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In this thesis we look at several problems in the fractal geometry of iterated
function systems. In particular Bernoulli convolutions for algebraic parameters
and self-affine measures. In chapter 3, for a given hyperbolic number, we define
(and prove existence) a natural measure supported on its spectrum and prove
the presence of a local structure in this measure. We also discuss links to the
fractal geometry of Bernoulli convolutions, which is also the main motivation for
the project. In chapter 4, using ideas from the previous chapter we investigate
the absolute continuity of Bernoulli convolutions for hyperbolic parameters. We
reduce the absolute continuity to an ergodic theory problem involving cocycles over
domain exchange transformations. In the next chapter we study the multifractal
spectrum of planar self-affine measures under assumptions on their orthogonal
projections. We also assume that the respective set of matrices is dominated. In
the last chapter we investigate a toy problem motivated by our attempt to study
Bernoulli convolutions for Pisot numbers of high algebraic degree. The problem is
related to sparse matrices associated to Pisot numbers. The results provide some
unexpected intuitions related to the initial question.
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Chapter 1

Introduction

Iterated function systems (IFS) are one of the main aspects of fractal geometry.

Bernoulli convolutions and self-affine measures are examples of measures gener-

ated by IFSes which, despite their elegant simplicity, are not yet fully understood.

In this thesis we present new methods in some problems on these systems. These

methods are of ergodic theory nature including thermodynamic formalism, skew-

products, transition matrices, random matrix products, symbolic dynamics, do-

main exchange transformations. The Bernoulli convolution νβ, for β ∈ (1, 2), is

the unique probability measure satisfying

νβ =
1

2
F0(νβ) +

1

2
F1(νβ)

where Fi(x) = β−1x − i. The attractor R of {F0, F−1} is just the closed

interval between the fixed points of F0 and F−1. The main difficulty in understating

Bernoulli convolutions comes from that fact that

F0(R) ∩ F1(R) ̸= ∅,
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as implied by β < 2. Often in fractal geometry separation conditions are

assumed that exclude this type of behaviour. Overlaps in IFS make the fractal ge-

ometry especially hard to understand. This is what makes Bernoulli convolutions

a useful family of examples as they provide the simplest setting in which over-

laps are present. Bernoulli convolutions have been studied since the 1930’s but

recent exceptional results have renewed interest. Some of these results appeared

in [45],[17],[79],[73],[2]. Algebraic numbers are of special importance since if β is a

Pisot number then dimH(νβ) < 1 (see [38]). Pisot numbers are the only examples

known that drop the Hausdorff dimension below 1. Recently it was also proved

that dimH(νβ) = 1 for transcendental β (see [79]). In the self-affine case we focus

on IFSes {F1, ..., FN} (N > 1) where Fi are affine maps Fi : Rd → Rd. We call

attractors of such systems self-affine sets. The term self-affine measures is used for

natural pushforwads of Bernoulli measures of (Σ, σ) where Σ = {1, ..., N}N and

σ is the left shift map. In particular they are pushforwards along the function

π : Σ → Rd defined by

π(x1, x2, ...) = lim
n→∞

Fx1 ◦ ... ◦ Fxn(p),

where p can be chosen to be any point in Rd without affecting π.

The main difficulty in self-affine systems is that in most cases the maps Fi

contract at different rates for different directions, making the local behaviour of

self-affine sets and measures particularly hard to control. Formally, the maps Fi

are not conformal, a condition required for a lot of the classical tools which can not

be used in this setting. Below we give a brief description of the projects making

up this thesis.

13



1.1 Measures on the Spectra of Algebraic Inte-

gers

This project is joint work with Tom Kempton. The two authors had roughly

equal contribution to the project. A lot is already understood about Bernoulli

convolutions for Pisot parameters. That is because in the Pisot case there is

rigid structure present that makes the mathematics simpler. In particular the

respective IFS is of finite type. Hyperbolic numbers can be seen as the natural

next step to study Bernoulli convolutions of algebraic parameters, beyond the Pisot

case. Motivated by problems in Bernoulli convolutions in this chapter we study

the following sequence of measures. Assume β ∈ (1, 2) is a hyperbolic number.

Let µn be the countably supported measure on R defined by

µn({x}) =#

{
(a1, ..., an, b1, ..., bn) ∈ {0, 1}2n :

n∑
i=1

aiβ
n−i −

n∑
i=1

biβ
n−i = x

}
.

Let Ti(x) = βx+ i. Notice that the sums in the definition above can be written

as Tan ◦ ...◦Ta1(0) and Tbn ◦ ...◦Tb1(0). So µn({x}) counts in how many ways x can

be written as Tan ◦ ... ◦ Ta1(0)− Tbn ◦ ... ◦ Tb1(0) where a1, ..., an, b1, ..., bn ∈ {0, 1}.

Another way to see µn, that hints to Bernoulli convolutions, is as sums of rescaled

local measures appearing in

∑
a1,...,an∈{0,1}

δT−1
a1

◦...◦T−1
an (0).

The motivation to study these measures are potential applications to Bernoulli

convolutions. The measures µn are hidden for example in [2] and [53] as well

as in chapter 4 of this thesis. Usually in such applications the aim is to prove

equidistribution properties for µn. We will expand more on applications in chapter
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4. We recall that β ∈ (1, 2) is called hyperbolic if it is an algebraic integer with

no Galois conjugate on the circle. So we can assume that β is an algebraic integer

with Galois conjugates β = β1, ..., βd, βd+1, ..., βd+s such that |β2|, ..., |βd| > 1 and

|βd+1|, ..., |βd+s| ∈ (0, 1). By considering the Galois conjugates of β we create

a multidimensional lift of µn that lives on a lattice as we describe below. We

set T̄i(x1, ..., xd+s) = (β1x1 + i, ..., βd+sxd+s + i) and define the finitely supported

measures µ̄n on Cn by

µn({x}) =#
{
(a1, ..., an, b1, ..., bn) ∈ {0, 1}2n : T̄a1−b1 ◦ ... ◦ T̄an−bn(0) = x

}
,

where we should note that T̄a1−b1 ◦ ...◦ T̄an−bn(0) = T̄an ◦ ...◦ T̄a1(0)− T̄bn ◦ ...◦ T̄b1(0).

Now the set

{(βκ
1 , ..., β

κ
d+s) : κ ∈ {0, ..., d+ s− 1}}

can be proven to be independent over the reals so it generates a lattice set

Z̄ =

{
d+s−1∑
κ=0

aκ(β
κ
1 , ..., β

κ
d+s) : a0, ..., ad+s−1 ∈ Z

}
.

It is easy to check that T̄i(Z) ⊆ Z̄ which implies that µ̄n lives on Z̄. Observe

that the maps T̄i are expanding in coordinates 1, ..., d and contracting in coordi-

nates d+1, ..., d+s. Motivated by this split in expanding/contracting components

we define the following projection maps,

πe(x1, · · · , xd+s) = (x1, · · · , xd)

πc(x1, · · · , xd+s) = (xd+1, · · · , xd+s).

We prove in theorem 3.1.1 that there is λ > 0 and a measure µ̄ on Z̄ such that

15



µ̄({x}) = lim
n→∞

µ̄n({x})
λn

,

for all x ∈ Z̄.

We construct matrices A−1, A0, A1 and a vector W , depending only on the

number β, so that when x = Txn ◦ ... ◦ Tx1(0) then

µ̄n({x}) =
1

λn
(WAx1 · ... · Axn)1. (1.1)

The other entries of WAx1 · ... · Axn above are equal to the measures of points

nearby x, so this vector describes the measure µ̄ locally around x. The main result

of this chapter is theorem 3.1.3. Roughly it says that for v ∈ Z̄ and under condi-

tions, when πc(x) and πc(y) are close then µ̄({x+v})/µ̄({x}) and µ̄({y+v})/µ̄({y})

tend to be close. In the paper v belongs to a particular set notated as ∆, but the

theorem holds more generally by combining translations in ∆. So this tells us in

a sense that we understand the way µ̄ evolves as we move to nearby points by

looking at the counteractive directions. We believe that this structure is a kind of

symmetry that could be exploited to prove equidistribution properties for µn. The

main idea of the proof is that the approximate position of πc(x) can determine the

last few matrices Axn−κ , ..., Axn in equation 1.1, for at least one coding of x. So

then we can approximate ratios of the form µ̄({x+ v})/µ̄({x}) by working on the

projective space on which the matrices Ai act.

1.2 Absolutely Continuous Bernoulli Convolutions

This project is joint work with Tom Kempton. The author has written most of it

while there were challenging points where Kempton contributed. In this chapter
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we focus on the absolute continuity of Bernoulli convolutions νβ for hyperbolic

β. We link absolute continuity of νβ to a problem involving a domain exchange

transformation. We make the extra assumption that β has another real Galois

conjugate of absolute value larger than one. In our context we define domain

exchange transformation as follows.

Definition 1.2.1. Let E be a compact subset of a euclidean space and T : E →

E. The map T is call a domain exchange transformation if there are E1, ..., En

measurable subsets of E such that following hold.

• {E1, ..., En} is a partition of E.

• The map T is an injection.

• If i ∈ {1, ...n} then T |Ei
is a translation.

For a given hyperbolic number β, as above, we construct compact subsets

(with non-empty interior) of euclidean spaces R, I which contain zero, a domain

exchange transformation T : D → D where D = I×R and a function f : D → R+

satisfying certain variation conditions. Let πe and πc be the projections of D =

I ×R to I and R respectively. Also for n ∈ N we define

ωn =
n∑

κ=0

(
κ−1∏
i=0

exp
(
f(T i(0))

))
δTκ(0).

The purpose of this construction is theorem 4.1.1 where we essentially claim

that under conditions if πeωn, once normalised to probability measures, converge

to Lebesgue fast enough then νβ is absolutely continuous.

The exchange of domains T and the measures ωn come from methods developed

in chapter 3. There, β generates a measure µ̄ on a lattice L ⊆ Rκ. The construction

of sets I and R implies D = I ×R ⊆ Rκ−1 so that S := int(D) × R ⊆ Rκ. Here
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we focus on the set S. We want to study the part of µ̄ that lives on S be moving

along the strip-shaped set S. When this process is projected down to int(D) the

exchange of domains T expresses the move from a lattice point to the next as we

move along S. The measure ωn is µ̄ restricted to the first n lattice points and

projected down to D. To be more precise we define πfree : Rκ → R by

πfree(x1, ..., xκ) = xκ

and succl : L ∩ S → L ∩ S by

πfree(succl(x)) = min{πfree(y) : y ∈ L ∩ S, πfree(y) > πfree(x)}.

Now T and succl are related by

πD ◦ succl = T ◦ πD

where πD(x1, ..., xκ) = (x1, ..., xκ−1) . Also it holds that

µ̄(0)ωn =
n∑

κ=0

µ̄(succκl (0))δTκ(0).

We should note that assuming β is a hyperbolic number with Galois conjugates

β = β1, ..., βd, βd+1, · · · , βd+s, βd+s+1 where |β1|, ..., |βd| > 1,

|βd+1|, ..., |βd+s| < 1 and βd+s+1 ∈ R \ [−1, 1] then

L =

{
d+s∑
i=0

ai(β
i
1, ..., β

i
d+s+1) : a0, ..., ad+s ∈ Z

}
,

which is essentially a multidimensional lift of the spectrum of β. Here we identify

C with R2 making L a subset of a euclidean space.

18



1.3 On the Local Dimension Spectrum for Self-

Affine Measures

This project is joint work with Tom Kempton and Antti Käenmäki. The three

authors have been writing and rewriting each other’s texts and they had lively

discussions on problem solving. Here we focus on the multifractal formalism of

self-affine measures. As it often the case with self-affine measures we use methods

from sub-additive thermodynamic formalism.

Definition 1.3.1. Let ν be a measure on Rd. If the limit

lim
r→0

log ν(B(x, r))

log r

exists we call it the local dimension of ν at x and denote it by dimloc(ν, x).

In general the multifractal formalism is concerned with the multifractal spec-

trum function

f(a) = dimH{x ∈ Rd : dimloc(ν, x) = a}.

Assume we have an self-affine IFS {T1, ..., TN} of the form

Ti(x) = Aix+ ti, x ∈ Rd,

where Ai are d × d real invertable contractive matrices and ti ∈ Rd. Also let π

be the associated function that maps {1, ..., N}N to Rd and µ be a measure on

{1, ..., N}N. Also for a ∈ {1, ..., N}n we define [a] to be the set {x ∈ {1, ..., N}N :

x(i) = a(i) for 1 ⩽ i ⩽ n}. For a ∈ {1, ..., N}n we set Aa = Aa(1) · ... · Aa(n).

Below we give a brief description of what is the expected way to express the

function f , for ν = πµ, in well behaved situations.
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Definition 1.3.2. Let A be a d×d matrix and a1 ⩾, ...,⩾ ad be the singular values

of A, that is the eigenvalues of ATA. The singular value function ϕ is defined as

ϕs(A) =

a1...aκ−1a
(s−κ+1)
κ , κ− 1 < s ⩽ κ ⩽ d

(a1...ad)
s, s ⩾ d

.

We should note that the singular values are the half-lengths of the axes of

the ellipsoid A(D) where D is the unit ball. Ideally we expect that the following

relation defines a convex function τ of q

lim
n→∞

1

n
log

∑
a∈{1,...N}n

(ϕ(τ(q)/(q−1))(Aa))
1−qµ([a])q = 0,

where we set τ(1) = 0, and that the multifractal spectrum of πµ is given by

f(a) = inf
q
(aq − τ(q)).

This is not always true and sometimes refined versions of it are true. Partial

results towards this direction where given by Julien Barral and De-Jun Feng in

[10] for Lebesgue almost all vectors t1, ..., tN . This kind of results for randomly

chosen parameters are common in the study of self-affine fractals. For example

one of the early results was by Kenneth Falconer [25] proving that for almost all

choices of translation vectors the dimension of the attractor is given by the value

s satisfying

1 = lim
n→∞

 ∑
a∈{1,...N}n

ϕs(Aa)

1/n

.
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We should also mention [8] where similar results proved for fixed translation

vectors and almost all A1, ...AN . A different approach is to study families of self-

affine fractals satisfying certain conditions that makes them well behaved. See for

example Theorem 1.1 in [27] which is focused on families of self-affine measures

satisfying projection properties. Projections give us information about how πµ is

distributed on sets of the form π([a]) for a ∈ {1, ..., N}n which allows to overcome

the obstacle of the almost ”degenerate” geometry of π([a]). Our project in chapter

5 is on this type of approach. We study the multifractal formalism of planar

self-affine measures under conditions on their projections.

1.4 Matrices associated to Pisot numbers

Pisot numbers are of special interest in the study of Bernoulli convolutions. This is

because Garsia proved in [38] that dimH νβ < 1 when β is Pisot and it is conjectured

that the inverse is also true. Let deg(β), of an algebraic number β, be the degree

of its respective minimal polynomial. This chapter was motivated by an attempt

to study dimH νβ when β is a Pisot and deg(β) is high. In particular we wanted to

argue that in such cases dimH νβ is close to 1. Ideally we would like to prove that

lim
n→∞

min{dimH(νβ) : deg(β) > n} = 1.

As an intermediate step we also considered the question of whether a sequence

of Pisot numbers βn such that βn → ϕ and deg(β) → ∞ satisfies

lim
n→∞

dimH νβn = 1.

There is an advantage in having βn converging and the number ϕ is chosen

because its algebraic properties make the related mathematics especially simple.
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The main tool would come from [2]. Let Ti(x) = βx− i and

Sβ,x = {Tϵn ◦ ... ◦ Tϵ1(x) : n ∈ N, ϵ1, ..., ϵn ∈ {−1, 0, 1}} ∩ [−1(β − 1), 1(β − 1)] .

We also set Sβ,0 = Sβ. Notice that −1(β − 1), 1(β − 1) are the fixed points of

T−1, T1 respectively. When β is Pisot and the greedy β-expansion of x is periodic,

the set Sβ,x is finite. We denote the elements of Sβ,x by S1
β,x <, ..., < S

|Sβ,x|
β,x . We

define Mβ,x to be the following |Sβ,x| × |Sβ,x| matrix.

Mβ,x(i, j) =


1/2, T−1(S

i
β,x) = Sj

β,x or T1(S
i
β,x) = Sj

β,x

1, T0(S
i
β,x) = Sj

β,x

0, otherwise

.

Again we set Mβ,0 = Mβ. The matrices Mβ appear in [2] where it is proven

that

dimH(νβ) ⩾ min

{
1,

log 2− log(ρ(Mβ))

log(β)

}
,

providing a lower bound for dimH(νβ). It is observed numerically that when deg(β)

is large then a pattern appears in Mβ. The plots of such matrices suggest that, as

deg(β) increases (and stays bounded away from 2), the set{(
i

|Sβ|
,
j

|Sβ|

)
∈ R2 :Mβ(i, j) ̸= 0, 1 ⩽ i, j ⩽ |Sβ|

}
looks like a finite approximation of

1⋃
i=−1

{(x, Ti(x)) : |x| < 1/|β − 1|},

properly rescaled (this is formalised in definition 6.1.5 and conjecture 4). This is

not a total surprise since the matrices are defined as transitions matrices for finite
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sets closed under the maps Ti but it does suggest equidistribution properties for Sβ.

Now let for simplicity βn be a sequence of Pisot numbers converging to the golden

ratio and deg(βn) → ∞. The strategy was to formalise and prove the appearance

of the pattern described above and exploit this pattern to understand the limit of

the spectral radius proving that dimH(νβn) → 1. Following this strategy ended up

being more difficult than we expected. This is partly because the matrices blow

up from the very first steps, making it hard to spot any patterns, and because

the spectral properties of sparse matrices are hard to control. For this reason

we introduced the matricesMϕ,x as a simplified toy problem where the complexity

doesn’t come in through β but by changing the starting point x. We always assume

that the greedy β-expansion of x is periodic. The result was a proof showing that

for x ’relatively typical’ two things are true. Firstly, the matrixMϕ,x has very large

size and follows the pattern described above. In a formal level it just means that

Sϕ,x is uniformly equidistributed. Secondly, the spectral radius of Mϕ,x is different

from what was expected. To be more precise there is L > 0 such that for each

ε > 0 there is δ > 0 for which

d

 1

|Sβ,x|
∑

x∈Sβ,x

δx,
1

β − 1
Leb

 < ε

and

|ρ(Mϕ,x)− L| < ε

when

d

(
1

n

n−1∑
i=0

δT i(x), µ

)
< δ.
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where T is the beta-expansion map associated to β, µ is its unique absolutely

continuous invariant probability measure and d is a natural metric we define be-

tween measures. The last inequality above expresses what we mentioned as ’rela-

tively typical’. This ended up being a kind of counterexample for the second part

of the strategy. It shows that the pattern described above, on its own, doesn’t

determine (up to approximation) the spectral radius of a matrix.
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Chapter 2

Preliminaries

2.1 Ergodic Theory

Definition 2.1.1. A pair (X,T ) will be called a dynamical system if X is a metric

space and T is a measurable mapping from X to itself. A Borel probability measure

m on X is called invariant under T iff

m(A) = m(T−1(A))

for any Borel set A ⊆ X. The probability measure m is called ergodic iff for

any Borel set A ⊆ X,

T−1(A) = A⇒ m(A) ∈ {0, 1}

or equivalently

T−1(A)∆A = 0 ⇒ m(A) ∈ {0, 1}.
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Theorem 2.1.1 (Ergodic theorem). Let (X,T ) be a dynamical system and m an

ergodic invariant probability measure of T . If f ∈ L1(X) then for m-almost all

x ∈ X we have

∫
fdm = lim

n→∞

1

n

n−1∑
i=0

f(T i(x))

For a proof of the Ergodic theorem see theorem 1.5 in [81]. By applying the

ergodic theorem on indicator functions we get the following corollary which shows

that invariant measures describe the long term distribution of orbits of T .

Corollary 2.1.1. Let (X,T ) be a dynamical system and m an ergodic invariant

probability measure of T . Then for m-almost all x ∈ X and Borel set A ⊆ X we

have

m(A) = lim
n→∞

1

n
#{i ∈ N : T i(x) ∈ A, 0 ⩽ i ⩽ n− 1}.

Definition 2.1.2. For a measurable space (X,Σ) and measures µ, ν on Σ, we say

that ν is absolutely continuous with respect to µ and write ν ≪ µ iff

µ(A) = 0 ⇒ ν(A) = 0

for all A ∈ Σ. We say that the measures µ and ν are equivalent if ν ≪ µ and

µ≪ ν.

If µ, ν are σ-finite measures on the measurable space (X,Σ), the Radon-Nikodym

theorem ([56], Cor. 7.34) states that ν ≪ µ iff there exists Σ-measurable f : X →

[0,∞) such that

ν(A) =

∫
A

fdm
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for all A ∈ Σ. In this case we write ν = fdµ.

The following lemma is well known but we include a proof for completeness.

Lemma 2.1.1. Let µ, ν be invariant probability measures of a dynamical system

(X,T ) such that µ is ergodic and ν ≪ µ. Then µ = ν.

Proof. By the Radon-Nikodym theorem there is a measurable f : X → R such

that

ν(A) =

∫
A

fdµ

for all Borel sets A ⊆ X. It is enough to prove that f(x) = 1 for µ-almost all

x ∈ X. Let

M = {x ∈ X : f(x) < 1}.

Aiming to prove that µ(M\T−1(M)) = 0 we assume, towards a contradiction,

that µ(M\T−1(M)) ̸= 0. Notice that µ(M) = µ(T−1(M)) implies µ(M\T−1(M)) =

µ(T−1(M)\M) so

ν(M) =

∫
M

fdµ =

∫
M∩T−1(M)

fdµ+

∫
M\T−1(M)

fdµ

<

∫
M∩T−1(M)

fdµ+ µ(M\T−1(M))

=

∫
M∩T−1(M)

fdµ+ µ(T−1(M)\M)

and

ν(T−1(M)) =

∫
T−1(M)

fdµ =

∫
M∩T−1(M)

fdµ+

∫
T−1(M)\M

fdµ

⩾
∫
M∩T−1(M)

fdµ+ µ(T−1(M)\M)
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which contradicts ν(M) = ν(T−1(M)). Hence we have µ(M\T−1(M)) =

µ(T−1(M)\M) = 0 which implies that µ(M∆T−1(M)) = 0 which by the ergo-

dicty of µ gives that µ(M) ∈ {0, 1}. Concluding we have that

∫
X

fdµ = ν(X) = 1

and either f(x) < 1 for µ-almost all x ∈ X or f(x) ⩾ 1 for µ-almost all x ∈ X

which combined imply that f(x) = 1 for µ-almost x ∈ X.

Definition 2.1.3. Let X be a metric space, (µn)n∈N a sequence of Borel measures

on X and µ a Borel measure on X. We say that µ is the weak∗ limit of the sequence

(µn)n∈N iff

lim
n→∞

∫
fdµn =

∫
fdµ

for all continuous bounded f : X → X.

Remark. If the metric space X, in the definition above, is compact then the weak∗

convergence determines a metrizable topology called the weak∗ topology. In this

topology the set of Borel probability measures is compact (see [56], p252, remark

13.14, and p260, Th. 13.29).

Definition 2.1.4. Let X be a metric space and µ a Borel measure on X. We say

that a Borel set A ⊆ X is a continuity set of µ iff µ(∂A) = 0.

The following lemma can be found in [56] as theorem 13.16 in page 253.

Lemma 2.1.2. Let X be a metric space, (µn)n∈N a sequence of Borel measures on

X and µ a Borel measure on X. Then µ is the weak∗ limit of the sequence (µn)n∈N

iff
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lim
n→∞

µn(A) = µ(A)

for all continuity sets A of µ.

Definition 2.1.5. Let (X,Σ1,m) be a measure space, (Y,Σ2) a measurable space

and T : X → Y a measurable map. Then the pushforward measure T (m) on Σ2 is

defined to be the one satisfying

T (m)(A) = m(T−1(A))

for all A ∈ Σ2.

In ergodic theory sub-additive sequences often arise, so we need the following

lemma by Fekete (see [29]and [36]).

Lemma 2.1.3. Let (an)n∈N be a sub-additive sequence (i.e. an+m ⩽ an+am holds).

Then

lim
n→∞

an
n

= inf
n

an
n
,

including the possibility that limn→∞ an/n = −∞.

We will also refer later to the Wasserstein distance so we include the definition

for completeness.

Definition 2.1.6. Let µ and ν be Borel probability measures on Rd and p1, p2 :

Rd × Rd → Rd be such that

p1(x, y) = x, x, y ∈ Rd

p2(x, y) = y, x, y ∈ Rd.
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Also we set M to be the set of all Borel probability measures g on Rd × Rd such

that p1(g) = µ and p2(g) = ν. The Wasserstein distance W1(µ, ν) between µ and

ν is defined as

W1(µ, ν) = inf
g∈M

∫
Rd×Rd

||x− y||dg(x, y).

The intuition behind the definition, in very loose terms, is that we look for the

minimum cost for turning µ into ν by moving mass around. The cost for moving

a portion of mass is proportional to the size of the mass and the distance covered

to move it.

2.2 Thermodynamic Formalism

When we want to understand geometrical dynamical systems we often encode them

in symbolic shift spaces which is the focus of this subsection. Roughly, information

of a geometric problem is encoded in the symbolic space through a potential, and

its pressure and equilibrium states. We will start mentioning some key points of

classical thermodynamic formalism and then move to sub-additive thermodynamic

formalism.

Fix a natural number N and an N ×N matrix A with entries in {0, 1}. We set

Σ =
{
a ∈ {1, ..., N}N : A(a(i), a(i+ 1)) = 1 for all i ∈ N

}
.

We will assume that A is irreducible. For θ ∈ (0, 1) we define the metric dθ on Σ

satisfying dθ(a, b) = θn where n is the first natural number such that a(n) ̸= b(n).

Finally we define the shift map σ : Σ → Σ by σ(a)(i) = a(i + 1). A main

aspect of thermodynamic formalism is describing invariant probability measures

of the dynamical system (Σ, σ). We will denote the set of all invariant probability

measures of σ by Mσ(Σ).
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Definition 2.2.1. The cylinder set [x0, ..., xn], for (x0, ..., xn) ∈ {1, ..., N}n+1, is

defined to be the set

{a ∈ Σ : a(i) = x(i) for all i ∈ {0, ..., n}} .

Definition 2.2.2. A Borel probability measure m on Σ is called a Gibbs measure

iff there are a continuous f : Σ → R, P > 0 and C > 1 such that for all x ∈ Σ

and n ∈ N,

C−1e
∑n−1

i=0 f(σi(x))−nP ⩽ m([x0, ..., xn−1]) ⩽ Ce
∑n−1

i=0 f(σi(x))−nP .

In the context of thermodynamic formalism it used to say that a function

f : Σ → R is Holder continuous iff there is C > 0 such that for all x, y ∈ Σ,

|f(x)− f(y)| ⩽ Cdθ(x, y).

It is common to call such a function, a potential. Below we define the pressure of

a potential, a quantity which is useful in the construction of invariant measures as

well as for expressing exponential growth/decay phenomena in geometric problems.

Definition 2.2.3. Let f : Σ → R be a Holder continuous function. The pressure

P (f) of f is defined to be

lim
n→∞

1

n
log

 ∑
x̄∈{1,...,N}n

sup
x∈[x̄]

exp

(
n−1∑
i=0

f(σi(x))

) .

By the Holder continuity it is easy to observe that the pressure can equivalently

by defined by
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P (f) = lim
n→∞

1

n
log

 ∑
σn(x)=x

exp

(
n−1∑
i=0

f(σi(x))

) .

The existence of the pressure and the variational principle stated bellow are

implied by the more general theorem 3 in [71].

Definition 2.2.4. Let m ∈ Mσ(Σ). The entropy hσ(m) of m is defined by

hσ(m) = lim
n→∞

1

n

∑
x̄∈{1,...,N}n

µ([x̄]) log(m([x̄])).

The existence of limit follows from sub-additivety.

Now we are ready to state the variational principle.

Proposition 2.2.1. Let f : Σ → R be a Holder continuous function. Then

P (f) = sup

{
hσ(m) +

∫
fdm : m ∈ Mσ(Σ)

}
.

There is a general theory of pressure and equilibrium states for the case where

f is only assumed to be continuous by Walters [80] and Ruelle [68], but we will

not need it in this thesis.

Definition 2.2.5. Let f : Σ → R be a Holder continuous function. A measure

m ∈ Mσ(Σ) is called an equilibrium state of the potential f iff

P (f) = hσ(m) +

∫
fdm.

For each Holder continuous function f : Σ → R there is a unique equilibrium

state m. In addition it satisfies
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C−1e
∑n−1

i=0 f(σi(x))−nP (f) ⩽ m([x0, ..., xn−1]) ⩽ Ce
∑n−1

i=0 f(σi(x))−nP (f),

implying thatm is Gibbs (see proposition 3.2, comments in page 39, proposition

3.4 and theorem 3.5 in [64]). Now we move on to sub-additive thermodynamic

formalism. A sequence of continuous functions Φ = (ϕn)n∈N from Σ to R is said

to be a sub-additive if for all x ∈ Σ and n,m ∈ N,

ϕn+m(x) ⩽ ϕn(x) + ϕm(σ
n(x)).

Definition 2.2.6. The pressure P (Φ) of a sub-additive potential Φ = (ϕn)n∈N is

defined by

P (θ) = lim
n→∞

1

n
log

 ∑
x̄∈{1,...,N}n

sup
x∈[x̄]

exp (ϕn(x))

 .

For m ∈ Mσ(Σ) we also set

Λ(Φ, µ) = lim
n→∞

1

n

∫
ϕndm

which exists by sub-additivety.

The variational principle below follows from theorem 1.1 and section 4 in [19].

Proposition 2.2.2. Let Φ be a sub-additive potential. Then P (Φ) exists and

P (Φ) = sup {hσ(m) + Λ(Φ,m) : m ∈ Mσ(Σ)} .

Definition 2.2.7. Let Φ be a sub-additive potential. A measure m ∈ Mσ(Σ) is

called an equilibrium state of Φ iff
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P (Φ) = hσ(m) + Λ(Φ,m).

In general the set of equilibrium states can be empty but in most cases, for sub-

additive potentials that arise from applications to fractal geometry, equilibrium

states exist (see [58] and in particular theorem 2.6). We should note though that

in some cases the equilibrium state is not unique (see [52] example 6.2).

2.3 Iterated Function Systems

A map F : Rd → Rd is called a contraction iff there is c < 1 such that for all

x, y ∈ Rd,

|F (x)− F (y)| ⩽ c|x− y|.

Definition 2.3.1. A finite set F = {F1, ..., FN} of contractions on Rd is called an

iterated function system (IFS). The unique non-empty compact set A satisfying

A =
N⋃
i=1

Fi(A),

is called the attractor of F.

For the existence of the unique attractor see [28], theorem 9.1. We can also

see an IFS as being driven by probability measures generating a fractal measures

supported on the attractor or on subsets of the attractor. To explain this formally

we let Σ = {1, ..., N}N and for ā ∈ {1, ..., N}n we use the cylinder notation [ā]

introduced in the previous subsection. Since the members of F are contractions,

for a ∈ Σ we have that
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lim
n→∞

diam
(
Fa(0) ◦ ... ◦ Fa(n)(A)

)
= 0

also, Fa(0) ◦ ... ◦Fa(n)(A) is a nested sequence of compact subsets of A so there

is a unique π(x) ∈ A such that

{π(x)} =
⋂
n∈N

Fa(0) ◦ ... ◦ Fa(n)(A).

The above defines a function π : Σ → A which is called the projection of

the IFS on A. Now we can see that for each Borel probability measure m on Σ

we can form the push-forward measure π(m). It is also useful to note that for

ā ∈ {1, ..., N}n

π([ā]) = Fā(0) ◦ ... ◦ Fā(n)(A).

Often it is assumed that an IFS satisfies the open set condition below. That

condition makes the mathematical analysis of the IFS much more tractable.

Definition 2.3.2. Let F = {F1, ..., FN} be an IFS on R. We say that F satisfies

the open set condition iff there exists a non-empty bounded open set V ⊆ Rd such

that

V ⊇
N⋃
i=1

Fi(V )

and

Fi(V ) ∩ Fj(V ) = ∅

for i, j ∈ {1, ..., N} with i ̸= j.
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Probably the most important way to analyze the fractal behaviour of attractors

and projected measures is the Hausdroff dimension. In order to define it we first

need to define Hausdorff measures.

Definition 2.3.3. Given a set A ⊆ Rd, we call a sequence (Di)i∈N a δ-cover of A

if the following statements hold.

• Di ⊆ Rd.

• diam(Di) ⩽ δ for all i ∈ N.

• A ⊆
⋃

i∈NDi.

For A ⊆ Rd and (s, δ) ∈ [0,∞)× (0,∞) we define

Hs
δ(A) = inf

{
∞∑
i=0

diam(Di)
s : (Di)i∈N is a δ-cover of A

}
.

which leads us to the definitions of the Hausdorff measure.

Definition 2.3.4. For s non-negative, the s-dimensional Hausdorff measure Hs(A)

of A ⊆ Rd is defined by

Hs(A) = lim
δ→0

Hs
δ(A).

For a proof that Hs is well-defined and that its restriction to the Borel

σ-algebra is a measure, see theorem 1 of chapter 2 in [22]. See page 31 of [28] for

the proposition below.

Proposition 2.3.1. Let A ⊆ Rd then there exists s0 ⩾ 0 such that Hs(A) = ∞

for s ∈ [0, s0) and Hs(A) = 0 for s ∈ (s0,∞).
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It is natural see the number s0 above, where the jump happens, as the dimen-

sion of the set A. This leads to the definition of Hausdorff dimension.

Definition 2.3.5. Let A ⊆ Rd. The Hausdorff dimension dimH(A) of A is defined

by

dimH(A) = inf {s ⩾ 0 : Hs(A) = 0} .

Remark. It is easy to observe that if A ⊆ B ⊆ Rd then dimH(A) ⩽ dimH(B).

Also if (Ai)i∈N is a sequence of subsets of Rd then

dimH

(⋃
i∈N

Ai

)
= sup

i∈N
dimH(Ai).

Definition 2.3.6. Let m be a Borel probability measure on Rd. The Hausdorff

dimension dimH(m) of the measure µ is defined by

dimH(m) = inf {dimH(A) : A is a Borel set with m(A) > 0} .

Sometimes the above is called the lower Hausdorff dimension of m and it is

denoted by dimH(m). In that context the upper Hausdorff dimension dimH(m) of

m is defined by

dimH(m) = inf {dimH(A) : A is a Borel set with m(A) = 1} .

Definition 2.3.7. Let m be a Borel probability measure on Rd. Then the local

dimension dimloc(m,x) of m at x ∈ Rd is defined by

dimloc(m,x) = lim
n→∞

log(m(B(x, r)))

log(r)
,

if it exists, where B(x, r) = {z ∈ Rd : ||x− z||2 < r}.
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Definition 2.3.8. A Borel probability measurem on Rd is called exact-dimensional

iff for m-almost all x ∈ Rd

dimloc(m,x) = dimH(m).

As we will see, there are many interesting examples of measures that are exact

dimensional. The simplest family of IFSes one can consider are the self-similar

IFSes.

Definition 2.3.9. An IFS F = {F1, ..., FN} on Rd is called self-similar iff there

exist r1, ..., rN ∈ (0, 1) (contraction rates) and t1, ..., tN ∈ Rd (translation vectors)

such that for every i ∈ {1, ..., N} and x ∈ Rd we have Fi(x) = rix + ti. The

attractors of a self-similar IFSes are called self-similar sets. Finally if there are

p1, ..., pN ∈ [0, 1] such that p1 + ...+ pN = 1 then a measure m satisfying

m =
N∑
i=1

piFi(m)

is called a self-similar measure.

It is easy to see that given p1, ..., pN as above then m always exists, it is unique

and it is equal to the projection through F of the Bernoulli measure on {1, ..., N}N

corresponding to p1, ..., pN (see section 4 in [47]). The fractal geometry of self-

similar IFSes satisfying the open set condition is well understood. On the other

hand the more general case where overlaps are occur (Open set condition fails)

has been proved to be much more difficult. For a better understanding it is worth

noting the following basic results on the case where the open set condition holds.

For proofs see theorem 9.3 in [28], [65] and [72].

Theorem 2.3.1. Let F = {F1, ..., FN} be a self-similar IFS on Rd with contraction

rates r1, ..., rN ∈ (0, 1). If F satisfies the open set condition then the Hausdorff

38



dimension of its attractor is the unique number s ⩾ 0 satisfying

N∑
i=1

rsi = 1.

In addition if m is a self-similar measure m corresponding to p1, ..., pN ∈ (0, 1) (

with p1 + ...+ pN = 1) then

dimH(m) =

∑N
i=1 pi log(pi)∑N
i=1 ri log(ri)

and the multifractal spectrum

f(a) = dimH{x ∈ Rd : dimloc(m,x) = a}

is equal to the Legendre transform of the function τ : R → R satisfying

N∑
i=1

pqi r
τ(q)
i = 1.

That is

f(a) = inf
q∈R

{τ(q) + aq},

provided that is finite.

The next natural generalisation is self-affine IFSes.

Definition 2.3.10. An IFS F = {F1, ..., FN} on Rd is called self-affine iff there

exist invertable contracting d×d matrices A1, ..., AN and t1, ..., tN ∈ Rd (translation

vectors) such that for every i ∈ {1, ..., N} and x ∈ Rd we have Fi(x) = Aix + ti.

The attractors of a self-affine IFSes are called self-affine sets. Finally if there are

p1, ..., pN ∈ [0, 1] such that p1 + ...+ pN = 1 then a measure m satisfying

m =
N∑
i=1

piFi(m)

is called a self-affine measure.
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Again it is easy to see that given p1, ..., pN as above then m always exists, it

is unique and it is equal to the projection through F of the Bernoulli measure on

{1, ..., N}N corresponding to p1, ..., pN .

Definition 2.3.11. If A is a d × d invertable contracting matrix, the singular

values a1(A) ⩽ ... ⩽ ad(A) are defined to be the roots of the eigenvalues of ATA.

For s ⩾ 0 the singular value function ϕs(A) is defined by

ϕs(A) =

a1(A) · · · a⌊s⌋(A)a⌊s⌋+1(A)
s−⌊s⌋ s ∈ [0, d]

| detA|s/d s > d

.

With the notations of definition 2.3.10, the sequence (ϕs
n)nN of real functions

on {1, ..., N}N defined by

ϕs
n(i) = log ϕs(Ai(0)...Ai(n))

is a sub-additive potential (see [25], lemma 2.1). We will denote its pressure

just by P (ϕs). The following characteristic result on self-affine sets appeared in

[25] as theorem 5.3.

Theorem 2.3.2. Let A1, .., AN be d× d invertable contracting matrices satisfying

||Ai|| < 1/3 (operator norm). Then for Lebesgue almost all t1, ..., tN ∈ Rd the

Hausdorff dimension of the attractor of the IFS given by Fi(x) = Aix + ti, i ∈

{1, ..., N}, is the unique s ⩾ 0 satisfying

P (ϕs) = 0.

Later the condition ||Ai|| < 1/3 above was improved to ||Ai|| < 1/2 by

Solomyak, see proposition 3.1 in [75]. There is an analog for projected measures

in [49],
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Theorem 2.3.3. Let A1, .., AN be d× d invertable contracting matrices satisfying

||Ai|| < 1/2 (operator norm). Let m ∈ Mσ(Σ) be ergodic. Then for Lebesgue

almost all t1, ..., tN ∈ Rd if π : {1, ..., N}N → Rd is the respective projection of the

IFS given by Fi(a) = Aix+ ti, i ∈ {1, ..., N}, then π(m) is exact-dimensional and

dimH π(m) = min{s, d}

where s is the unique non-negative number satisfying

hσ(m) + Λ(ϕs,m) = 0.

Arguably the main difficulty of self-affine fractal geometry is that usually the

singular values ai(Ai(0)...Ai(n)) decays with different exponential rates for different

i ∈ {1, ..., d}. This makes the geometry of π([i(0), ..., i(n)]) not naturally compat-

ible with the geometry of euclidean balls. Finally we mention the following result

from [32] (theorem 1.2) in a slightly simpler form.

Theorem 2.3.4. Let A1, .., AN be d×d invertable contracting matrices, t1, ..., tN ∈

Rd and Fi(x) = Aix + ti for i ∈ {1, ..., N}. Let m ∈ Mσ({1, ..., N}N) be ergodic

and π : {1, ..., N}N → Rd the projection of the IFS {F1, ..., FN}. Then π(m) is

excact dimensional.

2.4 Perron theory

Let (G,E,w) be a finite weighted directed graph. That is

• G is a finite set.

• E ⊆ G2.
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• w : E → (0,∞).

Let C(G) be the vector space of functions from G to R. Then we define the

operator T : C(G) → C(G) by

T (f)(x) =
∑

(y,x)∈E

f(y) · w(y, x).

Given a non-negative d×d matrix A we set GA = {1, ..., d}, E = {(x, y) ∈ G2 :

A(x, y) ̸= 0} and w(x, y) = A(x, y). For a vector v in Rd we set fv : {1, ..., d} → R

such that fv(i) = v(i). In this case we have

T (fv) = fvA.

The above describes a useful viewpoint where we can see non-negative matrices

as dynamical processes on graphs. A non-negative matrix A is called irreducible

iff GA is strongly connected (i.e. for any x, y ∈ GA there is a path from x to y).

Equivalently a non-negative d×d matrix A is irreducible iff for any i, j ∈ {1, ..., d}

there is n ∈ N such that An(i, j) > 0. A matrix is called reducible if it is not

irreducible. If A is a non-negative d × d irreducible matrix then the number

gcd{n ∈ N : An(i, i) > 0} is the same for all i ∈ {1, ..., d} and is called the period

of A. The period of A is also equal to the gcd of lengths of closed directed paths

on GA. If the period is equal to 1 then A is called aperiodic. If the period, call it κ,

is bigger that one then there is a non-trivial partition {S1, ..., Sκ} of GA such that

if (x, y) is a directed edge of GA then there are i, j ∈ {1, ..., κ} such that x ∈ Si,

y ∈ Sj and j = i + 1 mod κ. The sets S1, ..., Sκ will be refered as periodicity

classes. In the following theorem vectors are considered as row-vectors.

Theorem 2.4.1. Perron-Frobenius theorem for primitive matrices

Let A be a non-negative irreducible aperiodic matrix, also called primitive, then
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• There is an eigenvalue ρ > 0 of A such that |λ| < |ρ| for every other eigen-

values λ of A.

• The eigenvalue ρ is simple.

• The eigenvalue ρ has strictly positive left and right eigenvectors. Also, left

and right eigenvectors of A are unique up to scalar multiplication.

• If w and v are left and right strictly positive eigenvectors of A respectively,

so that w · vT = 1, then

lim
n→∞

An

ρn
= vT · w.

There is a version for non-aperiodic matrices too.

Theorem 2.4.2. Perron-Frobenius theorem for non-negative irreducible matrices

Let A be a non-negative irreducible matrix of period κ > 1. Then

• There is an eigenvalue ρ > 0 of A such that either |λ| < |ρ| or (λ/ρ)κ = 1

for every other eigenvalues λ of A.

• The eigenvalue ρ is simple.

• The eigenvalue ρ has strictly positive left and right eigenvectors. Also, left

and right eigenvectors of A are unique up to scalar multiplication.

• Let w and v be left and right strictly positive eigenvectors of A respectively,

so that w · vT = 1. If i, j in the same periodicity class then

lim
n→∞

Anκ

ρnκ
= vT(i) · w(j).
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For details and proofs of the above see paragraph 1.3 in [54]. A useful in

concept in Perron theory arguments is the projective space of Rd.

Definition 2.4.1. Let d ∈ N. For x ∈ Rd+1 let [x] be its linear span

[x] = {rx ∈ Rd+1 : r ∈ R\{0}}.

The projective space RPd is defined to be the set

{[x] : x ∈ Rd+1\{0}}.

Often the projective space RPd, or a subset of it, is identified with subsets of

Rd+1 by choosing a representative element x′ ∈ [x]. For example for

{[x] : x ∈ Rd+1 with strictly positive entries.}.

we can identify [x] with x/||x||1. Notice that if A is a (d+ 1)× (d+ 1) matrix

and Ax ̸= 0, for x ∈ Rd+1, then

[Ay] = [Ax]

for all y ∈ [x]. This means that square matrices induce partial actions on

the projective space. Finally we mention the very useful Gelfand’s spectral radius

formula (see [35], p312, Th. A).

Definition 2.4.2. The spectral radius ρ(A) of a matrix square matrix A is defined

by

ρ(A) = max{|λ| : λ is an eigenvalue of A. }
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Theorem 2.4.3. Gelfand’s Formula

Let A be a square matrix and ||.|| any matrix norm. Then

lim
n→∞

||An||1/n = ρ(A).

2.5 Linear algebra

For any a1, ..., aκ ∈ C the associated Vandermonde matrix V is defined to be the

κ× n matrix

V (i, j) = aj−1
i .

We will later need the following well known lemma.

Lemma 2.5.1. If κ = n then

det(V ) =
∏

1⩽i<j⩽n

(aj − ai).

The above implies that if a1, ..., aκ are pairwise different then {u1, ..., uκ}, where

ui = (1, ai, ..., a
n−1
i ),

is independent.

45



Chapter 3

Measures on the Spectra of

Algebraic Integers

Joint work with Tom Kempton

3.1 Introduction

Given a real number β > 1 and an alphabet A, the spectrum

XA(β) :=

{
n∑

i=1

ciβ
n−i : n ∈ N, ci ∈ A

}
has been the focus of much attention. In particular, when A = {0, · · · , ⌊β⌋} then

it is known that XA(β) is uniformly discrete if and only if β is a Pisot number (i.e.

an algebraic number, all of whose Galois conjugates have modulus strictly less than

one) [3, 18, 31, 38]. Additionally, XA(β) is relatively dense in this setting, making

the sets XA(β) Delone sets (uniformly discrete, relatively dense). Delone sets give

useful mathematical models for quasicrystals and so the above construction gives

a number-theoretic construction of important physical objects.

Much progress has been made on giving dynamical descriptions of sets XA(β)

[20, 34, 41]. If β is a Pisot number then XA(β) can be generated by a substitution
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system [34]. Moreover, for Pisot β there is a naturally related cut and project

set which contains XA(β). In all known examples of Pisot β with A ⊂ Z the set

XA(β) coincides with this cut and project set, but the question of whether these

sets always coincide remains open, and there are some examples with a complex

alphabet for which the cut and project set contains finitely many extra points

which are not in XA(β) [41]. A generalisation of this cut and project structure to

general hyperbolic algebraic integers is given in section 3.4.

We are interested in measures on the sets X{−1,0,1}(β). In particular, we are

interested in what one can say about the measures µn given by

µn(x) =
1

4n
Nn(x)

where

Nn(x) = #{a1 · · · an, b1 · · · bn ∈ {0, 1}n :
n∑

i=1

(ai − bi)β
n−i = x}.

The measure µn is the distribution of the set of differences

n∑
i=1

aiβ
n−i −

n∑
i=1

biβ
n−i

where each ai, bi is picked from {0, 1} according to the (1
2
, 1
2
) Bernoulli measure.1

We focus on the case that β is an algebraic integer and a root of a {-1,0,1} polyno-

mial but does not have any Galois conjugates of absolute value one, we call such

β hyperbolic.

1There has been a lot of recent research into a different class of measures (Patterson measures)
on cut and project sets. These are related to diffraction on quasicrystals, where they play the role
of the intensity of the Bragg peak [61, 66]. Loosely speaking, the difference between the class of
measures that we study and Patterson measures is that our measures incorporate information on
the number of different codings a1 · · · an for which

∑n
i=1 aiβ

n−i = x, whereas Patterson measures
do not. The analogue of µn(x) for the Patterson measure would be (more or less)

γn(x) = #{(y, z) ∈ (X{0,1}(β))
2 : y − z = x}.

This difference is crucial for our applications.
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Broadly, we are interested in the question of whether the measures µn, appro-

priately rescaled, have a limit µ as n tends to infinity, and whether that limit has

any ‘local structure’ analagous to that of the set XA(β). Assuming some techni-

cal (but checkable) conditions, our results hold for general hyperbolic β, but all

of the ideas behind our proofs are presented in the golden mean case, which is

notationally much simpler, and for this reason we prove our results first for the

golden mean. The golden mean also has the advantage that the higher dimensional

objects which we construct are only two dimensional, and so can be more easily

visualised.

Our main theorems are the following.

Theorem 3.1.1. Let β be hyperbolic. Then there exists a real number λ > 1, such

that for all x ∈ X(β) the limit measure µ given by

µ(x) := lim
n→∞

1

λn
Nn(x)

exists and has µ(x) ∈ (0,∞) for x ∈ X(β). Furthermore, the measure µ has

infinite total mass.

In the case that β has other Galois conjugates of absolute value larger than one,

we prove this theorem by lifting to a measure µ̄ supported on a higher dimensional

Delone set, whose projection onto the first coordinate gives µ.

Our second theorem gives an explicit way to calculate µ(x) using any code of

x.

Theorem 3.1.2. Let β be hyperbolic. There exists a natural number k, a 1 × k

vector W , and three k × k matrices M−1,M0 and M1 such that for any x ∈ X(β)

and c1 · · · cn ∈ {−1, 0, 1}n with x =
∑n

i=1 ciβ
n−i,

µ(x) =
1

λn
(WMc1 · · ·Mcn)1.

Here (WMc1 · · ·Mcn)1 denotes the first entry of the row vector WMc1 · · ·Mcn.
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In fact the vector WMc1 · · ·Mcn also holds information on the values of µ(y)

for other values of y ∈ X(β). There is a set of translations d1, · · · , dk ∈ R, with

d1 = 0, such that, for x =
∑n

i=1 ciβ
n−i,

µ(x+ di)

µ(x)
=

(WMc1 · · ·Mcn)i
(WMc1 · · ·Mcn)1

.

This suggests that one may be able to use a dynamical system to move through the

measure µ to calculate its values at different points. We can do this, but we need

first to replace the dependence of µ(x) on the coding of x with a dependence on the

position of a point xc corresponding to x in the ‘contracting space’. To describe

this, we must first describe a geometric construction related to β-expansions in

algebraic bases.

Let β have Galois conjugates β2 · · · βd of absolute value larger than one and

Galois conjugates βd+1 · · · βd+s of absolute value smaller than one. Define the

contracting space Kc by Kc = Fd+1 × Fd+2 × · · · × Fd+s where Fk = R if βk ∈ R,

Fk = C if βk ∈ C\R. Then, for i ∈ {−1, 0, 1} define the contraction Si on Kc by

Si(xd+1, · · · , xd+s) = (βd+1xd+1 + i, · · · , βd+sxd+s + i).

The maps {S−1, S0, S1} form an iterated function system on Kc with an attractor

that we denote R. This is a standard construction in numeration/tiling theory,

although it is more usual to consider a sub-IFS using only those codes which

correspond to greedy β-expansions [1]. To each point x =
∑n

i=1 ciβ
n−i there exists

a corresponding point in the contracting space:

xc =
n∑

i=1

ci(β
n−i
d+1, β

n−i
d+2, · · · , β

n−i
d+s) = Scn ◦ · · ·Sc1(0) ∈ R.

It is important to stress that the point xc corresponding to x is independent of the

coding c1, · · · , cn of x, this holds since βd+1 · · · βd+s are Galois conjugates of β.
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Theorem 3.1.3. Assume that Condition 3.4.1 holds. There exists a set ∆ =

(v1, · · · vk) of translations such that for any j ∈ {1 · · · k} there is a function fj :

R → R such that for any x ∈ X(β) with x+ vj also in X(β) we have

log

(
µ(x+ vj)

µ(x)

)
= fj(xc).

Furthermore any x ∈ X(β) can be reached from 0 by applying a finite number of

translations from ∆. There exists a word w and constants C1 > 0, C2 ∈ (0, 1)

such that for any a1 · · · an ∈ {−1, 0, 1}n which contains r non-overlapping copies

of the word w, fj varies by at most C1C
r−1
2 on Sa1 ◦ · · · ◦ San(R).

The final condition on the variation of fj gives rise to the following continuity

properties of fj.

1. Continuity almost everywhere: For any fully supported ergodic measure

ν on R, each fj is continuous ν-almost everywhere

2. Continuity at most lattice points: For any fully supported measure m

on {−1, 0, 1} and any ϵ > 0 there exists n ∈ N and D ⊆ {−1, 0, 1}n such

that mn(D) > 1− ε and

|fj(x)− fj(y)| < ε

for all x, y ∈ X(β) with xc, yc ∈ Sa1 ◦ · · · ◦ San(R) for any a1 · · · an ∈ D.

These latter two continuity properties follow since ν almost every sequence contains

infinitely many copies of the word w, and that for any r and any ϵ > 0 there exists

n such that a proportion at least 1 − ϵ of {−1, 0, 1} words of length n contain r

non-overlapping occurences of w.

We use this theorem extensively in our follow up article [12]. For now, we

limit our application of this theorem to the golden mean case, where we show
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that the values of µ(x) can be obtained via a cocycle over an interval exchange

transformation on R = (−ϕ2, ϕ2), see Theorem 3.3.3.

In Section 3.2 we describe some links with the dimension theory of Bernoulli

convolutions, which allows us to state some new conjectures about Bernoulli con-

volutions. In Section 3.3 we prove Theorems 3.1.1, 3.1.2 and 3.1.3 in the special

case that β is the golden mean. Finally in Section 3.4 we prove these theorems for

the general case of hyperbolic β.

3.2 Links to the Dimension Theory of Bernoulli

Convolutions

Our interest in the measures µ stems from a link with the study of the dimension

and possible absolute continuity of Bernoulli convolutions νβ, defined below. We

describe here connections with dimension theory for Pisot numbers, links between

our work and the question of absolute continuity of νβ for non-Pisot hyperbolic β

are postponed to a follow up article, in which we generalise [53] to give a condition

for the absolute continuity of νβ in terms of the growth of µn([
−1
β−1

, 1
β−1

]), which in

turn can be stated in terms of rapid equidistribution to Lebesgue measure of the

measures µn|[ −1
β−1

, 1
β−1

]. We then use the local structure of the measures µn described

in Theorem 3.1.3 and an analogue of Theorem 3.3.3 to study this equidistribution.

Given a number β ∈ (1, 2), the Bernoulli convolution νβ is the weak∗ limit of

the measures νβ,n given by

νβ,n =
∑

a1···an∈{0,1}n

1

2n
δ∑n

i=1 aiβ
−i

where δx denotes the Dirac probability measure on x. The measure νβ is a prob-

ability measure on [0, 1
β−1

] and is perhaps the simplest example of a self-similar

measure with overlaps. The question of whether νβ is absolutely continuous for
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some given parameter β goes back to Jessen and Wintner [48]. Erdős showed that

νβ is singular when β is a Pisot number [21], and indeed Garsia showed that such

Bernoulli convolutions have dimension less than one [38]. There has been very

substantial progress on the dimension theory of Bernoulli convolutions in the last

decade, stemming from the work of Hochman [45], and in particular it is now

known that non-algebraic β give rise to Bernoulli convolutions of dimension one

[79], whereas for algebraic β there are algorithms to determine whether or not νβ

has dimension one [17, 2]. For a summary of recent research into the dimension

theory of Bernoulli Convolutions see [78].

There have been many numerical studies into the dimensions of Bernoulli Con-

volutions associated with Pisot numbers. The evidence we have suggests that

for Pisot numbers of large degree the dimension of the corresponding Bernoulli

convolution is close to one [2, 39, 42, 43]. We formalise this conjecture here.

Conjecture 1. Let βn be a sequence of Pisot numbers in the interval (1, 2) and

suppose that the degree of βn tends to infinity as n→ ∞. Then

dimH(νβn) → 1.

We have not seen this conjecture formally stated before, but it seems consistent

with the (admittedly fairly limited) numerical evidence that we have.

The rest of this section is devoted to giving another conjecture on the measures

µn and showing that this new conjecture would be sufficient to prove Conjecture

1.

It was proved in Hochman [45] that, for algebraic β the dimension of the

Bernoulli convolution νβ is given by

dimH(νβ) = min

{
1,
H(β)

log(β)

}
.

Here the Garsia entropy H(β) is given by

H(β) := lim
n→∞

1

n
Hn(β)
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where

Hn(β) = −
∑

a1···an∈{0,1}n

1

2n
log

(
1

2n
#{b1 · · · bn ∈ {0, 1}n :

n∑
i=1

(ai − bi)β
n−i = 0}

)
.

As noted in [2], one can use Jensen’s inequality to reverse the order of the

summation and the log, to get

Hn(β) ⩾ − log

(
1

4n
#{a1 · · · an, b1 · · · bn ∈ {0, 1}n :

n∑
i=1

(ai − bi)β
n−i = 0}

)
= log(4n)− log(Nn(0)).

In particular, our main theorem, Theorem 3.1.1, introduces a constant λ equal to

the exponential growth rate of Nn(0), using this constant we get

H(β) ⩾ log(4)− log λ. (3.1)

Our contribution here in the Pisot case is to link the question of how close

to being equidistributed µ is to the value of λ, broadly when µ|[ −1
β−1

, 1
β−1

] is well

distributed with respect to Lebesgue measure then Equation 3.1 gives a lower

bound for the dimension of νβ which is close to one. Our approach here is more

or less that of trying to understand something about the maximal eigenvalue of a

matrix by studying the corresponding eigenvector. We use the following elementary

lemma from linear algebra.

Lemma 3.2.1. Let M be a k × k matrix with maximal eigenvalue ρ and as-

sociated left eigenvector V = (v1, · · · , vk) normalised so that
∑k

i=1 vi = 1. Let

ri :=
∑k

j=1Mi,j denote the ith row sum of M . Then

ρ =
k∑

i=1

viri.

Let β be a Pisot number and Iβ := [ −1
β−1

, 1
β−1

]. Then, as noted before, λ

counts the (weighted) growth of the number of words in {−1, 0, 1}n for which
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∑n
i=1 ciβ

n−i = 0, the weighting comes from giving each word weight 2m where m

is the number of occurences of letter 0 in the word. Whenever
∑n

i=1 ciβ
n−i = 0

we have that
∑m

i=1 ciβ
m−i is in the interval Iβ, and so is in X(β) ∩ Iβ which is

a finite set V = {v1, · · · , vk} thanks to the Garsia Separation Property [37]. We

write down a matrix M0 indexed by {v1, · · · , vk} with

(M0)i,j =


1 vj = βvi ± 1

2 vj = βvi

0 otherwise

.

Then the measure µIβ := 1
µ(Iβ)

µ|Iβ gives mass to vj equal to the jth entry

of the left probability eigenvector of M0 associated with maximal eigenvalue λ.

Furthermore, we can read off the ith row sum ri of M0 (associated to point vi ∈

X(β)∩ Iβ) immediately, since we need only know which of βvi− 1, βvi and βvi+1

lie in Iβ.

Let the function gβ : Iβ → {1, 2, 3, 4} be given by

gβ(x) = χIβ(βx− 1) + 2χIβ(βx) + χIβ(βx+ 1).

Then rj = gβ(vj) and so by Lemma 3.2.1 we have

λ =
∑
vj∈V

gβ(vj)µIβ(vj) =

∫
Iβ

gβ(x)dµIβ(x). (3.2)

A short calculation gives that if LIβ denotes normalised Lebesgue measure on Iβ

then ∫
Iβ

gβ(x)dLIβ(x) =
4

β
.

We have the following theorem.

Theorem 3.2.1. Let βn be a sequence of Pisot numbers and suppose that

W1(µIβn
,LIβn

) → 0
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where W1 denotes the Wasserstein metric on the space of probability measures on

the Euclidean line. Then dimH(νβn) → 1.

Proof. The function gβ is a step function on Iβ and it is straightforward to give an

upper bound for |µIβ(A)−LIβ(A)| for any of the intervals A upon which the step

function is constant in terms of the distance between µIβ and LIβ . These upper

bounds are uniform in β. This in turn yields uniform upper bounds on
∫
Iβ
gβdµIβ ,

and so by equation 3.2 we have a uniform upper bound on λ(β)− log( 4
β
) in terms

of W1(µIβn
,LIβn

).

Finally, for Pisot βn

dimH(νβn) =
H(βn)

log(βn)
⩾

log 4− log λ(βn)

log βn
→

log 4− log
(

4
βn

)
log(βn)

= 1.

as required.

The matrix M0(β) associated to a Pisot number β is very large for β of large

degree, and so the numerical evidence we have is limited, but the evidence that

we have does suggest that the measures µIβn
are increasingly well equidistributed

for sequences βn of Pisot numbers in (1, 2 − ϵ) with degree tending to infinity,

see Table 3.1. The ϵ here is to exclude the multinacci family, which has different

behaviour2. In particular we suspect that what allows the multinacci family βn to

behave differently is that the multinacci numbers βn converge to 2.

Finally, we give our conjecture on the distribution properties of the measures

µIβn
. A proof of this conjecture would imply that Conjecture 1 is true by Theorem

3.2.1.

Conjecture 2. Let ϵ > 0 and let (βn) be a sequence of Pisot numbers in the

interval (1, 2− ϵ) such that the degree of βn tends to infinity as n tends to infinity.

2Many structures related to the multinacci family βn
n − βn−1

n − · · · − 1 = 0, including the
spectrum of βn, are well understood.
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Polynomial β Bound W1(µβ,Leb) Matrix Size
x3 − x2 − x− 1 1.8393 0.96422 0.13925 7

x3 − x2 − 1 1.4656 0.999116 0.0547178 51
x3 − x− 1 1.3247 0.99999 0.0286671 181

x4 − x3 − x2 − x− 1 1.9276 0.973329 0.187067 9
x4 − x3 − 1 1.3803 0.999989 0.0149032 1257

x5 − x4 − x3 − x2 − x− 1 1.9659 0.983565 0.222569 11
x5 − x4 − x3 − x2 − 1 1.8885 0.982269 0.0803806 745
x5 − x4 − x3 − x2 + 1 1.7785 0.995758 0.0246573 951

x5 − x4 − x3 − 1 1.7049 0.993043 0.0356598 339
x5 − x4 − x3 − x− 1 1.8124 0.982434 0.0571201 351
x5 − x4 − x3 + x2 − 1 1.4432 0.999982 0.00782515 5423

x5 − x4 − x2 − 1 1.5702 0.999862 0.0195581 847
x5 − x3 − x2 − x− 1 1.5342 0.999833 0.00890312 2651

Table 3.1: Pisot numbers β ∈ (1, 2) of degree less than six, together with the
Wasserstein distance to normalised Lebesgue measure. Multinacci numbers, which
have somewhat different behaviour, are in bold.

Then the distance

W1(µIβn
,LIβn

) → 0

as n→ ∞, and consequently, by Theorem 3.2.1, dimH(νβn) → 1.

Remark. It worth noting that if βn is the multinacci family then tedious but ele-

mentary calculations show that W1(µIβn
, cδ0) → 0 where c is a suitable normalising

factor. We also see that dimH(νβn) → 1 is still true.

3.3 A First Example: The Golden Mean

In this section we prove our main theorems for the special case that β is equal to the

golden mean ϕ. Throughout we use the maps Ti : R → R given by Ti(x) = ϕx+ i.

Recall that

X(ϕ) = X{−1,0,1}(ϕ) =

{
n∑

i=1

ciϕ
n−i : n ∈ N, ci ∈ {−1, 0, 1}

}
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and that, for x ∈ X(ϕ),

Nn(x) := #{a1 · · · an, b1 · · · bn ∈ {0, 1}n :
n∑

i=1

(ai − bi)ϕ
n−i = x}

We give the special case of Theorem 3.1.1 for when β = ϕ.

Theorem 3.3.1. There exists a number λ > 0 such that limit

lim
n→∞

1

λn
Nn(x) =: µ(x)

exists for each x ∈ X(ϕ).

Here λ is easily computed as the maximal eigenvalue of a finite matrix M0

defined below. This theorem will be proved as part of the proof of Theorem 3.3.2.

There are several ways to describe the measure µ. One could construct an

infinite transition matrix corresponding to dynamics on X(ϕ) induced by the maps

T0, T1, T−1 such that the values of µ(x) correspond to entries of the eigenvector

corresponding to the maximal eigenvalue. In particular, for any finite K we can

describe µ|X(ϕ)∩[−K,K] by reading off the values of an eigenvector of a finite matrix.

We give instead a harder construction which allows us to see local structure in the

measure µ.

Lemma 3.3.1. There exist matrices M0,M1,M−1, each of dimensions 17 × 17

such that for any x =
∑n

i=1 ciϕ
n−i ∈ X(ϕ) we have

Nn(x) = (Mc1 · · ·Mcn)1,1

Proof. This proof is similar to the proof of Lemma 3.1 in [2], we are just using a

larger digit set.

If x =
∑n

i=1 ciϕ
n−i for some word c1 · · · cn ∈ {−1, 0, 1}n then we start by

tracking words d1 · · · dn ∈ {−1, 0, 1}n such that

n∑
i=1

ciϕ
n−i =

∑
i=1

diϕ
n−i,
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i.e.
n∑

i=1

(ci − di)ϕ
n−i = 0. (3.3)

Here di represents a difference ai − bi where ai, bi ∈ {0, 1}, and so when counting

words we want to double count the case di = 0 since it corresponds both to

ai = bi = 1 and ai = bi = 0. This accounts for the 2 in the definition of the

matrices M0,M1,M−1.

Now the equality 3.3 is equivalent to

Tcn−dn ◦ · · · ◦ Tc1−d1(0) = 0, (3.4)

where each ci−di ∈ {−2,−1, 0, 1, 2}. The maps Ti are expanding, and in particular

if x ⩾ 2ϕ then Ti(x) ⩾ 2ϕ, and if x ⩽ −2ϕ then Ti(x) ⩽ −2ϕ, for any i ∈

{−2,−1, 0, 1, 2}. Thus if equation 3.3 holds then for each m ⩽ n we have

Tcm−dm ◦ · · · ◦ Tc1−d1(0) ∈ (−2ϕ, 2ϕ).

By the Garsia separation lemma, or by direct calculation, one can show that there

are a finite number of points of the form Tcm−dm ◦ · · · ◦ Tc1−d1(0) which lie in

(−2ϕ, 2ϕ) when ci, di ∈ {−1, 0, 1}. In fact there are 17 such points, we call the set

of such possible values V = {v1, · · · , v17} with v1 = 0.

Now in general the difference ci − di can take values in {−2,−1, 0, 1, 2}, but if

we know the value of ci then ci − di can only take three of these values, if ci = 1

then ci − di can take values 0 1 or 2 for example.

Let M1 be the 17 × 17 matrix with rows and columns indexed by elements of

V , with

(M1)ij =


1 vj = T0(vi) or vj = T−2(vi)

2 vj = T−1(vi)

0 otherwise
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This is the transition matrix for the maps Tci−di where we know ci = 1 and

di ∈ {−1, 0, 1}, the values 1 and 2 occur because we have one way of letting

di = ai − bi equal 1 or −1 but two ways of letting di = 0.

Similarly, let M−1 be the matrix with rows and columns indexed by elements

of V , with

(M−1)ij =


1 vi = T0(vj) or vi = T2(vj)

2 vi = T1(vj)

0 otherwise

and let M0 be the matrix with rows and columns indexed by elements of V , with

(M0)ij =


1 vi = T1(vj) or vi = T−1(vj)

2 vi = T0(vj)

0 otherwise

.

Then given c1, · · · cn ∈ {−1, 0, 1}n, the (i, j)th term of the matrix Mcn · · ·Mc1

represents the number of d1 · · · dn ∈ {−1, 0, 1} for which

Tcn−dn ◦ · · ·Tc1−d1(vi) = vj. (3.5)

Again here when we refer to the ‘number’ of d1 · · · dn we are double counting

when di = 0 because we have two ways of putting ai − bi = 0.

Thus in order to count equalities of the form (3.4), we need to use (3.5) with

vi = vj = v1 = 0. We conclude that the number of a1 · · · an, b1 · · · bn such that∑n
i=1(ai − bi)ϕ

n−i = x is given by the top left entry of the matrix Mcn · · ·Mc1 ,

where c1 · · · cn is any {−1, 0, 1} code for which x =
∑n

i=1 ciϕ
n−i.

We now state and prove Theorem 3.1.2 for the special case that β is equal to

ϕ.
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Theorem 3.3.2. LetW be the left eigenvector ofM0 corresponding to the maximal

eigenvalue λ, normalised so thatW1 = µ(0). Then for any x =
∑n

i=1 ciϕ
n−i ∈ X(ϕ)

we have

µ(x) =
1

λn
(WMc1Mc2 · · ·Mcn)1,

that is, λnµ(x) is the first entry in the 1× 17 vector WMc1 · · ·Mcn.

Proof. In the previous lemma we showed how to count the number of words

a1, · · · an, b1 · · · bn with
∑n

i=1(ai−bi)ϕi = x, given knowledge of one code c1 · · · cn ∈

{−1, 0, 1}n such that

x =
n∑

i=1

ciϕ
n−i. (3.6)

Here it was important that the length of the word c1 · · · cn coding x corre-

sponded with the Nn which we want to calculate. But if equation 3.6 holds then

it is also true that

x =
n∑

i=1

ciϕ
n−i + 0ϕn + 0ϕn+1 + · · ·+ 0ϕn+(k−1).

So again using Lemma 3.3.1 we see that

Nn+k(x) = (Mk
0Mc1 · · ·Mcn)1,1

= (1 0 0 · · · )Mk
0Mc1 · · ·Mcn


1

0

0
...

 .

If λ is the maximal eigenvalue of M0 then, since M0 is primitive, there exists a

corresponding eigenvector W such that

1

λk
(1 0 0 · · · )Mk

0 → W
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Putting the previous equations together gives that if x =
∑n

i=1 ciϕ
n−i then

µ(x) = lim
k→∞

1

λn+k
Nn+k(x)

= lim
k→∞

1

λk
1

λn
(1 0 0 · · · )Mk

0Mc1 · · ·Mcn


1

0

0
...



=
1

λn
WMc1 · · ·Mcn


1

0

0
...

 .

It is also important to note that if x =
∑n

i=1 ciϕ
n−i then the vector 1

λnWMc1 · · ·Mcn

doesn’t just hold information on µ(x), which is the first entry, but also holds in-

formation on the values of µ at other elements of X(ϕ).

Lemma 3.3.2. For vk the kth element of V we have

µ(x+ vk) =
1

λn
(WMc1Mc2 · · ·Mcn)k,

that is, λnµ(x+ vk) is the kth entry in the 1× 17 vector WMc1 · · ·Mcn.

Proof. This follows directly from the proof of the previous lemma and equation

3.5.

This allows us to start to discuss local structure for µ. We want to describe

how one can use dynamics to move through the measure µ and write down the

set of pairs {(x, µ(x)) : x ∈ X(ϕ)}. To do this, we must first recall the cut and

project structure of the set X(ϕ).
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3.3.1 The Structure of X(ϕ)

The work of this subsection is well known to experts. We first show that set X(ϕ)

can be dynamically generated. One can move from a level-n sum to a level-(n+1)

sum in the construction of X(ϕ) by observing that

n+1∑
i=1

ciϕ
n+1−i = ϕ

(
n∑

i=1

ciϕ
n−i

)
+ cn+1.

Thus with Ti(x) := ϕx+ i as before we see that

X(ϕ) = {Tcn ◦ · · · ◦ Tc1(0) : n ∈ N, ci ∈ {−1, 0, 1}}. (3.7)

As ϕ2 = ϕ+1 we can consider multiplication by ϕ in terms of its action on numbers

of the form z1ϕ+ z0. We let πe : Z2 → R be given by

πe

 z1

z0

 := z1ϕ+ z0

and πc : Z2 → R be given by

πc

 z1

z0

 :=
−1

ϕ
z1 + z0.

We will later refer to πe as projection in the expanding direction and πc as pro-

jection in the contracting direction. Note that πe : Z2 → R and πc : Z2 → R are

injective (if they were not then x2 − x − 1 would not be the minimal polynomial

of ϕ).

Then

ϕ

πe
 z1

z0

 = z1ϕ
2 + z0ϕ = (z1 + z0)ϕ+ z1 = πe

 1 1

1 0

 z1

z0


and so Ti : X(ϕ) → X(ϕ) lifts to a map T̃i : Z2 → Z2 given by

T̃i

 z1

z0

 =

 1 1

1 0

 z1

z0

+

 0

i

 .
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Figure 3.1: The set X̃(ϕ) around the origin, with expanding and contracting
eigenvectors shown.

We let

X̃(ϕ) :=

T̃cn ◦ · · · ◦ T̃c1

 0

0

 : n ∈ N, ci ∈ {−1, 0, 1}


and have the relation X(ϕ) = πe(X̃(ϕ)).

One can study the structure of X(ϕ) directly on the real line, this was done for

example in [34] where the substitution structure of X(ϕ) was described. However,

some properties of X(ϕ) are easier to see if we first study the structure of X̃(ϕ).

For example, from equation (3.7) we see that the uniformly discrete set X(ϕ) is a

subset of the dense set {z1ϕ+ z0 : z1, z0 ∈ Z}, but it is not immediately apparent

which values of (z1, z0) correspond to points in X(ϕ).

Lifting to X̃(ϕ) the structure becomes clear. The matrix

 1 1

1 0

 has one

expanding eigenvector and one contracting eigenvector, and the maps T̃i can be

described in terms of their action on points written in terms of these eigenvectors.

Note that if πc

 z1

z0

 = x then

πc(T̃i

 z1

z0

) =
−x
ϕ

+ i =: Si(x).
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Then the system {S0, S1, S−1} is a contracting iterated function system with at-

tractor [−ϕ2, ϕ2], and so for any point

 z1

z0

 = T̃an ◦ · · · T̃a1

 0

0

 ∈ X(ϕ) we

have πc

 z1

z0

 = San ◦ · · ·Sa1(0) ∈ (−ϕ2, ϕ2). The converse is also true and is

contained in the following lemma.

Lemma 3.3.3. The set X̃(ϕ) consists of all pairs

 z1

z0

 ∈ Z2 for which πc

 z1

z0


lies in the interval (−ϕ2, ϕ2).

Furthermore, if πc

 z1

z0

 ∈ Sd1 ◦ · · ·Sdk(−ϕ2, ϕ2) for some d1, · · · , dk ∈

{−1, 0, 1}k then for all sufficiently large n there exists a word c1 · · · cn+k ∈ {−1, 0, 1}n+k

with cn+k · · · c1 = d1 · · · dk and such that z1

z0

 = T̃cn+k
◦ · · · ◦ Tc1

 0

0


Proof. One inclusion was proved in the paragraph before the statement of this

lemma.

Now let (z1, z0) ∈ Z2 have πc(z1, z0) ∈ (−ϕ2, ϕ2). We wish to find a word

c1 · · · cn such that  z1

z0

 = T̃cn ◦ · · · T̃c1

 0

0

 ,

or equivalently  0

0

 = T̃−1
c1

◦ · · · T̃−1
cn

 z1

z0

 . (3.8)

We first observe that for any

 z1

z0

 with πc

 z1

z0

 ∈ (−ϕ2, ϕ2) and πe

 z1

z0

 ∈

[−ϕ, ϕ] one can find words c1 · · · cn such that Equation 3.8 holds. Since there are
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only finitely many pairs

 z1

z0

 in this bounded region one can check this obser-

vation with a finite calculation.

Now let

 z1

z0

 have πc

 z1

z0

 ∈ (−ϕ2, ϕ2), but place no restriction on

πe

 z1

z0

 ∈ (−ϕ, ϕ). By the IFS construction of the contracting interval, we can

choose arbitrarily long words i1 · · · in ∈ {−1, 0, 1} such that T̃−1
in

◦· · · T̃−1
i1

(

 z1

z0

)

still has contracting coordinate in the interval (−ϕ2, ϕ2). But since inverse maps

T̃−1
i contract the expanding direction, the expanding coordinate will eventually lie

in [−ϕ, ϕ], and by the previous paragraph we know that we can return to

 0

0

.

Finally we not that if we had πc

 z1

z0

 ∈ Sd1 ◦ · · ·Sdk(−ϕ2, ϕ2) then we can

choose the word i1 · · · in to start with d1 · · · dk.

It is worth stressing that the first three quarters of the preceeding proof gen-

eralises easily to any algebraic integer β, but the finite check that any integer pair

suitably close3 to the origin can return to the origin under the maps T̃−1
i needs

verifying for each β and we don’t know that it is always true.

One interesting consequence of Lemma 3.3.3 is that in order to understand the

distance from some point T̃cn ◦ · · · T̃c1

 0

0

 to its close neighbours in X̃(ϕ), we

need only to know about πc(T̃cn ◦ · · · T̃c1

 0

0

).

3For hyperbolic non-Pisot β we will also require that expansions of Galois conjugates are close
to the origin, see section 3.4.
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Given x ∈ X(ϕ) let x̃ denote the corresponding point in X̃(ϕ) and let xc =

πc(x̃). For K ∈ R let x ∈ X(ϕ). Call the set

(X(ϕ)− x) ∩ [−K,K] = {y − x : y ∈ X(ϕ), y − x ∈ [−K,K]}

the K-neighbourhood of x.

Lemma 3.3.4. [Local Structure for X(ϕ)] For any K > 0 there exists a finite

partition of (−ϕ2, ϕ2) such that the K-neighbourhood of any x ∈ X(ϕ) depends

only upon which partition element of (−ϕ2, ϕ2) xc lies in.

Proof. This follows from the analagous statement for X̃(ϕ), which has a fairly

direct proof following Lemma 3.3.3, since one needs only to consider which trans-

lations in Z2 can be performed without leaving the contracting window or moving

by a distance of more than K in the expanding direction.

Finally, we outline how to use dynamics to describe the odometer map which

maps x ∈ X(ϕ) to min{y ∈ X(ϕ) : y > x}.

Let d : X(ϕ) → R+ denote the distance from x ∈ X(ϕ) to min{y ∈ X(ϕ) : y >

x}. That is, let d be defined by

d(x) = min{y ∈ X(ϕ) : y > x} − x.

Proposition 3.3.1. The odometer map x → x + d(x) on X(ϕ) lifts to the skew-

product map O : X(ϕ)×Xc(ϕ) → X(ϕ)×Xc(ϕ) by

d̃(x, xc) =


(x+ 2ϕ− 3, xc − 2

ϕ
− 3) xc ∈ [ϕ, ϕ2]

(x+ ϕ− 1, xc − 1− 1
ϕ
) xc ∈ (0, ϕ)

(x+ 2− ϕ, xc + 2 + 1
ϕ
) xc ∈ [−ϕ2, 0]

We stress here that the action of O on the contracting direction is of a uniquely

ergodic interval exchange transformation.
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Proof. The fact that there is some partition of (−ϕ2, ϕ2) telling us how to evolve a

skew-product map which is a lift of d follows immediately from Lemma 3.3.4 with

K = ϕ− 1. It is a finite calculation to write down the map exactly.

3.3.2 An Odometer map for µ

Proposition 3.3.1 dealt with how one can move locally through the set X(ϕ) using

only knowledge on the position in the contracting direction, we want to build a

similar theorem which also incorporates knowlede of the values µ(x), we do this

by building a cocycle over the odometer map O.

Given x ∈ X(ϕ) let xc denote the corresponding point in the contracting win-

dow (−ϕ2, ϕ2). We recall from Lemma 3.3.3 that for x ∈ X(ϕ) and for any word

d1 · · · dk, x can be written x =
∑n

i=1 ciϕ
n−i with cn−k+1 · · · cn = dk · · · d1 if and

only if xc ∈ Sd1 ◦ · · · ◦ Sdn(−ϕ2, ϕ2).

Now let us map real 1× 17 vectors U with strictly positive first entry onto the

corresponding projective space by letting

(U ′)i =
(U)i+1

(U)1

for (1 ⩽ i ⩽ 16). in particular, we associate to each x =
∑n

i=1 ciϕ
n−i ∈ X(ϕ) the

corresponding vector V (x) = (WMc1Mc2 · · ·Mcn)
′ considered as an element of real

projective space. To be concrete, we define the 1× 16 vector V (x) by

(V (x))i =
(WMc1Mc2 · · ·Mcn)i+1

(WMc1Mc2 · · ·Mcn)1
=
µ(x+ vi)

µ(x)
.

It follows from the proofs of the previous two statements that these vectors do not

depend on the choice of code c1 · · · cn of x. We can also write V (x) as a function

V (xc) of the position in the contracting window.

Consider the metric d on the space of 1× 16 non-negative vectors by letting

d(U, V ) = max
i∈{1,···16}

| log(Vi)− log(Ui)|.
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Two vectors U, V are at infinite distance from one another if there exist i, j ∈

{1 · · · 16} such that Ui = 0 Vi ̸= 0 or Vi = 0 Ui ̸= 0.

Lemma 3.3.5. Suppose that A is a 17 × 17 matrix with A1,1 > 0 such that for

any pair of parameters (i, j) ∈ {1, · · · , 17}2 one of the following holds

1. (i, j) is in a zero row, i.e. (A)i′,j = 0 for all i′ ∈ {1, · · · , 17}

2. (i, j) is in a zero column, i.e. (A)i,j′ = 0 for all j′ ∈ {1, · · · , 17}

3. (A)i,j > 0.

Then there exists a constant C < 1 such that, for any 1 × 17 vectors U, V with

positive first entries and with d(U ′, V ′) <∞ we have

d((UA)′, (V A)′) < Cd(U ′, V ′).

Furthermore, there exists K > 0 such that, for any any 1 × 17 vectors U, V with

positive first entry (and possibly with d(U ′, V ′) = ∞),

d((UA)′, (V A)′) < K.

This lemma is proved carefully in section 3.4.

Lemma 3.3.6. The matrix M7
0 satisfies the condition of Lemma 3.3.5.

This can be verified by a short calculation.

One can also see that given a 17×17 non-negative matrix B withstrictly positive

top left entry and two 1× 17 vectors U and V with strictly positive first entries,

d((UA)′, (V A)′) ⩽ d(U ′, V ′).

This shows that matrices M0, M1 and M−1 do not expand distances between

vectors in our metric.
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Finally we are able to state Theorem 3.1.3 in the special case that β = ϕ

and dealing only with nearest neighbours. Recall that, for x ∈ X(ϕ), d(x) :=

min{y − x : y ∈ X(ϕ), y > x}.

Proposition 3.3.2. For x ∈ X(ϕ) with corresponding point xc ∈ (−ϕ2, ϕ2) define

f(xc) by

log(µ(x+ d(x)))− log(µ(x)) = f(xc).

Then f is bounded and is continuous at each xc ∈ Xc(ϕ) except for 0 and ϕ.

If we defined d′ on (ϕ2, ϕ2) by d′(xc) := d(x) then 0 and ϕ are the points in

(ϕ2, ϕ2) where d′(xc) is not continuous.

Proof. We have already shown that

d(x) =


2ϕ− 3 xc ∈ [ϕ, ϕ2)

ϕ− 1 xc ∈ (0, ϕ)

2− ϕ xc ∈ (−ϕ2, 0]

One can check that each of 2ϕ− 3, ϕ− 1 and 2− ϕ correspond to entries vk of V .

Then by Lemma 3.3.2 we see that

f(xc) := log(µ(x+ d(x)))− log(µ(x))

appears as the log of a ratio of two entries in the vector (WMc1 · · ·Mcn) for any

c1 · · · cn coding x. Since both x and x + d(x) have strictly positive mass, the

difference of the logs is finite so f(xc) ∈ R.

We now discuss the continuity properties of f . Let x ∈ X(ϕ) and ϵ > 0 be

given. Let K and C be the quantities introduced in Lemma 3.3.5 associated to

M7
0 , and let r ∈ N be such that KCr−1 < ϵ. Let c1 · · · cn be a code of x containing

at least r copies of the word 0000000, this can be done for example by taking any

expansion of x and adding lots of zeros to the start.
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Now xc is contained in the interval Scn ◦Scn−1 ◦ · · ·◦Sc1(−ϕ2, ϕ2). Let y ∈ X(ϕ)

be another point with yc ∈ Scn ◦ Scn−1 ◦ · · · ◦ Sc1(−ϕ2, ϕ2). Then y can be written

y =
∑m

d=1 diϕ
m−i for some code d1 · · · dm with dm−n · · · dn = c1 · · · cn, as in Lemma

3.3.3.

Assume that xc and yc lie in the same one of the intervals (−ϕ2, 0],(0, ϕ), [ϕ, ϕ2)

so that d(x) = d′(xc) = vj. Then

|f(xc)− f(yc)| = | log(WMc1 · · ·Mcn)j − log(WMd1 · · ·Mdm)j|

= | log(WMc1 · · ·Mcn)j − log(WMd1 · · ·Mdm−n−1Mc1 · · ·Mcn)j|

⩽ d((WMc1 · · ·Mcn)
′, (WMd1 · · ·Mdm−n−1︸ ︷︷ ︸

=:U

Mc1 · · ·Mcn)
′)

= d((WMc1 · · ·Mcn)
′, (UMc1 · · ·Mcn)

′) ⩽ KCr−1 < ϵ.

Here the final line follows since c1 · · · cn contains r non-overlapping occurences of

the word M7
0 , the first of which guarantees that

d((WMc1 · · ·Mcn)
′, (UMc1 · · ·Mcn)

′) < K

and the subsequent r − 1 of which multiply this upper bound by C, thanks to

Lemmas 3.3.5 and 3.3.6.

We have now completed the proofs of analogues of Theorems 3.1.1, 3.1.2, and

3.1.3 in the special case of the golden mean, although the analogue of 3.1.3 we did

only for moving to nearest neighbours.

Putting everything together, we get the following theorem which demonstrates

how one can move through the measure µ on X(ϕ), and how one could start to

study it using ergodic theory.

Theorem 3.3.3. Let the map ψ : X(ϕ)× (−ϕ2, ϕ2)× R be given by

ϕ(x, y, z) =


(x+ 2ϕ− 3, y − 2

ϕ
− 3, z + f(y)) y ∈ [ϕ, ϕ2)

(x+ ϕ− 1, y − 1
ϕ
− 1, z + f(y)) y ∈ (0, ϕ)

(x+ 2− ϕ, y + 2 + 1
ϕ
, z + f(y)) y ∈ (−ϕ2, 0]

70



Then if x is the nth element to the right of 0 in X(ϕ) we have that

(x, xc, µ(x)) = ψn(0, 0, 0).

Thus we have that many of the properties of µ can be studied by studying ψ,

which is really a skew-product over an interval exchange transformation on the

contracting window (ϕ2, ϕ2).

3.4 Measures on the spectra of general hyper-

bolic algebraic integers

In this section we show how to extend the previous work to general hyperbolic

algebraic integers and prove Theorems 3.1.1, 3.1.2 and 3.1.3. As stated in the

introduction, the motivation is to study measures of the form

µn(x) =
1

4n
#{a1 · · · an, b1 · · · bn ∈ {0, 1}n :

n∑
i=1

(ai − bi)β
n−i = x}.

Given β, we lift µn to a measure µ̄n living on a lattice subset of a multidi-

mensional euclidean space K. We prove that there is λ > 0 such that 4nµ̄n/λ
n

converges to a measure µ̄. We also prove that there are local patterns in the mea-

sure µ̄ that repeat in a way that we understand. This means that we understand

how the measure of a lattice point changes when we move to nearby points on the

lattice4. In particular there is a non-trivial linear subspace Kc of K such that the

following holds. Under conditions and given a suitable vector d then for typical x

the ratio µ̄(x+d)
µ̄(x)

is determined, up to certain accuracy, by the approximate position

4We don’t state an analogue of Theorem 3.3.3 for the higher dimensional case since there is no
natural choice of ‘next point’ to move to when we are working in higher dimensional Euclidean
space. One could state such results, perhaps by identifying a strip which is infinite in only one
direction and describing the dynamics to move through such a strip.
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of the orthogonal projection of x on Kc. That is the numbers of the form µ̄(x+d)
µ̄(x)

are approximately equal for all x projecting on to the same small region of Kc.

Let β = β1 ∈ (1, 2) be an algebraic integer with Galois conjugates β2, ..., βd, βd+1, ..., βd+s

such that |β2|, ..., |βd| > 1 and |βd+1|, ..., |βd+s| ∈ (0, 1). Further define β̄n =

(βn
1 , ..., β

n
d+s). For this section we let

Ti(x1, ..., xd+s) = (β1x1 + i, ..., βd+sxd+s + i),

these maps are higher dimensional lifts of their analogues in the previous sec-

tion. For Galois conjugates βi ∈ C let Fβi
= R if βi ∈ R and Fβi

= C if βi ∈ C \R.

We define the sets

K :=
d+s∏
i=1

Fβi
,

Kc := {0}d × Fβd+1
× ...× Fβd+s

,

Z̄ := {ad+s−1β̄
d+s−1 + ...+ a0β̄

0 : ad+s−1, ..., a0 ∈ Z},

and

X̄(β) :=

{
n∑

i=1

aiβ̄
n−i : n ∈ N, a1..., an ∈ {−1, 0, 1}

}
= {Tan ◦ ... ◦ Ta1(0) : n ∈ N, a1..., an ∈ {−1, 0, 1}}

where 0 denotes the origin in K.

The set Z̄ is a lattice in K ∼= R
∑d+s

i=1 dim(Fβi
). That is because {β̄0, ..., β̄d+s−1} is

an independent subset of the real vector space K. That can be checked using the

formula for the determinant of the Vandermonde matrix. It is useful to keep in

mind that for each i ∈ Z we have Ti(Z̄) ⊆ Z̄, in particular X̄(β) ⊆ Z̄.

Notice that all coordinate projections, restricted on Z̄, are injective so there

is in a sense a natural identification of Z̄ to any image of it under a coordinate
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projection. Here by a coordinate projection we mean any map from K to itself, of

the form (a1, ..., ad+s) 7→ (a1κ1, ..., ad+sκd+s) where κ1, ..., κd+s ∈ {0, 1}. As in the

one dimensional case, we define the measure µ̄n on Z̄ by

µ̄n(x) =
1

4n
N̄n(x)

where

N̄n(x) =#

{
(a1, ..., an, b1, ..., bn) ∈ {0, 1}2n :

n∑
i=1

aiβ̄
n−i −

n∑
i=1

biβ̄
n−i = x

}
,

for x ∈ Z̄. It is immediate that µ̄n(Z̄\X̄(β)) = 0, that µ̄n(x) = µn(x1) and

N̄n(x) = Nn(x1). We set

πc(x1, · · · , xd+s) = (xd+1, ..., xd+s)

to be the projection onto the contracting directions, and Si := (πc ◦ Ti)|Kc . The

maps Si are contractions. Let R be the attractor of the overlapping iterated

function scheme {S−1, S0, S1}. We have immediately that

πc(X̄(β)) = πc {Tan ◦ ... ◦ Ta1(0) : n ∈ N, a1..., an ∈ {−1, 0, 1}}

= {San ◦ ... ◦ Sa1(0) : n ∈ N, a1..., an ∈ {−1, 0, 1}} ⊂ R

since 0 ∈ R.

Definition 3.4.1. Let a = (a1, ..., an) ∈ {−1, 0, 1}n. We define [a] := Sa1 ◦ ... ◦

San(R).

Finally we define a set of small differences between points in X(β).

Definition 3.4.2. Let

∆ = {x− y :x, y ∈ X(β) and

∃c1 · · · cn, d1 · · · dn ∈ {−1, 0, 1}n : Tcn ◦ · · ·Tc1(x) = Tdn · · ·Td1(y)}.
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That is, ∆ is the set of differences between points x, y ∈ X(β) which can be

mapped to the same point in the future by the application of maps Ti. ∆ is finite,

we write ∆ = {v1, · · · , vk} with v1 = 0.

In this section we prove Theorems 3.1.1, 3.1.2 and 3.1.3 by proving higher

dimensional analogues. In particular, in subsection 3.4.1 we prove that, for some

λ > 0, the measure µ̄n

λn converges to an infinite stationary measure µ̄ (Proposition

3.4.1, which has Theorem 3.1.1 as a direct corollary.

In subsection 3.4.2 we define matricesA−1, A0, A1 playing the role ofM−1,M0,M1

of the Golden mean example. Given a point x = Tan ◦ ... ◦ Ta1(0), where ai ∈

{−1, 0, 1}, we use the matrix Aa1 · ... · Aan to compute the measure µ̄ locally

around x (Proposition 3.4.1), which has Theorem 3.1.2 as a direct corollary.

Finally in subsection 3.4.3 we show that information about the position of

πc(x) determines the last few elements aκ, ..., an of a code of x. This allow us

to use arguments involving a modified Birkhoff metric, presented in 3.5.2, on the

product Aa1 · ... ·Aan to estimate the local measure around x based on information

about πc(x). This gives rise to Proposition 3.4.5, which has Theorem 3.1.3 as a

corollary, as explained directly after the proof of Proposition 3.4.5.

3.4.1 The limit measure µ̄

We will denote the vector space of signed measures on Z̄ by M(Z̄). For ν ∈ M(Z̄)

we set

||ν|| =
∑
x∈Z̄

|v(x)|.
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There is a recursive way to go from µ̄n to µ̄n+1 which gives a dynamical description

of µ̄n.

µ̄n+1(x) = #

{
(a1, ..., an+1, b1, ..., bn+1) ∈ {0, 1}2n :

n+1∑
i=1

aiβ̄
n+1−i −

n+1∑
i=1

biβ̄
n+1−i = x

}

=#

{
(a1, ..., an+1, b1, ..., bn+1) ∈ {0, 1}2(n+1) : Tan+1−bn+1

(
n∑

i=1

aiβ
n−i −

n∑
i=1

biβ
n−i

)
= x

}

=
∑

(a,b)∈{0,1}2
#

{
(a1, ..., an, b1, ..., bn) ∈ {0, 1}2n :

n−1∑
i=1

aiβ
n−i −

n−1∑
i=1

biβ
n−i = T−1

a−b(x)

}

=
∑

(a,b)∈{0,1}2
µ̄n(T

−1
a−b(x)).

Definition 3.4.3. We define the operator L on M(Z) by letting

(L(ν))(A) :=
∑

(a,b)∈{0,1}2
ν(T−1

a−b(A)).

for A ⊂ Z.

Then µ̄n satisfies

µ̄n = Lnµ̄0.

Lemma 3.4.1. For all n ∈ N and y ∈ X̄(β) we have µ̄n(y) ⩽ µ̄n(0).

Proof. This follows from the Cauchy-Schwarz inequality. Define

µ′
n(x) = #

{
a1, ..., an ∈ {0, 1}n :

n∑
i=1

aiβ̄
n−i = x

}
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By the construction of µ̄n we have that

µ̄n(y) =
∑
x∈Z̄

µ′
n(x)µ

′
n(x+ y)

⩽

(∑
x∈Z̄

µ′
n(x)

2

)1/2(∑
x∈Z̄

µ′
n(x+ y)2

)1/2

⩽

(∑
x∈Z̄

µ′
n(x)

2

)1/2(∑
x∈Z̄

µ′
n(x)

2

)1/2

=
∑
x∈Z̄

µ′
n(x)

2

=
∑
x∈Z̄

µ′
n(x)µ

′
n(x)

= µ̄n(0)

Now we prove that the measure µ̄ exists. To do this, we show that it exists on

arbitrarily large neighbourhoods of the origin. Let

Iβi
(R) =


(

−R
||βi|−1| ,

R
||βi|−1|

)
, βi ∈ R\{−1, 1}{

z ∈ C : |z| < R
||βi|−1|

}
, βi ∈ {z ∈ C : |z| ≠ 1} \R

,

Bβ(R) = Πd+s
i=1 Iβi

(R), and

X̄R(β) := X̄(β) ∩Bβ(R).

Observe that

Ti(X̄(β)\X̄R(β)) ⊆ X̄(β)\X̄R(β)

for R ⩾ 1 and i ∈ {−1, 0, 1}. This means that, for R > 1 and x ∈ X̄R(β), any

word a1 · · · an for which Tan ◦ · · ·Ta1(0) = x has that all the intermediate orbit
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points Tam ◦ · · ·Ta1(0) for m < n also lie in X̄R(β). Thus, for x ∈ X̄R(β) we can

compute N̄n(x) just by studying the dynamics of the maps Ti restricted to X̄R(β).

Since X̄R(β) is a bounded subset of a lattice, it is finite, we enumerate its

elements {x1, · · · xkR} with x1 = 0. Then we write down the matrix

ΛR(i, j) =


1 if T1(xi) = xj orT−1(xi) = xj

2 if T0(xi) = xj

0 otherwise

.

which encodes the dynamics on X̄R(β) given by the maps Ti. Then since N̄n(xj)

counts the number of length n orbit pieces from 0 to xj under the maps T0, T1, T−1,

double counting for each use of T0, we see that

N̄n(xj) = (Λn
R)1,j.

From Ti(X̄(β)\X̄1(β)) ⊂ X̄(β)\X̄1(β) we get that the irreducible component

of ΛR that contains the zero point is contained in X̄1(β) so by lemma 3.4.1 we have

that the spectral radius of ΛR is equal to the spectral radius of Λ1 for all R > 1.

Definition 3.4.4. We set λ := ρ(Λ1).

Now if we knew that the matrices ΛR were irreducible, the existence of µ

would be immediate. As it is we require the following lemma, the proof of which

is postponed to the appendix.

Lemma 3.4.2. Let A be a non-negative N × N matrix and e1 = (1, 0, 0, ..., 0) ∈

RN . Assume that

i) A(1, 1) > 0,

ii) there exists n ∈ N such that e1A
n is stricly positive,

iii) e1A
n(i) ⩽ e1A

n(1) for all n ∈ N and i ∈ {1, ..., N},
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then limn→∞ e1A
n/ρ(A)n exists.

Now by the construction of ΛR and by Lemma 3.4.1 and Lemma 3.4.2 we have

the following proposition.

Proposition 3.4.1. For each x ∈ X̄(β)

µ̄(x) := lim
n→∞

N̄n(x)

λn

exists, defining a measure µ̄ ∈ M(Z̄).

We conclude this section with three lemmas showing that the measure µ is

invariant under L, that λ < 4, and that the total mass of the measure µ is infinite.

Lemma 3.4.3. Lµ̄ = λµ̄

Proof. For all x ∈ X̄(β) we have

Lµ̄(x) = µ̄(T−1
−1 (x)) + 2µ̄(T−1

0 (x)) + µ̄(T−1
1 (x))

= lim
n→∞

1

λn
(
µ̄n(T

−1
−1 (x)) + 2µ̄n(T

−1
0 (x)) + µ̄n(T

−1
1 (x))

)
= lim

n→∞

1

λn
Lµ̄n(x)

= λ lim
n→∞

1

λn+1
µ̄n+1(x)

= λµ̄(x).

For sets X, measures ν ∈ M(X) and measurable sets A ⊂ X we let ν|A be

such that ν|A(B) = ν(A ∩B) for all measurable B ⊂ X.

Lemma 3.4.4. λ < 4

Proof. It is clear that if ν ∈ M(Z̄) is such that
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||ν|| <∞

then

||Lν|| = 4||ν||.

Note that L(µ̄) = λµ̄ and

L
(
µ̄|X̄1(β)

)
|X̄1(β) = λµ̄|X1(β),

but ∣∣∣∣(L (µ̄|X̄1(β)

))
|Z̄\X̄1(β)

∣∣∣∣ > 0

since X̄1(β) is not invariant under the maps T0, T1, T−1. Then

4||µ̄|X̄1(β)|| =
∣∣∣∣L (µ̄|X̄1(β)

)∣∣∣∣ = ∣∣∣∣(L (µ̄|X̄1(β)

))
|X̄1(β)

∣∣∣∣+ ∣∣∣∣(L (µ̄|X̄1(β)

))
|Z̄\X̄1(β)

∣∣∣∣
= λ||µ̄|X̄1(β)||+

∣∣∣∣(L (µ̄|X̄1(β)

))
|Z̄\X̄1(β)

∣∣∣∣ > λ||µ̄|X̄1(β)||1

giving us λ < 4.

Proposition 3.4.2. ||µ̄|| = ∞, i.e., the measure µ̄ is infinite.

Proof. For n ∈ N we get

||µ̄|| =
∣∣∣∣∣∣∣∣ 1λnLnµ̄

∣∣∣∣∣∣∣∣ > ∣∣∣∣∣∣∣∣ 1λnLn
(
µ̄|{0}

)∣∣∣∣∣∣∣∣ = 4n

λn
µ̄(0).

The result follows since λ < 4, µ̄(0) > 0 and n was arbitrary.

3.4.2 Transition Matrices

Let ∆ = {v1, · · · , vk} with v1 = 0. We introduce a k×k matrix with rows/columns

corresponding to the points in ∆.
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Definition 3.4.5. For i ∈ {−1, 0, 1} let Ai be the k × k matrix such that

(Ai)m,n =


1 if ∃j ∈ {−1, 1} : Tj−i(vm) = vn

2 if T−i(vm) = vn

0 otherwise

.

The matrices Ai describe the evolution of local measure as we move from x to

Ti(x), as described in Lemma 3.4.5. Recall that v1 = 0, v2, · · · vk are the elements of

∆ (Definition 3.4.2. We define a vector which describes the local measure around

x.

Definition 3.4.6. We let v(x) = (µ(x), µ(x+ v2), · · · , µ(x+ vk)).

Lemma 3.4.5. Let x ∈ X̄(β). Then

1

λ
v(x)Ai = v(Ti(x)).

Proof. We show that

(N̄n(x), N̄n(x+v2), · · · , N̄n(x+vk))Ai = (N̄n+1(Ti(x)), N̄n+1(Ti(x)+v2), · · · , N̄n+1(Ti(x)+vk)),

the result will follow from this statement.

Note that

N̄n+1(Ti(x)+vl) = N̄n(T
−1
1 (Ti(x)+vl))+N̄n(T

−1
−1 (Ti(x)+vl))+2N̄n(T

−1
0 (Ti(x)+vl))

(3.9)

where of course N̄n(y) = 0 for y ̸∈ X̄(β).

Secondly we note that

Tj(x+ vm) = Tj(x) + T0(vm)

= Ti(x) + T0(vm) + j − i

= Ti(x) + Tj−i(vm),
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which is equal to Ti(x) + vl if and only if Tj−i(vm) = vl.

So we can rewrite equation 3.9 to get

N̄n+1(Ti(x) + vl) =
∑

m∈{1,··· ,k}

N̄n(x+ vm)χT1−i(vm)=vl

+
∑

m∈{1,··· ,k}

N̄n(x+ vm)χT−1−i(vm)=vl

+ 2
∑

m∈{1,··· ,k}

N̄n(x+ vm)χT−i(vm)=vl .

which is precisely the lth entry of (N̄n(x), N̄n(x+ v2), · · · , N̄n(x+ vk))Ai.

Proposition 3.4.1. SetW = v(0) = (µ(0), µ(v2), · · · , µ(vk)). Let x =
∑n

i=1 ciβ
n−i.

Then

v(x) =
1

λn
(WAc1 · · ·Acn).

In particular,

µ̄(x) =
1

λn
(WAc1 · · ·Acn)1,

i.e. the first entry of the 1× k vector 1
λnWAc1 · · ·Acn.

Proof. This follows immediately from the previous lemma by writing

x = Tan ◦ Tan−1 ◦ · · · ◦ Ta1(0).

Since the one dimensional measure µ is the projection of µ̄ onto the first coor-

dinate, Theorem 3.1.2 follows as a direct corollary to Proposition 3.4.1.

3.4.3 Approximating local measures via the contractive

subspace

Recall that R is the attractor of the IFS {S−1, S0, S1} and that πc(X̄(β)) ⊆ R.

We will assume the following condition.
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Condition 3.4.1. X̄(β) ∩ cl(Bβ(1)) = Z̄ ∩ π−1
c (Ro) ∩ cl(Bβ(1))

This is similar to a condition appearing in Corollary 4.5 of [41]. Here Ro

denotes the interior of the set. Condition 3.4.1 is a condition about two finite sets

being equal, and so can be easily checked. In words, the condition says that a

finite patch around zero of the set X̄(β), which is a higher dimensional analogue

of the spectrum of β, can be written as a patch of a cut and project set with

window Ro. Condition 3.4.1 implies that the whole set X̄(β) can be written as a

cut and project set, this is the content of Corollary 3.4.1. In every example we have

checked with β ∈ (1, 2) a hyperbolic algebraic unit and alphabet A = {−1, 0, 1},

Condition 3.4.1 does indeed hold, but there are examples of Hare, Masáková and

Vávra [41] using complex alphabets in which the cut and project set contains extra

points.

Lemma 3.4.6. For each i ∈ {−1, 0, 1} we have T−1
i (Z̄) ⊆ Z̄.

Proof. We need only show that for x =
∑d−1

i=0 ziβ
i where z0, · · · , zd−1 ∈ Z we have

that there exist z′0, · · · z′d−1 such that x
β
=
∑d−1

i=0 z
′
iβ

i. Once we have shown this for

x, the corresponding results for the Galois conjugates follow directly.

The result holds because, for β to be a root of a {−1, 0, 1}-polynomial, it is

necessary that the final term a0 of the minimal polynomial5 of β is ±1. Then we

use

0 = adβ
d + ad1β

d−1 + · · ·+ a1β + a0

=⇒ 1

β
=

ad
−a0

βd−1 + · · ·+ a1
−a0

.

and since each of the terms ai
−a0

are integers, since a0 = ±1, we have that

dividing by β keeps numbers within the integer lattice as required.

5The fact that β is a root of a {−1, 0, 1}-polynomial isn’t enough to imply that the minimal
polynomial of β has digits only {−1, 0, 1}, but it does follow that the largest and smallest terms
in the minimal polynomial are ±1.
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Proposition 3.4.3. Suppose that x ∈ X̄(β) has πc(x) ∈ [ε1, ..., εn]
o for some

ε1, ..., εn ∈ {−1, 0, 1}n. Then, under condition 3.4.1, there are a1, ..., aκ ∈ {−1, 0, 1}

such that

Tε1 ◦ ... ◦ Tεn ◦ Taκ ◦ ... ◦ Ta1(0) = x.

Recall that [ε1, · · · , εn] is a subset of R defined in Definition 3.4.1, and that

[ε1, · · · , εn]o is its interior.

Proof. By the iterated function system construction of R, the fact that πc(x) ∈

[ε1, · · · , εn] gives the existence of arbitrarily long words a1, · · · am ∈ {−1, 0, 1}m

such that

πc(x) ∈ Sε1 ◦ ... ◦ Sεn ◦ Sa1 ◦ ... ◦ Sam(R).

This implies that there is y ∈ Z̄ with πc(y) ∈ R such that

x = Tε1 ◦ ... ◦ Tεn ◦ Ta1 ◦ ... ◦ Tam(y),

the fact that y ∈ Z̄ follows using Lemma 3.4.6 using that x ∈ Z̄. Now x =

(x1 · · · , xd, xd+1, · · ·xd+s) where the maps Ti are expanding on the first d coordi-

nates and contracting on the final s coordinates. Hence the maps T−1
i contract

the first d coordinates and for any ϵ > 0, for large enough m, the point

y = (Tε1 ◦ ... ◦ Tεn ◦ Ta1 ◦ ... ◦ Tam)−1(x)

must have its first d coordinates within distance ϵ of the box Πd
i=1Iβi

(1). But since

these points lie in a uniformly discrete set, the first d coordinates must actually

lie in the closure of this box.

The final s coordinates must be in Ro, since πc(x) ∈ Sε1 ◦ ... ◦ Sεn ◦ Sa1 ◦ ... ◦

Sam(Ro). Thus

(Tε1 ◦ ... ◦ Tεn ◦ Ta1 ◦ ... ◦ Tam)−1(x) ∈ Z ∩ π−1
c (R) ∩Bβ(1),
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and so by Condition 3.4.1 there exists b1 · · · bk ∈ {−1, 0, 1}k such that

(Tε1 ◦ ... ◦ Tεn ◦ Ta1 ◦ ... ◦ Tam)−1(x) = Tb1 ◦ · · · ◦ Tbk(0) ∈ X̄1(β).

Then

x = Tε1 ◦ ... ◦ Tεn ◦ Ta1 ◦ ... ◦ Tam ◦ Tb1 ◦ · · ·Tbk(0)

as required.

Corollary 3.4.1. Under condition 3.4.1, X̄(β) = Z̄ ∩ π−1
c (Ro).

This is just the statement of the previous proposition with ε1, · · · εn being the

empty word. A similar statement appears as Corollary 4.5 in [41].

Lemma 3.4.7. Let i, j ∈ {1, · · · , k}. Then there exists c1, ..., cn ∈ {−1, 0, 1} such

that

(Ac1 · ... · Acn)ij > 0.

Proof. The definition of ∆ means there exist a1 · · · am ∈ {−2,−1, 0, 1, 2}m and

am+1 · · · an ∈ {−2,−1, 0, 1, 2} such that Tam ◦ · · · ◦ Ta1(vi) = 0 and Tam+1 ◦ · · · ◦

Tan(0) = vj. Then choosing c1 · · · cm such that ai − ci ∈ {−1, 0, 1} for each i the

result follows directly from the definition of Ai.

The following lemma is important in defining for us a ‘mixing word’ an · · · a1 ∈

{−1, 0, 1}n.

Proposition 3.4.4. There is a word w = w1, ..., wn ∈ {−1, 0, 1}n and I, J ⊆ ∆

such that 0 ̸∈ I, 0 ̸∈ J and (Aw1 · ... · Awn)i,j = 0 ⇔ i ∈ I or j ∈ J .

Proof. We start by building a set I and a word w1, · · · , wm such that the ith row

of Aw1 . · · · .Awm is a zero row for i ∈ I and (Aw1 . · · · .Awm)i,1 > 0 otherwise.
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Step 1: Note that for i ∈ {−1, 0, 1}, (Ai)1,1 > 0.

Step 2: The point v2 is in ∆, and from the definition of ∆ and lemma 3.4.7

there exist w1 · · ·wm1 ∈ {−1, 0, 1} such that

(Aw1 · · ·Awm1
)2,1 > 0

Step 3: Either the 3rd row of the product Aw1 · · ·Awm1
is a zero row, in which

case we declare v3 ∈ I, or there exists vp ∈ ∆ with (Aw1 · · ·Awm1
)3,p > 0. As in

step 2, since vp ∈ ∆ choose a word wm1+1 · · ·wm2 such that

(Awm1+1 · · ·Awm2
)p,1 > 0.

Then the product of matrices Aw1 · · ·Awm2
has that entry (3, 1) is positive. Fur-

thermore, entry (2, 1) is still positive, since Aw1 · · ·Awm1
had entry (2, 1) positive,

and then we are post multiplying by matrices with positive top left entry.

Iterating this procedure, we create a word w1 · · ·wmk
and a set I ⊂ ∆ such that

the ith row of Aw1 . · · · .Awmk
is a zero row for i ∈ I and (Aw1 . · · · .Awmk

)i,1 > 0

otherwise.

Note that the matrices AT
1 , A

T
0 , A

T
−1 also have top left entry strictly positive and

that for any i ∈ {1, · · · k} there exists a word c1 · · · cn such that (Ac1 · · ·Acn)(i,1) >

0. So we repeat the above procedure for the matrices AT
1 , A

T
0 , A

T
−1 to create a word

w′
1 · · ·w′

nk
and a set J such that the jth row of AT

w′
1
· · ·AT

w′
nk

is a zero row for j ∈ J ,

and (AT
w′

1
· · ·AT

w′
nk
)(j,1) > 0 otherwise.

Taking the transpose once more gives us that the product Aw′
nk

· · ·Aw′
1
has a

set J of zero columns, and for all other columns the first entry is strictly positive.

Now setting w1 · · ·wn = w1 · · ·wmk
w′

nk
· · ·w′

1 we see that the productAw1 · · ·Awn

has a set I of zero rows, a set J of zero columns, with all other entries strictly

positive as required.
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Definition 3.4.7. Let the mixing word w = w1, ..., wn and Aw = Aw1 · ... · Awn

where w1, ..., wn are as in proposition 3.4.4

Recall that we defined the 1× k vectors

v(x) = (µ(x), µ(x+ v2), · · · , µ(x+ vk))

where ∆ = (v1, · · · , vk) with v1 = 0. Map the space of 1× k vectors with positive

first entry onto projective space by letting (V ′)i =
(V )i+1

(V )1
for 1 ⩽ i ⩽ 16, giving

v′(x) =

(
µ(x+ v2)

µ(x)
,
µ(x+ v3)

µ(x)
, · · · µ(x+ vk)

µ(x)

)
As before, define the projective distance by

d(U, V ) = max
i∈{1,··· ,k−1}

| log((V )i)− log((U)i)| ∈ [0,∞].

Proposition 3.4.5. Assume that condition 3.4.1 holds. Then there exist positive

constants C1, C2 such that for any word a1 · · · ar ∈ {−1, 0, 1}n and for any x, y ∈

X̄(β) with πc(x), πc(y) ∈ [a]o,

d(v′(x), v′(y)) < C1C
d(a)−1
2

where d(a) is the number of disjoint occurrences of w in a = a1 · · · an.

Proof. By Lemma 3.4.3 we have that x and y both have expansions ending with

the word a, i.e. we can write x =
∑n

i=1 ciβ
n−i, y =

∑m
i=1 diβ

m−i where both

c1 · · · cn and d1 · · · dm end in word ar · · · a1.

Then by Lemma 3.4.5 we can write

v(x) =
1

λn
v(0)Ac1 · · ·Acn =

1

λn
v0Ac1 · · ·Acn−r︸ ︷︷ ︸

:=U

Aar · · ·Aa1

and

v(y) =
1

λn
v(0)Ad1 · · ·Adm =

1

λn
v0Ad1 · · ·Adm−r︸ ︷︷ ︸

:=V

Aar · · ·Aa1
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But now ar · · · a1 contains d occurrences of the mixing word w, the first of which

contracts the distance between vectors U and V to at most C1, and the final

d(a) − 1 of which each contract the distance by a factor of C2, as is proved in

Appendix 2. Then we have the required result.

We note that Theorem 3.1.3 follows as a direct corollary to Propsition 3.4.5,

as the vector v′(x) can be written

v′(x) = (exp(f2(xc)), exp(f3(xc)), · · · exp(fk(xc)))

and that d(v′(x), v′(y)) < C1C
d(a)−1
2 implies that for each i ∈ {2, · · · , k} the dif-

ferences | log(fi(xc)) − log(fi(yc)| < C1C
d(a)−1
2 . Projecting µ̄ and the elements of

∆ onto their first coordinates we are done.

Finally we show that all elements of X̄ can be reached from 0 by applying

finitely many translations from the set ∆.

Lemma 3.4.8. Let a1, ...am ∈ {−1, 0, 1} be such that a1β̄
m−1+...+am−1β̄+amβ̄

0 =

0 and a1 ̸= 0. Then

{
κ∑

i=0

xi : κ ∈ N, x1, ..., xκ ∈ ∆

}
= X̄.

Proof. Notice that m ⩾ deg(β) + 1. We have

Tam ◦ ... ◦ Ta1(0) = 0

hence the set

B : = {Tak ◦ ... ◦ Ta1(0) : 1 ⩽ k ⩽ m− 1}

=
{
a1β̄

k−1 + ...+ ak−1β̄ + akβ̄
0 : 1 ⩽ k ⩽ m− 1

}
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is a subset of ∆. Set

∆(0) =

{
κ∑

i=0

xi : κ ∈ N, x1, ..., xκ ∈ ∆

}
.

The proof is completed by showing inductively that β̄0, ..., β̄m−1 ∈ ∆(0). Indeed

β̄0 ∈ B ⊆ ∆ and if β̄0, ..., β̄k ∈ ∆(0), for κ < m− 1, then

β̄k+1 = a1((a1β̄
k+1 + ...+ ak+1β̄ + ak+2β̄

0)− a2β̄
k − ...− akβ̄ − ak+2β̄

0) ∈ ∆(0).

3.5 Appendix

3.5.1 Appendix 1: A Perron theory lemma

In this subsection we will prove Lemma 3.4.2

Proof. By bringing the matrix to it’s normal form of a reducible matrix, see ([76],

p. 51), we can assume that

A =



B1 ∗ ∗ · · · ∗

0 B2 ∗ · · · ∗
...

...
...

...

0 0 0 · · · ∗

0 0 0 · · · Bh


where Bi is a non-negative irreducible square matrix for i ∈ {1, ..., h}. By

rescaling we can assume that ρ(A) = 1. Clearly 1 = ρ(A) = max{ρ(B1), ..., ρ(Bh)}

so from assumption iii) we get ρ(B1) = 1. We set

Si := {j ∈ {1, ..., N} : The entry (j, j) is contained in the Bi-block } .
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For i ∈ {1, ...h} let

Vi :=
{
u ∈ RN : u(j) = 0 if j /∈ Si

}
and

Vi− :=
{
u ∈ RN : u(j) = 0 if j /∈ ∪i−1

κ=1Sκ

}
.

Define pi and pi− to be the orthogonal projections of RN to the subspaces Vi

and Vi− respectively. Finally let B′
i to be A where all entries outside the Bi-block

are replaced by 0 and B′
i− to be A where all the entries of the form (i, j) are

replaced by zero if and only if j /∈ ∪i−1
κ=1Sκ.

We will prove the lemma by proving inductively that pi(e1A
n) converges for

i ∈ {1, ..., h}. For i = 1 we have that pi(e1A
n) = pi(e1B

′n
1 ) so the statement

is true since B1 is an irreducible aperiodic matrix of spectral radius one. The

aperiodicity comes from assumption i). Now we assume that i ∈ {2, ..., h} and

pi−(e1A
n) converges to some v′ ∈ RN aiming to prove that pi(e1A

n) converges.

Case 1 ρ(Bi) < 1: We define Ti : RN → RN by

Ti(x) = xB′
i + pi (v

′A)

Since ρ(Bi) < 1 there is u′ ∈ RN such that u′(I −B′
i) = pi(v

′A) so that

Ti(x) = (x− u′)B′
i + u′.

Now, from ρ(Bi) < 1 again, we can conclude that T n
i (x) → u′ for any x ∈ RN .

Writing

pi(e1A
n) = T n

i (0) + pi(e1A
n)− T n

i (0)

we only need to prove that pi(e1A
n) − T n

i (0) → 0 to prove the convergence of

pi(e1A
n) to u′. Let ε > 0. By the spectral radius formula there exists C > 0 such

that

||B′n
i || ⩽ C (ρ(Bi) + δ)n
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where δ > 0 is chosen such that ρ(B′
i) + δ < 1. Also by pi−(e1A

n) → v′ we get

that there is κ0 such that |pi(v′A)− pi(pi−(e1A
n−1)A)| < ε. Notice that

pi(e1A
κ+1) = pi(e1A

κ)B′
i + pi (pi−(e1A

κ)) , κ ∈ {0, ...}.

By iterating the relation above and choosing n large enough we get

|pi(e1An)− T n
i (0)| =

∣∣∣∣∣
n∑

κ=1

(
pi(pi−(e1A

κ−1)A)− pi(v
′A)
)
B′n−κ

i

∣∣∣∣∣
⩽

∣∣∣∣∣
κ0−1∑
κ=1

(
pi(pi−(e1A

κ−1)A)− pi(v
′A)
)
B′n−κ

i

∣∣∣∣∣+
n∑

κ=κ0

||Bn−κ
i || · ε

⩽

∣∣∣∣∣
(

κ0−1∑
κ=1

(
pi(v

′A)− pi(pi−1(e1A
κ−1)A

)
B′κ0−1−κ

i

)
B′n−κ0+1

i

∣∣∣∣∣
+

ε · C
1− ρ(Bi)− δ

Since xB′n
i → 0 for all x ∈ RN the above gives

lim sup
n→∞

|pni (e1An)− T n
i (0)| ⩽

ε · C
1− ρ(Bi)− δ

but since ε was arbitrary we get

lim
n→∞

|pni (e1An)− T n
i (0)| = 0

completing the inductive step in the case ρ(Bi) < 1.

Case 2 ρ(Bi) = 1: Now let u′ be a left eigenvector of 1 of B′
i with all entries in

Si being positive. There exists such a u′ from Perron–Frobenius theorem since Bi

is a non-negative irreducible matrix. There are κ0,m ∈ N and c > 0 such that all

entries in Si of

pi (pi−(e1A
n)Am)− cu′

are positive for all n > κ0. This is true, by choosing c small enough, because of

assumption ii) and pi−(e1A
n) → v′. Let κ1 ∈ N be such that m(κ1 − 1) > κ0. The
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inequalities in the following are to be understood entrywise. For n large enough

we have,

pi(e1A
nm) =

n∑
κ=1

(
pi
(
pi−
(
e1A

m(κ−1)
)
Am
))
B

′m(n−κ)
i

⩾
n∑

κ=κ1

(
pi
(
pi−
(
e1A

m(κ−1)
)
Am
))
B

′m(n−κ)
i

=
n∑

κ=κ1

(
pi
(
pi−
(
e1A

m(κ−1)
)
Am
)
− cu′

)
B

′m(n−κ)
i +

n∑
κ=κ1

cu′B
′m(n−κ)
i

⩾
n∑

κ=κ1

cu′B
′m(n−κ)
i = (n− κ1 + 1)cu′.

The above implies that ||pi(e1Anm)||1 → ∞ which contradicts assumption iii).

Thus case 2 never occurs.

3.5.2 Appendix 2: Birkhoff metric arguments

This section is based on methods from [13]. We use a metric of Birkhoff which is

equivalent to the metric used in the text above, and in particular the contraction

results of this section carry over to the metric used in the main text.

For a vector x ∈ Rn we define Cx to be the closure of the set

{y ∈ Rn|∀i ∈ {1, .., n} : y(i) ⩾ 0 and (x(i) = 0 ⇔ y(i) = 0)}

and ⟨Cx⟩ the linear subspace it spans. Also we set ∂Cx and Co
x to be the

boundary and the interior of Cx respectively, with respect to the topology of ⟨Cx⟩.

Let pr be the canonical mapping of Rn\{0} to it’s projective space. We identify

pr(C(1,...,1)\{0}) with H := C(1,...,1)∩{x ∈ Rn : ||x||1 = 1} so that pr(x) is identified

with x/||x||1. Let a, b be two distinct elements of H such that there is x ∈ R with

a, b ∈ Co
x∩H. Note that, given a and b, all choices of x give rise to at most one set
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Cx. Denote by a
′, b′ the points of ∂Cx∩H such that a is a convex combination of a′

and b and b is a convex combination of a and b′. Define Ka,b : ⟨{a, b}⟩ → R2 to be

the unique linear transformation such that Ka,b(a
′) = (1, 0) and Ka,b(b

′) = (0, 1).

Now for x ∈ Rn\{0} we define a metric dx on Co
x ∩H by

dx(a, b) = d2(Ka,b(a), Ka,b(b)) a ̸= b ∈ Co
x ∩H

where

d2 ((x1, y1), (x2, y2)) =

∣∣∣∣log(y1x2x1y2

)∣∣∣∣ .
The fact that the above defines a metric is Lemma 1 of [13].

Lemma 3.5.1. Let x, y ∈ Rn\{0} and T be a linear transformation from Rn to

itself such that T (Cx\{0}) ⊆ Co
y . Then there are C ∈ (0, 1) and M > 0 such that

for all a, b ∈ Co
x

dy(pr(T (a)), pr(T (b))) ⩽ Cdx(pr(a), pr(b))

and

dy(pr(T (a)), pr(T (b))) ⩽M

Proof. By a trivial compactness argument we can see that pr(T (Cx ∩ H)) is

bounded away from ∂Cy ∩ H. From that we get that the image of the segment

joining (1, 0) and (0, 1) under T ′
a,b := Kpr(T (a)),pr(T (b))TK

−1
pr(a),pr(b) is bounded away

from {(1, 0), (0, 1)} uniformly for all distinct a, b ∈ Co
x. So there exist C ∈ (0, 1)

and M > 0 such that for all distinct a, b ∈ Co
x:

d2(T
′
a,bKpr(a),pr(b)(a), T

′
a,bKpr(a),pr(b)(b)) ⩽ Cd2(Kpr(a),pr(b)(a), Kpr(a),pr(b)(b))

and

d2(T
′
a,bKpr(a),pr(b)(a), T

′
a,bKpr(a),pr(b)(b)) ⩽M,
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see ([13], p. 220), which is equivalent to

dy(pr(T (a)), pr(T (b))) ⩽ Cdx(pr(a), pr(b))

and

dy(pr(T (a)), pr(T (b))) ⩽M

for all a, b ∈ Co
x.

By a similar argument one can also prove the following.

Lemma 3.5.2. Let x, y ∈ Rn\{0} and T be a linear transformation from Rn to

itself such that T (Co
x) ⊆ Co

y . Then for all a, b ∈ Co
x

dy(pr(T (a)), pr(T (b))) ⩽ dx(pr(a), pr(b))

Also one can directly check the following two lemmas.

Lemma 3.5.3. Let T (x) = x⊺A be a linear transformation from Rn to itself where

A is a n × n matrix which has only non-negative entries. Then for each x ∈ Rn

there is a unique set Co
y , for some y ∈ Rn, such that T (Co

x) ⊆ Co
y .

Lemma 3.5.4. Let T (x) = x⊺A be a linear transformation from Rn to itself where

A is a n × n matrix which has only non-negative entries. Also assume that there

exist I, J ⊆ {1, ..., n} such that A(i, j) = 0 ⇔ i ∈ I ∨ j ∈ J . Then there is a

unique set Co
x, for some x ∈ Rn, such that for each z ∈ Rn if

∏
i/∈I z(i) ̸= 0 then

T (Cz\{0}) ⊆ Co
x.

Now the following lemma connects the metric d defined earleier with the met-

rics dx defined in this appendix. We omit the full proof because it is a lengthy

elementary inspection.
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Lemma 3.5.5. There is a constant C > 1, depending only on n, such that for all

x ∈ Rn\{0} and a, b ∈ C◦
x we have

C−1d(a, b) < dx(a, b) < Cd(a, b).

Sketch of Proof. We choose arbitrary x ∈ Rn\{0} and p, q ∈ ∂Cx ∩ H. Then we

work on the set

S := {tp+ (1− t)q : t ∈ (0, 1)}.

We fix a point a0 := t0p+(1− t0)q in S and the rest of the proof is elementary

asymptotic analysis on the formulas we get for dx(a0, tp+ (1− t)q) and d(a0, tp+

(1− t)q).

Finally we conclude that products of matrices indexed by our contracting word

contract projective space.

Proposition 3.5.1. Let a ∈ {−1, 0, 1}N contain d(a) distinct incidences of the

mixing word w. Then for any two non-negative k × 1 vectors U, V , such that

U(1), V (1) > 0, we have

d(V Aa1 · · ·Aan ,WAa1 · · ·Aan) < C1C
d(a)−1
2

where C1 and C2 ∈ (0, 1) are explicit constants.

Proof. Let v be a non-negative k×1 vector such that v(1) > 0. The word (a1, ..., an)

can be written as

(a1, ..., an) = w1 ∗ ... ∗ wm
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where ∗ is concatenation of words, wi ∈ ∪n∈N{−1, 0, 1}n and

# {i ∈ {1, ...,m} : wi = ac} = d(a).

Set

imin = min {i ∈ {1, ...,m} : wi = ac} .

For each i ∈ {1, ...,m} we defineAwi
to beAaκ(i)·...·Aan(i)

where wi = (aκ(i), ..., an(i)).

Also for each i ∈ {1, ...,m} we set

vi = vAw1 · ... · Awi

and v0 = v. Notice that, by lemma 3.5.3,

(Co
v )Aw1 · ... · Awi

⊆ Co
vi

so

(Co
v )Aw1 · ... · Awimin

⊆ (Co
vimin−1

)Ac.

From lemmata 3.5.4 and 3.5.1 there exists C1 > 0 such that

diamdvimin
(pr((Co

v )Aw1 · ... · Awimin
)) ⩽ C1

Now let imin < i ⩽ m, then

(Co
v )Aw1 · ... · Awi−1

⊆ Co
vi−1

.

If wi ̸= ac then by 3.5.3 we see that Co
vi−1

Awi
⊆ Co

vi
so by lemma 3.5.2

diamdvi−1
pr((Co

v )Aw1 · ... · Awi−1
) ⩽ diamdvi

pr((Co
v )Aw1 · ... · Awi

).

If wi = ac then by lemmata 3.5.4 and 3.5.1

diamdvi−1
pr((Co

v )Aw1 · ... · Awi−1
) ⩽ C diamdvi

pr((Co
v )Aw1 · ... · Awi

).
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So inductively we get

diamdvm pr((C
o
v )Aw1 · ... · Awm) < C1C

d(a)−1
2 .

The result follows from lemma 3.5.5 since the set

{C◦
v : v is a non-negative non-zero k × 1 vector}

is finite.

3.6 Further Questions:

We have a number of further questions on the structure of the sets X(β), the

measure µ, and on how one can start to study µ using ergodic theory.

Question 1: Is it the case for any integer alphabet A and for any hyperbolic

β one can express X(β) (or the higher dimensional analogue X̃(β) in the non-

Pisot case) as a cut and project set with window R (or maybe Ro) defined as the

attractor of an iterated function system {Si : i ∈ A} where Si is defined in terms

of the Galois conjugates of β of absolute value less than one. We have shown an

inclusion in Corollary 3.4.1. This question is also considered in [41].

Question 2: Is it true that, for a sequence of Pisot numbers βn of increasing de-

gree in any interval (1, 2−ϵ), the sequence of sets 1
βn−1

(
X{−1,0,1}(βn) ∩

[
−1
β−1

, 1
β−1

])
equidistribute in [−1, 1]. These sets are just pieces of the spectra of X{−1,0,1}(βn)

renormalised to live on [−1, 1].

In Conjecture 2 we predict that, for such a sequence of Pisot numbers βn, the

distance between measures µIβn
and normalised Lebesgue measure on Iβn tends

to zero as n tends to infinity. Our question here is the corresponding question
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for the sets supp(µIβn
) = X{−1,0,1}(βn) ∩

[
−1
β−1

, 1
β−1

]
. If the answer to Question 1

is positive, then this is a question about the structure of a sequence of cut and

project sets.

Question 3: Does further numerical evidence support our Conjectures 1 and 2

on the dimension of Bernoulli convolutions and the distribution of measures µIβn
?

The case that βn is a sequence of Pisot numbers converging to a limit in (1, 2) is

of particular interest. In that case the limit must also be a Pisot number.

Question 4: In the special case of the Golden mean, Theorem 3.3.3 describes

how the measure µ evolves as one moves through the spectrum. Can one use this

theorem, for example, to prove that

lim
n→∞

∑
x∈X(ϕ)∩[0,n]

µ(x)δx(mod1)

converges weak∗ to Lebesgue measure on [0, 1]. Inducing on the region {(x, y, z) :

y ∈ [0, ϕ2]} we have an irrational rotation in the x direction, and an irrational

rotation in the y direction which also gives the weights which tell us how to evolve

the measure µ. Then one might believe our question has a positive answer, since

the weights µ(x) are driven by the evolution in the y direction which is somehow

independent of our position in the x direction.
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Chapter 4

Absolutely Continuous Bernoulli

Convolutions

Joint work with Tom Kempton

4.1 Introduction

Bernoulli convolutions are a simple family of overlapping self-similar measures.

For β ∈ (1, 2) the Bernoulli convolution νβ is defined be the weak∗ limit of the

sequence νβ,n of probability measures given by

νβ,n =
∑

a1···an∈{0,1}n

1

2n
δ∑n

i=1 aiβ
−i .

The question of the absolute continuity of Bernoulli convolutions goes back to

work of Erdős in 1939 [21], in which it was shown that the νβ is singular when β

is a Pisot number. These remain the only known examples of singular Bernoulli

convolutions. In the other direction, Garsia, Varjú and Kittle have each given

examples of classes of absolutely continuous Bernoulli convolutions associated with

algebraic parameters [37, 77, 55]. Solomyak showed that the set of β ∈ (1, 2) giving

rise to singular Bernoulli convolutions has Lebesgue measure zero [74], this result
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was improved by Shmerkin who showed that the set has Hausdorff dimension zero

[73].

If instead of asking for absolute continuity of νβ we ask whether dimH(νβ) = 1

then a lot more is known, mainly stemming from work of Hochman [45]. Several

recent articles give conditions under which the Bernoulli convolution associated to

an algebraic β has dimension one [17, 16, 39] or show that the Hausdorff dimension

can be computed [2]. Most significantly, Varjú has shown that dimH(νβ) = 1

whenever β is transcendental [79]. Finally we mention recent papers of Feng and

Feng and of Kleptsyn, Pollicott and Vytnova which give remarkable lower bounds

for the dimH(νβ) which hold for all β ∈ (1, 2) [33, 57].

In this article we give new ergodic-theoretic conditions for the absolute conti-

nuity of Bernoulli convolutions. In particular, we turn the question of the absolute

continuity of certain Bernoulli convolutions into a question relating to the ergodic

theory of cocycles over uniquely ergodic domain exchange transformations. Our

hope is that, with further work, our techniques will give rise to a proof that the

Bernoulli convolution νβ is absolutely continuous whenever β ∈ (1, 2) is algebraic

and has at least one Galois conjugate larger than one in absolute value, with no

Galois conjugates having absolute value one. Our main theorem is the following.

Theorem 4.1.1. [Stated Precisely as Theorem 4.5.1.] Assume that β ∈ (1, 2) is an

algebraic integer that has no Galois conjugates of absolute value one, and at least

one real Galois conjugate of absolute value larger than one. Under assumptions,

there exist a fractal R, a set I, a domain exchange transformation T : I × R →

I×R and a function (which satisfies regularity conditions) f : R → R+ such that,

if the projection onto I of the sequence of measures

n∑
i=1

f(0)f(T (0)) · · · f(T n−1(0))δTn−1(0)

converges to Lebesgue measure sufficiently quickly then the Bernoulli convolution
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νβ is absolutely continuous.

If the function f took values in a compact group K then the Santos-Walkden

version of the Wiener-Wintner ergodic theorem [70] would give us the convergence

that we need. As it is, further work on the ergodic theory of cocycles over domain

exchange transformations is needed to use our techniques to prove that certain

Bernoulli convolutions are absolutely continuous.

We illustrate our results by first looking at a particular example.

4.1.1 A First Example:

Let β ≈ 1.513 satisfy β4 = β3 + β2 − β + 1. Then β has one real Galois conjugate

β2 ≈ −1.179 and a pair of complex Galois conjugates which are less than one in

modulus. We chose this example because it has no Galois conjugates of absolute

value one (essential for our techniques) and because it is of small degree with only

one Galois conjugate larger than one in modulus (which makes things easier to

compute and to visualise).

Our first result, a special case of Theorem 4.2.1, gives conditions for the abso-

lute continuity of νβ in terms of the growth of the total number of overlaps at the

nth level of the construction of the Bernoulli convolution.

Let Nn be the number of overlaps at the nth level of the construction of the

Bernoulli convolution. This is equal to the number of pairs of words a1 · · · an, b1, · · · bn ∈

{0, 1}n for which |
∑n

i=1 aiβ
n−i −

∑n
i=1 biβ

n−i| < 1
β−1

.

Proposition 4.1.1 (Special Case of Theorem 4.2.1). If there exists C > 0 such

that Nn ⩽ C
(

4
β

)n
for all n ∈ N then the Bernoulli convolution νβ is absolutely

continuous.

Unfortunately, estimating Nn is difficult. The bulk of this paper is dedicated

to giving upper bounds via a geometric construction.
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We define the measure µn on I :=
[

−1
β−1

, 1
β−1

]
by

µn(A) = #{a1 · · · an, b1 · · · bn ∈ {0, 1}n :
n∑

i=1

(ai − bi)β
n−i ∈ A}.

Then Nn = µn(I).

We want to understand the ratio Nn+1

Nn
. Given a1 · · · an, b1 · · · bn contributing to

the count for Nn, we ask how many of the four choices of an+1, bn+1 ∈ {0, 1}2 give

rise to a pair a1, · · · an+1, b1 · · · bn+1 contributing to the count for Nn+1. This boils

down to the number of an+1, bn+1 for which

β

(
n∑

i=1

(ai − bi)β
n−i

)
+ (an+1 − bn+1) ∈ I,

which in turn depends only on the value of
∑n

i=1(ai − bi)β
n−i. Using this, we

show in Section 4.3 that the ratio Nn+1

Nn
can be expressed as the integral of a step

function g with respect to the measure µn. This yields the following corollary.

Proposition 4.1.2. Suppose that the measures µn equidistribute with respect to

Lebesgue measure on I with certain rate (made precise in Theorem 4.3.1 and the

comments afterwards). Then the Bernoulli convolution νβ is absolutely continuous.

A corollary of this is that if the measures µn equidistribute with respect to

Lebesgue measure on I with certain rate then the Bernoulli convolution νβ is

absolutely continuous, see Theorem 4.3.1 and the comments afterwards.

If one draws the points contributing to the count for Nn, that is if one draws

the set {
n∑

i=1

(ai − bi)β
n−i : each ai, bi ∈ {0, 1}

}
∩ I

then no structure is apparent, although the set of points becomes increasingly dense

as n increases. Similarly, the measures µn do not seem to have any discernable

structure when viewed in one dimension.
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If however, one includes a second coordinate using the other Galois conjugate

larger than one in modulus, then one uncovers the highly structured set

Xn =

{
n∑

i=1

(
(ai − bi)β

n−i, (ai − bi)β
n−i
2

)
: each ai, bi ∈ {0, 1}

}
∩ (I × R)

We have plotted this set below for n = 6.

Figure 4.1: The set X6 reflected across the diagonal.

The measure µn lifts naturally to a measure on Xn. As n grows, Xn expands

to fill the set

X =

{
n∑

i=1

(
(ai − bi)β

n−i, (ai − bi)β
n−i
2

)
: n ∈ N, each ai, bi ∈ {0, 1}

}
∩ (I × R)

which is uniformly discrete and relatively dense in the strip (I × R). In fact X is

a cut and project set where the cut and project scheme uses a window involving

the Galois conjugates less than one in modulus, it can be constructed by a method

similar to that of the Rauzy fractal [4].

In order to estimate Nn we are left with two problems, firstly to work out which

elements of X are in Xn, and secondly to work out µn(x) for points (x, y) ∈ Xn.

The first problem is easy, we use the y-coordinate
∑n

i=1(ai− bi)β
n−i
2 as a proxy for

the smallest n for which (x, y) ∈ Xn, it is certainly true that

Xn ⊂ {(x, y) ∈ X : |y| ⩽
n∑

i=1

βn−i
2 }

and this estimate is good enough for us.

102



The second problem is much harder, and we rely heavily on our work [11]. We

use that there exists α > 1 such that, for each (x, y) ∈ X, µ(x) := limn→∞
1
αnµn(x)

exists. The key result of section 4.4 gives the following corollary, stated more

precisely in Theorem 4.4.2.

Proposition 4.1.3. [Special Case of Theorem 4.4.2] Suppose that the sequence of

measures ∑
(x,y)∈X:y∈[−

∑n
i=1 β

n−i
2 ,

∑n
i=1 β

n−i
2 ]

µ(x)δx,

once renormalised to have mass one, converges with certain rate to Lebesgue mea-

sure. Then the Bernoulli convolution νβ is absolutely continuous.

The convergence to the Lebesgue measure of sequence of measures above is con-

sistent with numerical evidence. The table below shows the Wasserstein distance

of

∑
(x,y)∈X:y∈[−n/(β−1),n/(β−1)]

µ(x)δx,

once normalised to have mass one, to the Lebesgue measure for n = 1, ..., 20.

One can study the support of the sequence of measures defined in Proposi-

tion 4.1.3 using uniquely ergodic domain exchange transformations, in much the

same way that one studies greedy β expansions using the Rauzy fractal. We also

proved in [11] that one can study the measures (rather than just the support)

using a cocycle over this domain exchange transformation. This yields a final

corollary (Theorem 4.5.1) which gives a condition for the absolute continuity of

the Bernoulli convolution in terms of the ergodic theory of cocycles over domain

exchange transformations.
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n W1(·,Leb)
1 0.0257383
2 0.0154008
3 0.0079060
4 0.0068856
5 0.0065858
6 0.0048812
7 0.0038639
8 0.0053756
9 0.0047376
10 0.0049352
11 0.0040242
12 0.0054624
13 0.0030473
14 0.0033527
15 0.0021562
16 0.0028536
17 0.0021284
18 0.0031695
19 0.0018788
20 0.0016524

Table 4.1: Evidence for an equidistribution property of µ.

4.2 A First Condition for Absolute Continuity

There has been a lot of progress in recent years in showing that certain Bernoulli

convolutions have dimension one. For algebraic parameters this has based on

understanding Garsia entropy, which counts the number of exact overlaps in the

level n approximations to the Bernoulli convolution. In this section we explain how

good estimates in the total number of overlaps (including partial overlaps) in the

level n approximation to the Bernoulli convolution would allow one to understand

absolute continuity.

Our starting point is the article [53] of the second author, in which two simple

observations were made. The first is that if a self-similar measure ν is absolutely
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continuous, then the similarity equation which ν satisfies gives rise to a similarity

equation for its density h. Furthermore, the measure ν is absolutely continuous

if and only if there exists an L1 function satisfying this density self-similarity

equation. In the case of Bernoulli convolutions associated to a parameter β ∈ (1, 2)

the statement becomes that the Bernoulli convolution is absolutely continuous if

and only if there exists a non-negative L1 function h : R → R such that

h(x) =
β

2
(h(βx) + h(βx− 1)).

The second observation of [53] was that one can study the existence of solutions

to such equations in terms of functions which count the number of codings of each

point x in the level n-construction of the self-similar measure.

In this section we generalise both of these ideas to measures on self-affine

carpets with contraction rates in different directions corresponding to Galois con-

jugates of β, these measures are higher dimensional generalisations of Bernoulli

convolutions. We also convert the second observation described above into one

involving counting the total number of overlaps in the self-affine construction.

When the self-affine measures we study are projected onto their first coordinate

they give rise to the Bernoulli convolution, and so absolute continuity of these

self-affine measure implies the absolute continuity of the Bernoulli convolution.

4.2.1 The Self-Affine Case

Let β ∈ (1, 2) be a hyperbolic algebraic integer.

We will be interested in diagonal self-affine sets with contraction parameters as-

sociated with all but one of the Galois conjugates of β of absolute value larger than

one. For this reason we number the Galois conjugates of β in an unusual way, let β

have Galois conjugates β = β1, ..., βd, βd+1, · · · , βd+s, βd+s+1 where |β1|, ..., |βd| > 1,

|βd+1|, ..., |βd+s| < 1 and βd+s+1 ∈ R \ [−1, 1].
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In this section we will focus on β1, ..., βd. For z ∈ C set Fz = R when z ∈ R

and Fz = C when z ∈ C \ R. Further define

K :=
d∏

i=1

Fβi
,

For i ∈ N we define Ti : K → K by

Ti(x1, ..., xd) = (β1x1 + i, ..., βdxd + i).

For j ∈ {1, · · · d} let

I+βj
=



[
0, 1

βj−1

]
, βj ∈ (1,∞){

x ∈ R : |x| ∈
[
0, 1

|βj |−1

]}
, x ∈ (−∞,−1){

z ∈ C : |z| ∈
[
0, 1

|βj |−1

]}
, z ∈ C \ R

and

I+ = I+β1
× · · · × I+βd

.

Define the self-affine measure νβ on K by

νβ =
1

2

(
νβ ◦ T0 + νβ ◦ T−1

)
. (4.1)

Note that the maps Ti are expanding, and νβ is the measure associated to

contractions T−1
0 , T−1

−1 . This measure has support contained in I+. If νβ is abso-

lutely continuous then νβ is absolutely continuous, we aim to prove the absolute

continuity of νβ.

Define an operator P on functions f : K → R by letting

Pf =
|β1 · ... · βd|

2
(f ◦ T0 + f ◦ T−1).

P preserves the space of non-negative functions that vanish outside I+ and

have integral one. P is a linear operator, and in particular if f is a fixed point of
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P then cf is also a fixed point of P for any constant c > 0, thus if P has a fixed

point of positive finite integral then it has a fixed point of integral one.

Proposition 4.2.1. Suppose that P has a fixed point which has positive finite

integral. Then the self-affine measure νβ is absolutely continuous and the fixed

point of P of integral one is the density of νβ.

Proof. By integrating the fixed point f of P with integral one, we get a probability

measure ν ′ on I+. In order to check that ν ′ = νβ we need only check that ν ′ satisfies

the self-affinity equation 4.1, and so it is enough to check that for any A ⊂ I+ we

have

ν ′(A) =
1

2
(ν ′(T0(A)) + ν ′(T−1(A))) .

This then follows immediately from the equation Pf = f using that

ν ′(A) =

∫
A

f(x1, · · · , xd)d(x1, · · ·xd)

=

∫
A

Pf(x1, · · · , xd)d(x1, · · ·xd)

=
|β1 · ... · βd|

2

∫
A

f(T0(x1, · · · , xd)) + f(T−1(x1, · · · , xd))d(x1, · · · , xd)

=
1

2

(∫
T0(A)

f(x1, · · · , xd)d(x1, · · ·xd) +
∫
T−1(A)

f(x1, · · · , xd)d(x1, · · ·xd)
)

=
1

2
(ν ′(T0(A)) + ν ′(T−1(A))) .

Our goal now is to construct L1 functions which satisfy Pf = f . Let functions

fn be given by

fn := P n(χI+)

Here fn(x1, · · · , xd) gives the number of words a1, · · · , an ∈ {0,−1}n for which

Tan ◦ · · · ◦ Ta1(x1, · · · , xd) remains in the region I+, multiplied by
(

|β1·...·βd|
2

)n
.

Equivalently, if we consider the iterated function system on I+ with contractions
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T−1
0 , T−1

1 then fn(x1, · · · xd) counts the number of words a1 · · · an for which T−1
a1

◦

· · · ◦ T−1
an (I+) covers (x1 · · · , xd), again multiplied by

(
|β1·...·βd|

2

)n
.

Since the operator P preserves integral, each fn has integral equal to the inte-

gral of f0, which is the area of I+.

Lemma 4.2.1. Suppose that there exists a uniform constant C such that ||fn||2 :=∫
I+
(fn(x1, · · ·xd))2d(x1, · · · , xd) < C for all n ∈ N. Then P has a fixed point h of

integral one and with bounded L2 norm.

Proof. Define

gn(x1, · · · , xd) :=
1

n

n∑
k=1

fk(x1, · · · , xd).

then each gn also has ||gn||2 < C so, since balls are weakly compact in Hilbert

spaces, there is a subsequence of gn that converges weakly to some g ∈ L2(I+)

with ||g||2 ⩽ C. Hence by the Banach-Saks theorem there is a subsequence gnκ of

gn such that

∣∣∣∣∣
∣∣∣∣∣g − 1

n

n∑
κ=1

gnκ

∣∣∣∣∣
∣∣∣∣∣
2

→ 0.

Furthermore

||gκ − P (gκ)||2 =
1

κ
||f1 − fκ+1||2 <

2C

κ

so

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
κ=1

gnκ − P

(
1

n

n∑
κ=1

gnκ

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
κ=1

gnκ −
1

n

n∑
κ=1

P (gnκ)

∣∣∣∣∣
∣∣∣∣∣
2

⩽
1

n

n∑
κ=1

||gnκ − P (gnκ)||2

⩽
1

n

n∑
κ=1

2C

nκ

.
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Letting n go to infinity in the inequality above we get ||g− P (g)||2 = 0 and so

g is a fixed point of P . Finally, since g is the limit of a sequence of functions of

fixed positive finite integral and ||g||2 ⩽ C we conclude that g has positive finite

integral, and so we can normalise it to give a function h of integral 1.

We now explain how to bound ||fn||2 in terms of the total number of overlaps

at level n of the iterated function system {T−1
0 , T−1

−1 }. Let

Nn := #
{
a1 · · · an, b1 · · · bn ∈ {0,−1}2n : T−1

a1
◦ · · ·T−1

an (I+) ∩ T−1
b1

◦ · · ·T−1
bn

(I+) ̸= ∅
}
.

The question of whether these contracted regions overlap for given a1, · · · , an, b1, · · · , bn
can be phrased in terms of the forward image of the origin 0.

This gives

Nn = #{a1 · · · an, b1 · · · bn ∈ {0,−1}2n : |Ta1 ◦ · · · ◦ Tan(0)− Tb1 ◦ · · · ◦ Tbn(0)|

∈ Iβ1 × ...× Iβd
}

= #{a1 · · · an, b1 · · · bn ∈ {0, 1}2n :

∣∣∣∣∣
n∑

i=1

(ai − bi)β
n−i
j

∣∣∣∣∣ ∈ Iβj
for each

j ∈ {1, · · · , d}}.

where

Iβj
=



[
−1

βj−1
, 1
βj−1

]
, βj ∈ (1,∞){

x ∈ R : |x| ∈
[
0, 2

|βj |−1

]}
, x ∈ (−∞,−1){

z ∈ C : |z| ∈
[
0, 2

|βj |−1

]}
, z ∈ C \ R

for {1, · · · , d}.

Proposition 4.2.2. We have

||fn||2 ⩽ λ(I+)

(
|β1 · ... · βd|

4

)n

Nn
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Proof. Notice that

P nf =

(
|β1 · ... · βd|

2

)n ∑
a1,...,an∈{0,−1}

f ◦ Ta1 ◦ ... ◦ Tan

So we have

||fn||2 =
∫
I+
fn(x)fn(x)dx

=

∫
I+

( |β1 · ... · βd|
2

)n ∑
a1,...,an∈{0,−1}

χI+ ◦ Ta1 ◦ ... ◦ Tan


( |β1 · ... · βd|

2

)n ∑
b1,...,bn∈{0,−1}

χI+ ◦ Ta1 ◦ ... ◦ Tan

 dx

=

∫
I+

(
|β1 · ... · βd|2

4

)n ∑
a1,...an,b1,...,bn

χI+ ◦ Ta1 ◦ ... ◦ Tan · χI+ ◦ Tb1 ◦ ... ◦ Tbndx

=

(
|β1 · ... · βd|2

4

)n ∑
a1,...an,b1,...,bn

∫
I+
χI+ ◦ Ta1 ◦ ... ◦ Tan · χI+ ◦ Tb1 ◦ ... ◦ Tbndx

Notice that in the bound for ||fn||2 given above we need to keep only the terms for

a1, ..., an, b1, ..., bn such that χI+ ◦ Ta1 ◦ ... ◦ Tan · χI+ ◦ Tb1 ◦ ... ◦ Tbn ̸= 0, i.e. those

a1, · · · an, b1 · · · , bn involved in the definition of Nn. Furthermore, by noticing that∫
I+
χI+ ◦ Ta1 ◦ ... ◦ Tan · χI+ ◦ Tb1 ◦ ... ◦ Tbndx is at most λ(I+)|β1 · · · βd|−n, we end

up with

||fn||2 ⩽ λ(I+)

(
|β1 · ... · βd|

4

)n

Nn

as required.

Combining Proposition 4.2.1, Lemma 4.2.1 and Proposition 4.2.2 gives the

following theorem.
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Theorem 4.2.1. Suppose that the total number Nn of overlaps in the nth level of

the iterated function system T0, T1 satisfies that

Nn ⩽ C

(
4

|β1 · ... · βd|

)n

for some constant C > 0 and for each n ∈ N. Then the corresponding self-affine

measure νβ is absolutely continuous.

We have stated Theorem 4.2.1 for a measure rectangular self-affine set with

contraction rates associated to β1, · · · βd which were all Galois conjugates, since

this is how we will apply the result in later sections, but it is worth noting that

assumptions on the contraction rates were not used in this section and the theorem

holds for any set of contraction rates β1, · · · , βd.

4.3 Measures on the distance set

Theorem 4.2.1 involves counting all pairs a1, · · · , an, b1, · · · , bn ∈ {0, 1}2n for which

∣∣∣∣∣
n∑

i=1

(ai − bi)β
n−i
j

∣∣∣∣∣ ∈ Iβj
for each j ∈ {1, · · · , d}

If we let β := (β1, · · · , βd), βn := (βn
1 , · · · , βn

d ), and

I = Iβ1 × ...× Iβd

we are counting the number of pairs a1, · · · , an, b1, · · · , bn for which

n∑
i=1

(ai − bi)β
n−i ∈ I.

Let Dn ⊂ {0, 1}2n be the set of such pairs a1, · · · , an, b1, · · · , bn. It is useful for us

to put a measure on the set of such differences. Let

µn :=
∑

{a1···an,b1···bn∈Dn}

δ∑n
i=1(ai−bi)βn−i ,
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for n ⩾ 1. This is a sum of weighted Dirac masses, supported on the set I, with

total mass Nn.

In going from Nn to Nn+1 it is useful to note that

n+1∑
i=1

(ai − bi)β
(n+1)−i
j = βj

(
n∑

i=1

(ai − bi)β
n−i
j

)
+ (an+1 − bn+1),

with the difference (an+1 − bn+1) taking value 1,−1, or 0. There are two different

ways of getting value 0 here, we can have an+1 = bn+1 = 0 or an+1 = bn+1 = 1.

Define an operator Φ on the space of measures on I by letting

(Φ(µ))(A) := µ
(
T−1
1 (A)

)
+ µ

(
T−1
−1 (A)

)
+ 2µ

(
T−1
0 (A)

)
.

for A ⊂ I. Note that we only define Φ on measures supported on I and define

Φ(µ) to also be supported on I, we do not spread mass outside of I.

If we set µ0 = δ0 then

µn = Φ(µn−1)

for n ∈ N. Let |µ| := µ(I) denote the total mass of a measure µ supported on I.

Phrased in this new language, Theorem 4.2.1 yields the following corollary.

Corollary 4.3.1. Suppose that there exists a constant C > 0 such that

|Φn(δ0)| ⩽ C

(
4

|β1 · ... · βd|

)n

for all n ∈ N. Then the self-affine measure νβ is absolutely continuous.

We now turn to understanding how measures grow under the operator Φ.

Lemma 4.3.1.

|Φ(µ)| = µ(T−1
1 (I)) + µ(T−1

−1 (I)) + 2µ(T−1
0 (I)).

Proof. This is immediate from the definition of Φ.
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Define a step function g : I → R by

g(x) = χI(T1(x)) + χI(T−1(x)) + 2χI(T0(x))

Then the previous lemma just says that

|ϕ(µ)| =
∫
gdµ.

We have the following theorem.

Theorem 4.3.1. Suppose that there exists a constant C > 1 such that

∞∑
n=1

log

(
|β1 · ... · βd|

4

1

|µn|

∫
gdµn

)
⩽ log(C).

Then the self-affine measure νβ is absolutely continuous.

Note that 1
|µn|

∫
gdµn is the integral of g with respect to the probability measure

1
|µn|µn. Secondly, if L denotes Lebesgue measure on I, normalised to have mass

one, then
∫
I
g(x)dL(x) = 4

|β1·...·βd|
. Thus, if the sequence of probability measures

µn

|µn| converge weakly to normalised Lebesgue measure L then

log

(
|β1 · ... · βd|

4

1

|µn|

∫
gdµn

)
→ 0.

Thus the condition in Theorem 4.3.1 would follow from the sequence µn

|µn| converging

weakly to L with a given rate.

Proof. From Corollary 4.3.1 it is enough to prove that

1

n
log(|µn|) ⩽

C

n
+ log

(
4

|β1 · ... · βd|

)
for some C > 0. From Lemma 4.3.1 and the discussion afterwards, for each

positive integer k,

|µk+1|
|µk|

=
|Φ(µk)|
|µk|

=
1

|µk|

∫
gdµk.
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Then since log(|µ0|) = 0, we have

log(|µn|) =
n−1∑
k=0

log

(
|µk+1|
|µk|

)

=
n−1∑
k=0

log

(
1

|µk|

∫
gdµk

)

=
n−1∑
k=0

log

(
4

|β1 · ... · βd|

)
+

n−1∑
k=0

log

(
|β1 · ... · βd|

4

1

|µk|

∫
gdµk

)
⩽ n log

(
4

|β1 · ... · βd|

)
+ log(C)

by the assumption in the theorem. Then

1

n
log(|µn|) ⩽ log

(
4

|β1 · ... · βd|

)
+

log(C)

n

as required.

4.4 The limit measure µ̄

In this section we link the measures µn with methods appeared in [11]. The goal

is to replace the measures µn, which evolve in time, with a fixed limit measure µ̄.

First we need to move in a higher dimensional space by considering the rest of

the Galois conjugates βd+1, ..., βd+s+1. We set β̄n = (βn
1 , ..., β

n
d+s+1). Set T̄i(x1, ..., xd+s+1) =

(β1x1 + i, ..., βd+s+1xd+s+1 + i) which acts on the space K̄ :=
∏d+s+1

i=1 Fβi
. We also

define the set

Z̄ = {ad+sβ̄
d+s + ...+ a0β̄

0 : ad+s, ..., a0 ∈ Z}.

The set Z̄ is a lattice in K̄ ∼= R
∑d+s+1

i=1 dim(Fβi
). That is because {β̄0, ..., β̄d+s}

is an independent subset of the real vector space K̄. That can be checked using
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the formula for the determinant of the Vandermonde matrix. We partition our

coordinates into expanding directions 1, · · · , d, contracting directions d+1, · · · , d+

s and the free direction d+s+1. The dynamics we will introduce is also expanding

on the free direction, but we deal with this coordinate separately since we will

eventually project in this direction.

We define projections πe, πc and πfree from K̄ onto subspaces of K̄ corresponding

to expanding directions, contracting directions and the free direction respectively.

They are given by

πe(x1, · · · , xd+s+1) = (x1, · · · , xd)

πc(x1, · · · , xd+s+1) = (xd+1, · · · , xd+s)

πfree(x1, · · · , xd+s+1) = xd+s+1.

It is worth noting that πe, πc and πfree are injective when restricted to Z̄. We

define a strip S ⊂ K̄ by

S = {(x1, · · · , xd+s+1) ∈ K̄ : πe(x1, · · · , xd+s+1) ∈ I}.

The following definitions differ from those in [11] in that we restrict both µ̄n and

X̄ to the set S. Let the measure µ̄n on S be given by

µ̄n(x) =#

{
(a1, ..., an, b1, ..., bn) ∈ {0, 1}2n :

n∑
i=1

(ai − bi)β̄
n−i = x

}
for x ⊂ S. We do not give mass to points outside S. The measure µ̄n is a weighted

sum of Dirac masses supported on the set

X̄ :=

{
n∑

i=1

aiβ̄
n−i : n ∈ N, a1..., an ∈ {−1, 0, 1}

}
∩ S

=
{
T̄an ◦ ... ◦ T̄a1(0) : n ∈ N, a1..., an ∈ {−1, 0, 1}

}
∩ S,

Notice that for each i ∈ Z we have T̄i(Z̄) ⊆ Z̄. In particular X̄ ⊆ Z̄ so X̄ is

uniformly discrete in K̄. Note that for A ⊂ K̄, µn ◦πe(A) = µ̄n(A) so the measures

115



µ̄n are just lifts of the measures µn of the previous section to a higher dimensional

space in which they are uniformly discrete.

Definition 4.4.1. Let R ⊆ Iβd+1
×...×Iβd+s

be the attractor of the iterated function

system involving the maps T i restricted to contracting coordinates d+1, · · · , d+ s.

The significance of the set R becomes clear in the condition 4.4.1 below, al-

though one can already observe that

X̄ ⊆ {z ∈ Z̄ : πc(z) ∈ R, πe(z) ∈ I}.

We will need the following condition which can be checked in finite time (see

[11]) and which holds for all examples we have checked.

Condition 4.4.1. X̄ = Z̄ ∩ π−1
c (int(R)) ∩ S,

Below we have plotted on approximation of R for the example of section 4.1.1.

The following theorem recalls some results of [11] that we will need.

Theorem 4.4.1.

1. There exists λ > 1 and a function f : X̄ → (0,∞) such that for each x ∈ X̄

the sequence of real numbers 1
λn µ̄n(x) converges to f(x).

2. We have 0 < f(x) ⩽ f(0) for each x ∈ X̄.

Definition 4.4.2. Define the measure µ̄ on X̄ by µ̄(A) =
∑

x∈X̄∩A f(x).

As we did with the measures µn we define an operator Φ̄ acting on measures

on X̄ by

Φ̄(µ)(A) = µ(T̄−1
−1 (A)) + 2µ(T̄−1

0 (A)) + µ(T̄ 1
−1(A))
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Figure 4.2: An approximation of R when β4 = β3 + β2 − β + 1.
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for A ⊂ S, and Φ̄(µ)(A) := Φ̄(µ)(A ∩ S) for more general A. Φ does not spread

mass outside of the strip S. We have

µ̄n = Φ̄nδ0

and

µ̄ =
1

λ
Φ̄(µ̄),

see Lemma 4.3 of [11].

We comment that the set X̄ is bounded in the coordinates 1, · · · , d since we

insist on remaining in the strip S, and it is bounded in the coordinated d +

1, · · · , d+s since the action of the maps T̄i is contracting on these coordinates and

orbits remain in the fractal R. It is only the free direction d + s + 1 in which X̄

is unbounded.

Let

Rn = {x ∈ X̄ : |πfree(x)| ⩽
n−1∑
i=0

|βi
d+s+1|}

The rest of this section is dedicated to proving the following theorem, which

replaces the µn of Theorem 4.3.1 with πe(µ̄|Rn).

Theorem 4.4.2. Suppose that λ < 4/|β1 · · · βd| and that there exists a constant C

such that

∞∑
n=1

log

(
|β1 · ... · βd|

4

1

|µ̄|Rn|

∫
gdπeµ̄|Rn

)
⩽ log(C).

Then the self-affine measure νβ is absolutely continuous.

Again, we comment that this is really an equidistribution result, requiring that

for the probability measure 1
|µ̄|Rn |

πe(µ̄|Rn) the mass of certain intervals (involved in

the definition of the step function g) is sufficiently close to the Lebesgue measure

of those intervals.
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4.4.1 Proof of Theorem 4.4.2

In Theorem 4.2.1 we gave a criteria for the absolute continuity of νβ in terms of

the measure µn, which can be easily translated to a criteria involving µ̄n. In order

to relate this to µ̄, we need first to consider the subset of X̄ upon which µ̄n is

supported.

Note that in the free direction our maps T̄i act by x → βd+s+1(x) + i, and so

points T̄an ◦ · · · ◦ T̄a1(0) must lie in Rn. We have the following lemma.

Lemma 4.4.1.

|Φ̄n(δ0)| ⩽
λn

µ̄(0)
µ̄(Rn).

Proof. Since Φ̄ is monotone and µ̄(0)δ0 ⩽ µ̄, using Φ̄(µ̄)/λ = µ̄ we have

1

λn
Φ̄n(µ̄(0)δ0) ⩽

1

λn
Φ̄n(µ̄) = µ̄.

On the other hand from the construction of Rn we have that

1

λn
Φ̄n(µ̄(0)δ0)(X̄ \Rn) = 0.

Combining these facts gives

|Φ̄n(δ0)| =
λn

µ̄(0)

1

λn
Φ̄n(µ̄(0)δ0)(Rn) ⩽

λn

µ̄(0)
µ̄(Rn).

Lemma 4.4.2. Assume that λ < 4
|β1···βd|

. Then µ̄(Rn) grows exponentially in n.

Proof. We note that the 2n rectangles (Ta1 ◦ · · ·Tan)−1(I+) are each contained in

I+ and each have an area of 1
|β1···βd|n

× Area(I+), giving a total area of 2n

|β1···βd|n
×

Area(I+). A lower bound for the total number of overlaps comes from assuming

these rectangles are evenly spread, in which case one would have that a typical

rectangle intersects 2n

|β1···βd|n
others, giving Nn ⩾ 1

2
4n

|β1···βd|n
.
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Then

µ̄(Rn) ⩾
Nn

λn
=

1

2

(
4

|β1 · · · βd|
1

λ

)n

.

which grows exponentially by our assumption.

We stress that λ can be computed by a finite calculation when β has no Galois

conjugates of absolute value 1 (as we are assuming throughout this article). Values

of λ are computed for many values in [2] and in all examples we have computed

satisfy the condition of Lemma 4.4.2.

Lemma 4.4.3. There exist ϵn tending to zero exponentially quickly such that

µ̄(Rn+1) ⩽
1 + ϵn
λ

|Φ̄(µ̄|Rn)|

=
(1 + ϵn)

λ

∫
gdπe(µ̄|Rn)

Proof. Let x ∈ X̄ be such that

|πfree(x)| ⩽ −2 +
n∑

i=0

|βi
d+s+1|.

Then

|πfree(T̄−1
i (x))| =

∣∣∣∣πfree(x)− i

βd+s+1

∣∣∣∣ ⩽ n−1∑
i=0

|βi
d+s+1|

and so T̄−1
i (x) ∈ Rn ∪ (K̄ \ X̄) for each i ∈ {−1, 0, 1}. Hence from Φ̄(µ̄)

λ
= µ̄ we

get

1

λ
Φ̄(µ̄|Rn)(x) =

1

λ

(
µ̄|Rn(T̄

−1
−1 (x)) + 2µ̄|Rn(T̄

−1
0 (x)) + µ̄|Rn(T̄

−1
1 (x))

)
=

1

λ

(
µ̄(T̄−1

−1 (x)) + 2µ̄(T̄−1
0 (x)) + µ̄(T̄−1

1 (x))
)

=
1

λ
Φ̄(µ̄)(x) = µ̄(x).

Thus

µ̄

({
x ∈ Rn+1 : |πfree(x)| ⩽ −2 +

n∑
i=0

|βi
d+s+1|

})

=
1

λ
Φ̄(µ̄|Rn)

({
x ∈ Rn+1 : |πfree(x)| ⩽ −2 +

n∑
i=0

|βi
d+s+1|

})
. (4.2)
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The diameter of{
x ∈ Rn+1 : |πfree(x)| > −2 +

n∑
i=0

|βi
d+s+1|

}

is uniformly bounded so there is M > 0 that depends only on β such that

#

{
x ∈ Rn+1 : |πfree(x)| > −2 +

n∑
i=0

|βi
d+s+1|

}
< M

for all n ∈ N. By Theorem 4.4.1 we have µ̄(x) ⩽ µ̄(0) for all x ∈ X̄ and so

µ̄

({
x ∈ Rn+1 : |πfree(x)| > −2 +

n∑
i=0

|βi
d+s+1|

})
< Mµ̄(0). (4.3)

Combining (4.2) and (4.3) we have

µ̄(Rn+1) ⩽
1

λ
Φ̄(µ̄|Rn)(X̄) +Mµ̄(0)

⩽
1

λ
Φ̄(µ̄|Rn)(X̄)(1 + ϵn)

Where ϵn = Mµ̄(0)
1
λ
Φ̄(µ̄|Rn )(S)

tends to zero exponentially fast due to Lemma 4.4.2.

Finally we mention that, by the construction of Φ̄

|Φ̄(µ̄|Rn)| =
∫
gdπe(µ̄|Rn),

this is is just the analogue of Lemma 4.3.1 for the lifted operator Φ̄ rather than

Φ.

Proposition 4.4.1. If λ < 4
|β1···βd|

there is c > 1 such that

|Φn(δ0)| ⩽ c
µ̄(R0)

µ̄(0)

n−1∏
i=0

1

µ̄(Ri)

∫
gdπe(µ|Ri

).

Proof. From Lemma 4.4.3 we have

λ
µ̄(Rn+1)

µ̄(Rn)
⩽ (1 + ϵn)

∫
gdπe(µ̄|Rn)

µ̄(Rn)
.
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The above combined with Lemma 4.4.1 leads to

|Φn(δ0)| = |(Φ̄n(δ0))|

⩽
λn

µ̄(0)
µ̄(Rn)

=
µ̄(R0)

µ̄(0)

n−1∏
i=0

λµ̄(Ri+1)

µ̄(Ri)

⩽
µ̄(R0)

µ̄(0)

(
n−1∏
i=0

(1 + ϵi)
1

|µ̄(Ri)|

∫
gdπe(µ̄|Ri

)

)
.

The proof is complete by observing that from Lemma 4.4.2 we have

∞∏
i=0

(1 + ϵi) <∞.

We can now prove Theorem 4.4.2. Assuming, as in the theorem, that

∞∑
n=1

log

(
|β1 · ... · βd|

4

1

µ̄(Rn)

∫
gdπe(µ̄|Rn)

)
⩽ log(C)

gives

n−1∏
i=0

1

|µ̄(Rn)|

∫
gdπe(µ̄|Rn) ⩽ C

(
4

|β1 · ... · βd|

)n

,

hence, by Proposition 4.4.1,

Nn = |ϕn(δ0)| ⩽ C ′
(

4

|β1 · ... · βd|

)n

for some C ′ > 0. Thus the conditions of Corollary 4.3.1 are satisfied and so the

measure νβ is absolutely continuous. This completes the proof of Theorem 4.4.2.
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4.5 Domain Exchange Transformation

Definition 4.5.1. We define the set the successor function succ : X̄ → X̄ by

πfree(succ(x)) = min{πfree(y) : y ∈ X̄, πfree(y) > πfree(x)}.

We will later see that the successor function projects to a domain exchange

transformation on D = I ×R. We clarify that in our context a domain exchange

transformation is defined as follows.

Definition 4.5.2. Let E be a compact subset of a euclidean space and T : E →

E. The map T is call a domain exchange transformation if there are E1, ..., En

measurable subsets of E such that following hold.

• {E1, ..., En} is a partition of E.

• The map T is an injection.

• If i ∈ {1, ...n} then T |Di
is a translation.

Let πD : X̄ → D be given by πD(x1, · · ·xd+s+1) = (x1, · · ·xd+s). Again we

notice that πD|Z̄ is injective.

Definition 4.5.3. Let wn be the measure on D defined by

wn =
m∑

κ=0

µ̄(succκ(0))δπD(succκ(0)),

where m is the greatest natural number such that

πfree(succ
m(0)) ⩽

n−1∑
i=0

|βi
d+s+1|.

123



wn is the image under projection onto coordinates 1, · · · , d+ s of the measure

µ̄ restricted in the free direction to the range [0,
∑n−1

i=0 |βi
d+s+1|].

Theorem 4.4.2 gave sufficient conditions for the absolute continuity of νβ in

terms of convergence to Lebesgue of the measures πewn, which were projections

onto expanding coordinates 1, · · · , d of the measure µ̄ restricted to a bounded

region in the free direction.

Here we stress that the successor function projects to a uniquely ergodic domain

exchange transformation on I ×R.

Recall that D = I ×R.

Definition 4.5.4. Let

W = {x ∈ K̄ : πc(x) ∈ int(R), πe(x) ∈ I}

and define T ′ : D → Z̄ by T ′(x) = u where

πfree(y + u) = min
{
πfree(z) : z ∈

(
y + Z̄

)
∩W and πfree(z) > πfree(y)

}
for any πD(y) = x.

It follows from the geometry of W that T ′ is well defined and that T ′(D) is

finite. So there are D1, ..., DN ⊆ D and u1, ..., uN ∈ Z̄ such that {D1, ..., DN} is a

partition of D and

x ∈ Di ⇒ T ′(x) = ui.

Notice that when x ∈ S ∩ Z̄ then x+ T ′(πD(x)) = succ(x).

Lemma 4.5.1. The map T : D → D defined by

124



T (x) = x+ πD(T
′(x))

defines a domain exchange transformation (T,D1, ..., DN).

Proof. We only need to prove that T is injective. Let, aiming for a contradiction,

x, y ∈ D such that T (x) = T (y). We can choose x′, y′ ∈ S with πD(x
′) = x

and πD(y
′) = y such that x′ + T ′(x) = y′ + T ′(y) since πD(x

′ + T ′(x)) = T (x) =

T (y) = πD(y
′ + T ′(y)) and we can freely determine πfree(x

′) and πfree(y
′). Notice

that y′ = x′ + T ′(x) − T ′(y) ∈ x′ + Z̄ so x′ ̸= y′ ⇒ πfree(x
′) ̸= πfree(y

′). Assume,

without loss of generality, that πfree(y
′) < πfree(x

′). We have πfree(y
′) < πfree(x

′) <

πfree(x
′ + T ′(x)) = πfree(y

′ + T ′(y)) which contradicts the definition of T ′ since

x′ = y′ + T ′(y)− T ′(x) ∈ y′ + Z̄.

Notice that, under condition 4.4.1, πD(succ
n(0)) = T n(0) since Theorem 4.4.1

implies X̄ = Z̄ ∩ W . For x ∈ D, we define s(x) to be the unique i such that

x ∈ Di. Now we move on to give a characterization of the measures wn which shows

that they have a special structure that could be used to prove equidistribution

properties, such as theorem 4.4.2 demands for the absolute continuity of νβ. The

main ingredient of the proof is theorem 1.3 of [11]. For this reason we need to

impose the same condition which appears in that theorem and define the set ∆

which also appears in it, as we do below.

Definition 4.5.5. Let

∆ = {x− y :x, y ∈ X̄ and

∃c1 · · · cn, d1 · · · dn ∈ {−1, 0, 1}n : T̄cn ◦ · · · T̄c1(x) = T̄dn · · · T̄d1(y)}.

That is, ∆ is the set of differences between points x, y ∈ X̄ which can be

mapped to the same point in the future by the application of maps T̄i. Before we
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state proposition 4.5.1 we set Si to be the maps T̄i restricted to the contracting

coordinates d+ 1, ..., d+ s.

Proposition 4.5.1. Under condition 4.4.1, there are functions f̄1, ..., f̄N : R →

R+ such that

i) There exists a word w and constants C1 > 0, C2 ∈ (0, 1) such that for any

a1 · · · an ∈ {−1, 0, 1}n which contains r non-overlapping copies of the word

w, f̄i varies by at most C1C
r−1
2 on Sa1 ◦ · · · ◦ San(R).

ii) If m is the greatest natural number such that

πfree(succ
m(0)) ⩽

n−1∑
i=0

|βi
d+s+1|,

then

wn = µ̄(0)
m∑

κ=0

(
κ−1∏
i=0

exp
(
f̄s(T i(0))(πc(T

i(0)))
))

δTκ(0)

Proof. From Theorem 1.3 in [11], for each i ∈ {1, ..., N} there are f̄i : R → R+

satisfying i) such that f̄i(πc(x)) = log(µ̄(x + ui)) − log(µ̄(x)) for all x ∈ X̄. We

construct fi by writing ui as a sum of members of the set ∆ and summing the

respective functions given by the theorem. We have

126



µ̄(succn(0)) = µ̄(0)
n−1∏
i=0

µ̄(succi+1(0))

µ̄(succi(0))

= µ̄(0)
n−1∏
i=0

µ̄(succi(0) + us(πD(succi(0))))

µ̄(succi(0))

= µ̄(0)
n−1∏
i=0

exp
(
f̄s(πD(succi(0)))(πc(succ

i(0)))
)

= µ̄(0)
n−1∏
i=0

exp
(
f̄s(T i(0))(πc(T

i(0)))
)

so if m is the greatest natural number such that

πfree(succ
m(0)) ⩽

n−1∑
i=0

|βi
d+s+1|

then

wn =
m∑

κ=0

µ̄(succκ(0))δπD◦ succκ(0)

= µ̄(0)
m∑

κ=0

(
κ−1∏
i=0

exp
(
f̄s(T i(0))(πc(T

i(0)))
))

δTκ(0),

concluding ii).

Recall that Theorem 4.4.2 gave a condition for the absolute continuity of νβ in

terms of the measures πe(µ̄). In Definition 4.5.3 we introduced the measures wn

which were projections of weighted Dirac measures along an orbit of the successor

function succ, and in Proposition 4.5.1 we explain how the weights appear as a

cocycle over the dynamical system T . Combining these ideas in one theorem gives

the following.
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Theorem 4.5.1. Assume that λ < 4/|β1...βd| and condition 4.4.1 holds. Then

there exists a domain D = I ×R, a domain exchange transformation T : D → D

and a function f : D → R+ with f(x) = exp(f̄s(x)(πc(x))) such that if the projection

onto I of the sequence of measures

wn =
n∑

i=1

f(0)f(T (0)) · · · f(T n−1(0))δTn−1(0)

converge to Lebesgue measure sufficiently quickly, in the sense that

∞∑
n=1

log

(
|β1 · ... · βd|

4

1

|wn|

∫
gdπewn|Rn

)
⩽ log(C),

then the measure νβ is absolutely continuous.

Proof. The theorem follows from theorem 4.4.2, lemma 4.5.1 and proposition 4.5.1

after observing that

πeµ̄|Rn(x) =

πewn(x) + πewn(−x), x ∈ I \ {0}

πewn(0), x = 0

.
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Chapter 5

On the Local Dimension

Spectrum for Self-Affine

Measures

Joint work with Antti Käenmäki and Tom Kempton

5.1 Introduction

In this article we are concerned with the dimension spectrum of self-affine measures

on R2. Given a set of invertable matrices A1, · · · , Ak of norm less than one, and a

collection of translation vectors v1, · · · , vk, we let the maps Ti : R2 → R2 be given

by

Ti

 x

y

 = Ai

 x

y

+ vi.

Then given a probability vector (p1, · · · , pk), we let the self-affine measure µ be

the unique probability measure satisfying

µ =
k∑

i=1

piµ ◦ T−1
i .
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The local dimension spectrum f̄ of µ is then given by

f̄(α) = dimH{x ∈ R2 : dimloc(µ, x) = α}.

Here dimloc is the local dimension, given by

dimloc(µ, x) := lim
r→0

log(µ(B(x, r)))

log r

where it exists. The dimension spectrum gives an important way of quantifying

fractal properties of the measure µ, it is well understood for self-similar measures

without overlaps, and some progress has been made in understanding both the

overlapping self-similar and the self-affine cases.

In particular, given a set of invertable matrices A1, · · · , Ak with norm less than

1
2
and a probability vector (p1, · · · , pk), Barral and Feng [10] were able to give a

formula for part of the corresponding dimension spectrum which holds for almost

every set of translation vectors v1, · · · , vk. The part of their work giving the almost

everywhere result uses the transversality technique and is very much in the spirit

of earlier work of Falconer giving an almost everywhere result for the Hausdorff

dimension of µ [25].

The Hausdorff dimension result of Falconer has been generalised to replace the

almost everywhere condition with specific conditions on orthogonal projections of

µ [27, 5], or with exponential separation conditions on the collection of matrices

A1, · · · , Ak [6, 46]. Our goal in this work is to similarly replace the almost every-

where condition of Barral and Feng with conditions on projections of the measure

µ. We also assume that our set of matrices is dominated, we give more details in

the next section. Our results also cover the more general case of pushforwards of

quasi-Bernoulli measures.
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5.2 Preliminaries

Let (A1, . . . , AN) ∈ GL2(R)N be a tuple of contractive invertible 2×2-matrices. If

(v1, . . . , vN) ∈ (R2)N is a tuple of translation vectors, then the tuple (T1, . . . , TN)

of invertible contractive affine maps given by

Ti(x) = Aix+ vi

is called an affine iterated function system (affine IFS). Given an affine IFS, there

exists a unique non-empty compact set X ⊂ R2 such that

X =
N⋃
i=1

Ti(X).

We may assume that each map Ti maps the unit disk D ⊂ R2 inside itself. Indeed,

if this is not the case, then one can rescale each vi by a constant such that each

Ti maps D inside itself. Note that this does not affect any dimension properties

since it is a linear rescaling of X.

Let µ be a Borel probability measure supported on X. The local dimension of

µ at x is

dimloc(µ, x) = lim
r↓0

log µ(B(x, r))

log r

provided the limit exists. If the limit does not exist, then the corresponding upper

and lower limits are denoted by dimloc(µ, x) and dimloc(µ, x), respectively. The

local dimension of µ is intrinsically connected to the dimension of the subsets of

X: it is sufficiently easy to see that

ess inf
x∼µ

dimloc(µ, x) = dimH(µ),

where dimH(µ) = inf{dimH(A) : A ⊂ X is a Borel set such that µ(A) > 0} is the

lower Hausdorff dimension of µ (see [44], theorem 2.3). Let s ⩾ 0 and define the

s-level set of X with respect to µ to be

X(µ, s) = {x ∈ X : dimloc(µ, x) = s}.
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We are interested in determining the Hausdorff dimension of the level sets. Let us

next go through preliminaries needed in the work.

5.2.1 Shift Space

Let Σ = {1, . . . , N}N be the collection of all infinite words obtained from alphabet

{1, . . . , N}. If i = i1i2 · · · ∈ Σ, then we define i|n = i1 · · · in for all n ∈ N. The

empty word i|0 is denoted by ∅. Define Σn = {i|n : i ∈ Σ} for all n ∈ N and

Σ∗ =
⋃

n∈N Σn ∪ {∅}. Thus Σ∗ is the collection of all finite words. The length of

i ∈ Σ∗∪Σ is denoted by |i|. The concatenation of two words i ∈ Σ∗ and j ∈ Σ∗∪Σ

is denoted by ij. Let σ be the left shift operator defined by σi = i2i3 · · · for all

i = i1i2 · · · ∈ Σ. If i ∈ Σn for some n, then we set [i] = {j ∈ Σ : j|n = i}. The

set [i] is called a cylinder set.

Given an affine IFS (T1, . . . , TN), where Ti(x) = Aix+ vi, the canonical projec-

tion π : Σ → X is defined by

π(i) = lim
n→∞

Ti|n(0) =
∞∑
n=1

Ai|n−1vin

for all i = i1i2 · · · ∈ Σ. Here Ti = Ti1 ◦ · · · ◦ Tin and Ai = Ai1 · · ·Ain for all

i = i1 · · · in ∈ Σn and n ∈ N. It is easy to see that π(Σ) = X. If µ ∈ M(Σ),

where M(Σ) denote the collection of all Borel probability measures on Σ, then we

denote the pushforward measure of µ under π by πµ = µ ◦ π−1. We say that a

measure µ ∈ M(Σ) is fully supported if each cylinder has positive measure.

5.2.2 Lyapunov Dimension

We shall consider maps θ : Σ∗ → (0,∞) which we refer to as potentials. We say that

a potential θ is sub-multiplicative if θ(ij) ⩽ θ(i)θ(j) for all i, j ∈ Σ∗. A potential

θ is super-multiplicative if the inverse 1/θ is sub-multiplicative. We furthermore

say that a potential θ is almost-multiplicative if there is a constant C ⩾ 1 such
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that Cθ is sub-multiplicative and C−1θ is super-multiplicative, and multiplicative

if the constant C can be chosen to 1. Let Mσ(Σ) denote the collection of all

σ-invariant Borel probability measures on Σ. For a sub-multiplicative potential θ

and ν ∈ Mσ(Σ), we define

Λ(θ, ν) = lim
n→∞

1

n

∫
Σ

log θ(i|n) dν(i).

The following lemma guarantees that Λ is well-defined.

Lemma 5.2.1. If θ is a sub-multiplicative potential and ν ∈ Mσ(Σ), then Λ(θ, ν)

exists and

Λ(θ, ν) = inf
n∈N

1

n

∫
Σ

log θ(i|n) dν(i).

Furthermore, ν 7→ Λ(θ, ν) defined on Mσ(Σ) is upper semi-continuous in the weak∗

topology.

Proof. The sequence (
∫
Σ
log θ(i|n) dν(i))n∈N is sub-additive and therefore, by Fekete’s

Lemma, Λ(θ, ν) exists and is equal to

inf
n∈N

1

n

∫
Σ

log θ(i|n) dν(i).

The second claim is a direct consequence of the first claim as each ν 7→ 1
n

∑
i∈Σn

ν([i]) log θ(i)

is continuous.

Let (A1, . . . , AN) ∈ GL2(R)N . For i ∈ Σ∗ we define α1(i) and α2(i) to be the

lengths of the major and minor semi-axis of the ellipse Ai(D) respectively, where

D ⊂ R2 is the unit disc. Note that α1(i) = ∥Ai∥ and α2(i) = ∥A−1
i ∥−1 for all

i ∈ Σ∗. The potential i 7→ α1(i) is thus sub-multiplicative and i 7→ α2(i) is

super-multiplicative. We define the Lyapunov exponents of ν ∈ Mσ(Σ) by

λ1(ν) = Λ(α1, ν) = inf
n∈N

1

n

∫
Σ

logα1(i|n) dν(i),

λ2(ν) = −Λ(1/α2, ν) = sup
n∈N

1

n

∫
Σ

logα2(i|n) dν(i).
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Recall that the entropy of ν ∈ Mσ(Σ) is

h(ν) = − lim
n→∞

1

n

∑
i∈Σn

ν([i]) log ν([i]) = inf
n∈N

− 1

n

∑
i∈Σn

ν([i]) log ν([i]).

We say that a measure µ ∈ M(Σ) is sub-multiplicative if the potential i 7→

µ([i]) is sub-multiplicative. The other definitions on potentials can be used with

measures in a similar manner. Regardless, almost-multiplicative measures are

more commonly known as quasi-Bernoulli measures and multiplicative measures as

Bernoulli measures. The cross-entropy of a sub-multiplicative measure µ relative

to ν ∈ Mσ(Σ) is defined to be

h(µ, ν) = −Λ(µ, ν) = sup
n∈N

− 1

n

∑
i∈Σn

ν([i]) log µ([i]).

The Lyapunov dimension of a measure ν ∈ Mσ(Σ) is given by

dimL(ν) = min

{
− h(ν)

λ1(ν)
, 1− h(ν) + λ1(ν)

λ2(ν)
,− 2h(ν)

λ1(ν) + λ2(ν)

}
.

See [49] for a relation between dimL(ν) and dimH(πν) when ν is ergodic and

the translation vectors are chosen randomly according to the Lebesgue measure.

Finally, the Lyapunov cross-dimension dimL(µ, ν) of a sub-multiplicative measure

µ relative to ν ∈ Mσ(Σ) is

dimL(µ, ν) = min

{
−h(µ, ν)
λ1(ν)

, 1− h(µ, ν) + λ1(ν)

λ2(ν)
,− 2h(µ, ν)

λ1(ν) + λ2(ν)

}
.

In other words, the Lyapunov cross-dimension is obtained by replacing the entropy

h(ν) in the definition of the Lyapunov dimension by the cross-entropy h(µ, ν).

We should emphasize that despite we see this as a symbolic analog of the local

dimension of πµ for πν-almost all points, there are examples where dimL(µ, ν) gives

a different value, even if the translation vectors are chosen randomly according to

the Lebesgue measure. In a discussion, Thomas Jordan gave us the following
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example

(A1, A2) =

1/2 0

0 1/3

 ,
1/2 0

0 1/3

 ,

where µ is the
(
1
3
, 2
3

)
-Bernoulli measure and ν is the

(
1
2
, 1
2

)
-Bernoulli measure.

5.2.3 Domination

We say that A = (A1, . . . , AN) ∈ GL2(R)N is dominated if there exist constants

C > 0 and 0 < τ < 1 such that

α2(i) ⩽ Cτnα1(i)

for all i ∈ Σn and n ∈ N. Note that if A is dominated, then λ2(ν) < λ1(ν) for

all ν ∈ Mσ(Σ). Let RP1 denote the real projective line, which is the set of all

straight unit line segments centred at the origin in R2 and which we identify with

[0, π). We call a proper subset C ⊂ RP1 a multicone if it is a finite union of closed

projective intervals. We say that a multicone C ⊂ RP1 is strongly invariant for A if

AiC ⊂ Co for all i ∈ {1, . . . , N}, where Co is the interior of C. For example, the first

quadrant is strongly invariant for any tuple of positive matrices. By [14, Theorem

B], A has strongly invariant multicone if and only if A is dominated. If A is a

dominated tuple of invertible matrices then the collection {A−1
1 . . . , A−1

N } is also

dominated and thus it has a strongly invariant multicone. Also if A is dominated,

then [15, Lemma 2.2] imply that the potential i 7→ α1(i) is almost-multiplicative.

Since | det(Ai)| = α1(i)α2(i) for all i ∈ Σ∗ and the determinant is multiplicative,

we see that also i 7→ α2(i) = α1(i)
−1| det(Ai)| is almost-multiplicative.

Lemma 5.2.2. Let θ be an almost-multiplicative potential and ν ∈ Mσ(Σ). If

νk → ν in the weak∗ topology, then

lim
k→∞

Λ(θ, νk) = Λ(θ, ν).
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Proof. By Lemma 5.2.1, we have lim supk→∞ Λ(θ, νk) ⩽ Λ(θ, ν). Since C/θ is

sub-multiplicative for some C ⩾ 1, Lemma 5.2.1 implies that

Λ(C−1θ, ν) = −Λ(C/θ, ν) = sup
n∈N

(
1

n

∫
Σ

log θ(i|n) dν(i)−
1

n
logC

)
.

Therefore, as each ν 7→ 1
n

∑
i∈Σn

ν([i]) log θ(i) is continuous, we see that ν 7→

Λ(C−1θ, ν) = Λ(θ, ν) is lower semi-continuous and thus lim infk→∞ Λ(θ, νk) ⩾

Λ(θ, ν).

Let (T1, . . . , TN), where Ti(x) = Aix+vi, be an affine IFS and ν ∈ Mσ(Σ) be a

quasi-Bernoulli measure. If A = (A1, . . . , AN) is dominated, then, by [7, Theorem

2.6] and [49, proof of Theorem 4.3(a)],

dimloc(πν, x) = dimH(πν) ⩽ dimL(ν)

for ν-almost all x ∈ X. We say that A is strongly irreducible if there are no finite

set of lines in R2 which is invariant under all of the matrices in A. Suppose that

A is dominated and strongly irreducible and (v1, . . . , vN) is chosen such that the

strong open set condition holds, i.e. there is a bounded open set U ⊂ R2 such that

U ∩ X ̸= ∅,
⋃N

i=1 Ti(U) ⊂ U , and Ti(U) ∩ Tj(U) = ∅ whenever i ̸= j. It follows

from [6, Theorem 1.2 and the associated footnote] that under these assumptions

dimH(πν) = dimL(ν)

for all quasi-Bernoulli measures ν ∈ Mσ(Σ).

5.2.4 Equilibrium State

Let θ be a sub-multiplicative potential. We define the pressure of θ by setting

P (θ) = lim
n→∞

1

n
log

∑
i∈Σn

θ(i) = inf
n∈N

1

n
log

∑
i∈Σn

θ(i).
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As in Lemma 5.2.1, the existence of the limit above and the equality are guaranteed

by Fekete’s Lemma. By [51, Lemma 2.2], we see that

P (θ) ⩾ h(ν) + Λ(θ, ν)

for all ν ∈ Mσ(Σ). A measure ν ∈ Mσ(Σ) for which

P (θ) = h(ν) + Λ(θ, ν)

is called the equilibrium state for θ. If θ is an almost-multiplicative potential, then,

by [51, S3], there exists a unique equilibrium state for θ which furthermore is a

quasi-Bernoulli measure.

Lemma 5.2.3. Let (θk)k∈N be a sequence of sub-multiplicative potentials and let

νk ∈ Mσ(Σ) be an equilibrium state for θk for each k ∈ N. If there exist a measure

ν ∈ Mσ(Σ) and a sub-multiplicative potential θ such that νk → ν in the weak∗

topology and θk(i)
1/|i| → θ(i)1/|i| uniformly in Σ∗ as k → ∞, then

lim
k→∞

Λ(θk, νk)− Λ(θ, νk) = 0

and ν is an equilibrium state for θ.

Proof. Recall that, by [81, Theorem 8.2] and Lemma 5.2.1, lim supk→∞ h(νk) ⩽

h(ν) and lim supk→∞ Λ(θ, νk) ⩽ Λ(θ, ν). If ε > 0, then the uniform convergence

of θk implies that there exists k0 ∈ N such that log θ(i) − ε|i| ⩽ log θk(i) ⩽

log θ(i) + ε|i| for all i ∈ Σ∗ and

Λ(θ, νk)− ε ⩽ Λ(θk, νk) ⩽ Λ(θ, νk) + ε

for all k ⩾ k0. Therefore, limk→∞ Λ(θk, νk)− Λ(θ, νk) = 0 and

P (θ) = lim
k→∞

P (θk) = lim
k→∞

h(νk) + Λ(θk, νk)

⩽ lim sup
k→∞

h(νk) + lim sup
k→∞

Λ(θ, νk) + ε

⩽ h(ν) + Λ(θ, ν) + ε.

By letting ε ↓ 0, we see that ν is an equilibrium state for θ.
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Let A = (A1, . . . , AN) ∈ GL2(R)N be a tuple of contractive invertible matrices.

For each s ⩾ 0, define a potential φs by setting

φs(i) =


α1(i)

s, if 0 ⩽ s < 1,

α1(i)α2(i)
s−1, if 1 ⩽ s < 2,

| det(Ai)|s/2, if 2 ⩽ s <∞,

for all i ∈ Σ∗. Since α(i)α2(i)
s−1 = α1(i)

2−s| det(Ai)|s−1, the singular value

function φs is sub-multiplicative. Therefore, the pressure P (φs) is well-defined

for all s ⩾ 0. By [52, Lemma 2.1], the function s 7→ P (φs) defined on [0,∞) is

continuous, convex on intervals (0, 1) and (1,∞), strictly decreasing, and there

exists a unique s ⩾ 0 such that P (φs) = 0. This unique s ⩾ 0 is called the affinity

dimension and it is denoted by dimaff(φ
s).

If ν ∈ Mσ(Σ), then

Λ(φs, ν) =


sλ1(ν), if 0 ⩽ s < 1,

λ1(ν) + (s− 1)λ2(ν), if 1 ⩽ s < 2,

s
2
(λ1(ν) + λ2(ν)), if 2 ⩽ s <∞,

where λ1(ν) and λ2(ν) are the Lyapunov exponents. It is straightforward to see

that the Lyapunov dimension dimL(ν) is the unique s ⩾ 0 for which h(ν) +

Λ(φs, ν) = 0. By [50, Theorem 2.6], there exists an equilibrium state ν for φs.

Note that if A is dominated, then φs is almost-multiplicative and there is only

one equilibrium state for φs which furthermore is a quasi-Bernoulli measure. Note

that an equilibrium state has maximal possible Lyapunov dimension,

dimL(ν) = max{dimL(η) : η ∈ Mσ(Σ)} = dimaff(φ
s).

Similarly, the Lyapunov cross-dimension dimL(µ, ν) of a sub-multiplicative mea-

sure µ relative to ν ∈ Mσ(Σ) is the unique s ⩾ 0 for which h(µ, ν)+Λ(φs, ν) = 0.
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5.3 Local Dimension from Projections

In this section we generalise the ideas of [27] to study the following question. Let

µ and ν be measures on a self-affine set. What can be said about the ν-almost

everywhere value of the local dimension of µ? Before stating our theorems, we

need to define projective linear transformations and the Furstenberg measure.

5.3.1 Projective Linear Transformations

Let A = (A1, . . . , AN) ∈ GL2(R)N be a tuple of contractive invertible matrices.

Given i ∈ {1, . . . , N} there exists a unique map ϕi : RP1 → RP1 such that, for

θ ∈ [0, π), straight lines centred at the origin at angle θ to the horizontal are

mapped to straight lines centred at the origin at angle ϕi(θ) by the action of A−1
i .

If A is dominated and C2 is a strongly invariant multicone of {A−1
1 , · · · , A−1

N } then

each map ϕi is a strict contraction of C2.

Now let the Furstenburg measure νF be the stationary measure on RP1 associ-

ated to the maps ϕi chosen according the measure ν. Alternatively, νF is the unique

probability measure on RP1 such that for ν-almost every sequence i = i1i2 · · · ∈ Σ

the sequence of measures

1

n

n−1∑
k=0

δϕik
◦···◦ϕi1

(θ)

converges weak∗ to νF . The support of νF is contained in C2. See [9] for more

details on the Furstenburg measure.

We also define πθ : X → [−1, 1] to be the map obtained by projecting the self-

affine set X to the diameter of the unit disc which is perpendicular to θ, identified

isometrically with [−1, 1]. We identify, without confusion, πθ and πθ ◦ π.

Theorem 5.3.1. Let A be dominated and assume that (T1, ..., TN) satisfies the

strong separation condition. Let µ ∈ M(Σ) be a quasi-Bernoulli measure and

ν ∈ Mσ(Σ) be ergodic and quasi-Bernoulli. Then
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1. There exists a number d ∈ [0, 1] such that for νF × ν-almost all (θ, i) the

local dimension of πθµ at πθ(i) is d.

2. For ν-almost all i ∈ Σ it is true that dimloc(π(µ), π(i)) = α where,

α = d+
h(µ|ν) + dλ1(ν)

−λ2(ν)
.

5.3.2 Proofs

Throughout this section we assume that A is dominated and C2 is a strongly

invariant multicone of {A−1
1 , ..., A−1

N }. Furthermore, we assume that µ ∈ M(Σ)

is a quasi-Bernoulli measure and let ν ∈ Mσ(Σ) be quasi-Bernoulli and ergodic.

Finally we assume that (T1, ..., TN) satisfies the strong separation condition. The

proof of Theorem 5.3.1 proceeds via a number of lemmata, we begin by discussing

dynamics on pairs (θ, i) of angles in C2 and points in Σ.

Let (Σ, σ) be the extension of (Σ, σ) to a two-sided shift space. Set P : Σ →

RP1 × Σ to be the map defined by

P (...i−2i−1i0i1i2...) =
(
lim
n→∞

ϕi0ϕi−1 ...ϕi−n(θ), i1i2...
)

for some θ ∈ C2, the choice of which does not affect P .

Let ν be the extension of ν to the two sided shift Σ, i.e. the unique shift

invariant measure on Σ satisfying ν[i1 · · · in] = ν[i1 · · · in] for any i1 · · · in ∈ Σ∗.

Since ν is ergodic it follows that ν is ergodic. The measure P (ν) on RP1 × Σ is

the pushforward of ν under the map P .

The following lemma is essentially Lemma 3.1. of [27].

Lemma 5.3.1. The map P ◦σ ◦P−1 : RP1×Σ → RP1×Σ is well defined and the

system (RP1 × Σ, P (ν), P ◦ σ ◦ P−1) is ergodic. Furthermore P (ν) is equivalent to

the product measure νF × ν.
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We now prove the first claim of Theorem 5.3.1. Given a two sided sequence

i ∈ Σ let θ, i be such that P (i) = (θ, i) and define

g(i) = dimloc(πθ(µ), πθ(i)).

Lemma 5.3.2. We have

g(i) ⩽ g(σ(i))

An immediate consequence of this lemma is that, since ν is an ergodic σ-

invariant measure on Σ, g is equal to some constant d for ν almost every i. Then

since P (ν) is equivalent to νF × ν we will have that dimloc(πθ(µ), πθ(i)) = d for

νF × ν almost every (θ, i), completing the proof of statement 1 of Theorem 5.3.1.

We now prove Lemma 5.3.2.

Proof. First express µ as the sum of µ restricted to cylinder [i1] and µ restricted

to the complement of this cylinder, giving

dimloc(πθ(µ), πθ(i)) = dimloc(πθ(µ|[i1]) + πθ(µ|[i1]c), πθ(i))

⩽ dimloc(πθ(µ|[i1]), πθ(i)).

But by applying T−1
i we see

dimloc(πθ(µ|[i1]), πθ(i)) = dimloc(πϕi(θ)(µ), πϕi(θ)(σ(i))) (5.1)

and so the previous inequality becomes

dimloc(πθ(µ), πθ(i)) ⩽ dimloc(πϕi(θ)(µ), πϕi(θ)(σ(i)))

which is the statement g(i) ⩽ g(σ(i)) that we wanted to prove.

The equation 5.1 follows directly from a more precise statement (Lemma 3.2)

in [27], see also [24] where this was used extensively to give conditions under which

the projected measures πθ(µ) have the same Hausdorff dimension for all θ.
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The following lemma appears in [27] as Lemma 4.2, it allows us to compare the

measure of a ball in our self-affine set with the measure of an ellipse multiplied by

the projected measure of a certain interval.

Lemma 5.3.3. There are numbers C > 0 and 0 < ρ1 < ρ2 such that for each

i ∈ Σ, θ ∈ C2 and n ∈ N,

C−1µ (B (π(i), ρ1α2(i|n)))

⩽ µ([i|n])πϕin ...ϕi1
(θ)µ

(
B

(
πϕin ...ϕi1

(θ)(σ
n(i)),

α2(i|n)
α1(i|n)

))
⩽ Cµ (B (π(i), ρ2α2(i|n))) .

From now on we set

d(θ, i, n) :=
log
(
πϕin ...ϕi1

(θ)µ
(
B
(
πϕin ...ϕi1

(θ)(σ
n(i)), α2(i|n)

α1(i|n)

)))
log
(

α2(i|n)
α1(i|n)

) .

For large n,
(

α2(i|n)
α1(i|n)

)
is small and so for many pairs (θ, i) we would expect

the above quantity to be close to the local dimension of the projected measure

πϕin ...ϕi1
(θ)µ at πϕin ...ϕi1

(θ)(σ
n(i)). With this in mind, let

G(θ, i, ϵ) := {n ∈ N : |d(θ, i, n)− d| < ϵ} .

Also for k, ϵ > 0 we set

Gk,ϵ :=

{
(θ, i) :

∣∣∣∣ log πθµ (B (πθ(i), r))

log r
− d

∣∣∣∣ < ϵ,∀r < k

}
Since P (ν) is equivalent to νF × ν, by the definition of the number d, we have

that for P (ν)-a.e. (θ, i) in RP1 × Σ

lim
r→0

log πθµ (B (πθ(i), r))

log r
= d.

Hence for all ϵ > 0,

lim
k→0

P (ν) (Gk,ϵ) = 1.
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Lemma 5.3.4. For P (ν)-almost every (θ, i) ∈ RP1 × Σ and all ϵ > 0 it is true

that

lim
N→∞

1

N
|G(θ, i, ϵ) ∩ {1, ..., N}| = 1.

Proof. Let δ > 0 be arbitrary. From the observation above there exists k > 0 such

that P (ν̄) (Gk,ϵ) > 1− δ. Also, by domination, for every i ∈ Σ there exists n0 ∈ N

such that for all n > n0

α2(i|n)
α1(i|n)

< k.

Now by observing that

(
P ◦ σ ◦ P−1

)n
(θ, i) = (ϕin ...ϕi1(θ), σ

n(i))

and because (RP1 × Σ, P (ν), P ◦ σ ◦ P−1) is ergodic, for P (ν)-almost every (θ, i)

we have

lim
n→∞

1

n
|G(θ, i, ϵ) ∩ {1, ..., n}| = lim

n→∞

1

n
|{n ∈ {1, ..., n} : |d(θ, i, n)− d| < ϵ}|

⩾ lim
n→∞

1

n

∣∣∣∣{n ∈ {1, ..., n} :
α2(i|n)
α1(i|n)

< k and
(
P ◦ σ ◦ P−1

)n
(θ, i) ∈ Gk,ϵ

}∣∣∣∣
= P (ν̄)(Gk,ϵ) > 1− δ.

Since δ was arbitrary the proof is complete.

For all ϵ > 0 and νF × ν-almost every (θ, i) ∈ RP1 × Σ we can choose, by

the lemma above, a strictly increasing sequence nk of density 1 such that nk ∈

G(θ, i, ϵ). By the ergodicity of ν we can additionally assume the properties
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lim
κ→∞

1

n
log(µ([i|nk

])) = −h(µ, ν),

lim
κ→∞

1

n
log(α1(i|nk

)) = λ1(ν),

lim
κ→∞

1

n
log(α2(i|nk

)) = λ2(ν).

Now Lemma 5.3.3 gives

lim sup
k→∞

log πµ (B (π(i), ρ1α2 (i|nk
)))

log (ρ1α2 (i|nk
))

⩽ lim sup
k→∞

 log (Cµ ([i1 · · · ink
]))

log (ρ1α2 (i|nk
))

+

log πϕink
···i1(θ)

µ

(
B

(
πϕink

···i1(θ)
(σnk(i)) ,

α2(i|nk)
α1(i|nk)

))
log (ρ1α2 (i|nk

))


= lim sup

k→∞

(
log (Cµ([i|nk

]))

log (ρ1α2 (i|nk
))

+ d(θ, i, nk)
log (α2 (i|nk

) /α1 (i|nk
))

log (ρ1α2 (i|nk
))

)
⩽

−h(µ|ν)
λ2(ν)

+ (d+ ϵ)
λ2(ν)− λ1(ν)

λ2(ν)
.

Since the upper and lower limits of µ(B(x, r))/ log(r) as r → 0 are determined

by any sequence rκ → 0 such that log rκ+1/ log rκ → 1, by taking rκ = ρ1α2(i|nκ))

and recalling that ϵ is arbitrary, we conclude that dimloc(µ, π(i)) = α. A similar

argument shows that dimloc(µ, π(a)) = α. This completes the proof of Theorem

5.3.1.

5.4 Differentiability of the Pressure

Let (A1, . . . , AN) ∈ GL2(R)N be dominated and µ ∈ M(Σ) be a quasi-Bernoulli

measure. For each q ∈ R and s ⩾ 0, following [26], we consider the almost-

multiplicative potential ψq,s defined by

ψq,s(i) = µ([i])qφs(i)1−q.
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If ν ∈ Mσ(Σ), then

Λ(ψq,s, ν) = −qh(µ, ν) + (1− q)Λ(φs, ν).

Since ψq,s is almost-multiplicative, the pressure P (ψq,s) is well-defined and there

exists a unique equilibrium state for ψq,s which furthermore is a quasi-Bernoulli

measure. The next lemma collects some elementary properties of the pressure

function.

Lemma 5.4.1. If (A1, . . . , AN) ∈ GL2(R)N is a dominated tuple of contractive

matrices and µ ∈ M(Σ) is a fully supported quasi-Bernoulli measure, then the

following seven properties hold:

1. The function (q, s) 7→ P (ψq,s) is continuous on R× [0,∞).

2. For each q < 1 the function s 7→ P (ψq,s) is strictly decreasing with P (ψq,0) ⩾

0 and lims→∞ P (ψq,s) = −∞.

3. For each q > 1 the function s 7→ P (ψq,s) is strictly increasing with P (ψq,0) ⩽

0 and lims→∞ P (ψq,s) = ∞.

4. For each q ̸= 1, there exists unique s(q) ∈ [0,∞) so that P (ψq,s(q)) = 0.

5. The function q 7→ s(q) is continuous on R \ {1}.

6. For each q ∈ R the function s 7→ P (ψq,s) convex on connected components

of [0,∞) \ {1, 2}.

7. For each s ∈ [0,∞) \ {1, 2} the function q 7→ P (ψq,s) convex on R.

Proof. Although the proof is a simple modification of [52, Lemma 2.1], we present

the full details for the convenience of the reader. We prove the claims only for

s ∈ [0, 2); the case s ⩾ 2 is left to the reader. Let p, q ∈ R and s, t ∈ [0, 2). Writing

α = min
i∈{1,...,N}

α2(i), α = max
i∈{1,...,N}

α1(i), K = max
i∈{1,...,N}

Cµ([i])−1,
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where C ⩾ 1 is the constant given by the quasi-Bernoulli assumption, we see that

0 < α ⩽ α < 1 < K. Furthermore, let

α(q, s, t) =

α, if (1− q)(s− t) ⩾ 0,

α, if (1− q)(s− t) < 0,

and

α(q, s, t) =

α, if (1− q)(s− t) ⩾ 0,

α, if (1− q)(s− t) < 0.

Then we have K−|i| ⩽ µ([i]) ⩽ K |i| and

φt(i)1−qα(q, s, t)(s−t)(1−q)|i| ⩽ φs(i)1−q ⩽ φt(i)1−qα(q, s, t)(s−t)(1−q)|i|

for all i ∈ Σ∗. Since α
t|i| ⩽ φt(i) ⩽ αt|i| ⩽ α−t|i|, we have

φt(i)1−pαt|p−q||i| ⩽ φt(i)1−q ⩽ φt(i)1−pα−t|p−q||i|

for all i ∈ Σ∗. As K
−|p−q||i| ⩽ µ([i])q−p ⩽ K |p−q||i| for all i ∈ Σ∗, we see that

ψq,s(i) ⩽ µ([i])pµ([i])q−pφt(i)1−qα(q, s, t)(s−t)(1−q)|i|

⩽ ψp,t(i)K |p−q||i|α−t|p−q||i|α(q, s, t)(s−t)(1−q)|i|
(5.2)

and, similarly,

ψq,s(i) ⩾ ψp,t(i)K−|p−q||i|αt|p−q||i|α(q, s, t)(s−t)(1−q)|i| (5.3)

for all i ∈ Σ∗. It follows that

−|p− q| logK + t|p− q| logα + (s− t)(1− q) logα(q, s, t)

⩽ P (ψq,s)− P (ψp,t)

⩽ |p− q| logK − t|p− q| logα + (s− t)(1− q) logα(q, s, t)

and the function (q, s) 7→ P (ψq,s) is thus clearly continuous on R × [0, 2). This

shows (1). In particular, if q < 1 and s > t, then the above estimate shows that
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P (ψq,s)−P (ψq,t) ⩽ (s−t)(1−q) logα(q, s, t) = (s−t)(1−q) logα < 0, and if q > 1

and s > t, we get P (ψq,s)− P (ψq,t) ⩾ (s− t)(1− q) logα > 0. These observations

show (2)–(4). Notice that (5) follows immediately from (1).

Finally, let us prove (6) and (7). Fix p, q ∈ R and 0 < λ < 1. Let s, t ∈

[0, 2) \ {1} be such that ⌈s⌉ = ⌈t⌉. Since φλt+(1−λ)s(i) = φt(i)λφs(i)1−λ, we have

µ([i])qφλt+(1−λ)s(i)1−q = µ([i])qφt(i)λ(1−q)φs(i)(1−λ)(1−q)

=
(
µ([i])qφt(i)1−q

)λ(
µ([i])qφs(i)1−q

)1−λ

and

ψλp+(1−λ)q,s(i) = µ([i])λp+(1−λ)qφs(i)1−λp−(1−λ)q

=
(
µ([i])pφs(i)1−p

)λ(
µ([i])qφs(i)1−q

)1−λ

for all i ∈ Σ∗. Therefore, by Hölder’s inequality, we see that∑
i∈Σn

ψq,λt+(1−λ)s(i) ⩽

(∑
i∈Σn

ψq,t(i)

)λ(∑
i∈Σn

ψq,s(i)

)1−λ

and ∑
i∈Σn

ψλp+(1−λ)q,s(i) ⩽

(∑
i∈Σn

ψp,s(i)

)λ(∑
i∈Σn

ψq,s(i)

)1−λ

for all n ∈ N. The claims follow now by taking logarithm, dividing by n, and

letting n→ ∞.

Remark. Let 0 < α < 1 and O ∈ O(2) be an orthogonal matrix. If we consider

the tuple (αO, . . . , αO) ∈ GL2(R)N and the uniform distribution µ ∈ Mσ(Σ), then

P (ψq,s) = logN1−qαs(1−q). In this case the function (q, s) 7→ P (ψq,s) is not convex

since its Hessian is indefinite as it is an antidiagonal matrix having − logα in the

antidiagonal.

Let us next study the differentiability of the pressure. We will first recall some

basic facts from convex analysis. Let U ⊂ R be an open set and let f : U → R

147



be convex. It is well known that such f is continuous. We say that G ∈ R is a

sub-derivative of f at x ∈ U if

f(y)− f(x) ⩾ G(y − x)

for all y ∈ U . It is straightforward to see that any sub-derivative is contained in

[f ′
−(x), f

′
+(x)], where f

′
−(x) and f

′
+(x) are the left and right derivatives of f at x,

respectively; see [67, Theorem 23.2]. Therefore, f is differentiable at x if and only

if it has only one sub-derivative at x; see [67, Theorem 25.1].

Proposition 5.4.1. Let (A1, . . . , AN) ∈ GL2(R)N be dominated tuple of con-

tractive matrices and µ ∈ M(Σ) be a quasi-Bernoulli measure. If (q0, s0) ∈

R× (0,∞)\{1, 2} and ν is the equilibrium state for ψq0,s0, then the partial deriva-

tives of (q, s) 7→ P (ψq,s) are

∂qQ(q, s0)|q=q0 = −h(µ, ν)− Λ(φs0 , ν)

and

∂sQ(q0, s)|s=s0 =


(1− q0)λ1(ν), if 0 < s0 < 1,

(1− q0)λ2(ν), if 1 < s0 < 2,

(1− q0)
λ1(ν)+λ2(ν)

2
, if 2 < s0 <∞

provided that they exist.

Proof. We prove the result only for (q0, s0) ∈ R × (0, 2) \ {1}; the case (q0, s0) ∈

R × (2,∞) is left to the reader. To simplify notation, we write Q(q, s) = P (ψq,s)

for all (q, s) ∈ R × (0, 2) \ {1}. Fix (q0, s0) ∈ R × (0, 2) \ {1} and let ν be the

equilibrium state for ψq0,s0 .

Let us first assume that the partial derivative ∂qQ(q, s0)|q=q0 exists. Recall

that, by Lemma 5.4.1(7), the function q 7→ Q(q, s0) is convex. Since Λ(ψq,s, ν) =
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−qh(µ, ν) + (1− q)Λ(φs, ν), we see that

Q(q, s0)−Q(q0, s0) ⩾ h(ν) + Λ(ψq,s0 , ν)− h(ν)− Λ(ψq0,s0 , ν)

= (−h(µ, ν)− Λ(φs0 , ν))(q − q0)

for all q ∈ R. Therefore, −h(µ, ν) − Λ(φs0 , ν) is a sub-derivative of the convex

function q 7→ Q(q, s0) at q0. As the partial derivative ∂qQ(q, s0)|q=q0 exists, we

have ∂qQ(q, s0)|q=q0 = −h(µ, ν)− Λ(φs0 , ν).

Let us then assume that the partial derivative ∂sQ(q0, s)|s=s0 exists. Recall

that, by Lemma 5.4.1(6), the function s 7→ Q(q0, s) is convex on connected

components of (0, 2) \ {1}. Since Λ(ψq,s, ν) = −qh(µ, ν) + (1 − q)Λ(φs, ν) and

Λ(φs, ν) = Λ(φs0 , ν) + (s− s0)λ⌈s0⌉(ν), we see that

Q(q0, s)−Q(q0, s0) ⩾ h(ν) + Λ(ψq0,s, ν)− h(ν)− Λ(ψq0,s0 , ν)

= (1− q0)λ⌈s0⌉(ν)(s− s0)

for all all s ∈ (0, 2) \ {1} with ⌈s⌉ = ⌈s0⌉. Therefore, (1 − q0)λ⌈s0⌉(ν) is a sub-

derivative of the convex function s 7→ Q(q0, s) at s0. As the partial derivative

∂sQ(q0, s)|s=s0 exists, we have ∂sQ(q0, s)|s=s0 = (1− q0)λ⌈s0⌉(ν).

Let us next show that (q, s) 7→ P (ψq,s) is differentiable on R × (0,∞) \ {1, 2}

which then allows us to apply Proposition 5.4.1. To prove this requires tools from

thermodynamic formalism. The following lemma allows us to employ Lemma 5.2.3.

Lemma 5.4.2. Let (qk, sk)k∈N be a sequence of points in R× (0,∞) \ {1, 2} con-

verging to (q, s) ∈ R× (0,∞) \ {1, 2}. Then ψqk,sk(i)1/|i| → ψq,s(i)1/|i| uniformly

in Σ∗ as k → ∞.

Proof. Following notation of the proof of Lemma 5.4.1, the estimates (5.2) and
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(5.3) give

K−|qk−q|αsk|qk−q|α(q, s, sk)
(s−sk)(1−q) ⩽

(
ψq,s(i)

ψqk,sk(i)

)1/|i|

⩽ K |qk−q|α−sk|qk−q|α(q, s, sk)
(s−sk)(1−q)

for all i ∈ Σ∗ and k ∈ N. The claim follows.

Before proving the differentiability, let us recall some further facts from convex

analysis. Let U ⊂ R be an open set and let f : U → R be convex. Let D ⊂ U

be the set of points where f is differentiable. If z1, z2 ∈ D and x ∈ U such

that z1 ⩽ x ⩽ z2, then, by [67, Theorem 24.1], f ′(z1) ⩽ G ⩽ f ′(z2) for all sub-

derivatives G at x. It also follows that the set U \D is at most countable and f ′

is continous on D; see [67, Theorem 25.3]. In particular, D is dense in U and if f

is differentiable on U , then it is continuously differentiable on U .

Proposition 5.4.2. Let (A1, . . . , AN) ∈ GL2(R)N be dominated tuple of contrac-

tive matrices and µ ∈ M(Σ) be a quasi-Bernoulli measure. Then the function

(q, s) 7→ P (ψq,s) is differentiable on R× (0,∞) \ {1, 2}.

Proof. We prove the result only on R × (0, 2) \ {1}; the case R × (2,∞) is left

to the reader. To simplify notation, we write Q(q, s) = P (ψq,s) for all (q, s) ∈

R × (0, 2) \ {1}. To see that Q is differentiable on R × (0, 2) \ {1}, it suffices to

show that both partial derivatives ofQ exist at each point of R×(0, 2)\{1}. Indeed,

assuming this is the case, then using Proposition 5.4.1 combined with Lemmata

5.2.3, 5.2.2 and 5.4.2 it is straightforward to prove to prove the continuity of the

partial derivatives which then implies the differentiability.

Fix (q0, s0) ∈ R × (0, 2) \ {1}. By Lemma 5.4.1(7), we know that the partial

derivative ∂qQ(q, s0) exists for all, except possibly at countably many points of R.

Relying on this, choose two sequences (q−k )k∈N and (q+k )k∈N of points in R with
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q−k ↑ q0 and q+k ↓ q0 as k → ∞ so that the partial derivatives ∂qQ(q, s0)|q=q−k
and

∂qQ(q, s0)|q=q+k
exist.

Let ν−k and ν+k be the equilibrium states associated to ψq−k ,s0 and ψq+k ,s0 , respec-

tively. Then, by Lemmata 5.4.2 and 5.2.3, any limit point of the sequences (ν−k )k∈N

and (ν+k )k∈N must be the unique equilibrium state ν of ψq0,s0 . Thus, ν−k → ν and

ν+k → ν by the compactness of Mσ(Σ). Let G1 be a sub-derivative of q 7→ Q(q, s0)

at q0. It follows from Proposition 5.4.1 that

−h(µ, ν−k )− Λ(φs0 , ν−k ) = ∂qQ(q, s0)|q=q−k
⩽ G1

⩽ ∂qQ(q, s0)|q=q+k
= −h(µ, ν+k )− Λ(φs0 , ν+k ),

where both bounds converge to the same value by Lemmata 5.2.2 and 5.2.3. Hence,

G1 = ∂qQ(q, s0)|q=q0 .

Now we show that other partial derivative exists. By Lemma 5.4.1(6), we know

that the partial derivative ∂sQ(q0, s) exists for all, except possibly at countably

many points on [0,∞). Relying on this, choose two sequences (s−k )k∈N and (s+k )k∈N

of points in (0, 2) \ {1} with ⌈s−k ⌉ = ⌈s+k ⌉ = ⌈s0⌉, s−k ↑ s0, and s+k ↓ s0 as k → ∞

so that the partial derivatives ∂sQ(q0, s
−
k )|s=s−k

and ∂sQ(q0, s
+
k )|s=s+k

exist.

Similarly as before, let η−k and η+k be the equilibrium states associated to ψq0,s
−
k

and ψq0,s
+
k , respectively, and notice that η−k → ν and η+k → ν, where ν is the

unique equilibrium state of ψq0,s0 . Let G2 be a sub-derivative of s 7→ Q(q0, s) at

s0. It follows from Proposition 5.4.1 that

(1− q0)λ⌈s−k ⌉(η
−
k ) = ∂sQ(q0, s)|s=s−k

⩽ G2

⩽ ∂sQ(q0, s)|s=s+k
= (1− q0)λ⌈s+k ⌉(η

+
k ),

where both bounds converge to the same value by Lemmata 5.2.2 and 5.2.3. Hence,

G2 = ∂sQ(q0, s)|s=s0 finishing the proof.
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5.5 Multifractal Formalism

The quantity s(q) defined in Lemma 5.4.1(4)–(5) will be used throughout this

section. The Lq-spectrum is the function τ : R → R defined by τ(q) = (q − 1)s(q)

and the multifractal spectrum is the function f : [0,∞) → R defined by

f(α) = sup{dimL(ν) : ν ∈ Mσ(Σ) such that dimL(µ, ν) = α}.

We say that τ and f form a Legendre transform pair at (q, α) if f(s) = qα− τ(q).

Proposition 5.5.1. For each q > 0 with s(q) ∈ (0, 2)\1, the symbolic Lq-spectrum

τ is continuously differentiable on a neighborhood of q with

τ ′(q) =


Λ(µ,ν)−Λ(φs(q),ν)

λ1(ν)
+ s(q) s(q) ∈ (0, 1)

Λ(µ,ν)−Λ(φs(q),ν)
λ2(ν)

+ s(q) s(q) ∈ (1, 2)
,

where ν is the equilibrium state for ψs,s(q).

Proof. Recalling Proposition 5.4.1, implicit differentiation gives

s′(q) =

 −Λ(µ,ν)−Λ(φs(q),ν)
(1−q)λ1(ν)

s(q) ∈ (0, 1)

−Λ(µ,ν)−Λ(φs(q),ν)
(1−q)λ2(ν)

s(q) ∈ (1, 2)
.

The claim follows since τ ′(q) = (q − 1)s′(q) + s(q).

Theorem 5.5.1. Let q > 0 be such that s(q), τ ′(q) and qτ ′(q) − τ(q) are all

elements of (0, 1) (call this case 1) or all elements of (1, 2) (case 2). Then τ and

f form a Legendre transform pair at (q, τ ′(q)) and f(τ ′(q)) = dimL(ν), where ν is

the equilibrium state for ψq,s(q).

Proof. It suffices to show that

qτ ′(q)− τ(q) = f(τ ′(q)) = dimL(ν).
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Case 1: We assume s(q), τ ′(q) and qτ ′(q)− τ(q) ∈ (0, 1). By the definition of

s(q), we have P (ψq,s(q)) = 0. Therefore, if η ∈ Mσ(Σ) is such that dimL(µ, η) =

τ ′(q), which is equivalent to Λ(µ, η) = Λ(φτ ′(q), η), we have

0 = P (ψq,s(q)) ⩾ h(η) + Λ(ψq,s(q), η)

= h(η) + (1− q)Λ(φs(q), η) + qΛ(µ, η)

= h(η) + (1− q)Λ(φs(q), η) + qΛ(φτ ′(q), η)

= h(η) + (1− q)(sλ1(η)) + q(τ ′(q)λ1(η))

= h(η) + λ1(η)((1− q)s(q) + qτ ′(q))

= h(η) + Λ(φ(1−q)s(q)+qτ ′(q), η)

= h(η) + Λ(φqτ ′(q)−τ(q), η).

Case 2: The argument runs through almost identically, we abbreviate it slightly.

If η ∈ Mσ(Σ) is such that dimL(µ, η) = τ ′(q), again this is Λ(µ, η) = Λ(φτ ′(q), η),

we have

0 ⩾ h(η) + Λ(ψq,s(q), η) = h(η) + (1− q)Λ(φs(q), η) + qΛ(µ, η)

= h(η) + (1− q)Λ(φs(q), η) + qΛ(φτ ′(q), η)

= h(η) + λ1(η) + (qτ ′(q)− (1− q)s(q)− 1)λ2(η)

= h(η) + Λ(φqτ ′(q)−τ(q), η).

In both cases dimL(η) ⩽ qτ ′(q)−τ(q). We have shown that f(τ ′(q)) ⩽ qτ ′(q)−τ(q).

Note that if the equilibrium state ν satisfies dimL(µ, ν) = τ ′(q) and dimL(ν) =

qτ ′(q)− τ(q) then f(τ ′(q)) ⩾ dimL(ν) = qτ ′(q)− τ(q) and proof is finished. Indeed

this is the case. For the first claim by Proposition 5.5.1, we have in case 1 that

Λ(µ, ν) = (τ ′(q)− s(q))λ1(ν) + Λ(φs(q), ν)

= (τ ′(q)− s(q) + s(q))λ1 = Λ(ϕτ ′(q), ν)
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and in case 2 that

Λ(µ, ν) = Λ(φs(q), ν) + (τ ′(q)− s(q))λ2(ν)

= λ1(ν) + (s(q)− 1)λ2(ν) + (τ ′(q)− s(q))λ2(ν)

= λ1(ν) + (τ ′(q)− 1)λ2(ν) = Λ(ϕτ ′(q), ν).

In each case λ(µ, ν) = Λ(ϕτ ′(q), ν) which is equivalent to dimL(µ, ν) = τ ′(q).

For the second claim in case 1 we have

0 = P (ψq,s(q)) = h(ν) + λ(ψq,s(q), ν) = h(ν)− qh(µ, ν) + (1− q)s(q)λ1(ν)

which is equivalent to

−h(ν)
λ1(ν)

= −τ(q) + q

(
−h(µ, ν)
λ1(ν)

)
.

From Proposition 5.5.1 we have τ ′(q) = −h(µ, ν)/λ1(ν) while from

qτ ′(q) − τ(q) ∈ (0, 1) we get dimL(ν) = −h(ν)/λ1(ν). So the equation above can

be written as

dimL(ν) = qτ ′(q)− τ(q).

In case 2 we have that

0 = P (ψq,s(q)) = h(ν) + λ(ψq,s(q), ν) = h(ν) + λ1(ν) + (s(q)− 1)(1− q)λ2(ν)− qh(µ, ν),

which is equivalent to

1− h(ν) + λ1(ν)

λ2(ν)
= −τ(q) + q

(
1− h(µ, ν) + λ1(ν)

λ2(ν)

)
.
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From Proposition 5.5.1 we have τ ′(q) = 1− (h(µ, ν) + λ1(ν))/λ2(ν) while from

qτ ′(q)− τ(q) ∈ (1, 2) we get dimL(ν) = 1− (h(ν) + λ1(ν))/λ2(ν). So the equation

above can be written as

dimL(ν) = qτ ′(q)− τ(q).

So the second claim is also true and the proof is finished.

Remark. Notice that in the last part of the proof above, where we prove that

dimL(ν) = qτ ′(q)− τ ′(q),

we didn’t use the conditions on τ ′(q) so for this weaker result we can drop τ ′(q)

from cases 1 and 2.

5.6 Beyond symbolic Multifractal formalism

Let A = (A1, . . . , AN) ∈ GL2(R)N be a tuple of contractive invertible matrices and

µ ∈ M(Σ) be a quasi-Bernoulli measure. Throughout this section we assume that

A is dominated and strongly irreducible. Furthermore we assume that (T1, ..., TN)

satisfies the strong separation condition. Also we set

Ea = {x ∈ R2 : dimloc(πµ, x) = a}.

Proposition 5.6.1. Let q ∈ (0, 1) and a ∈ R. Then

dimH(Ea) ⩽ qa− τ(q).

Proof. As it is argued in page 17 of [10], it follows from Theorem 6(a) in [26] and

Proposition 2.5(iv) in [62].
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The arguments of the following two propositions are an adjustment of Theorem

4.1 in [59].

Proposition 5.6.2. Let q > 1, a ∈ R and τ(q)/(q − 1) ∈ (1, 2). If there is

C > 1 such that for all ϕ ∈ R, x ∈ R and r > 0 we have πϕµ(B(πϕ(x), r)) ⩽

C Leb(B(πϕ(x), r)) then

dimH(Ea) ⩽ qa− τ(q).

Proof. Let ϵ, ϵ1, δ > 0. If ν is an equilibrium state of the potential αϵ1
2 ψq,s then

P (αϵ1
2 ψq,s) = hσ(ν) + Λ(ψq,s, ν) + ϵ1λ2(ν) ⩽ P (ψq,s) + ϵ1λ2(ν) < 0,

so there is γ < 0 and C2 > 0 such that

∑
|i|=n

α2(i)
ϵ1ϕs(i)1−qµ([i])q ⩽ C2e

γn. (5.4)

Let n0 be large enough so that |i| ⩾ n0 ⇒ α2(i) < δ and ρ1 be as in the Lemma

5.3.3. The family

{
B(π(x), ρ1α2(x|n)) : n ⩾ n0, x ∈ Σ,

log(πµ(B(π(x), ρ1α2(x|n))))
log(α2(x|n))

⩽ a+ ϵ

}
is a Vitali covering of Ea so by the Vitali covering lemma (see [23], thm 1.10)

there is a subfamily V of the family which contains pairwise disjoint sets and

satisfies

∑
B∈V

diam(B)(1−q)s+aq+qϵ+ϵ1 = ∞ or H(1−q)s+aq+qϵ+ϵ1(Ea\(∪V )) = 0 (5.5)
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For convenience, given i ∈ Σ∗, we set

Vi = V ∩
{
B(π(x), ρ1α2(x||i|)) : x ∈ [i],

log(πµ(B(π(x), ρ1α2(x||i|))))
log(α2(x||i|))

⩽ a+ ϵ

}
and for n ∈ N we set Vn = ∪|i|=nVi. Notice that since the elements of V are

pairwise disjoint there is c > 0 such that #Vi ⩽ cα1(q)/α2(q). We have

∑
B∈Vn

diam(B)(1−q)s+aq+qϵ+ϵ1 =
∑
|i|=n

∑
B∈Vi

diam(B)(1−q)s+aq+qϵ+ϵ1

⩽
∑
|i|=n

∑
B∈Vi

diam(B)(1−q)s+aq+qϵ+ϵ1

(
πµ(B)

a2(i)a+ϵ

)q

= (ρ12)
(1−q)s+aq+qϵ+ϵ1

∑
|i|=n

∑
B∈Vi

α2(i)
(1−q)s+aq+qϵ+ϵ1

(
πµ(B)

a2(i)a+ϵ

)q

= (ρ12)
(1−q)s+aq+qϵ+ϵ1

∑
|i|=n

∑
B∈Vi

α2(i)
(1−q)s+ϵ1πµ(B)q.

Set s′ = (1 − q)s + aq + qϵ + ϵ1. From Lemma 5.3.3 there is c1 > 0 such that

the last expression in the above calculation is lower or equal to

(ρ12)
s′cq1

∑
|i|=n

∑
B∈Vi

α2(i)
(1−q)s+ϵ1πϕin◦...◦ϕi1

(θ)µ

(
B(πϕin◦...◦ϕi1

(θ)(σ
n(xB)),

α2(i)

α1(i)
)

)q

,

where π(xB) is the center of B. From our statement hypothesis the expression

above is is lower or equal to

Cq(ρ12)
s′cq1

∑
|i|=n

∑
B∈Vi

α2(i)
(1−q)s+ϵ1

(
α2(i)

α1(i)
µ([i])

)q

.

Now since #Vi ⩽ cα1(q)/α2(q) the expression above is less than or equal to

cCq(ρ12)
s′cq1

∑
|i|=n

α1(i)

α2(i)
α2(i)

(1−q)s+ϵ1

(
α2(i)

α1(i)
µ([i])

)q

= cCq(ρ12)
s′cq1

∑
|i|=n

α2(i)
ϵ1ϕs(i)1−qµ([i])q.
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From this bound and 5.4 we conclude that there is M > 0, which does not

depend on δ, such that

∑
B∈V

diam(B)s
′
< M,

so from 5.5 we have that

Hs′

δ (Ea) ⩽ Hs′

δ (Ea ∩ (∪V )) +Hs′

δ (Ea\(∪V ))

⩽ Hs′

δ (∪V ) +Hs′(Ea\(∪V ))

⩽
∑
B∈V

diam(B)s
′
< M.

Since δ was arbitrary we have that Hs′(Ea) < M so dimH(Ea) ⩽ (1 − q)s +

aq + qϵ+ ϵ1. Since ϵ and ϵ1 were arbitrary the result follows.

Proposition 5.6.3. Let q > 1, a ∈ R and τ(q)/(q − 1) ∈ (0, 1). If there is

C > 1 and ρ3 > 0 such that for all i = (i1, ..., in) ∈ Σ∗ and x ∈ [i] we have

B(π(x), ρ3α1(i)) ⩽ Cµ([i]) then

dimH(Ea) ⩽ qa− τ(q).

Proof. Let ϵ, ϵ1, δ > 0. If ν is an equilibrium state of the potential αϵ1
1 ψq,s then

P (αϵ1
1 ψq,s) = hσ(ν) + Λ(ψq,s, ν) + ϵ1λ1(ν) ⩽ P (ψq,s) + ϵ1λ1(ν) < 0,

so there is γ < 0 and C2 > 0 such that

∑
|i|=n

α1(i)
ϵ1ϕs(i)1−qµ([i])q ⩽ C2e

γn. (5.6)
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Let n0 be large enough so that |i| ⩾ n0 ⇒ α1(i) < δ. The family

{
B(π(x), ρ3α1(x|n)) : n ⩾ n0, x ∈ Σ,

log(πµ(B(π(x), ρ3α1(x|n))))
log(α1(x|n))

⩽ a+ ϵ

}
is a Vitali covering of Ea so by the Vitali covering lemma (see [23], thm 1.10)

there is a subfamily V of the family which contains pairwise disjoint sets and

satisfies

∑
B∈V

diam(B)(1−q)s+aq+qϵ+ϵ1 = ∞ or H(1−q)s+aq+qϵ+ϵ1(Ea\(∪V )) = 0 (5.7)

For convenience, given i ∈ Σ∗, we set

Vi = V ∩
{
B(π(x), ρ3α1(x||i|)) : x ∈ [i],

log(πµ(B(π(x), ρ3α1(x||i|))))
log(α1(x||i|))

⩽ a+ ϵ

}
and for n ∈ N we set Vn = ∪|i|=nVi. Notice that since the elements of V are

pairwise disjoint there is c > 0 such that #Vi ⩽ c. We have

∑
B∈Vn

diam(B)(1−q)s+aq+qϵ+ϵ1 =
∑
|i|=n

∑
B∈Vi

diam(B)(1−q)s+aq+qϵ+ϵ1

⩽
∑
|i|=n

∑
B∈Vi

diam(B)(1−q)s+aq+qϵ+ϵ1

(
πµ(B)

a1(i)a+ϵ

)q

= (ρ32)
(1−q)s+aq+qϵ+ϵ1

∑
|i|=n

∑
B∈Vi

α1(i)
(1−q)s+aq+qϵ+ϵ1

(
πµ(B)

a1(i)a+ϵ

)q

= (ρ13)
(1−q)s+aq+qϵ+ϵ1

∑
|i|=n

∑
B∈Vi

α1(i)
(1−q)s+ϵ1πµ(B)q.

Set s′ = (1− q)s+ aq+ qϵ+ ϵ1. From our statement hypothesis the expression

above is is less than or equal to
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Cq(ρ32)
s′cq1

∑
|i|=n

∑
B∈Vi

α1(i)
(1−q)s+ϵ1µ([i])q.

Now since #Vi ⩽ c the expression above is lower or equal to

cCq(ρ32)
s′cq1

∑
|i|=n

α1(i)
(1−q)s+ϵ1µ([i])q. = cCq(ρ32)

s′cq1
∑
|i|=n

α1(i)
ϵ1ϕs(i)1−qµ([i])q.

From this bound and 5.6 we conclude that there is M > 0, which does not

depend on δ, such that

∑
B∈V

diam(B)s
′
< M,

so from 5.7 we have that

Hs′

δ (Ea) ⩽ Hs′

δ (Ea ∩ (∪V )) +Hs′

δ (Ea\(∪V ))

⩽ Hs′

δ (∪V ) +Hs′(Ea\(∪V ))

⩽
∑
B∈V

diam(B)s
′
< M.

Since δ was arbitrary we have that Hs′(Ea) < M so dimH(Ea) ⩽ (1 − q)s +

aq + qϵ+ ϵ1. Since ϵ and ϵ1 were arbitrary the result follows.

Below are the two main theorems of this section. We emphasize that these

theorems hold under the conditions mentioned in the top of this section.

Theorem 5.6.1. Let q > 0.

i) Assume that for all ϕ ∈ R and x ∈ X we have dimloc(πϕµ, πϕ(x)) = 1. If

τ(q)/(q − 1), qτ ′(q)− τ(q) ∈ (1, 2) then
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dimH(Eτ ′(q)) ⩾ qτ ′(q)− τ(q).

If in addition q < 1 then

dimH(Eτ ′(q)) = qτ ′(q)− τ(q).

ii) If q, τ(q)/(q − 1), qτ ′(q)− τ(q) ∈ (0, 1) then

dimH(Eτ ′(q)) = qτ ′(q)− τ(q).

Proof. We start with i). Let ν to be the equilibrium state of ψq,s. From Theorem

5.5.1 and the related remark we have that

dimL(ν) = qτ ′(q)− τ(q).

We also know that dimL(ν) = dimH(πν) (see the end of subsection 5.2.3) so

the equation above can be written as

dimH(πν) = qτ ′(q)− τ(q).

From Proposition 5.5.1 we have that

τ ′(q) = 1− h(µ, ν) + λ1(ν)

λ2(ν)
,

so from Theorem 5.3.1 we have πν(Eτ ′(q)) = 1 implying

dimH(Eτ ′(q)) ⩾ dimH(πν) = qτ ′(q)− τ(q).
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In case q < 1 the above becomes an equality from Proposition 5.6.1. The

argument for ii) is essentially a simplification of the proof of Proposition 5.5. in

[10]. Similarly to i) we have that

dimH(πν) = qτ ′(q)− τ(q).

From Theorem 5.3.1 we have that there is t ⩾ 0 such that πν(Et) = 1 implying

dimH(Et) ⩾ dimH(πν) = qτ ′(q)− τ(q), (5.8)

so from Proposition 5.6.1 we have

qτ ′(q)− τ(q) ⩽ dimH(Et) ⩽ qt− τ(q),

giving τ ′(q) ⩽ t. But for every i ∈ Σ and n ∈ N, since π([i|n]) is a subset of

Ti|n(D), we have π([i]) ⊆ B(π(i), 2a1(i|n)) so

dimloc(µ, π(i)) = lim sup
n→∞

log(πµ(B(π(i), 2a1(i|n))))
log(a1(i|n))

⩽ lim sup
n→∞

log(µ([i|n]))
log(a1(i|n))

which implies that t ⩽ −h(µ, ν)/λ1(ν) = τ ′(q) so τ ′(q) = t. Now inequality

(5.8) becomes

dim(Eτ ′(q)) ⩾ qτ ′(q)− τ(q).

The inverse inequality follows from Proposition 5.6.1.

Theorem 5.6.2. Let q > 1.
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i) Assume that there is C > 1 such that for all ϕ ∈ R, x ∈ and r > 0 we have

πϕµ(B(πϕ(x), r)) ⩽ C Leb(B(πϕ(x), r)). If τ(q)/(q−1), qτ ′(q)−τ(q) ∈ (1, 2)

then

dimH(Eτ ′(q)) = qτ ′(q)− τ(q).

ii) Assume that here is C > 1 and ρ3 > 0 such that for all i = (i1, ..., in) ∈ Σ∗

and x ∈ [i] we have B(π(x), ρ3α1(i)) ⩽ Cµ([i]). If τ(q)/(q−1), qτ ′(q)−τ(q) ∈

(0, 1) then

dimH(Eτ ′(q)) = qτ ′(q)− τ(q).

Proof. The proof is almost identical to the proof of i) in Theorem 5.6.1. The

difference here is that for claim ii), πν(Eτ ′(q)) = 1 is implied directly from the

respective assumption and that for both i) and ii) we get upper bounds from

Propositions 5.6.2 and 5.6.3.
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Chapter 6

Matrices associated to Pisot

numbers

6.1 Introduction

Bernoulli convolutions arise from arguably the simplest family of iterated function

systems with overlaps.

Definition 6.1.1. The Bernoulli convolution νβ, for β ∈ (1, 2) is the unique

probability measure on [0, β/(β − 1)] which satisfies

νβ =
1

2
F0(νβ) +

1

2
F1(νβ)

where Fi(t) = β−1t+ i.

The questions about Bernoulli convolutions that are of interest are mainly

related to their dimension or absolutely continuity. In [21] Erdos proved that νβ

is singular if β is a Pisot number. Later Garsia proved in [38] that dimH(νβ) < 1

if β is a Pisot number. Pisot numbers are numbers that are greater than one such

their minimal polynomial is monic who’s other roots are of absolute value smaller
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than one. In [74] Solomyak proved the remarkable result that νβ is absolutely

continuous for almost all β ∈ (1, 2). In the direction of the Hausdorff dimension

there have been recent important results that shed some light to the subject and

also raised the interest for further investigation. Many of these results are based

on Hochman’s influential article [45]. An implication of Hochman’s results is that

dimH({β ∈ (1, 2) : dimH(νβ) < 1}) = 0.

Varju observed in [17] that Hochman’s results also give a formula for the di-

mension of Bernoulli convolutions for algebraic parameters in terms of the Garsia

entropy which will be defined below. This way we can further study the case of

algebraic β. Another especially motivating article came from Breuillard and Varju

(see [16]) an implication of which is the following

{β ∈ (1, 2) : dimH(νβ) < 1} ⊆ {β ∈ (1, 2) : dimH(νβ) < 1} ∩Q,

where Q is the set of algebraic numbers. This result suggested that we can find

all β ∈ (1, 2) that give dimension less than one by focusing on the algebraic num-

bers values of β. For example, since the set of Pisot numbers is closed (see [69]), if

we could show that dimH(νβ) = 1 for non-Pisot algebraic β then that would mean

that the Pisot numbers are the only numbers that give dimension less than one.

Recently another impressive result came from Varju proving that dimH(νβ) = 1

for all transcendental β ∈ (1, 2) (see [79]). This last result alone, clearly reduces

the problem of determining when we have dimH(νβ) < 1 to the case where β is

algebraic.

This chapter was motivated by our attempt to understand the Hausdorff di-

mension of Bernoulli convolutions νβ when β is a Pisot number of high degree. By
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degree of an algebraic number we mean the degree of its minimal polynomial. In

[2] a matrixM(β) was introduced that provides lower bounds for dimH(νβ) when β

is hyperbolic. We focused on understanding this lower bound for Pisot numbers of

high degree. As the degree grows bigger the size ofM(β) does so as well, giving us

sparse matrices. We unfortunately were not able to control the spectral properties

required of these matrices. Instead we defined a different family of sparse matrices

in a similar way thatM(β) is defined but with significantly lower complexity. The

result about these toy-model matrices gave some partial insight as to why we can

not understand the matrices M(β) since they serve as a counterexamples in some

related conjectures we hoped to use as intermediate steps in the initial plan.

Definition 6.1.2. For a1, ..., an ∈ {0, 1} we define the following notation

N(a1, ..., an) :=

{
(b1, ..., bn) ∈ {0, 1}n :

n∑
i=1

biβ
i =

n∑
i=1

aiβ
i

}
.

We also set

Hn(β) :=
∑

a1,...,an∈{0,1}

1

2n
log

(
#N(a1, ..., an)

2n

)
.

The Garsia entropy H(β) of νβ is defined as

H(β) = lim
n→∞

1

n
Hn(β).

It is observed in [17] that Hochman’s results in [45] imply

dimH(νβ) = min

{
H(β)

log(β)
, 1

}
. (6.1)

In [2] the authors introduce a matrix M(β), for hyperbolic β, such that

log 2− log ρ(M(β)) ⩽ H(β),
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which combined with 6.1 gives

min

(
log 2− log ρ(M(β))

log β
, 1

)
⩽ dimH(νβ). (6.2)

We set Ti(t) = βt − i. The matrix M(β) is naturally related to a directed

graph V (β) which we will identify, without confusion, with it’s set of nodes. V (β)

is defined as V (β) =
⋃∞

n=0 Vβ,n where

Vβ,n =

{
n∑

i=0

εiβ
n−i | ϵi ∈ {−1, 0, 1} and

∣∣∣∣∣
n∑

i=0

εiβ
n−i

∣∣∣∣∣ < 1

β − 1

}
.

The set of edges of V (β) is {(x, y) ∈ (−1/(β − 1), 1/(β − 1))2 | ∃i ∈

{−1, 0, 1} : Tix = y}. They also prove that V (β) is finite when β is hyperbolic.

Assume that V (β) = {x1, ..., xn} and x1 < ... < xn. The matrix M(β) is defined

as follows:

(M)i,j =


1/2 if ∃κ ∈ {−1, 1} : Tκ(xi) = xj

1 if T0(xi) = xj

0 otherwise

So far we know that the matrix M(β) provides an algorithm to get lower

bounds for explicit examples of β. Given the minimal polynomial of β we can

construct V (β), form M(β) and calculate the maximal eigenvalue ρ(M(β)). Then

(log 2−log ρ(M(β))/β ⩽ dimH(β). Since understating eigenvalues of large matrices

is very hard in general, not much is know about the behaviour of β 7→ ρ(M(β)).

Let us describe a possible approach to study ρ(M(β)). If we identify u ∈ Rn with

the measure
∑n

i=1 u(i)δxi
then we can write

uM(β) =
1∑

i=−1

piTi(u)|I (6.3)
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where (p−1, p0, p1) = (1/2, 1, 1/2). This connection of M(β) to the dynamics

allows to observe that if V (β) is in some sense equidistributed then we can under-

stand how a plot of M(β) would look like. Let L be in operator acting on signed

measures on [−1/(β − 1), 1/(β − 1)] defined as

L1(u) =
1∑

i=−1

piTi(u).

Observe that if f : [−1/(β − 1), 1/(β − 1)] → R is continuous then

L1(fdλ) = L2(f)dλ

where

L2f(x) =
1∑

i=−1

(pi/β) · f(T−1
i (x)).

Definition 6.1.3. We will denote both the normalised maximal left eigenvector of

M(β) and the measure it defines on [ −β
β−1

, β
β−1

] as µ(β).

Definition 6.1.4. Let a be a real number greater than log(6/β)/log(β). We define

B to be the space of Holder continuous functions from [−1/(β − 1), 1/(β − 1)] to

R with exponent a. Also define L : B \ {0} −→ B \ {0} as Lf = L2f/||L2f ||1

Lemma 6.1.1. If f ∈ B \ {0} then Lnf → 1.

Proof. For f ∈ B and n ∈ N set

∆f,n = sup

{
|f(x)− f(y)| : (x, y) ∈

[
−1

β − 1
,

1

β − 1

]2
and |x− y| ⩽ 2(1/β)n

β − 1

}
.
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Also for a word (x1...xk) ∈ {−1, 0, 1}κ define Ix1,...,xκ to be the function interval

T−1
xκ

◦ ... ◦ T−1
x1

([
−1
β−1

, 1
β−1

])
. Next set ϕx1,...,xκ = Tx1 ◦ ... ◦ Txκ|Ix1,...,xκ . Finally set

an = ||L2L
n−1f ||−1

1 for n ⩾ 1. Then it’s easy to see that

Lnf =

(
n∏

i=1

ai

) ∑
x1...xn∈{−1,0,1}n

∏n
κ=1 pxκ

βn
f ◦ ϕ−1

x1,...,xn

so that

∆Lnf,0 ⩽

(
n∏

i=1

ai

) ∑
x1...xn∈{−1,0,1}n

∏n
κ=1 pxκ

βn
∆f,n

⩽2n · 3n ·
(
1

β

)n

∆f,n =

(
6

β

)n

∆f,n

but, since f ∈ B, |x− y| < 2(1/β)n(β − 1)−1 implies

|f(x)− f(y)| ⩽ C

(
2

β − 1

)a(
1

β

)na

so that ∆f,n ⩽ C(2/(β − 1))a (1/β)na which leads to

∆Lnf,0 ⩽ C

(
6

β

)n(
2

β − 1

)a(
1

β

)na

= C

(
2

β − 1

)a [(
1

β

)a(
6

β

)]n
→ 0.

Finally from ∆Lnf,0 → 0 and ||Lnf ||1 = 1 we have that ||Lnf − 1||∞ → 0.

Corollary 6.1.1. If µ = fdλ and f ∈ B \ {0} then Ln
1 (µ)

weak*−→ λ.

The above lemma can been seen as a motivation to ask if the left eigenvector of

the matrixM(β) is in some sense equidistributed when the V (β) is big and ε-dense

for small ε. The reason we are interested in the distribution of the eigenvectors is

the following lemma.

Lemma 6.1.2. Let βn be a sequence of Pisot numbers, bounded away from {1, 2},

such that µ(βn)
weak*−→ λ. Then

∣∣∣ρ(M(βn))− 2
βn

∣∣∣→ 0.
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Proof. Let ε > 0 be arbitrary. Since µ(βn)
weak*−→ λ and the lengths of the intervals

bellow are bounded away from zero, there is n0 ∈ N such that∣∣∣∣µ(βn)([ −1

βn − 1
,

−1

βn(βn − 1)

)⋃(
1

βn(βn − 1)
,

1

βn − 1

])
− βn − 1

βn

∣∣∣∣ < ε,

∣∣∣∣µ(βn)([ −1

βn(βn − 1)
,
βn − 2

βn − 1

)⋃(
2− βn
βn − 1

,
1

βn(βn − 1)

])
− βn − 1

βn

∣∣∣∣ < ε

and ∣∣∣∣µ(βn)([βn − 2

βn − 1
,
2− βn
βn − 1

])
− 2− βn

β

∣∣∣∣ < ε.

For i ∈ {1, ..., |V (βn)|} we set wi = µ(βn)({xi}) where V (βn) = {x1, ..., x|V (βn)|}

and x1 < ... < x|V (βn)|. Also (e1, ..., e|V (βn)|) will be the standard basis of R|V (βn)|.

Then

ρ(M(βn)) =

∣∣∣∣∣∣
∣∣∣∣∣∣
|V (βn)|∑

i=1

wiei

M(βn)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=

∣∣∣∣∣∣
∣∣∣∣∣∣
|V (βn)|∑
i=1

wieiM(βn)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=

|V (βn)|∑
i=1

wi||eiM(βn)||1

=

|V (βn)|∑
i=1

wi

|V (βn)|∑
j=1

Mi,j(βn)

by the definition of M(βn) the last sum is equal to

1

2

∑
x∈V1(βn)

µ(βn)({x}) +
3

2

∑
x∈V2(βn)

µ(βn)({x}) + 2
∑

x∈V3(βn)

µ(βn)({x})

=
1

2
µ(βn)(V1(βn)) +

3

2
µ(βn)(V2(βn)) + 2µ(βn)(V3(βn))
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where

Vi(βn) =

xκ ∈ V (βn) :

|V (βn)|∑
j=1

Mκ,j(βn) =
i−2∑
j=−1

pj

 ,

but

V1(βn) =

([
−1

βn − 1
,

−1

βn(βn − 1)

)⋃(
1

βn(βn − 1)
,

1

βn − 1

])⋂
V (βn)

so |µ(βn)(V1(βn))− (βn − 1)/βn| < ε. Similarly |µ(βn)(V2(βn))− (βn − 1)/βn| < ε

and |µ(βn)(V3(βn))− (2− βn)/β| < ε. Also

1

2
(βn − 1)/βn +

3

2
(βn − 1)/βn + 2(2− βn)/β = 2/βn

hence

|ρ(M(βn))− 2/βn| < (1/2 + 3/2 + 2)ε = 4ε.

Since ε was arbitrary that completes the proof.

The lemma above combined with inequality 6.2 gives the following

Lemma 6.1.3. Let βn be a sequence of hyperbolic numbers such that µ(βn)
weak*−→ λ.

Then dimH(νβn) → 1.

All this leads us to the following conjectures 3 and 4 and suggests, as a strategy,

to prove it based on the naive conjecture 5 bellow.

Conjecture 3. Let βn be a sequence of Pisot numbers, bounded away from {1, 2},

such that deg(βn) → ∞ and βn → β ∈ (1, 2). Then dimH(νβn) → 1.

Definition 6.1.5. Let S ⊆ [0, 1/(β − 1)] be finite. We will call an ε-perturbation

of S any strictly increasing map ψ : S → [0, 1/(β − 1)] such that |ψ(x) − x| < ε

for all x ∈ S.
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Conjecture 4. Let Λ be a finite subset of Z and p : Λ → (0,∞). Also set

Gn = {1/n, ..., n/n} for each n ∈ N. For each ε > 0 there is δ > 0 and n0 ∈ N

such that if A is an n × n irreducible matrix for some n > n0 and there is a

δ-perturbation ψ of Gn for which

Ai,j =

p(κ), Tκ(ψ(i/n)) = ψ(j/n) and κ ∈ Λ

0, otherwise

and Tκ(ψ(Gn)) ⊆ ψ(Gn) for all κ ∈ Λ, then

∣∣∣∣∣ρ(A)−∑
κ∈Λ

p(κ)

β

∣∣∣∣∣ < ε.

Conjecture 5. Let β be a Pisot number. Let V be a finite subset of [−1/(β −

1), 1/(β − 1)] such that L1(V ) ⊆ V . Also let M be a matrix indexed by V and

defined as

(M)x,y =


1/2 if ∃κ ∈ {−1, 1} : Tκ(x) = y

1 if T0(x) = y

0 otherwise

.

Assume also that M is irreducible. Then, if V is big and ε-dense for small ε, the

spectral radius of M is close to 2/β.

The matrix M(β) has been very difficult to study. We initially tried analysing

the family of Pisot numbers satisfying βn
n − βn−1

n − βn−2
n = 1. Notice that βn → ϕ.

The size of M(βn) grows very fast making hard to detect any special structure.

Also studying the spectral radius of large matrices seems to be surprisingly hard.

What follows is a toy problem that serves as simplification of the questions above.
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For x ∈ (0, 1/(β − 1)) we define the graph V (β, x) as V (β, x) =
⋃∞

n=0 Vβ,x,n where

Vβ,x,n =

{
Tεn ◦ ... ◦ Tε0(x) | εi ∈ {0, 1} and 0 < Tεn ◦ ... ◦ Tε0(x) <

1

β − 1

}
.

The set of edges of V (β) is {(x, y) ∈ (0, 1/(β − 1))2 | ∃i ∈ {0, 1} : Tix = y}.

Assume that x has a periodic greedy β-expansion which, as we will say later, makes

V (β, x) finite. The matrix M(β, x) is defined as the adjacency matrix of (V,E).

We focus on the case of β = ϕ = (
√
5 + 1)/2, which is where the simplification

happens. This way we keep the dynamics fixed and the size of the matrices is

getting big by choosing different starting points x instead. The matrix M(β) is

completely determined by the minimal polynomial defining β. In the toy problem

the matrix M(ϕ, x) is completely determined by the greedy expansion of x which

can be expressed by the following equation

βdx+
d−1∑
i=0

cd−iβ
i = x

where c1, ..., cd, c1, ..., cd, ... is the greedy expansion of x. The equation above

can been seen as an analogue of the minimal polynomial equation in the case of

M(β). In section 6.2 we fix β = ϕ and describe the spectral radius of M(ϕ, x)

using the beta-expansion map

T (x) =

βx, x ∈ [0, 1/β]

βx− 1, x ∈ (1/β, 1]

.

Let PT be the set of all x ∈ (0, 1) that are periodic under T. We prove that

for random enough, in a certain sense, x ∈ PT the spectral radius ρ(M(ϕ, x))

is approximately equal to an explicit number LE. The number LE is expressed

as a Lyapunov exponent of random matrix products. The randomness of x, for
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us roughly means that the orbit of x is relatively equidistributed in respect to

the unique absolutely continuous measure of T . It is useful to keep in mind that

M(ϕ, x) tends to be of large size, as it will become clearer in the next section. We

start by proving a formula expressing ρ(M(ϕ, x)) in terms of 3x3-matrix products.

It is known (see [63]) that τβ := T |[0,1] : [0, 1] → [0, 1] is a dynamical system

with an invariant absolutely continuous probability measure µβ defined by

µβ(E) =

∫
E

hβdλ

where λ is the normalised Lebesgue measure on [0, ϕ] and

hβ(t) =


1+3β
5β

t ∈ [0, 1/β)

2+β
5β

t ∈ [1/β, 1]

.

Theorem 6.1.1 below, is the main result of this section. The theorem involves

a metric d on probability measures on [0, 1] which is defined later on in terms of a

symbolic space (see definition 6.2.5).

Theorem 6.1.1. Let x ∈ PT and denote by µx the normalised counting measure

on the orbit of x. For each ε > 0 there is δ > 0 such that if d(µβ, µx) < δ then

| log(ρ(M(β, x)))− LE| < ε.

Roughly in section 6.3 we are going to prove that if the invariant under T

probability measure, supported on a periodic orbit of a point x ∈ PT , is close

to µβ then V (ϕ, x) is evenly spread on (0, ϕ). Formally we prove the following

theorem.

Theorem 6.1.2. For x ∈ PT we denote by µx the normalised counting measure

on the orbit of x. Let I be any subinterval of [0, ϕ]. For each ε > 0 there is δ > 0

such that if d(µβ, µx) < δ then
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∣∣∣∣#V (β, x) ∩ I
#V (β, x)

− λ(I)

∣∣∣∣ < ε.

In loose terms, the theorem above says that if the distribution of the orbit of

x approximates the measure µβ then the distribution of V (β, x) approximates the

Lebesgue measure (properly normalised). Numerical evidence, based on equation

6.9 below, suggest that

log(2)− log(LE)

log(β)
> 1.004,

which together with theorem 6.1.2 implies that conjecture 4 is wrong. Finally

in section 6.4 we prove a connection of the number LE to the Lebesgue almost

everywhere value of the local dimension of the Bernoulli convolution νϕ.

6.2 The spectral radius

We start be giving a combinatorial interpretation of ρ(M(ϕ, x)).

Lemma 6.2.1.

lim
n→∞

1

n
log (# {(ε1, ..., εn) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) ∈ (0, 1)}) = log(ρ(M(ϕ, x))).

Proof. If x ∈ PT then M(ϕ, x) is irreducible. This is an immediate consequence of

lemma 6.3.3 which is proved in the next section. Let p be the the period ofM(ϕ, x).

Since the irreducible blocks of M(ϕ, x)p are primitive with spectral radius equal

to ρ(M(ϕ, x))p we have that

M(ϕ, x)pn

ρ(M(ϕ, x))pn
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converges, as n → ∞, to a limit matrix which we will cal Mϕ,x. Let v ∈

R#V (ϕ,x)\{0} and κ ∈ {0, ..., p− 1} then

lim
n→∞

vM(ϕ, x)np+κ

ρ(M(ϕ, x))np+κ
=

vM(ϕ, x)κ

ρ(M(ϕ, x))κ
Mϕ,x

so

lim
n→∞

||vM(ϕ, x)(n+1)p+κ||
||vM(ϕ, x)np+κ||

= lim
n→∞

ρ(M(ϕ, x))p||vM(ϕ, x)(n+1)p+κ||/ρ(M(ϕ, x))(n+1)p+κ

||vM(ϕ, x)np+κ||/ρ(M(ϕ, x))np+κ

(6.4)

= ρ(M(ϕ, x))p. (6.5)

By writing

||vM(ϕ, x)np+κ|| = ||vM(ϕ, x)κ|| ||vM(ϕ, x)κ+p||
||vM(ϕ, x)κ||

...
||vM(ϕ, x)np+κ||

||vM(ϕ, x)(n−1)p+κ||

and equation 6.4 we have get

lim
n→∞

1

n
log
(
||vM(ϕ, x)np+κ||

)
= p log(ρ(M(ϕ, x)))

or equivalently

lim
n→∞

1

np+ κ
log
(
||vM(ϕ, x)np+κ||

)
= log(ρ(M(ϕ, x)))

but since κ was arbitrary we have

lim
n→∞

1

n
log (||vM(ϕ, x)n||) = log(ρ(M(ϕ, x))).
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From the definition of M(ϕ, x) if we set v to be the vector corresponding to

giving value 1 to x and value 0 to every other element of V (ϕ, x) then

||vM(ϕ, x)n|| = # {(ε1, ..., εn) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) ∈ (0, 1)}

so from the discussion above we conclude

lim
n→∞

1

n
log (# {(ε1, ..., εn) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) ∈ (0, 1)}) = log(ρ(M(ϕ, x))).

In the following two lemmata we show that we can compute∑
ε1,...,εn∈{0,1}

δTεn◦...◦Tε1 (x)

in terms of the the orbit of x under T , using matrix products.

Lemma 6.2.2. For each x ∈ (0, β) and n ∈ N

{Tεn ◦ ... ◦ Tε1(x) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, β) ⊆ {T n(x), T n(x) + 1/β, T n(x) + 1} .

Proof. We are going to prove it by induction on n. For n = 0 there is nothing

to prove so let’s assume that the statement is true for some fixed n and prove it

for n + 1. We start by the case where x′ := T n(x) ⩽ 1/β. Then T (x′) = βx,

T1(x
′) /∈ (0, 1) and T0(x

′ + 1) /∈ (0, 1) hence by the inductive step

{
Tεn+1 ◦ ... ◦ Tε1(x) : (εn+1, ..., ε1) ∈ {0, 1}n+1

}
∩ (0, β)

⊆ {T0(x′), T0(x′ + 1/β), T1(x
′ + 1/β), T1(x

′ + 1)}

= {βx′, βx′ + 1/β, βx′ + 1} = {T n+1(x), T n+1(x) + 1/β, T n+1(x) + 1}.
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For the second case we have x′ := T n(x) > 1/β. Then T (x′) = βx − 1,

T0(x
′ + 1) /∈ (0, 1), T1(x

′ + 1) /∈ (0, 1) and T0(x
′ + 1/β) /∈ (0, 1) hence by the

inductive step

{
Tεn+1 ◦ ... ◦ Tε1(x) : (εn+1, ..., ε1) ∈ {0, 1}n+1

}
∩ (0, β)

⊆ {T0(x′), T1(x′), T1(x′ + 1/β)}

= {βx′ − 1, βx′} ⊆ {T n+1(x), T n+1(x) + 1/β, T n+1(x) + 1}

which completes the second case and the proof.

Definition 6.2.1. For each x ∈ (0, β) and n ∈ N we define

v1(x, n) : = #{(εn, ..., ε1) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) = T n(x)},

v2(x, n) : = #{(εn, ..., ε1) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) = T n(x) + 1/β} · χ(0,β)(T
n(x) + 1/β),

v3(x, n) : = #{(εn, ..., ε1) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) = T n(x) + 1} · χ(0,β)(T
n(x) + 1)

and v(x, n) = (v1, v2, v3).

Lemma 6.2.3. Let x ∈ (0, β). If T n(x) ∈ (0, 1− 1/β) then

v(x, n+ 1) = v(x, n)A0′ .

If T n(x) ∈ (1− 1/β, 1/β) then

v(x, n+ 1) = v(x, n)A0′′ .

If T n(x) ∈ (1/β, 1) then

v(x, n+ 1) = v(x, n)A1.

where
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A0′ :=


1 0 0

1 0 1

0 1 0

 A0′′ :=


1 0 0

1 0 0

0 1 0

 A1 :=


1 0 1

0 0 1

0 0 0

 .
Proof. Set x′ = T n(x). Then

x′ −→

T0(x
′) = βx′ for x′ ∈ (0, 1)

T1(x
′) = βx′ − 1 for x′ ∈ (1/β, 1]

x′ +
1

β
−→

T0(x
′ + 1

β
) = βx′ + 1 for x′ ∈ [0, 1− 1/β)

T1(x
′ + 1

β
) = βx′ for x′ ∈ (0, 1)

x′ + 1 −→

T0(x
′ + 1) = βx′ + β for x′ ∈ ∅

T1(x
′ + 1) = βx′ + 1

β
for x′ ∈ [0, 1/β)

where the conditions on x′ on the right rise by demanding Ti(x
′) ∈ (0, β). Putting

the information above together and remembering that

T n+1(x) = T (x′) =

βx
′ x′ ∈ [0, 1/β]

βx′ − 1 x′ ∈ (1/β, 1]

the proof of the lemma follows.

Remark. If x ∈ (1, β) then there exists κ ∈ N such that for m < κ we have

{Tm(x)} = {Tεm ◦ ... ◦ Tε1(x) : (εm, ..., ε1) ∈ {0, 1}n} ∩ (0, β), Tm(x) ∈ (1, β) and

T n(x) ∈ [0, 1] for all n ⩾ κ.
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By the remark above we can assume that x ∈ [0, 1]. Now let f0 : [0, 1] → [0, 1]

be defined as f0(t) = β−1t and f1 : [0, 1/β] → [0, 1] as f1(t) = β−1(t+ 1). We also

set f0′ = f0|[0,1/β] and f0′′ = f0|[1/β,1]. A sequence {ai}i∈N ∈ {0′, 0′′, 1}N is called

admissible if or all i ∈ N

Aσ
ai,ai+1

= 1

where Aσ is the matrix


1 1 0

0 0 1

1 1 0


indexed by (0′, 0′′, 1) and similarly (a1, ..., an) ∈ {0′, 0′′, 1}n, for any n ∈ N, is

called admissible if Aσ
ai,ai+1

= 1 for all i ∈ {1, ..., n−1}. Let Σ be the set of infinite

admissible sequences and σ : Σ → Σ be the left shift map. Also we set Σ∗ to be

the set of all finite admissible words with letters in {0′, 0′′, 1} and ΣP to be the set

of all non-constant σ-periodic elements of Σ. We define the cylinder set notation

as [a1, ..., an] = {(x1, ...) ∈ Σ|∀i ∈ {1, ..., n} : xi = ai} for (a1, ..., an) ∈ Σ∗. Finally

we define the function π : Σ → [0, 1/(β − 1)] by

{π(a1, ...)} =
⋂
n∈N

fa1 ◦ ... ◦ fan(Domain(fan)).

which is well defined since the maps fai are contracting by β−1. Note that if

(a1, ..., an) ∈ Σ∗ then

π([a1, ..., an]) = fa1 ◦ ... ◦ fan(Domain(fan)).

Remark: If (a1, ..., an) ∈ Σ∗ then
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t ∈ π([a1, ..., an]) ⇔ ∀i ∈ {1, ..., n} : T i−1(t) ∈ fai(Domain(fai)).

Note that

µβ(π([a1, ..., an])) = d(a1)β
n−1λ(fan(Domain(fan)))

where

d(a) =


1+3β
5β

a ∈ {0′, 0′′}

2+β
5β

a = 1

.

or equivalently

µβ(π([a1, ..., an])) = µβ(π([a1]))
µβ(π([a1, a2]))

µβ(π([a1]))
...

µβ(π([a1, ..., an]))

µβ(π([a1, ..., an−1]))

= µβ(π([a1]))P (a1, a2) · ... · P (an−1, an)

where

P =


1/β 1/β2 0

0 0 1

1/β 1/β2 0

 .
Definition 6.2.2. If µ is a non-atomic measure on [0, 1] we will denote be π−1µ

the measure on Σ defined by

π−1µ(A) = µ(π(A)).

The measure π−1µ is well defined since π, restricted outside a countable set, is

injective.
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Remark: Subintervals of [0, 1] are continuity sets for any non-atomic measure.

Hence, if µ is a non-atomic measure on [0, 1] and (µn)n∈N is a sequence of measures

on [0, 1] then

µn
weak*−→ µ⇔ π−1µn

weak*−→ π−1µ.

Definition 6.2.3. We will say that a = (a1, ..., an) ∈ Σ∗ is regular if it is not of

one of the following forms:

(0′, 0′, ..., 0′),

(0′, 0′′, 0′, 0′′, ..., 0′, 0′′),

or

(0′′, 0′, 0′′, 0′, ..., 0′′, 0′).

Lemma 6.2.4. Let (a1, ..., an) ∈ Σ∗ be regular. Then

lim
n→∞

||[1 0 0](Aa1 · ... · Aan)
n+1||

||[1 0 0](Aa1 · ... · Aan)
n||

= ρ(Aa1 · ... · Aan)

Proof. A set S ⊆ {0′, 0′′, 1} will be called essential class of 3 × 3, indexed by

{0′, 0′′, 1}, matrix if for each i ∈ {0′, 0′′, 1} either

Ai,j ̸= 0 ⇔ j ∈ S
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or

Ai,j = 0 for all j ∈ {0′, 0′′, 1}.

In that case we set

Aes
i,j =

Ai,j, i, j ∈ S

0, otherwise

.

Notice that An = A · (Aes)n−1. Also Aes, after permutation, consists of a

strictly positive square block and the rest of the entries are zero. From these two

observations we see that

lim
n→∞

||vAn+1||
||vAn||

= ρ(A)

for any v that contains non-zero entries in S. So it is enough to prove that

Aa1 · ... · Aan has an essential class containing 0′.

Let a = (a1, ..., an) ∈ Σ∗ be regular. Since a is regular, one can see by exhaus-

tion, that if κ is the least natural number for which (a1, ..., aκ) is a non-regular

element of Σ∗, then S is the essential class of Aa1 · ... ·Aaκ for some S ⊆ {0′, 0′′, 1}

containing 0′. Observe that for any two matrices A,B indexed by {0′, 0′′, 1}, if A

has an essential class containing 0′ and B0′,0′ = 1 then AB also has an essential

class containing 0′. Thus Aa1 · ... · Aan has an essential class that contains 0′ as

needed, which completes the proof.

Proposition 6.2.1. Let a = (a1, ..., an) ∈ Σ∗ be a regular and x = π(a1, ..., an, a1, ..., an, ...).

Then
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n log(ρ(M(β, x))) = log (ρ (Aa1 ...Aan)) .

Proof. Combining 6.2.1 and 6.2.3 we get

n log(ρ(M(β, x))) = lim
κ→∞

1

κ
log (#{(εnκ, ..., ε1) ∈ {0, 1}n : Tεnκ ◦ ... ◦ Tε1(x) ∈ (0, β)})

= lim
κ→∞

1

κ
log
(
||[1 0 0] (Aa1 ...Aan)

κ ||
)
.

Now with a similar calculation as in the proof of 6.2.1 we get from 6.2.4

lim
κ→∞

1

κ
log
(
||[1 0 0] (Aa1 ...Aan)

κ ||
)
= ρ(Aa1 · ... · Aan).

Proposition 6.2.1 suggests that in order to capture the typical behaviour of

ρ(M(β, x)) for x ∈ ΣP we can define LE, which appears in 6.1.1, to be the

Lyapunov exponent of {A−1, A0, A1} driven by π−1µβ.

Definition 6.2.4.

LE = lim
n→∞

1

n

∫
Σ

log (||Ax1 ...Axn||) dπ−1µβ(x).

The limit exists by sub-additivety.

We also need to define the metrics below.

Definition 6.2.5. Let In be the set of Σ∗ elements of length n. We define a metric

on probability measures on Σ by

dS(µ, ν) :=
∞∑
n=1

1

2n

∑
i∈In

|µ([i])− ν([i])|.
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If µ, ν are probability measures on [0,1] then we set

d(µ, ν) = dS(π
−1µ, π−1ν)

It is easy to observe that the topology given by d is the weak* topology.

Proposition 6.2.2. Let a = (a1, ..., an, a1, ..., an, ...) ∈ ΣP and denote by µa the

normalised counting measure on the orbit of a. For each ε > 0 there is δ > 0 such

that if dS(π
−1µβ, µa) < δ then |ρ(M(β, π(a)))− LE| < ε.

Proof. Without loss of generality, by making δ small enough, we can assume that

(a1, ..., an) is regular. Define fl : Σ → R by

fl(x) =
1

l
log (||Ax1 ...Axl

||) .

By Gelfand’s formula and ρ(AB) = ρ(BA), for any two κ × κ matrices A,B,

we can choose l large enough such that

∣∣∣∣fl(σκa)− log(ρ(Aa1 ...Aan))

n

∣∣∣∣ < ε/4 for all κ ∈ N (6.6)

and

∣∣∣∣∫ fldπ
−1µβ − LE

∣∣∣∣ < ε/4.

There is m ∈ N such that

∣∣∣∣ 1m(fl(a) + ...+ fl(σ
m(a))−

∫
fldµa

∣∣∣∣ < ε/4.
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Since convergence in the metric dS is equivalent to the weak* convergence there

is a δ > 0 such that

∣∣∣∣∫ fldπ
−1µβ −

∫
fldµa

∣∣∣∣ < ε/4

if dS(π
−1µβ, µa) < δ. Now from 6.6 we also get that

∣∣∣∣ 1m(fl(a) + ...+ fl(σ
m(a))− log(ρ(Aa1 ...Aan))

n

∣∣∣∣ < ε/4.

Now the last four inequalities above give that

∣∣∣∣ log(ρ(Aa1 ...Aan))

n
− LE

∣∣∣∣ < ε

so from proposition 6.2.1 we have

|log(ρ(M(β, π(a))))− LE| < ε.

Proof of Theorem 6.1.1. It is an immediate consequence of proposition 6.2.2 since

every periodic point x of T can be written as x = π(a) where a ∈ ΣP .

6.3 Equidistribution of V (ϕ, x)

We keep the notations of the last section. For v ∈ R3 denote by τ(v) the vector

that rises by replacing each non zero entry of v by 1. We define

O = {(1, 0, 0), (1, 0, 1), (1, 1, 0)}
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also, without confusion, the symbols 0′, 0′′ and 1 will stand for functions from

O to itself as follows

i(v) = τ(vAi)

where i ∈ {0′, 0′′, 1} and v ∈ O. Now we are ready to define a dynamical

system (S, F ) by setting S = O × Σ and

F (v, (x1, x2...)) = (x1(v), (x2, ...))

where (x1, ...) ∈ Σ and v ∈ O. We also set p1, p2 to be the first and second

coordinate projections of S respectively. By the construction of (S, F ) and lemma

6.2.3 we have the following lemma.

Lemma 6.3.1. Let x = (x1, ...) ∈ ΣP then

{Tεn ◦ ... ◦ Tε1(π(x)) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, β)

= {T n ◦ π(x), (T n ◦ π(x) + 1/β)p1(F
n((1, 0, 0), x))(2), (T n ◦ π(x) + 1)p1(F

n((1, 0, 0), x))(3)} .

We also need to define the geometric analogue of (S, F ). That is (S ′, F ′) where

S ′ = O × [0, 1] and

F ′(v, x) = ((1, χY (v,x)(T (x) + 1/β), χY (v,x)(T (x) + 1)), T (x)).

where

Y (v, x) = {Ti(y) : i ∈ {0, 1} and y ∈ {x, v(2)(x+ 1/β), v(3)(x+ 1)}} ∩ (0, β).

We will denote the coordinate projections of S ′ with the same symbols p1, p2

as before. The sets of the form {v} × π([i]) for v ∈ O and i ∈ {0′, 0′′, 1} are a
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Markov partition P of (S ′, F ′). Heuristically the respective transfer operator of

the zero potential is expressed by the following matrix

1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0


where the elements of P are lexicographically ordered according to (1, 0, 0) <

(1, 0, 1) < (1, 1, 0) and 0′ < 0′′ < 1. Let

{{v} × π([i]) : v ∈ O, i ∈ {0′, 0′′, 1}} = {S ′
1, ..., S

′
9}

where i 7→ S ′
i respects the order just mentioned.

The leading eigenvector of the normal form of the above matrix is

−→v :=

(
0, 0, 1− 2√

5
,
1

10
(5−

√
5),

1

10
(−5 + 3

√
5), 0,

1

10
(−5 + 3

√
5), 1− 2√

5
,
1

10
(−5 + 3

√
5)

)
describing a piecewise uniform measure ν on S ′ satisfying

ν̄(S ′
i) =

−→v (i).

One can directly verify that this is indeed an invariant measure of F ′. The

uniqueness follows from the fact that F ′ is ergodic in respect to ν̄ and that for
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each y ∈ S ′ outside the support of ν̄ there is ny ∈ N such that F ′ny is in the

support of ν̄.

Definition 6.3.1. Let a ∈ ΣP . The orbit of ((1, 0, 0), a) under F is finite as a

subset of O × {σn(a) : n ∈ N} so it is pre-periodic. We will denote by Ms(a) the

periodic part of that orbit. Similarly Mg(a) will be the periodic part of the F ′-orbit

of ((1, 0, 0), π(a)).

Lemma 6.3.2. Let {an}nN be a sequence of elements of ΣP . Let µan be the nor-

malised counting measure on the T -orbit of π(an) and νan be the normalised count-

ing measure on Mg(an). If µa
weak*−→ µβ then νa

weak*−→ ν̄.

Proof. Let M be the set of invariant probability measures of (S ′, F ′). The weak∗

topology makesM a metrizable compact space. Assume, aiming at a contradiction,

that there is a weak*-open subset B ofM containing ν̄ such that {n ∈ N : νan /∈ B}

is infinite. Since M is a weak*-compact we can assume, taking a sub-sequence if

necessary, that νa
weak*−→ ν ′ where ν ′ ̸= ν̄. It is clear that p2(νan) = µan so p2(ν

′) =

limn p2(νan) = limn µan = µβ, where the limits are weak∗. From p2(ν
′) = µβ

and that µβ is absolutely continuous we get that so is ν ′ which contradicts the

uniqueness of the absolutely continuous invariant probability measure ν̄.

Lemma 6.3.3. Let a = (a1, ...) ∈ ΣP with period l. Then

V (β, π(a)) =
⋃

{{π(x), (π(x) + 1/β)v(2), (π(x) + 1)v(3)} : (v, x) ∈Ms(a)} .

In addition the size of Ms(a) is l.

Proof. By lemma 6.3.1 we have that

V (β, π(a)) ⊇
⋃

{{π(x), (π(x) + 1/β)v(2), (π(x) + 1)v(3)} : (v, x) ∈Ms(a)} .
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Observe that O\(({(1, 0, 0)}×([0′]∪ [0′′]))∪({(1, 0, 1)}× [1])) is invariant under

F . Let ξ be least natural number such that F ξ(((1, 0, 0), a)) /∈ {(1, 0, 0)} × ([0′] ∪

[0′′]) Of course there is no repetition in (((1, 0, 0), a), ..., F l+ξ−1(((1, 0, 0), a))). On

the other hand F l+ξ(((1, 0, 0), a)), F ξ(((1, 0, 0), a)) ∈ O × [1] hence

F (F l+ξ(((1, 0, 0), a))) = F (F ξ(((1, 0, 0), a))) = ((1, 0, 1), σξ+1(a))

which implies

F l(((1, 0, 1), σξ+1(a))) = ((1, 0, 1), σξ+1(a)).

By the above the periodic part of the orbit of ((1, 0, 0), a) is either {F n(((1, 0, 0), a)) :

n ∈ N}\{F n(((1, 0, 0), a)) : n ∈ N and n < ξ} or {F n(((1, 0, 0), a)) : n ∈

N}\{F n(((1, 0, 0), a)) : n ∈ N and n ⩽ ξ} and the size of the periodic part is l.

Now assume that m ∈ V (β, π(a)). By lemma 6.3.1 we know that there exists

(u, x) in the orbit of ((1, 0, 0), a) such that

m ∈ {π(x), (π(x) + 1/β)v(2), (π(x) + 1)v(3)} .

By the discussion above if v ∈ {(1, 1, 0), (1, 0, 1)} then (v, x) ∈ Ms(a). If

v = (1, 0, 0) then m = π(x) and since p2(Ms(a)) is equal to the σ-orbit a which

contains x there is (u, x) ∈Ms(a) such that

m ∈ {π(x), (π(x) + 1/β)u(2), (π(x) + 1)u(3)}

which completes the proof.
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Lemma 6.3.4. Let a = (a1, ...) ∈ ΣP with period l. If (v, x) ̸= (u, y) are in Mg(a)

then

{x, (x+ 1/β)v(2), (x+ 1)v(3)}
⋂

{y, (y + 1/β)u(2), (y + 1)u(3)} = ∅.

In order to prove the lemma above we first need to extent the symbolic dynam-

ics of T to [0, ϕ]. We give the definitions again including an extra symbol. The

new definitions are compatible with the existing ones.

Now let fs : [1/β, β] → [0, 1] be defined as f1(t) = β−1(t + 1). Also f ′
0, f

′′
0 and

f1 are defined as before. A sequence {ai}i∈N ∈ {0′, 0′′, 1, s}N is called admissible if

or all i ∈ N

As
ai,ai+1

= 1

where As is the matrix


1 1 0 0

0 0 1 0

1 1 0 0

0 0 1 1


indexed by (0′, 0′′, 1, s) and similarly, for any n ∈ N, (a1, ..., an) ∈ {0′, 0′′, 1, s}n

is called admissible if As
ai,ai+1

= 1 for all i ∈ {1, ..., n − 1}. Let Σc be the set

of infinite admissible sequences and σ : Σc → Σc be the left shift map, without

confusion. Also we set Σ∗
c to be the set of all finite admissible words with letters

in {0′, 0′′, 1, s}. We define the cylinder set notation as [a1, ..., an] = {(x1, ...) ∈

Σ|∀i ∈ {1, ..., n} : xi = ai} for (a1, ..., an) ∈ Σ∗
c . Finally we define the function

π : Σ → [0, 1/(β − 1)] by
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π(a1, ...) =
⋂
n∈N

fa1 ◦ ... ◦ fan(Domain(fan)).

Note that if (a1, ..., an) ∈ Σ∗
c then

π([a1, ..., an]) = fa1 ◦ ... ◦ fan(Domain(fan)).

Proof of lemma 6.3.4. Set x = π(a). By lemma 6.3.3 it is enough to prove that

there if m,n are different mod l then

{T n(x), T n(x) + 1/β, T n(x) + 1}
⋂

{Tm(x), Tm(x) + 1/β, Tm(x) + 1} = ∅.

Aiming towards a contradiction assume there is counterexample pair of m and

n for the statement above. Since T n(x) ̸= Tm(x) and by symmetry the only cases

that we need to consider are T n(x) + 1/β = Tm(x), T n(x) + 1/β = Tm(x) + 1

and T n(x) + 1 = Tm(x). The last one gives a contradiction since Tm(x) < 1 and

T n(x) + 1 > 1.

We focus on the case where T n(x)+1/β = Tm(x)+1, the case of T n(x)+1/β =

Tm(x) can be treated similarly and is quite simpler. We have that T n(x) > 1−1/β

and that Tm(x) < β−1 = 1/β which means that the first symbol of σn(a) belongs

to {0′′, 1} while the fist symbol of σm(a) belongs to {0′, 0′′} . The following rules

for adding 1/β can be verified by trivial calculations

π((0′′, b2, b3, ...)) + 1/β = π((s, b2, b3, ...)),

π((1, 0′′, 1, 0′′, 1, ..., 0′′, 1, 0′, 0′′, bκ, bκ+1, ...)) + 1/β = π((s, s, ..., bκ, bκ+1, ...)),
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where the number of ’s’ appearances on the right hand side is 2r + 3 where r

is the number of 0′′, 1 successive repetitions after the first symbol in the left hand

side and

π((1, 0′′, 1, 0′′, 1, ..., 0′′, 1, 0′, 0′, bκ, bκ+1, ...)) + 1/β = π((s, s, ..., 1, bκ, bκ+1, ...)),

where the number of ’s’ appearances on the right hand side is 2r + 2 where r

is the number of 0′′, 1 successive repetitions after the first symbol in the left hand

side. For adding 1 we have

π((0′, 0′, b3, b4, ...)) + 1 = π((s, 1, b3, b3, ...)),

π((0′, 0′′, b3, b4, ...)) + 1 = π((s, s, b3, b3, ...)),

π((0′′, 1, 0′′, 1, 0′′, ...1, 0′′, 0′′, bκ, bκ+1, ...)) + 1/β = π((s, s, ..., bκ, bκ+1, ...)),

where the number of ’s’ appearances on the right hand side is 2r + 2 where r

is the number of 1, 0′′ successive repetitions after the first symbol in the left hand

side,

π((0′′, 1, 0′′, 1, 0′′, ...1, 0′′, 0′, bκ, bκ+1, ...)) + 1/β = π((s, s, ..., 1, bκ, bκ+1, ...)),

where the number of ’s’ appearances on the right hand side is 2r + 1 where

r is the number of 1, 0′′ successive repetitions after the first symbol in the left

hand side. Applying the rules above to a we can conclude that there are finally
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periodic elements b, c ∈ Σs such that π(b) = T n(x) + 1/β and π(c) = Tm(x) + 1

with different values for arbitrary large natural number. From that it is implied

that T n(x) + 1/β ̸= Tm(x) + 1 giving the required contradiction.

Proof of theorem 6.1.2. By lemmata 6.3.3 and 6.3.4 we have that for any subin-

terval J of [0, ϕ],

#V (β, x) ∩ J =
∑

(v,x)∈Mg(a)

# {x, (x+ 1/β)v(2), (x+ 1)v(3)} ∩ J

=
∑

((1,0,0),x)∈Mg(a)

# {x, (x+ 1/β)v(2), (x+ 1)v(3)} ∩ J

+
∑

((1,0,1),x)∈Mg(a)

# {x, (x+ 1/β)v(2), (x+ 1)v(3)} ∩ J

+
∑

((1,1,0),x)∈Mg(a)

# {x, (x+ 1/β)v(2), (x+ 1)v(3)} ∩ J

= #({(1, 0, 0)} × J) ∩Mg(a) + #({(1, 0, 1)} × J) ∩Mg(a)

+ #({(1, 0, 1)} × (J − 1)) ∩Mg(a) + #({(1, 1, 0)} × J) ∩Mg(a)

+ #({(1, 1, 0)} × (J − 1/β)) ∩Mg(a)

= #Mg(a)[νa({(1, 0, 0)} × J) + νa({(1, 0, 1)} × J)

+ νa({(1, 0, 1)} × (J − 1)) + νa({(1, 1, 0)} × J)

+ νa({(1, 1, 0)} × (J − 1/β))].

For convenience set for any subinterval J of [0, ϕ],
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ZJ,1 = {(1, 0, 0)} × J

ZJ,2 = {(1, 0, 1)} × J

ZJ,3 = {(1, 0, 1)} × (J − 1)

ZJ,4 = {(1, 1, 0)} × J

ZJ,5 = {(1, 1, 0)} × (J − 1/β)

so the equation above can be written as

#V (β, x) ∩ J =Mg(a)
5∑

i=1

νa(ZJ,i).

From this, by making δ small enough, lemma 6.3.2 gives

∣∣∣∣∣#V (β, x) ∩ I
#V (β, x)

− Mg(a)
∑5

i=1 ν̄(ZI,i)

Mg(a)
∑5

i=1 ν̄(Z[0,ϕ],i)

∣∣∣∣∣ < ε. (6.7)

Since we have earlier computed ν̄, a straightforward calculation gives us that

there exists c > 0 such that

Mg(a)
5∑

i=1

ν̄(ZJ,i) = cλ(J),

for any subinterval J of [0, ϕ]. Hence equation 6.7 gives

∣∣∣∣#V (β, x) ∩ I
#V (β, x)

− λ(I)

∣∣∣∣ < ε.
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6.4 The Lyapunov exponent LE and local dimen-

sion

This aim of this section is to prove theorem 6.4.1 below.

Lemma 6.4.1. For every positive integer n we have⋃
{{sup π([a1, ..., an]), inf π([a1, ..., an])} : (a1, ..., an) ∈ {0′, 0′′, 1}n}

⊇
{
T−1
εn ◦ ... ◦ T−1

ε1
(x) : (εn, ..., ε1) ∈ {0, 1}n, x ∈ {0, ϕ}

}
∩ [0, 1].

Proof. Let n be a positive integer. Assume, aiming at a contradiction, that there

is

x ∈
{
T−1
εn ◦ ... ◦ T−1

ε1
(x) : (εn, ..., ε1) ∈ {0, 1}n, x ∈ {0, ϕ}

}
∩ [0, 1]

and (a1, ..., an) ∈ Σ∗ such that x belongs to the interior of π([a1, ..., an]). Let

εn, ..., ε1 ∈ {0, 1} be such that x = T−1
ξn

◦...◦T−1
ξ1

(ϕ). The case of x = T−1
ξn

◦...◦T−1
ξ1

(0)

is similar. Choose some x′ ∈ (inf π([a1, ..., an]), x). Notice that

T n(x)− T n(x′) = f−1
an ◦ ... ◦ f−1

a1
(x)− f−1

an ◦ ... ◦ f−1
a1

(x′) = (x− x′)ϕn.

Let b1, ..., bn ∈ {0, 1} such that Tbn ◦ ... ◦ Tb1(x) ∈ (0, ϕ]. Then

ϕ ⩾ Tbn ◦ ... ◦ Tb1(x) > Tbn ◦ ... ◦ Tb1(x′) = Tbn ◦ ... ◦ Tb1(x)− (x′ − x)ϕn

⩾ T n(x)− (x′ − x)ϕn = T n(x)− T n(x) + T n(x′) > 0

hence

Tbn ◦ ... ◦ Tb1(x)− (x′ − x)ϕn ∈ {Tεn ◦ ... ◦ Tε1(x′) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ).
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The above implies

{Tεn ◦ ... ◦ Tε1(x′) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ)

⊇ {Tεn ◦ ... ◦ Tε1(x) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ]− (x′ − x)ϕn

which given x = T−1
ξn

◦ ... ◦ T−1
ξ1

(ϕ) it gives us

# {Tεn ◦ ... ◦ Tε1(x′) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ)

> # {Tεn ◦ ... ◦ Tε1(x) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ)

which contradicts

# {Tεn ◦ ... ◦ Tε1(x′) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ)

= #
{
i ∈ {1, 2, 3} : [1 0 0]Aa1 ...Aan(i) ̸= 0

}
= # {Tεn ◦ ... ◦ Tε1(x) : (εn, ..., ε1) ∈ {0, 1}n} ∩ (0, ϕ).

Definition 6.4.1. For every positive integer n we define

Fn := {π([a1, ..., an]) : (a1, ..., an) ∈ Σ∗}

and for x ∈ (0, 1) we set

Pn(x) = #
{
(ε1, ..., εn) ∈ {0, 1}n : x ∈ T−1

ε1
◦ ... ◦ T−1

εn ((0, ϕ))
}

= # {(ε1, ..., εn) ∈ {0, 1}n : Tεn ◦ ... ◦ Tε1(x) ∈ (0, ϕ)} .

Also we will denote by ΣI the set of all elements in Σ that are not terminally

constant.
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Notice that, from lemma 6.2.3, if x ∈ π([a1, ..., an])
◦, for (a1, ..., an) ∈ Σ∗, then

Pn(x) =
∣∣∣∣∣∣[1 0 0]Aa1 ...Aan

∣∣∣∣∣∣ .
Lemma 6.4.2. Let ∆ ∈ Fn and x ∈ ∆◦, then

Pn(x) = #{(ε1, ..., εn) ∈ {0, 1}n : T−1
ε1

◦ ... ◦ T−1
εn ([0, ϕ]) ⊇ ∆}.

Proof. Suppose that ∆ = π([a1, ..., an]) for (a1, ..., an) ∈ Σ∗. Lemma 6.4.1 and

x ∈ π([a1, ..., an])
◦ gives us

x ∈ T−1
εn ◦ ... ◦ T−1

ε1
((0, ϕ)) ⇔ π([a1, ..., an])

◦ ⊂ T−1
εn ◦ ... ◦ T−1

ε1
((0, ϕ))

⇔ π([a1, ..., an]) ⊂ T−1
εn ◦ ... ◦ T−1

ε1
([0, ϕ]).

Definition 6.4.2. For ∆ ∈ Fn we set Pn(∆) = Pn(x) where x is any element of

∆◦.

Lemma 6.4.1 tells us that the our sets Fn are a finer version of the net intervals

Fn, restricted to [0, 1] ⊆ [0, ϕ], of the sets Fn defined in the section 2.3 of [40]

and for the case of the Bernoulli convolution νϕ. Also lemma 6.4.2 shows that

Pn is the equivalent, for our partitions, of the quantities Pn defined in notation

3.3 of the same paper. We should mention that the Bernoulli convolution νϕ is of

finite type as it mentioned on page 2 of the same paper. That gives us, by the

same arguments they used, an version of their corollary 3.7. For completeness we

include their arguments bellow.
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Lemma 6.4.3. There is C > 1 such that for all positive integers n, ∆ ∈ Fn and

x ∈ ∆◦ we have

C−1νβ(∆) < 2−nPn(x) < Cνβ(∆).

Proof. Let ∆ = π([a1, ..., an]) for (a1, ..., an) ∈ Σ∗. Recall that the Bernoulli

convolution νβ satisfies

νβ =
1

2
T−1
0 (νβ) +

1

2
T−1
1 (νβ),

which also implies

νβ =
1

2−n

∑
x1,...,xn∈{0,1}

T−1
x1

◦ ... ◦ T−1
xn

(νβ). (6.8)

Now suppose that

T−1
ε1

◦ ... ◦ T−1
εn ([0, ϕ]) ⊇ ∆.

Then f−1
a1

◦ ... ◦ f−1
an (∆) ∈ {[0, 1], [0, 1/β} so from lemma 6.2.2

Tεn ◦ ... ◦ Tε1(∆) ∈ {[0, 1/β], [1/β, 2/β], [1, ϕ], [0, 1], [1/β, ϕ]}

so there is a finite set of possible values for

νβ(Tεn ◦ ... ◦ Tε1(∆)) = T−1
ε1

◦ ... ◦ T−1
εn (νβ)(∆).

We conclude that there is C > 1 such that for all positive integers n, ε1, ..., εn ∈

{0, 1} and ∆ ∈ Fn,
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C−1 < T−1
ε1

◦ ... ◦ T−1
εn (νβ)(π([a1, ..., an])) < C,

which combined with lemma 6.4.2 and equation 6.8 completes the proof.

Lemma 6.4.4. There is C1 > 1 such that all positive integers n and adjacent

intervals ∆1,∆2 ∈ Fn we have

C−1
1

1

n
Pn(∆2)Pn(∆1) ⩽ C1nPn(∆2).

Proof. We will do induction on n. The base case is trivial so we assume that the

result holds for n − 1 and prove the inequality for n. Notice that if ∆ ∈ Fn,

∆′ ∈ Fn−1 and ∆ ⊆ ∆′ then if T−1
ε1

◦ ... ◦ T−1
εn−1

([0, ϕ]) ⊇ ∆′ there is εn ∈ {0, 1}

such that T−1
ε1

◦ ... ◦ T−1
εn ([0, ϕ]) ⊇ ∆. This observation and lemma 6.4.2 implies

that Pn(∆) ⩾ Pn−1(∆
′). Now if there is ∆̂ ∈ Fn−1 containing ∆1,∆2 then, for

i ∈ {1, 2},

Pn−1(∆̂) ⩽ Pn(∆i) ⩽ 2Pn−1(∆̂)

so the result holds. Next we assume that there are adjacent ∆̂1, ∆̂2 ∈ Fn−1

such that ∆1,∆2 are contained in ∆̂1, ∆̂1 respectively. Define

D1 = {(ε1, ..., εn−1) ∈ {0, 1}n−1 : supT−1
ε1

◦ ... ◦ T−1
εn−1

([0, ϕ]) = sup ∆̂1}

D2 = {(ε1, ..., εn−1) ∈ {0, 1}n−1 : inf T−1
ε1

◦ ... ◦ T−1
εn−1

([0, ϕ]) = inf ∆̂2}

E = {(ε1, ..., εn−1) ∈ {0, 1}n−1 : T−1
ε1

◦ ... ◦ T−1
εn−1

([0, ϕ]) ⊇ ∆̂1 ∪ ∆̂2}

and observe that
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Pn(∆1) ⩽ #D1 + 2#E ⩽ Pn−1(∆̂1) + 2Pn−1(∆̂2)

so, choosing C1 ⩾ 2 and using the inductive hypothesis we get

Pn(∆1) ⩽ Pn−1(∆̂1) + 2Pn−1(∆̂2)

⩽ C1(n− 1)Pn−1(∆̂2) + 2Pn−1(∆̂2)

= C1

(
(n− 1)Pn−1(∆̂2) +

2

C1

Pn−1(∆̂2)

)
⩽ C1

(
(n− 1)Pn−1(∆̂2) + Pn−1(∆̂2)

)
= C1nPn−1(∆̂2)

⩽ C1nPn(∆2).

the other inequality is similar.

Lemma 6.4.5. Let (ai)i∈N ∈ ΣT and x = π(a1, ...) then

dimloc(νϕ, x) = lim
n→∞

log(2−nPn(x))

log(ϕ−n)
= lim

n→∞

log(2−n
∣∣∣∣∣∣[1 0 0]Aa1 ...Aan

∣∣∣∣∣∣)
log(ϕ−n)

if the limit exists.

Proof. Note that since (ai)i∈N ∈ ΣT we have x ∈ π([a1, ...., an])
◦ for every positive

integer n. Since the length of π([a1, ..., an]) is at most β−n we have π([a1, ..., an]) ⊂

[x− β−n, x+ β−n] so, from lemma 6.4.3,

log(νβ([x− β−n, x+ β−n]))

log(β−n)
⩽

log(νβ(π([a1, ..., an])))

log(β−n)

⩽
log(C−12−nPn(x))

log(β−n)
.
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Now for the lower bound we observe that there is a natural number M , which

does not depend on n, such that [x− β−n, x+ β−n] can be covered by at most M

adjacent elements of Fn one of which is π([a1, ..., an]). So by lemmata 6.4.3 and

6.4.4 we have that

log(νβ([x− β−n, x+ β−n]))

log(β−n)
⩾

log(MCM
1 n

MC2−nPn(x))

log(β−n)
.

Combining the two inequalities gives us the result.

The following theorem shows a connection between the number LE we defined

in order to understand how the spectral radius of the matrices M(β, x) behaves

and the local dimension of the Bernoulli convolution νβ. See also proposition 1.4

and table 1 in [30] and [60] where similar techniques were used.

Theorem 6.4.1. For Lebesgue a.e. x ∈ (0, 1)

dimloc(νϕ, x) =
LE − log(2)

log(ϕ)
.

Proof. From Kingman’s ergodic theorem and dominated convergence for π−1(µβ)-

a.e. a ∈ Σ we have that

lim
n→∞

1

n
log(||Aa1 ...Aan||) = LE. (6.9)

But π−1(µβ)(ΣI) = 1 since π−1(µβ) is non-atomic. So from lemma 6.4.5, for

π−1(µβ)-a.e. a ∈ Σ , the equation above is equivalent to

dimloc(νϕ, π(a)) = lim
n→∞

1
n
log(2−n||Aa1 ...Aan||)

1
n
log(ϕ−n)

=
LE − log(2)

log(ϕ)

giving us that for µβ-a.e. x we have dimloc(νϕ, x) = (LE− log(2))/ log(ϕ). The

result follows since µβ is equivalent to the Lebesgue measure restricted on [0,1].

202



Bibliography

[1] Shigeki Akiyama. Self affine tiling and Pisot numeration system. In Number

theory and its applications (Kyoto, 1997), volume 2 of Dev. Math., pages 7–17.

Kluwer Acad. Publ., Dordrecht, 1999.

[2] Shigeki Akiyama, De-Jun Feng, Tom Kempton, and Tomas Persson. On the

Hausdorff Dimension of Bernoulli Convolutions. International Mathematics

Research Notices, 09 2018. rny209.

[3] Shigeki Akiyama and Vilmos Komornik. Discrete spectra and Pisot numbers.

J. Number Theory, 133(2):375–390, 2013.

[4] Pierre Arnoux and Edmund Harriss. What is ... a Rauzy fractal? Notices

Amer. Math. Soc., 61(7):768–770, 2014.
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[7] Bárány Balázs and Käenmäki Antti. Ledrappier-Young formula and exact

dimensionality of self-affine measures. Adv. Math., 318:88–129, 2017.

203
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