approximant in the holomorphic

case [EMS20]. Recalling that gjpzq P HpΩ0, Cq and assuming that the boundary BΩ0

is smooth enough, Cauchy’s formula yields

gjpzq “
1

2πi

ż

BΩ0

gjpuq
u´ z

du, z P Ω0zBΩ0, j “ 1, . . . , s.

If we build a parametrization γ : r0, 2πs Ñ BΩ0, the substitution u “ γptq yields

gjpzq “
1

2πi

ż 2π

0

gjpγptqqγ1ptq
γptq ´ z

dt.

Thus, if we employ a quadrature with m` 1 nodes ξi and weights ωi, then we can

build the rational approximant

rpmqj pzq “
m
ÿ

k“0

wkgjpξkq

ξk ´ z
, j “ 1, . . . , s. (4.28)

Due to its nature, this Cauchy approximation is not an interpolation technique: there

are no points σk where we force gjpσkq “ rpmqj pσkq. Rather, it follows from (4.28) that

the poles ξk of rpmqj pzq must not be poles of gjpzq.

The most important merit of this algorithm is the easiness of implementation of

its core: if the shape of Ω is not too complicated, we can just take a slightly larger

Ω0 with a smooth contour, and a quadrature rule. For example, when Ω0 is a disk,

the trapezoidal rule converges exponentially [TW14, Theorem 2.2], thus the weights

simply become ωk “ pm` 1q´1. However, things are not so simple when we try to

make it more robust. First of all, at runtime the user does not have a clear grasp of

4.2 a brief overview of current rational approximation techniques 139

what will happen. Generally, most quadrature rules converge exponentially to the

true integral, as we wrote more in depth in Section 3.4, but a quantitative analysis

seems not possible: given ε ! 1, the algorithm cannot automatically choose a degree

m such that (4.2) holds. In addition, setting Ω0, and thus BΩ0, is not obvious: if BΩ0

is too close to BΩ, then at the points σi P Ω close to the boundary the approximation

will not be good, due to the quadrature points ξk being poles for rpmqj pzq, but not for

gjpzq; if it is too far, the behaviour of gjpzq on BΩ0 can be very different from the

one in Ω, and this may compromise the quality of the approximation as well. The

upcoming example clarifies these difficulties.

Example 4.2. Let Gpzq be the 2-by-2 matrix-valued function in (4.8), where the target set Ω

is Dp0, ρq and ρ “ 3. We can rewrite Gpzq in split form as

Gpzq “

»

—

–

0 1

1 1

fi

ffi

fl

` eiz2

»

—

–

1 0

0 0

fi

ffi

fl

. (4.29)

We build a Cauchy approximant Rpmqpzq using the trapezoidal rule on the contours BΩ0,

where Ω0 “ Dp0, αρq and α P t1.05, 1.1, 1.25, 1.5u. We are interested in the error on Σ,

which is formed by 400 random points in Ω and 100 uniformly distributed points on BΩ. For

each value of α we have plotted in Figure 4.1 the error
∥∥G´ Rpmq

∥∥
Σ
{‖G‖

Σ
as the number

of quadrature points, i.e., the degree of Rpmqpzq, increases. On one hand, we witness that

the convergence is very slow when α is close to 1. This is an expected behaviour, due to the

presence of the poles, which causes the approximation to be bad on BΩ and on the points in

Σ near BΩ. On the other hand, the rate of convergence increases with α, because we are

distancing the poles ξi of Rpmq (the quadrature points) from Ω, but the limiting accuracy

increases as well, because the values the function Gpzq assumes on BΩ0 are much larger than

the values in Ω.

140 robust rational approximations of nonlinear eigenvalue problems

Figure 4.1: Demonstration of four different choices for the contour BΩ0 (a circle of centre
0 and radius αρ) for the Cauchy approximation of G in (4.8) on Ω, the disk of
centre 0 and radius ρ “ 3.

4.3 a two-phase algorithm for black-box func-

tions

In Section 4.2 we reviewed some approximation algorithms and we proposed an

improvement for the original set-valued AAA. However, all these algorithms work

when the function Gpzq is given in split form (4.4). If Gpzq is in black box form, we

need to adopt other strategies.

In 2018 Elsworth and Güttel proposed another generalisation to the AAA algorithm

for black-box functions [EG19]. First of all, they draw two normally distributed ran-

dom vectors u, v P Cn of unit length and build the surrogate scalar function

gpzq “ u˚Gpzqv. (4.30)

Then they approximate gpzq through the AAA algorithm of section 4.2.2 and return

the approximant rpmqpzq such that (4.22) holds. They argue that the region of analitic-

ity of gpzq must be similar to Gpzq, therefore the support points σj and the weights

4.3 a two-phase algorithm for black-box functions 141

wj of rpmqpzq should be a good choice for a rational approximation of Gpzq. Thus they

define

Rpmqpzq “
m
ÿ

j“0

Gpσjqwj

z´ σj

O

m
ÿ

j“0

wj

z´ σj
. (4.31)

Finally, they showed how to rewrite the barycentric representation (4.31) in the New-

ton basis of (4.1). They named this algorithm surrogate AAA.

Unfortunately, there is no guarantee that Rpmqpzq approximates Gpzq in Σ and thus

in Ω. Clearly, in the edge scenario where

Gpzq “

»

—

–

g11pzq 0

0 1

fi

ffi

fl

, u “ v “ e2,

surrogate AAA will fail at producing any reasonable result. Nevertheless we can set

it as a “preliminary step” in a two-phase approximation algorithm. The upcoming

sections are dedicated to the exploration of several possibilities.

Finally, we recall that our goal is returning a rational approximant Rpmqpzq such

that the relative error is less than a given threshold ε, as written in (4.2). However, as

we showed in Section 4.2.1, computing ‖G‖Σ can be difficult, therefore we settle for

a lower bound β. When the surrogate AAA is used, a good lower bound is readily

available. In fact, the surrogate function (4.30) can be seen as gpzq “ u˚rgpzq, where

rgpzq “ Gpzqv is evaluated for all z P Σ. Thus we define

rβ “ max
zPΣ

‖rgpzq‖2 ď ‖G‖
Σ
. (4.32)

4.3.1 Surrogate AAA with exact or relaxed search

In the previous paragraphs we have seen that the “original sin” of surrogate AAA

lies in only considering a one-dimensional projection of Gpzq, instead of it as a whole.

142 robust rational approximations of nonlinear eigenvalue problems

Therefore, the first refinement we considered was changing the support points drawn

from Σ. More precisely, assume that we have the rational approximant

Rpdqpzq “
d
ÿ

i“0

Gpσiqwi

z´ σi

O

d
ÿ

i“0

wi

z´ σi
(4.33)

obtained after d steps of the surrogate AAA algorithm. Then we modify the cycle as

follows. Instead of computing σd`1 as in (4.19), it is determined as

σk “ arg max
zPΣpk´1q

∥∥∥Gpzq ´ Rpk´1qpzq
∥∥∥

F
, k ą d, (4.34)

where Σpk´1q is defined in (4.17). The weights wi are computed as for the surrogate

AAA approximation. The procedure stops at step k “ m when

max
zPΣpmq

∥∥∥Gpzq ´ Rpmqpzq
∥∥∥

F
ď εβ (4.35)

holds, where β :“ maxtrβ, maxzPΣpmq ‖G‖u is the lower bound for ‖G‖
Σ

in (4.32). It

follows that this rational approximant Rpmqpzq satisfies (4.2). We named this approach

surrogate AAA with exact search on Σ.

Finding σk in (4.34) is expensive, because we have to compute the Frobenius norm

of a nˆ n matrix at M´ k points. We suggest two ways to reduce the complexity.

1. Since Gpzq is holomorphic in Ω, we can remove all the sampling points in the

interior part of Σ and only work on the boundary BΣ :“ ΣX BΩ, which we call

surrogate AAA with exact search on BΣ.

2. Instead of choosing σk as in (4.34), we shuffle the points in Σpkq and take the

first support point σk P Σpkq such that

∥∥∥Gpσkq ´ Rpk´1qpσkq

∥∥∥
F
ą εrβ. (4.36)

We refer to this approach as surrogate AAA with relaxed search. We point out

that the shuffle is necessary, because otherwise the approximation would have

4.3 a two-phase algorithm for black-box functions 143

Algorithm 4.3: Pseudocode for the surrogate AAA with exact search algo-
rithm.
Input: G, Σ, mmax, ε
Output: Rpmqpzq.

1 Draw random vectors u, v P Cn

2 Build surrogate function gpzq “ u˚Gpzqv
3 rp0qpzq Ð 0, np0qpzq Ð 0, dp0qpzq Ð 1
4 Σp0q Ð Σ, d Ð 1
5 while d ď mmax do
6 Compute σd “ arg maxzPΣpd´1q

∣∣gpzqdpd´1qpzq ´ npd´1qpzq
∣∣

7 Σpdq Ð Σpd´1qztσdu

8 Compute the SVD of matrix Apdq (4.21)
9 Retrieve the vector of weights w

10 Build rpdqpzq
11 d Ð d` 1
12 if

∥∥g´ rpd´1q
∥∥

Σ
ă ε‖g‖

Σ
or d “ mmax ` 1 then

13 continue

14 Build Rpd´1qpzq, m Ð d
15 while m ď mmax do
16 Compute σm “ arg maxzPΣpm´1q

∥∥Gpzq ´ Rpmqpzq
∥∥

F
17 Σpmq Ð Σpm´1qztσmu

18 Compute the SVD of matrix Apmq (4.21)
19 Retrieve the vector of weights w
20 Build Rpmqpzq
21 if

∥∥G´ Rpmq
∥∥

Σ ą ε‖G‖
Σ

or m “ mmax then
22 return Rpmqpzq

23 m Ð m` 1

a bias on the points that appear first in Σ. We call this approach surrogate AAA

with relaxed search.

In Algorithm 4.3, we summarise the exact search variant on the entire set Σ. The

only difference with the relaxed search lies at line 16, where we substitute the condi-

tion with (4.36). The numerical experiments in section 4.4 show that this refinement

works well when the tolerance ε is not too strict. However, when ε is really small,

computing the weights wi through the surrogate function prevents the procedure to

reach the desired accuracy.

144 robust rational approximations of nonlinear eigenvalue problems

4.3.2 NLEIGS with poles from surrogate AAA

In (4.23) we showed how the AAA algorithm can return the poles of the rational

approximant rpmqpzq. The NEP module inside the SLEPc library [CR19] builds a

surrogate AAA approximant of the scalar function f in (4.30), say rpdqpzq of degree d,

then retrieve its poles Ξ, and feed the condenser pΣ, Ξq to the NLEIGS algorithm 4.1

summarised in Section 4.2.1.

This method combines the advantages of AAA and NLEIGS: on one hand, we have

the convenience of the first algorithm, which only requires Σ as input; on the other,

we have the robustness and parameter control given by the latter. More precisely, we

mean that the set of poles Ξ can be preprocessed before being given as an input. For

instance, we might have to remove unwanted poles inside Ω, if the AAA algorithm

returns any. We called it NLEIGS with poles from surrogate AAA algorithm.

It may often occur that the number of poles ξ1, . . . , ξd is not sufficient for NLEIGS

to reach its stopping criterion (4.15), i.e., d is smaller than the optimal degree m of

the approximant Rpmqpzq. When this is the case, the SLEPc module adds extra points

at infinity, i.e., ξd`1 “ ¨ ¨ ¨ “ 8. We show that this approach is not ideal and fall back

to a polynomial approximation. In fact, define the nodal

qdpzq :“ pz´ ξ1q ¨ ¨ ¨ pz´ ξdq

and the denominator polynomial

sdpzq :“ pz´ σ0qpz´ σ1q ¨ ¨ ¨ pz´ σdq.

Then setting additional poles at infinity is equivalent to computing a polynomial

interpolant Ppzq of degree m´ d´ 1 to the scaled error function

Epzq :“ qdpzqpGpzq ´ Rpdqpzqq{sdpzq (4.37)

4.3 a two-phase algorithm for black-box functions 145

and then having

Rpmqpzq :“ Rpdqpzq ` sdpzqPpzq{qdpzq. (4.38)

We recall that a rational function rpzq “ ppzq{qdpzq of type pm, mq with a fixed denom-

inator is uniquely determined by m` 1 interpolation conditions rpσjq “ gj at distinct

points σj, with the caveat that rpσjq is well defined for every j. Now, the same holds

true in the matrix-valued case, where Rpzq “ Ppzq{qdpzq is the interpolant and Ppzq

is a matrix polynomial of degree m, because each entry is a scalar rational function

with the interpolation property.

At the end of the surrogate AAA step, we have Rpdqpzq “ Npzq{qdpzq, for a given

matrix polynomial Npzq; it interpolates Gpzq at the nodes σ0, . . . , σd by construction.

After m´ d Leja–Bagby steps with poles ξd`1 “ ¨ ¨ ¨ “ ξm “ 8 and nodes σd`1, . . . , σm,

we get a rational interpolant Rpmqpzq “ rNpzq{qdpzq, which satisfies the m` 1 condi-

tions at σ0, . . . , σm. In addition, it has the same denominator of (4.38), thus it must

coincide with it by the uniqueness of the interpolant.

The above paragraphs show that setting poles at infinity implies reverting to the

polynomial interpolation of (4.37). The convergence of this second step is governed

by the analyticity region of Epzq in the neighbourhood of Ω. We point out that the σj

are not poles of Epzq due to the interpolation conditions, and qdpzqRpdqpzq is a matrix

polynomial, therefore this region coincides with the analyticity region of Gpzq.

Falling back to the polynomial interpolation might cause a severe slowdown in the

convergence of the algorithm. At the same time, the surrogate phase only returns

d poles. Hence we propose to cyclically repeat these poles. More precisely, as soon

as the number k of Leja–Bagby points generated by the algorithm exceeds d, the

expression for the poles ξk in (4.10) becomes

ξk “ ξ1`pk´1 mod dq. (4.39)

We refer to this algorithm with the name d-cyclic Leja–Bagby procedure. Note that the

surrogate AAA retrieves the poles ξ j thanks to a linear eigenvalue problem, therefore

146 robust rational approximations of nonlinear eigenvalue problems

Algorithm 4.4: Pseudocode for NLEIGS with poles from surrogate AAA
algorithm. The poles Ξ are repeated cyclically if needed.
Input: G, Σ, mmax, ε
Output: Rpzq.

1 Draw random vectors u, v P Cn

2 Build surrogate function gpzq “ u˚Gpzqv
3 rp0qpzq Ð 0, np0qpzq Ð 0, dp0qpzq Ð 1
4 Σp0q Ð Σ, d Ð 1
5 while d ď mmax do
6 Compute σd “ arg maxzPΣpd´1q

∣∣gpzqdpd´1qpzq ´ npd´1qpzq
∣∣

7 Σpdq Ð Σpd´1qztσdu

8 Compute the SVD of matrix Apdq (4.21)
9 Retrieve the vector of weights w

10 Build rpdqpzq
11 d Ð d` 1
12 if

∥∥g´ rpd´1q
∥∥

Σ
ă ε‖g‖

Σ
or d “ mmax ` 1 then

13 continue

14 Compute the poles rΞ from (4.23)
15 Ξ Ð sorted rΞ with (4.10)
16 return NLEIGS(G, Σ, Ξ, mmax, ε) (Algorithm 4.1)

they do not have the natural order that the Leja–Bagby sampling would have gotten

if it were used from the beginning. Therefore, before calling the d-cyclic Leja–Bagby

procedure, we need to reorder the poles. This can be done by defining once more

the nodal function s0pzq “ pz´ σ0q and take ξi as in (4.10). The ordering of the poles

ensures that the basis functions bkpzq defined in Equation (4.12) vary only mildly

on Σ, which avoids numerical under- or overflow. We summarise this procedure in

Algorithm 4.4.

In Example 4.3 we show how the cyclic choice outperforms the implementation in

the SLEPc module on a scalar example first appeared in [Güt+14].

Example 4.3. Consider the scalar function gpzq “ 0.2
?

z ´ 0.6 sinp2zq. The target set is

Ω “ r10´2, 4s, while Σ is formed by 103 logarithmically spaced points. Figure 4.2 shows four

convergence plots corresponding to the approaches analysed earlier:

‚ AAA (solid blue): This plot shows the error
∥∥gpzq ´ rpmqpzq

∥∥
Σ

of the interpolant

obtained by AAA. An approximant of degree 19 achieves an error of 10´14, although

there are some spikes in the curve and a slight stagnation around 10´13.

4.3 a two-phase algorithm for black-box functions 147

‚ Leja–Bagby (dashed red with square markers): This plot corresponds to the NLEIGS

approach of section 4.2.1, which computes the Leja–Bagby points on Σ and on the singu-

larity set Ξ “ s´8, 0s. As explained in the above-mentioned section, the convergence

rate is given in terms of the capacity of the condenser cappΣ, Ξq « 0.569

lim supmÑ8

∥∥∥gpzq ´ rpmqpzq
∥∥∥

Σ
ď expp´1{ cappΣ, Ξqq.

‚ Leja–Bagby(10) + poles at infinity (dotted yellow with circles): This is the ap-

proach used in [CR19]. In this example we fixed 10 iterations for the initial phase

with the AAA algorithm, followed by a Leja–Bagby procedure with the d poles thus

obtained, and then using poles at infinity for the remaining process. We see a drop

in the error for degree 10, similar to the level of the AAA approximant, but then a

really slow decay in the refinement phase when m ą 10. This approach is equivalent

to using a polynomial interpolation in the refinement phase. As explained in [Güt+14],

we can expect a geometric convergence rate of only p
?

k´ 1q{p
?

κ ` 1q « 0.905, with

κ “ maxpΣq{minpΣq.

‚ 10-cyclic Leja–Bagby: This is our proposed recommendation. Run an initial phase of

AAA to get d “ 10 poles, and then repeat them cyclically in Leja–Bagby order. In this

way we combine the convenience of not having to specify the singularity set with the

robust convergence of the Leja–Bagby approach.

4.3.3 Surrogate AAA with cyclic Leja–Bagby refinement

The careful reader may have noted a subtle, but important flaw in both the methods

explained in the previous section, whether the added poles lie at infinity or are re-

peated cyclically. We wrote that there are circumstances when surrogate AAA does

not return a sufficiently precise approximation Rpdqpzq , therefore we performed a

refinement based on the NLEIGS algorithm with the data retrieved from the first

phase. However, we are discarding the approximant Rpdqpzq even when it already

148 robust rational approximations of nonlinear eigenvalue problems

0 10 20 30 40 50 60 70
degree m

10-15

10-10

10-5

100
un

ifo
rm

 e
rr

or

AAA
Leja-Bagby
LB(10)+infinite
10-cylic LB

Figure 4.2: Demonstration of four different choices for the rational approximation of a scalar
function, including our proposed d-cyclic Leja–Bagby procedure (d “ 10).

satisfies (4.2) or is really close to. Hence, instead of constructing Rpmqpzq from scratch

with NLEIGS and the poles retrieved from the surrogate step, it is better to simply

add additional terms to Rpdqpzq and obtain an approximant of the form

Rpmqpzq “
d
ÿ

i“0

Gpσiqwi

z´ σi

O

d
ÿ

i“0

wi

z´ σi
` bd`1pzqRd`1 ` ¨ ¨ ¨ ` bmpzqRm (4.40)

We named this approach surrogate AAA with cyclic Leja–Bagby refinement: its advan-

tage with respect to Algorithm 4.4 is that we do not waste time in the Leja–Bagby

refinement if the initial approximation is already good enough. We write the steps of

its implementation here below and in Algorithm 4.5.

1. Run the surrogate AAA algorithm to compute the d ` 1 interpolation points

σi and weights wi for i “ 0, . . . , d. This returns a rational approximant Rpdqpzq

of type pd, dq, where the degree d is determined by the AAA stopping crite-

rion (4.22).

2. Compute the poles thanks to the linear problem (4.23) and reorder them thanks

to (4.10) as explained in section 4.3.2, getting ξ1, . . . , ξd.

4.3 a two-phase algorithm for black-box functions 149

Algorithm 4.5: surrogate AAA with cyclic Leja–Bagby refinement.
Input: G, Σ, mmax, ε
Output: Rpmqpzq.

1 Draw random vectors u, v P Cn

2 Build surrogate function gpzq “ u˚Gpzqv
3 rp0qpzq Ð 0, np0qpzq Ð 0, dp0qpzq Ð 1
4 Σp0q Ð Σ, d Ð 1
5 while d ď mmax do
6 Compute σd “ arg maxzPΣpd´1q

∣∣gpzqdpd´1qpzq ´ npd´1qpzq
∣∣

7 Σpdq Ð Σpd´1qztσdu

8 Compute the SVD of matrix Apdq (4.21)
9 Retrieve the vector of weights w

10 Build rpdqpzq
11 d Ð d` 1
12 if

∥∥g´ rpd´1q
∥∥

Σ
ă ε‖g‖

Σ
or d “ mmax ` 1 then

13 continue

14 Compute the poles rΞ from (4.23)
15 Ξ Ð sort rΞ with (4.10) and compute βd
16 m Ð d
17 while ‖Rm‖F ą ε max0ďkďm ‖Gpσkq‖F{3, and m ă mmax do
18 σm`1 Ð arg maxzPΣ |smpzq|
19 ξm`1 Ð ξ1`pk´1 mod dq

20 bm`1pzq Ð bmpzqpz´ σmq{p1´ z{ξm`1q

21 βm`1pzq Ð maxzPΣ |bmpzq|
22 bm`1pzq Ð bm`1pzq{βm`1
23 Build Rm`1 with (4.13)
24 m Ð m` 1

25 return Rpmqpzq

3. Apply the d-cyclic Leja–Bagby algorithm: for each new pair of node and pole

pσd`i, ξd`iq, where σd`i is computed as in (4.10) and ξd`i as in (4.39) build

Rd`i “
Gpσd`iq ´ Rpd`i´1qpσd`iq

bd`ipσd`iq
, bd`ipzq “

d`i
ź

j“1

z´ σj´1

β jp1´ z{ξ jq
, (4.41)

with β j chosen such that ‖bd`i‖Σ
“ maxzPΣ |bd`ipzq| “ 1.

If we are interested in the eigenvalues of Rpmqpzq, then its expression in (4.40) is not

useful until we find a suitable linearization. Elsworth and Güttel showed that you

can convert a rational approximant from the barycentric coordinates to the Newton

basis [EG19]. Hence, a possibility is converting the first part of (4.40) and then use

150 robust rational approximations of nonlinear eigenvalue problems

the linearization proposed in [Güt+14]. Here we suggest a mixed-form linearization,

which avoids the conversion. First, rewrite Rpmqpzq as

Rpmqpzq “
d
ÿ

i“0

wiGpziqbipzq ` bd`1pzqRd`1 ` ¨ ¨ ¨ ` bmpzqRm,

with bd`ipzq, i “ 1, . . . m´ d, as in (4.13) and

bipzq “
1

z´ σi

O

d
ÿ

i“0

wi

z´ σi
, i “ 1, . . . , d.

It follows that

bdpzq “
1

z´ σd

O

d
ÿ

i“0

wi

z´ σi
“

d´1
ź

j“0

pz´ σjq

O

d
ÿ

i“0

wi
ź

j‰i

pz´ σjq .

The right-hand side has the same denominator of Rpdqpzq in (4.33), up to a scalar

multiplier. In addition, the numerator is the same one of the Newton basis function

obtained after d iterations of Newton interpolation, as in (4.12). Hence bdpzq is a scalar

multiple of the basis function obtained when using the Newton interpolation from

the beginning. Therefore there is a recursion for all the basis functions b0pzq, . . . , bmpzq,

where the first d correspond to the barycentric basis, while the last m ´ d to the

Newton one:

b0pzq “
1

z´ σ0

O

d
ÿ

i“0

wi

z´ σi
,

pz´ σi`1qbi`1pzq “ pz´ σiqbipzq, i “ 0, . . . , d´ 1,

βd`i`1p1´ z{ξd`i`1qbd`i`1pzq “ pz´ σd`iqbd`ipzq, i “ 0, . . . , m´ d´ 1.

We summarise the result in the following theorem.

4.4 robustness of the rational approximants 151

Theorem 4.2. Given the rational matrix-valued function Rpmqpzq in (4.40), the rational

eigenvalue problem Rpmqpλqv “ 0 is equivalent to Ax “ λBx, where

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

w0Fpσ0q w1Fpσ1q ¨ ¨ ¨ wdFpσdq Rd`1 ¨ ¨ ¨ Rm´2 Rm´1 ´
σm´1

βm
Rm

σ0 I ´σ1 I
.

σd´1 I ´σd I
σd

βd`1
I I

.
.

σm´2
βm´1

I I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

w0 Fpσ0q

ξm

w1 Fpσ1q

ξm
¨ ¨ ¨

wd Fpσdq

ξm

Rd`1
ξm

¨ ¨ ¨
Rm´2

ξm

Rm´1
ξm

´
Rm
βm

I ´I
.

I ´I

I
βd`1

I
ξd`1

.
.

I
βm´1

I
ξm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

while x “ bpλq b v with bpλq “ rb0pλq b1pλq . . . , bm´1pλqs
T.

4.4 robustness of the rational approximants

In this section we test how robust and stable are the algorithms described in sec-

tions 4.2 and 4.3. In order to have a broader range of problems, we also use matrix-

valued functions that are not holomorphic in the target set and we see how the algo-

rithms perform even outside their original scope. Hence, to underline this aspect, in

this section we use the notation Fpzq. We focus on the following algorithms:

1. If the matrix-valued function Fpzq is given in split form:

152 robust rational approximations of nonlinear eigenvalue problems

‚ the set-valued AAA algorithm of section 4.2.3 [Lie+18];

‚ the weighted AAA algorithm, which is the modification of the set-valued

AAA with the new stopping criterion (4.27).

2. If the matrix-valued function Fpzq is given in black box form:

‚ the surrogate AAA of section 4.3.2, as proposed by Elsworth and Güttel [EG19];

‚ the surrogate AAA with exact search on BΣ of section 4.3.1;

‚ the NLEIGS with poles from surrogate AAA described in [CR19] of section 4.3.2,

where we repeat the poles cyclically as in (4.39) and the stopping criterion

is (4.15);

‚ the surrogate AAA with cyclic Leja–Bagby refinement algorithm of section 4.3.3.

We are not including the Cauchy approximation of section 4.2.4 because we did not

find a way to automatically choose an optimal contour for the Cauchy formula and

because preliminary experiments showed that the degree of the approximant Rpmqpzq

returned by this method is much larger than the AAA one, as seen in Example 4.2.

In order to benchmark these algorithms we used the nonpolynomial problems from

NLEVP 4.1, and we listed them in Table 4.3. We selected them to represent a variety

of matrix-valued functions with different sizes and properties.

Experiment 1

In the first set of experiments we discretise the target sets Ω (either open disks or half

open disks) as follows. We generate 300 uniformly distributed random points in Ω

plus another 100 uniformly spaced points on BΩ, for a total of 400 points for the set

Σ. Given a tolerance ε and a problem in Table 4.3, we test if an algorithm fails to con-

struct an approximant Rpmq with accuracy
∥∥G´ Rpmq

∥∥
Σ
{‖G‖

Σ
below a given tolerance

ε or if it does not converge within the maximum number of steps, which we set to 60.

We also compare the degrees of the approximants. We report the results in Table 4.4

for the values ε “ 10´7, Tables 4.5 and 4.6 for ε “ 10´10, and Table 4.7 for ε “ 10´13.

4.4 robustness of the rational approximants 153

Table 4.3: List of benchmark examples from the NLEVP collection, their type and size, the
target set Ω (disc or half disc), and the number of eigenvalues in Ω. For the
canyon_particle problem, γ “ ´9ˆ 10´2 ` 10´6i. The fiber and sandwich_beam
problems are holomorphic on their respective target set if we remove the negative
real numbers. Similarly, schrodinger_abc is holomorphic on Ωzr´15,´10r.

Name type size center radius half disc #evs holomorphic

bent_beam nonlinear 6 60 30 yes 2 yes
buckling_plate nonlinear 3 11 9 no 12 no
canyon_particle square root 55 γ 0.1 yes 15 yes
clamped_beam_1d exponential 100 0 10 no 101 yes
distributed_delay1 nonlinear 3 0 2 no 2 yes
fiber nonlinear 2400 0 0.002 yes 1 no
gun square root 9956 62500 50000 yes 21 yes
hadeler exponential 200 -30 11.5 no 14 yes
loaded_string rational 100 362 358 no 9 yes
nep1 nonlinear 2 0 3 no 6 yes
nep2 nonlinear 3 0 2 no 4 yes
nep3 nonlinear 10 5i 2 no 14 yes
neuron_dde exponential 2 0 15 no 11 yes
pdde_symmetric exponential 81 0 2 no 59 yes
photonic_crystal nonlinear 288 11 9 no 28 yes
pillbox_small square root 20 0.08 0.05 yes 1 yes
railtrack2_rep rational 1410 3 2 no 53 yes
railtrack_rep rational 1005 -3 2 no 2 yes
sandwich_beam nonlinear 168 7000 6900 no 7 yes
schrodinger_abc nonlinear 10 -10 5 no 6 no
square_root square root 20 10+50i 50 no 3 yes
time_delay exponential 3 0 15 no 8 yes
time_delay2 exponential 2 0 15 no 11 yes
time_delay3 exponential 10 2 3 no 38 yes

154 robust rational approximations of nonlinear eigenvalue problems

We report the results for the rational problems loaded_string, railtrack2_rep, and

railtrack_rep only in Table 4.4 since for these problems and any tolerance ε ď 10´5,

all the algorithms return (rightly) a degree 2 rational approximant with a relative

error of about 10´15. The tables show that for our test problems and tolerances

ε P t10´7, 10´10, 10´13u:

1. The set-valued and weighted AAA algorithms always return an approximant

Rpmqpzq with relative error below the required accuracy. For problems that are

holomorphic on the target sets, surrogate AAA with cyclic Leja–Bagby refine-

ment and NLEIGS with poles from surrogate AAA also return an approximant

Rpmqpzq with relative error below the required accuracy.

2. The set-valued and weighted AAA algorithms typically return the approxi-

mants Rpmqpzq of lowest degrees. The degrees of the set-valued AAA and

weighted AAA approximants are more or less the same: they are usually ei-

ther equal or they differ by one. There are exceptions though such as with the

sandwich_beam and time_delay3 problems, for which weighted AAA returns

a lower degree approximant. These two problems have the particularity that,

when viewed in split form, the norms of their coefficient matrices have large

variations. The latter is exploited by the weighted AAA algorithm, but ignored

by the set-valued AAA algorithm.

3. The surrogate AAA approach often fails to return a rational approximant with

relative accuracy below ε. There is no surprise here since there is no guarantee

of any accuracy with the stopping criterion used by this algorithm.

4. As expected by our analysis, surrogate AAA with exact search either returns a

rational approximant with relative error below the tolerance or fails to converge.

There is an exception though for the fiber problem and tolerance ε “ 10´7

(see Table 4.4), where the constructed rational approximant Rpmq is such that∥∥F´ Rpmq
∥∥Σ{‖F‖

Σ
“ 1.6ˆ 10´7 ą ε, and hence marked as failed in the table.

The reason why the relative error is slightly above the tolerance is that the

exact search is done on BΣ “ Σ X BΩ and since Fpzq is not holomorphic on

4.4 robustness of the rational approximants 155

Ω, ‖¨‖
Σ
ě ‖¨‖

BΣ
so the stopping criterion (4.35) does not guarantee that (4.2)

holds. However, if we run the surrogate AAA with exact search on Σ in place

of BΣ, then we get a rational approximant Rpmqpzq with relative error 4ˆ 10´8,

i.e., below the tolerance ε “ 10´7.

Furthermore, Tables 4.4, 4.6 and 4.7 show that for a few problems, the algorithm

reaches the maximum number of steps, i.e., 60 (indicated by red stars) while

returning approximants of degree less than 60. This is due to the removal of

the Froissart doublets (see Remark 4.3).

5. NLEIGS with poles from surrogate AAA repeated in a cyclic way has a be-

haviour similar to that of surrogate AAA with cyclic Leja–Bagby refinement:

they typically return rational approximants of the same degree, and they only

fail for ε “ 10´13 for the buckling_plate, since it is not holomorphic on the

target set and the theoretical results do not hold.

Experiment 2

In this second experiment we visualise where the algorithms place the interpolation

nodes σi and the poles ξi in and around the target set Ω. We are doing this on a

subset of the problems in Table 4.3 and we only display the nodes and poles for the

weighted AAA and surrogate AAA with cyclic Leja–Bagby refinement (Figure 4.3).

For the latter, we distinguish the nodes chosen by the surrogate AAA phase from

the nodes chosen by the refinement phase and we leave out the poles that are too

far from Ω. The discretization of Ω consists of 300 points randomly generated inside

Ω plus another 50 points uniformly distributed on the contour BΩ. The maximum

number of steps is set to 60 and the tolerance to ε “ 10´10.

The results are already anticipated by the theory. For the holomorphic problems,

the nodes lie on the contour BΩ, while the poles form a pattern outside Ω. For in-

stance, they are aligned towards the branch points for the gun problem, which contain

two square roots. For the nep1 problem, both algorithms use the same interpolation

156 robust rational approximations of nonlinear eigenvalue problems

Table 4.4: Degree of Rpmqpzq for ε “ 10´7 and 24 problems. The lowest degrees are high-
lighted in bold/blue, including any within one of the lowest. We excluded those
corresponding to a failed required accuracy and we provided them within square
brackets. A ’‹’ indicates that the algorithm reached the maximum number of
steps.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 7 7 [4] 8 11 10

buckling_plate 23 23 [21] 26 42 42

canyon_particle 13 12 [7] 17 20 20

clamped_beam_1d 11 11 [10] 16 23 24

distributed_delay1 6 6 [6] 9 11 10

fiber 13 10 [6] [16] 22 21

gun 9 9 [5] [60]‹
15 15

hadeler 2 4 2 6 15 5

loaded_string 2 2 2 2 2 2
nep1 21 20 20 20 20 20
nep2 13 13 [9] [13]‹

20 19

nep3 8 8 [7] 10 16 16

neuron_dde 13 13 [12] 13 14 14
pdde_symmetric 8 8 [7] 11 16 15

photonic_crystal 5 5 4 5 9 9

pillbox_small 7 6 [4] 9 11 11

railtrack2_rep 2 2 2 2 2 2
railtrack_rep 2 2 2 2 2 2
sandwich_beam 10 6 3 8 11 10

schrodinger_abc 11 11 [10] 16 20 20

square_root 9 10 9 10 21 14

time_delay 12 13 12 12 13 12
time_delay2 12 13 12 12 13 12
time_delay3 16 13 12 12 13 12

of fails 0 0 13 3 0 0

of lowest degree 21 22 11 11 8 8

4.4 robustness of the rational approximants 157

Table 4.5: Accuracy
∥∥∥F´ Rpmq

∥∥∥
Σ
{‖F‖

Σ
for ε “ 10´10 and 21 problems. Any relative error

above ε is highlighted in red and considered as a fail. A ’‹’ indicates that the
algorithm reached the maximum number of steps, i.e., 60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 4e-11 7e-12 2e-06 8e-07
‹

1e-12 2e-11

buckling_plate 3e-11 2e-11 1e-07 2e-06
‹

3e-11 5e-11

canyon_particle 4e-12 1e-11 2e-06 7e-08
‹

2e-11 1e-11

clamped_beam_1d 1e-11 1e-11 1e-06 4e-09
‹

3e-13 5e-13

distributed_delay1 1e-12 5e-13 3e-06 1e-08
‹

2e-12 2e-12

fiber 4e-13 3e-11 2e-06 1e-06
‹

1e-11 2e-11

gun 4e-13 3e-13 6e-07 2e-07
‹

1e-12 1e-12

hadeler 2e-11 5e-12 4e-10 2e-11 2e-12 4e-12

nep1 1e-11 9e-12 9e-12 9e-12 3e-11 9e-12

nep2 3e-12 3e-12 2e-05 5e-06
‹

1e-11 4e-12

nep3 5e-11 4e-12 2e-07 2e-09
‹

9e-12 1e-11

neuron_dde 6e-11 3e-11 8e-09 7e-11 8e-12 2e-11

pdde_symmetric 4e-11 3e-13 2e-07 2e-09
‹

2e-12 4e-12

photonic_crystal 6e-16 7e-16 1e-15 1e-15 2e-15 1e-15

pillbox_small 3e-13 8e-12 3e-07 1e-09
‹

1e-11 7e-12

sandwich_beam 5e-16 6e-12 6.8e-9 5.2e-09
‹

3.3e-12 9.6e-13

schrodinger_abc 2e-11 5e-12 1e-07 2e-08
‹

5e-12 7e-12

square_root 6e-12 4e-12 2e-12 2e-12 3e-12 2e-12

time_delay 3e-11 7e-12 7e-11 1e-11 8e-12 1e-10

time_delay2 3e-11 2e-12 2e-09 4e-11 8e-12 9e-11

time_delay3 6e-12 4e-12 4e-10 4e-11 7e-12 2e-11

of fails 0 0 17 13 0 0

158 robust rational approximations of nonlinear eigenvalue problems

Table 4.6: Degree of Rpmqpzq for ε “ 10´10 and 21 problems. The lowest degrees are high-
lighted in bold/blue including any within one of the lowest and excluding those
corresponding to a failed required accuracy that are provided within square brack-
ets). A ’‹’ indicates that the algorithm reached the maximum number of steps, i.e.,
60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 9 9 [6] [23]‹
13 12

buckling_plate 26 27 [24] [35]‹
47 48

canyon_particle 18 17 [11] [17]‹
29 30

clamped_beam_1d 13 13 [12] [16]‹
29 29

distributed_delay1 8 8 [7] [9]‹
15 15

fiber 18 15 [11] [19]‹
30 30

gun 12 12 [8] [60]‹
21 21

hadeler 7 8 [6] 23 21 19

nep1 25 24 24 24 24 24
nep2 16 16 [11] [14]‹

22 22

nep3 10 10 [9] [11]‹
17 17

neuron_dde 16 15 [14] 18 31 31

pdde_symmetric 9 10 [9] [11]‹
18 18

photonic_crystal 7 6 6 6 6 6
pillbox_small 10 9 [7] [11]‹

16 16

sandwich_beam 14 8 [7] [60]‹
18 20

schrodinger_abc 13 13 [12] [60]‹
21 21

square_root 13 13 13 13 13 13
time_delay 15 15 14 15 31 20

time_delay2 15 16 [14] 17 31 24

time_delay3 20 16 [14] 16 31 31

of fails 0 0 17 13 0 0

of lowest degree 18 21 4 5 3 3

4.4 robustness of the rational approximants 159

Table 4.7: Degree of Rpmqpzq for ε “ 10´13 and 21 problems. The lowest degrees are high-
lighted in bold/blue including any within one of the lowest and excluding those
corresponding to a failed required accuracy that are provided within square brack-
ets). A ’‹’ indicates that the algorithm reached the maximum number of steps, i.e.,
60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 12 11 [7] [23]‹
16 16

buckling_plate 30 30 [26] [35]‹ [60]‹ [60]‹

canyon_particle 23 22 [16] [18]‹
38 39

clamped_beam_1d 15 15 [14] [16]‹
32 32

distributed_delay1 9 9 [8] [9]‹
16 16

fiber 22 20 [16] [19]‹
42 38

gun 15 15 [11] [60]‹
27 27

hadeler 10 11 [9] [59]‹
23 23

nep1 29 28 28 28 28 28
nep2 18 19 [12] [14]‹

24 24

nep3 12 12 [10] [11]‹
22 22

neuron_dde 19 18 [17] [60]‹
30 32

pdde_symmetric 11 11 [11] [11]‹
21 20

photonic_crystal 7 6 6 6 6 6
pillbox_small 13 12 [9] [11]‹

20 22

sandwich_beam 17 12 [11] [60]‹
22 22

schrodinger_abc 15 15 [13] [60]‹
26 26

square_root 16 16 15 16 33 15
time_delay 18 18 [17] 23 24 22

time_delay2 17 18 [17] [60]‹
28 29

time_delay3 23 19 [17] [60]‹
27 24

of fails 0 0 18 17 1 1

of lowest degree 18 21 3 3 2 3

160 robust rational approximations of nonlinear eigenvalue problems

-10 0 10 20 30
-10

-5

0

5

10

-5 0 5 10

10 4

-5

0

5
10 4

-5 0 5
-5

0

5

-15 -10 -5 0 5 10

-20

-10

0

10

20

Figure 4.3: The set Σ, the interpolation nodes σi and the poles ξi nearest to Σ for a subset of
the problems in Table 4.3.

nodes and poles. This happens because there is only one function to approximate, as

one can see from the its split form in Example 4.1. Interestingly, one of the nodes lies

inside Ω despite the problem being holomorphic. Finally, the poles and the nodes

of buckling_plate do not follow the same pattern, because this problem is not holo-

morphic in the chosen region.

4.5 comparison with the contour solver algorithm 161

4.5 comparison with the contour solver algo-

rithm

In Chapter 2 we generalised contour algorithms to solve meromorphic problems on

a target set Ω. In Chapter 3 we showed how to choose the many parameters that this

kind of algorithms needs and how to automatically refine the eigenpairs in the case

the core of the algorithm does not return satisfactory results. Finally, in Chapter 4

we proposed robust ways to approximate nonlinear functions with rational ones with

the idea of solving the latter problems through a linearization. The goal of this last

set of numerical experiments is wrapping up everything we discussed and compare

the results of these two methods.

We are aware the comparison is not the fairest possible. As we mentioned more

than once, algorithms based on rational approximations thrive with large, sparse

problems, while for contour algorithms we focused on smaller, but dense matrices.

In addition, one has to analyse the data with a grain of salt, even more the one

concerning the timings. For instance, the contour solver does not exploit paralleliza-

tion anywhere, while the rational approximation algorithms use eig or eigs as final

step. Nevertheless, we believe this set of experiments give us good insights on the

strengths and weaknesses of the two approaches.

The specific algorithms we compare are:

‚ the weighted AAA (Section 4.2.3);

‚ the surrogate AAA with cyclic Leja–Bagby refinement (Section 4.3.3);

‚ the Hankel interpretation of the contour solver (Section 2.4.1);

‚ the Loewner interpretation of the contour solver (Section 2.4.2);

‚ the Hankel interpretation of the contour solver with the automatic refinement.

More specifically, if the backward error of some eigenpairs is larger than the

given threshold, these eigenpairs are then refined with either the Newton itera-

162 robust rational approximations of nonlinear eigenvalue problems

tion or the subspace update. These refinements and the choice of one over the

other are explained in more details in Section 3.5.

First, note that we only compare the weighted AAA and the surrogate AAA with

cyclic Leja–Bagby refinement because they have already performed the best among

their competitors, i.e., rational approximation algorithms. Furthermore, we point out

that weighted AAA is the only one that exploits the split form of the matrix-valued

functions. Let us now describe the parameters used. In the rational approximation

algorithms, we drew 300 uniformly random points inside Ω and 50 uniformly dis-

tributed on BΩ. The error of the approximation was set to 10´7 and we computed the

eigenvalues thanks to built-in Matlab functions eig or eigs. The problems where we

have called the latter are highlighted in Table 4.8. In these cases, we asked to compute

all the eigenvalues and the shift σ was given by the center of Ω. We then removed

all the eigenvalues that were outside Ω and all the eigenvalues whose backward er-

ror was larger than 10´3. Concerning the contour solver algorithms, the number of

trapezoidal points N for disk of radius ρ is given by the formula

maxtr2p5`log10pρqqs, 4u

We found this heuristic from preliminary experiments and it usually works suffi-

ciently well, even though the theory warns us against it (see Section 3.4). For the

Loewner interpretation, for a target set Ω “ Dpγ, ρq, the left and right interpolation

points σi lie intervowen on a semicircle with center γ and radius ρ1 that satisfies (3.19),

i.e.,

|ρ1 ´ γ| ă ρµ´1{N ,

where µ « 10´16 is the machine precision. All the other parameters are chosen at

runtime by the algorithm. Finally, the careful reader would point out that the back-

ward error of the eigenpairs returned by the algorithms is not exactly the same. In

fact, while the numerator in ηFpλ, vq is always fixed, i.e., ‖Fpλqv‖2, the denominator

changes slightly, since it is an approximation of ‖F‖
Ω

. Nevertheless, in order to be

4.5 comparison with the contour solver algorithm 163

as precise as possible, in this section we compute the backward error as explained

in [GT17, Section 2]:

ηFpλ, vq “
‖Fpλqv‖2

‖v‖2
řs

j“1

∥∥Aj
∥∥

F

∣∣ f jpλq
∣∣ .

Table 4.8 does not include the problems fiber, gun and sandwich_beam, because the

rational approximation algorithms were not able to return the eigenpairs in a reason-

able amount of time.

The results of Table 4.8 are also available as a plot in Figure 4.4. By only comparing

the number of returned eigenvalues, weighted AAA is the best performing algorithm,

with only a single problem (time_delay3) where it fails to return the correct number

of eigenvalues. On the opposite side we have the surrogate AAA and the contour

Loewner, while in the middle lie the contour Hankel one and its refined version.

The difference in the performances between weighted and surrogate stands in the

larger degree of the approximation Rpmqpzq that (usually) the surrogate algorithm

requires. On the other hand, the Loewner interpretation usually performs worse than

its original counterpart due to the location of the sampling poles. It is reasonable

to assume that for specific situations one may find sampling points such that the

returned eigenvalues have a smaller backward error. However, trying to automate

this in a general case seems far too difficult for our current knowledge.

Looking at the problems where the contour Hankel algorithm (and its refinement)

“fail” is far more interesting. First, we have schrodinger_abc and pillbox_small.

This is expected, since these two problems contain square roots and thus cannot be

meromorphic in a disk that contains the real line. Then there is pillbox_small: it has

an eigenvalue just outside the contour, hence the algorithm computes a numerical

rank equal to 29. This would not have happened with just some more quadrature

164 robust rational approximations of nonlinear eigenvalue problems

points. Finally, we have buckling_plate, nep1, and time_delay. These are the most

interesting ones. They are identified by the functions

F1pzq “

»

—

—

—

—

–

zp1´2z cot 2zq
tan z´z ` 10 zp2z´sin 2zq

sin 2zptan z´zq 2
zp2z´sin 2zq

sin 2zptan z´zq
zp1´2z cot 2zq

tan z´z ` 4 2

2 2 8

fi

ffi

ffi

ffi

ffi

fl

, F2pzq “

»

—

–

eiz2
1

1 1

fi

ffi

fl

,

F3pzq “

»

—

—

—

—

–

´z 1 0

0 ´z 1

´pa3 ` b3e´zq ´pa2 ` b2e´zq ´pz` a1 ` b1e´zq

fi

ffi

ffi

ffi

ffi

fl

.

As explained in Section 2.4.1 and 2.4.3 the contour solver algorithm has two “silent”

hypotheses. For sake of simplicity, we remind them only in the holomorphic case. If

the number of eigenvalues, say s, is less than the size of the problem, say n, then one

assumes that the eigenvectors are independent (see (2.35)); otherwise, if s ą n, then

we know we can choose a number of moments m and a matrix P (usually the identity)

such that rankpB0q “ s (see (2.40)). The silent hypothesis here is assuming that (2.40)

is satisfied for m ą sn´1. This is not true for the three problems above. At runtime

the algorithm correctly identifies s2 “ 6, s3 “ 8 for the holomorphic problems, and

therefore chooses m2 “ 4, and m2 “ 3. For buckling_plate, the estimation of the

number of eigenvalues (minus poles) is 1, but it keeps going because the matrix B0 is

not rank deficient and stops with m1 “ 2 and P “ I. As expected, the final B0 is rank

deficient in all three cases, hence the algorithm does not update the parameters and

proceeds with the eigenvalue computation. Its rank is indeed strictly less than si (in

the holomorphic cases), and thus one may think that we could add further moments

until it is equal to si. Unfortunately, this scenario is indistinguishable from the one

where we overestimate the number of eigenvalues in Ω, hence this solution is not

practical. The minimum values of mi which return the correct number of eigenvalues

are m1 “ 7, m2 “ 6, and m3 “ 6, respectively. In those cases, the backward error has

order equal to the machine precision.

4.5 comparison with the contour solver algorithm 165

Fi
gu

re
4.

4:
Th

e
ba

ck
w

ar
d

er
ro

r
fo

r
al

lt
he

al
go

ri
th

m
s

an
d

th
e

pr
ob

le
m

s
in

Ta
bl

e
4

.8
.

166 robust rational approximations of nonlinear eigenvalue problems

T
able

4.8:
N

um
ber

of
eigenvalues

retrieved
by

the
algorithm

s,w
ith

m
axim

um
and

m
inim

um
backw

ard
error.

In
purple

w
e

highlighted
the

problem
s

w
here

the
rational

approxim
ant

algorithm
s

used
e
i
g
s

as
eigensolver.

In
red

w
e

highlighted
the

entries
w

here
the

incorrect
num

ber
of

eigenvalues
is

returned.See
also

Figure
4.

4.

Problem
w

eighted
A

A
A

Surrogate
A

A
A

C
ontour

Solver
C

ontour
Loew

ner
C

ontour
R

efined
#

Evs
m

ax
m

in
#

Evs
m

ax
m

in
#

Evs
m

ax
m

in
#

Evs
m

ax
m

in
#

Evs
m

ax
m

in

b
e
n
t
_
b
e
a
m

(
2
)

2
2e-

1
0

7e-
1

0
2

3e-
0

5
2e-

0
4

2
3e-

1
6

4e-
1

6
2

2e-
1

5
4e-

1
5

2
7e-

1
7

7e-
1

6

b
u
c
k
l
i
n
g
_
p
l
a
t
e

(
1
2
)

1
2

5e-
1

2
5e-

0
8

1
2

1e-
0

6
4e-

0
5

4
1e-

0
1

2e-
0

1
9

2e-
0

2
6e-

0
1

4
7e-

1
6

3e-
1

3

c
a
n
y
o
n
_
p
a
r
t
i
c
l
e

(
1
5
)

1
5

1e-
1

4
8e-

0
9

0
Inf

Inf
1

5
1e-

1
3

4e-
0

6
2

0
3e-

0
7

7e-
0

1
1

5
8e-

1
7

4e-
1

1

c
l
a
m
p
e
d
_
b
e
a
m
_
1
d

(
1
0
1
)

1
0

1
6e-

1
2

7e-
1

0
1

0
1

2e-
0

5
5e-

0
5

1
0

1
7e-

0
5

3e-
0

2
1

0
2

6e-
0

5
4e-

0
1

1
0

1
8e-

2
0

3e-
0

7

d
i
s
t
r
i
b
u
t
e
d
_
d
e
l
a
y
1

(
2
)

2
8e-

1
0

1e-
0

9
2

4e-
0

6
4e-

0
6

2
4e-

1
3

2e-
1

2
2

2e-
1

2
3e-

1
2

2
2e-

1
2

3e-
1

2

h
a
d
e
l
e
r

(
1
4
)

1
4

2e-
1

1
4e-

1
0

1
4

3e-
0

8
2e-

0
7

1
4

1e-
1

1
4e-

1
0

1
4

3e-
1

1
2e-

0
9

1
4

9e-
1

6
1e-

1
0

l
o
a
d
e
d
_
s
t
r
i
n
g

(
9
)

9
1e-

1
4

5e-
1

4
3

6e-
0

4
4e-

0
3

9
4e-

1
6

1e-
1

3
9

1e-
1

5
2e-

1
1

9
5e-

1
6

1e-
1

3

n
e
p
1

(
6
)

6
2e-

1
0

8e-
1

0
1

3
9e-

0
4

2e-
0

3
2

4e-
1

8
4e-

1
8

5
2e-

0
5

1e-
0

3
2

3e-
1

8
3e-

1
8

n
e
p
2

(
4
)

4
2e-

1
1

3e-
0

9
4

8e-
0

7
6e-

0
5

4
1e-

0
9

8e-
0

7
4

3e-
0

8
1e-

0
5

4
8e-

1
8

4e-
0

3

n
e
p
3

(
1
4
)

1
4

1e-
0

9
5e-

0
9

1
4

5e-
0

6
5e-

0
5

1
4

1e-
1

0
8e-

1
0

1
4

5e-
0

9
7e-

0
7

1
4

3e-
1

6
8e-

1
5

n
e
u
r
o
n
_
d
d
e

(
1
1
)

1
1

2e-
1

0
1e-

0
9

1
1

8e-
0

9
1e-

0
7

1
1

2e-
1

3
1e-

1
2

8
2e-

0
6

8e-
0

6
1

1
2e-

1
3

1e-
1

2

p
d
d
e
_
s
y
m
m
e
t
r
i
c

(
5
9
)

5
9

2e-
1

1
3e-

1
0

5
9

5e-
0

6
2e-

0
5

5
9

9e-
0

8
1e-

0
6

5
9

3e-
0

7
3e-

0
4

5
9

5e-
1

7
1e-

1
3

p
h
o
t
o
n
i
c
_
c
r
y
s
t
a
l

(
2
8
)

2
8

1e-
1

1
2e-

1
0

2
8

1e-
0

9
7e-

0
8

2
9

8e-
0

9
3e-

0
3

3
2

4e-
0

8
5e-

0
3

2
9

1e-
1

6
1e-

0
4

p
i
l
l
b
o
x
_
s
m
a
l
l

(
1
)

1
1e-

0
8

1e-
0

8
0

Inf
Inf

8
8e-

0
2

4e-
0

1
7

7e-
0

2
3e-

0
1

8
5e-

1
7

7e-
1

3

r
a
i
l
t
r
a
c
k
2
_
r
e
p

(
5
3
)

5
3

1e-
1

1
7e-

1
0

2
1e-

0
2

2e-
0

2
5

3
2e-

0
6

5e-
0

6
5

6
1e-

0
5

2e-
0

2
5

3
1e-

1
6

3e-
1

6

r
a
i
l
t
r
a
c
k
_
r
e
p

(
2
)

2
8e-

0
7

4e-
0

6
1

8
2e-

0
4

8e-
0

3
2

6e-
1

1
3e-

1
0

2
5e-

1
1

5e-
1

1
2

4e-
1

1
1e-

1
0

s
c
h
r
o
d
i
n
g
e
r
_
a
b
c

(
6
)

6
3e-

1
1

2e-
0

9
6

1e-
0

6
3e-

0
6

4
2e-

0
8

3e-
0

5
5

4e-
0

8
1e-

0
6

4
7e-

2
1

7e-
2

0

s
q
u
a
r
e
_
r
o
o
t

(
3
)

3
4e-

1
0

2e-
0

9
3

1e-
0

8
5e-

0
8

3
8e-

1
0

1e-
0

8
3

1e-
1

3
4e-

1
1

3
2e-

1
6

2e-
1

5

t
i
m
e
_
d
e
l
a
y

(
8
)

8
2e-

1
1

5e-
1

1
1

5
5e-

0
9

6e-
0

4
5

1e-
0

8
2e-

0
7

6
5e-

0
9

4e-
0

7
5

2e-
1

1
5e-

0
9

t
i
m
e
_
d
e
l
a
y
2

(
1
1
)

1
1

2e-
0

9
9e-

0
9

8
7e-

0
6

2e-
0

2
1

1
4e-

1
3

7e-
1

2
8

5e-
0

6
5e-

0
5

1
1

4e-
1

3
7e-

1
2

t
i
m
e
_
d
e
l
a
y
3

(
3
8
)

5
6

3e-
1

1
5e-

0
9

3
5

2e-
1

1
3e-

0
3

3
9

1e-
1

3
1e-

0
3

3
6

1e-
1

2
1e-

1
0

3
8

1e-
2

3
6e-

1
3

4.5 comparison with the contour solver algorithm 167

Table 4.9: The timings. In red we highlighted the entries larger than 10 seconds. See also
Figure 4.5 for a visual representation.

Problem weighted AAA Surrogate AAA Contour Solver Contour Loewner Contour Refined

bent_beam (2) 9.77e-02 6.90e-02 1.38e-01 1.19e-01 1.14e-01

buckling_plate (12) 3.93e-02 6.10e-02 6.03e-02 1.13e-01 5.82e-02

canyon_particle (15) 6.67e+00 3.00e+01 1.52e-01 3.37e-01 1.33e-01

clamped_beam_1d (101) 2.04e+01 1.52e+02 4.09e-01 1.09e+00 4.30e-01

distributed_delay1 (2) 3.52e-01 1.97e-01 1.85e-01 1.85e-01 1.88e-01

hadeler (14) 9.70e+00 8.21e+00 1.06e+00 1.67e+00 1.07e+00

loaded_string (9) 2.58e-01 1.14e-01 9.11e-01 1.08e+00 9.98e-01

nep1 (6) 3.13e-02 4.32e-02 3.86e-02 6.75e-02 3.64e-02

nep2 (4) 3.98e-02 3.45e-02 4.18e-02 6.14e-02 4.27e-02

nep3 (14) 4.23e-02 6.45e-02 7.28e-02 1.29e-01 5.59e-02

neuron_dde (11) 3.86e-02 4.53e-02 8.51e-02 1.44e-01 6.58e-02

pdde_symmetric (59) 3.41e+00 1.94e+01 6.93e-01 1.23e+00 7.16e-01

photonic_crystal (28) 5.70e+01 1.51e+02 5.86e+00 7.51e+00 6.42e+00

pillbox_small (1) 3.13e+01 8.27e+01 5.36e-02 7.23e-02 4.40e-02

railtrack2_rep (53) 1.18e+03 2.97e+02 7.14e+01 8.13e+01 6.57e+01

railtrack_rep (2) 3.71e+02 7.26e+01 1.52e+01 4.57e+01 4.05e+01

schrodinger_abc (6) 6.24e-02 1.11e-01 9.80e-02 1.17e-01 8.80e-02

square_root (3) 9.30e-02 1.21e-01 2.20e-01 3.25e-01 2.04e-01

time_delay (8) 1.80e-02 1.44e-02 5.56e-02 9.54e-02 5.61e-02

time_delay2 (11) 2.08e-02 1.72e-02 5.68e-02 1.22e-01 5.37e-02

time_delay3 (38) 5.43e-02 5.36e-02 8.05e-02 2.17e-01 6.62e-02

Figure 4.5: The timings in second for the algorithms to return the eigenpairs. We can see
that the contour algorithms are generally faster. See also Table 4.9.

168 robust rational approximations of nonlinear eigenvalue problems

4.6 final remarks

In this chapter we focused on rational approximation algorithms to solve nonlinear

eigenvalue problems. In the first part, we formalised the relationship between the

backward error of the eigenvalues of an approximant Rpmqpzq « Gpzq and the real

eigenvalues of Gpzq, and thus proved that using a rational approximant to compute

the eigenvalues of a nonlinear function is a viable strategy.

In the second part, we described several state of the art algorithms and proposed

numerous improvements. Among them, two algorithms were the clear winners. For

matrix-valued functions in split form, the weighted AAA algorithm is a robust pro-

cedure to approximate holomorphic functions Gpzq: it is scaling independent and

returns an approximant with a user-chosen accuracy on the discretised target set Σ.

We achieve this goal through a stopping criterion that includes weights relative to the

importance of each scalar function in the split form.

For holomorphic black box functions, the two-phase “ surrogate AAA algorithm

with cyclic Leja–Bagby refinement” performs best. While it is more computationally

expensive than the weighted AAA algorithm, it only requires the ability to evaluate

the matrix-valued function at the point in the target set. Once more, it is scaling

independent and returns a rational approximant with a user chosen accuracy on

the discretized target set Σ, as long as Σ contains enough points. It combines the

strength of surrogate AAA to identify good pole parameters in the first phase with

the robustness of the Leja–Bagby approach in the second phase.

Finally, we compare these algorithms with the contour solvers of Chapters 2 and 3

with the nonlinear problems of the NLEVP collection. This extensive set of examples

show the positive and negative sides of each approach. On one hand, the current

implementation of the contour solvers is faster, requires fewer parameters to set and

does not depend on a good approximation of the function. On the other, there exist

problems where the necessary hypotheses on the independence of the eigenvectors

are not satisfied, and thus an automatic choice of the settings is not able to return

the eigenvalues up to the desired precision. Therefore, the end user still needs to

4.6 final remarks 169

understand the theory behind the algorithm to avoid unpleasant and unexpected

results.

This chapter marks the end of our contributions to nonlinear eigenvalue problems.

There are two directions towards which we should push our future works. For the

rational approximations algorithms we should develop specific eigensolvers that ex-

ploit the structure of the linearizations, instead of simply relying on eig or eigs. As

explained in the introduction to this chapter, this is the last part of every rational

approximation algorithm, which we overlooked in this thesis. Another possibility is

exploring further generalisations of the surrogate AAA algorithm: instead of using it

as a first step in a two-phase algorithm, an interesting question is asking what would

happen if we consider “higher dimensional” surrogate functions. More specifically,

in this thesis we took two vectors u, v P Cn and built the surrogate function u˚Gpzqv.

However, nothing should stop us in taking u, v P Cnˆk, with k ! n, and approximat-

ing a kˆ k matrix-valued function. In this case it is not immediately clear how to go

from the weights and sample points of the surrogate function to the ones of Gpzq, so

this approach requires indeed further studies.

For the contour solvers, the greatest challenge is finding a way to choose a suitable

number of quadrature points, as we already explained at the end of Chapter 3, to-

gether with other possible directions for future research. Interestingly, this question

is the main spark behind the birth of the upcoming chapter, where we show how

tropical algebra could be a further step towards the solution to this problem.

5 TROP ICAL ROOTS OF TROP ICAL LAURENT

SER I ES

Tropical algebra refers to a branch of mathematics developed in the second half of

the twentieth century. The adjective tropical was given in honour of the Brazilian

mathematician Imre Simon: in 1978 he introduced a min-plus structure on NY t8u

to be used in automata theory [Sim78]. In the following decades, researchers started

using the nomenclature we are now familiar with. For instance, Cuninghame-Green

and Meijer introduced the term max-algebra in 1980 [CM80], while max-plus appeared

in the nineties and early two-thousands [Bac+92; McE06]. We direct the interested

reader to Sharify’s Doctorate thesis for a deeper introduction and further references

on this matter [Sha11].

Even though tropical algebra has risen in many branches of mathematics, such as

optimisation [But10], optimal control [AGL08], and tropical geometry [RST05], we

are mainly interested in its applications to locate the roots of polynomials or, more

in general, the eigenvalues of a sufficiently smooth function. Indeed, having a cheap

initial estimate of these values is often very important for numerical methods: for

instance, in Chapter 2 and Chapter 3 we have focused on contour integral algorithms,

which heavily rely on knowing in which region to search eigenvalues. In 1996, Bini

proposed an algorithm to compute polynomial roots based on the Aberth’s method

and the Newton polygon, but without the formalities of tropical algebra [Bin96]. In

2008, Betcke introduced a diagonal scaling for a matrix polynomial Ppzq to improve

the conditioning of its eigenvalues λj near a target eigenvalue λ0, which requires the

knowledge of |λ0| [Bet08]. The following year, Gaubert and Sharify showed that the

tropical roots of a scalar polynomial can give bounds on its “standard” roots [GS09].

Later, Bini and Noferini used the Ehrlich–Aberth method for the polynomial eigen-

value problem, which once again needed a starting point of the order of the absolute

value of the eigenvalues [BN13], while Noferini, Sharify, and Tisseur extended the

170

5.1 introduction 171

results in [GS09] to matrix-valued polynomials, and compared their bounds with the

ones in [BNS13; Mel13].

The goal of this chapter is the generalisation of those results to the case of mero-

morphic (matrix-valued) functions expressed as Laurent series. The story behind it

is, in a sense, quite simple. We thought that having localisation results for some holo-

morphic functions would have been quite useful and we started by thinking that the

same results of [NST15] should hold as well for Taylor series (minus some technicali-

ties), given that they are “just” polynomials with infinite terms. Then we realised that

the theory needed for this generalisation allowed us to consider Laurent series with

minor changes. The chapter is structured as follows. In section 5.1 we introduce the

notation and the background settings. In section 5.2 we develop the theory needed to

generalise tropical polynomials to tropical Laurent series, where plenty of examples

will help the reader understand the differences between these two settings. The goal

of section 5.3 is showing the relationship between the eigenvalues of a meromorphic

function and its tropical roots. In section 5.4 we discuss two possible applications,

among which there is the link between the quadrature rules of contour solvers and

tropical algebra, which was the initial seed of this work. Finally, Section 5.5 is dedi-

cated to the concluding remarks.

5.1 introduction

In this chapter we focus on two isomorphic algebraic structures of tropical alge-

bra, named max-plus and max-times algebra. The max-plus algebra is the semiring

pRmax,‘,bq, where Rmax :“ RY t´8u and the addition and multiplication are de-

fined as

a‘ b :“ maxpa, bq, ab b :“ a` b.

The zero and the unit element are ´8 and 0, respectively, with the usual convention

that ´8` a “ ´8. Similarly, the max-times algebra is the semiring pRmax,ˆ,‘,bq,

172 tropical roots of tropical laurent series

where Rmax,ˆ :“ R` is the set of nonnegative real numbers and the addition and

multiplication are defined as

a‘ b :“ maxpa, bq, ab b :“ ab.

As hinted above, the two semirings are isomorphic through the logarithm mapping,

log : Rmax,ˆ ÞÑ Rmax

x Ñ logpxq

with the convention logp0q “ ´8. Hence, the choice of which semiring to use is a

matter of personal taste. In this thesis we mainly focus on the max-times semiring,

hence when considering elements a P Rmax, we will usually write them as a “ log b,

with b P Rmax,ˆ, to underline our preferred point of view.

A max-times tropical polynomial of degree d is a formal expression

t̂ ppxq “
d
à

j“0
bj b xbj “ max

0ďjďd
pbjxjq,

where b0, . . . , bd P Rmax,ˆ, bd ‰ 0, and d is a nonnegative integer. If we look at t̂ ppxq

as a real-valued function, then it is piecewise polynomial. The nonzero max-times

roots (or tropical roots) of t̂ ppxq are the points where t̂ ppxq is not differentiable, which

correspond to the points where the maximum is attained at least twice. Cuninghame-

Green and Meijer proved the tropical version of the fundamental algebra theorem:

we can rewrite t̂ ppxq “ bd
Âd

j“1px,rαjq “ bd
śd

j“1 maxpz,rαjq, where rαj are the tropical

roots of t̂ ppxq [CM80]. The multiplicity of rαj is the cardinality of the set

tk P t1, . . . , du : rαj “ rαku,

which can be computed as the change of derivative at rαj of the logarithm of the

polynomial, i.e.,

lim
εÑ0

d log t̂ p
dz

|z`ε ´
d log t̂ p

dz
|z´ε.

5.1 introduction 173

From now on, we will denote with α1, . . . , αq the distinct roots of t̂ ppxq. If bj “ 0 for

j “ 0, . . . , s, then 0 is a tropical root of multiplicity inftj | bj ‰ 0u.

Computing the roots of t̂ ppxq is easy and very cheap: it can be done in Opdq

time. In fact, one can prove that finding the tropical roots is equivalent to building

the convex hull of the points pj, log bjq, which is known as the Newton polygon. We

will focus more on this aspect in Section 5.2.1 in the general Laurent case. It follows

that researchers are very eager to investigate the relationship between tropical roots

and “standard” roots, because this information is practically free. More precisely,

given a scalar polynomial ppzq “
řd

j“0 bjzj P Crzs, then one defines the (max-times)

tropicalization of ppzq to be1

t̂ ppxq :“ max
0ďjďd

p
∣∣bj

∣∣xjq.

Most of the localisation theorems are based on the following famous result by

Rouché, which we report in its general version for meromorphic matrix-valued func-

tions.

Theorem 5.1 (Rouché theorem). Let Fpzq, Gpzq P MpΩ0, Cnˆnq. Assume that Fpzq is

nonsingular for every z P BΩ. Then, for any matrix norm ‖¨‖ induced by a vector norm

on Cn, if
∥∥F´1pzqGpzq

∥∥ ă 1 for every z on BΩ, then Fpzq and Fpzq ` Gpzq have the same

number of eigenvalues minus poles in Ω.

The main idea for these bound theorems, at least for scalar polynomials ppzq, is

decomposing ppzq “ qpzq ` spzq, for some qpzq, spzq P Crzs, and then showing that∣∣s´1pzqqpzq
∣∣ ă 1 on concentric circles of radii r1 ă r2 thanks to the tropical roots. If

we then know where the roots of spzq lie, we can draw conclusions on the number of

roots of ppzq in

˝

Apr1, r2q :“ tz : r1 ă |z| ă r2u.

1 Note how we use the variable z for “standard” functions, while x for tropical ones.

174 tropical roots of tropical laurent series

There are several propositions of this kind and once again we direct the interested

reader to Sharify’s thesis [Sha11] and his other works for a better understanding.

Among them we are mainly interested in the following result.

Theorem 5.2 ([Sha11, Theorem 3.3.3]). Let ppzq “
řd

j“0 bjzj be a polynomial with roots

ζ1, . . . , ζd ordered by increasing absolute value and let t̂ ppxq be its tropicalization with

p distinct tropical roots α1 ă α2 ă ¨ ¨ ¨ ă αp, with multiplicity m1, m2, . . . , mp. Define

δ1 :“ α1{α2, . . . , δp´1 “ αp´1{αp as the parameters that measure the separation among the

tropical roots. Then

‚ ppzq has exactly mj roots in the annulus
˝

A
ˆ

1
2

αj, 2αj

˙

if:

– for 1 ă j ă d, δj´1, δj ă p2mj`2 ` 2q´1;

– for j “ 1, δ1 ă p2m1`1 ` 2q´1;

– for j “ p, δp´1 ă p2mp`1 ` 2q´1;

‚ ppzq has mj roots in the annulus
˝

A
ˆ

1
3

αj, 3αj

˙

if:

– for 1 ă j ă d, δj´1, δj ă
1
9

;

– for j “ 1, δ1 ă
1
9

;

– for j “ p, δp´1 ă
1
9

.

In 2014, Noferini, Sharify and Tisseur generalised the second part of Theorem 5.2 to

matrix-valued polynomials Ppzq P Cnˆnrzs [NST15, Theorem 2.7]. Here we take one

step further and we show that they extend quite naturally to meromorphic functions

expressed as Laurent series.

5.2 from tropical polynomials to tropical se-

ries

Before diving into the technicalities used to extend the aforementioned result, we

have to define precisely what tropical Laurent functions are.

5.2 from tropical polynomials to tropical series 175

Definition 5.1 (Tropical Laurent series). Let pbjqjPZ be a sequence of elements of R`,

indexed by integers and not all zero. A max-times tropical Laurent series is

t̂ f pxq :“ sup
jPZ

pbjxjq,

with x P R` and takes values in R` Y t`8u. Similarly, a max-plus tropical Laurent

series is a function of variable x P RY t´8u

t f pxq :“ sup
jPZ

plog bj ` jxq,

taking values in RY t˘8u. In addition, let f pzq “
ř

jPZ bjzj be a complex function

defined by a Laurent series. Then t̂ f pxq “ supjPZp
∣∣bj

∣∣xjq is the (max-times) tropicaliza-

tion of f pzq. A similar definition holds for the (max-plus) tropicalization.

Remark 5.1. There are two obvious differences in Definition 5.1 with respect to the

polynomial case. First, it is the use of supremum in lieu of the maximum; this is

necessary because there might be points x where the value of t̂ f pxq is not attained by

any of the polynomial functions bjxj. In addition, note that t̂ f pxq (t f pxq, respectively)

is not usually well-defined on the whole Rmax,ˆ (Rmax, respectively) as a real-valued

function. The next sections are going to clarify these aspects.

Let D Ă R` be the largest domain where t̂ f pxq is well-defined as a real-valued

function. It is not too difficult to prove that D is an interval. Indeed, the next lemma

is a well-known result of convex analysis [Roc70, Theorem 5.5].

Lemma 5.3. Let gjpzq be a set of real-valued functions all defined and convex on the same in-

terval Ω Ď R, and indexed over some non-empty set I , possibly infinite or even uncountable.

Then, the largest domain of definition of the function

g : D Ñ R, x ÞÑ gpxq “ sup
jPI

gjpxq

is an interval D Ď Ω Ď R; moreover, gpxq is convex on D.

Proposition 5.4. Let pbjqjPZ be a sequence of elements of R`, indexed by integers and not

all zero. Let moreover I :“ tj P Z : bj ą 0u. Then the following statements are true:

176 tropical roots of tropical laurent series

1. The domain of the function

t̂ f : D Ñ R`, x ÞÑ t̂ f pxq “ sup
jPI

bjxj

is an interval D Ď R`; moreover, t̂ f pxq is convex on D.

2. The domain of the function

t f : D` Ñ R, x ÞÑ t f pxq “ sup
jPI
plog bj ` jxq

is an interval D` Ď R; moreover, t f pxq is convex on D`.

Proof. The theses follow easily from Lemma 5.3. In fact:

1. For any j P I , bjxj is convex on R` (note j P I ñ bj ą 0q.

2. For any j P I , log bj P R. Hence, log bj ` jx is affine, thus convex, on R.

Remark 5.2. Proposition 5.4 does not specify the nature of the interval D, which can

be open, closed, or semiopen (either side being open/closed): indeed, examples can

be constructed for all four cases. It can also happen that D “ R`, that D is empty,

or that D is a single point. In addition, if D “ ra, bs is the domain of t̂ f pxq, then

D` :“ rlog a, log bs is the domain of t f pxq.

An immediate consequence of Corollary 5.4 is that

Y :“ ty P Do : t̂ f pxq is not differentiable at x “ yu ñ #Y ď ℵ0.

In particular, t̂ f pxq (as any convex function of a real variable) has left and right

derivative everywhere in its domain of definition D and it is differentiable almost

everywhere in the interior of D, except for at most countably many points at which

the left and right derivative differ. On the other hand, if I contains at least two

indices, then the set Y may be not empty. Indeed, this leads us to define the set of

tropical roots of t̂ f pxq as YY pDzDoq. More precisely:

5.2 from tropical polynomials to tropical series 177

Definition 5.2 (Tropical roots of Laurent series). Consider a max-plus Laurent series

t f pxq :“ sup
jPZ

plog bj ` jxq,

as a real valued function defined on some interval D`. A point log α P D` is said to

be a tropical root of t f pxq if:

1. either t f pxq is not differentiable at log α, and in this case the multiplicity of

log α is the size of the jump of the derivative at log α if log α is a point of

nondifferentiability, i.e., m :“ d
dx` t f plog αq ´ d

dx´ t f plog αq;

2. or log α “ ´8 if bj “ 0 for j ď 0 and the multiplicity is given by inftj | bj ‰ 0u;

3. or log α is a finite endpoint of D`, and the multiplicity of log α is m “ 8.

Similarly, we consider a max-times Laurent series

t̂ f pxq :“ sup
jPZ

pbjxjq,

as a real valued function defined on some interval D Ă Rmax,ˆ. Then, α P D is a

tropical root of t̂ f pxq with multiplicity m if log α is a tropical root of supjPZplog bj `

jxq with multiplicity m.

As expected, Definition 5.2 falls back to the polynomial case when t̂ f pxq is a

polynomial: if t̂ f pxq is a polynomial, then D “ r0,8r, hence the second subcase

falls back to 0 being a root of t̂ f pxq, while the third one never happens. In addition

notice that the multiplicity of a tropical root may be infinite. This happens if α is an

endpoint D and belongs to D, that is, if t̂ f pαq P R but either t̂ f pxq “ `8 for x ą α

or t̂ f pxq “ `8 for x ă α. Analogous observations can be made for t f pxq.

Before continuing with our theoretical exposition, it is better to get some insights

on the different cases of the tropical roots thanks to the upcoming examples.

Example 5.1. Consider f pzq “ ´ logp1´ zq and its Taylor expansion in r´1, 1r. Then

f pzq “
8
ÿ

j“1

zj

j
ñ t̂ f pxq “ sup

jě1

ˆ

xj

j

˙

“

$

’

’

&

’

’

%

x if x ď 1;

8 if x ą 1.

178 tropical roots of tropical laurent series

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16
t

(a)

0.6 0.65 0.7 0.75 0.8 0.85

2

2.5

3

3.5

4

4.5

5
t

(b)

Figure 5.1: The plot of t̂ f pxq (5.1) and its tropical roots αj in 5.1a and a zoomed in in 5.1b,
where we can clearly see that αj are the points of nondifferentiability.

The domain of t̂ f pxq is D “ r0, 1s. The point α0 “ 0 is a single root, because bj “ 0 for

j ď 0. The right endpoint α1 “ 1 P D is a tropical root of infinite multiplicity. They are the

only tropical roots because t̂ f pxq is differentiable everywhere else in D. If we had considered

gpzq “ 1´ logp1´ zq, then t̂ gpxq would not have had α0 “ 0 as a tropical root, even though

D “ r0, 1s: in fact, for a closed endpoint a to be a root, log a needs to be finite.

Example 5.2. Let Hj “
řj

k“1 k´1 denote the j-th harmonic number and consider

f pzq “
8
ÿ

j“1

eHj zj ñ t̂ f pxq “ sup
jě1
peHj xjq. (5.1)

The domain of t̂ f pxq is D “ r0, 1r. As in the previous example, α0 “ 0 is a root with

multiplicity 1 because bj “ 0 for j ď 0. The points of nondifferentiability are

αj “ e´1{j, j “ 1, 2, 3, . . .

which have all multiplicity 1, and accumulate at 1. In Figure 5.1 we plotted t̂ f pxq and αj.

Note that t̂ f pxq “ `8 if and only if x ě 1. However, 1 R D, so 1 itself is not a tropical root.

Example 5.3. Let

f pzq “
8
ÿ

j“0

ej2 zj ñ t̂ f pxq “ sup
jě0
pej2 xjq ” `8.

5.2 from tropical polynomials to tropical series 179

In this case, the domain of t̂ f pxq as a real function is empty, and hence there are no tropical

roots.

Remark 5.3. From now on we will assume that 0 is never a tropical root of t̂ f pxq.

On one hand, this is not a restriction, because if 0 is a root of multiplicity m, then it

means bj “ 0 for j ď m and thus we can consider a shifted version of t̂ f pxq. On the

other, it simplifies a lot the exposition, because in this case α is a tropical root only if

it is a nondifferentiable point or a closed endpoint of D.

Before discussing the connection between tropical Laurent series t̂ f pxq and the

roots of the related function f pzq (or the eigenvalues of Fpzq), we shall see how the

relation between tropical roots and the associated Newton polygon extends from

the polynomial setting to the Laurent series case. In addition, in Example 5.2 we

witnessed that the tropical roots e´1{j converge to 1, which is the right endpoint of

D, in a similar way to our definition of a tropical root with infinite multiplicity. This

does not happen by chance, and it will be the second topic of the next section.

5.2.1 Asymptotic behaviour of tropical roots and infinite Newton polygons

In the previous section, we gave a proper definition for the tropical roots in the

Laurent case and we saw that when t̂ f pxq is defined as a real function only on an

interval of finite length, then the extrema of this interval are tropical roots of infinite

multiplicity. The goals of the upcoming paragraphs are multiple. First, we will

show that all the tropical roots are isolated, except for two possible accumulation

points. Then we prove a result that mirrors Definition 5.2: the image of t̂ f pxq is

contained in R` if x P sα´8, α`8r, under a proper definition of α˘8. Finally, we

will define the Newton polygon, which can be used to compute the tropical roots

with their multiplicities. Clearly, its standard definition for tropical polynomials (see,

for instance, [NST15]) extends naturally to the Laurent case, however it requires few

more technicalities: some properties are less obvious, since we are dealing with a

(possibly) countable number of roots.

180 tropical roots of tropical laurent series

Lemma 5.5. Let t̂ f pxq be a max-times Laurent series with tropical roots pαkqkPT indexed

by T . If there are infinitely many roots with positive and/or negative indices that are non-

differentiable points, then they are all isolated, with the only possible accumulation points

being limkÑ˘8 αk.

Proof. Observe that we can write:

t̂ f pxq :“ sup
jě0

gjpxq, gjpxq :“ max
kPZ
|k|ďj

pbkxkq. (5.2)

Hence, t̂ f pxq can be approximated from below by the functions gjpxq. We consider

the non-differentiable points of gjpxq and see how they change as we let j Ñ 8. It is

clear that to show that the roots are isolated, it suffices to consider the tropical roots

of t̂ f pxq that are its non-differentiable points (hence excluding the extrema of the

domain D). Therefore we consider the non-differentiable points of gjpxq and see how

they change as we let j Ñ8.

First, note that g0pxq is the constant function g0pxq ” b0. In general, we obtain gjpxq

from gj´1pxq by adding two monomial functions to the set where the supremum is

taken. More precisely, these functions are added if and only if bj ‰ 0 and b´j ‰ 0,

respectively. Given that the functions added to the supremum have a larger exponent

in absolute value than all the others considered before, this introduces at most two

new non-differentiable points, which are the leftmost one and the rightmost one. For

sake of simplicity, we consider only what happens at the right side of our domain.

There are two cases: either the new non-differentiable point, say α, is already the

rightmost one, or it superposes or lies on the left of one or more previous tropical

roots. In the first scenario, a new tropical root α with multiplicity one is created; in

the latter, every tropical root larger than α disappears, and α becomes the rightmost

tropical root with multiplicity larger than one. In Figure 5.2 we plotted these two

cases while building g2pxq: in 5.2a the new point is already the rightmost one, while

in 5.2b superposes with the previous root.

5.2 from tropical polynomials to tropical series 181

0 2 4 6 8 10
0

1

2

3

4

5

6

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

(b)

Figure 5.2: Examples of possible scenarios for g2pxq (black dashed line). In 5.2a the new
non differentiable point is the rightmost one, hence it becomes a distinct tropical
root with multiplicity one. In 5.2b it superposes with a previous one, hence the
multiplicity of the rightmost tropical root is larger than one.

Iterating this process, at most two roots are added at each iteration, of which one is

not larger than all the others and one is not smaller than all the others. Hence, there

are at most two accumulation points, that are indeed limkÑ˘8 αk.

Lemma 5.5 guarantees that T Ă Z and it makes sense to ask ourselves what is the

behaviour of limkÑ˘8 αk. The nature of T may vary a lot. It may be either bounded or

unbounded above, and either bounded or unbounded below, depending on whether

the sequence of tropical roots is bi-infinite, infinite on the left, infinite on the right,

or finite. For example, if t̂ f pxq is a polynomial, then T is clearly finite. The next

proposition proves that t̂ f pxq being a (shifted) polynomial is the only possibility for

it to have a finite number of tropical roots with finite multiplicities.

Proposition 5.6. Consider t̂ f pxq “ supjPZ bjxj and let I :“ tj P Z : bj ą 0u. Further, let

pαkqkPT be the tropical roots, with T Ă Z. Then the set I is bounded above if and only if T

is bounded above and D is not closed on the right. Similarly, I is bounded below if and only

if T is bounded below and D is not closed on the left.

182 tropical roots of tropical laurent series

Proof. We only prove the case for I bounded above, being the other one very similar.

If I is bounded above, i.e., bj “ 0 definitely for j large enough, then T is bounded

above and t̂ f pxq P R for every x large enough, because

t̂ f pxq “ sup
jPI
ją0

bjxj “ max
jPI
ją0

bjxj.

Conversely, assume that T is bounded above and that D is not closed on the right,

i.e., there is no tropical root with infinite multiplicity. Let αp be the rightmost tropical

root and let jp P I be the index where the value t̂ f pαpq is attained for the last time.

Then, by definition of tropical root, for every x ą αp it holds

bjp xjp ě bjxj,

for every j ą 0, which implies that t̂ f pxq P R for x large enough. Equivalently, we

can rewrite the previous equation as

xj´jp ď
bjp

bj
. (5.3)

Now assume that I is not bounded above. Then there exist infinite values of j such

that bj ą 0 and j ą jp. This yields a contradiction, because limxÑ8 xj´jp “ 8, but

Equation (5.3) implies this value is bounded above by a constant for every x ě αp.

We can now give a proper definition of α˘8, which covers all the cases of T . Note

that if T is bounded above then sup T P T and if T is bounded below then inf T P T .

Definition 5.3. Given a sequence pαkqkPT of tropical roots and the set T of the indices

of such sequence, denote p “ sup T and f “ inf T . Then, α˘8 are elements of

R` Y t`8u defined as follows.

α`8 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`8 if p ă `8 and αp has finite multiplicity;

αp if p ă `8 and αp has infinite multiplicity;

limkÑ`8 αk if p “ `8.

5.2 from tropical polynomials to tropical series 183

α´8 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if f ą ´8 and α f has finite multiplicity;

α f if f ą ´8 and α f has infinite multiplicity;

limkÑ´8 αk if f “ ´8.

We saw that if t̂ f pxq is well defined as a real-valued function on D “ ra, bs, then a

and b are tropical roots of infinite multiplicity. A priori, t̂ f pxq may also have infinite

roots and it may value limkÑ`8 αk “ b: indeed, Lemma 5.5 does not exclude this

scenario. However, we will see that this cannot happen, and if t̂ f pxq has infinite

roots, then they are either unbounded, or their limit is a real number outside D (see

Example 5.2).

Before proving the main result of this section, we need to define the Newton poly-

gon for Laurent series and show that the usual result linking the tropical roots with

the slopes of the Newton polygon holds true for the isolated ones.

Definition 5.4 (Newton polygon for isolated roots). Let t̂ f pxq “ supjPZ bjzj be a

max-times tropical Laurent series. We define the Newton polygon Nt̂ f as the upper

convex hull of tpj, log bjq : bj ‰ 0ujPZ and we denote with

Kt̂ f :“ tj | pj, log bjq P Nt̂ f u

the vertices of the Newton polygon for t̂ f pzq.

Lemma 5.7 (Newton Polygon for isolated roots). Let t̂ f pxq be a tropical Laurent series,

and Nt̂ f its Newton polygon. Then for each segment connecting two vertices pjk, log bjkq

and pjk`1, log bjk`1q with jk ‰ jk`1 we have a tropical root αk corresponding to a point of

non-differentiability, with finite multiplicity mk, where:

αk “

˜

bjk
bjk`1

¸
1

jk`1´jk

, mk :“ jk`1 ´ jk.

Alternatively, the isolated roots of t̂ f pxq are the exponential of the opposite of the slopes of

the corresponding segments.

184 tropical roots of tropical laurent series

Proof. By Lemma 5.5, all the tropical roots αk who are non-differentiable points are

isolated, hence there exists ε ą 0 such that:

t̂ f pxq “

$

’

’

&

’

’

%

bjk xjk αk ´ ε ď x ď αk

bjk`1 xjk`1 αk ď x ď αk ` ε

for some jk ď jk`1. By equating the two expressions at αk we obtain the desired result:

αk “

˜

bjk
bjk`1

¸
1

jk`1´jk

, mk “ jk`1 ´ jk.

Theorem 5.8. Let t̂ f pxq be a tropical Laurent series, and pαkqkPT be the sequence of tropical

roots. Let α˘8 be defined as in Definition 5.3 Then,

x P sα´8, α`8r ñ t̂ f pxq P R`

and

x R rα´8, α`8s ñ t̂ f pxq “ 8.

Furthermore, t̂ f pα`8q P R` if and only if p is finite and αp has infinite multiplicity (respec-

tively, t̂ f pα´8q, f and α f).

Proof. We only prove the claim for α`8, i.e., we argue that t̂ f pxq is finite if x ă α`8

and large enough, and that t̂ f pxq is infinite if x ą α`8; the claim for α´8 admits an

identical proof, so we omit it. We analyse the three possible cases in the definition of

α`8.

1. There is a largest tropical root and it has finite multiplicity. Note that α`8 “ `8,

hence the second part of the result is vacuously true. The fact that t̂ f pxq P R`

for x large enough follows immediately from Proposition 5.6, because bj “ 0 for

j ą 0 large enough. Here we have t̂ f pα`8q “ `8 by convention.

2. There is a largest tropical root with infinite multiplicity. In this case the thesis of the

theorem coincides with Definition 5.2, because a root has infinite multiplicity if

5.2 from tropical polynomials to tropical series 185

and only if is a closed endpoint of D, where t̂ f pxq is a well-defined function.

Hence t̂ f pα`8q P R`.

3. There is no largest tropical root. First, α`8 is well defined because any infinite

increasing sequence has a (possibly infinite) limit. There are two subcases.

‚ If α`8 “ `8, then the set of tropical roots is unbounded above. Let

x P R` be sufficiently large, then this implies that there exists k such that

αk´1 ď x ď αk, and therefore

0 ă bjk xjk´1 ď t̂ f pxq ď bjk xjk ă `8,

while the second implication is vacuously true. Similarly to the first case,

t̂ f pα`8q “ `8 by convention.

‚ Assume now α`8 P R`. If x “ α8 ´ ε for ε ą 0 and not too large, then

there exist two tropical roots αk´1 ă x ă αk and we can conclude that

t̂ f pxq P R` arguing similarly to the first subcase; otherwise, if x ě α`8,

write x “ α`8p1` εq, with ε ě 0 and define cj :“ bjα
j
`8. Observe

t̂ f pxq ě bjxj “ bjpα`8p1` εqqj “ cjp1` εqj

is true for every j.Since the sequence of tropical roots is increasing, its limit

for the index tending to `8 is an upper bound. Hence, by Lemma 5.7 we

have that for all k such that αk exists

˜

bjk
bjk`1

¸
1

jk`1´jk

ă α`8 ô cjk ă cjk`1 .

Hence, cjk is also an increasing sequence, and in particular cjk ą cj` for all

k ě `. As a consequence, fixing any ` such that α` is defined,

t̂ f pxq ě bjk xjk ą cj`p1` εqjk Ñ8 for k Ñ `8.

The case ε “ 0 proves t̂ f pα`8q “ `8.

186 tropical roots of tropical laurent series

Theorem 5.9 (Newton polygon for Laurent tropical series). Let t̂ f pxq be a tropical

Laurent series and let Nt̂ f be its Newton polygon. Then t̂ f pxq has a largest finite tropical

root αp of infinite multiplicity if and only if Nt̂ f has a rightmost segment of infinite length

and vertex pjp, log bjpq, with

log αp “ inf
iPI

sup
jěi

ˆ

´
log bj ´ log bi

j´ i

˙

Similarly, t̂ f pxq has a smallest finite tropical root α f of infinite multiplicity if and only if

Nt̂ f has a leftmost segment of infinite length and vertex pj f , bj f q, with

log α f “ sup
iPI

inf
jďi

ˆ

´
log bi ´ log bj

i´ j

˙

.

Proof. We only prove the case of the largest tropical root. Assume t̂ f pxq has a largest

tropical root of infinite multiplicity αp. By Definition 5.2 this corresponds to D being

bounded above and closed at its upper endpoint. In addition, the set of indices I :“

tj : bj ą 0u is not bounded above thanks to Proposition 5.6, while the sequence T of

the indices of the tropical root is bounded above by Theorem 5.8: in particular, there

exists a rightmost point of non-differentiability, say, αp´1, which is in correspondence

to a segment on the Newton polygon by Lemma 5.7. We label its rightmost segment

by pjp, log bjpq. Then the rightmost convex hull of the points pj, log bjq has a rightmost

infinite segment. It follows from the definition of convex hull that the slope of this

rightmost segment is equal to the supremum of all the slopes of the segments through

pj, log bjq and pjp, log bjpq, where the supremum is taken over all the (infinitely many)

values in tj ą jpu X I . Moreover, for any jp ă i ă j, it must be

log bj ´ log bjp

j´ jp
ď

log bj ´ log bi

j´ i
,

as otherwise αp´1 is not the penultimate tropical root. Thus, the opposite of the

rightmost slope is

inf
jějp

ˆ

´
log bj ´ log bjp

j´ jp

˙

“ inf
i

sup
jěi

ˆ

´
log bj ´ log bi

j´ i

˙

“: log αp.

5.3 tropicalization of analytic functions 187

Even though the previous results have been a bit technical, we have finally all

the tools to prove the localisation theorems of meromorphic functions thanks to the

tropical roots.

5.3 tropicalization of analytic functions

The goal of this section is finding relationships similar to the ones of Theorem 5.2

and their generalisations [NST15, Theorems 2.7-2.8] for eigenvalues of meromorphic

Laurent series. More precisely, given the Laurent series

Fpzq :“
ÿ

jPZ

Bjzj, Bj P Cnˆn,

we consider Fpzq : Ω Ñ Cnˆn, where Ω is the largest annulus where the sum defining

Fpzq is convergent and thus is holomorphic. We denote this set as Ω :“
˝

ApR1, R2q,

and the radii R1 and R2 are determined by the decay rate of ‖Bj‖ for j Ñ ˘8:

R´1
2 “ lim sup

jÑ8

∥∥Bj
∥∥1{j, R1 “ lim sup

jÑ8

∥∥B´j
∥∥1{j, (5.4)

where we employ the usual convention 8´1 “ 0. This definition includes

‚ polynomials, for which R1 “ 0 and R2 “ 8;

‚ Taylor series, for which R1 “ 0 and R2 is the radius of convergence;

‚ meromorphic functions in DpR2q, for which there is only a finite number of

negative indices.

The main theorem will hold for meromorphic functions, but most of the results are

more general, so we do not require Fpzq P MpDpR2q, Cnˆnq yet. As in the previous

chapters, to avoid the scenario where there are uncountably infinite eigenvalues, we

188 tropical roots of tropical laurent series

assume det Fpzq ı 0. From now on, to the Laurent series Fpzq, we associate the

tropicalization 5.1

t̂ Fpxq :“ sup
jPZ

p
∥∥Bj

∥∥xjq (5.5)

where ‖¨‖ is any subordinate matrix norm. In addition, we denote with

δj “
αj

αj`1
ă 1, for j P Z, (5.6)

the ratio between two consecutive tropical roots. Intuitively, one can visualise δj

on the associated Newton polygon: the smaller δj is, the spikier the polygon is in

pk j, log Bk jq. For sake of exposition, we consider a simple scalar example.

Example 5.4. Consider the function

f pzq “
15

p1´ 3zqpz´ 2q
,

which is holomorphic in
˝

Ap1{3, 2q. It is easy to see that

f pzq “ 6p¨ ¨ ¨ `
1

3z2 `
1
z
`

1
2
`

z
4
` ¨ ¨ ¨ q

“
ÿ

jPZ

bjzj

where bj “ 2 ¨ 3j`2 if j ă 0, and bj “ 3 ¨ 2´j for j ě 0. The (truncated) Newton polygon is

given in Figure 5.3 and we can easily detect that there are only the two roots α´8 “ 1{3 and

α8 “ 2. In addition, one can check that t̂ f pα`8q “ 3 and t̂ f pα´8q “ 18, hence t̂ f pxq is

a well-defined real-valued function in the domain D “ rα´8, α8s, in concordance with both

Definition 5.2 and Theorem 5.8.

Example 5.5. We consider again the function

f pzq “
8
ÿ

j“1

eHj zj ñ t̂ f pxq “ sup
jě0
peHj xjq.

5.3 tropicalization of analytic functions 189

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.3: The Newton polygon of t̂ f pxq. The two tropical roots α˘8 are clearly visible.

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

Figure 5.4: The (truncated) Newton polygon of t̂ f pxq. The slopes converge from below to 0.

defined in Example 5.2. We have that the domain of f pzq is the open disk Ω “ Dp1q, while

the domain D of t̂ f pxq is D “ r0, 1r. In Figure 5.4 we plotted its truncated Newton polygon.

There we can see that the slopes converge from below to 0, in concordance with the fact that

the nonzero roots are αj “ e´1{j Ñ 1, as j goes to infinity.

In both the previous examples, the tropical roots not only converge to (or are) the

endpoints of the domain D of t̂ f pxq, but also to the radii of convergence of f pzq.

Once again, this does not happen by chance, as explained in the following theorem.

Theorem 5.10. Consider the Laurent matrix-valued function Fpzq “
ř

jPZ Bizj, holomorphic

in the open annulus Ω “
˝

ApR1, R2q, where R1 and R2 are defined in (5.4). Let pαkqkPT be the

sequence of distinct tropical roots of the tropicalization t̂ Fpxq and let α˘8 be the quantities

defined in 5.3. Then R2 “ α`8 and R1 “ α´8.

190 tropical roots of tropical laurent series

Proof. The proof flows similarly to the one of Theorem 5.8. We prove the statement

only for R2, because the one for R1 is identical.

1. There is a largest tropical root and it has finite multiplicity. We have α`8 “ `8, and

from Proposition 5.6 it follows bj “ 0 for j ą 0 large enough. Hence R2 “ `8.

2. There is a largest tropical root with infinite multiplicity. Assume that αp “ S2. By

definition of tropical roots it holds

bjα
j
p ď bjp α

jp
p

therefore bj ď Sjp´j
2 bjp . This implies that Fpzq is well defined for every |z| ă S2

by (5.4), hence S2 ď R2. We now claim that S2 ě R2. Let now pbjkqkPN be the

subsequence of pbjqjPN obtained by only keeping the indices corresponding to

a curve that attains the supremum in the definition of t̂ Fpxq. Then

1
R2
ě lim sup

jÑ8

∣∣bj
∣∣1{j ě lim sup

kÑ8
b1{jk

jk
.

Let jk1 “ p be the index corresponding to the last tropical root with infinite

multiplicity αp. Then for all k ą k1 we have xjk bjk ě xpbp, for every x ě αp by

definition of tropical root. Hence,

bjk ě bpSp´jk
2 ñ b1{jk

jk
ě
pSp

2 b1{jk
p q

S2
.

It follows that

1
R2
ě lim sup

kÑ8

pSp
2 bpq

1{jk

S2
“

1
S2

.

3. There is no largest tropical root. By Definition 5.3, α`8 “ limjÑ`8 αj. On one

hand, if α`8 P R`, then an identical proof to the second point will show that

R2 “ α`8. On the other hand, if α`8 “ `8, then the sequence of tropical roots

is unbounded. But if it is unbounded, then (again by the proof of the previous

5.3 tropicalization of analytic functions 191

item) given any tropical root αk the power series defining Fpzq must converge

for all |z| ă eαk , hence R2 “ `8.

5.3.1 Eigenvalue localisation for Laurent series

In this section we generalise the results presented by Noferini, Sharify, and Tisseur

in 2015 [NST15] concerning the localisation of the eigenvalues of matrix-valued poly-

nomials. Since we are going to follow their footsteps, we will only report the results

that do not literally change, while proving the ones where some little adjustments

are needed.

First, we consider a tropical root αj of t̂ Fpxq. Notice that it does not make sense

for αj to be a root with infinite multiplicity, because Fpzq would not be defined there.

Hence αj is a point of non differentiability. We use it as a parameter scaling, with

µ :“ α´1
j z and rFpµq being

rFpµq :“
`

t̂ Fpαjq
˘´1 Fpzq “

´∥∥∥Bk j´1

∥∥∥
2
α

k j´1
j

¯´1
Fpαjµq “

ÿ

iPZ

rBiµ
i, (5.7)

where

rBi “
´∥∥∥Bk j´1

∥∥∥
2
α

k j´1
j

¯´1
Biα

i
j. (5.8)

Lemma 5.11 ([NST15, Lemma 2.2]). The norms of the coefficients rBi (5.8) of the scaled

function have the following properties:

∥∥∥rBi

∥∥∥
2
ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δj´1
k j´1´i if i ă k j´1,

1 if k j´1 ă i ă k j,

δj
i´k j if i ą k j,

∥∥∥rBk j´1

∥∥∥
2
“

∥∥∥rBk j

∥∥∥
2
“ 1.

192 tropical roots of tropical laurent series

As explained in the introduction of the chapter, our goal is invoking Rouché’s

Theorem 5.1, therefore we decompose rFpµq as the sum of

Spµq “
k j
ÿ

i“k j´1

rBiµ
i, Qpµq “

ÿ

iRtk j´1,...,k ju

rBiµ
i. (5.9)

Note that Spµq is a matrix-polynomial up to a factor µk for some k P N, while Qpµq

is generally still a Laurent function. The following two lemmas localise the nonzero

eigenvalues of Spµq.

Lemma 5.12 ([NST15, Lemma 2.3]). Let Ppzq “
ř`

j“0 Bjzj with B0, B` ‰ 0 be a regular

matrix polynomial. Then every eigenvalue λ of Ppzq satisfies

p1` κpB0qq
´1 α1 ď |λ| ď p1` κpB`qq αq,

where α1, αq are the smallest and largest finite tropical roots of t̂ Ppxq, respectively. Further-

more, if both B0 and B` are invertible, the inequalities are strict.

Lemma 5.13 ([NST15, Lemma 2.4]). Let mj :“ k j ´ k j´1. If Bk j´1 and Bk j are nonsingular,

then the nmj nonzero eigenvalues of Spµq lie in the open annulus
˝

App1` κpBk j´1qq
´1, 1` κpBk jqq.

Proof. If k j´1 ě 0, then the lemma is equivalent to [NST15, Lemma 2.4]. Otherwise,

consider the polynomial rSpµq “ µ´k j´1 Spµq, which we can apply [NST15, Lemma 2.4]

to. It follows that rSpµq has nmj nonzero eigenvalues in
˝

App1` κpAk j´1qq
´1, 1` κpAk jqq,

which yields that Spµq has nmj nonzero eigenvalues and nk j´1 poles in zero.

Lemma 5.14 ([NST15, Lemma 2.5]). The following inequalities hold for Qpµq and Spµq in

(5.9),

∥∥∥Spµq´1
∥∥∥

2
ď

$

’

’

’

’

’

&

’

’

’

’

’

%

κpBk j´1q|µ|´k j´1p1´ |µ|q
1´ |µ|

`

1` κpBk j´1qp1´ |µ|mjq
˘ if 0 ă |µ| ď

`

1` κpBk j´1q
˘´1,

κpBk jq|µ|
´k jp|µ|´ 1q

|µ|´ 1´ κpBk jqp1´ |µ|´mjq
if |µ| ě 1` κpBk jq.

,

‖Qpµq‖2 ď
δj´1|µ|k j´1

|µ|´ δj´1
`

δj|µ|k j`1

1´ δj|µ|
if δj´1 ă |µ| ă 1

δj
.

5.3 tropicalization of analytic functions 193

Proof. The case of ‖Spµq‖2 is identical to [NST15, Lemma 2.5]. The same is true for

‖Qpµq‖2, but we recall the proof because Qpµq is generally a Laurent series. Assume

that δj´1 ă |µ| ă δ´1
j . It follows from (5.9) and Lemma 5.11 that

‖Qpµq‖2 ď
ÿ

iăk j´1´1

δj´1
k j´1´i|µ|i `

ÿ

iąk j`1

δj
i´k j |µ|i

ď
δj´1p|µ|k j´1 ´ δj´1

k j´1q

|µ|´ δj´1
`

δj|µ|k j`1
p1´ pδj|µ|q-.k jq

1´ δj|µ|

and the bound in the thesis follows since δj´1 ă |µ| ă δ´1
j .

After the upcoming technical lemma, we will have all the tools to generalise The-

orem 5.2 to meromorphic matrix-valued functions. Not every statement translates

exactly under these new settings, given the possible presence of the poles, but the

ability of locating the eigenvalues of Fpzq thanks to the associated tropical roots still

holds true.

Lemma 5.15 ([NST15, Lemma 2.6]). For given c, δ ą 0 such that δ ď p1` 2cq´2, the

quadratic polynomial

pprq “ r2 ´

ˆ

2`
1´ δ

δp1` cq

˙

r`
1
δ

has two real roots

f :“ f pδ, cq “
p1` 2cqδ` 1´

a

p1´ δqp1´ p1` 2cq2δq

2δp1` cq
, g “ pδ f q´1,

with the properties that

1. 1 ă 1` c ď f ď g,

2.
1

f ´ 1
`

1
g´ 1

“
1
c

.

Theorem 5.16. Let `´ ą ´8 and let Fpλq “
ř8

j“`´ Bjλ
j be a regular, meromorphic

Laurent function, analytic in the open annulus Ω :“
˝

ApR1, R2q. For every j P Z, let

f j “ f pδj, κpBk jqq, where f pδ, cq is defined as in Lemma 5.15, and gj “ pδj f jq
´1. Then, the

following statements hold true:

194 tropical roots of tropical laurent series

1. If δj ď p1` 2κpBk jqq
´2, then Fpλq has exactly nk j eigenvalues minus poles inside the

disk Dpp1` 2κpBk jqqαjq and it does not have any eigenvalue inside the open annulus
˝

App1` 2κpBk jqqαj, p1` 2κpBk jqq
´1αj`1q.

2. For any j ă s, if δj ď p1 ` 2κpBk jqq
´2 and δs ď p1 ` 2κpBksqq

´2, then Fpλq has

exactly npks ´ k jq eigenvalues inside the closed annulus App1` 2κpBk jqq
´1αj`1, p1`

2κpBksqqαsq.

Proof. As a preliminary step, note that for a fixed c ě 1 and δ ď p1 ` 2cq´2, the

function f pδ, cq of Lemma 5.15 is increasing and attains its maximum, which is 1` 2c,

at δ “ p1` 2cq´2. Therefore it holds f pδj, κpBk jqq ď 1` 2κpBk jq for δj ď p1` 2κpBk jqq
´2.

1. We assume that δj ď p1` 2κpBk jqq
´2 and we partition rFpµq as in (5.9). Let r be

such that

1` κpBk jq ă r ă δ´1
j . (5.10)

This r is well defined because δj ď p1` 2κpBk jqq
´2 ă p1` κpBk jqq

´1. It follows

by Lemma 5.13 that Spµq is nonsingular on the circle Γr “ tµ P C : |µ| “ ru.

In order to apply Theorem 5.1 with rFpµq “ Spµq `Qpµq and Γr, we must check

that
∥∥Spµq´1Qpµq

∥∥
2 ă 1 for all µ P Γr. Since |µ| “ r with r such that

δj´1 ă 1 ă 1` κpBk jq ă r ă δ´1
j , (5.11)

we can apply the bounds in Lemma 5.14. They yield

∥∥∥Spµq´1Qpµq
∥∥∥

2
ď

∥∥∥Spµq´1
∥∥∥

2
‖Qpµq‖2

ď
r´k jpr´ 1qκpBk jq

r´ 1´ κpBk jqp1´ r´mjq

˜

δj´1rk j´1

r´ δj´1
`

δjrk j`1

1´ δjr

¸

.

The latter bound is less than 1 if

δj´1r´mj

r´ δj´1
`

δjr
1´ δjr

ă
r´ 1´ κpBk jqp1´ r´mjq

pr´ 1qκpBk jq
,

5.3 tropicalization of analytic functions 195

or equivalently, if

δjr
1´ δjr

ă
r´ 1´ κpBk jq

pr´ 1qκpBk jq
` r´mj

ˆ

1
r´ 1

´
δj´1

r´ δj´1

˙

.

Since r´ δj´1 ą δj´1pr´ 1q, the last inequality holds when δjr
1´δjr

ă
r´1´κpBkj

q

pr´1qκpBkj
q
, or

equivalently when pprq ă 0, where ppzq is the polynomial of Lemma 5.15 with

δ “ δj and c “ κpBk jq. It follows from Lemma 5.15 that pprq is negative for the

values of r such that

f j ă r ă gj (5.12)

by recalling that f j and gj are the two roots of p. Note that, by the same lemma,

f j ě 1` κpBk jq and gj ď pδjq
´1 so (5.12) is sharper than (5.11). In addition, for

any |µ| “ r, where r “ f j or r “ gj the upper bound for
∥∥Spµq´1Qpµq

∥∥
2 is

equal to 1. Therefore, such µ belongs to the domain of analiticity, and we have

R1 ď f j ă gj ď R2. By Rouché’s Theorem 5.1, Spµq and rFpµq have the same

number of eigenvalues minus poles, i.e., nk j, inside the disk Dprq for any r such

that f j ă r ă gj. This also implies that there are no eigenvalues in the open

annulus
˝

Ap f j, gjq, because the number of eigenvalues minus poles must remain

constant and poles cannot lie there. The thesis then follows from the scaling

z “ µαj and the preliminary point.

2. By the proof of the previous point, if δj ď p1` 2κpBk jqq
´2 then Fpλq has nk j

eigenvalues minus poles inside Dpp1` 2κpBk jqqαjq and it has no eigenvalues in
˝

App1 ` 2κpBk jqqαj, p1 ` 2κpBk jqq
´1αj`1q. A similar statement holds when δs ď

p1` 2κpBksqq
´2. Given that poles cannot lie there, this implies that Fpλq has

exactly npks ´ k jq eigenvalues inside App1` 2κpBk jqq
´1αj`1, p1` 2κpBksqqαsq.

When there is a finite number of negative (positive, respectively) indices, there is

an exclusion (inclusion, respectively) disk centered in zero. This is a generalisation

of Lemma 5.12.

196 tropical roots of tropical laurent series

Theorem 5.17. Let Fpzq “
ř``

j“`´ Bjzj be a regular Laurent series. If `´ ą ´8 and B`´ is

non singular, then Fpzq has n`´ eigenvalues minus poles at zero, and the other eigenvalues λ

of Fpzq satisfy

p1` κpB`´qq
´1 α1 ď |λ|

Similarly, if `` ă 8 and B`` is non singular, then all eigenvalues satisfy

|λ| ď p1` κpB`´qq αq,

where αq is the maximum tropical root.

Proof. The proof follows the ideas in [HT03, Lemma 4.1]. We start by the case `` ă 8.

By the definition of αq we have

‖Bi‖2 ď α``´i
q ‖B``‖2, i ď ``.

Now assume by contradiction that there exists an eigenvalue |λ| ą p1` κpB`´qq αq.

Then, we may consider a normalised eigenvector ‖v‖2 “ 1, and write

‖Fpλqv‖2 ě

∥∥∥B`` |λ|`
`

v
∥∥∥

2
´

ÿ

iă``
‖Bi‖2|λ|

i

ě |λ|`
`

˜∥∥∥B´1
``

∥∥∥´1

2
´
ÿ

iăk

‖Bi‖2|λ|
i´``

¸

ě |λ|`
`

˜∥∥∥B´1
``

∥∥∥´1

2
´
ÿ

iăk

‖B``‖2α``´i
q |λ|i´`

`

¸

“ |λ|`
`
∥∥∥B´1

``

∥∥∥´1

2

˜

1´ κpB``q
ÿ

iăk

„

αq

|λ|

``´i
¸

“ |λ|`
`
∥∥∥B´1

``

∥∥∥´1

2

ˆ

1´ κpB``q
αq

|λ|´ αq

˙

ą 0

where the last inequality follows from the assumption |λ| ą p1` κpB`´qq αq. Hence,

we have the desired upper bound for |λ|.

5.3 tropicalization of analytic functions 197

If we have `´ ą ´8 and B`´ nonsingular, we can rewrite Fpzq as

Fpzq “ z`
´
pFpzq,

where pFpzq is a Taylor series (or a polynomial) with det pFp0q ‰ 0. Hence, we conclude

that Fpzq has an eigenvalue (or pole, depending on the sign of `´) of the desired

multiplicity. Applying the above reasoning to Fpz´1q yields the lower bound for the

remaining eigenvalues.

5.3.2 Practical computation of the Newton polygon

Given a tropical Laurent series, computing its Newton polygon may be challenging,

as the Graham-Scan algorithm [Gra72] could require an infinite number of compar-

isons. There are two strategies to overcome this problem. First, if the norm of the

coefficients Bj are easy to compute, we show that the finite truncations of the Newton

polygon of t̂ Fpxq converge in some sense to the infinite one. Second, we consider

the case where the Laurent series is given as an elementary function (for instance, the

exponential), of which we alter only a finite number of the coefficients. For instance,

in Chapter 1 we saw eigenvalue problems arising from delayed differential equations

that are polynomials in z and in ez [Jar12; JM10].

Theorem 5.18 (Truncation of the Newton polygon). Let F : Ω Ñ Cnˆn be a Laurent

function with Ω “
˝

ApR1, R2q and let t̂ Fpxq be its tropicalization. In addition, consider any

“right-finite” truncation t̂ Fdpxq “
À

0ďkďd ‖Bk‖2xk and let C2 ą 0 be a constant such that

‖Bk‖2 ă C2R´k
2 for any k ą 0. Then for any two consecutive indices i, j P Kt̂ Fd such that∥∥Bj

∥∥
2 ě ‖Bi‖2R´pj´iq

2 , let `2 be defined as

`2 :“
pj´ iq log C2 ` i log

∥∥Bj
∥∥

2 ´ j log ‖Bi‖2

pj´ iq log R2 ` log
∥∥Bj

∥∥
2 ´ log ‖Bi‖2

and suppose moreover that for all j` 1 ď k ď `2 it holds

‖Bk‖2 ď
∥∥Bj

∥∥ k´i
j´i
2 ‖Bi‖

´
k´j
j´i

2 . (5.13)

198 tropical roots of tropical laurent series

Then i, j are also consecutive indices in Kt̂ F.

Similarly, let t̂ F́ dpxq “
À

0ďkďd ‖B´k‖2x´k “left-finite” truncation and let C1 ą 0 be

a constant such that ‖B´k‖2 ă C1Rk
1 for any k ą 0. Then for any two consecutive indices

´i,´j P Kt̂ F́ d such that
∥∥B´j

∥∥
2 ě ‖B´i‖2Rj´i

1 , let `1 be defined as

`1 :“
pj´ iq log C1 ` i log

∥∥B´j
∥∥

2 ´ j log ‖B´i‖2

pi´ jq log R1 ` log
∥∥B´j

∥∥
2 ´ log ‖B´i‖2

and suppose moreover that for all j` 1 ď k ď `1 it holds

‖B´k‖2 ď
∥∥B´j

∥∥ k´i
j´i
2 ‖B´i‖

´
k´j
j´i

2 .

Then ´i, ´j are also consecutive indices in Kt̂ F.

Proof. Since log ‖Bk‖2 ď C2R´k
2 for k ą 0, the points pk, log ‖Bk‖2q lie below the line

L1 : y “ log C2 ´ x log R2. In addition, let

L2 : y “ log
∥∥Bj

∥∥
2 ` px´ jq

log
∥∥Bj

∥∥
2 ´ log ‖Bi‖2

j´ i

be the line containing the segment between pi, log ‖Bi‖2q and pj, log
∥∥Bj

∥∥
2q. Now we

want to prove that if this segment belongs to Nt̂ Fd , then it belongs to Nt̂ F. In order

to do that, we have to show that all the other points pk, log ‖Bk‖2q lie below L2. If

j` 1 ď k ď `2, then this condition is equivalent to (5.13). On the other hand, if k ě `2,

then we can prove that L2 lies above L1, and therefore above pk, log ‖Bk‖2q. We can

do this by noting that L2pkq ´ L1pkq ě L2p`2q ´ L1p`2q “ 0. Indeed, for the second

equality we have

pj´ iqpL2p`2q ´ L1p`2qq “ pj´ iq log
∥∥Bj

∥∥
2 ` p`2 ´ jqplog

∥∥Bj
∥∥

2 ´ log ‖Bi‖2q

` pi´ jq log C` `2pj´ iq log R2

“ pi´ jq log C` pj´ `2q log ‖Bi‖2

` p`2 ´ iq log
∥∥Bj

∥∥
2 ` `2pj´ iq log R2

“ pi´ jq log C` j log ‖Bi‖2 ´ i log
∥∥Bj

∥∥
2

` `2ppj´ iq log R2 ` log
∥∥Bj

∥∥
2 ´ log ‖Bi‖2q “ 0

5.3 tropicalization of analytic functions 199

by the definition of `2. For the first inequality, it is sufficient to prove that the slope

of L2 is larger than the slope of L1. This is equivalent to

´pj´ iq log R2 ď log
∥∥Bj

∥∥
2 ´ log ‖Bi‖2

which is true because
∥∥Bj

∥∥
2 ě ‖Bi‖2R´pj´iq

2 . The proof for the left truncation is

identical, providing changing the slope of L1 from ´ log R2 to log R1.

Consider now the case we are given the tropical roots pαjqjPT of a tropical Laurent

series t̂ f pxq, and we want to determine the tropical roots of a modified function

t̂ gpxq “ t̂ p f pxq ` ppxqq, where ppzq is a Laurent polynomial. The standard example

we have in mind is gpzq “ ez ` ppzq: the Newton polygon of t̂ pexq is the convex hull

of the nodes pj,´ log j!q, and the tropical polynomial t̂ ppxq only modifies a finite

number of these nodes. For sake of exposition, we assume that the cardinality of the

set I Ă Z of the nonzero indices bj is infinite. The case where I is finite in one or

both directions requires minimal modifications.

Since there is a one-to-one correspondence between the tropical roots and the New-

ton polygon, our problem is equivalent to update the latter thanks to the Graham scan

algorithm [Gra72]. Note that we can focus on the case where ppzq “ γ is a constant.

In fact, the case where ppzq is a monomial is a simple shift to the left or to the right,

while a general polynomial is just a finite number of compositions of these updates.

To summarise, our goal is, given the set of indices I of Nt̂ f pxq, constructing the

modified set of indices pI of Nt̂ gpxq. There are two ways we can do that.

‚ It may happen that pI and I only differ by a finite number of elements, hence

we can express pI by listing all of them.

‚ We get pI from I by dropping all the indices to the right (resp. to the left) of 0,

and then adding 0.

The intuition helps us find a way to proceed:

‚ If log γ lies below the Newton polygon in 0, we simply stop and do not include

p0, log γq in the nodes. Otherwise, we include 0 in pI and move to the next point.

200 tropical roots of tropical laurent series

Figure 5.5: Lines considered by the Graham Scan algorithm in Example 5.6. The algorithm
does not terminate within a finite number of slope comparisons.

‚ We start from i “ 1 and compare the slope of the segment between p0, log γq

and pji, log bjiq, with pji`1, log bji`1q. If the latter slope is smaller, or ji is the

last index in I , then we stop. Otherwise, we remove the index ji from I , and

consider the next indices in the previous point.

The previous paragraphs describe the algorithm for the points on the right of

p0, log γq, and the same procedure needs to be repeated for the indices on the left.

However, if the cardinality of I is infinite, we may have to perform an infinite amount

of comparisons, as the following example shows.

Example 5.6. Consider the function

f pzq “
8
ÿ

j“1

e
j´1

j zj.

and its associated tropical series t̂ f pxq. The nodes of the Newton polygon are pj, 1´ j´1q and

they belong to the upper convex hull, as we show in Figure 5.5 (dashed red line). If we modify

this function and consider

gpzq “ e` f pzq,

then we need to add the node p0, 1q to the convex hull. If we connect it to pj, 1´ j´1q, we obtain

a sequence of lines of increasing slope (dotted green line), that converges to the horizontal line

y “ 1. However, the Graham-Scan algorithm does not terminate in a finite number of steps.

The final convex hull correspond to ty ď 1u, and is depicted by the blue solid line.

It seems that we cannot exclude that the Graham scan works in these settings.

However, we can prove the case we just described is the only way it can go wrong.

5.3 tropicalization of analytic functions 201

Theorem 5.19. Let pj, log bjq be the nodes of a Newton polygon, j P I Ď Z; similarly, let pI

be the set of indices corresponding to vertices of the Newton polygon for

pbj “

$

’

’

&

’

’

%

γ if j “ 0

bj otherwise
.

Then, if any of the following conditions hold, the Graham-scan algorithm applied to the right

of 0 terminates within a finite number of steps.

1. α8 “ 8,

2. α8 ă 8 and lim supjPI
“

log
`

bj
˘

´ j log α8
‰

ą log γ.

In the remaining case, i.e., α8 ă 8 but the second condition is not satisfied, it follows that

pI X tj ě 0u “ t0u, and the root at zero has infinite multiplcity.

Proof. First, consider the case α8 “ 8. If there is a finite number of tropical roots,

then the thesis is clearly true; otherwise, α8 “ 8 means that the tropical roots are

unbounded. In particular, the Graham scan algorithm compares the slopes defined

by the sequences:

si :“
log bji ´ log γ

ji
, ti :“

log bji`1 ´ log bj

ji`1 ´ ji
,

and stops as soon as si ě ti. We point out that, as long as this condition does not

hold, the sequence si is increasing, since the “next” node pji`1, log bji`1q is above the

line passing through p0, log γq and pji, log bjiq. This situation is visible, for instance, in

Figure 5.5, where none of the lines satisfies the condition, and hence the slopes keep

increasing. In contrast, the sequence ti converges to ´8. Hence, there exists a finite

index i where si ě ti, and where the condition is satisfied.

If α8 ă 8, without loss of generality we can set log α8 “ 0, and therefore α8 “ 1:

we just need to modify the function f pzq by scaling the variable as f pα´1
8 zq, which

yields the Laurent coefficients bjα
´j
8 . With this choice, the slope of the segments in the

tropical roots converges to 0, and the plot is “asymptotically flat”. In addition, all the

slopes are non-negative, and therefore the sequence of log bj is non-decreasing. We

202 tropical roots of tropical laurent series

now define ξ :“ limjÑ8 log bj, and we distinguish two subcases, one where ξ ą log γ,

and the other where ξ ď log γ. If ξ ą log γ, then there exists one point pj, log bjq

such that the slope of the segment connecting p0, log γq to it is strictly positive, and

this also holds for all the following points, since the bj are non-decreasing. We now

use the same argument as before: the sequences of slopes si and ti are such that si is

non-decreasing as long as the stopping condition is not satisfied, and ti Ñ 0. Hence,

the algorithm terminates in a finite number of steps. If ξ ď log γ, the horizontal

line starting from p0, log γq lies above all other points, but any other line passing

through the same point and with negative slope necessarily intersects the previous

Newton polygon. Hence, 0 is a tropical roots of infinite multiplicity, and all nodes

with positive indices need to be removed. The statement then follows by rephrasing

the claim on the original bj, for a generic log α8 ‰ 0.

5.4 applications

In this final section we consider two possible applications of our results. We start

by considering the problem of finding inclusion sets for the eigenvalues of a Laurent

function. We assume that a known series is modified in a finite number of spots and

we exploit Theorem 5.19. For sake of simplicity, we work in the scalar scenario.

Example 5.7. We consider

gpzq “ ez ` ppzq, ppzq :“ 12z´
z2

5
` 12z3 ´ 0.04z4 ` 10´3z5 ´ 0.002z6.

As previously stated, the Newton polygon for ez is composed of all the nodes pj,´ log j!q, for

j P Z. Hence, we may apply Theorem 5.19 to compute the Newton polygon for f pzq, and then

use Theorem 5.16 to construct inclusion results. The Newton polygon yields the following

inclusions:

5.4 applications 203

0 5 10 15
-30

-25

-20

-15

-10

-5

0

5

(a)

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b)

Figure 5.6: In Figure 5.6a the Newton polygon of t̂ ex (in blue) and the one associated with
t̂ gpxq (in red). In Figure 5.6b the exclusion annuli obtained from Theorem 5.16

and the approximated roots.

‚ The open disc of radius r « 0.038 and centered at zero, corresponding to the slope of

the first segment of the Newton polygon, does not contain any root, as predicted by

Theorem 5.17.

‚ Similarly, the annulus
˝

Ap0.174, 4.59q does not contain any root; in addition, there

is exactly one root in the disc of radius 0.174, very close to the boundary of the disc

mentioned above.

‚ Finally, the annulus
˝

Ap2.40, 5.27q does not contain roots, and there are exactly two

roots in the annulus Ap4.59, 5.27q.

These inclusions are displayed in the right plot of Figure 5.6.

Example 5.8. Let

f pzq “ ez ` e
1
z ´ 1,

and let fnpzq “
řn

j“´n bjzj be a truncation of f pzq expressed as a Laurent series. Consider

the function gpzq “ fnpzq ` ppzq where ppzq is the Laurent polynomial defined by

ppzq :“ e6z´9 ` e12z´3 ` e` e2z2 ` e´10z4 ` e´14z5 ` e´20z5.

204 tropical roots of tropical laurent series

-50 0 50
-140

-120

-100

-80

-60

-40

-20

0

20

(a)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b)

Figure 5.7: In Figure 5.7a the Newton polygon of t̂ f45pxq (in blue) and the one associated
with t̂ gpxq (in red). In Figure 5.7b the exclusion annuli obtained from Theo-
rem 5.16 and the approximated roots.

Similarly to Example 5.7, the Newton Polygon for t̂ f pxq is easily determined, and is com-

posed by the nodes of coordinates pj,´ logp|j|!qq for |j| ă n. Here, we set n “ 45 and

computed numerically the updated Newton polygon using Theorem 5.19. This yields a New-

ton polygon with fewer nodes, with the following inclusion/exclusion annuli:

‚ The annulus A1 :“
˝

Ap0.05, 0.17q does not contain any root, and the disc inside it

contains 34 roots minus poles.

‚ The annulus A2 “
˝

Ap0.79, 3.41q does not contain any root, and exactly 6 roots are

contained between A1 and A2.

The inclusions, and the corresponding roots, are visible in Figure 5.7.

In this second set of examples we go back to the origin story of this chapter. In

Section 3.4 we focused on how important the quadrature rule is for the contour in-

tegral algorithms. Nevertheless theoretical results on how to choose the number of

quadrature points N are still in an early stage. In the example of Section 3.4.1 we

witnessed how the relative errors between two quadrature approximations with an

increasing number of points is not a good metric to predict the final backward error

of the eigenpairs. Later, we saw how Van Barel and Kravanja associated a filter func-

tion b0pzq to the trapezoidal quadrature rule on Ω [Van16; VK16]. They explained

that the quality of the approximation depends not only on the number of quadrature

5.4 applications 205

points N, but also on the distance between BΩ and the eigenvalues outside Ω. Fur-

thermore, we proved that their analysis easily extends to the meromorphic case and

we derived a link between the quadrature parameters in the Loewner interpretation

(see Equation (3.19)). Unfortunately, at the time we did not have the tool to provide

a similar result for the classical interpretation of Beyn’s algorithm. We simply wrote

that if the eigenvalues lie near BΩ, then the contour algorithms need several quadra-

ture points N, while we can set N to be quite small (e.g., N “ 4, 8) in the opposite

scenario. Theorem 5.16 is the perfect tool for this task. Under its hypotheses, the

annuli of exclusion can help us set the optimal number of quadrature points N for a

specific eigenvalue problem. The same idea can be applied in the polynomial eigen-

value problems by using its original version [NST15, Theorem 2.7]. The following

examples will clarify the procedure.

Example 5.9. Consider a matrix polynomial Ppzq “
ř4

j“0 B0zj generated with the Matlab

commands

rng(42); n = 20;

B0 = randn(n); B1 = 1e5*randn(n);

B2 = randn(n); B3 = 1e-2*randn(n); B4 = 1e3*randn(n);

The associated tropical polynomial t̂ Ppzq (using the spectral norm) has two roots

α1 “ ‖B0‖2{‖B1‖2 « 10´5, α2 “ p‖B1‖2{‖B4‖2q
1{3 « 4.8

of multiplicity 1 and 3, respectively. It holds that δ1 ! p1` 2κpB0qq
´2 « 10´5, hence there

are 20 eigenvalues in Dpp1` 2κpB0qqα0q, and no eigenvalues in the annulus

˝

App1` 2κpB0qqα0, p1` 2κpB0qq
´1α1q «

˝

Ap0.0012, 0.039q.

If we are interested in the eigenvalues inside Ω “ Dpp1` 2κpB0qqα1q :“ Dprq, then we can

set N “ 10, given that

b0pzq “
1

1´ p z
r q

12 « Op10´16q

206 tropical roots of tropical laurent series

when |z| « 0.039. In fact, our contour solver (without any refinement) returns all the

eigenvalues with a backward error of the order of machine precision.

Example 5.10. Consider again the polynomial Ppzq of Example 5.9 and the holomorphic

function Fpzq “ zI ` e´zB, where B P R20ˆ20 is a randomly generated matrix. We want to

find the tropical roots of t̂ pPpxq ` Fpxqq :“ t̂ Gpxq. Note that t̂ Gpxq “ supjPN

∥∥Cj
∥∥

2xj

with

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Cj “ Bj `
B
j!

, for j “ 0, 2, 3,

C1 “ B1 ` B` I,

Cj “
B
j!

, for j ą 4.

In Figure 5.8 we plotted the Newton polygon for t̂ Gpxq. There we can see the first three

tropical roots

α1 “ ‖C0‖2{‖C1‖2 « 2 ¨ 10´5,

α2 “ p‖C1‖2{‖C4‖2q
1{3 « 4.8,

α3 “ p‖C4‖2{‖C21‖2q
1{17 « 21.3.

By following the same steps of Example 5.9, we can compute p1`2κpC0qqα1 « 0.004 and p1`

2κpC0qq
´1α2 « 0.025 and we infer there are 20 eigenvalues in Dp0.004q and no eigenvalues

in
˝

Ap0.004, 0.025q. Hence we can set N “ 18 so that b0pzq “ Op10´15q for |z| « 0.025.

Once again, our contour solver returns all the 20 eigenvalues to machine precision without

any refinement.

5.5 final remarks

In this chapter we generalised the concept of tropical roots to Laurent series t̂ f pxq.

We showed that, in order to have a consistent theoretical system, the tropical roots of

t̂ f pxq consist not only of the points of nondifferentiability, but also of the extrema of

5.5 final remarks 207

0 2 4 6 8 10 12 14 16 18 20 22
-50

-40

-30

-20

-10

0

10

Figure 5.8: The (truncated) Newton polygon of t̂ Gpxq. We can see the first 3 tropical roots.

the interval where t̂ f pxq is a real-valued function. Later we expanded the localisation

results stated for scalar polynomials in [Sha11] and for matrix-valued polynomials

in [NST15]. In addition, we showed how to update the Newton polygon of a Laurent

function t̂ f pxq to obtain the Newton polygon of t̂ p f pxq ` ppxqq, where ppzq is a

polynomial, and we proved that the strategy terminates almost surely. Finally, we

linked these localisation results to contour algorithm solvers and we described how

one can use the annuli of exclusions to select the number of quadrature points in

Beyn’s algorithm and its interpretation under the right hypotheses.

6 CONCLUS IONS

The main goal of this thesis was the development of a general solver for holomorphic

and meromorphic eigenvalue problems of the form Fpλqv “ 0 for all the λ in a target

region Ω. Previous works on this subject divided the solvers in three categories: the

ones based on the Newton method, the ones based on rational approximations, and

the ones based on contour integral solvers. Here we focused on the latter two classes,

since the Newton method does not allow natively to return all the eigenvalues in Ω.

In Chapter 2 we analysed the generalisation of contour integral solvers to meromor-

phic eigenvalue problems, which up to now were only used in the holomorphic case.

We proved that under “real-life” hypotheses, an everyday user would not distinguish

whether the underlying function Fpzq is holomorphic or meromorphic; nevertheless,

we also showed that in the general case a contour solver may return some of the poles

of Fpzq as its eigenvalues.

Chapter 3 is the ideal continuation of Chapter 2. After having generalised the

theoretical results to meromorphic functions, we aimed to develop an algorithm for

mid-sized nonlinear eigenvalue problems. In fact, nowadays many algorithms for

large-scale problems plan to project them on smaller ones, and then tackle them with

another solver. Nevertheless, such an algorithm for a general nonlinear eigenvalue

problem was still missing, therefore we put particular emphasis on the automatic

choice of the parameters, and on its ability to return eigenvalues with the desired

backward error. When the contour solver is not able to fulfil its duty, a couple of steps

of the Newton method are used to refine the results. In the future we should focus

on interweaving the algorithm with the theory of Chapter 5 and on implementing it

in a faster way, exploiting its parallelisable nature. In addition, other authors have

been working on similar algorithms: among them, we recall Krenner and Polizzi

who developed a hybrid algorithm between NLFEAST and Beyn’s approach [BP20].

208

conclusions 209

Therefore future works should focus on understanding which path is the best to

follow.

In Chapter 4 we contributed to the algorithms based on rational approximations.

These eigensolvers require two main steps: first, one must approximate in some

sense the original function Fpzq with a rational function Rpzq; then, one must solve

the approximate eigenproblem Rpλqv “ 0. There, we focused on the former step,

with the idea that the quality of these eigensolvers depends primarily on the initial

approximation. We developed a precise error analysis for the backward error of the

approximated eigenpairs and with this in mind we proposed two robust approxima-

tion algorithms, one for functions expressed in split form, the other for functions ex-

pressed in black-box form. The former, named weighted AAA, is an enhancement of

the set-valued AAA algorithm, which considers the norms of the matrix coefficients

to return an approximant with the same precision, but lower degree. The latter is a

two-step algorithm which uses the surrogate AAA algorithm in the first phase and

then refines the approximant with a Leja–Bagby sampling. In this way we combine

together the ability of AAA of not using prescribed poles and the robust convergence

of the Leja–Bagby sampling. Future works on this subject should concentrate on the

solution of the approximated eigenproblem. For this thesis we have leaned on either

the commands eig or eigs from Matlab, and thus a more careful implementation of

the linear eigensolver should return better results.

Finally, we dedicated Chapter 5 to tropical algebra. The origin of this chapter lay

in the problem of finding a suitable number of quadrature points for the contour

solvers of Chapter 3. We thought that the annuli of exclusion derived from tropical

roots were good candidates to solve this issue under suitable hypotheses. On one

hand, up to this moment the theory was developed only for polynomials; on the

other hand, after a careful analysis of [NST15], it seemed really plausible that the

same results would hold in the meromorphic case. As it usually happens in these

situations, this was almost true: the generalisation was not exactly straightforward

and it needed many details to be fixed. Nevertheless, there is always a bright side: we

understood the deep relationship between tropical roots and the radii of convergence

210 conclusions

of Laurent series and we discovered more results than initially planned. Future works

can focus on applications where tropical roots of polynomials are already in use, but

the generalisation to meromorphic functions would be useful.

This marks the end of the thesis and it seems a nice place to stop. On a more

personal side, writing this thesis up was the perfect closure of my PhD in Manchester:

dear reader, if you have arrived at this point, I hope that going through this work

brought you at least half the pleasure that completing it brought to me.

B IBL IOGRAPHY

[ACL09] A. Amiraslani, R. M. Corless, and P. Lancaster. “Linearization of matrix

polynomials expressed in polynomial bases.” In: IMA J. Numer. Anal. 29.1

(2009), pp. 141–157.

[ACL95] A. L. Andrew, E. K. Chu, and P. Lancaster. “On the numerical solution of

nonlinear eigenvalue problems.” In: Computing 55.2 (1995), pp. 91–111.

[AF21] M. J. Ablowitz and A. S. Fokas. Introduction to complex variables and appli-

cations. Cambridge Texts in Applied Mathematics. Cambridge University

Press, Cambridge, 2021, pp. viii+411.

[AGL08] M. Akian, S. Gaubert, and A. Lakhoua. “The max-plus finite element

method for solving deterministic optimal control problems: basic prop-

erties and convergence analysis.” In: SIAM Journal on Control and Opti-

mization 47.2 (2008), pp. 817–848.

[Ant11] P. Antunes. “On the buckling eigenvalue problem.” In: Journal of Physics

A: Mathematical and Theoretical 44 (Apr. 2011), p. 215205.

[AS01] A. C. Antoulas and D. C. Sorensen. “Approximation of large-scale dy-

namical systems: an overview.” In: vol. 11. 5. Numerical analysis and

systems theory (Perpignan, 2000). 2001, pp. 1093–1121.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with

formulas, graphs, and mathematical tables. Vol. 55. National Bureau of Stan-

dards Applied Mathematics Series. For sale by the Superintendent of

Documents, U.S. Government Printing Office, Washington, D.C., 1964,

pp. xiv+1046.

[Asa+09] J. Asakura et al. “A numerical method for nonlinear eigenvalue prob-

lems using contour integrals.” In: JSIAM Lett. 1 (2009), pp. 52–55.

211

212 bibliography

[Asa+10] J. Asakura et al. “A numerical method for polynomial eigenvalue prob-

lems using contour integral.” In: Jpn. J. Ind. Appl. Math. 27.1 (2010),

pp. 73–90.

[AT11] H. Avron and S. Toledo. “Randomized algorithms for estimating the

trace of an implicit symmetric positive semi-definite matrix.” In: J. ACM

58.2 (2011), Art. 8, 17.

[AV06] D. Arthur and S. Vassilvitskii. “How Slow is the k-Means Method?” In:

Proceedings of the Twenty-Second Annual Symposium on Computational Ge-

ometry. SCG ’06. Sedona, Arizona, USA: Association for Computing Ma-

chinery, 2006, pp. 144–153. isbn: 1595933409.

[Bac+92] F. L. Baccelli et al. Synchronization and linearity: an algebra for discrete event

systems. Wiley Series in Probability and Mathematical Statistics: Proba-

bility and Mathematical Statistics. An algebra for discrete event systems.

John Wiley & Sons, Ltd., Chichester, 1992, pp. xx+489.

[Bag67] T. Bagby. “The Modulus of a Plane Condenser.” In: Journal of Mathematics

and Mechanics 17.4 (1967), pp. 315–329.

[Bag69] T. Bagby. “On interpolation by rational functions.” In: Duke Math. J. 36

(1969), pp. 95–104.

[BEG20] M. C. Brennan, M. Embree, and S. Gugercin. “Contour Integral Methods

for Nonlinear Eigenvalue Problems: A Systems Theoretic Approach.” In:

(2020). arXiv: 2012.14979 [math.NA].

[BEK11] W.-J. Beyn, C. Effenberger, and D. Kressner. “Continuation of eigenval-

ues and invariant pairs for parameterized nonlinear eigenvalue prob-

lems.” In: Numer. Math. 119.3 (2011), pp. 489–516.

[Bet+11] T. Betcke et al. NLEVP: A Collection of Nonlinear Eigenvalue Problems.

MIMS EPrint 2011.116. UK: Manchester Institute for Mathematical Sci-

ences, The University of Manchester, Dec. 2011, p. 27.

https://arxiv.org/abs/2012.14979

bibliography 213

[Bet08] T. Betcke. “Optimal Scaling of Generalized and Polynomial Eigenvalue

Problems.” In: SIAM J. Matrix Analysis Applications 30 (Jan. 2008), pp. 1320–

1338.

[Bey12] W.-J. Beyn. “An integral method for solving nonlinear eigenvalue prob-

lems.” In: Linear Algebra Appl. 436.10 (2012), pp. 3839–3863.

[Bin96] D. A. Bini. “Numerical computation of polynomial zeros by means of

Aberth’s method.” In: Numerical Algorithms 13 (Feb. 1996), pp. 179–200.

[BN13] D. A. Bini and V. Noferini. “Solving polynomial eigenvalue problems by

means of the Ehrlich–Aberth method.” In: Linear Algebra and its Applica-

tions 439.4 (2013). 17th Conference of the International Linear Algebra

Society, Braunschweig, Germany, August 2011, pp. 1130–1149.

[BNS13] D. A. Bini, V. Noferini, and M. Sharify. “Locating the eigenvalues of

matrix polynomials.” In: SIAM Journal on Matrix Analysis and Applications

34.4 (2013), pp. 1708–1727.

[BP20] J. Brenneck and E. Polizzi. An Iterative Method for Contour-Based Nonlinear

Eigensolvers. 2020. arXiv: 2007.03000 [math.NA].

[Bra06] M. Brand. “Fast low-rank modifications of the thin singular value de-

composition.” In: Linear Algebra Appl. 415.1 (2006), pp. 20–30.

[Bre18] M. C. Brennan. “Rational Interpolation Methods for Nonlinear Eigen-

value Problems.” PhD thesis. Virginia Tech, 2018.

[But10] P. Butkovič. Max-linear systems: theory and algorithms. Springer Science &

Business Media, 2010.

[BW73] K.-J. Bathe and E. L. Wilson. “Solution methods for eigenvalue problems

in structural mechanics.” In: International Journal for Numerical Methods in

Engineering 6.2 (1973), pp. 213–226.

[Car95] H. Cartan. Elementary theory of analytic functions of one or several complex

variables. Translated from the French, Reprint of the 1973 edition. Dover

Publications, Inc., New York, 1995, p. 228.

https://arxiv.org/abs/2007.03000

214 bibliography

[Cha+19] E. Y. S. Chan et al. “Algebraic linearizations of matrix polynomials.” In:

Linear Algebra Appl. 563 (2019), pp. 373–399.

[Che+17] H. Chen et al. “Improving the numerical stability of the Sakurai-Sugiura

method for quadratic eigenvalue problems.” In: JSIAM Lett. 9 (2017),

pp. 17–20.

[Che98] E. W. Cheney. Introduction to approximation theory. Reprint of the second

(1982) edition. AMS Chelsea Publishing, Providence, RI, 1998, pp. xii+259.

isbn: 0-8218-1374-9.

[CK20] A. Cortinovis and D. Kressner. On randomized trace estimates for indefi-

nite matrices with an application to determinants. 2020. arXiv: 2005.10009

[math.NA].

[CM80] R. A. Cuninghame-Green and P. F. J. Meijer. “An algebra for piecewise-

linear minimax problems.” In: Discrete Appl. Math. 2.4 (1980), pp. 267–

294.

[CR19] C. Campos and J. E. Roman. NEP: a module for the parallel solution of

nonlinear eigenvalue problems in SLEPc. 2019.

[Dav97] T. A. Davis. “The University of Florida sparse matrix collection.” In: NA

DIGEST (1997).

[DH11] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collec-

tion.” In: ACM Trans. Math. Softw. 38.1 (Dec. 2011).

[DPS16] E. Di Napoli, E. Polizzi, and Y. Saad. “Efficient estimation of eigenvalue

counts in an interval.” In: Numerical Linear Algebra with Applications 23.4

(2016), pp. 674–692.

[DR07] P. J. Davis and P. Rabinowitz. Methods of numerical integration. Corrected

reprint of the second (1984) edition. Dover Publications, Inc., Mineola,

NY, 2007, pp. xii+612.

[Eff13] C. Effenberger. “Robust successive computation of eigenpairs for non-

linear eigenvalue problems.” In: SIAM J. Matrix Anal. Appl. 34.3 (2013),

pp. 1231–1256.

https://arxiv.org/abs/2005.10009
https://arxiv.org/abs/2005.10009

bibliography 215

[EG19] S. Elsworth and S. Güttel. “Conversions between barycentric, RKFUN,

and Newton representations of rational interpolants.” In: Linear Algebra

Appl. 576 (2019), pp. 246–257.

[EMS20] M. El-Guide, A. Miedlar, and Y. Saad. “A rational approximation method

for solving acoustic nonlinear eigenvalue problems.” In: Engineering Anal-

ysis with Boundary Elements 111 (Feb. 2020), pp. 44–54.

[Fra61a] J. G. F. Francis. “The QR transformation: a unitary analogue to the LR

transformation. I.” In: Comput. J. 4 (1961), pp. 265–271.

[Fra61b] J. G. F. Francis. “The QR transformation. II.” In: Comput. J. 4 (1961),

pp. 332–345.

[Fro69] M. Froissart. “Approximation de Padé: application à la physique des

particules élémentaires.” In: RCP, Programme No. 25. Vol. 9. CNRS, Stras-

bourg, 1969, pp. 1–13.

[Fro79] F. G. Frobenius. “Theorie der linearen Formen mit ganzen Coefficienten.”

In: J. Reine Angew. Math. 86 (1879), pp. 146–208.

[GJW82] M. R. Garey, D. S. Johnson, and H. Witsenhausen. “The complexity of the

generalized Lloyd–Max problem.” In: IEEE Transactions on Information

Theory 28.2 (1982), pp. 255–256.

[GMP18] B. Gavin, A. Międlar, and E. Polizzi. “FEAST eigensolver for nonlinear

eigenvalue problems.” In: J. Comput. Sci. 27 (2018), pp. 107–117.

[GR04] H. Guo and R. A. Renaut. “Estimation of uT f pAqv for large-scale un-

symmetric matrices.” In: Numer. Linear Algebra Appl. 11.1 (2004), pp. 75–

89.

[Gra72] R. L. Graham. “An efficient algorithm for determining the convex hull

of a finite planar set.” In: Info. Pro. Lett. 1 (1972), pp. 132–133.

[GS09] S. Gaubert and M. Sharify. “Tropical scaling of polynomial matrices.” In:

Positive systems. Vol. 389. Lect. Notes Control Inf. Sci. Springer, Berlin,

2009, pp. 291–303.

216 bibliography

[GS71] I. C. Gohberg and E. I. Sigal. “An operator generalization of the logarith-

mic residue theorem and Rouché’s theorem.” In: Mat. Sb. (N.S.) 84(126)

(1971), pp. 607–629.

[GT17] S. Güttel and F. Tisseur. “The nonlinear eigenvalue problem.” In: Acta

Numer. 26 (2017), pp. 1–94.

[Güt+14] S. Güttel et al. “NLEIGS: A Class of Fully Rational Krylov Methods for

Nonlinear Eigenvalue Problems.” In: SIAM Journal on Scientific Comput-

ing 36.6 (2014), A2842–A2864.

[Güt13] S. Güttel. “Rational Krylov approximation of matrix functions: Numer-

ical methods and optimal pole selection.” In: GAMM Mitteilungen 36

(Aug. 2013).

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. Third. The Johns

Hopkins University Press, 1996.

[GW06] K. Green and T. Wagenknecht. “Pseudospectra and delay differential

equations.” In: J. Comput. Appl. Math. 196.2 (2006), pp. 567–578.

[Had67] K. P. Hadeler. “Mehrparametrige und nichtlineare Eigenwertaufgaben.”

In: Arch. Rational Mech. Anal. 27 (1967), pp. 306–328.

[HBS10] X. Huang, Z. Bai, and Y. Su. “Nonlinear rank-one modification of the

symmetric eigenvalue problem.” In: J. Comput. Math. 28.2 (2010), pp. 218–

234.

[Hig08] N. J. Higham. Functions of matrices. Theory and computation. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008,

pp. xx+425. isbn: 978-0-89871-646-7.

[Hig90] N. J. Higham. “Analysis of the Cholesky decomposition of a semi-definite

matrix.” In: in Reliable Numerical Computation. Oxford University Press,

1990, pp. 161–185.

[HL08] S. Hammarling and C. Lucas. “Updating the QR factorization and the

least squares problem.” In: MIMS Eprint (2008).

bibliography 217

[HMT13] S. Hammarling, C. J. Munro, and F. Tisseur. “An algorithm for the com-

plete solution of quadratic eigenvalue problems.” In: ACM Trans. Math.

Software 39.3 (2013), Art. 18, 19.

[HNT19] N. J. Higham, G. M. Negri Porzio, and F. Tisseur. An Updated Set of Non-

linear Eigenvalue Problem. MIMS EPrint 2019.05. UK: Manchester Insti-

tute for Mathematical Sciences, The University of Manchester, Mar. 2019,

p. 26.

[Hoc17] A. Hochman. “FastAAA: A fast rational-function fitter.” In: 2017 IEEE

26th Conference on Electrical Performance of Electronic Packaging and Systems

(EPEPS). 2017, pp. 1–3.

[HSY17] R. Huang, J. Sun, and C. Yang. “Recursive Integral Method with Cay-

ley Transformation.” In: Numerical Linear Algebra with Applications (May

2017).

[HT03] N. J. Higham and F. Tisseur. “Bounds for eigenvalues of matrix polyno-

mials.” In: Linear algebra and its applications 358.1-3 (2003), pp. 5–22.

[Hua+16] R. Huang et al. “Recursive integral method for transmission eigenval-

ues.” In: Journal of Computational Physics 327 (2016), pp. 830–840.

[Hua19] R. Huang. “Novel Computation Methods for Eigenvalue Problems.” PhD

thesis. Michigan Technological University, 2019.

[Hut90] M. F. Hutchinson. “A stochastic estimator of the trace of the influence

matrix for Laplacian smoothing splines.” In: Comm. Statist. Simulation

Comput. 19.2 (1990), pp. 433–450.

[Ips97] I. C. F. Ipsen. “Computing an eigenvector with inverse iteration.” In:

SIAM Rev. 39.2 (1997), pp. 254–291.

[Jar+18] E. Jarlebring et al. NEP-PACK: A Julia package for nonlinear eigenproblems.

Available at https://github.com/nep-pack. 2018.

[Jar12] E. Jarlebring. “Convergence factors of Newton methods for nonlinear

eigenvalue problems.” In: Linear Algebra Appl. 436.10 (2012), pp. 3943–

3953.

218 bibliography

[JM10] E. Jarlebring and W. Michiels. “Invariance properties in the root sensitiv-

ity of time-delay systems with double imaginary roots.” In: Automatica

J. IFAC 46.6 (2010), pp. 1112–1115.

[Kar00] S. V. Kartalopoulos. Introduction to DWDM technology: data in a rainbow.

SPIE Optical Engineering Press, 2000.

[Kel71] M. V. Keldysh. “The completeness of eigenfunctions of certain classes

of nonselfadjoint linear operators.” In: Uspehi Mat. Nauk 26.4(160) (1971),

pp. 15–41.

[KM99] V. Kozlov and V. Maz’ja. Differential equations with operator coefficients

with applications to boundary value problems for partial differential equations.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1999.

[Kub61] V. N. Kublanovskaja. “Certain algorithms for the solution of the com-

plete problem of eigenvalues.” In: Soviet Math. Dokl. 2 (1961), pp. 17–19.

[Kub70] V. N. Kublanovskaya. “On an approach to the solution of the generalized

latent value problem for λ-matrices.” In: SIAM J. Numer. Anal. 7 (1970),

pp. 532–537.

[Lan02] P. Lancaster. Lambda-matrices and vibrating systems. Reprint of the 1966

original [Pergamon Press, New York; MR0210345 (35 #1238)]. Dover Pub-

lications, Inc., Mineola, NY, 2002, pp. xx+193. isbn: 0-486-42546-0.

[LC56] R. K. Livesley and D. B. Chandler. “Stability Functions for Structural

Frameworks.” In: Manchester University Press (1956).

[Lie+18] P. Lietaert et al. “Automatic rational approximation and linearization of

nonlinear eigenvalue problems.” In: arXiv e-prints, arXiv:1801.08622 (Jan.

2018), arXiv:1801.08622.

[LK90] C. S. Lent and D. J. Kirkner. “The quantum transmitting boundary method.”

In: Journal of Applied Physics 67.10 (1990), pp. 6353–6359.

[LS06] E. Levin and E. B. Saff. “Potential theoretic tools in polynomial and ra-

tional approximation.” In: Harmonic analysis and rational approximation.

Vol. 327. Lect. Notes Control Inf. Sci. Springer, Berlin, 2006, pp. 71–94.

bibliography 219

[LS94] E. Levin and E. B. Saff. “Optimal ray sequences of rational functions

connected with the Zolotarev problem.” In: Constr. Approx. 10.2 (1994),

pp. 235–273.

[Mac+06a] D. S. Mackey et al. “Structured polynomial eigenvalue problems: good

vibrations from good linearizations.” In: SIAM J. Matrix Anal. Appl. 28.4

(2006), pp. 1029–1051.

[Mac+06b] D. S. Mackey et al. “Vector spaces of linearizations for matrix polynomi-

als.” In: SIAM J. Matrix Anal. Appl. 28.4 (2006), pp. 971–1004.

[McE06] W. M. McEneaney. Max-plus methods for nonlinear control and estimation.

Springer Science & Business Media, 2006.

[Mel13] A. Melman. “Generalization and variations of Pellet’s theorem for matrix

polynomials.” In: Linear Algebra and its Applications 439.5 (2013), pp. 1550–

1567.

[MFS11] Y. Maeda, Y. Futamura, and T. Sakurai. “Stochastic estimation method

of eigenvalue density for nonlinear eigenvalue problem on the complex

plane.” In: JSIAM Lett. 3 (2011), pp. 61–64.

[MM03] R. Mennicken and M. Möller. Non-self-adjoint boundary eigenvalue prob-

lems. Vol. 192. North-Holland Mathematics Studies. North-Holland Pub-

lishing Co., Amsterdam, 2003, pp. xviii+500. isbn: 0-444-51447-3.

[MN07] W. Michiels and S.-I. Niculescu. Stability and stabilization of time-delay sys-

tems. Vol. 12. Advances in Design and Control. An eigenvalue-based ap-

proach. Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia, PA, 2007, pp. xxii+378. isbn: 978-0-898716-32-0.

[MNV09] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. “The Planar k-Means

Problem is NP-Hard.” In: WALCOM: Algorithms and Computation. Ed. by

S. Das and R. Uehara. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 274–285. isbn: 978-3-642-00202-1.

[Mor20] K. Morikuni. Projection method for interior eigenproblems of linear nonsquare

matrix pencils. 2020.

220 bibliography

[MS73] C. B. Moler and G. W. Stewart. “An Algorithm for Generalized Matrix

Eigenvalue Problems.” In: SIAM Journal on Numerical Analysis 10.2 (1973),

pp. 241–256.

[NST15] V. Noferini, M. Sharify, and F. Tisseur. “Tropical roots as approximations

to eigenvalues of matrix polynomials.” In: SIAM J. Matrix Anal. Appl. 36.1

(2015), pp. 138–157.

[NST18] Y. Nakatsukasa, O. Sète, and L. N. Trefethen. “The AAA algorithm for

rational approximation.” In: SIAM J. Sci. Comput. 40.3 (2018), A1494–

A1522.

[Ors71] S. A. Orszag. “Accurate solution of the Orr–Sommerfeld Stability Equa-

tion.” In: J. Fluid Mech. 50.4 (1971), pp. 689–703.

[Pol09] E. Polizzi. “Density-matrix-based algorithm for solving eigenvalue prob-

lems.” In: Phys. Rev. B 79 (11 Mar. 2009), p. 115112.

[RA15] F. Roosta-Khorasani and U. Ascher. “Improved bounds on sample size

for implicit matrix trace estimators.” In: Found. Comput. Math. 15.5 (2015),

pp. 1187–1212.

[Roc70] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28.

Princeton University Press, Princeton, N.J., 1970, pp. xviii+451.

[RST05] J. Richter-Gebert, B. Sturmfels, and T. Theobald. “First steps in tropical

geometry.” In: Contemporary Mathematics 377 (2005), pp. 289–318.

[Ruh73] A. Ruhe. “Algorithms for the nonlinear eigenvalue problem.” In: SIAM

J. Numer. Anal. 10 (1973), pp. 674–689.

[SB11] Y. Su and Z. Bai. “Solving rational eigenvalue problems via lineariza-

tion.” In: SIAM J. Matrix Anal. Appl. 32.1 (2011), pp. 201–216.

[SFT13] T. Sakurai, Y. Futamura, and H. Tadano. “Efficient parameter estimation

and implementation of a contour integral-based eigensolver.” In: Journal

of Algorithms & Computational Technology 7.3 (2013), pp. 249–269.

[Sha11] M. Sharify. “Scaling Algorithms and Tropical Methods in Numerical Ma-

trix Analysis.” PhD thesis. École Polytechnique, 2011.

bibliography 221

[Sim78] I. Simon. “Limited subsets of a free monoid.” In: 19th Annual Symposium

on Foundations of Computer Science (sfcs 1978). 1978, pp. 143–150.

[SS03] T. Sakurai and H. Sugiura. “A projection method for generalized eigen-

value problems using numerical integration.” In: Proceedings of the 6th

Japan-China Joint Seminar on Numerical Mathematics (Tsukuba, 2002). Vol. 159.

1. 2003, pp. 119–128.

[SS61] H. J. S. Smith and J. J. Sylvester. “XV. On systems of linear indeterminate

equations and congruences.” In: Philosophical Transactions of the Royal So-

ciety of London 151 (1861), pp. 293–326.

[TKL05] M. Z. Tokar, F. A. Kelly, and X. Loozen. “Role of Thermal Instabili-

ties and Anomalous Transport in Threshold of Detachment and Mulit-

facetted Asymmetric Radiation from the edge (MARFE).” In: Physics of

Plasmas 12.052510 (2005).

[TM01] F. Tisseur and K. Meerbergen. “The quadratic eigenvalue problem.” In:

SIAM Rev. 43.2 (2001), pp. 235–286.

[Tro68] V. P. Trofimov. “The root subspaces of operators that depend analytically

on a parameter.” In: Mat. Issled. 3.vyp. 3 (9) (1968), pp. 117–125.

[TV21] F. Tisseur and M. Van Barel. “Min-max elementwise backward error for

roots of polynomials and a corresponding backward stable root finder.”

In: Linear Algebra Appl. 623 (2021), pp. 454–477.

[TW14] L. N. Trefethen and J. A. C. Weideman. “The exponentially convergent

trapezoidal rule.” In: SIAM Rev. 56.3 (2014), pp. 385–458.

[UCS17] S. Ubaru, J. Chen, and Y. Saad. “Fast estimation of trp f pAqq via stochas-

tic Lanczos quadrature.” In: SIAM J. Matrix Anal. Appl. 38.4 (2017), pp. 1075–

1099.

[Ung50] H. Unger. “Nichtlineare Behandlung von Eigenwertaufgaben.” In: ZAMM

- Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte

Mathematik und Mechanik 30.8-9 (1950), pp. 281–282.

222 bibliography

[Van+14] W. G. Vandenberghe et al. “Determining bound states in a semiconduc-

tor device with contacts using a nonlinear eigenvalue solver.” In: Journal

of Computational Electronics 13.3 (2014), pp. 753–762.

[Van16] M. Van Barel. “Designing rational filter functions for solving eigenvalue

problems by contour integration.” In: Linear Algebra Appl. 502 (2016),

pp. 346–365.

[VK16] M. Van Barel and P. Kravanja. “Nonlinear eigenvalue problems and con-

tour integrals.” In: J. Comput. Appl. Math. 292 (2016), pp. 526–540.

[VT18] M. Van Barel and F. Tisseur. “Polynomial eigenvalue solver based on

tropically scaled Lagrange linearization.” In: Linear Algebra Appl. 542

(2018), pp. 186–208.

[Wal35] J. L. Walsh. Interpolation and approximation by rational functions in the com-

plex domain; 3rd ed. Colloquium publications. Providence, RI: American

Mathematical Society, 1935.

[Wil68] J. H. Wilkinson. “A Priori Error Analysis of Algebraic Processes.” In: Pro-

ceedings International Congress Math. (Moscow: Izdat. Mir). 1968, pp. 629–

639.

[WW71] W. H. Wittrick and F. W. Williams. “A general algorithm for computing

natural frequencies of elastic structures.” In: Quart. J. Mech. Appl. Math.

24 (1971), pp. 263–284.

[WW73] W. H. Wittrick and F. W. Williams. “An algorithm for computing critical

buckling loads of elastic structures.” In: Journal of Structural Mechanics

1.4 (1973), pp. 497–518.

[WWZ14] K. Wimmer, Y. Wu, and P. Zhang. “Optimal query complexity for esti-

mating the trace of a matrix.” In: Automata, languages, and programming.

Part I. Vol. 8572. Lecture Notes in Comput. Sci. Springer, Heidelberg,

2014, pp. 1051–1062.

[YS13] S. Yokota and T. Sakurai. “A projection method for nonlinear eigenvalue

problems using contour integrals.” In: JSIAM Lett. 5 (2013), pp. 41–44.

bibliography 223

[ZL08] B. Zhang and Y. Li. “A Method for Calibrating the Central Catadioptric

Camera via Homographic Matrix.” In: Proceedings of the 2008 IEEE Inter-

national Conference on Information and Automation, Zhangjiajie, China. 2008,

pp. 972–977.

[ZS14] L. Zeng and Y. Su. “A backward stable algorithm for quadratic eigen-

value problems.” In: SIAM J. Matrix Anal. Appl. 35.2 (2014), pp. 499–516.

	Contents
	List of Figures
	 List of Figures
	List of Tables
	 List of Tables
	Abstract
	Declaration
	Copyright statement
	Acknowledgements
	Publications
	1 Introduction
	1.1 Prerequisites
	1.2 The Nonlinear Eigenvalue problem
	1.3 Applications
	1.4 Structure of the thesis and contributions

	2 Contour Integral methods for meromorphic eigenvalue problems
	2.1 Introduction
	2.2 Theoretical background
	2.3 The RIM algorithm
	2.4 Beyn's algorithm

	3 Practical considerations on contour integral methods
	3.1 Introduction
	3.2 The NLEVP 4.x library
	3.3 The choice of the parameters
	3.4 The influence of the quadrature rules
	3.5 The refinement strategies
	3.6 Final remarks

	4 Robust rational approximations of nonlinear eigenvalue problems
	4.1 Error analysis of approximated eigenpairs
	4.2 A brief overview of current rational approximation techniques
	4.3 A two-phase algorithm for black-box functions
	4.4 Robustness of the rational approximants
	4.5 Comparison with the contour solver algorithm
	4.6 Final remarks

	5 Tropical roots of tropical Laurent series
	5.1 Introduction
	5.2 From tropical polynomials to tropical series
	5.3 Tropicalization of analytic functions
	5.4 Applications
	5.5 Final remarks

	6 Conclusions

