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ABSTRACT

In this thesis we focus on the theoretical and computational aspects of nonlinear
eigenvalue problems (NEPs), which arise in several fields of computational science
and engineering, such as fluid dynamics, optics, and structural engineering. In the
last twenty years several researchers devoted their time in studying efficient and
precise ways to solve NEPs, which cemented their importance in numerical linear
algebra. The most successful algorithms developed towards this goal are either based
on contour integrals, or on rational approximations and linearizations.

The first part of the thesis is dedicated to contour integral algorithms. In this frame-
work, one computes specific integrals of a holomorphic function G(z) over a contour
0Q) and exploits results of complex analysis to retrieve the eigenvalues of G(z) inside
). Our main contribution consists in having expanded the theory to include mero-
morphic functions, i.e., functions with poles inside the target region (2. We showed
that under some circumstances, these algorithms can mistake a pole for an eigenvalue,
but these situations are easily recognised and the main results from the holomorphic
case can be extended. Furthermore, we proposed several heuristics to automatically
choose the parameters that are needed to precisely retrieve the eigenpairs.

In the second part of the thesis, we focus on rational approximations. Our goal
was developing algorithms that construct robust, i.e., reliable for a given tolerance
and scaling independent, rational approximations for functions given in split form
or in black-box form. In the first case, we proposed a variant of the set-valued AAA,
named weighted AAA, which guarantees to return an approximation with the chosen
accuracy. In the second one, we built a two-phase approach, where an initial step
performed by the surrogate AAA is followed by a cyclic Leja-Bagby refinement. We
concluded the section with numerous numerical experiments based on the NLEVP
library, comparing contour integral and rational approximation algorithms.

The third and final part of the thesis is about tropical linear algebra. Our research
on this topic started has a way to set the parameters of the aforementioned contour
integral algorithms: in order to do that, we extended the theory of tropical roots
from tropical polynomials to tropical Laurent series. Unlike in the polynomial case,
a tropical Laurent series may have infinite tropical roots, but they are still in bijection
with the slopes of the associated Newton polygon and they still provide annuli of
exclusion for the eigenvalues of the Laurent series.
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1 INTRODUCTION

Often during my experience as a PhD student, family and friends asked what I was
studying and what I was working on. At the beginning, my answers were a mix of
babbling and hesitation: how could I have explained nonlinear eigenvalue problems
to them? Nevertheless, after a while I became an expert of this art and, in hind-
sight, the solution was natural: eigenvalue problems are everywhere around us and
bringing examples is the best way to explain what we study to non-technical acquain-
tances. For instance, the PageRank algorithm transformed the way people surf on
the web; quadratic eigenvalue problems lie behind most of the model of mechanical
systems, such as vibration analysis and fluid dynamics; exponential problems are
used to model delay-differential equations (DDE), for example, in electronic devices.
In the last twenty years researchers have made great strides in linear, but also poly-
nomial and rational eigenvalue problems. Therefore it is in human nature to tackle

generalisations and asking further questions.

The goal of this thesis is adding another piece to the puzzle that are the nonlinear
eigenvalue problems, with the hope of enlightening the next small section of the
knowledge path to future researchers. This chapter serves as a smooth transition to
the technical parts of the thesis. It is structured as follows. In Section 1.1 we revise
the mathematical background the reader should master before approaching the core
of the thesis. In Section 1.2 we describe the nonlinear eigenvalue problem, mainly
pointing out the differences with its simpler linear counterpart. Finally, Section 1.3
is dedicated to the descriptions of real world applications, while in Section 1.4 we

delineate the structure of the thesis.

11
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| INTRODUCTION

1.1 PREREQUISITES

The main goal of this section is setting the necessary definitions and notation that we
will be using throughout the thesis. We start with the basics: given a matrix A e C"**",

we say that A € C is an eigenvalue of A if

det(A —AI) =0,

or, equivalently, if there exists a right eigenvector and a left eigenvector v, w € C"*"\{0,}
such that
(A - AI)’U = On,
(1.1)
w*(A—AI) =0;.
We will usually drop the adjective “right” and we will say the “eigenvector v” [GV 96,
Chapter 2]. This does not cause any loss of generality, because the left eigenvectors

w of A are the right eigenvectors of A*. The set

A(A) = {) : det(A — AI) = 0}

is called the spectrum of A and consists of all the eigenvalues of A [GVg6, Chapter 7].
It is evident that the number of distinct eigenvalues, say s, is always less or equal
than n. Further, the multiplicity of A as a root of det(A — AI) is called the algebraic
multiplicity of A. Similarly, the eigenvectors of A, together with the zero vector, form a
subspace of C"*", which is called the eigenspace of A. The dimension of the eigenspace
is called the geometric multiplicity of A and one can prove that it is always less or equal
than its algebraic multiplicity. We say that an eigenvalue is simple when the algebraic
multiplicity is equal to 1, and it is semisimple when the geometric multiplicity is equal
to the algebraic one. When it is strictly less, we can find the so-called generalised eigen-
vectors; the subspace spanned by the eigenvectors and all the generalised eigenvectors

of A is equal to the algebraic multiplicity. In addition, (generalised) eigenvectors of
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different eigenvalues are independent from each other. Hence, all together they form

a basis of C" and allow us to decompose A in its Jordan Canonical Form.

Definition 1.1 (Jordan Canonical Form [GVg6, Chapter 7]). Consider A € C**". Then

there exists an invertible matrix U such that
A=U"'JU = diag(]r,...,]p)

where J; is a Jordan block and has the form

A1

1

Ak

Further, | is unique up to block permutations.

Now we focus our attention on a target complex region () — C. If not specified
otherwise, () is a nonempty, open, simply connected, bounded set. Furthermore, we
assume its contour () is piecewise C!, so that we can compute integrals over it. In
addition, we assume () o () is an open neighbourhood of (). The canonical example
of () is an open disk centered in <y with radius p > 0, which we denote with D(v,p).

Matrix-valued functions are the second main ingredient. We write

G:Qy — crxn,

z o~ Gl2) =218i(2)4,

(1.2)

and we say that G(z) is in split form if we have direct access to the scalar functions
gj(z) and to the matrix coefficients A;. Alternatively, we say that G(z) is in black-box
form if we are only allowed to compute its values at specific points z; and we have no

information on the scalar functions g;(z) or the matrix coefficients A;.

We mainly work with a specific class of smooth functions.
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Definition 1.2 (Holomorphic functions [Cargs]). Let G: Q9 — C"*" be a matrix-
valued function. If the derivative of G(z) at the point z
G'(zo) = lim M
zZ—20 Z—2

is well-defined at every zp € ()9, we say that G(z) is a holomorphic function (from Qg to

C"*") and we write G € H(Qy, C"*") or G € H(()y) when there are no ambiguities.

Simple examples of holomorphic functions are the polynomials, the exponential,
the sine, and the cosine. Rational functions are generally not holomorphic, because
their derivative is not defined at the points where they are equal to infinity. More
precisely, given G(z) as in (1.2), we say that ¢ is a pole of G(z) if there exists j such

that 1/¢;(¢) = 0. A function with this property is said to be meromorphic.

Definition 1.3 (Meromorphic functions [Cargs]). Consider F: Qg — C"*". If F(z) is
holomorphic on )y except on a set of isolated poles, then we say that F(z) is a mero-
morphic function (from Qg to C"*") and we write F(z) € M(Qp, C"*") or alternatively

F(z) € M(Qp) when there are no ambiguities.

From now on, we will use the letter G when we want to underline that the function
is holomorphic, while the letter F will be suited for the meromorphic case. Let ¢ € ()
be a pole of F(z). The multiplicity of ¢ is defined as the smallest integer ¢ > 1 such
that (z — ¢)°F(z) is holomorphic at ¢; if ¢ is equal to one, we say that ¢ is simple.

Notice that we can always write a meromorphic function f(z) as f(z) = g1(z)/g2(2),
with gi(z) € H(Qo,C). Further, assume F(z) € M (), C"*"): given that the set of
poles of F(z) is always discrete, then it is compact in Q) := Q U 9Q, hence there
always exists a polynomial g(z) € C[z] whose roots are the poles of F(z) in Q) such
that G(z) := g(z)F(z) € H(Q, C"™*").

These two classes of functions have several properties. For example, all the deriva-
tives G(") (z) exist, even though Definition 1.2 requires only the first one to be defined.

This allows us to define g(A) thanks to the Jordan canonical form.
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Definition 1.4 (Matrix function via Jordan Canonical Form [Higo8, Chapter 1]). Let
g(z) € H(Qp,C), let A have the Jordan canonical form A = U~'JU, and assume that
A(A) € Q. Then

g(A):==Uu'g(Nu,

where
B (mj i=1) /. 7]
s g'(h) v
A e :
g(Jij) = st . & Crr
: g'(Ai)
] g(A) |

It is possible to define g(A) in another way, but first we need to state two important

results by Cauchy.

Theorem 1.1 (Cauchy’s Integral Theorem [AF21]). Let g(z) € H (o, C). Then

g(z)dz = 0.
20

Theorem 1.2 (Cauchy’s Integral Formula [AF21]). Let g(z) € H(,C), a € Q). Then

g = [ 584

2 Jynz—a

Cauchy’s integral formula naturally extends to matrices A € C"*" and hence we
have the following elegant statement of g(A) for g € H (), C), which is equivalent to

Definition 1.4.

Theorem 1.3 (Matrix function via Cauchy’s Integral Formula [Higo8, Chapter 1]). Let
g(z) € H(Q, C) and let A € C™" such that A(A) < Q. Then

1

Q(A) = 50 mg(z)(zl — A7z

15
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Theorem 1.4 (Identity theorem [AF21]). Let Fi(z), F2(z) € M(Qo, C"*") and let (z})jen <
Q) be a sequence with an accumulation point in Q). If Fi(z;) = Fa(z;) for every j € N, then

Fi(z) = Fx(z) in Q.

The previous results underline how smooth holomorphic functions are. Cauchy’s
integral formula tells us that as soon as we know their values on 0(2, then we know
their values in all (). Similarly, the Identity theorem reveals that we only have to
know the values of F(z) on a sequence with an accumulation point to identify it. This
also implies that all the zeros of a nonzero meromorphic function are discrete, just
like their poles. Finally, we can say a lot more on the number of zeros (and poles) of

f(z) € M(Qp,C) in () it only depends on the values of f(z) and f’(z) on Q).

Theorem 1.5 (Cauchy’s argument principle [AF21]). Let f(z) € M(Qy,C) and assume

it has n, zeros and n, poles in () and no poles nor zeros on 0Q). Then

L f@E,,

T T om0 g f2)

1.2 THE NONLINEAR EIGENVALUE PROBLEM

Definition 1.5 (Nonlinear eigenvalue problem). Consider F(z) € M(Qy, C"*"). The
nonlinear eigenvalue problem (NEP) consists in finding all the scalars A € () where F(z)
is well-defined, the eigenvalues, and the corresponding nonzero vectors v, w € C"\{0},

the right and left eigenvectors, such that
F(A)v =0, w*F(A) = 0. (1.3)

The pair (A, v) is a right eigenpair of F, while (A, w*) is a left eigenpair.
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Remark 1.1. Asking that F(z) is well-defined at the eigenvalue A is a technicality to
avoid the edge-case scenario where A is a pole, but also satisfies (1.3). For example,

without that hypothesis A = 0 would be an “eigenvalue” of

with e as an eigenvector. In addition, (1.3) would not be equivalent to det(F(A)) = 0.

We can easily see that (1.3) is a generalisation of (1.1), where F(z) = A — zI. Hence,
most of the terminology for the nonlinear eigenvalue problem comes directly from
its linear counterpart. For instance, the algebraic and the geometric multiplicity
of an eigenvalue A are defined in the same way, and the same is true for simple
and semisimple eigenvalues. Finally, we denote the spectrum of F(z) by A(F), the
eigenspace of A by null(F(A)), and we say that F(z) is regular if det(F(z)) does not

vanish identically in Q).

Remark 1.2. The regularity condition implies that the set of eigenvalues of F(z) is
finite in (). In fact, if it were not finite, then it would have an accumulation point in

(), which would yield that det(F(z)) = 0 in Q) by the Identity theorem 1.4.

There have been intermediate steps between (A — Al)v = 0 and F(A)v = 0. As

mentioned, everything started with the

o linear eigenvalue problem (LEP)

(A—=Av =0,

where A € C"™". One of the most well-studied problems in linear algebra,
nowadays the golden standard to solve it for small, dense, and unstructured
matrices is the QR algorithm [Fra61a; Fra61b; Kub61], while the Arnoldi algo-
rithm with its generalisations is best suited for large and sparse matrices, where
only a small subset of the eigenpairs is needed. When the identity matrix is sub-

stituted by any matrix B € C"*", then we have the generalised eigenvalue problem.
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Similar procedures can be used for the GEP, such as the QZ algorithm by Moler
and Stewart [MS73].

The next step is the quadratic eigenvalue problem (QEP)
(A2M + AC + K)v = 0,

where M, C, K € C"*". Quadratic eigenvalue problems usually appear in second-
order differential equations, fluid dynamics, and vibration systems, hence the
M, C, K are the ordinary letters used in these problems, because they represent
the mass term, the damping term, and the stiffness term matrix, respectively.
We direct the reader to the monumental survey by Tisseur and Meerbergen
and its references for the properties of the QEP [TMo1]. In 2013 Hammarling,
Munro, and Tisseur introduced the QUADEIG algorithm, which is backward sta-
ble for problems which are not too heavily damped [HMT13]. In 2014, Zeng
and Su used a tropical scaling in conjunction with a modification of QUADEIG to

develop an algorithm which is always backward stable [ZS14].

Quadratic eigenvalue problems are a subclass of the polynomial eigenvalue prob-

lem (PEP)

d .
Y NAj [o=0,
j=0

where A; € C"*". Similarly to the QEPs, they often appear in fluid dynam-
ics [Orsy1], optics [ZLo8], and plasma physics [TKLo5]. A standard algorithm
to solve them is linearization, where the original n x n problem becomes a larger
linear one with the same spectral structure. We refer to [ACLog; Cha+19]

and [Mac+o6b; Mac+o6a] for further details.

o Rational eigenvalue problems (REP) have the form

K ni(A)
(S5 )e-o
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where A; e C"*" and n(z),d;(z) are scalar polynomials. We refer to [SB11] for

applications and a general overview of this type of problems.

The term “nonlinear” in Definition 1.5 is somewhat ambiguous. First, Equation (1.3)
is indeed nonlinear in the eigenvalue A, but is linear in the eigenvector v. Problems
where the nonlinearity appears in the eigenvector as well go beyond the scope of this
thesis. Furthermore, some works use this term for matrix-valued functions that are, in
fact, “nonlinear”, hence polynomials and rational functions are included; others, this
thesis included, focus on problems where linearization techniques cannot be directly
applied, thus excluding polynomials and rational functions. Probably “holomorphic
eigenvalue problems” (HEP) or “meromorphic eigenvalue problems” (MEP) would
be better, non-ambiguous choices: unfortunately, they never became established in
the numerical linear algebra community. Finally, we remark that the abbreviation
NEP is not universal: in the literature one may find NLEP, NLEVP, or IEVP (interior
eigenvalue problem [Mor20]). In this thesis we chose NEP for the symmetry with the

other classes of eigenvalue problems.

1.2.1 Eigenvalues and eigenvectors

Another way to see (1.3) is as a generalisation of the root finding problem in higher
dimensions: given a sufficiently smooth function f: C — C, find A such that f(A) = 0.
This point of view shows one of the major differences when focusing on NEPs: while
for the other classes of eigenvalue problems the number of eigenvalues is a function
of the size n (e.g., a matrix polynomial of degree d has always dn eigenvalues in
C u {o0}), this is no longer true in the nonlinear case. In fact, a regular nonlinear

problem may have
e zero eigenvalues, e.g., f(z) = €
o finitely many eigenvalues, e.g., f(z) = € — 24+ 2;

« countably infinite eigenvalues, e.g., f(z) = cos(z).
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Concerning the algebraic and geometric multiplicity of the eigenvalues, as in the
linear case the latter is smaller than the former. However, it is no longer true they

are bounded by the dimension n, see, for instance, f(z) = z4,

Furthermore, the
(generalised) eigenvectors of different eigenvalues are neither independent from each
other (e.g., f(z) = z(z — 1)). We will focus more on these aspects at the beginning of

Chapter 2.

Example 1.1. Consider the matrix-valued function

F(z) = , (1.4)

which first appeared in [GT17] and is available in the NLEVP library since version 4.0 as
nepl [Bet+11]. Its spectrum consists of the points {+v2rtk | k € Z}, with e; — ep being
an eigenvector for all of them. All the eigenvalues except for Ay = 0 are simple, while the

algebraic multiplicity of Ag is 2, and the geometric multiplicity is 1.

1.2.2 Classes of algorithms

Even though it does not exist yet a clear best solver for nonlinear eigenvalue prob-
lems, each algorithm broadly falls in one of the following categories: solvers based
on Newton’s method, solvers based on contour integrals, and solvers based on lin-
earisations. In this section we briefly review them and recommend further readings

or previous works on these topics.

Algorithms based on the Newton-Raphson method

The Newton-Raphson’s (or simply Newton’s) method is a natural way to find eigen-
values and eigenvectors of nonlinear functions. In its simplest form, it is an iterative
method to find the simple roots of a scalar function f(z) given the initial point zo.

The iteration reads

f(zx)

TR Py
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If the initial guess zp is close enough and the function is at least C!, then the conver-

gence is quadratic. Hence, it seems a valid algorithm to find nonlinear eigenpairs.

In turn, Newton’s methods can be either applied on a scalar function, such as
detF(z), in order to find only the eigenvalues; or to the original eigenproblem it-
self to extract both the eigenvalues and the eigenvectors. In the former category
we have the Newton-trace iteration by Lancaster [Lanoz], the Newton-QR iteration
by Kublanovskaya [Kub7yo], or the BDS (border, deletion, substitution) method by
Andrew, Chu, and Lancaster [ACLg5]. In the latter we recall the nonlinear inverse
iteration, which was mentioned in 1950 by Unger [Ungs0] and deeply analysed by

Ruhe in 1973 [Ruh73].

Among the three categories of nonlinear eigensolvers, the ones based on Newton’s
method present the most serious disadvantages. Even though they only require one
parameter to start, i.e., the initial guess zy, it is fundamentally important: if it is too
far away from the target eigenvalue, then we may not converge there. In addition,
they compute only a single eigenvalue each time we complete a set of iterations,
therefore it may become painfully slow if our goal is computing a large chunk of the
spectrum. In Section 3.5 of Chapter 3 we will discuss some of these methods with

further details.

Algorithms based on linearizations

Since many years linearisation techniques allow to reformulate any polynomial eigen-
value problem as a larger linear eigenvalue problem [ACLog; Mac+o06b; Mac+o6a]. In
2011, Su and Bai proposed a linearization for rational eigenvalue problems which
preserved the low-rank structure of the matrix coefficients [SB11]. Since then, several
other linearizations have been proposed for rational eigenproblems (see, for instance,
[Giit+14]). It is therefore alluring to locally approximate F(z) € M (€, C"*") in Q)
with a rational function R(z) and then use the eigenpairs of R(z) as the eigenpairs of
F(z) [Glit+14; Hoc1y; EG19]. We can say that these methods are composed by two
independent steps: the rational approximation of F(z) and the solution of the eigen-

problem related to R(z) ~ F(z). Chapter 4 is mostly dedicated to the former part.
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There we propose algorithms that upon successful execution always return rational
approximations R(z) such that their eigenvalues in () correspond to the eigenvalues

of F(z) in Q.

Algorithms based on contour integrals

An elegant way to solve G(A)v = 0 for G(z) € H(Qp, C"*") is based on Keldysh'’s
theorem, which was proved for polynomials in [Kel71] and in [GSy1] for holomorphic

functions. It states that for any function G(z) € H(Qo, C"*"), we can write

G(z) ' = V(zI - ])"'W* + R(z),

for z € Q), where R(z) € H(Q,C"™"), V and W are right and left generalised eigenvec-
tor matrices, and | is a Jordan matrix, i.e., a block-diagonal matrix of Jordan blocks,
whose eigenvalues are the eigenvalues of G(z) in Q). Together with Theorem 1.1 it

follows that

8(2)G(z)" dz = Vg())W*, (1.5)
0Q

for any function g(z) € H(Q, C). Several algorithms were hence developed from the
previous result. Here we recall the Sakurai-Sugiura (SS) and its modifications [Asa+09;
Asa+10; Che+17], Beyn’s algorithm [Beyi12; BEG20], and FEAST [Polog; GMP18],
among the most famous ones. The main advantage the authors usually underline
is the incredible versatility they allow. First, they only require a black box form of
G(z), since nowhere in the algorithms an explicit knowledge of the matrix coeffi-
cients is needed. Further, they can both be used to retrieve all (or many) eigenvalues
of medium-sized eigenproblems, or only few of them if G(z) is large and sparse (and
in that case G(z)~! is projected on a small subspace). In addition, they guarantee
the discovery of all the eigenvalues in the target region (), as opposed to the New-
ton method and to the linearization ones, where we are computing the eigenpairs of
an approximation. Finally, they are highly parallelisable: in fact, we can divide (2

in smaller subregions ()4, ...,()s and each of the subproblems will be independent;



1.3 APPLICATIONS |

furthermore, when (1.5) is approximated with a quadrature rule, each linear system

is independent from each other and thus it can be solved by a different processor.

We will deeply analyse this class of algorithms in Chapters 2 and 3, therefore we

direct the reader to the specific introductions for further details.

1.3 APPLICATIONS

We already hinted that nonlinear eigenvalue problems lie at the heart of many tech-
nologies of our world. In this section we explore some examples from optics, electron-

ics, and mechanics. All of them are included in the “Nonlinear Eigenvalue Problems’

(NLEVP) library since version 4.0 [Bet+11; HNT19].

1.3.1 The buckling of a plane frame

When a solid structure, such as a column, a plane frame or a steel beam, is subjected
to a heavy load, it may suddenly deform and change its shape. In structural engi-
neering, this phenomenon is called buckling. Euler was among the first studying this
subject. He proved that a slender column of length L compressed by a longitudinal

force P maintains its shape until the load reaches

n?nEl
PHZT, n:1,2,..., (1.6)

where E is elasticity coefficient of the column material and I is the moment of inertia.

Nowadays, P, is known as the n-th mode of Euler’s critical load.

If a finite elements formulation is used, then the buckling problem can be stated as

a generalised eigenvalue problem (see, for instance, [Ant11; BW73]).
Wittrick and Williams avoided this pathway and proposed an algorithm to find the

eigenvalues and eigenvectors of a NEP which correspond to the critical load and the

displacement components of the buckled structure [WW71; WW73]. In Figure 1.1
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Figure 1.1: The scheme of the buckling problem in rigid-jointed triangulated shaped plane
frame.

we show a rigid-jointed triangulated plane frame subject to symmetrical loads W; =
APy fori = 1,...,4, similar to the ones in [WW73, Section V]. We assume that the
beams are inextensible, hence there are no translational displacements. We denote
with 6;, for i = 1,...,5 the rotations of the joints during the buckling: due to the
symmetries in the problem, the buckling must be either symmetric (hence 63 = 0) or
antisymmetric. In the latter case, we can identify 6, with 6;, and 65 with 6,. Thanks

to physical considerations the nonlinear eigenvalue problem becomes

fA)+10 f(A)g(A) 2| |6
FQA) = | fMgA)  f(A)+4 2| |62] =0,
2 2 8| |6;

where f(A), g(A) are the stability functions defined by the relationships

2sin
fA)(1+gA) = % FA)(1=g(A) =2Acot A

which are sometimes denoted by s(A) and c(A) respectively [LC56]. The NLEVP

library contains a simplified version of this problem, called buckling_plate.



.3 APPLICATIONS |
1.3.2 Time-delay systems

Several physical systems need to be modelled through Delay-Differential Equations
(DDE) of the form

x(t) = Aox(t) + Z Apx(t — 7). (1.7)
k=1

For instance, every time we input a command in an electronic device, the electric
signal takes some time to reach its destination; during a traffic jam, drivers do not

immediately accelerate or brake when the car in front starts again or stops.

Substituting the sample solution x(t) = e*v in (1.7) yields the nonlinear eigenvalue
problem
m
(AT = Ag— )] Ae™*™)o = 0. (1.8)

k=1

Retrieving the eigenvalues of (1.8) gives us important information on the stability of
the underlying physical system. See, for example, [Jar12; JM10] or [MNo7] and the
references therein. An interesting example is given by a semiconductor laser subject
to a delayed phase-conjugate feedback caused by a reflective mirror, as schematised

in Figure 1.2 [GWo06, Section 5]. The equations of the model are

L9 [HON N () — New) + (G0 — 757 ECt) + kE* (1~ 1),
e - GlE,

where E(t) is the complex electric field, N(t) represents the population inversion of
the laser, and G(f) is the nonlinear gain of the electric field, while the other param-
eters are physical constants. It is assumed that the feedback is quite weak, hence
only a single delay term is considered. A linearization of G(t) then leads to a 3-by-3
problem of the form of (1.8) with m = 1. The name of this problem in the NLEVP

library is laser.
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E(t)

h E(t)
H

Figure 1.2: The phase-conjugate of the laser wave is reflected back by the mirror as a feed-
back.

1.3.3 Design of optical fibres

Optical fibres are omnipresent in current technologies and allow data transfer at
much higher bandwidth than electrical cables. They are composed by a glass core,
which act as a waveguide for the light, surrounded by a transparent material, the

cladding, with a lower index of refraction, as depicted in Figure 1.3.

Huang, Bai, and Su considered an ideal cylindrical optical fibre, where the cladding
radius R is much larger than the core radius R. [[HBS10]. In the cylindrical coordinate

system (r, 6, z), Maxwell’s equation for the guided wave function f(r) becomes
B G B GG L7 (1.9

where m is a positive integer, B is an unknown propagation constant, k = 271/l
is the wave number in the cladding, [ is the light vacuum wavelength, and 7 is the
cladding refractive index; in addition, k(r) = 27ty(r,I)/l is the wave number in the

glass core, with 7 (7, ) being the core refractive index.

Under the model assumptions, the guided wave function has the form

f(r) = aK(ur),

where a is an unknown constant, y = /p% — ké, and K, is the m-th order modified

Bessel function of the second kind (see, for example, [AS64, Chapter 9]).

The boundary conditions

K, (uR)

fO =0 SR =gl
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Figure 1.3: The core (light grey) and the cladding (dark grey) of an optical fiber.

along with a finite element method of n + 2 equispaced points allow to reinstate (1.9)

as the nonlinear eigenvalue problem
[A— AL +5s(A)eqel]o =0,

where A is a symmetric tridiagonal matrix and

1 Kin(nvz)
0= (14 5) Vv

Finding the smallest positive eigenvalue A is then equivalent to retrieving the con-
stant B. This is the first step in studying the chromatic dispersion, which severely
limits the transmission distances and causes signal distortion [Karoo]. The name of

this problem in the NLEVP library is fiber.

1.3.4 Canyon particle

Solving the electronic transport in semiconductive material requires the study of
the Poisson, Schrddinger, and transport equations. However, if the model assumes
that the collisions of the electrons are negligible, then solving the single-particle
Schrodinger equation with transmitting boundary conditions determines the current
of the system [LKgo; Van+14]. In the case of a system with contacts, the Schrodinger

equation can be cast as the nonlinear eigenvalue problem

[~V + Ux)]p(x) = Ap(x). (1.10)
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T TR T

Figure 1.4: One dimensional scheme with contacts starting at x = x;, and x = xg.

U(r) is the potential energy, while the eigenvalues A are the bound states, and the
eigenvectors the wave functions. In Figure 1.4 we schematise the one dimensional

problem. A finite element discretization of (1.10) for the two-dimensional case yields

ny
H—AL+ ) V" =8 1o =0,
j=1
where H € R"*" is a symmetric matrix, m is the mass of the particle, 7, is the number
of mesh points, «; are physical parameters, and Ly, Uy are low-rank matrices. A
detailed description of this problem can be found in [Van+14; Giit+14], while the

NLEVP library has a practical implementation named canyon_particle.

1.4 STRUCTURE OF THE THESIS AND CONTRIBUTIONS

The thesis is structured as follows. Chapter 1 was dedicated to the introduction of

the work and to a review of the prerequisites needed to understand the thesis.

Chapters 2, 3, and 4 mirror Section 1.2.2. In Chapter 2 we generalise the theory
of contour integral algorithms from holomorphic to meromorphic functions and we
explain how the presence of the poles influences the convergence of the methods. Our
attention is mostly on small- to medium-sized eigenvalue problems, hence particular

focus is given to the case where the number of eigenvalues in () exceeds .

Chapter 3 is dedicated to more practical considerations concerning contour inte-

grals and to our implementation of a contour eigensolver. First, we show the im-
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provements and the new features between the NLEVP 3.0 and its current version
NLEVP 4.1. This library has been a fundamental tool to understand nonlinear eigen-
problems and we are sure the same will be true for other researchers. In addition,
contour solvers require the choice of multiple parameters (for example, the number
of quadrature points), which are often left to the final user. There we propose multi-
ple ways to implement an algorithm which automatically chooses these parameters,
hence allowing the user to only provide the region () and function F(z) in black-box
form. Finally, we show that combining the Newton method or a similar refinement
with the core of the contour solver creates a very robust algorithm.

Chapter 4 is dedicated to eigensolvers based on linearisations. More precisely, we
focus primarily on the first step of these algorithms, i.e., the approximation of F(z)
with a rational function R(z). First, we show how the backward error of the eigenpairs
of F(z) is related to the backward error of the eigenpairs of R(z), provided that R(z)
is a “good approximation” to F(z). This theoretical result allows us to propose two
robust algorithms to return R(z), one for F(z) given in split form, another for F(z) in
black-box form.

At the end of the chapter we test our algorithms with the state of the art ones
on the NLEVP collection and we show their approximations are better or at least as
good as the previous ones. Finally, we also compare them with the contour algorithm
proposed in Chapter 3.

Finally, Chapter 5 stands apart from the preceding ones. There we explore tropical
linear algebra, a relatively new branch of mathematics. Recent results by Sharify et
al. [Sha11] found a quantitative relationship between the roots of a scalar polynomial
and the so-called tropical roots of it. These results were later generalised to matrix
polynomials [NST15], and hence tropical roots where used as an initial approxima-
tion for their eigenvalues or as a way to scale the polynomial such as other algorithms,
like POLYEIG, could perform better [TV21; VT18]. We expand the theory from poly-
nomials to Laurent series and we show that similar results hold true in these general

settings as well.
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2 CONTOUR INTEGRAL METHODS FOR
MEROMORPHIC EIGENVALUE PROBLEMS

2.1 INTRODUCTION

In this chapter we analyse in greater depth contour integral solvers (or contour
solvers, for brevity) for nonlinear eigenvalue problems on a target region (). Since the
beginning of the XXI century, researchers in numerical linear algebra showed great

interest in this class of algorithms.

In 2003 Sugiura and Sakurai were the first to develop a contour solver for the lin-
ear eigenvalue problem [SSo3]. In 2009 Polizzi implemented the FEAST algorithm for
the symmetric eigenvalue problem [Polog]. It is now at its fourth release and since
2018 is able to tackle nonlinear problems [GMP18]. Still in 2009, Asakura, Sakurai
et al. updated the Sugiura-Sakurai (SS) [Asa+09] method to solve nonlinear prob-
lems. They named it block-SS and it is based on the Smith decomposition. In 2012
Beyn introduced his algorithm, which is based on Keldysh'’s theorem and considered
also the case where the number of eigenvalues in () is larger than n [Beyi2]. In
2013 Yokota and Sakurai proposed the SS-RR (Rayleigh—Ritz) for large scale systems,
whose core idea is projecting the problem on a smaller subspace and then use one
of the other nonlinear solvers for it [YS13]. In a recent ArXiv preprint, Krenner and
Polizzi introduced a similar idea, where they iteratively use FEAST on large prob-
lems to project them on smaller equivalent ones, which are then solved by Beyn’s
algorithm [BP20]. In the meantime, Huang, Su, et al. created the Recursive Integral
Algorithm (RIM) for the generalised eigenvalue problem [Hua+16]. As opposed to
the other algorithms mentioned above, RIM uses Cauchy’s Integral Theorem 1.1 and
its core is very easy to implement. It was mainly aimed at linear eigenvalue problems,

but it can be applied to the holomorphic case as well.



All the previous research concerning contour integrals required the function G(z)
to be holomorphic. The main goal of this chapter is developing a solid theoretical
background of contour solvers for meromorphic eigenvalue problems (MEP). There
are two main reasons which serve as a backstory of this work. The first was a com-
ment by Beyn in the survey paper by Giittel and Tisseur, where he stated that this
kind of algorithms should work for this larger class of problems [GT17, Section 5.5].
Preliminary numerical experiments proved this to be right, but it was clear that there
was something deeper behind it. The second, probably a bit more naive, is the fact
that rational eigenvalue problems (REP) are not included in the class of holomorphic
eigenvalue problems (HEP). In Section 1.2 we saw the hierarchy of these classes. In
the first three cases, they were “exact” generalisations: a linear eigenvalue problem is
also polynomial, which in turn is rational; however, a rational problem is not gener-
ally holomorphic, because it may have poles in (). Hence, developing the theory for

the MEP will address this asymmetry.

The chapter is structured as follows. In Section 2.2 we recall the basic theory
needed to state Keldysh’s theorem and we introduce new definitions that will al-
low to study the meromorphic eigenvalue problem through contour integrals. The
main one is the holomorphization of a meromorphic function F(z) € M(Q), C"*"). This
purely theoretical tool allows us to understand how the poles of F(z) influence con-
tour solver algorithms. Furthermore, we propose a way to compute the backward
error of eigenpairs for functions given in black-box form. In Section 2.3 we give a
brief review of the Recursive Integral Method in the holomorphic case and we calcu-
late its probabilistic computational cost, which was missing in the current literature.
Section 2.4 is dedicated to Beyn’s algorithm: first, we review its original description,
then we explain its Loewner interpretation, and finally we expand it to meromorphic
functions, both for simple eigenvalues and in the general case. There is no real con-
clusion section, because in Chapter 3 we continue developing these themes under an

algorithmic point of view.
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2.2 THEORETICAL BACKGROUND

In Section 1.2.1 we hinted how a nonlinear problem may have generalised eigenvec-
tors which are neither linearly independent from the corresponding eigenvector nor
from eigenvectors of other eigenvalues. Even though in many real-life applications it
is assumed that all the eigenvalues are either simple or semisimple, hence removing
the burden of generalised eigenvectors, the analysis under these settings is neces-
sary to understand how contour integrals can be effectively used for meromorphic
eigenvalue problems.

In the undergrad course of linear algebra we have learned that for a given eigen-
value A of a matrix A € C"*", the sequence of vectors vy, ...,v,_1 is called a Jordan

chain if
(A=ADvg=0, (A—ADvy =909, ... (A—ADvy_1="0p_2, (2.1)

where 0y is, in fact, an eigenvector, while v; are the generalised eigenvectors of the
Jordan chain associated to vg. In 1968 Trofimov introduced the concept of root func-
tions v(z) = Z}”:Bl (z— M) v; and pointed out that the equalities of (2.1) are equivalent
to A being a root of multiplicity at least m of (A — zI)v(z) [Tro68]. This idea can be

simply generalised to the nonlinear case:

Definition 2.1 ([GT17, Definition 2.3]). Consider G(z) € H (o, C"*") and let A € O

being an eigenvalue of G(z).

1. A function v € H((},C") is said to be a root function for G(z) at A if v(A) # 0 and
G(A)v(A) = 0. The multiplicity of the root A of G(z)v(z) is denoted by s(v).

2. A tuple (v, ..., vy—1) is called a Jordan chain for G(z) at A if

is a root function for G(z) at A and s(v) = m.
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3. For any eigenvector vy of A, the rank of vy is defined as

r(vg) = max{s(v) : v is a root function for G(z) at A with v(A) = vp}.

4. A system of vectors in C"

is called a complete system of Jordan chains if the following conditions are met:

a) d = dim(null(G(A)) is the geometric multiplicity of A and {v},v3,..., 01}
is a basis of null(G(A)).

b) For1<j<d, (vé,v{,...,v{njfl) is a Jordan chain for G(z) at A.

c) For 1 <j<d, mj=max{r(v) : vo € null(G(A))\span{v : 1 <v < j}}.

The previous definition has got a lot to unpack. First, one can show that a com-
plete system of Jordan chains always exists and that Z?:l m;j is equal to the algebraic
multiplicity of A [MMo3, Propositions 1.6.4, 1.8.4]. In addition, we call m; the index
of A, while all the numbers m; > my > --- > my are the partial multiplicities of A. It
follows that an eigenvalue is semisimple if m; = --- = my; = 1, while it is simple if

d =1, and thus V) will be just the tuple of the eigenvector(s) of A.

Definition 2.1 covers the case of the right generalised eigenvectors of G(z). Clearly,
the left complete system of Jordan chains W) is defined in the same way for G*(z).
Furthermore, if we set V), then there exists a unique canonical W, which satisfies the

following conditions.

Theorem 2.1 ([MMo3, Theorem 1.6.5]). Let A € Q) be an eigenvalue of G(z) € H (o, C"*")
and V, be

Vi=(v):0<k<m—11<j<d)
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a complete system of Jordan chains as defined in 2.1. Then there exists a unique system of

Jordan chains W), for G*(z)
WA=(w£:0<k<mj—1,l<j<d)

such that each eigenvector wé has rank r(w{)) = m; and satisfies

k m; i G(‘Hﬁ)(/\) .

Y. (G, k,i,j) = w, ————20 = 800k, (2.2)
)L( ]) 0;);1 k—u (DC+’B>, m;—pB ij90k

for0 <k <mj—1,and 1 <1i,j<d, where 6 is the Kronecker delta.

The normalisation conditions ¥, (G, k,i,j) in Theorem 2.1 are very complicated in
the general case, however they become much more reasonable when the eigenvalue
A is semisimple, i.e., when all the partial multiplicities m; are equal to 1. If that is the

case, then the following corollary holds.

Corollary 2.2. Let A € Q) be a semisimple eigenvalue of G € H(Qo, C**"), and let {v1, ..., v4}
be a basis of null(G(A)). Then there exists a unique basis {w1, ..., wy} of null(G*(A)) such
that

wl*G’(A)v] = (51']',

where 6;; is the Kronecker delta.

Armed with these results, we can now state Keldysh’s decomposition, the funda-

mental theorem for contour integral algorithms.

2.2.1 Keldysh decomposition

A very useful factorization that introduces Keldysh’s theorem is the Smith form. It
was first developed by Smith in 1861 to solve linear systems of Diophantine equa-
tions [SS61], while Frobenius later extended it to matrix polynomials [Fro7g9]. We

here report the general form found in [KMgg] and [GT17], which uses the notion
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of unimodular matrix-valued functions: we say P(z) € H(Q,C" ") is unimodular if

det P(z) € C is a nonzero constant or, equivalently, if P~1(z) € H(Q,C"™*").

Theorem 2.3 (Smith form). Consider G(z) € H(Qo, C"*") and let A4, ..., As be its distinct
eigenvalues in ) with partial multiplicities m;1 > m;p > --- = m; 4. Then there exist two

unimodular matrix-valued functions P(z), Q(z) € H(Q, C"*") such that

P(2)G(2)Q(z) = D(z),

where D(z) = diag(61(z), ..., 0n(2)) is a diagonal matrix with entries
s
5i(z2) = i@ [ [e=A)™1,  j=1,...,m,
i=1

where each hj € H(Q), C) does not have zeros in ) and m;; = 0 when j > d,.

Now, denote by p;(z) and g(z) the j-th column of the matrices P(z), Q(z) respec-

tively. Then we can write
G(z) ™ =D 16(2) q;(2)pj(2)",
j=1

and if we expand every single term of this sum as a Laurent series in some neigh-

bourhood U of A, we have

d; ™My

G =D S xlz— M) +Ri(z),  zelU\{Ay}, (2.3)
j=1k=1

where Ri(z) € H(U), and Sy ;; € C**". If we expand Ri(z) recursively around A; for

i=2,...,5 identity (2.3) becomes
s di Mij
G =)D Siikz—A)F+R@), zeU\{A}, (2.4)

i=1j=1k=1

with R(z) being holomorphic on the entire set Q.
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The strength of Keldysh’s theorem lies in the characterisation of the matrices S; ; x
in terms of generalised eigenvectors[GSy1; GT17]. Let us denote the complete right

and left Jordan chains for an eigenvalue A;
@ :0<k<m-11<j<d), (W :0<k<m;—-1,1<j<d)
and let Vj;, W;; be the matrices

= |l ij P ) ij ij
Vij {UO v ... Umi,j_1:|’ Wij [wm’_,j_l (CHAP wo] (25)

If we define the Jordan blocks

Jii = ' € CMij XM (2.6)

A

then we can state Keldysh’s theorem in the following form.

Theorem 2.4 (Keldysh). Consider G(z) € H(Qo, C"*") under the hypotheses of Theo-
rem 2.3 and define i 1= >;_, 271;1 m; ;. Then there exist two n x m matrices V, W, and a

m x m Jordan matrix | such that
G(z) ' = V(zI - ])"'W* + R(z)

for a function R(z) € H(Q, C"*"), where

]:dlag(h/ /]S)/ ]i :diag(]ill'” /]idl-)/
V:[Vll"'/‘/s]/ ‘/i:[‘/ill"'IWdi]/
W = [Wl/ oy WS]/ Wi = [Wﬂ/ Tty Widi]/
and Vi;, Wj, Jij defined in (2.5-2.6).
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Hypotheses 2.1. From now on we will constantly recall the spectral hypotheses of
Theorems 2.3 and 2.4. We summarise them here in order to avoid unnecessary and
distracting repetitions. If not specified otherwise, G(z) € H({, C"*") has Ay,...,As
distinct eigenvalues in () with partial multiplicities m;; > m;» > --- = m; 4. We set
=Y, 4 27;1 m;; and we name the matrices V, W € C"*™ the eigenvector matrices of

G(z) (in O) and V, W, | the spectral matrices of G(z) (in Q).

We can see Keldysh’s theorem as a generalisation of the Jordan canonical form of
a matrix A in the nonlinear case. Indeed, if A = VJV~! is the Jordan decomposition,
then G(z)™! := (z — A)™' = V(zI — ])"'V~!, where R(z) = 0 and W* = V~1. In
addition, if we have stricter hypotheses on the nature of the eigenvalues, then The-
orem 2.4 becomes easier to state and understand. For instance, this is the version

chosen by Van Barel and Kravanja in [VK16].

Corollary 2.5 (Keldysh’s theorem for simple eigenvalues). Consider G(z) € H (o, C"*")
and let Aq,...,As be its distinct, simple eigenvalues in (). Then there exists a holomorphic

function R € H(Q), C"*") such that

*

j
R
Z —)\j * (Z)’

s .
U]w

where vy, ...,vs and wy, ..., ws are right and left eigenvectors satisfying w]’-“ G’()Lj)vj =1.

As anticipated, we want to apply contour integral algorithms to meromorphic func-
tions. In order to do so, we have to slightly generalise the theorems and corollary
described above.

First of all, let us fix some settings. Let F € M (Q)g, C"*") denote a regular meromor-
phic matrix-valued function with A4,..., A distinct eigenvalues in (2 and ¢y,...,¢,
distinct poles in (). In addition, we assume that no eigenvalues and no poles lie on
0Q). As written in Definition 1.5 of nonlinear eigenvalue problem, we do not consider

the degenerate case where a pole coincides with an eigenvalue, such as for
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where z = 0 is both an eigenvalue and a pole. Note that det F(z) = z — 1, hence a
pole of F(z) does not need to be a pole of det F(z), as it happens for z =0 or z = 3
in (2.7).

As anticipated in Section 1.1, it is always possible to find a polynomial g(z) € C|z]
such that G(z) := g(z)F(z) is holomorphic (at least) in ). It is important to point out
that the original poles of F(z) may or may not be eigenvalues of G(z). For example,

consider

Then we can define ¢1(z) = z? and ¢2(z) = z%(z — 2)3, so that both Gi(z) = gx(z)F(z)
for k = 1,2 are holomorphic. However, while G;(z) has the same eigenvalues of F;(z),
¢1 =0, ¢ = 2 are eigenvalues of G(z), but not eigenvalues of F>(z). It makes sense

to introduce the following concept.

Definition 2.2 (Spurious eigenvalues). A pole ¢ of F(z) of multiplicity ¢ is a spurious
eigenvalue of F(z) if it is an eigenvalue of G(z) := (z — §)°F(z). In addition, the
algebraic and geometric multiplicities of the spurious eigenvalue ¢ of F are defined

as the algebraic and geometric multiplicities of ¢ as eigenvalue of G(z).

Remark 2.1. Definition 2.2 is inspired by the definition of eigenvalues at infinity for
polynomial eigenvalue problems, where we say that A = o0 is an eigenvalue of a
degree ¢ matrix polynomial P(z) if A = 0 is an eigenvalue of the reversal z°P(z71).
Unfortunately, we cannot state many properties about spurious eigenvalues. First, as
witnessed in (2.8), the original poles may or may not become spurious eigenvalues.
Furthermore, there is no clear relationship between their multiplicity as poles of F(z)
and their algebraic or geometric multiplicity as spurious eigenvalues. For example,

consider ¢ = 0 and

z72(z—1) 0 z72 z—1 0 z7!
F(z) = 0 z72(z-2) 0 / b= 0 z-2 0
0 0 z7%(z - 3) 0 0 z-3
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Then ¢ is a double pole for Fi(z), but is not a spurious eigenvalue for G (z) = z2F(z).
On the other hand, ¢ is a single pole for F,(z), but it is a spurious eigenvalue of
Ga(z) = z2Fy(z) with algebraic multiplicity equal to 3 and geometric multiplicity
equal to 2, hence G,(z) will have a 2 x 2 Jordan block with eigenvalue 0.

It is not too difficult to see that we can retrieve the spectral properties of the spuri-
ous eigenvalues of F(z) by considering an auxiliary function G(z), which is holomor-

phic in (), as illustrated in the following lemma.

Lemma 2.6 (Holomorphization of a meromorphic function). Let F(z) € M (), C"*")
be a reqular matrix-valued function with A4, ..., As distinct eigenvalues in QY and ¢y, ..., Cr

distinct poles in ). Let e; € R" be the ith column of the identity basis and write

F(z) = )] fij(z)ee]. (2.9)

ij=1

In addition, define cy as

cx := max {multiplicity of the pole {y in f;;(z)}, k=1,...,r.

1<ij<n

Then there exists a unique monic polynomial ¢(z) = [[_1(z — €)% with c; > 0 such that
G(z) := g(z)F(z) € H(Q, C"™™"), and we say G(z) is the holomorphization of F(z). Fur-
thermore, the eigenvalues of G(z) are all and only the eigenvalues and spurious eigenvalues

of F(z) and they have the same algebraic and geometric multiplicities.

Proof. First, we need to prove that G(z) is holomorphic. In order to do so, note
that (2.9) is unique, because it is simply the entry-wise form of F(z). In addition, if
¢ is a pole of f;j(z), then it is a pole of F(z), because the matrices eie]-T are linearly
independent. This implies that c; is the multiplicity of ¢ as a pole of F(z) and that
G(z) is holomorphic. Finally, we need to show that the eigenvalues of G(z) have the
same spectral properties as the eigenvalues and spurious eigenvalues of F(z). First,
set Go(z) = F(z) and Gy(z) = (z — Cx)*Gy_1(z) for k = 1,...,r. It is not difficult to
see that Gi(z) has the same eigenvalues of Gx_;(z) with the same properties and will

have at most  as a new eigenvalue if, by definition, ¢ itself is a spurious eigenvalue

of Gx_1(z), since §x ¢ A(Gk_1). The result then simply follows from G(z) = G,(z). O
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Note that G(z) is not generally holomorphic on all ()g. An easy example of why this
cannot be true is given by F(z) = sin(z_l)_l, with Qp = D(1,1) and Q = D(1,0.9).
The poles of F(z) are k- '7r~! for k > 1 and they accumulate in zero. Hence, we can
find a polynomial g(z) such that g(z)F(z) is holomorphic in (), but not in Q)g. We can

now state Keldysh’s theorem for meromorphic functions in a precise way.

Theorem 2.7 (Keldysh for meromorphic functions). Consider F(z) € M(Qy, C"*") and
let G(z) := g(z)F(z) € H(Q,C"*") be the holomorphization of F(z), with g(z) € C[z]

defined in Lemma 2.6. Let mg,1 > Mg = -+ = mg, g, be the partial multiplicities of &;,

ir

with dg, = 0 if {; is not a spurious eigenvalue and define

s di r %
My, = Z Z mij, Mg = Z Z meg, ;-
i=1j=1 i=1j=1

Then there exist two pairs of matrices, V,W e C"xma, ‘N/,W e C™"z and two matrices

J e C™ X T e CMexMe gych that
F(z)™' = g(@2)(V(zI = ) 'W* + R(2)),

with R(z) € H(Q, C"™"), where

v=lv 7. =" w=lw .
j
N
17:[171 v] 7o , W:[wl w}
Ts
T
‘71:[‘711 ‘V/zd,]’ fi: ’ Wl:[wﬂ Wzd,]’
Jia

and Yz'j, Wij, fi]' are defined in (2.5-2.6), with the generalised eigenvectors satisfying the nor-

malisation conditions ¥ (G, -, -, -) (2.2). The matrices 17, W and fare partitioned accordingly.
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Proof. Without loss of generality, we can assume that all the poles §; are spurious
eigenvalues, so that dz, > 1. If that were not the case, we could just consider a subset

of the poles. Keldysh’s theorem 2.4 applied to G(z) yields
F(z) ! = g(2)V(z] — J)'W* + g(2)R(2), (2.10)

where R € H(Q)). Up to a permutation, the matrices J, V, and W have the block

structure

]:diag(j\l/'--/fs/fl/---/ﬁ’)/

v:[vl AR vr],
W:{Wl Ws Wl Wr]/

where \v/k, Wk, and fk (17k, Wk, and E{, respectively) are defined in Theorem 2.4 for A
(Cx, respectively) and each complete system of Jordan chain satisfies the normalisation

conditions ¥, (G, -, -, ") (2.2). We can write
V= |:‘7 V:| 7 W = |:W W:| ’ ] = ’ (2'11)

where V, W are n x m, matrices, while | is a m, x m, Jordan matrix. Therefore,

substituting (2.10) in (2.11) yields the result. O

Corollary 2.8 (Keldysh for meromorphic functions with simple eigenvalues). We con-
sider F(z) € M(Qo,C"*") and let Ay, ..., As be its distinct, simple eigenvalues in Q) and
G1---,Gr be its distinct poles. Let g(z), G(z), mg,j, V, ], W, R(z) be defined as in Theo-
rem 2.7. Then

Fa ' = 3 SO Vel - W+ g(2IR()
k=1

where 01, ...,0s and Wy, ..., Ws be respectively the right and left eigenvectors such that

WG (A )T =1forj=1,...,s.

41



42 | CONTOUR INTEGRAL METHODS FOR MEROMORPHIC EIGENVALUE PROBLEMS

Table 2.1: Summary of the most important symbols used in this chapter.

Symbol Explanation
F(z) The meromorphic function in M (g, C"*")
s, T Number of distinct eigenvalues and distinct poles
Aj Eigenvalue of F(z) in ()
i Pole of F(z) in Q)
Ci Pole multiplicity of ¢;
5(2), G(z) g(z) =TTy (2 — &), G(2) = g(2)F(z) € H(Q, €7
d; Geometric multiplicity of A;
dg, Geometric multiplicity of §; as spurious eigenvalue; dg, = 0 if §; not a spurious eigenvalue
m; ; mjq = --- = m; 4 partial multiplicities of A;
me, i Mg = = Mg g, partial multiplicities of ¢; as spurious eigenvalue
Ty, Tz SIS g, S S e
m my +mg
P Probing matrix in contour integrals, P € C"**?
m Number of moments in Hankel matrix B([)m]

We conclude this section with the standard notation and settings about meromor-
phic functions, both as a paragraph and as a table. We will constantly recall these

hypotheses, mostly in Section 2.4.1.

Hypotheses 2.2. If not specified otherwise, F(z) € M(Qy,C"*") has Aq,...,As dis-
tinct eigenvalues and {3, ..., &, distinct poles in Q). We let g(z) = [[/_;(z — &) and
G(z) := g(z)F(z) € H(Q,C"*") be the polynomial and holomorphization defined in
Lemma 2.6. Each pole ¢; has a pole multiplicity equal to ¢; and we assume that all the
poles are spurious eigenvalues. We denote with m;q > m;> > --- > m;,, the partial
multiplicities of A; and with mg 1 > mg, > --- > M, d;. be the partial multiplicities
of &;. We set ) := Y, Z}il mij, Mg i= Y4 2721 me,; and 1 = 71y + mg. Finally,
we define the spectral matrices of F(z) to be V= XV/g(f), W, Jand V, W, J, as defined

in Theorem 2.7.

2.2.2 Counting eigenvalues

In Chapter 3 we will see that estimating the number of eigenvalues s (more precisely,
the sum of algebraic multiplicities 777) of a function inside () is a fundamental step
in most contour algorithms. For the sake of notation, in this section we assume the

eigenvalues are simple, so s = m. Asakura, Sakurai et al. showed that the argu-
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ment principle in Theorem 1.5 can be used to this goal for a holomorphic function

G(z) [Asa+09; Asa+10]. In fact, if G(z) € H(Q),C"*"), then

1 [ (detG(z))
*~ o LQ det G(z) az,

and Jacobi’s formula (det G(z))" = det G(z) tr(G(z) "' G'(z)) yields

1

S= 5 “ tr(G(z)"1G'(2)) dz. (2.12)

Equation (2.12) is a bit costly when n » 1 if estimating the number of eigenvalues is
simply a preliminary step for contour algorithms. Even though this chapter mainly
focuses on relatively small eigenvalue problems, we believe that a brief review on
how to solve this issue is important for the general scope of the thesis.

In general, when n » 1, an exact count of s is not necessary, hence we may trade

some precision for speed. First of all, notice that we can rewrite
n
tr(G(z)'G'(2)) = D ¢/ G(z) "G/ (2)ej, (2.13)

where ¢; is the jth column of the identity matrix. Hence there are two main ways to

approximate (2.12).

o We stochastically estimate tr(G(z) ~'G’(z)) with an appropriate random variable.
This approach was first proposed in [MFS11] and in many papers onwards, such

as [SFT13; Che+17; DPS16].

o We directly approximate ejTG(z)_lG’ (z)ej for j = 1,...,n. In 2004 Guo and
Renaut propose to estimate u” f(A)v through a small number of steps of the
Arnoldi iteration for two given vectors u, v [GRog]. Under our settings, we

would have f(A) = A™!, with A = G(z), u = ej, and v = G'(z)e;.

Here we focus on the first method. The upcoming lemma and proposition are a

generalisation of a result first appeared in [Hutgo] for symmetric matrices."

1 We thank Vanni Noferini for a private communication on this matter.
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Lemma 2.9. Let B € R™ " and let U be a random variable with zero mean, variance o and
finite fourth moment. Decompose uniquely B = D + H + K, where D is diagonal, H = HT

is symmetric with zero diagonal, and K = —K7 is skew-symmetric. If u € R" is a vector of

independent samples from U, then

E[uBu] = o? tr(B),

Var(u"Bu) = 20*||H||7 + (E[U*] — ¢*)||D||.

Proof. Denote the (i, j)th element of B with b;;, and respectively h;j, k;; for H and K
We have

n
[uTBu] = Z Efujui]bjx = o? tr(B).
jk=1

Concerning the variance, it holds (E[u!Bu])? = ¢* Z?,j=1 biibj;. In addition,

(uTBu)? Z Uit jugtpbiibyy. (2.14)
ijkl=1

Thus, if we take the expected value of (2.14), most of the addenda disappear and we
get

n
(uTBu)?] Z E[U*] b2 + Za4bub]] + Z [wiujugue]bijbiy,

(2.15)
i#] i#jk#L

where the first sum corresponds to all indices being equal, and the second to i = j

and k = /. In the third sum two cases return a nonzero contribution: i =k, j = ¢, and
i =4, j = k. Therefore

(u” Bu)?] Lﬂ#+20m%+20bhwml

i#] i#]

E[U*]b5 + Y o*biiby; + > 0* (b7 + b + 2bygby).
i#] i>j

i M: T M:
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Noticing that (b2 + b2 + 2b;jbj;) = (bij + b]-z-)2 and that (b + bj;) = 2h;; when i > j

yields
n
Var(u"Bu) = Y E[U*]b7 + > o*biibj; + — ||2H||§ —0* > byibj;
i=1 i#] ]
ot 4 4 2
= 5 [I2H][7 + (E[U*] - ¢*)|[ D]z
as desired. O

Proposition 2.10. Let B € C"*" and let u € R" be as in Lemma 2.9. Decompose uniquely
B = D+ H + K, where D is diagonal, H = H* is Hermitian with zero diagonal, and

K = —K* is skew-Hermitian. Then

E[u*Bu] = ¢ tr(B),

Var(u”Bu) 7H2HHF E[U*] - ¢*)||D|7.

Proof. Write uniquely B = A +iC, with A,C € R"*". Since the variance of a complex

variable is the sum of the variances of its real and imaginary part, we have
Var(u*Bu) OAzH E[UY] = o) [ Da 2 + 2 [2He | + (E[U*] — o) | De
ar(u”Bu) 12HallF + (E[U*] ~¢*)[[Dall7 + 5 12He|[7 + (E[UY] o) | Dell7,

where A = Dy + Hy + K4 and C = D¢ + He + Ke. But H = Hy + iHc and similarly

for D, hence the result. O

Proposition 2.10 corresponds to [Hutgo, Proposition 1] for general matrices. The
most widely used random variables are Gaussian and Rademacher vec