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Abstract

It is now popular to use the existing managed language runtimes, such as Java
Virtual Machine (JVM) or Microsoft Common Language Infrastructure (CLI), to host
implementations of new or existing languages. The benefit of this approach is that the
software development efforts are reduced as only one managed language runtime needs
to be optimised and maintained. This approach avoids the need for a separate com-
piler/runtime for each language implementation. The Truffle open-source framework
has enabled hosting guest language implementations on a JVM. Examples of such
Truffle hosted guest language implementations are: Ruby (TruffleRuby), JavaScript
(GraalJS), R (FastR), and C (Sulong). Truffle guest languages directly benefit from
i) JVM features, that include just-in-time (JIT) compilers and Garbage Collection
(GC) ii) mature development tools and environments that can support multi-language
debugging and instrumentation. In this thesis, we present Sulong-OpenMP ; the first
Truffle hosted implementation that enables execution of the OpenMP parallel pro-
grams on a JVM. The current implementation of Sulong-OpenMP supports a sufficient
subset of the OpenMP C API to execute the NAS Parallel Benchmark (NPB) suite.
The Sulong-OpenMP extends the Sulong project, which executes LLVM Intermediate
Representation (LLVM IR) for sequential C/C++/Fortran programs on a JVM.

The thesis discusses a novel approach to enable the execution of OpenMP pro-
grams on a JVM. We also outline the challenges dealt with during the implementation
of OpenMP semantics using the Java Memory Model. This work primarily focuses on
achieving the correct execution of OpenMP programs in C on the JVM. Further, we
highlight the diminishing performance gap between the native execution (with clang
-O2) and Sulong-OpenMP, on multi-threaded execution. Parallel execution requires
supporting sub-systems, such as thread-private stack and thread pools. Although
these sub-systems increase implementation efforts, they also aid the execution perfor-
mance of the implementation. Additionally, we applied more optimisations to minimise
the overhead of Sulong-OpenMP. We demonstrate that the single-thread overhead of
Sulong-OpenMP (compared to that of Sulong) is on a par with its native equivalent.

Performance is a crucial aspect for both executions and language implementations.
While trying to understand the runtime performance of Sulong, we lacked the necessary
support of tools and guidance. Existing Java profiling tools could not map the profiling
information to corresponding C programs executed with Sulong. Execution of the
benchmarks written in Ruby and R, using their Truffle hosted implementations, also
faced similar issues. A JVM hosted execution utilises multiple services offered by the
JVM, such as JIT-compilation and GC. These services may influence the execution
behaviour unpredictably. Further, it is non-trivial to relate performance to source-code
of the hosted language and determine the source of overhead. The overhead may arise
from the program computation, suboptimal implementation of a language feature, or
the JVM services.

We describe how to visually analyse the performance of Truffle hosted languages
using Flamegraphs, by relating execution time to sampled call-stacks. We map sampled
call-stacks onto JVM hosted guest language source-code using i) Linux tool: perf, ii)
JVM Tooling Interface (JVMTI) agent: perf-map-agent, iii) enhancements to the Graal
JIT-compiler. This work demonstrates the ease and flexibility of using these modified
tools during execution, with lower overhead. We also illustrate the applicability of the
techniques to understand the performance of Polyglot applications.
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Chapter 1

Introduction

There is no one single programming language suitable for every task. Typically, new

languages emerge to solve specific tasks more efficiently than existing languages. Many

modern programming languages go through an implementation path, where initially

a language interpreter is implemented to execute programs written in that language.

As a language evolves (i.e., its specifications and features start getting mature), its

performance becomes a priority. To improve the performance of a language, many

implementors tend to create a virtual machine (VM) for that language. VM contains

one or more compilers that can compile and optimise frequently executing parts of

the program. VM uses garbage collectors (GC) to provide a memory management

system for a language. The VM model of execution became more popular with the

Java language (using Java Virtual Machine (JVM)), that is then adopted by many lan-

guage implementations, such as JavaScript and .Net Framework. VM implementation

requires a significant amount of development effort. Popular JVM implementations,

such as the HotSpot JVM, have undergone hundreds of person-years of development

efforts for over two decades. Investing such a huge amount of development efforts for

building a VM, may not be possible for many programming languages. Alternatively,

a language can use the existing VM to execute its programs.

JVM is a popular platform for executing programming languages other than Java.

This approach benefits from significantly reduced implementation efforts and competi-

tive runtime performance. JVMs offer these features using their underlying infrastruc-

ture, which include Just-in-Time (JIT) compilers and GC. Additionally, use of JVM

allows leveraging its extended ecosystem of software support tools, such as, the JVM
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profilers for performance analysis and portability to other platforms that are supported

by JVM. Groovy, Scala and Kotlin are examples of languages that compile their pro-

grams to Java bytecodes and execute them using a JVM. Observing the popularity

of hosting language executions on a JVM, Java specifications added the new invoke-

dynamics bytecode, as a part of JSR1292 [Ora09]. This bytecode aims to increase

the ease, and potentially performance, of implementation of the dynamically typed

languages on a JVM. Furthermore, the Truffle framework (along with the GraalVM

project) [Cor15] and Eclipse OMR (along with Eclipse OpenJ9 project) [Fou16], made

it easier to implement a language that then runs on the JVMs.

In this work, we use the language implementation framework: Truffle [HWW+14],

which enables us to write an Abstract Syntax Tree (AST) interpreter for a language

in Java. These interpreters create AST representation of an input guest language

program, which is also in Java; and hence can be executed on a JVM. Currently,

Truffle framework offers support for executing languages such as JavaScript (known

as Graal.js [Cor16a]), Ruby (known as TruffleRuby [Cor16b]) and R (known as FastR

[SWHJ16]). Further, Truffle offers execution of the polyglot programs (i.e., the pro-

grams written using two or more programming languages), using its language interop-

erability features[GSS+18].

Although Truffle has been predominantly used to implement dynamically typed

languages, statically typed languages can also benefit from JVM hosted execution. The

Sulong project executes C programs, converted to LLVM Intermediate Representation

(IR), on the JVM (discussed in Section 2.5). The Safe Sulong project extends Sulong.

Safe Sulong can identify bugs and programming errors arising from the undefined

behaviours in C programs [RSM+18]. It can detect errors such as out-of-bounds access

for arrays, NULL pointer dereferencing and use-after-free. Safe Sulong implements C

data structures using Java data structures. It then uses the ability of JVM to identify

the aforementioned bugs.

1JSR stands for Java Specification Request (JSR). A JSR request is a formal proposal to ad-
d/change the Java language specifications.
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1.1 Motivation

This section describes the motivation for the work presented in this thesis, which

involves i) extending Sulong to implement support for the execution of OpenMP pro-

grams on the JVM, ii) performance analysis approach for the Truffle hosted languages.

1.1.1 OpenMP on a Java Virtual Machine

In the era of multi-core and heterogeneous systems, parallel programming has become

an inevitable paradigm for the programming languages. Parallel programming enables

software applications to utilise computing capacity of modern systems. Along with

its advantages, parallel programs also give rise to programming bugs, such as data

races that are notoriously difficult to debug. Safe Sulong shows that the JVM hosted

implementation can help to find bugs in sequential C programs, which are otherwise

difficult to identify using conventional tools and techniques. This motivated us to

explore: “can the parallel executions in statically typed languages, such as C, benefit

from the JVM hosted execution?”

As a first step towards our objective, we decided to build a system that can help

identify parallel programming bugs in statically typed languages. To minimise the im-

plementation efforts, we decided to enable execution of parallel programs on Sulong,

that already executes statically typed languages on JVMs. Sulong initially supported

only the execution of sequential programs. We chose parallel programs written using

OpenMP. The OpenMP is one of the popular directive-based parallel programming

models for shared memory systems. It is available in C, C++ and Fortran program-

ming languages. OpenMP also offers ways to utilise the heterogeneous system com-

prising of accelerators. In this thesis, we present our work: Sulong-OpenMP, that

extends Sulong to enable execution of OpenMP parallel programs on a JVM. Cur-

rently, Sulong-OpenMP support execution of a sufficient subset of C the OpenMP C

API to execute the NAS Parallel Benchmark (NPB) suite.
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1.1.2 Performance Analysis

A language implementation is typically complemented by the need for its performance

analysis. Performance analysis aids the optimisation process by highlighting time-

consuming functions. Traditional performance analysis approaches are based on ei-

ther tracing or profiling. Performance analysis for a managed runtime environment

involves monitoring the behaviour of VM services, such as JIT compilation and GC. In

the context of guest languages that are hosted on managed runtimes (such as, Truffle

hosted languages on the JVM), profiling can help to isolate and measure the perfor-

mance of specific guest language features. Analysing behaviour of the guest language

feature under different use-case scenarios can help to identify, where optimisation is

likely to yield larger performance improvements. However, the host language tools

face challenges, when used to profile the guest language executions, because they are

unaware of non-host language executions. For example, when a sampling profiler for

JVM profiles a Sulong-based execution, the profile shows only Java methods. These

are the Truffle API methods that are used for implementing Sulong, instead of LLVM

IR functions from the guest program. This problem motivated us to explore: “how

can the host language profilers enable to map the collected profiling information to the

guest language program’s execution?”

In this thesis, we focus on the call-stack sampling profiling approach for perfor-

mance analysis for the Truffle hosted guest language implementations. We choose

three Truffle hosted languages: FastR (for R), TruffleRuby (for Ruby) and Sulong (for

LLVM IR) for evaluating the language implementations and identifying opportunities

for performance improvements.

1.2 Contributions

� Chapter 3 demonstrates our approach to execute the OpenMP programs on a

JVM. This is accomplished primarily by extending the LLVM IR bitcode inter-

preter of Sulong and mapping the OpenMP memory model onto the Java memory

model. To the best of our knowledge, Sulong-OpenMP is the first approach that

enables execution of the OpenMP programs on a JVM.
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� Chapter 5 presents evaluation of Sulong-OpenMP using the NAS Parallel Bench-

marks (NPB) suite. We discuss performance analysis techniques to identify the

bottlenecks, along with the optimisations applied to improve the implementation

of Sulong-OpenMP.

� Chapter 6 presents our performance analysis approach that extends the existing

Java profiler, to profile executions of Truffle hosted language implementations.

We demonstrate the usability of our approach by evaluating the relative perfor-

mance of three Truffle hosted language implementations: Sulong, TruffleRuby

and FastR. Performance of these implementations is compared to that of Java

and C, using the shootout benchmarks from Computer Language Benchmark

Game (CLBG) suite [Guo18]. We also show that the standard tools can be

extended to profile Polyglot applications.

Publications

Work presented in this thesis is based on the following peer-reviewed publications.

� Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. Performance analysis for

languages hosted on the truffle framework. In Proceedings of the 15th Interna-

tional Conference on Managed Languages & Runtimes (ManLang’18).

� Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. Hosting OpenMP programs

on Java virtual machines. In Proceedings of the 16th International Conference

on Managed Programming Languages and Runtimes (MPLR’19).

1.3 Thesis Structure

Chapter 2 describes various components of Sulong-OpenMP, the underlying system

that we extend to execute OpenMP programs. We also describe the use of Truffle

framework for language implementation. This prepares a platform for the discussion

about extending Sulong to execute OpenMP programs. Execution of Truffle ASTs is

crucial to understand the challenges faced by the Java profilers when used to profile

the Truffle hosted language execution.
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Chapter 3 describes the generation of LLVM IR for the OpenMP programs and

the approach for its execution using Sulong-OpenMP. The chapter also dives into

describing the implementation of commonly used OpenMP features.

Chapter 4 describes the experimental methodology to measure the performance of

Sulong-OpenMP. A JVM contains multiple subsystems providing different services for

the hosted execution, which might influence its performance. This chapter discusses

the relevant factors for performance evaluation of JVM hosted executions.

Chapter 5 presents the performance evaluation of Sulong-OpenMP using the NAS

Parallel Benchmarks (NPB) suite. This chapter also describes the optimisation journey

that involves various optimisations applied to improve the implementation of Sulong-

OpenMP.

Chapter 6 describes the performance analysis approach for the Truffle hosted lan-

guage implementations. This chapter describes the challenges faced by the JVM profil-

ers to capture the behaviour of JVM hosted executions accurately. The chapter then

presents a profiling approach that addresses these challenges. Case studies demon-

strate the applicability of our profiling approach for the guest language executions, as

well as their implementation. This chapter also presents the evaluation of three Truf-

fle hosted language implementations on the Computer Language Benchmark Game

(CLBG) suite of benchmarks.

Chapter 7 presents the conclusions derived from this thesis, current limitations

and the future work for Sulong-OpenMP. This chapter also highlights the next steps

to improve the performance analysis methodology, presented previously in Chapter 6.
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Chapter 2

Background

In this chapter, we provide a high-level overview of the underlying system used in

this work namely, the Sulong project. This discussion aims to position the work in

the ecosystem of the project. We then discuss some of the important components

in detail, including a language implementation framework: Truffle, the JIT compiler:

Graal, and the Sulong project that is based on Truffle and Graal.

2.1 Overview

The JVM infrastructure has evolved over many years and has hundreds of person-

years of effort gone into it. Such a mature infrastructure of JVM can be reused by

programming languages other than Java for their execution. JVM offers services such

as compilers and garbage collectors, etc., to a guest language that it hosts. Examples

of such guest languages are Scala [EPFL04] and Groovy[Fou03] that use JVM as a host

for their execution. In the case of Scala, the programs are compiled to Java bytecodes

that are then executed on a JVM. Here, the JVM is not aware that it is executing a

Scala program. As an alternative to the Scala’s approach of generating Java bytecodes,

one can implement an interpreter for language in Java that then executes the programs

on a JVM. However, just as in the case of Scala, the JVM still remains unaware of

the guest language that is being executed on it. JVM’s unawareness may result in

lower performance while executing the guest language programs. This problem can

be addressed by using the Truffle Framework to write a language interpreter in Java

which then executes the guest language programs on JVM [HWW+14]. However, this
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Truffle Framework

Java Virtual Machine (JVM)

Operating System

Java Interpreter JVM Compiler
Interface (JVMCI) Graal

Java Scala
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TruffleRuby Sulong Sulong-
OpenMP

Figure 2.1: Overview of the project ecosystem

time, the JVM can be made aware of the guest language execution and consequently,

be advised on how to perform tailored optimisations to improve the performance.

The Truffle framework-based implementations have shown significant performance

gains, especially, for the dynamically typed languages such as Ruby (using Truf-

fleRuby), and R (using FastR) [Cor16b, SWHJ16]. The Truffle Framework and the

way it helps a language implementation to achieve high performance is explained in

Section 2.3.

Sulong is a Truffle framework-based implementation that executes C programs

converted into LLVM Intermediate Representation (IR) on JVM [RGW+16]. The

internal workings of Sulong are discussed in Section 2.5. In this work, we extend the

Sulong project to execute OpenMP parallel programs written in C. The syntax and

semantics of OpenMP programs and their execution model are described in Section 2.6.

While discussing Sulong, we also cover the schematics of LLVM IR generated for the

C programs and the essential associated aspects. Here, we aim to set forth the base for

the discussion on how we extend Sulong to execute LLVM IR for OpenMP programs

in the chapter that follows.

Figure 2.1 gives an overview of the project undertaken. The highlighted rectangle

shows the Sulong-OpenMP project that we present in this work that aims to achieve

the execution of the OpenMP parallel programs written in C on top of a Java Virtual
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Output

Figure 2.2: Execution based on the ahead-of-time compilation.

Machine (JVM). Rest of the chapter explains the different components of the project

in detail. We begin our discussion with the execution of a Java program on a JVM.

2.2 JVM hosted execution

Traditionally, to execute a program, it is first compiled to an executable binary file

using a compiler, such as the gcc or clang as shown in Figure 2.2. Such a binary file

would have machine instructions specific to the selected hardware platform so that the

binary can be executed on it. Also, it may not be possible to execute the same binary

file on other hardware platforms, because the binary contains instructions specific to

a certain platform. Therefore, in order to port and run a program on a different

platform, the program must be recompiled using a compiler written for that platform.

In contrast, the JVM follows a different approach for executing a program. A Java

program is first compiled to Java bytecodes - a class file, using a Java compiler javac

as shown in Figure 2.3. Bytecodes are executed by the JVM, using functionalities pro-

vided by a given Operating System. The bytecodes are treated as instructions for a

JVM, analogous to the machine instructions for particular hardware. However, byte-

codes are common across JVMs that enable the class files generated on one machine

to be executed on any other machine using the JVM which supports the bytecodes.

Thus, the approach makes the compiled Java bytecode files platform-independent and

avoids the need for recompiling when migrating to a different platform.

During the execution of a class file, the JVM first executes the program using a

bytecode interpreter. The interpreted mode of execution is significantly slower com-

pared to an equivalent program executed using the traditional ahead-of-time compila-

tion mode. The primary reason for such a slow execution is that for each bytecode its
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Figure 2.3: JVM hosted execution.

bytecode-handler is executed as an independent function. Further, the optimisation

scope is limited to the bytecode-handler. To improve the execution performance of a

Java program, a JVM compiles the frequently executed parts of the program during

the execution of the program itself. Such compilation is referred to as a Just-in-Time

(JIT) compilation.

A typical JVM contains a bytecode interpreter and one or more JIT compilers. The

Oracle’s HotSpot JVM contains two JIT compilers named as the Client and the Server

compiler [Wik16]. The Client compiler trades-off performance for a faster compilation

while the Server compiler does vice-versa. In the case of HotSpot JVM, when a function

is executed frequently, it is first compiled by the Client compiler and the compiled

version is used for further invocations. The function compiled by the Client compiler

is usually faster than the interpreted mode of execution because of its larger scope

for compilation. The Client compiler has scope spanning across a Java method, much

larger compared to the scope limited to bytecodes for the interpreted version. When

the compiled version from the Client compiler is executed frequently, then it is compiled

again with the Server compiler. The Server compiler does aggressive optimisations that

may take longer compilation time but yield usually the faster version of the function

compared to the Client compiler. Using multiple levels/tiers for compilation optimised

for different trade-offs is referred to as Tiered compilation. The Graal compiler is one

of the top-tier JIT compilers that trades-off compilation time for better performance

[WWW+13]. Section 2.4 contains a detailed discussion about the Graal compiler and

how it optimises the execution of non-Java guest languages on a JVM.
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2.2.1 Executing non-Java languages on a JVM

Executing non-Java languages on top of a JVM has been a popular approach. Be-

fore Java 7, there were over 200 language implementations that used JVM for their

execution [Tol19]. As the JVM was originally designed for Java that made it difficult

to use it for other language implementations. Rose, et al. extensively listed the pain

points for implementing a guest language on top of a JVM [Ros09]. The difficulties are

mainly associated with implementing method invocation mechanisms needed by the

guest languages. Considering the popularity of the JVM and the issue for implement-

ing a guest language, Java 7 introduced a new bytecode invokedynamics [Ros09]. The

new bytecode especially benefited the implementation of dynamically typed languages.

One of the quicker ways to implement a programming language is to build an Ab-

stract Syntax Tree (AST) interpreter for a language. However, the interpreters trade

performance for the simplicity and low implementation efforts. The simplicity of inter-

preters makes it easier to incorporate changes to language behaviour in the early stage

of a programming language. Later, when the language starts getting popular and used

more, the need for better performance increases. One of the common ways adopted by

the language implementors to improve the performance is to embed the interpreters in

a virtual machine that has JIT compilers to address the performance needs. On ob-

serving such language implementation approaches, Oracle Labs introduced the Truffle

framework, explained in the next Section 2.3, to make guest language implementations

on a JVM easier.

2.3 The Truffle framework

Truffle is a language implementation framework, written in Java, that can be used to

write AST an interpreter for a guest language [WWW+13]. One of the examples of such

a Truffle-based interpreter is Sulong, which is a building block of the underlying system

used in this work. This section explains how a language interpreter is implemented

using the Truffle framework.

The interpreters built using the Truffle framework take a guest language program

as input, create an AST representation for that program. The AST representation

of a program is in Java that can then be executed using a JVM. Each node in the
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a b

+

Figure 2.4: AST for simple addition

Truffle-AST contains an execute() method that defines the computation associated

with the particular node. Therefore, execution of a node is performed by calling the

execute() method of the node. During the execution of the AST, child nodes are

executed before the parent node. A simple example of adding two variables (a and

b) is shown in Figure 2.4. The execute() methods of the child nodes a and b are

evaluated before the execute() method of the addition operator. The add operation

uses these values to perform addition.

a b

+

a b

+

a b

+

a b

+

Uninitilized AST
for Add

Add integer (a)
& integer (b)

Add integer (a) 
& double (b)

Add integer (a) 
& string (b)

Figure 2.5: Specialisation of Truffle AST nodes based on the data types of the operands

The Truffle framework helps to build self-optimising AST interpreters where the

nodes of an AST are specialised based on the observed behaviour of a program, such as

the data types of variables. The add operation is usually polymorphic in dynamically

typed languages that can add two integers, floating-point numbers, strings or any

combination of them. Thus, the Truffle based implementation of an addition operator

provides mechanisms for adding all the permissible combinations of the data types.

When the Truffle AST showed in Figure 2.4 is executed for the first time, the nodes

of the AST are specialised based on the data types of the variables a and b. The add

operator is then specialised based on the data types of the children nodes as shown in

Figure 2.5. When both the children are of type integer, the add node is specialised with

the implementation that adds two integers. Similarly, when b is of type double, the add
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Figure 2.6: Type specialisation lattice where the re-specialisation moves towards more
generic type.

node selects the implementation that performs addition by typecasting a to a double

value and returns the result as with type double. Such specialisation of nodes stores the

observed behaviour of the program in the AST itself. The specialised implementation

keeps track of the previously observed types and its corresponding implementation.

This helps the interpreter to select a suitable implementation of an operation when

the same expression is evaluated again. Further, the observed behaviour of a program

acts which is crucial for optimising the AST during its JIT compilation (explained in

Section 2.4).

During the interpretation phase, nodes of the Truffle-AST are re-specialised when

the observed behaviour of a program changes. In the above addition example, the

node for variable a gets re-specialised when it holds a value of type double which

previously held the value of integer type. To avoid continuous re-specialisation, the

specialisations are implemented in a way that converges. For example, in the case of

type specialisation, the re-specialisation moves towards a more generic type. Figure 2.6

shows such a type re-specialisation lattice where a node may be re-specialised from an

uninitialised state to an integer, double or string type. The node specialised to a double

type would not be re-specialised to an integer type even when the later invocation is

performed with the integer type. The generic specialisations are implemented to handle

more cases including all the previous specialisations.

To make a language implementation easier, Truffle provides a Java annotation-

based Domain Specific Language (DSL). The annotations are used to specify the classes

implementing nodes of an AST and methods implementing node specialisations. Truf-

fle DSL also provides annotations for creating inline caches (IC) that allows storing
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the observed method implementations in a localised look-up table at the call site to

accelerate the selection of the correct implementation. ICs are useful, especially, for

languages such as Ruby where the method implementation could be overridden during

the runtime. The use of annotations significantly reduces the amount of boilerplate

code that needs to be written by the language implementor. Truffle includes an an-

notation processor that creates new classes that extend the annotated classes along

with the required boilerplate code to handle tasks such as handling specialisation of

a node and adding IC for a node. There are many useful functionalities provided by

the Truffle framework for a language implementation that are not discussed further in

this thesis.

Typically, during the execution of an AST for a function, the AST stabilises for

the given input, i.e., it stops re-specialising after a few invocations. A stabilised AST

is then fed to the optimisation pipeline of a JVM where one of the JIT compilers

can optimise the AST. JVMs usually contain multiple JIT compilers that focus either

compilation time or performance of the generated code. The next section describes a

performance-focused JIT compiler that we use in this work — Graal.

2.4 The Graal Compiler

In this section, we discuss the optimising JIT compiler Graal and some of the optimi-

sations techniques that are important for this work. The Graal compiler is a top-tier

JIT compiler similar to the Server compiler in the HotSpot JVM that trades off com-

pilation time for higher performance. In fact, Graal can be used in place of the Server

compiler in the HotSpot JVM. Graal originated from the C1X compiler of the Maxine

project [WHVDV+13]. The Maxine VM is an implementation of the JVM in Java

itself. It is a metacircular virtual machine, i.e., the VM is written using the same

languages that it implements. Having a JIT compiler written in Java made it possible

for a Java program to communicate with the compiler. In the case of Graal, it imple-

ments the JVM Compiler Interface (JVMCI) introduced using the JDK Enhancement

Proposal-243 (JEP-243) [Ros19]. The JVMCI enables Truffle-generated ASTs to use

the compiler as a service.
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Figure 2.7: AST specialisation. Image reproduced from [HWW+14]

Using Graal, the compiled version of the Truffle-based ASTs can achieve higher

performance compared to the compilation using other JIT compilers [WWW+13]. Not

only the Truffle-ASTs, but Graal can also be used to compile the Java programs as well.

However, while optimising the specialised Truffle-based ASTs as shown in Figure 2.7,

Graal uses an additional optimisation technique called partial evaluation. During the

partial evaluation, usually, all the methods implementing the nodes of the AST of a

function are inlined into a single function that is then fed to the compilation pipeline.

This extent of inlining, measured in inlining depth, performed by Graal is much higher

than the inlining depth used by typical JIT compilers that allows Graal to prepare

a larger compilation unit for the further optimisation stages [WWW+13]. The larger

compilation units allow Graal to generate highly optimised code compared to other JIT

compilers. Along with inlining, Graal also executes code as much as possible using the

profiling information collected during interpretation. The execution involves applying

constant folding, dead code elimination and converting virtual method calls to direct

calls to a known method name [WWH+17]. This process gives the optimisation its

name — partial evaluation.

In addition to the partial evaluation, another notable optimisation that Graal per-

forms is Partial Escape Analysis [SWM14]. Escape Analysis is a well-known optimi-

sation performed by compilers where the allocation of the object is avoided if it is

not escaping the function scope [Bla03]. In the conventional escape analysis, when

an object is considered as escaping then it is allocated, even if the object is escaping

only when one of the branches is taken during the execution flow. Graal extends the
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conventional escape analysis and allocates objects on the branches so that the alloca-

tion is avoided on the branches where the object does not escape. This optimisation

is effective, especially, when a significantly large number of objects are allocated.

When Graal receives a request to compile a method, first, the bytecode interpreter

generates a graph in the sea-of-node representation for the method. The sea-of-node

representation simplifies the intermediate representation and the compiler implementa-

tion [CP95]. Therefore, it is used by modern JIT compilers such as the Server compiler

in HotSpot and the V8 in Google Chrome. After partial evaluation, the Truffle AST

goes through the optimisation pipeline performing conventional optimisations to gener-

ate platform-agnostic representation named as High-level Intermediate Representation

(HIR). Subsequently, the platform-specific optimisations are performed when the HIR

is converted to a platform-specific Low-level Intermediate Representation (LIR). At

the time of writing this thesis, the performance of the code generated by Graal is

at par with or exceeding the performance of the code generated using the HotSpot’s

Server compiler [Cor20].

Graal applies speculative optimisations to generate efficient machine code that gets

deoptimised when the underlying assumptions no longer hold. Deoptimisation switches

execution of a method from the fast compiled mode to the slow interpreted mode.

During optimisation, Graal assumes the AST of a method is stable and generates code

only for the specialised AST. For example, when an add operation in a dynamically

typed language is always performed on two integers, the Truffle AST for that operation

gets specialised for add operations on integers, and Graal generates machine code for

the integer add operation. Graal also puts guard conditions to ensure that the operands

are of integer type. When the addition is performed with one of the operands with

non-integer type, such as float, the underlying assumption about both operands being

integer fails. This makes the optimised version of method invalid and the execution

can no longer continue using it. Thus, JVM switches execution to the interpreted

mode by triggering deoptimisation. While executing in the interpreter mode the AST

for the method gets re-specialised to accommodate the floating-point parameter. The

re-specialised method gets optimised again when it is called more times than the

compilation threshold. Deoptimisation is an expensive operation, it needs to construct

the interpreter frame representing the current execution state of the method in the
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compiled mode and resume execution in the interpreter mode in a transparent way to

the user.

We do not make changes to internal workings of Graal to benefit the Sulong-

OpenMP implementation. Thus, we limit our discussion on Graal in this chapter.

However, we will discuss on the compilation of Truffle-hosted guest language functions

in Chapter 6.

2.5 Project Sulong

Sulong is an interpreter implemented using the Truffle framework that runs LLVM

Intermediate Representation (IR) on JVM. In this section, we begin by describing

LLVM IR that is necessary for the subsequent discussion on the Sulong project.

2.5.1 LLVM IR

LLVM IR is an intermediate representation used by the compilers from LLVM project,

such as clang for C and clang++ for C++ programs. These compilers contain a

language-specific front-end that generates the language-agnostic intermediate repre-

sentation (LLVM IR). LLVM IR generated by a compiler front-end is optimised using

the platform-agnostic optimisations. The compiler back-end generates a platform-

specific executable binary code from the optimised LLVM IR. The intermediate repre-

sentation separates compiler front-ends from their back-ends. The clang compiler can

generate optimised LLVM IR as well as a binary executable for C programs. Hence-

forth, whenever we refer to clang in the context of LLVM IR or Sulong, we refer to its
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C front-end that genereates LLVM IR. Listing 2.1 and Listing 2.2 shows the C code

and its LLVM IR respectively.

1 int foo(int i) {

2 return (i * i) + 42;

3 }

Listing 2.1: A simple C function foo that returns the square of the input argument

plus the constant number 42.

1 define i32 @foo(i32) {

2 %2 = mul i32 %0, %0

3 %3 = add i32 %2, 42

4 ret i32 %3

5 }

Listing 2.2: An LLVM IR for the function foo in Listing 2.1.

The LLVM IR for a program is a sequence of basic blocks which consists of in-

structions in an assembly-like language. Each basic block is a sequence of instructions

where control flow enters at the first instruction and exits after executing the last

instruction. There can be no branch instructions in the middle of the basic block.

Listing 2.2 has only one basic block that starts on line 2 and ends on line 4 with the

return instruction. The mul instruction squares the first argument and add instruction

increments its result by the constant 42.

LLVM IR uses the Static Single Assignment (SSA) form where value is assigned to

a variable exactly once [TC07]. The %2 and %3 in Listing 2.2 are such stack-allocated

local variables that store the intermediate results. Use of the SSA form simplifies

applying compiler optimisations, such as dead code elimination, constant propagation

and global value numbering [ALSU06]. LLVM IR abstracts many source language and

target-specific details, such as the calling convention.

2.5.2 Sulong

A high-level execution workflow Sulong is shown in Figure 2.8. Sulong takes LLVM

IR as an input and generates the Truffle AST for the program that is then executed
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on a JVM. By targetting LLVM IR, theoretically, Sulong can run languages that

have compiler front-ends to generate LLVM IR without writing a separate parser and

interpreter for each of those languages.

Use of LLVM IR allows Sulong to benefit from the static optimisations provided by

the LLVM infrastructure as well as the dynamic optimisations from the Graal compiler.

Static optimisations can be applied to LLVM IR using the opt tool [LLV03]. Sulong

benefits from the following dynamic optimisations performed by Graal [RGW+16]:

� Polymorphic Inline caches: Sulong uses polymorphic inline caches to opti-

mise calls using function pointers. IC for a function call using a function pointer

is a local cache of the observed values for that function pointer. They are stored

in an AST node at the call-site that performs the call. At the next execution,

the call-site checks the target function address with cached addresses and makes

a direct call to the function when a match is found. If the call-site exceeds the

specified inline cache limit, the indirect call is performed.

� Value profiling: The value profiling technique is used to identify the run-time

invariants that cannot be identified at compile time [CFE97]. For example, global

configuration variables that are initialised at the beginning of the program and

do not change later. Sulong uses value profiling to check the values loaded from

memory that can be a primitive or a pointer. If the loaded value is unchanged

then the load node is replaced by a node that performs a check if the loaded

value is still the same and returns the cached constant. While compiling such a

node, Graal can speculate that the value would remain constant.

� Dynamic dead code elimination: Sulong maintains the probability for the

successor basic blocks in a given basic block. Graal uses the successor probability

to avoid compiling basic blocks that are never executed. This enables dead code

elimination during execution for the untraversed branches.

� Inlining at run-time: Inlining done by Graal benefits from the profiling feed-

back collected at run-time, such as function call counts, that can help to perform

better inlining decisions. Thus, one may also defer function inlining to the run-

time by disabling it during static compilation using LLVM.
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The LLVM IR can be generated in the textual (as .ll files) or binary bitcode format

(as .bc files). Sulong uses the bitcode parser to parse the LLVM IR in the binary

format. In the binary format, the .bc file contains a bitstream for an LLVM IR. LLVM

IR bitstreams are self-defined, i.e., how a stream of bits should be interpreted is defined

by the stream itself. For example, the first two bits would decide the data type of the

following content which would then determine the number of bits of the remaining

bitstream that represent the actual data of that type.

At the beginning of this PhD project, I extended the Sulong bitcode parser to

process records of binary BLOB type. An LLVM bitcode file is organized as a sequence

of nested blocks containing records. The bitcode parser reads these blocks of records

while parsing an LLVM IR file. Records are stored in either textual (.ll files) or in

binary large object (BLOB) format (.bc files). The BLOB records are used to store the

debugging information at the end of the IR. This work was added to support the latest

LLVM 3.9 bitcode format available at that time.

We will continue our discussion on the parts of Sulong relevant for the implemen-

tation and performance improvements of Sulong-OpenMP in Chapter 3 and Chapter 5

respectively.

2.6 OpenMP

OpenMP is a popular directive-based parallel programming approach for shared mem-

ory systems available in C, C++ and Fortran languages. In this PhD work, we have ex-

tended the Sulong project to execute OpenMP parallel programs on a JVM. OpenMP

provides two types of parallel programming models namely work-sharing model and

task-based model. In the case of the work-sharing model, iterations of a for-loop are

collaboratively executed by the specified number of OpenMP threads. In the case of

the task-based model, one or more OpenMP threads create OpenMP tasks that are

then executed by the OpenMP threads. We would focus on the work-sharing model

of OpenMP, primarily for-loops.

The OpenMP work-sharing model is based on the fork-join parallel pattern, as

shown in Figure 2.9. Here, threads are forked at the beginning of the program block

annotated with OpenMP pragma directives and they are joined at the end of the
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Figure 2.9: OpenMP Fork-Join model.

block. Listing 2.3 shows a simple OpenMP program that contains an OpenMP block

annotated with the pragma on Line 3. Each thread executes the OpenMP annotated

block in parallel and prints the greeting message. OpenMP provides functions to

retrieve runtime information, such as the current thread ID, total number of OpenMP

threads, etc., that can be used to control the behaviour of a thread. A program may

contain one or more OpenMP parallel blocks.

1 void main() {

2 // Code before OpenMP block ...

3 #pragma omp parallel

4 {

5 printf("Hi thread %d\n", omp_get_thread_num());

6 }

7 // Code after OpenMP block ...

8 }

Listing 2.3: A simple OpenMP C code where each thread prints a welcome message

and its thread ID.

#pragma omp for distributes the iterations of the loop amongst the threads in the

enclosing parallel region. There are three main ways, referred to as OpenMP schedules,

to distribute loop iterations amongst OpenMP threads: static, dynamic and guided

schedule. Static schedule divides the iteration space equally amongst given OpenMP

threads. Dynamic schedule assigns an iteration to each thread and whichever thread

finishes first, gets the next iteration assigned. Guided schedule divides the itera-

tion space based on the number of unassigned iterations and the available number of

threads. Subsection 3.3.2 discusses the OpenMP schedules in more details. Table A.1
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OpenMP
Version

Release
Date

Comments / Key Features

1.0 Oct 1997 Support for only Fortran
1.0 Oct 1998 Added suppport for C and C++
2.0 Nov 2000 Support for only Fortran
2.0 Mar 2002 Added suppport for C and C++
2.5 May 2005 Support for C, C++ and Fortran
3.0 May 2008 Introduced support for Task construct

3.1 Jul 2011
Improved support for reduction and atomic constructs.
Added support for optimisations within the
OpenMP tasking model

4.0 Oct 2013
Added support for accelerator constructs,
error handling, actomics and SIMD constructs.
Extended support for Tasks

4.5 Nov 2015 Improved support for accelerator constructs

5.0 Nov 2019
Added support for C11, C++14/17, and Fortran 2008.
Improved support accelerator constructs and
Task dependencies

Table 2.1: Description of OpenMP specification releases dates and the notable features
offered by them [ARB20].

and Table A.2 in Appendix A contains the list of LLVM’s OpenMP runtime library

functions that are implemented in Sulong-OpenMP.

The front-end for C programs, clang, can generate LLVM IR for OpenMP pro-

grams. From the version 3.8.0 of clang (released in 2016), support for OpenMP 3.1

(released in 2011) is available [LLV18]. The latest version 9.0.0 of clang (released in

2019), fully supports OpenMP 4.5 features (released in 2015), with limited support for

offloading to the accelerators. Table 2.1 provides the release history of OpenMP and

their key features. The subsection describes the schematics of LLVM IR for OpenMP

programs generated by clang. The OpenMP specification provides many features. The

implementation of Sulong-OpenMP currently supports a subset of features available in

OpenMP 2.0 specialisations. Some of the notable unsupported features are OpenMP

tasks, sections, offload directives and nested parallelism.
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2.7 Summary

This chapter introduced important components of the Sulong-OpenMP project in-

cluding the Java Virtual Machine (JVM), the Truffle Framework, the Graal compiler

and the Sulong project. Then we discussed the directive-based parallel programming

approach, OpenMP.

We enable execution of OpenMP parallel programs on the JVM using the Sulong

project. The Sulong project takes an LLVM Intermediate Representation (LLVM IR)

of a C/C++/Fortran program as input and executes on a JVM. Sulong is an interpreter

for LLVM IR built using the Truffle framework that can be used to implement an

Abstract Syntax Tree (AST) interpreter for a guest language. Truffle is written in Java

so the guest language ASTs built using Truffle are executed using a JVM. The Truffle-

AST is specialised using run-time information, such as observed data type, which

helps the JIT compiler to generate optimised code for only the observed behaviour

of the program. When the Truffle-AST is executed using a JVM containing Graal

as a top-tier JIT compiler, it can achieve higher performance compared to a JVM

without Graal. One of the main reasons why Graal can produce code to achieve high

performance is because it performs partial evaluation on the Truffle-AST that involves

aggressive inlining of the AST nodes comprising a guest language function.

In the second part of the chapter, we discussed OpenMP’s fork-join based work-

sharing model. OpenMP achieves work-sharing by distributing iterations of a loop

amongst multiple threads for execution. In the next chapter, we will continue the dis-

cussion on OpenMP, its commonly used features and their implementation on Sulong.



Chapter 3

Implementation of OpenMP on

Sulong

In the previous chapter, we discussed the generation of LLVM IR for a sequential C

program and its execution using Sulong. This chapter discusses how Sulong-OpenMP

extends the Sulong project to enable the execution of LLVM IR for OpenMP parallel

programs on top of the JVM. We begin our discussion by describing the LLVM IR gen-

erated for an OpenMP program, how it differs from the sequential version of the same

program (when the OpenMP support is not enabled), and how the changed LLVM

IR achieves parallel execution of the OpenMP blocks in the source program. This

discussion highlights the functionalities required to enable the execution of LLVM IR

for OpenMP parallel programs using Sulong-OpenMP. We then discuss the potential

approaches to implement the OpenMP support to Sulong, their trade-offs, and the

approach implemented by Sulong-OpenMP. We then describe the implementation of

some of the important OpenMP features. Finally, we discuss other implementation

approaches that provide OpenMP-like directives for Java programs that are then run

on a JVM.

3.1 LLVM IR for OpenMP

To enable execution of LLVM IR for OpenMP programs using Sulong, it is important

to understand how they execute natively. Clang generates LLVM IR for OpenMP pro-

gram that contains calls to its OpenMP runtime library. Furthermore, the generated

43
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LLVM IR is tightly coupled to the functionality of those runtime functions. Therefore,

we first discuss the layout of the LLVM IR generated for OpenMP programs to achieve

desired parallel execution. In this section, we take a look at the role of the OpenMP

runtime to achieve parallel execution of OpenMP blocks.

1 void main() {

2 // Code before OpenMP block ...

3 #pragma omp parallel

4 {

5 printf("Hi thread %d\n", omp_get_thread_num());

6 }

7 // Code after OpenMP block ...

8 }

Listing 3.1: A simple OpenMP code (in C) where each thread prints a welcome message

and its thread ID.

1 define i32 @main() {

2 ; LLVM IR for code before OpenMP block

3 call @__kmpc_fork_call(...,

4 void (...)* @.omp_outlined), ...)

5 ; LLVM IR for code after OpenMP block

6 }

7 define void @.omp_outlined() {

8 ; LLVM IR for actual OpenMP block

9 call @printf()

10 ...

11 }

Listing 3.2: A simplified snippet of LLVM IR generated for the OpenMP program

from Listing 3.1 using clang.

Listing 3.2 shows simplified LLVM IR for the OpenMP program in Listing 3.1. An

LLVM IR for the @main() function (Line 1-6 in Listing 3.2) resembles the main()
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Figure 3.1: Block diagram of an OpenMP program: (a) source code, (b) LLVM IR,
and (c) execution model. Calls to OpenMP runtime functions are in orange.

function (Line 1-8 in Listing 3.1) in the source program. However, instead of having

IR for the OpenMP block within the main function, it is replaced by a call to the

OpenMP runtime function @ kmpc fork call (Line 4 in Listing 3.2). This runtime

call takes a pointer to the @.omp outlined function as an argument that contains

the actual LLVM IR for the OpenMP block, including a call to the printf function

(Line 9 in Listing 3.2). LLVM IR for the OpenMP blocks is wrapped in the functions

with their names starting with omp outlined. This process of extracting a part of the

function, is opposite of the function inlining transformation done by compilers.

Figure 3.1 shows a block diagram of the various sections the OpenMP program

and their interactions: (a) in source format, (b) in LLVM IR format, and (c) during

the execution. Figure 3.1(a) represents the block structure of main() function in

Listing 3.1, where the green rectangle represents an OpenMP block and the outer black

boarder represents the main() function. Figure 3.1(b) shows LLVM IR generated for

the main() function in (a). The LLVM IR for the OpenMP block is wrapped into

a separate function, shown as a separate black rectangle representing the outlined

function. The OpenMP block in the main() function is now replaced by the OpenMP

runtime function, shown as the orange rectangle. Figure 3.1(c) shows the execution

of the LLVM IR. OpenMP runtime function (in orange), creates required number of

OpenMP threads. Each of these threads then execute the parallel block (in multiple

green rectangles). OpenMP runtime function (in orange) ensures merging of threads

after they finish execution of the parallel block.
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3.2 Implementation Approach

Now we discuss three main approaches, that we considered to implement Sulong-

OpenMP: PThread-based approach, Function Morphing approach, and the Hybrid

approach. These approaches take the LLVM IR for an OpenMP program as shown in

Figure 3.1(b), and execute it on a JVM as shown in Figure 3.1(c).

The sequential version of Sulong (without OpenMP support), fails to execute the

LLVM IR for OpenMP programs. Sulong cannot find implementation of the runtime

function @ kmpc fork call. If the implementation of this function is made available

to Sulong, it can execute the OpenMP program. To achieve the expected behaviour,

Sulong needs implementation of the @ kmpc fork call function that matches the

implementation of the corresponding OpenMP runtime library function of clang. In

this case, the implementation is expected to behave as shown by orange rectangles in

Figure 3.1(C).

Therefore, the implementation approaches primarily differ in ways the OpenMP

runtime functions are implemented and made available to the Sulong, during the

execution. We begin our discussion with the Pthreads-based approach in the section

that follows.

3.2.1 Pthreads-based approach

POSIX threads, also referred to as pthreads, is an implementation of the standardised

thread API specified by IEEE POSIX 1003.1c standard [IEE95]. Programs written

using the pthreads library functions can be executed on any other hardware platform

using the platform-specific pthreads library implementation. The pthreads API offers

functions to perform thread management and synchronisation.

The OpenMP runtime library of clang uses pthreads API for implementation,

e.g., the implementation of fork function uses the pthreads API to spawn the required

number of threads, that are then assigned the outlined OpenMP function for execution.

The synchronisation constructs in OpenMP use the underlying pthreads API-based

functionalities, such as mutexes and barriers, for their implementation. Therefore, if

Sulong provides the implementation for the pthreads functionalities, we can use the

OpenMP runtime library implementation of clang. This would require the OpenMP
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runtime library compiled to its LLVM IR format, to execute OpenMP programs. The

compiled version of the runtime library can be provided as an external library using

the existing mechanism in the Sulong. Thus, the Pthreads-based approach would use

the existing implementation of clang for the OpenMP runtime functions, such as

@ kmpc fork call. Consequently, this would enable executions using Sulong to match

the behaviour of native executions. The reuse of OpenMP runtime library would

provide complete feature compatibility for OpenMP with the specific version of clang.

We did not opt for the Pthreads-based approach to implement Sulong-OpenMP

because of three challenges. i) Sulong did not support pthreads at the time of im-

plementation of Sulong-OpenMP. Therefore, we would have required to add support

for pthreads to Sulong. We found that implementing support for a subset of pthread

functionalities necessary to run a simple OpenMP program, such as Listing 3.1, would

require significantly large efforts compared to the alternative approaches discussed

in the following subsections. ii) This approach would have involved identifying and

compiling the OpenMP runtime library source files along with their dependencies to

LLVM IR, that are required to utilise pthreads support. We considered this task cum-

bersome compared to alternative approaches. iii) We considered the Pthreads-based

approach less flexible for the future experiments with the OpenMP runtime, e.g., du-

plicating the Truffle-AST of an OpenMP block to achieve thread-behaviour specific

JIT-compilation, that may benefit the programs exhibiting the master-slave or the

producer-consumer pattern.

3.2.2 Function Morphing approach

The function morphing approach originates from the necessity to determine the se-

quence of OpenMP features to implement in Sulong-OpenMP. The OpenMP specifi-

cation offers multiple sets of features, such as loop parallelism, tasks, and offloading

to accelerators directives. Supporting all the features is a huge task, that requires

to determine the order of implementation of the OpenMP features beforehand. We

decided the order of implementation by focusing on the subset of OpenMP features

that are necessary to run the benchmarks from NAS Parallel benchmarks (NPB) suite.

Further, we plan to continue this process to increase completeness incrementally. The

total number of OpenMP runtime library functions that are used in the entire suite
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is significantly small which made the Function Morphing based approach easier to

implement compared to the Pthreads-based approach.

The Function Morphing approach is based on the way Sulong executes an LLVM IR

function. Sulong maintains a registry of the function definitions that are observed while

parsing the LLVM IR. This registry is a map of key-value pairs, where the key is a name

of an LLVM IR function and its value is the Truffle-based AST for the function. When

a function is invoked, the map is searched and the corresponding Truffle-AST is called.

If the function is not found in the map, the LLVMLinkerException exception is thrown.

When an OpenMP program is executed on Sulong (without OpenMP support), the

same exception is thrown while calling the OpenMP runtime library functions. Thus,

we can specify a different function, our implementation for the function, to be invoked

when a missing OpenMP runtime library function is called. When the custom function

behaves the same as the original function, execution of the new program matches

the original program. We refer to such custom function as the morphed function

and the approach based on this technique as the Function Morphing approach. We

implement the OpenMP runtime functions, in Java, and add such implementations to

the registry. Therefore, when a runtime function is called, the morphed implementation

gets invoked.

The Function Morphing approach has several advantages over the PThread-based

approach. First, it is much simpler to implement. For example, the approach required

to implement just two OpenMP runtime library functions, namely @ kmpc fork call

and @omp get thread num, to execute the simple OpenMP program in Listing 3.1.

Also, this approach provides the OpenMP implementation with additional flexibility

because it provides control over creating OpenMP threads and assigning the Truffle-

AST of the function representing the OpenMP block.

3.2.3 Hybrid approach

A Hybrid approach is a combination of the Pthreads-based and Function Morphing

approach. The hybrid approach uses the OpenMP runtime library functions written

in both, C and Java, similar to the Pthreads-based and Function Morphing approach

respectively. The C functions are converted into LLVM IR and made available as

external library functions.
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The Function Morphing approach works for most of the runtime functions, that are

used to implement the OpenMP directives. However, some of the OpenMP runtime

functions need to read and/or write to local variables of the program. This becomes

cumbersome to implement using the Function Morphing based approach. We explain

the challenge for Function Morphing with the parallelised for-loop example shown in

Listing 3.3.

1 void main() {

2 #pragma omp parallel for

3 for(int i = 0; i < N; i++ ) {

4 // code in the parallel block

5 }

6 }

Listing 3.3: A for-loop in C where iterations of the loops are divided amongst OpenMP

threads for execution.

1 define i32 @main() {

2 ...

3 call @__kmpc_fork_call(..., @.omp_outlined(...)), ...)

4 ...

5 }

6

7 define void @.omp_outlined(...) {

8 ...

9 call @__kmpc_for_static_init_4(...)

10 ...

11 ; LLVM IR for the parallel block

12 ...

13 }

Listing 3.4: Simplified LLVM IR for the OpenMP program in Listing 3.3.
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The parallelised for-loop in Listing 3.3 divides the iteration space of a for-loop

nearly-equally amongst the OpenMP threads. Listing 3.4 shows the simplified LLVM

IR for the C code in Listing 3.3. During the execution, each thread queries the

OpenMP runtime using the init() function (Line 9 in Listing 3.4), to obtain the local

iteration bounds to execute the loop-body. This runtime function takes the global

iteration space bounds as input and populates the local bounds for a thread using

its thread ID. The variables holding the local bounds are passed-by-reference. These

variables are then written-to in the runtime function. The runtime function performs

the following tasks: i) reading global iteration bounds, ii) calculating local bounds us-

ing the thread ID and global bounds, iii) updating the variable holding local bounds.

A hand-written implementation approach for such a sequence of operations in Java

becomes cumbersome. This approach requires to write Truffle-AST that matches the

execution behaviour of the runtime function. The hand-made Truffle-AST needs to

be equivalent to one that the bitcode parser of Sulong would have generated from

LLVM IR for the function. A simple 32-bit integer-add operation in LLVM IR con-

tains more than ten Truffle-AST nodes in Sulong. Thus, creating the Truffle-AST

for the @ kmpc for static init 4() function consisting of about 35 lines of LLVM

IR, including branches and function calls, would require creating a significantly large

number of AST nodes by hand. These hand-written implementations are error-prone

and difficult to maintain.

For the majority of the OpenMP runtime library functions, we can implement

them in Java without using their hand-written Truffle-AST. Examples of these run-

time library functions are i) functions retrieving the runtime information, such as

the @omp get thread num() that retrieves the ID of the current thread ii) functions

synchronising the OpenMP threads, such as @ kmpc barrier() that waits for other

OpenMP threads to reach the synchronisation point. These functions can use purely

Java-based implementations and avoid the need for using the Truffle API. Therefore,

we use a Hybrid approach that implements the OpenMP runtime functions, or part

of their functionality, in C. Sulong-OpenMP uses these C implementations when the

runtime functions need to interact with internal data representation of Sulong. We

convert the C functions to LLVM IR using clang and add them as an external library.

Sulong-OpenMP parses these external libraries using the existing bitcode parser and
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registers the functions defined in them. Sulong-OpenMP can invoke these registered

functions like other functions defined in the program. We tried to minimise the need

of such Hybrid approach, and so far we have a single function implemented in C:

@ kmpc for static init 4().

The Hybrid approach leverages the benefits of both: the Pthreads-based and Func-

tion Morphing approach. The Hybrid approach was helpful for faster prototyping

during the implementation of OpenMP runtime functions. It allowed us to add a

placeholder implementation for the actual runtime functions in C and observe the exe-

cution behaviour of the program. This approach enabled Sulong-OpenMP to support

for the OpenMP features incrementally.

3.3 Implementation of OpenMP features

This section describes the implementation of some of the most commonly used OpenMP

features using the Hybrid approach (discussed in the previous section).

3.3.1 Fork-Join Execution Model

1 // OMP_NUM_THREADS = 4

2

3 void main() {

4 #pragma omp parallel

5 {

6 // OpenMP block

7 }

8 }

block block block block

fork

join

Figure 3.2: Block diagram of a simple OpenMP program in C, and its execution using
a fork-join model.

OpenMP supports the fork-join model that was introduced in Section 2.6 and il-

lustrated in Figure 3.2. Environment variable OMP NUM THREADS can be used to control

the number of threads to fork/spawn at the beginning of an OpenMP region. Each

thread then executes the region in parallel and joins/merges at the end of the region.

The environment variable OMP NUM THREADS is one of the values (referred to as control
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variables) that is used to determine the number of threads for executing a parallel

region. The detailed steps to determine the number of OpenMP threads are speci-

fied in Algorithm 2.1 in [ARB19]. However, in the absence of other control variables,

OMP NUM THREADS specifies the number of threads used for executing a parallel region.

Comma-separated values for the environment variable specify the number of threads

to be used for each nested level of the parallel regions.

Section 3.1 explained the implementation of the fork-join model by clang. When

clang generates LLVM IR, the OpenMP block is wrapped into a separate outlined

function. Each OpenMP thread then invokes this outlined function. The

@ kmpc fork call() function replaces the OpenMP block in the LLVM IR of @main()

function.

Sulong-OpenMP provides a morphed implementation of the @ kmpc fork call()

function. This morphed implementation calls the outlined OpenMP function on the

specified number of OpenMP threads. The runtime function receives a pointer to the

outlined as an argument. Sulong-OpenMP treats call to the outlined function as a

computational task and assign it to the desired thread in the pool of OpenMP threads.

Each thread in the thread-pool takes a outlined function and the stack-frame of the

calling function (i.e., @ kmpc fork call() in this case). The stack-frame is necessary

to evaluate the arguments to the outlined. Implementation of the runtime function

synchronises all the Java threads on finishing the execution of the assigned task. This

implements the implicit synchronisation when the parallel block exits.

Initially, Sulong-OpenMP used to spawn/fork new Java threads for each call to

the @ kmpc fork call() function and merge/join them at the end of the region.

This approach is inefficient (more performance analysis details on this are in Sub-

section 5.4.4). Thus, Sulong-OpenMP implemented a thread-pool using Java threads

where each member thread represents an OpenMP thread. The thread-pool is ini-

tialised at the beginning of the program and destroyed when the program finishes

execution. Sulong-OpenMP chooses the hand-written implementation of the thread-

pool to control the assignment of work to a specific thread in the pool. The ability

to assign work is crucial to implement the work-sharing constructs, such as the static

schedule discussed in the following section.
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3.3.2 Work-sharing Constructs

In this section, we discuss the implementation of work-sharing constructs offered by

OpenMP. This includes OpenMP master and single pragmas. This section explains

the sharing of work using OpenMP schedules, and then describes the implementation

of the static schedule in detail.

Master

The master thread (i.e., a thread with an ID 0), executes a block enclosed with an

OpenMP master pragma, as illustrated in Figure 3.3. The OpenMP threads do not

synchronise at the end of the master block.

1 void main() {

2 #pragma omp parallel

3 {

4 ...

5 #pragma omp master

6 {

7 // master block 1

8 }

9 ...

10 #pragma omp master

11 {

12 // master block 2

13 }

14 ...

15 }

16 }

master 1

fork

join

master 2

Figure 3.3: Only the master thread executes the OpenMP parallel regions with a
master pragma. There is no synchronisation point at the end of the master block.

When clang generates LLVM IR for the master block, it is surrounded by

@ kmpc master() and @ kmpc master end() functions as shown in Listing 3.5. All

the OpenMP threads execute the @ kmpc master() function and the value returned

by the function determines whether the thread would execute the master block. The

function returns value 1 for the master thread and value 0 for the remaining threads.

1 define void @.omp_outlined.(...) {

2 ...
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3 call @__kmpc_master(...)

4 ; LLVM IR for code in the master block

5 call @__kmpc_end_master(...)

6 ...

7 }

Listing 3.5: Simplified LLVM IR for a master block in the OpenMP parallel region.

Sulong-OpenMP supports the master directive using the morphed implementation

of the @ kmpc master() function. Sulong-OpenMP maintains a map of Java and

OpenMP thread IDs, where the key is a Java thread ID, and the value is its corre-

sponding OpenMP thread ID. Sulong-OpenMP queries this map to determine whether

the current Java thread is the master thread. The runtime function

omp get thread num() uses the same map to retrieve the OpenMP thread ID of the

current thread. For the most common scenario, this setup works as expected, when

the master block is not orphan (i.e., present inside the OpenMP parallel block). How-

ever, some of the benchmarks from the NPB suite contain orphan master blocks (i.e.,

the master block that is present outside the OpenMP parallel block). Therefore, we

need to put an additional mechanism to ensure the correct execution of orphan master

blocks. The @ kmpc master() function returns value 1 even when executed by the

main thread of program from an orphan block.

Single

The OpenMP single directive is very much similar to the master directive. Only one of

the OpenMP threads executes the block enclosed with OpenMP single pragma. This

thread is not necessarily a master thread as illustrated in Figure 3.4. Additionally,

there is an implicit barrier at the end of the single block, unless the nowait clause is

present along with the single pragma. Similar to the OpenMP master pragma, clang

surrounds the OpenMP single block using the @ kmpc single() and

@ kmpc end single() functions.

To implement the OpenMP single pragma, the morphed implementation marks

that the single block has been taken by a thread that executes the @ kmpc single()

function first, and we store the thread ID of a winner thread. When the other threads



CHAPTER 3. IMPLEMENTATION 55

1 void main() {

2 #pragma omp parallel

3 {

4 #pragma omp single

5 {

6 // single block 1

7 }

8 ...

9 #pragma omp single

10 {

11 // single block 2

12 }

13 }

14 }

single

fork

join

barrier

barrier

single

Figure 3.4: An OpenMP parallel region with a single block that is executed by one of
the OpenMP threads. There is an explicit barrier at the end of the single block.

execute the @ kmpc single() function, they see that the block is no longer available

for the execution. The other threads then continue without executing the single block.

Sulong-OpenMP checks whether the block is available for execution in a synchronised

Java block. Similar to an OpenMP master pragma, the @ kmpc single() function

returns value 1 when the current thread is the winner, otherwise returns value 0. This

value decides whether the thread should execute the block marked with the OpenMP

single pragma or not. We do not need to implement the implicit synchronisation at

the end of the single block. Clang generates a call to the barrier function after the

single block unless the nowait clause is not specified.

OpenMP-For

OpenMP allows distributing iterations of a for-loop amongst the OpenMP threads to

execute them collaboratively. The OpenMP-For construct is one of the commonly used

features of OpenMP. OpenMP-For construct enables a program to leverage multiple

threads to perform loop computation. A for-loop within the parallel block can specify

the OpenMP-For construct using #pragma omp for on the previous line. Figure 3.5

shows an OpenMP-For pragma that is combined with the pragma for the parallel

block. The merged pragma limits the parallel block to the for-loop.
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1 void main() {

2

3 #pragma omp parallel for schedule(static)

4 for(int i = 0; i < N; i++ ) {

5

6 printf("Thread %d -> iteration %d\n",

7 omp_get_thread_num(), i);

8

9 }

10 }

0 1 3 2

Figure 3.5: An OpenMP-For loop in C where each thread prints its ID and the iteration
number that it executes. The block diagram on the right represents the execution of
the program with four OpenMP threads and N=4.

Figure 3.5 shows an OpenMP program with a for-loop whose iterations are collab-

oratively executed by OpenMP threads. The diagrammatic representation shows the

execution of a program with four OpenMP threads where each thread executes one

iteration of the for-loop.

OpenMP allows controlling the distribution of iterations amongst the threads using

the combination of OpenMP schedules and chunk-size. OpenMP schedule specifies

the order assignment of the units of work. The chunk-size is an optional parameter,

a positive integer, that controls the minimum unit of work. There are five schedule

kinds specified in OpenMP: static, dynamic, guided, auto and runtime. Similar to

other major implementations, clang uses the static schedule as a default OpenMP

schedule.

� The static schedule divides the iteration space statically amongst the OpenMP

threads. The static schedule divides the iteration space into the chunks of the

size specified by the chunk-size, except the last chunk which contains the last

iterations. When no chunk-size is specified, the static schedule divides iteration

space into approximately equal-sized chunks. Here, the rationale is to distribute

the work done in the loop as evenly as possible. Chunks are then assigned to

threads in a round-robin fashion in the order of the thread number. The static

schedule is useful when all the iterations of the loop contain a similar amount of

work.
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� The dynamic schedule assigns iterations specified by the chunk-size to each

thread. The dynamic schedule uses the default chunk-size of 1. When a thread

finishes the assigned work, it requests the next chunk of work from the OpenMP

runtime. This process continues until there are no more chunks left for execution.

The dynamic schedule has an additional runtime overhead compared to the static

schedule, because of the additional interactions with the runtime to acquire the

next chunk of iterations. However, the dynamic schedule is helpful to achieve

better load-balance of work amongst the OpenMP threads when the iterations

of a loop do not have a uniform distribution of work.

� The guided schedule determines the chunk-size based on the number of unas-

signed iterations. Thus, the threads get larger chunks at the beginning. The

chunk-size reduces as the portion of allocated iterations increases. In the case of

guided schedule, the chunk-size plays a different role compared to the remaining

two schedules. The chunk-size specifies the smallest size of the chunk that the

schedule assigns to a thread.

� The auto schedule delegates the scheduling decision to the compiler and/or

the runtime. The behaviour of the auto schedule is implementation-specific.

� The runtime schedule allows a program to defer the choice of OpenMP sched-

ule until runtime. The choices of schedule and chunk-size can be specified at

runtime, e.g., using environment variables.

The primary use of the OpenMP schedules is to reduce the imbalance of workload

amongst the threads. The use of chunk-size is to tune the scheduling overhead by

controlling the number of interactions with the OpenMP runtime.

The Sulong-OpenMP currently supports only the static schedule with the default

chunk-size. Implementation of the static schedule uses the Hybrid approach (as ex-

plained in Section 3.2). Each thread queries the local iteration space at the beginning of

executing the OpenMP parallel region using the @ kmpc for static init 4() func-

tion. Sulong-OpenMP uses the C implementation of this function.
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Data-sharing attributes

OpenMP provides a mechanism to control the sharing of data amongst the OpenMP

threads using the attributes, such as private, shared, firstprivate and lastprivate. The

data-sharing attributes are typically specified along with the OpenMP parallel pragma

and contain a comma-separated list of variable names to which the attribute is applied.

� The private attribute creates separate instances of the variables for each thread

and their scope is limited to the parallel region. The private instances are not

initialised when created, thus may contain a garbage-value.

� The threadprivate clause creates separate instances of the variables for each

thread. The threadprivate instances of a variable are initialised to the value held

by that variable before entering the parallel region.

� The firstprivate is a superset of the private attribute that specifies the initial

value of a variable’s private instance. In addition to the functionality of the

private clause, the firstprivate initialises the private instances of a variable with

the value in the original version of the variable.

� The lastprivate is also a superset of the private-clause. It is specified along with

the OpenMP-For clause. Similar to the private-clause, the lastprivate clause cre-

ates the private instances of the specified variables for each thread. Additionally,

the lastprivate clause updates the original values of the variables with the values

from the thread that executes the sequentially last iteration. In a nutshell, after

executing the parallel region, the lastprivate variables will contain the values

equivalent to the values on sequential execution of the for-loop.

� The shared attribute instructs threads to share the local instances of the spec-

ified list of variables. This attribute does not create new instances of a shared

variable for threads. Each thread shares the same copy of a shared variable. Con-

sequently, a shared variable preserves its value before entering and after exiting

the parallel region. Importantly, updates to the shared variables need explicit

synchronisation to avoid races. If the shared variable can be an array, the array

elements can be updated by multiple threads individually.
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� The reduction attribute specifies a form of recurrence calculation that is per-

formed in parallel. The clause specifies reduction-identifier, an operation such as

+ (for aggregation), min, max, and a list of identifiers to which that operation is

applied. We do not discuss the reduction attribute at length. The NAS Parallel

Benchmarks (NPB) suite uses a simple form of a reduction attribute to aggregate

partial sums across the OpenMP threads.

The data-sharing attributes topic in the OpenMP specification covers additional con-

structs, such as the linear clause, that we do not discuss here. We focus our discussion

on the attributes used in NPB suite, that is limited to the attributes specified along

with the parallel region or OpenMP-For pragmas.

The LLVM IR generation of clang and allocation of local variables in Sulong sim-

plified the implementation of the data-sharing attributes. For private, firstprivate

and threadprivate variables, clang generates LLVM IR to create their corresponding

local variables in the outlined OpenMP function. The outlined function uses the

same local/private copies for its computation. As clang allocates variables locally,

their scope is limited to the outlined function. Sulong-OpenMP treats those private

copies similar to any other local variables defined in the outlined function. For the

firstprivate variables, clang generates instructions to initialise them to zero after their

allocation.

The shared variables are passed-by-reference, as arguments to the OpenMP run-

time function @ kmpc fork call() in the generated LLVM IR. This runtime function

then passes the same arguments to the outlined OpenMP function. Therefore, ac-

cesses to the shared variables in the parallel region are performed to the same location

in the memory. The LLVM IR allocates shared variables using the alloca instruc-

tion outside the parallel region. These allocations on Sulong-OpenMP use the existing

implementation of Sulong that built using UNSAFE API from Sun [MPM+15]. The

UNSAFE API allocates a chunk of memory off-the-heap of JVM and returns its native

pointer as a long value. Sulong uses this pointer to access the content at that memory

location. The generated LLVM IR from Clang passes shared variables to the outlined

function using such pointers to their locations. The memory allocation mechanism in

Sulong already supports all these operations. Thus, Sulong or Sulong-OpenMP did

not require any modifications to support the OpenMP shared attribute.
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In the case of reduction clause, the LLVM IR corresponding to the reduction

operation is surrounded by @ kmpc reduce nowait and @ kmpc end reduce nowait

functions. In this LLVM IR block, the result variable is updated synchronously by

using the pointer to its address. Sulong-OpenMP mapped these functions to the func-

tion performing enter and exit from the critical region. Consequently, the reduction

is performed synchronously before exiting the parallel region. Therefore, we did not

require an additional mechanism to support OpenMP reduction clause.

3.3.3 Synchronisation constructs

This section describes the OpenMP synchronisation constructs. This includes the

implementation of the barrier, critical and flush pragmas.

Barriers

A barrier is a synchronisation point where a thread waits until all the threads reach

that point, and then all the threads continue. OpenMP has implicit and explicit types

of barrier. The implicit barriers are present at the end of the parallel and single

region. The explicit barriers can be specified using #pragma omp barrier as shown

in Figure 3.6.

1 void main() {

2 #pragma omp parallel

3 {

4 // code before barrier

5 #pragma omp barrier

6 // code after barrier

7 }

8 }

before
before

before before

fork

join

after
after after

after

barrier

Figure 3.6: A block diagram of a parallel block containing the OpenMP barrier. All
the OpenMP threads synchronise at the barrier. However, the code blocks before
and after the barrier execute without synchronisation. The red line shows an explicit
barrier while the gray line, where threads join, shows an implicit barrier.
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In the generated LLVM IR, the @ kmpc barrier() function call replaces the bar-

rier directive in the parallel block. Every OpenMP thread calls this function and blocks

itself until the remaining threads to call the same function. We provide a simple im-

plementation of OpenMP barrier using the wait-notify mechanism of Java threads. A

Java thread can invoke the wait() method on an object and suspends itself until any

other thread interrupts or notifies it. We use this behaviour to implement barrier. All

the threads except the last thread invoke the wait() method on the specified object

in the morphed implementation of the @ kmpc barrier() (i.e., when a thread reaches

barrier). When the last thread reaches the barrier, it wakes up all the waiting threads.

Critical

The code block marked with an OpenMP critical directive creates a mutually exclusive

region, where only one thread can be present at a given time. For a particular critical

block, if one thread is executing it, other threads have to wait for that thread to

exit the block then the next thread may enter the block. When the LLVM IR is

generated for an OpenMP critical block, it is enclosed by the @ kmpc critical()

and @ kmpc critical end() OpenMP runtime functions. Figure 3.7 shows that the

generated LLVM IR is similar to the master and single directive.

1 void main() {

2 #pragma omp parallel

3 {

4 #pragma omp critical

5 {

6 // Critical region

7 }

8 }

9 }

1 define void @.main.(...) {

2 ...

3 call @.omp_outlined.(...)

4 ...

5 }

6

7 define void @.omp_outlined.(...) {

8 ...

9 call @__kmpc_critical(...)

10 ; LLVM IR for the critical region

11 call @__kmpc_end_critical(...)

12 ...

13 }

Figure 3.7: An OpenMP C program containing the critical region is shown on the left.
Simplified LLVM IR for the critical region is shown in on the right side. The LLVM
IR for the critical region is surrounded by the runtime function calls.
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aw=5, br=2

Thread 1

a=7, b=3

Memory

a=5, b=2 a=5, b=3

Flush a

a=5, b=3 a=5, b=3

Flush

aw=5, br=2 a=5, b=3

Thread 1 Memory

(i) (ii)

Figure 3.8: Examples of flush operations: (i) flush-set contains variable a, (ii) when
flush-set is empty. When the flush-set is empty, the flush operation makes the entire
temporary view of the thread, consistent with the memory. aw specifies that the thread
has updated value of a. Similarly, br specifies read operation on b.

To support the critical pragma, Sulong-OpenMP provides a morphed implementa-

tion for the runtime functions, using an instance of a Semaphore class in Java. When

a thread enters a critical region, it calls the @ kmpc critical() function where it

acquires the lock. When the thread exits the critical region, it calls the

@ kmpc end critical() function and releases the lock. It ensures that only the

thread executing the critical region has exclusive access to it.

Flush

OpenMP uses the relaxed-consistency memory model [HDS05]. This model allows

threads to have a view of the memory, that can be temporarily inconsistent with that

of the other threads. The flush operation on a thread makes its temporary view of the

memory consistent with the actual memory. Thus, the flush operation is analogous to a

memory fence operation. The flush operation is performed on a set of variables called

flush-set. This operation ensures that a temporary view of the variables in the flush-

set is consistent with the memory [ARB19]. Figure 3.8(i) shows an example of flush

operation, where a flush-set consists of only variable a. In this case, thread 1 writes

variable a and reads variable b. Flush operation guarantees that the view of thread 1

of a consistent with memory but does not guarantee the same about thread 1’s view

of variable b, because the flush-set only contains a not b. Further, the flush operation

restricts the OpenMP implementations from reordering the memory operations on the

flush-set variables. Otherwise, OpenMP implementations can reorder these operations.
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The flush pragma specifies the flush-set as a list of comma-separated variable names

as #pragma omp flush (var1, var2, ...). When a flush pragma does not specify

a list of variables, the flush operation applies to the entire temporary view of a thread

that includes all the variables, as shown in Figure 3.8(ii).

On the other hand, Java uses the happens-before consistency memory model [Pug19].

In Java, when a write operation is performed on a volatile variable, this write oper-

ation along with all the previous write operations to any other variables performed by

the thread are visible to the other thread; when that thread performs a read/write op-

eration on the same volatile variable. Sulong-OpenMP uses this behaviour to support

the OpenMP flush operation in Java. The LLVM IR for the flush pragma replaces

it by a call to the @ kmpc flush() function. Sulong-OpenMP provides a morphed

implementation of this runtime function, where it increments a value of the prede-

fined volatile variable. This increment performs a read and a write operation on the

volatile variable. Therefore, when a thread executes OpenMP flush, all the writes

before calling the OpenMP flush become visible to the other OpenMP threads, when

they execute the flush function. However, this limits our ability to perform flush on

a subset of variables. Thus, every flush operation irrespective of whether it is on a

subset of variables, Sulong-OpenMP performs flush on the entire temporary view that

includes all the shared variables. The OpenMP specification permits implementations

to ignore the flush-set, and perform every flush operation to all the shared variables

[ARB19].

OpenMP specifies implicit flushes at places such as exiting from a critical region,

end of the parallel regions and during barriers. In the implementation of these con-

structs, Sulong-OpenMP uses the common pre-defined object in Java synchronize

construct to achieve the desired synchronisation amongst OpenMP threads. The Java

memory model guarantees that the unlock operation on an object happens before the

lock operation on the same object. Therefore, operations that follow the aforemen-

tioned synchronisation points are guaranteed to see the write operations from other

threads that happened before those points.



CHAPTER 3. IMPLEMENTATION 64

3.4 Related work

This section discusses some of the implementations that run on a JVM and offer

OpenMP-like features. We also discuss an implementation that executes LLVM IR on

the JVM. We discuss the other implementations in this chapter because they mainly

differ from Sulong-OpenMP in their implementation approach. For completeness, we

will briefly mention the native implementations from different compiler vendors which

is the most popular way to execute the OpenMP programs.

3.4.1 OpenMP-like implementations in Java

JOMP

The JOMP is a prototype implementation published in 2000 after the release of

OpenMP 1.0 in 1997 [BK00]. The primary motivation behind JOMP was to bring

directive-based shared-memory parallelism to Java because OpenMP is considered to

be less error-prone, easier to write and have better maintainability. JOMP allows

writing a subset of OpenMP directives as comments in a Java program. The JOMP

compiler processes these directives using the source-to-source translation. This transla-

tion converts the OpenMP pragmas to corresponding parallel Java code that contains

calls to the JOMP runtime library. This process is analogous to the generation of

LLVM IR with calls to the OpenMP runtime library of clang that we discussed earlier

in Section 3.1. The JOMP compiler extends the Java 1.1 parser that is bundled with

the JavaCC utility to parse of OpenMP directives. This parsed Java code can then be

compiled using a regular Java compiler and needs the JOMP runtime library during

its execution.

JOMP has a few limitations while mapping OpenMP features to Java, e.g., the

types of variables permitted in the data sharing constructs, such as private, firstpri-

vate and shared. The JOMP implementation allows using only the local variables

(not the instance variables), in the data sharing constructs. Instance variables are

the variables that are declared within the Java class as its fields. Threads always

shared the instance variables. Further, the exceptions are more common in Java com-

pared to C++. The OpenMP specification available at that time did not provide clear

guidelines to handle exceptions. This lack of guidelines on how to handle exceptions
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leads implementation to ambiguous scenarios, e.g., how to handle the exception that

occurs in the parallel region but is caught outside the region. In this case, the ex-

pected behaviour may be to interrupt the master thread and handover the exception

to it. However, the Threading API of Java prohibits to interrupt a running thread.

The Thread.interrupt() only allows interrupting a waiting thread. This scenario

becomes more complex when the exception arises in the work-sharing construct, e.g.,

the exception occurs in an OpenMP-For loop, and is caught outside the loop but inside

the parallel region. In this case, the specification needs to define the behaviour of the

synchronisation constructs, e.g., the implicit barrier at the end of an OpenMP-For

loop. OpenMP did not support tasks when JOMP was released. Thus, JOMP did not

support OpenMP tasks.

omp4j

The omp4j project [BS19] uses an approach similar to that of JOMP. The omp4j

expects OpenMP directives as comments in the Java program; it then pre-processes

them using a source-to-source translation tool. This translated version of the program

expands the directives in the original Java program with the equivalent parallel code.

This translated code contains calls to the omp4j runtime library functions. The omp4j

is a relatively new project (v1.0 was released in 2015) that supports Java programs

written using Java 8. It claims better scalability on more than 24 CPU cores compared

to JOMP[BS19]. The pre-processor of the project is built on top of the ANTLR-based 1

grammar for Java 8 (newer than Java 1.1 used by JOMP). The omp4j shares limitations

of the JOMP project, e.g., limited support for exception handling, because both the

projects bring OpenMP-like features to Java.

JaMP

The JaMP [KBVP07] is the adoption of OpenMP features to Java. Unlike JOMP and

omp4j, JaMP targets distributed memory clusters. JaMP supports a much larger sub-

set of OpenMP features compared to JOMP and omp4j. JaMP supports all OpenMP

1ANTLR is a popular tool that can generate a parser for a given grammar in various target
programming languages [Par13]
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2.0 features and some of the OpenMP 3.0 features, such as OpenMP tasks. Addition-

ally, JaMP also supports the execution of OpenMP parallel loops on CUDA-enabled

graphics cards. JaMP uses the research compiler: Jackal [VBB01]. Jackal provides

a software-based Distributed Shared Memory (DSM) implementation 2 for Java pro-

grams. The DSM enables JaMP programs to execute on multiple nodes of a cluster.

The JaMP directives closely follow the OpenMP standard. They are put as comments

in a Java program. However, JaMP uses a different approach to process directives

compared to that of JOMP and omp4j. They are translated to intermediate code of

Jackal: LASM. JaMP extends LASM with special instructions to capture information

from its directives. This makes the optimisation phase of Jackal aware of the JaMP

directives. Further, this enables Jackal to apply JaMP-specific optimisations, e.g.,

passing only live shared variables to worker threads [KBVP07]. However, JaMP does

not support execution of the orphaned regions (i.e., a region with OpenMP directive

but outside the parallel region). The OpenMP compliant implementations are required

to dynamically determine if the code is executed from the parallel region.

Comparision with Sulong-OpenMP

Sulong-OpenMP uses a different approach to execute OpenMP programs. It inter-

preters the LLVM IR of the OpenMP programs on a JVM. Sulong-OpenMP provides

the implementation for the OpenMP runtime library functions of clang. This ap-

proach is different from the previously discussed approaches that are required to i)

parse the OpenMP directives, ii) generate calls to an implementation-specific runtime

library, iii) implement the runtime library. Our approach benefits from the translation

mechanism of clang for the OpenMP directives. However, the use of clang also re-

stricts Sulong-OpenMP, to match the implementation of its OpenMP runtime library

functions. Sulong-OpenMP aims to support OpenMP tasks and ability to execute

OpenMP parallel loops on accelerators in the future. Sulong-OpenMP does not sup-

port these features yet. As Sulong-OpenMP is an interpreter in Java, it does have the

limitations of mapping OpenMP features to Java as the previous approaches. Further,

2A software-based DSM system provides a global address-space to the nodes of the cluster using
their separate memories. DSM performs a check for each memory access, to determine if the object
is in the local memory. DSM requests the runtime system to bring the remote objects in the local
memory.
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Figure 3.9: Execution flow using the fat-binary approach. Important steps during the
execution and their sequence are numbered in the diagram.

Sulong-OpenMP also supports execution of the orphaned regions.

3.4.2 Execution of IR of C programs on JVMs

Sulong is not the only system that achieves execution of a C program by using its

intermediate representation generated by a static compiler and then executing that

on a JVM. This approach aims to leverage benefits from both static and dynamic

optimizations from Ahead-of-Time (AOT) as well as Just-in-Time (JIT) compilers

respectively. This subsection describes the fat-binary approach that uses the propri-

etory intermediate representation of C/C++ programs and executes it using the JVM

[NED+13]. The fat-binary approach also aims to offer low start-up time similar to the

AOT compiled executions. Although the fat-binary approach uses IBM’s proprietory

split IR, it is also applicable to LLVM IR.

Fat-Binary Approach

Figure 3.9 depicts execution of a C program using the fat-binary approach. During

the execution, first, the fat-binary for a program is generated (Step 1 in Figure 3.9)

that bundles the AOT compiled binary executable the program along with its IR. The

runtime engine begins execution of a program using its binary executable (Step 2)

which avoids the slow start-up phase of a typical JVM-based execution. The runtime

samples the execution using an event-based profiler to identify the frequently called
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C functions (Step 3). The frequently called hot functions are then passed to the

JIT-compiler (Step 4). Compilation of the hot functions occurs in two stages: i)

The JIT-compiler creates instrumented versions of the hot functions. The execution

switches to the instrumented version where the runtime collects profiling information

(Step 5). The instrumented version is slower as it performs costly profiling operations.

ii) The JIT-compiler uses the profiling information collected from the instrumented

version, to aggressively optimise hot functions. The optimised version of the functions

is then used for further invocations (Step 6). While the JIT-compilation is in progress,

the execution switches back to the original AOT-compiled version of that method.

Use of AOT-compiled executable reduces the start-up time compared to using a

purely JVM hosted approach. The fat-binary-based approach uses a repurposed JVM

to create instrumented and JIT-compiled version using the IR of hot methods. Thus,

the fat-binary benefits from the advantages offered by both AOT-compiled and JIT-

compiled approaches.

Unlike Sulong-OpenMP, the fat-binary-based approach does not support the exe-

cution of parallel programs. Further, creating fat-binaries requires a custom tool-chain

that bundles LLVM IR with the binary executable, while Sulong-OpenMP uses un-

modified LLVM IR.

3.4.3 Native OpenMP implementations

Similar to clang from the LLVM project, there are multiple OpenMP implementa-

tions available from different software vendors such as Intel, PGI, GCC and IBM with

various degrees of completeness for the latest OpenMP specifications 5.0. Such im-

plementations take an OpenMP program written in C/C++/Fortran as input and

generate an AOT-compiled executable binary. This is a de facto approach for execut-

ing OpenMP applications.
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3.5 Summary

In this chapter, we discussed the extension to the Sulong project that enables the

execution of OpenMP programs on a JVM. First, we discussed the implementation

problem for Sulong-OpenMP that covered the generation of LLVM IR for an OpenMP

program. Then we discussed three implementation approaches and their trade-offs

for extending Sulong: Pthreads-based, Function Morphing and the Hybrid approach.

We chose the Hybrid approach to implement Sulong-OpenMP; because it simplified

incremental adding of the OpenMP features compared to Pthreads-based approach.

The Hybrid approach is the extended version of the Function Morphing approach.

It uses the C implementation (converted into LLVM IR), for some of the runtime

functions that are relatively cumbersome to implement in Java using the Function

Morphing approach.

We then discussed the implementation of some of the commonly used features of

OpenMP using the Hybrid approach. This covered the implementation of the fork-

join model, work-sharing and synchronisation constructs. The discussion on the work-

sharing constructs covered the implementation of OpenMP-For loops, master and sin-

gle directives, and the synchronisation constructs covered the barrier, critical and flush

directives.

Finally, the related work section provided two main categories of the OpenMP

implementation. First, the implementations that provided OpenMP-like features to

Java using the Java Threading API. Second, the implementations from other compiler

vendors, that use the Ahead-Of-Time (AOT) compiled binaries for executing OpenMP

programs. The AOT-based approach is conventional and the most common way of

executing OpenMP programs.



Chapter 4

Experimental Methodology

This chapter discusses the experimental methodology that we followed to evaluate

Sulong-OpenMP. As we use a JVM for executing OpenMP programs, we will begin

our discussion with the key metrics used for performance evaluation of the JVM hosted

execution (Section 4.1). Further, we will discuss the techniques used for the evaluation

of JVM hosted languages and the experimental methodology used for the evaluation

of Sulong-OpenMP (Section 4.2). We will conclude this chapter by describing the

experimental setup that covers the selected benchmarks, hardware and the software

stack used to evaluate Sulong-OpenMP (Section 4.3).

4.1 Evaluation Metrics

In this section, we discuss the metrics used to evaluate JVM hosted executions. This

covers both the metrics that we use (peak performance) and the ones that we do not

consider while measuring the execution time of the benchmarks.

4.1.1 Peak Performance

Execution of programs begins in a slow interpreter mode on JVMs. During the execu-

tion, when a method of the program is invoked more than the pre-defined threshold,

the JVM considers the method hot and JIT-compiles it. Subsequent invocations of

that method use its JIT-compiled version. The compiled version is faster than the

interpreted version because i) it avoids calls to the method’s bytecode handlers and ii)

70
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Figure 4.1: A comparison of execution behaviour for the nbody benchmark from the
Shootout benchmark suite executed 100 times in a single invocation of native/JVM.
Figure 4.1a shows execution of the benchmark executed natively while Figure 4.1b
shows the execution of the Java version of the benchmark executed on a JVM.

it is optimised using the profiling information collected during interpretation. There-

fore, as the number of JIT-compiled methods increases, the execution of the program

becomes faster accordingly. This process continues until all the frequently used parts

of the program get compiled and the performance improvement plateaus. At this point

during the execution, the application is said to have reached its peak performance and

no further performance improvements are expected [Sea15]. The execution phase from

the start of the application until it reaches its peak performance is referred to as the

warming-up phase, while the execution phase at the peak performance is referred to

as the warmed-up phase.

Figure 4.1 shows the execution time of 100 iterations for C and Java versions of

the nbody benchmark from the Shootout benchmark suite [Guo18]. The C version is

executed using a native binary executable generated using clang, and the Java version

is executed on a JVM. Here, the benchmark is executed repeatedly in a loop within

a single native/JVM invocation, and the execution time of each iteration is recorded.

Figure 4.1a shows that the execution time of 100 iterations for the C version is nearly

constant. On the other hand, the corresponding initial iterations for the JVM hosted

execution in Figure 4.1b are much slower (∼7 times) compared to the later iterations

of the benchmark. After about 25 iterations of the benchmark, the execution time for

the JVM hosted execution stabilises, and the benchmark is said to be executing at

its peak performance. In the performance evaluation of Sulong-OpenMP, we use the

execution time of the iterations running at the peak performance. Section 4.2 provides
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more detail about detecting the warmed-up state of a benchmark.

As discussed in Section 2.2, JVMs use a tiered compilation approach by employing

multiple JIT compilers. The highest tier/top-tier of JIT-compilation trades-off com-

pilation time for the performance. Thus, a method compiled using the top-tier JIT

compiler is the fastest version of the method that the JVM can generate. However,

there is a rare possibility that a method might get slower on compilation using a top-

tier JIT-compiler [BBTK+17]. To avoid such JIT-compilation cases, it is necessary to

identify and choose the compilation level of the corresponding methods to the tier that

generates their fastest version. Depending on the JVM, tuning the compilation level

of methods may be achieved by using the JVM-specific flags. Thus, such compilation

tuning can be cumbersome and fragile. However, this is not a task expected to be

performed by users. Therefore, we decided to ignore such compilation anomalies (if

present), and use the top-tier JIT compiler (i.e., Graal compiler) for all the eligible

hot methods during the execution using Sulong-OpenMP.

The performance evaluation metrics for different executions are listed below.

� JVM hosted executions use peak performance as a metric for evaluating

performance [Tol19, SDM+13]. For long-running applications on JVMs, the

warming-up phase of an application is negligible compared to the total execution

time. Thus, the warm-up time can be ignored.

� Native executions of OpenMP programs use the wall-clock time as a metric for

evaluating performance. The purpose of using OpenMP parallelism is to reduce

the total execution time of the programs.

� Sulong-OpenMP uses peak performance as a metric for evaluating perfor-

mance. We do not aim to provide Sulong-OpenMP as a replacement for native

executions. We provide Sulong-OpenMP as a system that enables users to ex-

ecute the OpenMP programs along with the benefits offered by the GraalVM,

such as support for the execution of polyglot OpenMP programs. Therefore,

our objective is to achieve reasonable execution performance, which will make

the execution on Sulong-OpenMP practical. We aim to achieve our objective by

minimising the performance gap between the native and Sulong-OpenMP-based

execution. Peak performance enables us to measure a lower bound of this gap.
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Barrett et al. demonstrated that, although the peak performance is a metric

for benchmarking the executions on virtual machines, it can be challenging to use

[BBTK+17]. The primary reason is that often the benchmarks fail to reach the steady-

state of peak performance (i.e., the peak performance may keep fluctuating). Some

benchmarks may achieve a steady-state at a performance lower than the peak perfor-

mance while others may never achieve the expected steady-state performance. In both

scenarios, it is difficult to pick the exact iteration when a benchmark reaches its peak

performance. Also, the number of iterations and the warm-up time are specific to the

VM and the benchmark. We address this problem by using the approach suggested

by Kalibera et al. This uses manual inspection of the execution to determine when

the benchmark is warmed up [KJ13]. Along with the manual inspection, we ensure

that the computationally intensive functions of the benchmarks are compiled by the

top-tier JIT compiler. In the case of OpenMP programs, these functions have the

parallel regions, and they are compiled by the Graal compiler.

4.1.2 Inapplicable Metrics

In this section, we discuss the aspects of JVM hosted execution that we do not consider

for the performance evaluation of Sulong-OpenMP.

Memory consumption

A JVM hosted execution takes a significantly large amount of memory compared to

the native execution of its equivalent program. A JVM needs many components such

as the interpreter, JIT compilers, garbage collectors, code cache to store the compiled

versions of the program available in the memory during the execution. The memory

overhead is further increased while executing a Truffle hosted language (e.g., Sulong)

on a JVM. A Truffle hosted implementation needs the AST representation of an input

program and the AST interpreter itself in the memory. Further, as an AST is self-

optimising, it needs to store the information about the current specialisation state in

the memory. This makes the execution of Truffle hosted languages memory-intensive

compared to the execution of the AOT compiled binary of the program. Smaller

memory footprint may improve performance by effective utilisation of cache hierarchy.

Sulong implements techniques, such as variable liveness analysis, to reduce memory
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footprint. Although these techniques can increase performance, they are not discussed

thoroughly as they complementary to the functionality of Sulong-OpenMP.

A precise measurement of memory consumed by an application, running on a JVM

at a given point, can be difficult because the application does not manage its own

memory. When an application creates an object, the JVM allocates memory for it

on the heap that is reclaimed when the object is no longer used (i.e., not referenced

by any other object); thus, it is unreachable from the application. JVMs employ the

Garbage Collector (GC) to identify the unused objects and claim the memory allo-

cated to them. This cleaning operation or a collection cycle involves computation. A

certain part of GC computations may need to pause the execution of an application.

This makes triggering a GC cycle important for both memory consumption and per-

formance. JVMs avoid frequent GC cycles and perform them when they are necessary

using the pre-defined heuristics. Therefore, when we measure the memory allocated

at any point during the execution, it may not be the exact representation of the total

amount of memory used by the application at that point. Further, the discussion on

memory consumption is valid in the context of a specific amount of memory because

the application behaviour may change for a different amount of available memory. For

example, smaller heap size may cause frequent GC cycles that pause the execution of

an application more often which leads to increased execution time compared to the

execution with a larger heap size. Therefore, we do not explicitly attempt to record

memory consumed by an application. We only look at the time spent while performing

GC activities in the execution profile of an application, recorded using our performance

analysis technique (discussed in Chapter 6). This performance analysis aims to de-

termine the percentage of overhead incurred from the implementation inefficiencies of

Sulong-OpenMP.

Start-up time

The start-up time for an application is the time taken from launching the JVM until it

executes the first line of the main method of the application. This involves time taken

to set up the runtime environment, create the specified number of compiler and garbage

collection threads, load necessary classes and libraries, etc. This may be crucial for

applications running for a short period. However, for the use-cases of Sulong-OpenMP,
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we expect this time to be much smaller compared to the overall execution time of the

application. Additionally, GraalVM offers an option to create a binary executable

for a Java application, the Sulong-OpenMP interpreter in our case, that can be used

for the applications in which the start-up time needs to be shorter [WSH+19]. The

AOT compiled executables avoid spending time to set up the execution environment.

Consequently, the start-up time of an application is reduced significantly.

Warming-up Phase

Sulong-OpenMP is built on top of the system, that trades-off the warm-up time for

higher performance. Therefore, we do not measure the warming-up phase of appli-

cation (i.e., the time required from the beginning until the application is warmed-up

and reach the peak performance). As mentioned previously, JVMs collect profiling

information that is used to perform speculative optimisations and the Truffle-based

interpreters specialise the program ASTs that makes the warming-up phase much

slower.

4.2 Benchmarking Methodology

In this section, we discuss the important aspects of benchmarking for the JVM hosted

execution. Then we describe the benchmarking technique that we used for the evalu-

ation of Sulong-OpenMP.

4.2.1 Key Aspects

Calculating the execution time

One of the basic techniques to measure the execution time for a benchmark is to

use the command-line utility, time. It measures the wall-clock execution time for an

application, that includes start-up time, warming-up and warmed-up phase of the

benchmark. As the utility measures execution time externally, it is not possible to

extract the time spent in different execution phases of the benchmark.

We want to measure the peak performance of the application therefore we need to

ensure that the benchmark is warmed-up before we start measuring the execution time.
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One of the approaches used by the JVM hosted executions is to run a benchmark in a

loop, allow the benchmark to warm-up during the first few iterations, and then measure

the execution time for the warmed-up iterations. The built-in library functions are

used to measure time before starting and after finishing the iteration to compute the

execution time for every iteration. We can use the time taken for multiple iterations

as a representative of the execution time of the benchmark. Using multiple iterations

is useful, especially, to minimise the noise introduced by non-deterministic events,

such as garbage collection. The input parameters of a benchmark can further be

tuned to ensure that every iteration of the benchmark executes for a sufficiently long

time, thereby minimising the noise. For example, the implementation of Ruby using

Truffle and Graal, TruffleRuby, has configured the benchmarks’ parameters so that

the warmed-up iterations would execute for about ∼2 seconds [Sea15].

Consistent Execution environment

There exist several confounding variables that can reduce the reproducibility of the

benchmark results, such as the percentage of available memory at the time of execution,

types of daemon processes running, and temperature of the processor to name a few.

Influence of the confounding variables could be minimised using the sophisticated

techniques provided by tools such as the krun [BBTK+17] or Collective Knowledge

Framework (CK) [Fou09]. These techniques provide mechanisms to ensure that i) the

CPU frequency did not change before and after executing iterations of the benchmark;

ii) the temperature is constant at the time of launching the benchmark process; iii)

every invocation of the benchmarking process is done after rebooting the machine. We

do not use such a sophisticated benchmarking process because of the time constraints.

Instead, we use the guiding principles behind these techniques described in Section 4.2.

In the case of multi-threaded execution, scheduling of threads on CPU cores can

influence the performance of an application. The modern shared-memory systems

are typically Non-Uniform Memory Access (NUMA) systems. On NUMA systems,

location of the memory, relative to a CPU core, determines the time taken to access

that location. Scheduling of threads and memory access pattern may change the

proportion of slower memory accesses performed by an application. Further, the CPU

cores typically share one or more levels of caches. The performance of an application
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can be improved when the threads are scheduled to benefit from the cache locality.

The Linux utility taskset enables us to restrict the cores that the threads be-

longing to a process can run on. A JVM also starts the compiler and GC threads

before beginning the execution of an application. JVMs provide flags to specify the

number of threads for compilation and GC services. The HotSpot JVM provides

the -XX:CICompilerCount flag to specify the number of compiler threads and the

-XX:ParallelGCThreads flag to specify the number of parallel GC threads. We use

taskset to ensure the same CPU cores are used for every benchmark invocation.

While using a system with multiple NUMA nodes, we use the second NUMA node

when the first one is fully occupied. This approach aims to maximise the proportion

of accesses to the faster region of memory. We do not tune thread pinning further

because it is out of the scope of this work.

Limiting the non-deterministic behaviour of the JVM

A JVM hosted execution involves multiple non-deterministic aspects, such as compi-

lation of methods and garbage collection (GC) cycles. A different compilation order of

methods may cause variations in performance. Therefore, the JIT-compilation order

should be recorded; and the compilation decisions should be replayed while executing

the benchmark, to reproduce the behaviour. We considered this option less feasible

and our attempt to achieve similar behaviour made executions more non-deterministic.

In our attempt, we disabled the background compilation of methods and used a single

compilation thread to make the order of JIT compilation of the methods reproducible.

However, occasionally we noticed that the computationally important methods could

not get JIT-compiled. This unexpected behaviour is caused when the compilation

request for a method got expired because the previous requests took longer to process.

Consequently, those methods were executed using their slower versions; either the in-

terpreted or the one from the lower tier of compilation. Therefore, we decided not to

control the JIT compilation order for benchmarks.

On the other hand, to make the GC deterministic, one can disable it completely.

However, this may cause execution to exceed the available heap memory or reduce

the performance of the next iterations because the previous iterations may impact

locality of allocated memory. Requesting a full GC at the beginning of the iteration
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is an option but JVMs do not provide any guarantees about when the GC would be

performed. Therefore, we decided not to take any steps to control the GC behaviour

during the benchmark execution.

4.2.2 Benchmarks Execution Setup

Benchmark Harness

We have set up a benchmark harness using a combination of bash and python scripts to

execute benchmarks. We use the harness to measure the execution time of the warmed-

up iterations for the JVM hosted executions to compare with the equivalent iterations

of the native execution. The harness executes a benchmark in a loop and measures

the execution time for each iteration of the benchmark. We choose the execution time

of the warmed-up iterations after the benchmark reaches its peak performance. As

discussed in Section 4.1, it is difficult to identify when the application is warmed-

up precisely. Therefore, we use the methodology used to evaluate Sulong previously

as presented in [RGW+16], where we execute a benchmark for N=100 times using a

harness. We measure the execution time for every iteration and use the geometric

mean of the execution times of the last 50 iterations as the execution time for the

benchmark. We use geometric mean to reduce the impact of outliers that may get

introduced as a result of non-deterministic events such as garbage collection. All the

iterations are performed in a single JVM invocation to ensure that the benchmark is

warmed-up. We manually ensure that all the computationally intensive methods of

the benchmarks are JIT-compiled. We noticed that most of the benchmarks reached

a near-steady-state of the peak performance in less than 25 iterations.

All the benchmarks from the selected NPB suite have a custom mechanism to

measure the execution time using the C standard library functions declared in time.h

[BBJ+91]. Every benchmark chooses certain parts of the benchmark based on its func-

tionality, typically the computational kernels, to represent its execution time. They

ignore the time spent in setting up the benchmark, such as reading input parameters

from a file and initialising the arrays with input data. We modified the benchmarks

to run in a loop for the specified number of times. Execution time for every iteration

is reported using the existing mechanism. The number of iterations can be specified



CHAPTER 4. EVALUATION METHODOLOGY 79

as an input to a program. While modifying benchmarks we took additional care to

ensure that every iteration executes in the same manner. This typically required re-

executing the initialisation step so that the benchmarks and their inputs are set up in

the same manner before executing every iteration. All the benchmarks in NPB suite

provide a verification function to ensure the parallel execution is correct. The same

functions are used to verify the correctness of every iteration. Importantly, we use the

same source code to generate a native executable and LLVM IR for the benchmarks

to avoid bias, if any present, towards a specific type of execution.

The On-Stack-Replacement (OSR) mechanism allows the JVM to reduce the warm-

up time by switching to the compiled version of the method during the execution of the

method itself [FF03]. On the contrary, the typical JIT compilations use the compiled

version of a method for its next invocation. OSR is useful when a method has a long

running loop that causes JVM to consider it hot, then JIT-compile, and switch to use

the compiled version from the next iteration. OSR avoids the wait for switching to the

faster mode of execution until the long-running loop completes, thereby reducing the

warm-up time. This approach replaces the current version of a method being executed

(i.e., the present version of a method on the stack), with the new version. Therefore,

the approach is referred to as on-stack-replacement. Sulong-OpenMP extends the

version of Sulong that does not support OSR. The OSR support for Sulong is added

in the later versions [MLR+19].

The lack of OSR support required additional care while setting up the bench-

mark harness for Sulong. For executing a benchmark, Sulong executes its main()

function only once. Thus, in the absence of OSR, Sulong could not switch to the

JIT-compiled version of the main() function even when it is considered as hot. Subse-

quently, the computation performed in the main() is executed in the slow interpreted

mode. Therefore, to ensure that the entire benchmark is JIT compiled, we wrap the

entire benchmark in a separate function, and that function is invoked by the harness

for the desired number of iterations. Although the Java implementation supports

OSR, we use the same approach for the harness executing the Java implementation of

the benchmarks to match the execution behaviour of the Sulong’s harness.
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Summarising the benchmark results

Here, we discuss the statistical methods used to summarise the benchmark results. The

benchmark harness contains scripts to process the benchmark output and perform the

desired calculations. As discussed previously, to calculate the execution time for a

benchmark (Tbench) we use the geometric mean of the last 50 out of 100 iterations as

shown below.

Tbench = 50
√
T51T52 · · ·T100

The executions using Sulong-OpenMP are slower than their native executions. There-

fore, we calculate the slowdown while executing with Sulong-OpenMP relative to their

native execution as a metric of comparison. The slowdown for a benchmark (Sbench) is

calculated by dividing its execution time using Sulong-OpenMP (TSulong−OpenMP ) by

the time required for executing natively (Tnative) as shown below.

Sbench =
TSulong−OpenMP

Tnative

Therefore, the slowdown of 1 represents the execution using Sulong-OpenMP is as fast

as its native execution. The slowdown value of 1.20 represents the 20% performance

overhead against the native execution. To summarise the results for the entire suite,

we calculate the geometric mean of the slowdown values for all benchmarks in the

suite as shown below.

Ssuite = n
√
Sbench1Sbench2 · · ·Sbenchn

Steadiness of the peak performance is measured by calculating the standard deviation

for the last 50 iterations of the benchmark. Calculation of the variations in execution

is important for analysis. If the warmed-up iterations have a high degree of variations

then it indicates that the peak performance might not have been reached. Additionally,

when variations are high, it is difficult to draw a meaningful conclusion about the

performance of a benchmark or the underlying implementation.
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4.3 Benchmarking Environment

4.3.1 Selected Benchmarks

We use the NAS Parallel Benchmarks (NPB) suite for evaluation of our OpenMP im-

plementation [BBJ+91]. The NPB is a commonly used suite of benchmarks to evaluate

the performance of supercomputers in the High-Performance Computing (HPC) com-

munity. The NPB suite offers the benchmark versions that are parallelised for both

shared and distributed memory clusters. These versions are offered using OpenMP,

Message Passing Interface (MPI) and hybrid (MPI + OpenMP) parallelisation ap-

proach. We used the 3.0.0 version of the NPB suite that also bundles the Java imple-

mentation of the benchmarks. We use the Java version of the benchmarks for com-

paring with Sulong-OpenMP. This comparison aims to identify potential performance

bottlenecks and opportunities for the JVM hosted executions.

The NPB suite has 8 benchmarks — 5 computational kernels and 3 pseudo appli-

cations, all derived from the Computation Fluid Dynamics (CFD) applications. The

following list provides a brief overview of the benchmarks based on the description

provided in [SB96].

� EP: kernel benchmark is an embarrassingly parallel problem that represents

typical Monte Carlo applications. The benchmark performs minimal commu-

nication and thus the benchmark can provide an upper limit for floating-point

performance that a system and execution environment can achieve.

� MG: kernel benchmark is a simplified version of the geometric multigrid kernel

that solves a 3-D Poisson Partial Differential Equation (PDE). The benchmark

represents a realistic CFD application and focuses on highly structured commu-

nication.

� CG: kernel benchmark uses the conjugate gradient method to find an approxi-

mate solution of the smallest eigenvalue of a large sparse matrix. The benchmark

performs sparse matrix-vector multiplication and focuses on unstructured com-

munication.

� FT: kernel benchmark uses the Fast Fourier Transform (FFT) to solve a 3-D

PDE that includes computations such as matrix multiplication, 1-D, 2-D and
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3-D FFTs. Consequently, the FT benchmark can use optimised external library

implementations to perform these computations.

� IS: kernel benchmark performs a sorting operation that is important in particle

method codes. The benchmark does not perform floating-point arithmetic. Thus,

the benchmark can be used to evaluate the integer performance of the execution

environment.

� LU: pseudo-application is a lower-upper Gauss-Seidel solver that represents com-

monly used CFD algorithms. The LU benchmark exhibits a lower amount of

parallelism compared to SP and BT benchmarks. This behaviour is reflected in

its execution using Sulong-OpenMP (discussed in Chapter 5).

� SP and BT: pseudo-applications are the scalar penta-diagonal and block tri-

diagonal solvers, respectively. They have similar structures.

Each benchmark has a set of predefined inputs providing 5 different sizes that are

categorised into different classes. The newer version (v3.4) of the benchmark suite

offers three additional bigger classes of the problem sizes. The NPB suite specifies the

meaning of classes as listed below:

� Class S: Small input size suited for the test purpose.

� Class W: A problem size suitable for 90’s workstation.

� Class A, B, C: Standard input sizes where each class is ∼4x larger than the

previous class.

The larger input is useful while scaling the number of OpenMP threads because it

creates more work for every thread and avoids thread starving for work. On the other

hand, small benchmark sizes more clearly show up inefficiencies in the runtime. We use

the class ‘W’ for kernels and class ‘S’ for the pseudo-application. These are the smallest

two classes, and their choice is made based on two criteria: i) the ability to execute

successfully on Sulong; ii) the overall execution time of a benchmark. Executions with

the larger inputs crashed the JVM for both Sulong and Sulong-OpenMP. We have not

successfully identified the root cause of the crashes. Regarding the execution time,
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we noticed the larger inputs for the pseudo applications caused benchmarks to take a

significantly long time, over a few minutes for each warming-up iteration, consequently

making the execution time for the benchmark suite much longer.

4.3.2 Hardware

The experiments run on a system with 4 physical (8 hyper-threaded) cores Intel Core

i7-6700 with 16GB of memory running Ubuntu 18.04 (4.15.0-48-generic). To generate

scaling results, we used a larger system with 16 physical cores consisting of 2 Non-

Unified Memory Access (NUMA) sockets of Intel Xeon E5-2690 CPUs. The system

has 378 GB of memory and Ubuntu 16.04 (4.15.0-36-generic). For both systems, we

disable the processor frequency scaling and set it to the maximum of 3.4 GHz (for

the 4 core system) and 2.4 GHz (for the 16 core system), by using the performance

governor.

Modern CPUs change the CPU frequency to optimise power consumption while

executing the application. It is referred to as Dynamic Frequency and Voltage Scaling

(DVFS) [Wik13c]. At lower frequency, a thread executes slowly, causing longer exe-

cution time; vice-versa happens when the frequency increases. In the case of parallel

execution, if one of the application threads slows down because of the DVFS then the

entire application takes longer to execute as a result of the increased time spent at

the synchronisation points. We ensured the constant CPU frequency, by selecting the

performance governor that sets the frequency to the maximum value for all cores of

the processor.

4.3.3 Software

Our OpenMP extension, Sulong-OpenMP, is built on top of the commit b0ab114 1

of Sulong that is part of the GraalVM release candidate 1.0.0-rc6. The underlying

version of Sulong supports LLVM 6.0. Thus, we use clang from the pre-built bundle

of binaries for the LLVM 6.0.0. We use Clang with -O2 optimisation flag to generate

LLVM IR for OpenMP programs. Native executions use the same compiler settings

which we use for generating LLVM IR for Sulong-OpenMP. To use Graal as a top-tier

JIT compiler, we need to use a JVM that has JVMCI support enabled. Oracle Labs

1https://github.com/graalvm/sulong/commit/b0ab114
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provide pre-built packages of the JVMCI enabled JDKs built on top of OpenJDK. We

use the JDK version 1.8.0 172 that supports JVMCI version 0.46.

4.3.4 Visualisation Techniques

Benchmarking

We use the bar charts for visualising the benchmark comparisons using various modes

of executions. Each benchmark has a set of bars representing each type of executions

such as native, Java, Sulong and Sulong-OpenMP. We put an additional group of

columns to summarise the benchmarks results. We use violin plots [Was12] to show

the steadiness of peak performance of the benchmarks. We use the same warmed-

up iterations that are used to calculate the execution time for the violin plots of the

corresponding benchmarks.
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Figure 4.2: Figure shows an example of a violin plot that are used to show steadiness
of peak performance of the selected benchmarks.

Figure 4.2 shows an example of a violin plot used in Chapter 5 to show steadi-

ness of the peak performance. The violin plot shows execution time for the last 50

iterations which are used to measure the peak performance of that benchmark. The

execution time of each iteration is normalised to the representative execution time

of that benchmark, i.e., the geometric mean of the last 50 iterations. In Figure 4.2,
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execution time for three benchmarks namely A, B and C are shown. The black line

in the middle of each violin marks iteration at 25th and 75th percentile. A white dot

at the centre represents the median value. Here, the length of a violin corresponds to

the variations in execution time. Thus, a longer violin represents higher variation. In

Figure 4.2, benchmark A shows the least variations amongst the three benchmarks.

The benchmark C has the majority of the iterations either above or below its repre-

sentative execution time. The benchmark B has a majority of the iterations below its

representative execution time but, a few of them took much longer (up to 30% more

time) to finish which increased the representative execution time.

Performance Analysis

We use Flamegraphs [Gre16] to visualise the execution profile of a benchmark. We

use our sampling profiler (discussed in Chapter 6) to record the call-stack samples

during the execution of a benchmark. We use flamegraphs to identify performance

bottlenecks by visualising the time spent while executing a benchmark. Now, we

explain the generation of a flamegraph using the recorded call-stack samples with an

example.

1 void evaluate() { /* Expensive Computation*/ }

2 void initialise() { /* Initialising Data */ }

3 void compute() { evaluate(); }

4 void output() { /* Output Results */ }

5 int main()

6 {

7 initialise(); //20% of the time

8 compute(); //60% of the time

9 output(); //20% of the time

10 return 0;

11 }

Listing 4.1: A pseudo-C code with three functions where different percentage of the

time is spent during execution.
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The Listing 4.1 shows a pseudo-C code comprising three functions where the code

spends time: 20% in initialise(), 60% in compute() and 20% in output(). The

compute() function calls the evaluate() function where it spends all of its time.

If we stop the execution of this a program after a specific interval, and record the

execution call-stack at that time; we would find approximately 60% of the recorded

samples reporting that the program is executing the compute(), 20% of the time

initialise(), and so on. Note that the accuracy of the recorded profile is propor-

tional to the sampling frequency : the frequency at which the call-stacks are recorded.

When we use flamegraphs to visualise the recorded samples, the resulting flamegraph

would be illustrated in Figure 4.3.

Figure 4.3: An example of a flamegraph that visualises the execution profile of the
code in Listing 4.1.

In Figure 4.3, the percentage of width on X-axis is proportional to the percentage of

time spent in the respective function. Thus, the main() function has the width corre-

sponding to 100%. The Y-axis represents the call-stack depth. Thus, the evaluate()

function is on top of compute() function representing that the 60% of the time spent

in the compute() function is in turn spent in the evaluate() function.

Figure 4.4 shows an example of the flamegraph generated for the execution of a

real-world application. The flamegraph visualises the call-stacks recorded on executing

the regexdna benchmark from the Shootout benchmark suite [Guo18]. The Shootout

benchmark suite is implemented in multiple programming languages. The profile in

Figure 4.4 uses the Java version of the benchmark. The colour of a stack frame in

the flamegraph represents the type of the frame. Yellow represents C++ code, green

is Java JIT-compiled code, teal represents inlined Java methods, red is native/library

code. Occassionally, perf may fail to walk the call-stack, resulting in broken call-stack

samples. In the flamegraph, broken call-stack samples are reported as unknown (more

details in Chapter 6). Flamegraphs can highlight the call-stacks matching the specific
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Figure 4.4: Flamegraph of a profile for executing Java version of the regexdna bench-
mark from the Shootout benchmark suite. Yellow represents C++ code, green is Java
JIT-compiled code, red is native/library code or it is marked as Interpreter. The
magenta colour highlights the call-stacks matching the searched keyword, ‘GC’.

keyword. Figure 4.4 shows the highlighted call-stacks in the magenta colour that match

the keyword ‘GC’. At the right bottom corner of the flamegraph, the percentage of

the matched call-stack samples is reported. In this example, 1.9% of the call-stack

samples matched the keyword ‘GC’. We can use this value to approximate the time

spent by the benchmark while performing GC activities. Note, the GC is performed

on separate threads that need to be accounted while estimating the time spent in GC.

4.4 Summary

In this chapter, we discussed the metrics which are widely used for evaluating JVM

hosted executions, that include the warming-up and warmed-up execution phases.

We will use the peak performance as a metric for evaluation of the benchmarks on

Sulong-OpenMP. We also discussed the aspects that are important for the JVM hosted

execution, but are not measured explicitly. They include the overhead of garbage

collection and start-up time.

The execution of a program on a JVM involves several components interacting in a

non-deterministic manner, such as the JIT-compilation order of methods or triggering

of the garbage collection. This makes the JVM hosted executions difficult to reproduce.

We discussed the steps that are commonly used to reduce the non-determinism and

make the executions more consistent while benchmarking the JVM hosted executions.

We have created the benchmark harness to execute the selected NAS Parallel
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Benchmark suite. The harness implements the evaluation methodology that has been

used for the evaluation of Sulong in the past. The harness ensures that the bench-

marks are warmed-up by executing them in a loop, and reports the execution time of

each iteration. Every iteration of the benchmark initialises its input identically, and

the results after execution are verified for correctness.

Modern CPUs use techniques such as frequency scaling to optimise power consump-

tion that may vary the execution speed unexpectedly. We discussed the configuration

of the hardware platform that we use for benchmarking. We configure constant CPU

frequency to reduce the variations in the execution time. Finally, we discussed the

techniques to visualise the benchmarking results using bar charts and execution pro-

files using the flamegraphs.



Chapter 5

Evaluation

This chapter presents the evaluation of our OpenMP extension to Sulong, Sulong-

OpenMP, using the NAS Parallel Benchmark (NPB) Suite. We begin with a high-level

overview of the performance comparisons provided in this chapter and the rationale

behind them. It is followed by the comparison of the single and multi-threaded per-

formance of Sulong-OpenMP with the native and Java implementations of NPB suite.

We conclude our discussion with a deep dive into the various optimisations done to

reduce the overhead for the single-thread performance of Sulong-OpenMP. This chap-

ter contains a superset of the results that we presented at the MPLR 2019 conference

[GNL19].

5.1 Overview

The objective of the evaluation of Sulong-OpenMP is to identify the performance

bottlenecks and reduce the performance gap relative to the native execution. The

native executions use a binary executable generated using clang with optimisation

level -O2. As Sulong-OpenMP extends Sulong to execute OpenMP programs on a

JVM, this chapter aims to identify the overheads incurred from different layers used

during the execution. We discuss the overheads incurred by using the JVM, Sulong

and Sulong-OpenMP. Both Sulong-OpenMP and the native execution use the same

benchmark source code to generate LLVM IR and binary executable respectively using

the same version of clang. Therefore, we use the native executions as a reference

implementation for Sulong-OpenMP and use the same to compare with.

89
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As we discussed in Chapter 3, Sulong-OpenMP is built on top of Sulong. Conse-

quently, Sulong-OpenMP inherits both the pros and cons of the underlying system.

To highlight the overhead of the underlying system, we compare the sequential ex-

ecution using Sulong (Sulong-sequential) to the sequential native execution (Native-

sequential). We use Sulong-sequential as a baseline to evaluate the overhead of our

implementation. Thus, we compare Sulong-sequential with the OpenMP version of the

benchmark executed on Sulong-OpenMP with 1 OpenMP thread (Sulong-OpenMP(1

thread)). Here, the rationale is that the OpenMP extension added to Sulong should not

impact the single-thread performance of Sulong. Therefore, theoretically, our objec-

tive should be to achieve execution of Sulong-OpenMP (1 thread) with zero overhead

compared to the Sulong-sequential. However, this would not be a fair target because

of the differences in generated LLVM IR that we discussed in Section Section 3.1. The

LLVM IR generated with OpenMP support has calls to the OpenMP runtime library

function that are not present for the sequential version, generated using clang but

without the -fopenmp compiler flag. Hence we expect an additional overhead for the

runtime library calls while executing Sulong-OpenMP (1 thread) compared to Sulong-

sequential. To determine whether the observed overhead is acceptable, we do a similar

comparison of Native-sequential with Native-OpenMP (1 thread).

Execution on a JVM uses an entirely different approach than the AOT compiled

approach used by the native execution. Therefore, to understand the implications of

executing on a JVM, we use the Java implementation of the benchmarks from the NPB

suite. We compare the sequential and the multi-threaded executions of the NPB suite

benchmarks in Java to their equivalent executions with native and Sulong-OpenMP.

It is important to note here that comparing the different language implementation

is an area of research in itself [MDM16]. Our objective behind such a comparison is

to gauge the optimisation potential and find possible opportunities for the execution

of Sulong-OpenMP on JVMs. If the Java implementation of a benchmark is faster

than the Sulong-OpenMP, we consider this as an opportunity for improving Sulong-

OpenMP or Sulong itself, because both are implemented in Java and use a JVM for

execution. However, if the Sulong-OpenMP is faster than the Java implementation, it

is highly likely as a result of the sub-optimal Java implementation of the benchmark

that we do not discuss at length.
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Figure 5.1: Comparison of overhead for executing on Native-OpenMP (1 thread),
Sulong-sequential, Sulong-OpenMP (1 thread) and Java (1 thread). The execution
times are normalised to execution time of the Native-sequential. Logarithmic scale on
Y-axis depicts the slowdown compared to the native thus, 1 represents zero overhead
while lower is better.

In the case of multi-threaded executions, we mainly compare the scaling behaviour

to identify any parallelisation overhead incurred by the implementation in addition to

the ability of an application to scale. Therefore, the objective of the Sulong-OpenMP

is to match the scaling behaviour of the execution of Native-OpenMP. Also, it is

important to note here that so far our primary objective had been to minimise the

overhead for executing Sulong-OpenMP (1 thread) compared to Sulong-sequential.

Thus, we have not much pushed for improving the multi-threaded performance yet.

The objective of Sulong-OpenMP is not to replace the native execution approach,

rather complement it by offering additional features, such as detecting concurrency

issues and memory leaks. Therefore, the objective behind improving multi-threaded

performance is to increase the usability of Sulong-OpenMP.

5.2 Single Thread Performance

Figure 5.1 shows a comparison of a single-thread performance that includes Native-

OpenMP (1 thread), Sulong-sequential, Sulong-OpenMP (1 thread), Java (1 thread).

The figure shows execution times are normalised to the execution time of Native-

sequential. The Y-axis represents slowdown using a logarithmic scale thus, lower

values are better. Here, 1 on the Y-axis represents the benchmark executed as fast
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as its Native-sequential equivalent. The values above 1 represent the execution time

longer than the corresponding Native-sequential execution.

Native executions

The geometric mean of the overhead of the Native-OpenMP executions is about 2%

compared to Native-sequential executions. This overhead is primarily caused because

of the additional OpenMP runtime library calls in the LLVM IR of the OpenMP

versions of the benchmarks. The runtime calls impact performance in two ways. First,

the runtime calls have the typical function calling overhead that involves creating a

new stack-frame for making the call and storing the current execution state to resume

when the runtime call finishes. Second, the runtime calls perform the unnecessary

computation for distributing iterations of the loops amongst the available OpenMP

threads. For the sequential executions, the computation is unnecessary as there is only

one thread available and the runtime assigns the whole iteration space to it. Therefore,

the slowdown is proportional to the time spent in the runtime function calls made by

the function. On the contrary, some of the kernels executed little faster with Native-

OpenMP compared to the native execution, such as IS and FT. We hypothesise that

such a difference arises from the difference in the generated code that impacted the

other optimisations done by the clang. For example, we discussed in Section 3.1 that

the OpenMP regions get outlined into a different functions. This may lead to inlining

of some functions in the outlined OpenMP region that could not be inlined in the

sequential version because of the compilation heuristics. We do not investigate this

further, as the purpose of the evaluation is to understand the impact of enabling

OpenMP support on the single-thread performance of Native-OpenMP so that we can

compare the Sulong-sequential and Sulong-OpenMP fairly.

Sulong-based executions

In the case of Sulong-sequential executions, the geometric mean of the slowdown com-

pared to the Native-sequential execution is about 2.16x (116% overhead). This is the

overhead of the underlying system Sulong-OpenMP inherits. Therefore, to measure

overhead incurred by adding Sulong-OpenMP support, we use Sulong-sequential exe-

cutions as a baseline. The geometric mean of the overhead for Sulong-OpenMP relative
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to Sulong-sequential is about 3% but not zero. To determine whether Sulong-OpenMP

has an acceptable single-thread overhead, we perform a similar comparison for the na-

tive executions, i.e., Native-OpenMP (1 thread) relative to Native-sequential. The

overhead of OpenMP support for the native execution is about 2%. Thus, although

the overhead for Sulong-OpenMP is not zero, we consider this is an acceptable over-

head. Section 5.4 presents a detailed discussion on the optimisations implemented in

Sulong-OpenMP that bring the overhead for supporting OpenMP down in an accept-

able range.

We do not include the execution time for the LU benchmark while calculating the

geometric mean as highlighted in Figure 5.1. The Sulong-sequential execution of the

LU benchmark takes significantly longer, a slowdown of about 300x, compared to the

Native-sequential. Incorporating the execution time for LU in geomean calculation

incorrectly shows Sulong-OpenMP faster than the Sulong-sequential thus, geomean

does not include the LU benchmark. During the Sulong-sequential execution of the

LU benchmark, one of the computationally intensive function cannot get JIT compiled

because it is too big. The Graal compiler cannot JIT compile the big function because

the number bytecodes for its Truffle-AST representation exceeded the limit on the

maximum number of bytecodes that Graal can compile. Consequently, the method

gets executed in the slow interpreted mode. On the other hand, Sulong-OpenMP

execution of the LU benchmark does not have a similar slowdown. The big function

contains multiple OpenMP pragmas that chop the large body into small functions while

generating LLVM IR. As discussed previously in Section 3.1, the OpenMP regions

get outlined into separate functions when the LLVM IR is generated. The outlined

functions are small enough so all of them get JIT-compiled. This results in faster

execution of the whole function compared to its interpreted mode of execution which

happens in the case of Sulong-sequential. Therefore, the large difference between the

executions with Sulong-sequential and Sulong-OpenMP for the LU benchmark is the

difference between JIT-compiled and interpreted mode of execution.
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Figure 5.2: A block diagram representing execution of the Java implementations of the
benchmarks from NPB suite. The diagram highlights the single-threaded execution.
The parallel execution is similar to the single-threaded execution which is shown using
the purple dotted blocks.

Java-based executions

The execution of Java implementation of the NPB suite is slower than the Native-

sequential execution except for the IS benchmark. The Java version of EP benchmark

is not reported because the NPB suite does contain it. Compared to both Sulong-

sequential and Sulong-OpenMP, the Java executions are faster on kernels and slower

on the pseudo-applications of the benchmark suite. The primary reason behind the

faster/slower execution behaviour of the Java version of the benchmarks is their im-

plementation choice.

The execution model for of Java implementation of the benchmarks from the NPB

suite is shown in Figure 5.2. The execution resembles the master-slave model than

the fork-join model used by the C implementations. The Java implementations move

parallel parts of the benchmark into pre-defined methods. R1 and R2 in Figure 5.2

represent the parallel regions of the benchmarks. The pre-defined methods are equiva-

lent to the OpenMP regions in the C versions. Thus, a benchmark forks Java threads

that then execute predefined methods and synchronise afterwards to achieve behaviour

equivalent to the OpenMP C programs. To achieve the behaviour of OpenMP For, the
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Java implementations use a method called setupThreads(). The setupThreads()

method configures a local iteration range for a thread based on specified threads count.

Once the threads are configured, the master thread notifies slave threads to execute

the iteration range assigned to them. Importantly, the computation performed in

the setupThreads() method is not accounted towards the computation time of the

benchmark. On the other hand, the C implementation performs the calculation of

local ranges using the runtime calls, such as @ kmpc for static init 4(), to the

OpenMP runtime library. The runtime calls performed for the native implementation

are accounted towards their execution time.

In the case of IS benchmark, the C implementation performs all the computation

by calling the rank() function in a loop. Thus for both the native and Sulong based

executions, allocation of the local variables in rank() function is done for every loop

iteration within the benchmark. However, the Java implementation populates them

as the member variables of the object and avoids the allocation during every loop

iteration. Such implementation differences helped the Java implementation to perform

competitively compared to the native executions and better than the Sulong based

executions most of the kernels.

The Java implementation is slower on all the pseudo-applications than both native

and Sulong based executions. This difference can also be attributed to the suboptimal

implementation of the benchmark. Java implementations create dedicated classes that

bundle one or more parallel regions of a benchmark. The setupThreads() method

creates instances of all the thread classes that are necessary for executing the bench-

mark. In Figure 5.2, for a single-threaded execution, the setupThreads() method

creates two additional threads for executing R1 and R2. These threads start execu-

tion and wait for the master thread to notify them to do the assigned computation.

Threads notify back the master when finished. Therefore, the parallel execution with

N threads requires the Java implementation to create N * R Java threads where R

is the number of the groups of parallel regions. The pseudo-application have higher

value of R: LU (5), BT (5), SP (6).

The purpose of evaluating Java implementation of the NPB suite is to identify

optimisation opportunities and limitations for JVM hosted executions. Therefore, we
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(a) Sulong-Sequential
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(b) Sulong-OpenMP
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(c) Native
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(d) Java

Figure 5.3: Violin plot of the warmed-up execution time distribution for 50 iterations
of each benchmark. Y-axis: values closer to 1 represent low variations (better).

do not investigate reasons for slowdown for the Java implementation of the pseudo-

applications further. This excludes investigation of the influence of garbage collection

done in the background on separate threads or overhead incurred by using region-

specific threads.

Steadiness of the peak performance

In the previous chapter, we discussed the steadiness of the peak performance for JVM

hosted executions of the benchmarks. If the benchmarks have a high degree of vari-

ations then it is difficult to comment about the application behaviour. Figure 5.3

shows steadiness of 4 types of executions using the violin plots. In the violin plots, the

execution times are normalised to the representative execution time of the benchmark,

geomean of the last 50 benchmark iterations. Thus, values farther than 1 represent
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Figure 5.4: The results show slowdown (lower is better) for executing on Sulong-
OpenMP (4 threads) and Java (4 threads) relative to the Native-OpenMP (4 threads).
Execution times are noramised to the time of the Native-OpenMP executions.

the executions with high variations. Figure 5.3(a) shows that the native-OpenMP ex-

ecution is the one with the least variations amongst the benchmark iterations. For the

Sulong-sequential executions, the kernels have a small variation of about 1% while the

pseudo-applications have relatively large variation up to 6%. The Sulong-OpenMP ex-

ecutions have higher degree of variations, kernels (up to 4%) and pseudo-applications

(up to 10%). We expect higher variations for the parallel execution compared to their

sequential equivalent and do not investigate them further.

5.3 Multi-thread Performance

In this section, we discuss the performance of Sulong-OpenMP on multiple threads

using two steps. First, we present the results to demonstrate the current implemen-

tation status of Sulong-OpenMP compared to the native implementation using clang

and Java. Second, we discuss the scaling of Sulong-OpenMP and Java compared to

the Native-OpenMP execution.

Figure 5.4 shows the slowdown for NPB suite benchmarks using Sulong-OpenMP

(4 threads) and Java (4 threads). The execution times in the figure are normalised to

the execution time of Native-OpenMP (4 threads). Figure shows the slowdown varies

from about 1.17 (∼20% overhead) for the EP to 42.2x for the SP benchmark (∼4120%

overhead). When calculated separately, the geometric mean of slowdown for kernels is

2.66x (∼166% overhead) while for pseudo-applications it is much larger, 20.93x. The
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primary reason for the higher overheads across all the benchmarks is the current way

Sulong-OpenMP executes OpenMP parallel regions. Execution of the parallel regions

on Sulong-OpenMP mainly involves the execution of the outlined OpenMP function

generated in LLVM IR. Sulong-OpenMP uses a thread-pool to execute the outlined

functions that impact the execution of pseudo-applications more than kernels.

Sulong-OpenMP implements a thread-pool that creates Java threads equal to the

number specified by environment variable OMP NUM THREADS. The thread-pool executes

the top-level outlined OpenMP function by taking its state in the form of Frame, the

representation for the stack-frame of a guest language function, and its arguments.

Such assignment of the Frame of a function requires it to be materialized. The material-

ization of frame limits the Graal compiler to aggressively optimise the parent function

that calls the outlined OpenMP function. JIT-compiled code for the method with ma-

terialized frame relies on Truffle’s representation for guest language frames. It requires

maintaining additional data structures that limit the compiler optimisations, such as

intrinsification of accessor methods [Cor19b]. Pseudo-applications in the NPB suite

have more OpenMP parallel regions than the kernels. Thus, the pseudo-applications

have relatively higher overhead compared to kernels. We addressed the frame mate-

rialization issue for single-threaded executions using a work-around, referred to as 1

thread specialisation. Here, we avoid the frame assignment and execute the outlined

function on the master thread. Therefore, we hope that this issue can be addressed

with additional engineering efforts, which would help to improve the performance of

the multi-threaded executions on Sulong-OpenMP.

Figure 5.5 shows the scaling results for the benchmarks from the NPB suite. The

execution of the EP benchmark on Sulong-OpenMP scales similar to the Native-

OpenMP execution up to 16 cores. However, the MG benchmark showed the worst

scaling amongst the NPB suite kernels on Sulong-OpenMP compared to the Native-

OpenMP execution. In the case of pseudo-applications, the scaling is poor because

the small problem size caused many threads to starve for work. As discussed in Sec-

tion 4.2, Sulong-sequential executions crash the JVM for larger problem sizes which

also limited our ability to perform scaling tests. For most of the benchmarks, scal-

ing of Java implementation of NPB suite appears better than Native-OpenMP and

Sulong-OpenMP. As described in the previous section, Java implementation may use
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Figure 5.5: The figure shows two plots for each benchmark from NPB suite. i) On the
left, scaling plot of the benchmarks are shown where speedup is calculated relative to
the time taken using 1 OpenMP thread on that execution environment. These plots
help to visualise the behaviour of a benchmark on the given execution environment
when number of OpenMP threads are increased. ii) On the right, execution times
normalised to Native-OpenMP (1-thread) for that benchmark are shown. These plots
help to compare time taken by different execution environments on a uniform scale.
Here, value 1 mean execution took same time as Native-OpenMP (1-thread), values
less than 1 represent executions faster than Native-OpenMP (1-thread).
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Figure 5.6: A comparision of before and after optimisation of the single thread per-
formance. The execution times are normalised to the execution times of the Sulong-
sequential execution. Logarithmic scale on Y-axis depicts the slowdown relative to the
Sulong-sequential. Thus, 1 represents zero overhead while lower is better.

multiple times more threads than the specified number of OpenMP-like threads that

may benefit the multi-threaded execution. We do not discuss the effects of implemen-

tation choice of the Java benchmarks on scaling as it may not help the thread-pool

based implementation approach of Sulong-OpenMP.

5.4 Reducing overhead of Sulong-OpenMP

This section describes the optimisation journey of Sulong-OpenMP to reduce the

single-thread overhead. Figure 5.6 shows that the overhead of Sulong-OpenMP (1

thread) relative to Sulong-sequential is reduced from about 173% (slowdown 2.73x) to

just about 3%. We explain how the performance bottlenecks for the Sulong-OpenMP

were identified, which subsequently shaped its implementation.
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Figure 5.7: The results show slowdown for executing on Sulong-OpenMP (4 threads)
compared to the Native-OpenMP (4 threads). Different bars for each benchmark show
changed slowdown to represent the impact after applying an optimisation. Logarith-
mic scale on Y-axis depicts the slowdown compared to the native execution thus, 1
represents zero overhead while lower is better.

Figure 5.6 summarises optimisations applied to Sulong-OpenMP in three cate-

gories: i) ‘Before optimisations’ shows the performance of an initial version of Sulong-

OpenMP, which successfully executes the NPB suite using the hybrid approach (de-

scribed in Section 3.2). ii) ‘After optimisations’ shows the performance of Sulong-

OpenMP on applying the optimisations (described later in this section). iii) ‘1 Thread

Specialisation’ shows the performance of Sulong-OpenMP after adding specialisation

for the single-threaded execution. This significantly improves the single-thread per-

formance by avoiding the frame materialization issue (described in Section 5.3).

5.4.1 Optimising calls to Sulong intrincsics

Figure 5.7 shows the effect of different optimisations on the execution time for ex-

ecuting the NPB suite benchmarks using 4 OpenMP threads. Execution times are

normalised to the execution time of the Native-OpenMP (4 threads). Because of its

embarrassingly parallel nature, we expected that the EP benchmark would have mini-

mal overhead compared to Native-OpenMP (4 threads). On the contrary, we observed

a significant slowdown (about 18x) for the EP benchmark. Hence, we chose EP as the

first benchmark to analyse and address performance issues. We use the methodology

described in the Chapter 6 for performance analysis. The Sulong-OpenMP (4 threads)

executions are profiled, which are visualised using flamegraphs.
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The Sulong provides its own implementation for some of the C library functions,

such as sqrt and log using Java Math class. These implementations are referred to as

Sulong intrinsics, and are used instead of their native versions. Intrinsics avoid calling

the native library implementations using relatively slow mechanism that involves using

the Native Function Interface (NFI) [GRS+13]. Figure 5.8 shows a flamegraph for

warmed-up executions of the EP benchmark using Sulong-OpenMP (4 threads). The

enlarged part of the flamegraph highlights methods, where the execution spends ∼54%

of the total execution time. In the enlarged part, almost all the time is spent in two

methods: StackPointer.close() and StackPointer.newFrame(). These methods

are called from the doDirectIntrinsic() method, which can be seen from the stack

frame below the highlighted methods. The doDirectIntrinsic() method in Sulong

handles the calls to its intrinsic functions. Sulong calls the newFrame() and close()

methods to create and destroy a stack frame for the intrinsic calls respectively.

For the NPB suite benchmarks, we noticed that the creation of a new stack frame

is not necessary while calling Sulong intrinsics, and can be avoided. In our initial

OpenMP implementation, we used a näıve approach that synchronised the creation

of a stack frame. The synchronisation exacerbated the overhead for calling Sulong

intrinsics. To reduce overhead for calling Sulong intrinsics, we disabled the creation

of call-stack frames while calling them. This approach is analogous to the tail call

optimisation technique that is commonly used by compilers [Wik09]. Avoiding the

creation of stack frames, significantly reduced the overhead of executing EP benchmark.

Figure 5.7 shows, on Sulong-OpenMP (4 threads) the overhead from about 1690%

(slowdown of ∼18x) to just 20% relative to the Native-OpenMP (4 threads).

5.4.2 Splitting OpenMP regions

After optimising the Sulong intrinsics that benefited only the EP benchmark, we chose

the pseudo-applications as our next optimisation target. The pseudo-applications were

chosen because they were significantly slower (about 100x) compared to the Native-

OpenMP (4 threads) as shown in Figure 5.7. The primary reason for the slowdown was

that the majority of the code failed to JIT compile and executed in slow interpreted

mode. The large size of the compilation unit caused the failure of JIT-compilation.

JVM specification limits the maximum size of the code generated by a JVM for a Java
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Figure 5.8: Figure highlights a part of the flamegraph that contributes about 54% of
the total time spent in executing doDirectIntrinsics() method. The primary oper-
ations performed by this method involves creating (using StackPointer.newFrame())
and destroying (using StackPointer.close()) the LLVMStackFrame.

method to 64 kB [Cor19a]. When the limit on the method size is exceeded, the Java

compiler throws code too large exception. Although an individual method may not

be too large, the inlining decisions made by the compiler may cause the generated

method size to exceed the threshold. In the case of Truffle-based ASTs, inlining the

AST node methods of a guest language function may result in a large method. These

JIT-compilation failures may severely impact the performance of an application.

In the case of pseudo-applications, computationally intensive parts of the code,

covering one or more OpenMP parallel regions, failed to JIT compile. This caused a

significant portion of applications to execute in slow interpreted mode. Unlike Sulong-

OpenMP, Sulong-sequential executions did not face failures for JIT-compilation. The

sequential executions use the LLVM IR, generated without enabling OpenMP support.

In the absence of OpenMP support, the Clang made different inlining decisions. The

execution of this sequential version of LLVM IR did not breach the limit on generated

code. For example, the @adi function of the BT benchmark is not inlined in its parent

function (@main) while generating the sequential version of LLVM IR. Instead, the

Clang inlined some of the functions called from @adi into it. On the other hand,

while generating LLVM IR with OpenMP support, the @adi function is inlined in

@main. The difference between these inlining decisions occurs because the way LLVM

IR is generated for OpenMP programs. The @adi function has five OpenMP parallel

regions that outlines them into five separate functions. The outlining chopped the @adi
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function in five parts in the OpenMP version that does not happen for the sequential

version. These initial decisions influenced the inlining of the subsequent functions in

the call tree. Thus, the LLVM IR for the same function may look significantly different

with and without OpenMP support. The sequential version of the LU benchmark faced

the large generated code size issue that we discussed earlier, in Section 5.2.

We address the large code size issue using the clang’s approach of generating LLVM

IR for OpenMP parallel regions. We noticed that the functions generating the large

code size contain a large OpenMP parallel region that encapsulates multiple For-loops

annotated with OpenMP-For pragmas. We manually split those large OpenMP parallel

regions into multiple, typically two or three, smaller regions as shown in Figure 5.9.

In the case of pseudo-applications, the large OpenMP blocks were typically comprised

of multiple separate OpenMP for-loops. For example, the compute rhs() function of

BT benchmark contains an OpenMP parallel block with 21 OpenMP for-loops. Such

large blocks were split into separate smaller OpenMP parallel regions comprising a

subset of the for-loops as shown in Figure 5.9. The for-loops typically operated over

global arrays and hence splitting the parallel region require fewer code modifications

to ensure correctness. The OpenMP parallel block in compute rhs() function is split

into three parallel blocks (as 8 + 6 + 7 for-loops).

The splitting of large OpenMP parallel regions, resulted in multiple small outlined

functions. Therefore, the large functions that could not be JIT-compiled previously,

are broken down into functions smaller enough to get JIT-compiled. This code mod-

ification did not have any noticeable impact on the performance of Native-OpenMP

execution. To ensure consistency, we used the modified version of the benchmarks

for further comparisons of Sulong-OpenMP (4 threads) relative to Native-OpenMP

(4 threads). This optimisation is only applied to the pseudo-applications that helped

to reduce their slowdowns significantly: LU (from 140x to 26.5x), BT (from 92.2x to

30.4x) and SP (from 88.5x to 57.3x). In the case of SP benchmark, the improvement

in execution time was not as significant because a larger portion of the benchmark still

executed in the slow interpreted mode.
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1 void foo() {

2 #pragma omp parallel

3 {

4 #pragma omp for

5 for( ) {

6 // For-loop 1

7 }

8 /* computation

9 outside the loop */

10 #pragma omp for

11 for( ) {

12 // For-loop 2

13 }

14 }

15 }

1 void foo() {

2 #pragma omp parallel

3 {

4 #pragma omp for

5 for( ) {

6 // For-loop 1

7 }

8 /* computation

9 outside the loop */

10 }

11 #pragma omp parallel

12 {

13 #pragma omp for

14 for( ) {

15 // For-loop 2

16 }

17 }

18 }

Figure 5.9: Simplified illustration of splitting a large OpenMP parallel region into the
small regions. Listing on the left shows a large OpenMP parallel region with two for-
loop. Listing on the right shows the larger parallel region split into two small OpenMP
parallel regions.
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5.4.3 Thread-private stack implementation

The Sulong handles native memory allocations on the stack using the LLVMStack

class. Implementation of LLVMStack uses the Unsafe API of Sun that allows to allocate

memory off the Java heap and retrieve its pointer as a long value [MPM+15]. The stack

memory is allocated for variables in LLVM IR using the alloca instruction. Sulong

services these stack allocations using methods of LLVMStack. Sulong-OpenMP is built

on top of Sulong that supports only the single-threaded applications. Therefore, access

to memory allocation methods does not require synchronisation. Initially, to avoid the

race between OpenMP threads, Sulong-OpenMP synchronised access to the memory

allocation methods. Here, all the threads shared the same instance of LLVMStack. In

addition to the synchronisation overhead, the stack sharing approach also impacted

the CPU caching when different OpenMP threads allocated and accessed memory on

a single cache line.

To highlight the importance of the thread-private instance of LLVMStack, we ex-

plain how Sulong supports the stack allocations using the LLVMStack. Listing 5.1

shows a simple C function (incr()) that increments and returns its only the integer

argument.

1 int incr( int a ) {

2 return a + 1;

3 }

Listing 5.1: An incr() function in C that increments and returns the argument.

1 define i32 @incr(i32) {

2 %2 = alloca i32

3 store i32 %0, i32* %2

4 %3 = load i32, i32* %2

5 %4 = add i32 %3, 1

6 ret i32 %4

7 }

Listing 5.2: Simplified LLVM IR for the incr function from Listing 5.1.
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Listing 5.2 shows LLVM IR for the incr() function. The line 2 of Listing 5.2

shows an alloca instruction that is used to allocate space for a 32-bit integer pointed

by the variable %2 on stack. The %2 variable stores the argument a passed to the

incr() function. The store and load instructions on line 2 and 3 respectively, first

copy and then load the first argument of the function from the address pointed by

%2. The value argument stored in %3 is incremented using the add instruction, and

the resulting value is returned using the subsequent instruction. The LLVM IR from

Listing 5.2 is generated without any optimisations for the purpose of simplicity. The

LLVM IR for an application or a benchmark contain many alloca instructions.

Now we explain the execution of LLVM IR shown in Listing 5.2 on Sulong using

LLVMStack. At the beginning of the execution, Sulong allocates a sufficiently large

portion of memory (20 MB in the default case) LLVMStack. Sulong allocates memory

using the UNSAFE API from Sun that returns a raw pointer to a memory location

as a long value. LLVMStack uses that raw pointer to perform the pointer arithmetic

while serving memory allocation requests. LLVMStack creates a new stack-frame for

every function in LLVM IR where the memory for local variables is allocated. This

stack-frame is destroyed when the function returns. StackPointer class manages

the local memory allocation on stack-frame. The StackPointer is incremented to

allocate memory requested by the alloca instruction. Effectively, the StackPointer

class emulates the behaviour of native stack pointer for a C function. Each LLVM

IR function uses a StackPointer instance to store the starting address of the current

stack-frame. When a function returns, its StackPointer is reset to the starting address

of stack-frame.

To support multi-threaded execution using the LLVMStack and the StackPointer,

we shared the same instance of StackPointer amongst all OpenMP threads. To avoid

races during the allocation of local variables, access to the stack-pointer manipulating

methods were synchronised. Figure 5.10 shows the allocation of local variable %2 from

Listing 5.2 on the LLVMStack, using the stack-pointer sharing mechanism. Unnecessary

synchronisation involved in this approach made it slow and inefficient. Further, when

the size of allocations is sufficiently small, it may cause cache thrashing.

We address the issue of the shared stack by allocating a separate LLVMStack in-

stance for each OpenMP thread. Sulong is modified to use the private instance of
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Figure 5.10: The Figure shows the allocation of the local variable named %2 on the
LLVMStack by four OpenMP threads while executing the alloca instruction on the Line
2 of Listing 5.2. In the absence of the thread private stack mechanism, the stack pointer
is shared by the OpenMP threads that result in the allocations to be performed at
the subsequent memory locations. Such subsequent allocations performed by multiple
threads may suffer from cache trashing when they lie on the same cache line.

LLVMStack to perform thread-local allocations. In this way, Sulong-OpenMP effec-

tively creates a private stack per thread.

Use of thread-private stacks avoids the synchronisation overhead during the allo-

cation of local variables. Thus, the benefits of this change are proportional to the

number of stack allocations performed by a benchmark. The thread-private stacks

mainly benefited the IS benchmark from the NPB suite. Slowdown for the IS bench-

mark is reduced from about 2.5x to 2.0x on Sulong-OpenMP (4 threads) compared

to Native-OpenMP (4 threads). The other benchmarks from the NPB suite did not

benefit as much as the IS benchmark. These benchmarks performed a majority of

their memory accesses on global data structures, such as arrays, that are not allocated

on thread-private stacks.

5.4.4 Thread pool implementation

Initially, we used a näıve approach where new Java threads were created at the begin-

ning of every OpenMP block, and they are merged/destroyed at the end of the block.

This approach simplified the implementation of an implicit barrier at the end of the

OpenMP blocks. Undoubtedly, this approach was suboptimal because it creates/de-

stroys threads repeatedly while executing a program with multiple OpenMP blocks.

In the case of the MG benchmark, the approach created/destroyed threads 1820 times
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Figure 5.11: Flamegraph of CPU profiled execution of MG benchmark from NPB suite
on Sulong-OpenMP (4-threads). An enlarged section of the flamegraph at the bottom
demonstrates that circa 69% of the collected samples are related to garbage collec-
tion. The enlarged top portion of the flamegraph shows the samples from OpenMP
application threads where the highlighted stack frames in magenta colour are for the
functions that create/initialise Java threads.
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within a single execution of the benchmark. The benchmark executes an OpenMP

block in a loop, that required repeated thread creations. Such a large number of

thread creation also increased pressure on the garbage collector (GC), which can be

observed in Figure 5.11. Therefore, we planned to implement a thread-pool to use the

fixed set of Java threads throughout the execution.

Figure 5.11 shows a flamegraph of the warmed-up execution of MG benchmark be-

fore the implementation of thread pool. As discussed in Section 4.3, the width on the

X-axis of a flamegraph is proportional to the time spent in a particular method whilst

the Y-axis corresponds to call-stack depth. The enlarged section at the bottom of the

flamegraph shows that approximately 69% of the call-stack samples match the meth-

ods associated with garbage collection. This indicates significantly high GC pressure

during the execution of the benchmark. Although certain aspects of garbage collection

can be performed concurrently on the background GC threads, it is still necessary to

fully halt application threads for portions of garbage collection. The enlarged section

at the top of the flamegraph shows the approximately 11% of the overall samples

(highlighted in magenta colour) match the methods performing the thread life-cycle

management activities. It is important to note that, the flamegraph includes the call-

stack samples for the threads running in parallel. Thus, the application may have spent

more than 11% of its wall-clock execution time in initialising/destroying threads.

Sulong-OpenMP implements a thread-pool where it creates the required number

of OpenMP threads at the beginning of the execution. Each thread in the thread-

pool waits for work to be assigned. Whenever an OpenMP block is encountered, the

Truffle-based AST associated with the block is given to all the OpenMP threads for

execution. The thread-pool implementation reduced slowdown for the MG benchmark

from about 24.1x to 8.6x (speedup of about 2.8x). The other benchmarks that con-

siderably benefited from the thread-pool are CG (from 4.0x to 2.1x), LU (from 26.5x

to 15.5x) and BT (from 30.5x to 19.0x).

5.4.5 Restricted Inling

After applying the optimisations discussed earlier, the SP benchmark had maximum

overhead amongst all the NPB suite benchmarks. SP had overhead of 430% (slowdown
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of 5.3x) while executing on Sulong-OpenMP (1-thread) compared to that on Sulong-

sequential execution. MG benchmark had the second-highest overhead of 22%, which

was much lower compared to the SP benchmark1. These overheads were proportional to

the benchmark computations present in the outer function — the function that calls

the top-level outlined functions. Such outer functions were not highly optimised

because of frame materialization issue (discussed in Section 5.3). The SP benchmark

inlined other computationally intensive functions in the outer function; as a result its

performance further worsened. As a workaround, only for the SP benchmark, we forced

clang not to inline those computationally intensive functions in the outer function.

Clang provides the attribute ((noinline)) attribute to restrict inlining. This

restricted inlining decreased overhead of SP benchmark on Sulong-OpenMP (1 thread)

compared to that on Sulong-sequential from 430% (slowdown of 5.3x) to 30%. For the

execution using Sulong-OpenMP (4 threads) compared to Native-OpenMP (4 threads)

overhead of the SP benchmark reduced from about 53x to 42x.

5.5 Summary

In this chapter, we evaluated the implementation of Sulong-OpenMP using the NAS

Parallel Benchmark (NPB) Suite. We used the C version of the benchmarks to compare

Sulong-OpenMP with its reference implementation using clang. We compared Sulong-

OpenMP with the Java versions of the NPB suite benchmarks to identify the benefits

and/or bottlenecks for the JVM hosted executions. We calculated the single-threaded

performance to measure the overhead incurred for adding OpenMP support by com-

paring Sulong-OpenMP to Sulong-sequential. As clang generates different LLVM IR

for sequential and OpenMP version, we expected their performance to reflect the same.

LLVM IR for the OpenMP version has additional calls to OpenMP runtime functions.

To determine the value acceptable overhead, we measured the native executions with

and without OpenMP support.

Comparison of the single-threaded executions showed that the Sulong-OpenMP

executes the NPB suite with an acceptable overhead of 3% compared to Sulong-

sequential. The implementation choice of Java versions of the benchmarks made them

1The overheads for single-thread performance are not shown separately in Figure 5.6 as they are
aggregated into the ‘After optimisations’ category.
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faster on kernels but slower on pseudo-applications compared to Sulong-OpenMP (1-

Thread). The Java versions precomputed certain values that were not accounted for

their measured execution time. However, on the pseudo-applications, the Java versions

created threads, multiple times than the specified number. These threads were then

assigned a specific parallel region for execution.

Comparison of the multi-threaded executions showed that the Sulong-OpenMP

still has a significant performance gap to cover. One of the major sources of the over-

head arises from the current thread-pool implementation, which requires the Frame of

the top-level outlined OpenMP function to be materialized. The frame materializa-

tion restricts the Graal compiler to aggressively optimise the function that wraps the

outlined function. This limitation also impacts the scaling performance of the bench-

marks on Sulong-OpenMP. The EP benchmark on Sulong-OpenMP showed the scaling

behaviour similar to the Native-OpenMP executions, where the frame materialization

issue has a negligible impact. Another reason for relatively poor scaling of Sulong-

OpenMP is lack of parallelism. Sulong-OpenMP uses much smaller problem sizes from

class S and W because the underlying Sulong system could not support execution of

the larger problem sizes. Consequently, threads starve for the work when number

of threads increase. There may be additional sources of overhead that might have

impacted multi-threaded executions on Sulong-OpenMP but are yet to be explored.

In the final section of the chapter, we discussed various optimisations to reduce the

overhead of Sulong-OpenMP. The first technique improved calling Sulong-intrinsics

using the approach similar to tail call optimisation. Then we discussed the imple-

mentation of the thread-private stack and the thread-pool for OpenMP threads that

are important for the multi-threaded execution of Sulong-OpenMP. The optimisations

to split OpenMP regions and restricted inlining benefited from the way clang gener-

ates LLVM IR. These optimisations aimed to increase the proportion of benchmark

computations that are executed in JIT-compiled mode.

The current implementation of Sulong-OpenMP mainly focused on single-threaded

performance. After applying all the optimisations, the overhead for Sulong-OpenMP

implementation reduced significantly (from about 273% to an acceptable value of 3%),

compared to Sulong-sequential execution. In the next chapter, we discuss the perfor-

mance analysis approach that we used to analyse the slowdown for MG benchmark.



Chapter 6

Performance Analysis of Truffle

Hosted Languages

In this chapter, we discuss the work that aims to improve the ability to do perfor-

mance analysis of the Truffle hosted languages. The performance analysis technique,

discussed in this chapter, aided the development of Sulong-OpenMP. This work is dis-

cussed separately because it also covers performance evaluation of other JVM hosted

executions. Section 6.1 begins our discussion by highlighting the need for effective

performance analysis techniques that are used for JVM hosted language implemen-

tations. Section 6.2 describes the approaches and their trade-offs for profiling JVM

hosted executions. This section also highlights the challenges involved in using the

existing approaches, for profiling JVM hosted executions of Truffle languages. To

overcome these challenges, we devised a performance analysis technique by extending

the existing JVM profiler: perf-map-agent. Section 6.3 focuses on describing our

performance analysis technique. We then evaluate and compare the performance of

three Truffle hosted language implementations viz. TruffleRuby (for Ruby), Sulong

(for LLVM IR) and FastR (for R), with Java and native (C) execution. Section 6.4

and Section 6.5 describe the experimental methodology and results of the evaluation

respectively. We use our technique to analyse the performance anomalies observed

while evaluating Truffle hosted languages. Section 6.6 presents two case studies to

demonstrate the usefulness of our technique. Section 6.7 concludes this chapter by

outlining the current limitations of the technique. We published this work in Man-

Lang’18 [GNL18].

115
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6.1 Introduction

Profiling helps to identify the performance bottlenecks by measuring where an appli-

cation spends time during the execution. In the case of JVM hosted executions, the

time is also spent on additional tasks, such as JIT compilation and Garbage Collection

(GC). Measuring the time spent on these activities is crucial for performance analy-

sis. As discussed in Section 2.2, during execution, some parts of the application may

execute in interpreted mode, and the rest executes in JIT-compiled mode. The JIT-

compiled mode of execution is relatively faster than the interpreted mode. This makes

it important to execute computationally intensive and frequently executing parts of

the application, in the JIT-compiled mode. An ideal profiler helps to identify the

mode of execution for performance-critical parts of an application.

It is a popular approach to use JVM for executing programming languages other

than Java. Examples of this approach are: Truffle framework (from the GraalVM

project) [Cor15] and Eclipse OMR (from the Eclipse J9 project) [Fou16]. This ap-

proach benefits from reusing the components of JVM that are evolved over many

years, such as JIT compilers and garbage collectors. Additionally, this approach re-

quires only one managed language runtime to be maintained and optimised. Conse-

quently, this avoids the need for a separate runtime for each language. For example,

the Truffle framework offers support for R (using FastR), Ruby (using TruffleRuby)

and JavaScript (using GraalJS).

Performance analysis of guest languages, hosted on a JVM, poses a new set of

challenges for conventional Java profilers. The Java profilers do not expect any lan-

guage other than Java to be executed on a JVM. Further, it becomes more challenging

for the execution of polyglot applications (i.e., the applications are written in two or

more languages). GraalVM offers support to execute programs written using multiple

Truffle hosted languages [GSS+18]. Conventional Java profilers cannot recognise the

functions of a guest language program, during its execution. Instead, the profilers

record executions of the guest language program, as that of a Java program. Conse-

quently, these profiles show the Java methods, that implement guest language functions

instead of functions themselves. To analyse the performance of guest language execu-

tion, it is necessary to map Java profiles to the corresponding guest language functions.
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Such mapping of profiling information can help to identify, isolate and measure the

performance of specific guest language features. This can further help to guide the

optimisation efforts, where language implementation can be benefited more.

In this chapter, we discuss our sampling-profiler-based approach for Truffle hosted

language executions on JVM. We extend the existing Java profiler: perf-map-agent.

The profiling approach is also aware of the polyglot executions and can highlight

different guest profiles uniquely. In the next section, we discuss the existing profiling

approaches, their trade-offs, and challenges to profile Truffle hosted languages.

6.2 Profiling Approaches & Challenges

This section begins with a discussion of two common profiling approaches viz. Trac-

ing and Sampling. We then highlight the challenges for the existing sampling-based

profilers, to accurately profile JVM hosted executions. We then discuss the profilers,

that mitigate these challenges and improve the accuracy of recorded profiles.

Tracing vs Sampling

In the case of Tracing approach, typically, an application is instrumented by adding

instructions to record the events of interest (e.g., entering and returning from a func-

tion). During the execution, these instrumenting functions record the events that are

then processed to calculate the information of interest (e.g., time spent in the specific

function). As the tracing profilers inject the profiling code in an application, they can

capture every event of interest, whenever it occurs. This makes the tracing approach

to record a profile accurately. However, the injected code is executed each time the

event occurs. Consequently, this induces an overhead, proportional to the time spent

in executing the profiling code.

On the other hand, the sampling profilers inspect a specific metric at a certain

frequency, such as call-stack of an application during its execution. These samples

of information are then aggregated to calculate the information of interest (e.g., time

spent in the specific function). Typically, sampling is performed using an external tool

(e.g., the Linux utility perf ), that records the call-stack samples. Therefore, it is easier

to tune the overhead of sampling profilers by changing their sampling frequency. This
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flexibility makes the sampling-based profiling approach suitable for use in production

environments. Thus, we chose the sampling-based profiling approach for this work.

Challenges for sampling profilers

The two main challenges for sampling profilers are as follows: i) sampling rate, that

influences the accuracy of the profile; ii) sampling skid, that may impact the precision

of profile.

1. Accuracy: The accuracy of the profile depends on the selected sampling fre-

quency. Sampling profilers pause the application to record a sample. Thus, when

the sampling frequency is higher, the profiler incurs higher overhead during the

execution. Higher overheads may impact the behaviour of an application. In

[AH17], Akiyama et at. discussed the issues arising from higher sampling fre-

quencies, using Intel Precise Events Based Sampling (PEBS). However, when the

sampling frequency is too low, the recorded samples may miss certain events. For

example, call to a function would not be reflected in the recorded samples, when

it is invoked and returned in the interval between two samples. When the profiler

misses such events, the application methods report disproportionate time spent

in executing them.

2. Precision: Sampling skid may impact the precision of a recorded profile. The

skid occurs when the sampling event is recorded on the line of code, where it

does not exactly occur. This may cause reporting of an incorrect method in

the call-stack sample. The skid may occur as a result of the architecture-level

processor implementation mechanisms, that are used for sampling; for example,

delay in propagating the sampling event to the processor.

It is complicated to determine the exact line of code when a sampling interrupt

occurs. A line of code is converted to multiple instructions, that may not neces-

sarily execute in the same order, because of the out-of-order execution [Wik13b].

This further complicates with instruction-level parallelism, which enables multi-

ple instructions in flight at a given point of time [Wik13a].
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6.2.1 JVM Profilers

One of the popular approaches used by the sampling Java profilers is to use JVM Tools

Interface (JVMTI). The JVMTI provides a native interface (in C or C++), which al-

lows tools to inspect and control the state of the application that is running on the

JVM [Ora04]. Tools can achieve this using the software agents, referred to as JVMTI

agents. A JVMTI agent can request the current execution call-stack sample from the

JVM. A call-stack sample can be retrieved using the GetCallStackTrace method.

An individual call-stack sample does not provide much information; however, when

call-stack samples are collected over a period of time, they can represent the execution

behaviour of an application. A proportion of the call-stack samples, matching a par-

ticular part of a program, indicate the corresponding proportion of time in that part of

the program e.g., if 20 out of 100 samples match foo(), indicates that approximately

20% of the execution time is spent in foo().

Safepoint Bias

The profilers that rely on the JVMTI agents to collect call-stack samples, face an issue

of Safepoint Bias that may lead them to record an inaccurate profile. Mytkowicz et

al., studied four popular Java profilers: hprof, xprof, YourKit, and jprofile; and found

that the profilers often produce incorrect profiles [MDHS10]. When used on the same

benchmarks, these profilers disagree on time spent in the hot methods and/or may

identify incorrect methods as hot. One of the primary reasons for these inaccuracies

is the Safepoint Bias.

An application is said to be at SafePoint when the state of the JVM is well de-

scribed. Safepoints are used by the JVM to perform maintenance tasks such as GC

and servicing the JVMTI requests. Figure 6.1 shows how the Java application threads

reach the safepoint. JVM sets a flag to request a safepoint when it needs to per-

form a task that requires an application at a safepoint. During the execution, each

application thread periodically checks whether a safepoint is requested, referred to

as safepoint poll. Whenever a thread notices a safepoint request, it suspends itself.

As seen in Figure 6.1, threads T1, T2 and T3 wait at the safepoint when they are

executing the safepoint poll. The thread T4 and T5 are already at the safepoint, as

they are executing the native calls. The native threads wait on their return until the
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Figure 6.1: The figure shows how the Java threads reach the safepoint. The execution
states of the Java threads are coloured as: executing(green), descheduled (yellow), and
native (red). Image reproduced from [Wak15].

requested operation at the safepoint is completed; in this case, collecting the call-stack

sample using the GetStackTrace JVMTI function. It is important to note that the

application threads are not immediately stopped when the safepoint flag is raised.

The number of instructions that are executed until the thread is at the safepoint,

is unknown. Therefore, the call-stack samples collected using the GetStackTrace()

function, are skewed towards the safepoints when they are collected. This behaviour

is called the safepoint bias.

Putting a safepoint poll is JVM implementation-dependent. The HotSpot JVM

polls for a safepoint in both interpreted and JIT-compiled mode of execution. The

interpreted mode polls after executing every bytecode. The JIT-compiled code polls

before taking the back-edge in a non-counted loop, and returning from a function

[Wak15]. When a method is inlined then it would not have a safepoint at the en-

try/return of the inlined method. This may incorrectly reflect the time spent in the

inlined method as the spent in the callee of that method. Furthermore, if the method

is called at multiple call-sites, then time spent in that method may get distributed

amongst call-sites. This causes the method to be fully or partially hidden in the

profile.
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Linux Perf

The safepoint issue can be avoided by using the external sampling profiler such as the

Linux utility perf. Perf is a tool, based on perf events API, which can be used to

read the performance counters in the processor by abstracting the hardware-specific

details [per15]. Perf helps to find the performance bottlenecks of an application by

measuring the metrics, such as cache-misses and branch-mispredictions. Perf can be

used to record the call-stack samples at the granularity of a thread, process or a

CPU. To record the call-stack samples, perf uses the frame pointer register to walk

the application call-stack. Therefore, perf needs the application to populate the frame

pointer register correctly. By default, many compilers perform optimisation to reuse

the frame pointer register as a general-purpose register. This can be avoided us-

ing a compiler flag, e.g. --fno-omit-frame-pointer for gcc. This issue of reusing

frame pointer register is present for the HotSpot JVM; consequently, making perf to

record the incomplete Java call-stacks. The JDK versions 8u60 onwards provide the

-XX:+PreserveFramePointer flag that enforces correct value to be present in the

frame pointer register.

AsyncGetCallTrace

The internal API of OpenJDK has a method AsyncGetCallTrace (AGCT). This method

can be used to sample the call-stack of an application running on the OpenJDK JVM.

The AGCT call does not require JVM to be at a safepoint to get serviced. Thus, the

collected call-stack samples are not impacted by the safepoint bias. However, some of

the call-stack samples may be broken because the JVM may not be in a well-defined

state when those samples are collected [Pro19]. Some of the reasons why JVM may

not be in a well-defined state are: i) the interrupted thread for sampling is in the

middle of deoptimisation, ii) the thread is created but not yet started executing any

Java code. Therefore, the correctness of the collected profile is proportional to the

correctly sampled call-stacks.

The profilers, such as the honest profiler, use the AGCT-based approach for pro-

filing [War19]. The Honest Profiler attaches a JVMTI agent that registers a signal

handler for the SIGPROF signal. This handler delivers the signal periodically at a spe-

cific sampling frequency. The signal handler records the call-stack sample using the
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AGCT call. When the signal is delivered, a random thread of the application is se-

lected to execute the signal handler routine. The selected thread is not necessarily an

application thread or it may not be at the safepoint. Therefore, the call-stack sample

may not be retrieved. To deal with this issue, the Honest profiler also reports the

failed call-stack samples that can be used to determine the accuracy of the profile.

The higher percentage of failed samples indicate that the JVM spent a large amount

of time in performing activities, such as GC and deoptimisation.

The Async profiler extends the approach used by Honest Profiler. The Async-

profiler uses ACGT calls to capture JVM call-stacks, and it uses perf to record the

corresponding native call-stacks. Honest Profiler samples only the JVM call-stacks, but

not the native ones. When the bottleneck lies in the underlying native operations, such

as networking or file I/O, the Honest Profiler associates time spent in the corresponding

Java method, which performs the slow native operation. The Async profiler addresses

this issue by collecting the native call-stacks using the perf events API. This API

also enables Async profiler to record performance counters, including cache misses,

branch mispredictions and page faults [Pan19]. The Async profiler has options for

better usability, such as the built-in support to generate flamegraphs of the recorded

profile.

6.2.2 Challenges for Truffle hosted executions

In the case of executing Truffle hosted language implementation on the JVM, profilers

are unaware of the guest language. Hence they profile the execution as any other Java

application. This makes it difficult to map the profiling information in the context of

executing the guest language program.

Figure 6.2 shows profile recorded for the warmed-up execution of the NBody bench-

mark from the CLBG suite of benchmarks using Sulong-sequential. This profile

is recorded using the perf-based sampling profiler and visualised using the flame-

graph. Flamegraph shows the native call-stacks in red, Java in green and the inlined

Java methods in teal colour. The profile shows more than 99% of execution time is

the Java method: OptimizedCallTarget.callRoot(). Truffle uses an instance of

the OptimizedCallTarget class to create a root node of AST, which represents the

guest language function. To execute this guest language function, the callRoot()
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Figure 6.2: The flamegraph visualises execution profile of the NBody benchmark from
the Shootout benchmark suite on Sulong-sequential. Warmed-up execution of the
benchmark is profiled to generate this flamegraph.

method of its corresponding AST is invoked. However, we cannot determine the exact

guest language function by only inspecting the flamegraph. This scenario is illus-

trated in Figure 6.2. In this flamegraph, we cannot determine the name of LLVM

IR function that corresponds to the widest Java stackframe (i.e., the green rectan-

gle with name OptimizedCallTarget.callRoot()). The profile becomes confusing

when there are multiple guest language functions present. All these functions are

represented as separate stackframes in the flamegraph, but with the same method

name: OptimizedCallTarget.callRoot(). This happens because the root nodes for

all guest language functions are instances of the OptimizedCallTarget class, and exe-

cuted using their callRoot() method. The profile becomes further confusing when the

guest language functions are inlined by Graal. These inlined functions are represented

using the OptimizedCallTarget.callInlined() name. It is difficult to determine

which guest language functions are inlined, by simply inspecting the flamegraph.

Polyglot programs are written using multiple Truffle hosted languages. The dif-

ficulty of determining guest language names in the profiles further exacerbates for

the polyglot executions. All the guest language functions are represented using the

callRoot() method name. As all implementations are Java-based, it is difficult to
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Figure 6.3: High-level working of perf-map-agent. (a)perf records call-stack samples
with stackframe addresses, and the native symbol table to map those addresses to
corresponding function names. (b) The missing mapping for the JIT-compiled Java
method is dumped by perf-map-agent. (c) Combines the information from (a) and (b)
to obtain call-stack samples with names of the JIT-compiled Java methods.

distinguish between the call-stacks associated with different guest languages.

6.3 Performance Analysis Technique

In this section, we discuss our approach, based on the perf-map-agent profiler, to

address the challenges for profiling the Truffle hosted language executions on JVM.

This approach uses the existing perf-map-agent profiler, which uses perf to record

the call-stack samples. We extend perf-map-agent to map the guest language function

names to their corresponding Java methods in the recorded profile. Firstly, we will

discuss the working of perf-map-agent. We then proceed our discussion on extending

perf-map-agent to recognise the guest language functions in recorded profiles.

6.3.1 Perf-map-agent profiler

Figure 6.3 depicts high-level working of perf-map-agent profiler. perf records the

call-stack samples that contain stackframe addresses and native symbol table, as shown

in Figure 6.3(a). This information is enough to visualise the profile of native execu-

tions, which contains human-readable function names instead of hexadecimal stack
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Figure 6.4: The workflow for profiling Java executing using perf-map-agent. The
recorded profile is visualised using the flamegraph. Numbers in red circles represent
the sequence of profiling steps.

addresses. However, perf cannot map the method names for the interpreted and JIT-

compiled methods in JVM. Thus, perf-map-agent provides the missing piece of infor-

mation for mapping JIT-compiled methods in JVM. The perf-map-agent is a JVMTI

agent that can be attached to JVM, which is executing the program of interest. When

attached, the JVMTI agent dumps the symbol table for JIT-compiled methods in

that JVM, as shown in Figure 6.3(b). This symbol table consists of method names

and their stackframe addresses. In the call-stack samples recorded using perf, stack-

frame addresses for the JIT-compiled code can be mapped to their respective method

names, using the dumped Java symbol table. This is illustrated in Figure 6.3 where

the missing JIT-compiled Java method name J1 (in native symbol table) is mapped

to its stackframe address. Thus, the recorded profile can use the Java method names

correctly in the flamegraph instead of their stackframe addresses.

Figure 6.4 outlines the workflow of profiling a Java execution using the perf-map-

agent. As the figure depicts, the perf-map-agent is attached to the JVM when the ap-

plication is warming-up (represented by the dashed line). The agent retrieves mappings

of method name → stackframe address for all the JIT-compiled methods (illustrated in
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Figure 6.3(b)), that are entrant 1 at the time of attachment. The call-stack sampling

is initiated immediately using perf, which then records the warmed-up phase of the

application. The collected profile is processed offline to map stackframe addresses to

their respective Java method names (illustrated in Figure 6.3(c)). Such a profile can

then be used to generate a flamegraph.

Note that, the perf-map-agent dumps the symbol table only once — at the time

when the agent is attached to the target JVM process. Thus the JIT compilations that

occurred later on during the sampling phase, cannot be mapped to their Java method

names. If continuous JIT-compilations are expected, then the JVMTI agent can be

extended to dump the symbol table at a certain time interval. Periodic dumping of the

symbol table ensures that mappings for all the JIT-compiled methods are available.

Unlike the AsyncGetCallTrace-based approach, the perf-map-agent dumps the names

of only JIT-compiled methods, but not that of the interpreted methods. Thus, the

interpreted method names are invisible in the profile, and the corresponding call-stack

frames are named as Interpreter. However, when the program spends a significant

portion of time during interpretation, visualising the interpreter call-stacks becomes

crucial. We do not target such applications with our profiling approach. In such cases,

even the profilers with safepoint bias may provide a better approximation of time spent

during the interpretation, because the safepoint poll is performed after executing every

bytecode. Additionally, time spent during the interpretation phase is significant for

short-running applications, because methods are not executed enough number of times

to become hot. However, for short-running applications, the performance engineering

approach may not remain the same. One may want to consider the ahead-of-time

compilation (AOT) based approach that avoids the interpretation overhead by design.

6.3.2 Extention to the perf-map-agent profiler

As discussed previously, the perf-map-agent profiler cannot map Java methods to

corresponding guest language functions, making them invisible in the profile, e.g. the

@nbody function in Figure 6.2. All JIT-compiled guest language functions are shown

1A JIT-compiled method is entrant when it can be invoked during the execution. When an
assumption associated with the JIT-compiled method fails, it is deoptimised. Before deoptimisation
begins, the method is marked as not entrant to indicate that it is not valid anymore and should
not be invoked.
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by perf. (d) original perf-map-agent dumps Java symbol table with method entry
point → Java method name. (e) We update the orignal table in (d) to contain new
mapping method entry point → Java method name + guest function name. (f) Now
the existing workflow of of perf-map-agent can show guest language function names in
the recorded call-stacks, which was missing previously.
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Figure 6.6: The extended workflow for profiling the JVM hosted executions using
perf-map-agent. Numbers in red/blue circles represent the sequence of profiling steps
(Step x’ comes after x). Blue circles represent additional steps to the perf-map-agent
based approach shown in Figure 6.4.

as OptimizedCallTarget.callRoot() in the flamegraph. The mappings dumped by

existing perf-map-agent enables us to visualise callRoot() name (equivalent to J1 in

Figure 6.3) instead of its hexadecimal stackframe address. However, we cannot see the

name of guest language function (@nbody). This makes it difficult to map the profiling

information of the JVM hosted execution to the corresponding guest program for

performance analysis. We address this issue by extending the perf-map-agent profiler

that maps the guest language method names to their matching call-stack samples.

Figure 6.6 outlines the modifications done to the profiling approach, based on the

perf-map-agent. During the warming-up phase, when a guest language method is JIT-

compiled, we record its name and the stackframe address (illustrated in Figure 6.5(c)).

The symbol table dumped by the original perf-map-agent contains mapping of stack-

frame addresses → Java method names (illustrated in Figure 6.5(d)). However, this

mapping shows callRoot() method name for all guest language functions instead of

their actual names, as seen in Figure 6.2. We update the dumped symbol table with

appropriate guest language function names (illustrated in Figure 6.5(e)). We then use

the modified table to create call-stacks with guest language function name (illustrated
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Figure 6.7: The flamegraph visualises execution profile of the NBody benchmark from
the Shootout benchmark suite on Sulong. Flamegraph also shows the guest language
function name ‘@nbody’ (in the green rectangle, appended after callRoot ).

in Figure 6.5(f)). The profile visualisation techniques, such as flamegraphs, can use

these call-stacks. Such a flamegraph then shows the guest language function name

along with the Java method name, as @nbody in Figure 6.7. Now, multiple guest

language functions in the profile can easily be distinguished and are mapped correctly.

High-level working of extended perf-map-agent approach is shown in Figure 6.5.

We modified Graal’s implementation for the -XX:TraceTruffleCompilation flag, to

retrieve the correct mapping of the guest language function name to its stack-frame

address. When the TraceTruffleCompilation flag is set to true, Graal dumps the

compilation information about the guest language functions. This compilation infor-

mation consists of a function name and code address (illustrated in Figure 6.5(b)). On

the other hand, the dumped symbol table contains Java method entry points (for the

guest language functions) and their Java method names (illustrated in Figure 6.5(d)).

Our objective is to match the guest language function name to their corresponding

Java method names (illustrated in Figure 6.5(e)). The original implementation of

-XX:TraceTruffleCompilation flag dumps code address, while perf records stack

address/ method entry point for the method. Although, entry points and code ad-

dresses are for the same JIT-compiled method, we cannot map them deterministically

because entry points are not at the fixed offset from their code addresses. Linear search

that begins from the code address (e.g. 0x67840→ 0x70000 in Figure 6.5) may cause

incorrect matching in certain scenarios. Incorrect matches result in showing wrong
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guest language function names in the profile, which is worse than failing to show any

function name. Therefore, we use a different approach to extract accurate mapping of

method entry points → guest language function name.

Our approach extracts the necessary mapping from Graal when JIT-compilation of

the guest language function occurs. The method entry point for the address is recorded

by Graal when the guest language function is compiled. However, the entry point does

not get dumped when the TraceTruffleCompilation flag is set to true. We fix this

issue by modifying Graal, to dump the entry points when the tracing is enabled. This

newly dumped information now contains the mapping of guest function names to their

method entry points (illustrated in Figure 6.5(c)). As discussed previously, perf-map-

agent dumps the symbol table that contains the mapping of method entry points

to Java method names (illustrated in Figure 6.5 (d)). We use both these mappings

to accurately match the guest functions to their stackframe addresses (illustrated in

Figure 6.5(e)). This enables us to generate the flamegraph shown in Figure 6.7.

6.3.3 Profiling polyglot applications

This section describes the enhancements done to visualise call-stack samples recorded

for the polyglot executions, using the flamegraphs. This work complements the visu-

alisation of profile for a Truffle-hosted guest language.

Figure 6.8 shows the profile for executing a synthetic polyglot application, vi-

sualised using a flamegraph. The application calculates Fibonacci sequences, and

it performs array manipulations using three languages: R, JavaScript and Python.

We use the Truffle-hosted implementations of the languages FastR (R), GraalPython

(Python) and TruffleJS (JavaScript), which are bundled with graalvm-0.31. The pro-

file is recorded using an async-profiler for better insights into the interpreted methods.

The flamegraph in Figure 6.8 uses green colour for all the call-stacks because they all

are Java stack-frames. However, this makes it difficult to distinguish call-stacks corre-

sponding to different guest languages and map the profiling information to a specific

language.

We modified the flamegraphs.pl script that is used to plot flamegraphs. This

script uses different colours to identify call-stacks for Truffle-hosted languages uniquely,

as shown in Figure 6.9. Modifications are limited only to the script generating flamegraphs;
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Figure 6.8: The profile for a synthetic polyglot benchmark recorded using the
async-profiler.
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Figure 6.9: The modified version of the profile shown in Figure 6.8 where the stack-
frames for different languages are coloured using different colours as shown in Table 6.1.
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Language Color

GraalPython Brown

TruffleJS Blue

FastR Cyan

Truffle Framework Light Green

Graal Lime Green

Table 6.1: Colour scheme used in the flamegraph in Figure 6.9.

making it useful to visualise call-stack samples that can be recorded by any other pro-

filer. We demonstrate the use of modified flamegraph script with async-profiler in

Figure 6.9, which now identifies the interpreted and JIT-compiled methods. Languages

are identified using their API names, present in the recorded call-stacks. Flamegraph

in Figure 6.9 uses colour scheme shown in Table 6.1 to highlight call-stacks. Inte-

gration of modifications from extended ‘perf-map-agent’ into async-profiler, would

enable the later to identify the guest language functions names.

for GraalPython (in brown), TruffleJS (in blue), FastR (in cyan), Truffle framework

API (in light green) and Graal (in lime green).

6.4 Experimental Methodology

6.4.1 Evaluation Objective

In this work, we aim to provide tools that can help to identify the performance bot-

tlenecks easily for the Truffle-hosted language executions on a JVM. In this section,

we evaluate the implementation of the Truffle-hosted languages on a selected suite of

benchmarks. We then carry out performance analysis using the perf-map-agent based

technique, discussed in the previous section.

The objective of this evaluation is to identify the source of overhead; whether it

is arising from i) the application, ii) from JVM services such as JIT-compilation and

GC, iii) from the language implementation using the Truffle framework. To achieve

this objective:

� We execute the same set of benchmarks implemented, using different Truffle
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hosted languages (TruffleRuby, Sulong, FastR) to compare the language imple-

mentations.

� We use the Java implementation of the benchmarks as our baseline, for separating

overheads induced by JVM hosted execution.

� We use the native C execution to gauge lower bound on the performance gap,

which could be achieved by a guest language implementation that is hosted on

a JVM. Profiling these executions enable us to compare the implementation of

specific guest language features to that of their native equivalent.

It is important to note that, comparing different language implementations can be

tricky because of differences in their semantics and standard libraries [MDM16]. At

times, we try to keep benchmark implementations as similar as possible, by preferring a

näıve approach to ensure consistency across their implementations. More importantly,

our objective is not to determine whether one language or its feature is better than

the other; instead, it is to identify the performance improvement opportunities for

language implementations.

6.4.2 Benchmarking Environment

Benchmarks

We use the Shootout benchmarks from the Computer Language Benchmark Game

(CLBG) that are commonly used for comparing the performance of different language

implementations[Guo18]. We use the benchmark implementations in Java, Ruby and

C (for native and Sulong) languages. We deliberately use the sequential version of

benchmarks to ensure consistent implementation across the languages. We explicitly

avoid the use of parallel library functions at the benchmark implementation level,

such as the parallel variants in the streaming API of the Java Development Kit (JDK).

However, the JVM hosted executions use multiple threads created for the VM services,

such as JIT compilation and GC. Further, the guest language implementations may use

parallelism offered by the JDK while implementing their standard library functions.

However, we consider this as an implementation choice, which itself may be suboptimal

and needs to be identified as part of the performance analysis.



CHAPTER 6. PERFORMANCE ANALYSIS 135

foo.rb foo.R foo.c

foo.bc foo.exe

clang

Execution on JVM Native Execution

foo.java

Figure 6.10: The modes of execution for the different language implementations.

We are not using meteor benchmark, because it failed to execute correctly on the

version of Sulong that we use in the evaluation. Also, note that we do not present

results for the regexdna benchmark using FastR, as we discovered a bug with the

implementation (see [Gai15]). This bug arose from the implementation of gsub()

library function in FastR, which differed from that of in GNU R, causing FastR to

calculate incorrect results.

Experimental Setup

The system that we use here, is different from the one used in the evaluation of Sulong-

OpenMP. We use a system with the following features: i) 2 physical (4 hyper-threaded)

cores of Intel Core i7-3537U, ii) 8GB memory, iii) running Ubuntu 16.04 (4.13.0-38-

generic). We disable the processor frequency scaling and set it to a fixed 1.0GHz using

the userspace governor. We did not set the frequency to maximum because, in the case

of overheating, we observed that the cooling system in the machine was not strong

enough to avoid forced scaling-down of frequency.

Figure 6.10 shows setup for executing each of the selected implementations. Ta-

ble 6.2 shows softwares and their corresponding versions that we use in our experi-

ments. We use the latest version of Sulong available then that supports LLVM 5.0.
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Software Version

Sulong commit b779587
TruffleRuby commit c15ae86

FastR commit c49d3b7
GraalVM vm-enterprise-0.33

Clang 5.0

Table 6.2: Software versions used in for the experiments.

Note that, this version of Sulong is the older version than the one used by Sulong-

OpenMP. The LLVM IR for the Sulong based execution is generated using clang with

-O3 optimisation flag.

Used Methodology

The experimental methodology used to execute benchmarks on selected language im-

plementations is similar to the one used for evaluating native, Sulong and Sulong-

OpenMP based executions in Chapter 4. We measure the peak performance of the JVM

hosted execution, where all the computationally intensive methods are JIT-compiled

and performance improvement plateaus.

We use a separate benchmark harness for each language implementation that typ-

ically wraps the main method of a benchmark in a loop. This harness executes 100

iterations of a benchmark and uses the geometric mean of the last 50 iterations as a

representative of its execution time. JIT-compilation threshold of Graal is set to 1000

invocations of a method. We manually ensure that every benchmark is JIT-compiled

and no JIT compilation activity occurs during the last 50 invocations. We also calcu-

late the geometric mean across 10 benchmarks to represent the overall behaviour of the

implementation. We analyse the wide variations in performance, using the profiling

approach based on perf-map-agent (discussed in Section 6.3). The call-stack sampling

frequency for perf is set to 1000Hz.
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Figure 6.11: Logarithmic execution time of CLBG Shootout suite benchmarks nor-
malised to Java execution time. 1 represents the execution time required for Java
implementations (lower is better).

6.5 Results

Figure 6.11 shows the execution time of the benchmarks from the CLBG Shootout

suite. The execution time shown on a Y-axis using a logarithmic scale is normalised

to that of the Java version of the benchmark. It is interesting to note that, although

different Truffle hosted language implementations use the same underlying framework,

they demonstrate significant variations in their performance. Such performance vari-

ations raise questions i) are the language semantics making it difficult to convey in-

formation to a compiler? or ii) is it the guest language implementation that has scope

for improvement?

Sampling overhead

The profiling activity involves performing additional operations to record information

of interest, which incurs an inevitable overhead during the execution of an application.

In the case of perf based sampling, the execution of an application is paused to record

the current call-stack sample, which delays the execution. The extended period is an

overhead for the execution, and hence proportional to the sampling frequency used by

a profiler.

Figure 6.12 shows overhead incurred for the execution of Shootout benchmarks

from the CLBG suite on Sulong, at different sampling frequencies. The overhead for
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Figure 6.12: Sampling overhead for executing benchmarks from the Shootout bench-
mark suite on Sulong using different sampling frequencies. Blue bars represent the
overhead for sampling using perf, green bar shows overhead when benchmarks are
executed with the -XX:+PreserveFramePointer JVM flag only. Red bars show the
overhead of using both, the perf utility and the -XX:+PreserveFramePointer JVM
flag. Yellow bars represent the standard deviation in percentage of the geomean exe-
cution time measured without profiling enabled, and it is calculated using the 51..100
invocations of the benchmark in our test harness. Figure shows that the profiling
overhead is low enough to be comparable with the variations in execution time (shown
as Yellow bars) for multiple iterations of a benchmark .

using perf as a sampling profiler is less than 1%, compared to the original warmed-

up execution time of the benchmarks. Perf-map-agent needs to start the JVM with

-XX:+PreserveFramePointer flag, in addition to using perf for sampling. Overhead

for using the perf-map-agent based approach is less than 1.25%, compared to the

warmed-up executions.

Analysing BinaryTrees benchmark

In Figure 6.11, results for binarytree benchmark show that the execution on Java is

much faster than even the native C execution. As mentioned earlier, to keep the

benchmark implementation across the languages similar; we use the simple imple-

mentation, instead of the optimised one, for the binarytree benchmark. This simple

implementation of the benchmark performs memory allocation/freeing operations for

the tree-nodes, as a part of benchmark computation. These operations accounted for

execution time of the benchmark. The native, and consequently the Sulong-based ex-

ecution, performs dynamic memory management using malloc and free functions, on
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Figure 6.13: The flamegraph shows a profile for executing the binarytree program na-
tively. The call-stacks for the functions that allocate and free memory are highlighted
in magenta colour. The highlighted call-stacks show that the native execution spends
84.4% time in performing memory allocation/freeing.

Figure 6.14: The flamegraph shows a profile for executing a Java program for the
binarytree benchmark. In the flamegraph, call-stacks for GC-related functions are
highlighted in magenta colour. Here, 6.9% of execute time is spent in GC. GC is
performed using 2 threads that are represented by two separate towers (named by
their thread IDs that are not visible).

the same thread that executes the benchmark. The profile for the native (Figure 6.13)

shows that it spends about 84.4% of execution time in functions that allocate or free

memory. On the other hand, Java-based execution spends only 6.9% of its total ex-

ecution time in memory management, as shown in (Figure 6.14). Furthermore, JVM

uses two separate threads for GC that execute in parallel without impacting the wall-

clock execution time, as much as its native counterpart. Figure 6.14 aggregates the

call-stack samples for different JVM threads, which do not highlight the background

execution of GC threads. If we compare the raw execution times of native and Java,

then we observe that the native implementation is 7.2 times slower than Java; but when

we subtract their memory management overheads, the remaining execution times are

comparable (i.e., time spent purely in the benchmark computation is nearly equal).

Analysing knucleotide & regexdna benchmarks

For both, knucleotide and regexdna benchmarks, the native and Sulong-based execu-

tions are slower than Java. The primary reason for this behaviour is the use of external
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Figure 6.15: Flamegraph shows profile of executing knucleotide benchmark on Sulong.
Flamegraph highlights the call-stack frames associated with calls made using Graal
NFI in magenta colour and shows about 70% of the call-stack samples matching the
keyword NFI.

library functions. The native implementation of knucleotide uses the external library

glib-2.0 for creating a hashmap; while the regexdna benchmark uses the Perl Com-

patible Regular Expressions (PCRE) library for matching regular expressions. On the

other hand, Java uses built-in implementation for creating hashmaps and for matching

regular expressions, using the classes from java.util and java.util.regex packages

of JDK respectively. Further, the JIT-compiler can aggressively optimise the parts

of these libraries for their usage in the corresponding benchmarks. The Java-based

implementations could outperform native and Sulong implementations because they

used the JIT-compiled versions of the built-in methods of JDK.

The regexdna implementation on TruffleRuby uses a Java port of the Oniguruma

library. This library uses the same Java classes (i.e., from java.util.regex pack-

age) for matching regular expressions. Therefore, similar to Java, TruffleRuby also

outperformed native and Sulong implementations.

Although both Sulong and native implementations called the same external library

functions, the slowdown for Sulong was much higher compared to the native imple-

mentation. In the case of Sulong, the overhead for calling external library functions is

much higher compared to the native execution. This is because Sulong needs to use
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Figure 6.16: Flamegraph shows profile of executing regexdna benchmark on Sulong.
The keyword search for “nfi” in the flamegraph is highlighted using magenta colour,
and it matched 8.3% call-stack samples (shown at the right bottom corner).

Native Function Interface (NFI) mechanism of Graal to make external library calls.

The slowdown for Sulong, compared to the native execution, is proportional to the

time spent in calls using NFI. The overhead of calling external library function for Su-

long is highlighted using the flamegraphs for knucleotide (in Figure 6.15) and regexdna

(in Figure 6.16) benchmarks. Flamegraph for the knucleotide benchmark shows that

it has about 70% of the call-stack samples matching the keyword “NFI”; while for

the regexdna benchmark, the matching call-stacks are only 8.3%. The knucleotide

benchmark on FastR performed extremely slow (about 500x). This is discussed later

in Section 6.6.

6.6 Case Studies

6.6.1 Case Study 1: Slowdown of knucleotide on FastR

The knucleotide benchmark on FastR is more than 500x slower than its Java equivalent;

and even after warm-up the FastR is 35% slower than the GNU R v3.2.3. Figure 6.17

shows part of the flamegraph that highlights the REnvironment.put() method, where

the benchmark spends about half of its execution time (46.2%). REnvironment.put()
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Figure 6.17: The flamegraph shows a part of a profile where about 46.2% time is spent
when the knucleotide program executed on FastR. The REnvironment.put function,
highlighted in magenta colour, implements assign function for Environments in R
that is equivalent to the insert operation on a HashMap.

implements the put() function of the Environment package in R. This function pro-

vides a HashMap update functionality in the R benchmark source. Majority of the

total execution time is spent in the FrameWithoutBoxing.resize() method while

performing the put operation.

In the case of running knucleotide benchmark on Java, majority of the execution

time is spent on updating HashMap, and on allocating arrays. However, in FastR, the

FrameWithoutBoxing-based implementation of Environments is about 240x slower

than Java. On examining the usage of the FastR resize() function in a debugger, we

observed that: each time when a new key is inserted into the Environment variable, it

calls the resize operation. The resize operation increments the size of all underlying

data structures only by 1. Therefore, every put operation leads to resizing of the global

map. Java-based implementation of knucleotide uses the HotSpot’s implementation of

the HashMap. In this case, size of the map is doubled when the put operation cannot

find a slot to insert a value. This avoids frequent resizing of the map and is much

efficient compared to the approach of FastR.

The overhead of resizing the map for FastR is high because the underlying class:

FrameWithoutBoxing uses three member-arrays to provide map-like functionality.

Thus, for every resize operation, all three member-arrays are copied. This copy

operation involves allocating new arrays with an extra slot, and copying all the ele-

ments to new arrays; both of which are expensive operations. The benchmark inserts

keys throughout its execution. Therefore, the size of the array that provides HashMap
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functionality increments by 1 for every insert operation. This severely increases over-

head of put operation in FastR, compared to that in Java. Additionally, the old

arrays need to be garbage collected, which further stresses the GC. Note that, we do

not claim that this is the only source of overhead in comparison to Java; but we do

claim that our analysis techniques have enabled easy identification of this issue. It

further backs our expectation that Truffle runtime library classes may be used in the

ways that are inefficient for Truffle framework language implementations. Thus, the

implementation of Environments in FastR can be improved significantly by i) poten-

tially by mapping directly onto Java HashMap, or ii) by modifying the implementation

of FrameWithoutBoxing class in Truffle. The key message is that the bottlenecks in

the language implementation, such as the FrameWithoutBoxing based implementation

of Environments in FastR, can be easily identified using the extended perf-map-agent

based approach.

6.6.2 Case Study 2: Unexpected slowdown for a Ruby test

When we interacted with TruffleRuby community with our performance analysis work,

they shared an interesting usecase with us that demonstrates an unexpected slowdown

in the seemingly innocuous code. A code snippet from the usecase is shown in List-

ing 6.1.

1 TEST_A = [35745007559640128, 21462147108176960, 2333148165535564864,

2 487195639305610309, 81269024335471685, 469583564253826181]

3

4 TEST_B = [86312355559572544, 62173472877773888, 9351163663556674624,

5 691699238949762116, 89233839996970053, 969579166208363671]

6 ...

7 average(TEST_A) # test a

8 average(TEST_B) # test b

9 ...

Listing 6.1: A simple Ruby program that returns an arithmetic average of the array

elements. The warmed-up execution of test b is about 5.9 times slower than the

test a.



CHAPTER 6. PERFORMANCE ANALYSIS 144

Flame Graph Search

Lorg/truffleruby/language/dispatch/RubyCallNode:::executeWithArgumentsEvaluated

Lorg/truffleruby/language/dispatch/CachedBoxedDispatchNode:::executeDispatch

Lorg/truffleruby/language/methods/ExceptionTranslatingNode:::execute

Lorg/truffleruby/language/control/WhileNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::callProxy

Lorg/truffleruby/language/methods/ExceptionTranslatingNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callInlined

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::call

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callProxy

Lorg/truffleruby/language/dispatch/RubyCallNode:::executeWithArgumentsEvaluated

Lorg/truffleruby/core/array/ArrayNodesFactory$InjectNodeFactory$InjectNodeGen:::execute

nmi

Lorg/truffleruby/language/dispatch/CachedDispatchNode:::call

Lorg/truffleruby/language/RubyNode:::doExecuteVoid

Lorg/truffleruby/language/methods/CatchForProcNode:::execute

Lorg/truffleruby/core/proc/ProcNodesFactory$CallNodeFactory$CallNodeGen:::execute

Lorg/truffleruby/language/yield/CallBlockNodeGen:::executeCallBlock

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callProxy

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callRoot #call_times 

Lorg/truffleruby/language/methods/ExceptionTranslatingNode:::execute

java-?/8167

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callInlined

Lorg/truffleruby/language/dispatch/RubyCallNode:::execute

Lorg/truffleruby/core/array/ArrayNodes$InjectNode:::injectBlockHelper

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callInlined

Lorg/truffleruby/language/yield/CallBlockNode:::callBlockCached

Lorg/truffleruby/core/proc/ProcNodes$CallNode:::call

Lorg/truffleruby/language/control/IfNode:::execute
Lorg/truffleruby/language/control/ReturnNode:::execute

Lorg/truffleruby/language/methods/CatchBreakNode:::execute

Lorg/truffleruby/language/methods/CatchForMethodNode:::execute

Lorg/truffleruby/language/methods/CatchForMethodNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callInlined

Lorg/truffleruby/language/LazyRubyNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callProxy

Lorg/truffleruby/language/methods/CatchForMethodNode:::execute

Lorg/truffleruby/language/dispatch/DispatchHeadNode:::dispatch

Lorg/truffleruby/language/dispatch/CachedDispatchNode:::call

Lorg/truffleruby/language/dispatch/DispatchHeadNode:::dispatch

Lorg/truffleruby/language/dispatch/CachedSingletonDispatchNode:::executeDispatch

Lorg/truffleruby/language/control/WhileNode$WhileRepeatingNode:::executeRepeating

Lorg/truffleruby/language/RubyRootNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::call

Lorg/graalvm/compiler/truffle/runtime/OptimizedOSRLoopNode:::executeLoop

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::callProxy

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::callProxy

Lorg/truffleruby/language/dispatch/CachedBoxedDispatchNode:::executeDispatch

Lorg/truffleruby/language/dispatch/RubyCallNode:::execute

Lorg/truffleruby/language/methods/ExceptionTranslatingNode:::execute

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/truffleruby/language/RubyNode:::doExecuteVoid

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/truffleruby/language/methods/ExceptionTranslatingNode:::execute

Lorg/truffleruby/core/inlined/InlinedDivNodeGen:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::call

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::callProxy

Lorg/truffleruby/language/RubyRootNode:::execute

Lorg/truffleruby/language/RubyRootNode:::execute

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/truffleruby/builtins/InvokePrimitiveNode:::execute

Lorg/truffleruby/language/RubyRootNode:::execute

Lorg/truffleruby/core/array/ArrayNodes$InjectNode:::injectNoInitial

Lorg/truffleruby/language/dispatch/DispatchHeadNode:::dispatch

Lorg/truffleruby/language/LazyRubyNode:::execute

Lorg/truffleruby/language/control/SequenceNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedDirectCallNode:::call

Lorg/truffleruby/language/RubyRootNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callProxy

Lorg/truffleruby/language/dispatch/RubyCallNode:::execute

Lorg/graalvm/compiler/truffle/runtime/OptimizedCallTarget:::callProxy

Lorg/truffleruby/language/dispatch/CachedDispatchNode:::call

Lorg/truffleruby/language/dispatch/RubyCallNode:::executeWithArgumentsEvaluated

Figure 6.18: Flamegraph for warmed-up execution of the test a from Listing 6.1.
Flamegraph shows that about 99% of the execution time is spent in calculating arith-
metic average.

The code in Listing 6.1 contains two tests: test a and test b, both of them

calculate arithmetic average of the elements in arrays TEST A and TEST B respectively.

Interestingly, the warmed-up execution of the tests show that the test b is about 5.9x

slower than that of test a.

Figure 6.18 and Figure 6.19 show profiles for the warmed-up executions of test

a and test b respectively. Here, the profiles look quite different for seemingly equiv-

alent code. When the profile for test b is observed, it can be seen that about 59%

of total execution time is spent while adding the numbers and 23% of the time is

spent while performing division (for computing average). Importantly, it used the

Java BigInteger class for the arithmetic operations. On the other hand, test a

spends about 99% of its execution time in calculating the arithmetic average, and the

call-stacks shows that the primitive division is being used. Note that although the

percentages for the tests are comparable (99% for test a and 82% for test b), their

values are for different wall-clock times (i.e., if test a takes X seconds, then test b
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Figure 6.19: Flamegraph for warmed-up execution of the test b from Listing 6.1.
Flamegraph shows that about 82% of the execution time is spent in calculating the
arithmetic average compared to 99% for test a in Figure 6.18. Although percentage
time in the case of test b is smaller compared to test a, the wall-clock time for test
b is about 5.9 times the time taken for test a.
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takes 5.9X seconds. Thus, 80% of X is smaller than 80% of 5.9X). The reason for such

high overhead is that in the case of test b, execution switched to use BigInteger

class from Java for arithmetic operations which has much higher overhead compared

to its primitive equivalent used in test a. Call-stacks for the BigInteger class are

not clearly visible in the formatted image of the flamegraph (in Figure 6.19), but they

can be searched in the svg format of the image. Furthermore, use of BigIntegers also

increased GC pressure that is visible in the form of wider yellow towers (in Figure 6.19

comapared to test a in Figure 6.18) at bottom right corner of the flamegraph. The

profile for test b shows that about 10% of the time is spent in performing GC opera-

tions. The GC occurs in the background, which indicates that the reported percentages

of time spent in performing arithmetic operations is higher than they appear. The

percentages also indicate that the operations using BigInteger increase GC pressure,

compared to its equivalent primitive operations. This is highlighted by the time spent

in GC for test a, which is relatively negligible (about 0.2%).

The usecase showed in Listing 6.1 is a simplistic version of the behaviour that can be

found in different parts of the application or library functions. Ruby is a dynamically

typed language. This allows the underlying implementation of Ruby to switch from

using the smaller and faster representation of the numbers to that on the larger and

significantly slower representation. The ability of Ruby to switch transparently to a

different representation makes it difficult for the end-user to know why the same code

performed significantly slower with different data. We have seen in Section 2.3 that

the AST specialisation moves towards more generic operations to avoid continuous

re-specialisation. Thus, once the operation is specialised to handle the slower generic

behaviour of the input, it gets optimised for the generic version and stays slower until

the application terminates. For long-running applications (common usecase for Ruby

web applications), such behaviour can lead to a less obvious slowdown. Using our

approach, a short profile sample of a slow application can help to identify unexpected

slowdowns, even in production environments. A short profile sample can be collected

using a few slower HTTP requests for a web application.
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6.7 Limitations

6.7.1 Limitations of perf

As our perf-map-agent based approach uses the perf utility to record the call-stack

samples, we also inherit its limitations. First, perf uses the FramePointer regis-

ter to walk the application call-stacks. Therefore, we need to start the JVM with

the -XX:+PreserveFramePointer flag, so that we can record call-stacks for the JIT-

compiled methods of Java applications. Second, the call-stacks for the methods being

interpreted are shown as Interpreter in the corresponding flamegraph. The detailed

split of time spent in the interpreted methods is not available, which might be of

interest to some applications. Third, occasionally the recorded call-stacks are bro-

ken when the perf cannot walk the call-stack. The broken stacks are shown as a

stackframe named unknown in the flamegraph. When some of the call-stack samples

for a method contain a broken stackframe, such broken samples cannot be matched

under the same tower in the flamegraph. Consequently, the flamegraph now reports

two separate towers (with and without broken stackframe) for the method. This may

impact the readability because the collective percentage of the samples for the method

are now split into two groups. To overcome this issue, the search functionality of the

flamegraphs can be used. When a common method name is searched, it matches the

call-stack samples across the towers, then highlights the matching stack-frames and

reports the percentage of the matched call-stack samples.

6.7.2 Profiling Interpreted and Inlined methods

Our current approach maps the guest language method names only for the JIT-

compiled methods of an application, but not for the interpreted or the guest methods

that are inlined in other JIT-compiled methods.

Our main objective is to identify the performance bottlenecks during execution.

Therefore, until now we focused on the JIT-compiled methods because they are exe-

cuted frequently, and deemed as hot by the JVM. We are not showing the names of

methods that are being interpreted. However, this may be important for some appli-

cations. These applications can use the AsyncGetCallTrace based profilers (discussed
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in Section 6.2), such as async-profiler, to record the names of interpreted meth-

ods. In the future, we plan to integrate our work with the async-profiler to enable

tracing of the interpreted methods.

Currently, our approach is unable to recognise the guest language function names

for interpreted methods. To address this limitation, two approaches are considered. i)

by using the JVMTI calls to retrieve the value of a guest language function name from

a frame local variable. Initial experiments showed that this approach had a significant

overhead, which may impact the application behaviour. ii) by using the instrumen-

tation framework of Truffle. Truffle offers a built-in sampling profiler: CPUSampler.

This profiler creates a shadow call-stack for an application and reports the time spent

in the respective guest language functions [Cor17].

Regarding the inlined methods, the information would add valuable information to

the recorded profile. One of the ways to address this is to retrieve the guest language

method name and dump the inlining information at the end of the JIT compilation.

We have not yet evaluated the feasibility of this approach or the overhead incurred by

it.

6.7.3 Handling deoptimisation and JIT recompilation

As we discussed in Section 6.3, the perf-map-agent dumps a snapshot of the symbol

table of the enterant JIT-compiled methods only once, when the agent is attached.

The methods that are JIT-compiled after that point could not be mapped to their Java

method names (and the guest language function names) because their name mapping

would not be present in the symbol table. This issue can be addressed by dumping

a new snapshot whenever the JIT-compilation or deoptimisation occurs. The JIT-

compilation/deoptimisations can be detected using a JVMTI agent that is listening to

the events named as Compiled Method Load and Unload [Ora04].

6.7.4 AOT compiled methods

Currently, we cannot match the guest language function names for the Ahead-of-Time

(AOT) compiled applications. As discussed previously, the Substrate VM allows us to

create an AOT compiled binary using Graal. These binary files can then be executed as
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Figure 6.20: A profile for executing an AOT-compiled binary, generated using the
Substrate VM, for the Richards benchmark written in Java.
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Figure 6.21: Native application using libpolyglot to access C and Truffle JavaScript
together. The C application executes a JavaScript code that prints the square root of
the first million integers, starting from 1. This profile shows that the application spent
37.41% of the total execution time while printing the results on the standard output.

a standalone executable (i.e., without using a JVM). Figure 6.20 shows flamegraph of a

profile for executing the AOT-compiled binary for the Richards Benchmark written in

Java [Ric99]. The flamegraph demonstrates that our approach can be used with AOT-

compiled binaries, as it is based on perf. The names on the stackframes correspond to

the Java method names in the benchmark. However, when an AOT compiled Truffle

hosted interpreter for a guest language is used, the profile would contain the callRoot

method name.

The native applications can call Truffle hosted language implementations using

the Polyglot library. Profile for such an application in C is shown Figure 6.21. This

C application calls a JavaScript function that computes and prints square roots of
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integers ranging from 1 to 1 million. Using perf for sampling allows us to record

call-stack samples for such execution, but we cannot map the guest language function

names.

6.8 Summary

In this chapter, we presented the perf-map-agent based profiling approach used for

performance analysis of the Truffle hosted guest language implementations. We dis-

cussed the main categories of approaches used for profiling: i) tracing, and ii) sampling;

along with their trade-offs. We use the sampling-based profiling approach in this work

because we found it flexible (i.e., its overhead can be tuned by changing the sampling

frequency at the cost of accuracy).

We discussed the commonly used approaches for profiling, such as using the Linux

utility perf. JVM does not maintain the frame pointer register with the values

that perf uses to walk the call-stacks. The -XX:PreserveFramePointer flag of

JVM allows perf to record the call-stacks of the JIT-compiled method. One of

the profiling approaches we discussed is using the perf-map-agent. This approach

records the call-stack samples using perf. The stack-frame addresses in recorded

call-stack samples are then mapped to their Java method names by using the infor-

mation retrieved from perf-map-agent. We then discussed alternative JVM profiling

approaches using i) the GetCallStackTrace() function from JVMTI API, and ii) the

AsyncGetCallTrace() function from API of OpenJDK. We avoided the approach that

uses GetCallStackTrace() JVMTI function. Although this approach is commonly

used by many profilers, it suffers from safepoint bias. The GetCallStackTrace() func-

tion is serviced only when the application is at a safepoint so that the call-stack sample

of a thread can be safely collected. This results in the samples not getting collected

when requested, instead, they get skewed towards safepoint. The safepoint bias often

results in an inaccurate profile. We discussed honest profile and async-profiler who

use AsyncGetCallTrace() to avoid the safepoint bias. We chose the perf-map-agent

based approach because it avoids the safepoint bias and is easier to extend.

For the executions using Truffle hosted languages, instead of showing guest lan-

guage function names, the existing profilers showed the names of the Java methods that
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implemented the interpreter for a language. As a result, it becomes difficult to map

the recorded profiling information to the execution of a guest program. We extracted

the guest language function names by updating the Graal compiler and combined it

with the post-processing step of the perf-map-agent profiler. This enabled us to show

the correct guest language function names in the profiles that can then be visualised

using flamegraphs.

We used our approach for performance analysis of three Truffle hosted language:

FastR, TruffleRuby and Sulong. We demonstrated that our approach can identify per-

formance bottlenecks for applications executing on a Truffle hosted language, or for

the language implementation itself. We discussed the limitations of the current ap-

proach for identifying guest language functions for the interpreted and inlined methods

(during JIT-compilation). Using the perf as a sampling profiler causes the call-stack

samples to break occasionally. However, perf enables us to profile a wide range of use-

cases offered by the GraalVM, such as i) the Ahead-of-Time (AOT) compilation, and

ii) using the language implementation as an external library in a native application.
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Conclusions & Future work

7.1 Conclusions

In this thesis we present Sulong-OpenMP: an extension to the Sulong project for

execution OpenMP programs on JVM. This work demonstrates that the OpenMP

memory model could be implemented using the Java memory model, and it could ex-

ecute OpenMP parallel programs correctly. We also present the performance analysis

approach for Truffle hosted guest language implementations.

In this thesis, we have described our journey of implementing OpenMP support to

Sulong and the implementation challenges that we faced. This work mainly addressed

the overhead for executing OpenMP programs with 1 thread, compared to their se-

quential execution on Sulong. Evaluation of the NPB benchmark suite shows that

the overhead of executing Sulong-OpenMP (1 thread), compared to that of Sulong-

sequential, is about 3%. This overhead matches the 2% overhead of its native equiva-

lent (i.e., Native-OpenMP (1 thread) compared to Native-sequential execution). When

LLVM IR is generated for a program with OpenMP support enabled (by compiling

with -fopenmp flag), it contains additional calls to the OpenMP runtime; which oth-

erwise are absent when OpenMP support is disabled. Thus, we expect some overhead

while executing with OpenMP support enabled. Although we focused on single-thread

performance so far, the applied optimisations highlight the diminishing performance

gap for multi-threaded execution. We are hopeful that a significant portion of this

performance gap could be covered by addressing the existing limitations, described in

Section 7.2.

152
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In the final part of this thesis, we presented our perf-map-agent based profiling

approach. This approach demonstrated its usability for performance analysis of Truf-

fle hosted guest language executions, as well as language implementations themselves.

The approach has low-performance overhead (less than 1.25%) and requires no modifi-

cations to the language implementations, which makes it suitable for use in production.

GraalVM offers multiple ways of execution such as i) in a polyglot application, ii) bun-

dled into an external library, and iii) an Ahead-of-Time compiled binary executable.

For call-stack sampling, our approach uses a standard Linux tool: perf. Using perf

makes our approach useful for the aforementioned ways of using language implementa-

tions. We used our approach for performance analysis of three Truffle hosted language

implementations: TruffleRuby, FastR and Sulong. The approach presented in this the-

sis is expected to aid the identification of further potential directions for performance

improvements.

7.2 Future Work

The current implementation of Sulong-OpenMP is in its primitive stage. However,

JVM hosted execution has the potential to provide improved tools for OpenMP pro-

grams. Rigger et al., have demonstrated that Sulong subsystem can be used to detect

memory bugs such as use-after-free and double deletion of memory for single-threaded

programs [RSM+18]. For Sulong-OpenMP, one possibility is to build a low overhead

data-race detection tool for OpenMP parallel programs. ThreadSanitizer (also known

as TSan) is one of the popular data-race detection tools that uses compile-time in-

strumentation to track memory accesses done by multiple threads and processes them

to detect races [SPIV12]. As Sulong-OpenMP manages memory allocations for the

programs, it can also be extended to perform necessary instrumentation. Unlike AOT

compilers, JVM hosted executions benefit from runtime information. This information

can be used to identify parts of the program that are used by multiple threads and

focus instrumentation efforts only on those parts to reduce execution overhead.

In this section, we discuss the existing limitations and future work for the imple-

mentation of Sulong-OpenMP. We also highlight the directions to improve the perf-

map-agent based performance analysis approach.
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7.2.1 Sulong-OpenMP

Performance of multi-thread execution

For multi-threaded execution using Sulong-OpenMP, optimisations that are presented,

considerably improved the performance of executing benchmarks from the NPB suite

on Sulong-OpenMP. However, there is still a substantial performance gap that Sulong-

OpenMP needs to fill. One of the major sources of overhead comes from the existing

limitation that requires to materialize the frame of top-level outlined OpenMP func-

tion. We observed that execution of the outlined function was as slow as its execution

in the slow interpreted mode. In the future, we plan to focus primarily on improving

the performance of Sulong-OpenMP.

OpenMP Features

Supporting all the OpenMP features require a significant amount of work. Therefore,

we chose a subset of OpenMP features, that could demonstrate the ability of Sulong-

OpenMP to execute OpenMP parallel programs on a JVM. Currently, we support only

the features required to execute NPB suite; and excludes features such as OpenMP

tasks and offload directives. We have done a preliminary evaluation of changes required

for supporting OpenMP tasks on Sulong-OpenMP. We plan to use ExecutorService

class from the java.concurrent package of JDK, that provides functionalities to

create and manage a pool of Java threads. These threads can represent OpenMP

threads and can then be assigned OpenMP tasks for execution.

Support for the offload directives can be added by integrating Sulong-OpenMP

with the existing systems, such as TornadoVM. The TornadoVM project allows ex-

ecution of the Java methods using the heterogeneous architectures [KCR+17]. This

project currently targets the OpenCL compatible devices such as multi-core CPUs,

GPUs and FPGAs. It takes the annotated Java code using the TornadoVM specific

annotations. These annotations highlight parts of the code that are to be executed on

the heterogeneous hardware. TornadoVM generates OpenCL equivalent code for the

annotated parts of code. To support OpenMP offload directives using TornadoVM, it

would first require to enable support for the Truffle framework. However, supporting

both needs a significant amount of development efforts.
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Sulong-OpenMP needs additional engineering efforts to improve its compatibility

with the latest version of Sulong and GraalVM. This would benefit from the enhance-

ments and bug fixes incorporated in the newer versions. Efforts are also required to

address the JVM crashes for using larger input sizes for the NPB suite benchmarks,

which has limited us from performing further scalability experiments using Sulong-

OpenMP. Sulong-OpenMP could not execute the larger benchmark suites, such as

PARSEC and SPEC-OMP suite, because of following reasons: i) limitations of un-

derlying system: Sulong (previously mentioned in [RSM+18]), and/or ii) we could not

generate and execute LLVM IR for the benchmark dependencies. Recently, Sulong

has added support for the pthreads. It would be interesting to compare the execution

of OpenMP programs on Sulong-OpenMP, to that on pthreads-enabled Sulong. This

comparison would require pthreads-enabled Sulong to use the OpenMP runtime of

clang (compiled to the LLVM IR).

To achieve completeness, Sulong-OpenMP needs to implement support for addi-

tional OpenMP runtime functions associated with the missing functionality. In order to

prioritise the features to be implemented, one approach would be to choose additional

benchmark suites and incorporate all the necessary functionalities for their execution.

This approach may face a challenge where the underlying Sulong system might not be

able to execute a single-threaded version of the benchmarks. This issue of inability

to execute a single-threaded version could be avoided by selecting a microbenchmark

suite focused on a specific set of OpenMP features. Examples of such microbenchmark

suites are: i) EPCC OpenMP microbenchmark suite [Bul02] which focuses on synchro-

nisation and loop constructs in OpenMP, ii) EPCC microbenchmark suite for OpenMP

tasks [BRM12] which focuses on OpenMP tasks, iii) Barcelona OpenMP Tasks Suite

(BOTS) [DTF+09] is another suite that focuses on OpenMP tasks. Furthermore, im-

plementation of OpenMP features such as sections and teams may require extending

Sulong-OpenMP’s data structures.
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7.2.2 Extended Perf-map-agent

AOT Profiling

Currently, our approach does not provide support for recognising AOT-compiled execu-

tion (of Truffle hosted languages) and are represented as any other native application.

GraalVM offers AOT-compiled interpreters for the Truffle hosted languages such as

JavaScript, R and Ruby, using the SubstrateVM. As future work, we can modify the

AOT compilation infrastructure (in a similar manner to what we have done for Graal)

for relating guest language names to their respective symbol addresses, and also for

identifying inlining decisions. This guest language information can be very useful in

the optimisation process.

Performance evaluation of Truffle hosted languages

We have seen huge variations in performance for the same benchmark computations

when written using different Truffle hosted language implementations. Precise reasons

behind these performance variations can be explored in the future. Performance dif-

ferences may arise as a result of expressing the same computation in different ways;

or because of language implementation inefficiencies. We have seen an example of

language implementation inefficiency in the case study of FastR. However, we need to

investigate further to determine if the CBLG Shootout benchmarks are suitable for

making cross-language performance comparisons.
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USA, 2019. Association for Computing Machinery.

[Gre16] Brendan Gregg. The Flame Graph. Queue, 14(2):10:91–10:110, March

2016.

[GRS+13] Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and
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Appendix A

OpenMP features supported on

Sulong-OpenMP

Table A.1 shows OpenMP constructs used in the NAS Parallel Benchmark suite 3.0.

OpenMP Construct Benchmark Name
parallel construct HelloWorld

(with OpenMP for-loop)Parallel Worksharing-Loop
master clause

IS

critical clause
shared clause
private clause
nowait clause
barrier clause
single construct FT
Reduction clause EP, CG, MG
flush construct BT, SP, LU

Table A.1: shows the sequence (from top to bottom) of implementing support for
the specific OpenMP features (in the left column) on Sulong-OpenMP and its target
benchmark (in the right column).

In Table A.1, left column contains a sequence of OpenMP features in the order

of their implementation in Sulong-OpenMP. The right column contains a benchmark

from the NAS Parallel Benchmarks (NPB) suite that uses the OpenMP feature in its

corresponding left column. Note, the benchmarks in the right column may also use

one or more previously implemented features.
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While generating LLVM IR, Clang replaces OpenMP pragmas by the function calls

to its OpenMP runtime library. Sulong-OpenMP provides its own implementation for

the runtime function calls as described in Chapter 3. Table A.2 lists the OpenMP

pragmas and corresponding runtime functions that Sulong-OpenMP implements for

them.

OpenMP Construct
OpenMP Runtime
Function

parallel construct
Parallel Worksharing-Loop

omp get thread num
omp get num threads
@ kmpc fork call
@ kmpc for static init 4
@ kmpc for static finish

master clause
@ kmpc master
@ kmpc end master
@ kmpc global thread num

critical clause
@ kmpc critical
@ kmpc end critical

shared clause None
private clause None
nowait clause None
barrier clause @ kmpc barrier

single construct
@ kmpc single
@ kmpc end single

Reduction clause
@ kmpc reduce nowait
@ kmpc end reduce nowait

flush construct @ kmpc flush

Table A.2: shows the OpenMP constructs and corresponding clang-generated runtime
library functions which are implemented by Sulong-OpenMP.

In Table A.2, the shared, private and nowait OpenMP pragmas do not have any

runtime function calls associated with them because the generated LLVM IR achieves

the necessary functionality.
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