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Abstract
Citizen science is a growing movement that enables volunteers to help scientists collect

and analyse information. Citizen science can solve problems that may, through ordi-

nary methods, be intractable. In the context of ecology this is extremely important, as

global biodiversity is in sharp decline, and there are currently not enough resources for

traditional ecological monitoring to meet the current monitoring demands. However,

there are some factors that make citizen science problematic, and raise concerns about

reliability. Individual citizen scientists may vary in ability, there is the opportunity for

persistent bias in the data, and the level of participant guidance given varies widely

between citizen science projects.

In this thesis we use two contrasting mathematical methodologies: A Bayesian ap-

proach, and stochastic processes (particularly, random walk theory), to quantify and

improve the reliability of citizen science data. We apply our methods to iNaturalist

NZ, a citizen science project that provides participants with an online community to

share and classify various observations of biota when and how they choose.

Our Bayesian approach combines individual citizen scientists’ classifications for an

image into a likely final classification. This approach improves on the common, but sim-

ple, majority vote method by estimating and utilising a measure of each participant’s

ability to correctly classify an image. This approach optimises the citizen scientists’

classification efforts while also ensuring a desired level of final classification certainty.

Our stochastic process approach models the stochastic nature of citizen scientists

and their observations. We use random walk theory to model a citizen scientist en-

countering and sharing observations of a given species and scale this up to simulate

multiple years of iNaturalist NZ observation data. We use the simulated data to test

the ability to specify a statistical model that differentiates between temporal changes

in the number of species observations due to variation in observer behaviour, versus

ecological changes in the species abundance. Without sufficient metadata about ob-

server behaviour it is difficult to specify an appropriate statistical model. Observer

metadata may be explicitly collected, or information could be inferred from the obser-

vation data. For example, we show that it is well supported by the iNaturalist NZ data

that the probability of an observer sharing an observation decays as they share more

observations during a walk.

The methods developed in this thesis are applicable to a wide range of citizen

science projects. Our methods are able to take large, possibly unreliable datasets, and

both quantify the reliability and improve the usability of the data.
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Chapter 1

Introduction

Citizen science.

Engaging the curious.

Helping scientists.
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Citizen science is a growing movement that enables volunteers to help scientists

collect and analyse information (Bonney et al., 2014; Gura, 2013; Cohn, 2008a; Tul-

loch et al., 2013; Bonney et al., 2009; Baker, 2016; Pocock et al., 2017). Participants

are engaged in authentic research experiences at various stages in the scientific process

(Dickinson et al., 2012). Citizen scientists offer a free source of labour, skills, and

computing power (Silvertown, 2009; Cohn, 2008a) that enables researchers to tackle

otherwise intractable, laborious, or costly research problems (Gura, 2013; Tulloch et al.,

2013; Franzoni and Sauermann, 2014). Project goals range from answering very specific

scientific questions, to broad and unguided data gathering and analysis, to purely pro-

viding outreach and education to the public (Wiggins and Crowston, 2011; Gura, 2013;

Miller-Rushing, 2017; Silvertown, 2009). Typically, citizen science projects involve par-

ticipants either (1) completing recognition, classification, or problem-solving tasks that

require human competencies; or (2) contributing data or observations according to a

protocol (Wiggins and Crowston, 2011). Throughout this thesis we refer to the former

as classification-based citizen science projects, and the latter as observation-based cit-

izen science projects. Some citizen science projects include both a classification phase

and an observation phase.

In general, citizen science projects and protocols are designed for anyone to follow

(Silvertown, 2009). However, project complexity and level of guidance may vary greatly

across projects (Pocock et al., 2017). For example, classification-based citizen science

projects hosted by Zooniverse provide participants with tutorials and guides (Simpson

et al., 2014), whereas iNaturalist provides participants with an online community to

share and classify various observations of biota when and how they choose. Further-

more, in the classification phase of iNaturalist, no explicit training is given, thus it is

unlikely that all classifications are accurate.

There has been ongoing research about how to ensure the quality and certainty of

citizen science data, in response to scepticism about data quality (Bird et al., 2014).

In this thesis, techniques are explored to make use of citizen science datasets generated

from projects with minimal protocols or guidance, where it was previously uncertain

that any conclusions could be drawn from the data.

Citizen science has grown since its inception, and rapidly in recent years. Citizen

science concepts date back to the 1880s, when the American Ornithologists’ Union

collected and analysed citizens’ data regarding bird strikes into lighthouses (Droege,

2007). In the 1990s the term “citizen science” emerged from the Cornell Lab of Or-

nithology (Baker, 2016) and the first peer-reviewed article involving citizen science was

published (Follett and Strezov, 2015). Today, for example, citizen science projects

include: classifying the morphological features of galaxies, deciphering fragments of
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pre-modern and medieval Jewish texts, and sharing and classifying observations of

biota. There has been an explosion of citizen science projects since the early 2000s

(Bonney et al., 2014, 2009; Baker, 2016; Pocock et al., 2017). For example, in 2007 the

citizen science hosting platform, Zooniverse launched their first citizen science project

- Galaxy Zoo (Raddick et al., 2009). As of 2021, almost 15 years since the first project,

on Zooniverse there are almost 80 active projects, 180 paused projects, and just over

50 finished projects. Citizen science has proliferated in ecology (Pocock et al., 2017;

Dickinson et al., 2010). Pocock et al. (2017) undertook a comprehensive search for

ecology and environment-based citizen science projects since the 1940s and found an

almost 10% increase in new projects annually since the early 2000s’. Much of this

recent growth is due to advancements and increased availability of technology, such as

internet, cameras, and GPS availability on mobile phones (Silvertown, 2009; Bonney

et al., 2014; Gura, 2013).

There is no doubt that citizen science has contributed significantly to scientific

knowledge (Reed et al., 2013; Bonney et al., 2014). For example, Bautista-Puig et al.

(2019) found over 5000 peer-reviewed articles that involve citizen science on Web of

Science. The citizen science project Foldit that turned protein folding into a game

led to the discovery of a desired protein structure before professional AIDS researchers

working on the same problem (Khatib et al., 2011). eBird data - a bird watching cit-

izen science project - has formed one of the largest biodiversity datasets in the world

(Wiggins, 2011).

However, the amount of data gathered from participants, and their backgrounds

and motivation, can vary greatly among citizen science projects. Typically, citizen

data are gathered by a small number of participants (Sauermann and Franzoni, 2015a;

Eveleigh et al., 2014). Participants’ backgrounds and skills also may vary greatly. For

example, some participants may be experts in a field, whereas others are preschool

students, prisoners, or alzheimer’s patients (Gura, 2013; Baker, 2016). Such differences

in volunteers’ skills contribute to the perceived low quality of citizen science data (Bird

et al., 2014; Dickinson et al., 2010). Participants’ motivations are also a factor (Rot-

man et al., 2012; Reed et al., 2013; Raddick et al., 2009). They may include: interest

in the subject area, desire to contribute to science, the community and social cohesion

created with other participants, opportunity to use their skills/knowledge, that the

project is easy and/or enjoyable to do, and opportunities for education (Rotman et al.,

2012; Reed et al., 2013; Raddick et al., 2009).

Monitoring changes in species’ populations is crucial to identifying extinction risk

(Mace and Lande, 1991), evaluating the performance of conservation efforts (McKin-

ley et al., 2017), monitoring ecological responses to climate change, and reporting
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against national and international targets (Butchart et al., 2010). However, traditional

species monitoring by trained experts and in standardised forms is resource intensive

and costly. Further, these traditional ecological monitoring schemes typically do not

deliver long-term data or at regional scales, making it difficult to monitor biodiversity

change across space and time (Hudson et al., 2014; Schmeller et al., 2009). Thus, citi-

zen science can often be the only practical way to answer various ecological questions

(Tulloch et al., 2013; Miller-Rushing et al., 2012).

There have been insights into the impact of climate change using data from citizen

science projects which include the presence, abundance, demography, and phenology

of organisms (Dickinson et al., 2012). For example, Hickling et al. (2006) used citizen

science data to detect the movement north, and to higher elevations, of a wide range

of taxa during a period of regional climate warming. Citizen scientists have the ability

to frequently monitor large areas, and citizen science projects are becoming an impor-

tant tool in early detection and tracking of invasive species (Dickinson et al., 2012).

For example, a large network of citizen scientists was used to track the spread of a

house finch eye disease in the USA (Dhondt et al., 1998). The scale of citizen science

data makes it a particularly useful tool for studying effects on biodiversity of habitat

loss and fragmentation (Dickinson et al., 2010). For example, Zuckerberg and Porter

(2010) used New York State’s two Breeding Bird Atlases (1980–1985 and 2000–2005)

to investigate the response of 25 forest birds to a range of forest cover loss and land

fragmentation.

In spite of the useful contributions that citizen science has made to scientific knowl-

edge, especially in ecology, there has been considerable debate about the utility of such

data in a scientific framework (Bird et al., 2014). Detractors often raise concerns over

the precision of citizen science data due to variability among the participants, and

the opportunity for bias in the data. For example, detractors cite under-detection of

species or non-random distribution of citizen scientists’ efforts (Crall et al., 2011) as

reasons to be sceptical about the contribution that citizen science can make in ecology

and conservation. Data collection protocols specified by the project, and the ability

to apply post-hoc statistical manipulation to the data, can influence the types of re-

search questions citizen science data may be able to answer (Bird et al., 2014; Crall

et al., 2011; Wiggins et al., 2011). Typically, species observation citizen science data

is recorded over time and space and may include only presence data, or presence and

absence data (Bird et al., 2014).

iNaturalist is an example of a citizen science project that gathers presence-only eco-

logical data. This type of data collection protocol improves accessibility of the project

according to varying levels of participants’ motivation, commitment, and skills (Bird
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et al., 2014). However, a lack of information on species’ absence may restrict what

questions can be answered by the data, and what type of analyses are possible (Pearce

and Boyce, 2006). Furthermore, variation in participants’ sampling efforts spatially,

temporally, and across taxa is often not known and difficult to infer, making it chal-

lenging to isolate true ecological trends from variability in participants’ efforts and

abilities. Conversely, ecological citizen science projects with more extensive protocols

that gather presence-absence data do exist. Data from these projects can more read-

ily be utilised to answer questions relating to spatial and/or temporal distributions of

species. However, there is still potential for error, such as the inability to distinguish

imperfect detection from true absence (Bird et al., 2014).

A focus of citizen science research has been on developing techniques to address

uncertainty and variability in citizen science data. Within classification projects, there

has been research on improving the quality of final classifications, based on a consensus

of the individual votes. This has included: estimating participant accuracy based on

proxies for past performance (e.g. similarity of an individual’s decision to those of

others (Kurvers et al., 2019)), weighting individual votes based on a measure of par-

ticipant confidence (See et al., 2013); estimating participant classification ability from

images with known ground truth and then weighting votes accordingly (See et al.,

2015); and using Bayesian modelling to re-evaluate the quality of the consensus label

following each new vote (Siddharthan et al., 2016). There has also been research in the

ability to identify the experts in the crowd when there is a small pool of experts and

limited time for the identification process (Katsagounos et al., 2021). For observation-

based citizen science, particularly in ecology, much research has focused on methods

to detect signals of species abundance changes using noisy data. For example, Isaac

et al. (2014) simulated noisy data to test how 11 different statistical trend estimation

methods performed at reliably detecting a temporal trend of a focal species’ population.

New Zealand is an interesting case study for understanding and improving the util-

ity of ecological citizen science data. The long period of isolation of New Zealand,

slow evolution, and lack of native terrestrial mammals has resulted in a unique and

high level of endemic biodiversity (Diamond, 1990). Native species, their genetic di-

versity, and the habitats and ecosystems that support them are greatly important to

New Zealand and its citizens (Department of Conservation and Ministry for the En-

vironment, 2000). However, since settlement of humans in New Zealand, biodiversity

has been in decline, and now many of the unique endemic taxa are at risk of extinc-

tion or have gone extinct (Russell et al., 2015). This is largely driven by loss and

disruption of natural areas and ecosystems, and the introduction of plant and animal

pests (Department of Conservation and Ministry for the Environment, 2000). It is not

surprising that ecological conservation is of great importance in New Zealand. This is
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evident through the strong public support for conservation groups (Russell et al., 2015)

and ambitious national policy statements. For example, Predator Free 2050 aims to

eliminate eight introduced mammalian predators from New Zealand by 2050 (Russell

et al., 2015), and the 2018 - 2028 Kiwi Recovery Plan outlines the goal to reach 100,000

kiwi by 2030 by growing all kiwi species by at least 2% per year (Germano et al., 2018).

However, biodiversity monitoring is expensive and only feasible for a very limited

number of taxa, spatial locations, and time periods. It is unrealistic to assume that

conservation managers in New Zealand will have the resources to monitor all threat-

ened taxa or pests that must be controlled or eliminated. Hence (and especially given

New Zealand’s strong national identity with conservation), there is a need for data and

resources from wider sources, and citizen science is a good candidate. Citizen science

data provides crucial extra information for evidence-based decision-making when con-

servationists are faced with the above prioritisation decisions.

Citizen science, and particularly iNaturalist NZ (the New Zealand specific branch

of the global iNaturalist network), thus has the potential to play a vital role in New

Zealand’s conservation management and bio-security efforts. In the first 7 years of iNat-

uralist NZ (2013 - 2019) there were almost 800,000 observations, shared by just over

15,500 observers, and almost 6,000 participants that helped classify observations. The

observations cover almost 16,000 species and include plants, animals, fungi, chromista,

and protozoans. When the iNaturalist community agree on the identity of an observa-

tion it becomes ‘research grade’. Of the almost 800,000 observations on iNaturalist NZ

more than half (450,000) are currently considered research grade. However, because

iNaturalist is a completely curiosity-driven citizen science platform with minimal guid-

ance in both the classification and observation phases, there is uncertainty about the

usefulness of the data it contains, including data that are considered research grade.

Throughout this thesis the iNaturalist citizen science platform is used as the motiva-

tion for developing methods to improve the usefulness of citizen science data, and the

iNaturalist NZ dataset is used as a case study to demonstrate these methods in practice.

This thesis is in two parts based on the classification and observation phases of

the iNaturalist citizen science platform. In the two parts of this thesis we use two

distinct and contrasting mathematical methodologies. First, we consider the classi-

fication phase of iNaturalist. Currently, the iNaturalist classification phase provides

minimal training for the participants, collects no information about a participant’s

classification ability, and combines multiple classifications for each observation with

a simple majority vote. Although this is a simple method and easy to implement, it

is not the most efficient use of valuable citizen scientist resources, and it leaves open

the question: how trustworthy are the classifications? In Chapter 3a we show how a
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Bayesian approach could be used to collate participant classifications, by developing

a measure of a participant’s ability to correctly classify an observation. In Chapter

3b we apply a Bayesian classification approach to the first five years of the iNaturalist

NZ dataset. This method optimises citizen scientists’ classification efforts while also

ensuring a desired level of final classification certainty.

In the second part of this thesis, we assume the iNaturalist research grade identi-

ties are accurate, and consider how these observations could contribute to knowledge of

temporal abundance changes in the taxa recorded. Given the curiosity-driven nature

of sharing observations to iNaturalist, and the minimal record of observer effort, this

is not a straightforward exercise. In Chapter 4a and Chapter 4b we use stochastic

processes (particularly, random walk theory) to build a simulation of the iNaturalist

NZ dataset that includes many aspects of expected noise due to observer behaviour.

The simulation is used to test the ability to specify a statistical model to differentiate

between changes in species abundances due to variation in observer effort, versus eco-

logical changes in species abundances. For simplicity, we initially assume that observer

behaviour is constant over time and across observers. However, in Chapter 4c we revisit

this assumption and use model fitting techniques to explore how observer behaviour

may vary.

This thesis develops and contributes methods to improve the reliability and us-

ability of citizen science projects that have minimal participant guidance or protocols.

Although the methods developed were motivated by iNaturalist and applied to the

iNaturalist NZ dataset, they are applicable to any classification and observation-based

citizen science project or platform with a similar participant protocol. Furthermore,

given iNaturalist has minimal participant guidance, these new methods are easily ap-

plicable to citizen science projects with tighter protocols. The latter would have more

information to input into the models developed, and therefore the results would be

more reliable. For example, there may be information on a participant’s ability to

correctly classify an image, or a temporal measure of observer effort, that could be

incorporated into the models developed here.
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Thesis outline

Chapter 2 (iNaturalist NZ). The iNaturalist NZ citizen science project is introduced.

We cover the history of iNaturalist NZ, how it works, and contributions it has made

to scientific knowledge in New Zealand. We present some key insights about the scale

and state of the current dataset.

Chapter 3a (Including user accuracy in classification based citizen science projects).

We outline a Bayesian approach which uses individual classifications for an image to

produce a likely final classification. The chapter begins by exploring how we would

include participant ability in the final classification decision if it was known. We then

consider how we would estimate participant classification ability if the observations’

true identities were known. To finish, we outline a Bayesian method to estimate par-

ticipant ability, and utilise this in the final classification decision when there are no

observations with a known true identity.

Chapter 3b (Citizen science decisions: A Bayesian approach optimises effort). We

apply the Bayesian method that is outlined in Chapter 3a to the first 5 years of iNatu-

ralist NZ data. This method optimises the citizen scientists’ classification efforts while

also ensuring a desired level of final classification certainty.

Chapter 4a (A mechanistic model of a citizen scientist encountering individuals).We

use random walk theory to describe a mechanistic model of a single citizen scientist

encountering a given taxon and sharing observations to iNaturalist NZ. For simplicity

we assume that the citizen scientists’ behaviour is constant over time. We find that

the resulting distribution of the number of observations shared per day by the observer

is binomially distributed.

Chapter 4b (Extracting the change signal from noisy ecological citizen science data).

We introduce a generalised linear model that may be used to detect if there is a sig-

nificant annual trend in a given taxon abundance from the iNaturalist NZ data. This

model takes into account that the annual number of observations for a taxon may vary

due to changes in the underlying taxon abundance, and due to variation in the citizen

scientist behaviour. We scale up the single observer model in Chapter 4b to a multi-

year simulation of participants’ observation behaviours. In the simulated data there is

no annual change in the taxon abundance, and we simulate some of the noise we would

expect to see in the iNaturalist NZ dataset due to observer behaviour. The simulation

is used to test the ability to specify a statistical model to differentiate between changes

in species observations due to variation in observer effort, versus ecological changes in

species abundance.
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Chapter 4c (Modelling variation in citizen scientist’s observation sharing behaviours).

In Chapter 4a and Chapter 4b we assumed that observer behaviour was consistent

across different observers (inter-observer) and did not change for each observer over

time (intra-observer). In this chapter we revisit this assumption by using maximum-

likelihood methods to estimate the parameters for three candidate models that model

variation in inter and intra-observer behaviour. We find that the model that allows

observer effort to decay over time is the most supported model.

Chapter 5 (Final Discussion). Discusses the insights and contributions this thesis

has made to understanding and improving the usefulness of citizen science data.

Thesis publications

A paper presenting the work in Chapter 3b has been published by Ecological Infor-

matics (Mugford et al., 2021).
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Chapter 2

iNaturalist NZ — Mātaki Taiao

iNaturalist.

Users share nature photos,

and vote on labels.
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Introduction

iNaturalist NZ - Mātaki Taiao - (https://inaturalist.nz/) is a New Zealand citizen

science project that is building a living record of biodiversity in New Zealand. Their

vision is to improve the visibility of biodiversity changes in New Zealand, by providing

an online platform where nature watchers can share their observations of biota (New

Zealand bio-recording network trust, 2020). Scientists, and environmental managers

will be able to use their data to monitor changes in biodiversity, and anyone can use

their breadth of records to learn about New Zealand’s natural history. Beyond sharing

observations of biota, iNaturalist NZ participants can comment on and identify other

participants’ observations.

The history of iNaturalist NZ

iNaturalist NZ is run by the New Zealand Bio-Recording Network Trust (NZBRN),

a charitable trust dedicated to bio-recording. NZBRN began in 2005 with a grant

from the New Zealand Terrestrial and Freshwater Biodiversity Information System

programme (TFBIS) to prototype a community nature observation system for New

Zealand. They adapted a Swedish nature observation system, Artportalen, to create

a New Zealand version. The New Zealand version gathered several hundred thousand

observations of mostly birds, fungi, and plants. The observations came from a small

devoted group of participants, and data from the New Zealand Garden Bird Survey.

In 2010 the original NZBRN system was becoming outdated as it was far from the

standard of modern internet technology. An upgrade was required and more funding

was received from the New Zealand Government’s TFBIS programme. After a review

of systems, iNaturalist, an open source community nature observation system from

the USA, stood out. iNaturalist had many attractive features but in particular it was

user-friendly and made full use of modern social media to build an online community.

In August 2012 the New Zealand chapter of iNaturalist was launched and joined

the growing network of countries, e.g. USA, Canada, Mexico, and Colombia, that use

the iNaturalist platform. At the end of June 2020 the iNaturalist network had over 48

million observations of almost 300,000 species observed by over 1.4 million observers.

iNaturalist NZ made up 1,043522 of these observations, 18,041 of the species, and

20,455 of the observers.

How iNaturalist NZ works

iNaturalist NZ participants mostly contribute in two ways: they share observations of

biota, or they help identify observations that other participants have shared. A partic-
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ipant is able to share an observation to iNaturalist NZ by using either the iNaturalist

NZ website or their mobile application. When a participant shares an observation

they are prompted to include a photo or sound clip, but there is the option to share

an observation with no media. Participants are able to fill in details about their ob-

servation, e.g. the species name, date, and location of the observation. The mobile

application automatically fills in the date, time, and location field, but these can be

manually overridden by the user. If the participant does not know some of the details

they are able to leave those fields as unknown. This is particularly common for the

species name field as many observers use iNaturalist NZ to learn the identity of taxa

they have seen.

Once a participant has shared an observation it is visible to all of the iNaturalist

NZ members and all of the public. Other participants are able to suggest an iden-

tification for the observation. Observations on iNaturalist NZ are assigned to one of

three quality grades, “casual”, “needs ID”, or “research”, depending on data quality

and how many participants have identified the observation and the level of consensus

between the identifiers. Below are the definitions of the quality grades.

Verifiable observation: A verifiable observation has to pass the following data qual-

ity assessments: have a date, be geo-referenced, have a photo or sound clip, and not be

a captive or cultivated organism. Verifiable observations are labelled “needs ID” until

they either attain research grade status or are voted to causal grade because the iNat-

uralist NZ community vote that at least one of the required data quality assessments

are not met.

Casual grade: Casual grade observations are observations that are considered non-

verifiable.

“Needs ID” grade: “Needs ID” grade observations are verifiable observations that

need further identifications to reach a majority vote on a taxon.

Research grade: Research grade observations are verifiable observations where the

majority (> 50%) of identifiers have agreed at a species level or lower on the taxon.

However this comes with the caveat that an observation may become research with a

majority vote at the genus level if the observation has been flagged as “it’s as good as

it can be”.

iNaturalist NZ participants are able to identify observations by either agreeing

with the previous participants’ identification or by suggesting another identification

from the database of taxa. Identifications can be made at any level of taxonomic rank.

Once an observation is considered research grade, further identifications may still be

contributed to the observation and the classification or quality grade of the observation

could change.
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Computer vision

Computer vision was added to the iNaturalist platform throughout the second half of

2017. The computer vision algorithm is trained on historical research grade iNatural-

ist observations and provides identifiers with an automated list of taxon suggestions.

Computer vision was first integrated into the iNaturalist iOS application on June 29,

2017. However, it was not fully integrated into the Android application and web ob-

servation uploader until September 2017. Since 2017 there have been multiple updates

to the computer vision model.

Access to iNaturalist NZ data

The iNaturalist NZ data can be accessed and downloaded in multiple ways. The

iNaturalist NZ website has a tool to explore shared observations, and also down-

load observations to csv or kml. All research grade observations are shared weekly

with the Global Biodiversity Information Facility (GBIF, https://www.gbif.org), the

global repository of biodiversity data. iNaturalist NZ is the second largest contribu-

tor of New Zealand observations to GBIF (New Zealand bio-recording network trust,

2020), after eBird (a bird watching citizen science project). There are also mul-

tiple R packages that use the iNaturalist API to download data, e.g. ‘iNatTools’

(https://github.com/pjhanly/iNatTools). Throughout the sharing of iNaturalist data,

every photo, observation, and audio file uploaded to iNaturalist is owned by the upload-

ing participant. Each participant has complete control over the copyright or Creative

Commons license attached to each file and observation.

Datasets used within this thesis

In this thesis two snapshots of the iNaturalist NZ dataset are used due to the timing

of the work. In Chapter 3a, and 3b the first five years of iNaturalist NZ data from

August 2012 - July 2017 are used. In Chapter 4b, and 4c seven years of iNaturalist

NZ data from January 2013 - December 2019 are used. In 3a, and 3b we required data

on both iNaturalist NZ observations and identifications, whereas, in Chapter 4b, and

4c we only required observation data. Therefore, in this data section we only present

facts about the first five years of identification data, but facts about the observation

data from January 2013 to December 2019. Where applicable, throughout this thesis

we present further relevant facts and summaries about the iNaturalist NZ dataset.

Throughout this thesis we only consider observations that were contributed after

the project shifted to using the iNaturalist platform, i.e. observations contributed from

August 2012.
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The facts and figures

Participation has been growing on iNaturalist NZ since it’s launch in August 2012.

Participation comes in two forms: contributing observations, or contributing identifi-

cations. To align with the remainder of the thesis we summarise observation data from

the first complete seven years of iNaturalist NZ data (January 2013 - December 2019),

and identification data from the first five years of iNaturalist NZ (August 2012 - July

2017).

Observers and observations

From January 2013 to December 2019 there has been an increase in both the number

of observers on the iNaturalist NZ platform, and the number of observations shared,

Figure 2.1. Between January 2013 and December 2019, 15,699 observers shared 798,020

observations to iNaturalist NZ. The rate that new observers have been participating on

iNaturalist NZ, and the rate that new observations have been contributed to iNaturalist

NZ during the first seven years has been increasing, Table 2.1. For example, in 2013 on

average 2 new observers contributed to iNaturalist NZ per day, and 92 new observations

were added to iNaturalist NZ per day. By 2019 these rates had leaped up to an average

of 13 new observers contributing to iNaturalist NZ per day, and 695 new observations

being added to iNaturalist NZ daily.

Year
Average new daily

observers
Average new daily

observations

2013 2 92

2014 2 136

2015 6 189

2016 4 312

2017 7 315

2018 9 448

2019 13 695

Table 2.1: The rate that new observers have been joining iNaturalist NZ
and that observations have been added to iNaturalist NZ has grown
since 2013. Average new daily observers and observations for the first complete
7 years of iNaturalist NZ data.
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Figure 2.1: The number of observers and observations on iNaturalist NZ
has been increasing steadily since January 2013. Cumulative number of
observers and observations on iNaturalist NZ between January 2013 and December
2019. 15,699 observers shared 798,020 observations to iNaturalist NZ between
January 2013 and December 2019.

Quality grades

As described in the introduction to this chapter, observations are assigned to one

of three quality grades: casual, “needs ID”, or research. From the almost 800,000

observations shared to iNaturalist NZ between January 2013 and December 2019 at

the time of downloading the data (April 2020), 20% (165,100) were casual grade, 23%

(183,404) were “needs ID” grade, and 57% (449,516) were research grade.

Taxa

From the 449,516 observations that have been classified to research grade, 11,407 dif-

ferent taxa have been identified. iNaturalist NZ observations are categorised into 13

‘iconic’ taxa based on the contributed identifications. Table 2.2 shows: the number of

research grade observations per iconic taxon, the number of observers that have shared

a research grade observation within each iconic taxon, and the number of unique taxa

within each iconic taxon with a research grade observation. Some iconic taxa are nested

in lower taxonomic ranks than others (e.g. animals, insects) and observations are as-

signed to the lowest matching iconic taxon. The plant iconic taxon is the largest on all
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three metrics: 55% of research grade observations are of plant taxa, 50% of observers

have shared a research grade plant observation, and 45% of the 11,407 taxa with re-

search grade observations are a plant taxon. On the other hand, 44% of observers have

shared a research grade bird observation, but only 3.6% of the research grade taxa are

bird taxa.

Iconic taxa Observations Observers Unique taxa
proportion (value) proportion (value) proportion (value)

Protozoans 0.09% (424) 1.7% (174) 0.4% (48)

Amphibians 0.1% (613) 2.7% (281) 0.1% (8)

Chromista 0.6% (2590) 3.0% (318) 0.7% (82)

Reptiles 0.7% (2900) 7.8% (816) 0.6% (63)

Ray finned
fish

1.0% (4782) 5.9% (615) 2.2% (255)

Mammals 1.6% (7255) 11.9% (1248) 0.7% (76)

Arachnids 2.5% (10995) 13.7% (1441) 2.3% (262)

Animal 2.8% (12370) 10.0% (1048) 4.2% (477)

Mollusks 3.9% (17615) 9.8% (1034) 6.3% (719)

Fungi 4.9% (21841) 18.2% (1912) 13.0% (1478)

Insects 12.1% (54295) 37.7% (3954) 20.9% (2384)

Birds 14.4% (64924) 44.0% (4615) 3.6% (411)

Plants 55.4% (248833) 50.4% (5289) 44.9% (5126)

Other 0.02% (75) 0.4% (46) 0.16% (18)

All
observations

100% (449512) - (10499) 100% (11407)

Table 2.2: Over half of the iNaturalist NZ research grade observations
are of a plant taxa. This table just contains information about research grade
observations. The plant iconic taxa is the most common in terms of number of
observations (55.4% of all observations), number of observers that have shared an
observation within the iconic taxa (50.4% of observers), and number of individual
taxa within the iconic taxa (44.9% of taxa).

On average 134 new taxa were observed on iNaturalist NZ every month between

January 2013 and December 2019, Figure 2.2. However, the number of new taxa obser-

vations per month was higher in the earlier years of iNaturalist NZ. In 2013 there were

on average 232 new taxa observed every month, whereas, in 2019 the average number
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Figure 2.2: New taxa are continuously being observed and classified to
research grade on iNaturalist NZ. Every month between January 2013 and
December 2019, at least one new taxa has been classified to research grade on
iNaturalist NZ. Between this period 11,407 different taxa have had a research
grade observation.

of new taxa observed every month was 115. Some of the first taxa added to iNatu-

ralist NZ were the Auckland tree weta (Hemideina thoracica), Pukeko (Australasian

swamphen) and White basket fungus (Ileodictyon cibarium). In the first month on

iNaturalist NZ a lot of the more abundant native species were observed, for example,

Tui (Prosthemadera novaeseelandiae) and Kererū (Hemiphaga novaeseelandiae). How-

ever, it was not until the second month of iNaturalist NZ that a house sparrow (Passer

domesticus) was observed.

Observer contributions

In citizen science projects, and iNaturalist NZ, it is common for a small number of

contributors to make up a large share of the contributions (Sauermann and Franzoni,

2015a), iNaturalist NZ is no exception. From the 15,699 observers that have con-

tributed at least one observation to iNaturalist NZ, the top 10 observers have shared

22% (175,064) of the observations. 75% of observers have shared fewer than 10 observa-

tions, and 35% of observers have only shared 1 observation. Furthermore, the top 10%

of observers have shared 90% of the observations, the next 10% of observers, shared

5% of the observations, and the remaining 80% of observers shared the remaining 5%
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Figure 2.3: A small number of observers share the majority of the iNatu-
ralist NZ observations. The top 10% of observers shared 90% of the observations
between January 2013 and December 2019. The next 10% of observers, shared 5%
of the observations, and the remaining 80% of observers shared the remaining 5%
of observations.

of observations, Figure 2.3.

Observation locations

Figure 2.4 shows a density plot of observation locations throughout NZ. Note, for

mapping ease we did not plot the observations from the Chatham Islands. The ma-

jority of observations are near the major urban areas within New Zealand (Auckland,

Wellington, Christchurch, Dunedin).
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Figure 2.4: The majority of iNaturalist NZ observations are recorded
near major cities in New Zealand. Density plot of all observations shared to
iNaturalist NZ between January 2013 and December 2019.
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Figure 2.5: The number of identifiers and identifications on iNaturalist
NZ increased steadily between August 2012 and July 2017. Cumulative
number of identifiers and identifications on iNaturalist NZ between August 2012
and July 2017. 5,673 identifiers contributed 573,523 identifications to iNaturalist
NZ between August 2012 and July 2017.

Identifiers and identifications

Between August 2012 and July 2017, there were 259,770 identifications shared to iNat-

uralist NZ that received 573,523 identifications by 5,673 identifiers. Figure 2.5 shows

how the number of identifications and identifiers have increased over this time period.

The first identification for the vast majority (90%) of observations is by the participant

that shared the observation.

Identifications per observations

The majority of observations (83%) require two or three identifications to become

research grade, Figure 2.6. 73% of the observations in the casual grade have had one

observation and 74% of observations in the “needs ID” grade have had one or two

identifications. In all the quality grades there are some observations that have had

more than 3 identifications.
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Figure 2.6: Most observations take 2-3 identifications to reach research
grade. Most observations in casual grade have had one identification. Most ob-
servations in “needs ID” grade have had 1-2 identifications. However, in all quality
grades there are a number of observations with more than three identifications.

Identifier contributions

Similar to the observations, a small proportion of the identifiers do the bulk of the iden-

tifications. From the 5,673 identifiers that have contributed at least one identification

to iNaturalist NZ, the top 10 identifiers have done 37% (213,003) of the identifications.

76% of identifiers have shared fewer than 10 identifications, and 36% of identifiers have

only shared 1 identification. Furthermore, the top 10% of identifiers have shared 95%

of the identifications, Figure 2.7.
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Figure 2.7: A small number of identifiers contribute the majority of the
iNaturalist NZ identifications. The top 10% of identifiers shared 95% of the
identifications between August 2012 and July 2017.
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Contributions to science and society

Notable discoveries

iNaturalist NZ is home to a large number of observations of a large range of taxa.

Furthermore, some exceptionally important observations of new taxa discoveries or re-

discoveries in New Zealand have been shared to iNaturalist NZ. For example, in April

2016 a new species of large mushroom, Asproinocybe daleyae was first observed on

iNaturalist NZ (Lebel et al., 2020). In May 2016 the first New Zealand incursion of the

weed great willowherb, Epilobium hirsutum, was discovered in North Canterbury and

reported on iNaturalist NZ. Biosecurity New Zealand was notified about this observa-

tion and it triggered a biosercurity response from the Ministry of Primary Industries.

This provides a great example of how the iNaturalist NZ community can both alert

the authorities to new biosecurity incursions and also provide valuable widespread

surveillance during an eradication attempt. On the iNaturalist NZ website there is a

maintained project of all the important discoveries and rediscoveries shared on iNatu-

ralist NZ (https://inaturalist.nz/projects/new-zealand-discoveries).

Events

iNaturalist NZ has hosted and collaborated on many projects. For example, in 2019

NZBRN collaborated with the Christchurch City Council to enter the Christchurch

district into the global City Nature Challenge via an iNaturalist NZ project. In the

four days of the 2019 challenge, 323 people in Christchurch made 17,592 observations

of 2,360 species, as identified by 458 identifiers. iNaturalist NZ collaborated with the

annual New Zealand Garden Bird Survey, operated by Manaaki Whenua (Landcare

Research). The Garden Bird Survey runs for a week and encourages people to spend

an hour in their garden counting all of the birds they see or hear. NZBRN helps to

promote the event and encourages people to confirm their identifications by uploading

photos or sound recordings to iNaturalist NZ. Another important and long running

collaboration is The Great Kererū Count, and below we explore this in more detail.

The Great Kererū Count

Kererū Hemiphaga novaeseelandiae are an iconic New Zealand forest pigeon and the

only pigeon endemic to New Zealand. The Great Kererū Count is an annual citizen

science project that runs for up to 2 weeks during spring in New Zealand. Participants

are asked to share sightings of kererū through either chance encounters or timed sur-

veys. The Great Kererū Count uses iNaturalist NZ as a platform to share and gather

observations. The Great Kererū Count has been running since 2014 and aims are to
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encourage public participation in a meaningful science project, as well as gather scien-

tific data about the nationwide distribution and population of kererū to help promote

healthy and abundant populations of kererū.

Kererū are the most observed species on iNaturalist NZ and in the 7 years from

2013 - 2019 there have been 8404 research grade kererū observations by 1886 observers.

Over half of these observations have occurred during one of the 6 Great Kererū Counts.

Table 2.3 shows the breakdown of kererū observations on iNaturalist NZ by year, and

Great Kererū Count, versus other times of the year.

Year
Great Kererū
Count
observations

Other
Kererū
observations

Total
Kererū
observations

Great Kererū
Count
observers

Other
Kererū
observers

Total
Kererū
observers

2013 NA 127 127 NA 45 45

2014 34 221 255 17 70 77

2015 694 517 1211 312 218 496

2016 515 702 1217 182 178 332

2017 864 768 1632 194 263 413

2018 1318 927 2245 222 340 510

2019 948 769 1717 201 354 511

Total 4373 4031 8404 971 1121 1886

Table 2.3: Over half of the kererū observations on iNaturalist NZ have
occured during a Great Kererū Count. In the 7 years of iNaturalist NZ data
from 2013 - 2019 there have been 8404 kererū observations by 1886 observers. The
first Great Kererū Count took place in 2014.

The Great Kererū Count as an iNaturalist NZ observer recruiter

During the 6 years that the Great Kererū Count has been running 971 observers have

shared a kererū observation to iNaturalist NZ. 733 (75%) of these observers were first

time iNaturalist NZ observers. 359 (37%) of these observers contributed multiple ob-

servations to iNaturalist NZ. 135 (14%) of these observers contributed an observation

to iNaturalist NZ outside of a Great Kererū Count period and 90 (9%) of the Great

Kererū Count observers contributed an observation of something other than a kererū.

This flow of how some Great Kererū Count observers continue to be active iNaturalist

NZ observers is illustrated in Figure 2.8.
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Figure 2.8: Approximately 9% of Great Kererū Count observers that use
iNatuaralist for the first time during the Great Kererū Count continue
to use iNaturalist NZ to share observations of other taxa. This diagram
shows how many of the 971 Great Kererū Counter observers on iNaturalist NZ are
new recruits to iNaturalist NZ and if they contribute to iNaturalist NZ outside of
the Great Kererū Count.

Scientific uses of iNaturalist NZ data

As well as providing a community for participants to share and learn about nature

there are many scientific questions iNaturalist NZ may be able to answer. iNaturalist

NZ contains three broad types of data of value to researchers. Firstly, there is the ex-

tensive database of species occupancy data with iNaturalist NZ (now the largest online

source of data on species distributions for many New Zealand taxa). Secondly, there

is the large number of annotations on observations, including when different life stages

are active, what is flowering when, and which species interact. Thirdly, iNaturalist NZ

often provides the only photos on the internet of rarer and more obscure New Zealand

native species.

iNaturalist NZ observation data is being used in a variety of research projects. For

example, data from iNaturalist NZ have been used by a Victoria University based

project on lizards in New Zealand urban areas, and an Otago University based project

on the threatened NZ mistletoe, Tupeia antarctica. A collaboration between the Uni-

versity of Canterbury and Scion has also been using identified images of pest insects on

iNaturalist to train better image recognition technology for border biosecurity (New

Zealand bio-recording network trust, 2020).

iNaturalist NZ has been an important collaborator in the response to myrtle rust
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since it arrived in New Zealand in 2017. Myrtle rust is an invasive pathogen that attacks

trees in the Myrtaceeae family, which includes Eucalyptus and a number of native

trees. The iNaturalist NZ API was used to directly enter myrtle rust observations

into iNaturalist NZ from the myrtle rust reporter application that was built in 2017.

Further to this, in 2019 iNaturalist NZ observation data of susceptible native New

Zealand trees was shared with Manaaki Whenua - Landcare Research. They combined

this data with other plant datasets and climate datasets to make projections about

which forests in New Zealand are most vulnerable to being badly affected by myrtle

rust.

Final remarks

Throughout this chapter we have provided an overview of the iNaturalist NZ citizen

science project, the breadth of the data on iNaturalist NZ, and some highlights of the

contributions the project is making to science and society in New Zealand. Throughout

the years that iNaturalist NZ has been operating, it has seen steady growth in the

number of participants and taxa observed. In the remainder of this thesis we explore

methods to improve the scientific usefulness of this expansive dataset. We begin by

exploring how the identification process may be optimised with a Bayesian approach

(Chapters 3a and 3b). We then investigate if the iNaturalist NZ dataset can be used

to reliably detect biological changes in species abundances (Chapters 4a, and 4b).

Finally, we explore the different types of observation behaviour that may be at play

within iNaturalist NZ, Chapter 4c. Throughout these subsequent chapters, further

analysis of iNaturalist NZ data is provided as it becomes relevant.
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Chapter 3a

Including user accuracy in classifica-

tion based citizen science projects

Classifications,

With user accuracy,

beat a simple vote.
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Abstract

Image classification citizen science projects are very common and an effective way of

classifying a large number of unknown images. Citizen science projects so far often

rely on the “wisdom of the crowd” through majority vote methods to produce accurate

classifications and assume all volunteer citizen scientists have equal ability.

Initially we assume we have perfect knowledge of user accuracy, and we include this

knowledge in the collective classification process with Bayes’ formula. We find that

including user accuracy in the classification decision process improves classification ac-

curacy compared to a majority vote method.

We introduce a two-stage classification method, where we initially estimate user

accuracies in a testing stage and then use Bayes’ theorem to include this information

in the classification process. In the testing stage the user classifies some images with

known ground truth. We show there is a trade-off on classification accuracy of dis-

tributing user responses between the testing stage and the classification stage.

We explore the independent Bayesian classifier combination method. This methods

estimates both user accuracy and includes this information in the collective classifica-

tion process when there are no images with known ground truth.

We show the value of including an estimate of user accuracy in a citizen science

collective classification processes. However, obtaining an estimate of user accuracy is

often not simple.
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Introduction

Image classification citizen science projects are very common and an effective way of

classifying a large number of unknown images. Some common examples are where

participants identify galaxy types on Zoouniverse projects, land types on Geowiki,

or species on iNaturalist NZ. Although computer image recognition has advanced a

long way from Google’s breakthrough in 2012 of training their AI to recognise cats

in YouTube videos, there is still a need for image classification by humans. This is

because computers may miss interesting features, and for many citizen science projects

the image recognition algorithms are not adequate. Citizen science and computer image

recognition may also complement each other. For example, citizen science image clas-

sification projects produce valuable training datasets for computer image recognition

algorithms, whilst, computer image recognition algorithms are being integrated into

classification based citizen science projects to suggest possible classifications to users.

For example, in 2017, iNaturalist integrated a computer image recognition algorithm

into their observation sharing platforms, which, where possible, suggests the species

of the uploaded images. Training data for the algorithm was taken from iNaturalist

images for species that have at least 20 research grade observations.

The citizen science image classification process, shown in Figure 3a.1, normally in-

volves users viewing images and indicating what they believe the identity of the images

are. Multiple users identify each image resulting in the citizen science project building

up a database of user identifications per image. It is a fundamental feature of clas-

sification based citizen science projects to make classifications based on multiple user

responses rather than the knowledge of an expert. Many classification based citizen

science projects use majority vote to combine individual user responses into a collec-

tive classification. This has the potential to introduce errors due to variations in users

ability to identify species or events (Bird et al., 2014). However, group judgements

have long been noted to be able to be more accurate than individual decisions. This

concept dates back to the Condorcet Jury Theorem (Condorcet, 1785). The Condorcet

Jury Theorem states that the probability of a group making the correct decision using

majority vote tends to 100% as the size of the group increases provided each individ-

ual’s probability of being correct, θi, is greater than 50%. Similarly, the probability of

the group making a correct decision tends towards 0% if θi < 0.5. Owen et al. (1989)

generalised the Condorcet Jury Theorem to: if the mean probability, θ̄, of the group is

greater than 50%, then as the size of the group increases the probability of making the

correct decision will tend towards 100%. The improved accuracy of judgements from

the wisdom of the crowd effect has been shown in many simple examples. For example,

Treynor (1987) asked 56 students to estimate the number of jelly beans in a jar and

found that the average guess of the group, 871, was very close to the actual amount,
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850, and better than 98% of individual guesses.

Figure 3a.1: Citizen science users view images and indicate what they
believe the identity of the image is. These individual images are then
combined to collectively decide the image identities. P = plane, B = bird.
Commonly collective decisions are made using majority vote. Our approach is
broken down into three cases as outlined in the image.

Despite the simplicity and improved accuracy of using majority vote to collate user

identifications there are concerns with the method. In particular, each users’ identifi-

cations are equally weighted even though there are often a wide range of user abilities.

For example, iNaturalist NZ uses majority vote to make image classifications and we

know there are a range of identifier profiles on iNaturalist NZ, e.g. expert ecologists,

enthusiast nature watchers, school children, and tourists. It is unlikely that all these

types of users have the same accuracy and therefore we may want to weight their re-

sponses unequally. Other approaches to enhance the quality of collective classifications

have included acquiring information on users’ confidence in their vote and then using

this information to weight the votes by placing more emphasis on the votes with high

confidence (See et al., 2013). This method is problematic as some users overestimate

their abilities while other users underestimate their abilities (Kruger and Dunning,

1999). An improvement of this basic confidence weighted method may be using the

“surprisingly popular vote” approach that makes a collective classification based on the

class that is more popular than predicted by the users (Prelec et al., 2017). More recent

approaches have involved using estimates of users’ accuracies to reduce the weighting of

the least accurate users and magnify the weighting of the most accurate users (Foody
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et al., 2018).

Throughout this chapter accuracy can be used in many ways. Therefore, for clarity,

we define the following stricter definitions of accuracy:

• User accuracy, denoted as θ, is the probability that a user correctly identifies an

image.

• Classification accuracy, denoted as α, is the proportion of images correctly clas-

sified by the group of users.

Other easily confused terms are identifications and classifications. For this chapter

we make the following distinctions:

• Identification refers to an individual user’s response of the identity of an image.

• Classification refers to a judgement based on a collection of individual user iden-

tifications.

It is common for citizen science projects that utilise user accuracies in the collective

classification decisions to incorporate a user testing stage in the project. Testing stages

normally involve the user identifying a range of images that have a known ground truth

and therefore provide the researches with a dataset to estimate user accuracy. In the

absence of images with known ground truth, a ground reference data set or validation

points are often produced by experts in the field (Foody et al., 2013; Gengler and Bo-

gaert, 2016). Many approaches have been used to estimate user accuracy from the user

identifications and the corresponding ground truth or expert opinions. For example,

a simple method is to calculate the proportion of images the user correctly identified

(Foody et al., 2013). However, this simple approach is problematic as it is common to

obtain a 0 or 1 estimate for user accuracies when samples are small. An improvement

is to use a Bayesian estimator that generalises this simple proportion of correct iden-

tifications to include prior information about the users’ accuracy and therefore avoid

the problematic case of estimating user accuracy as 0 or 1. More advanced methods

to estimate user accuracy include latent class analysis and Bayesian statistics. Latent

class models describe the relationship between observed variables, user identifications,

and latent variables, e.g. the true class of an image. If the model is an adequate fit

the parameters may be used to indicate the quality of identifications made by each

user. For example, Foody et al. (2018) fitted a latent class model to user identifica-

tions of land cover types and used the model parameters as a measure of user accuracy.

Bayesian statistical methods may also be used to estimate user accuracy and this is

the technique we will focus on in this chapter. For example, Gengler and Bogaert

(2016) used validation points obtained from an expert to update the prior probability

distributions of user accuracies to obtain a posterior probability distribution for user
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accuracy.

In this chapter we work through three different cases, shown in Figure 3a.1, to build

up two additional methods to majority vote to collectively classify images.

Case 1

In case 1 we assume we have perfect knowledge of all user accuracies and use Bayes’

theorem to include this information in the collective classification process. We initially

start by assuming all users have the same accuracy. We compare the classification ac-

curacy from classifying images with Bayes’ theorem against the classification accuracy

of using majority vote. As expected, including user accuracy in the classification deci-

sion improves classification accuracy compared to majority vote. This motivates us to

explore how we would use Bayes’ theorem to include user accuracy in the classification

decision in the case of multiple classes of users, e.g. amateurs and experts, and the

case of all users having different user accuracies.

Case 2

Motivated by the improvements in classification accuracy by including user accuracy

in classification decisions we explore how we would estimate user accuracy in a test-

ing stage where image ground truth is known. We introduce a two-stage classification

method where we initially estimate user accuracies in a testing stage and then using

Bayes’ theorem (as in case 1) we use these user accuracy estimations to classify im-

ages in a classification stage. We explore the trade-off on classification accuracy of

distributing user responses between the testing and classification stages. We highlight

the risk on classification accuracy of reducing the number of identifications per image

in the classification stage.

Case 3

Motivated by the trade-off results from case 2, and with no testing stage on iNaturalist

NZ, we begin building this case by reviewing previous literature on estimating user

accuracies in citizen science projects in the absence of a testing stage or any images

with known ground truth. We focus on a Bayesian classifier combination method and

outline a suitable Gibbs sampling algorithm to estimate the model that best combines

our image classification methods from case 1 and user accuracy estimation methods

from case 2.
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Bayesian background

Bayesian statistics is an approach to data analysis and parameter estimation based on

Bayes’ theorem. Bayesian methods are based on the idea that before any experiments

are run or any data is gathered there is usually some information about the unknown

parameter and therefore a prior belief about the possible parameter value. Typically

a Bayesian approach involves: (1) capturing available knowledge about a given pa-

rameter via the prior distribution; (2) determining the likelihood function using the

information about the parameters available in the observed data; (3) combining both

the prior distribution and the likelihood function using Bayes’ theorem to obtain the

posterior distribution. The posterior distribution balances prior knowledge with ob-

served data and reflects one’s updated knowledge. The posterior distribution is used

to conduct inferences.

Prior probability distributions express the knowledge of the parameter distribution

before the experiment. Prior distributions are often based on previous experiments

or on basic knowledge of the parameter space, e.g. an accuracy parameter has to lie

between 0 and 1. If no information is known, uninformative prior distributions may be

used, e.g. a uniform distribution for a bounded range such as a probability. The use of

prior distributions in Bayesian statistics is a key difference from frequentist statistics

and is often the point of debate between the two philosophies due to prior distribu-

tions being subjective. Different statisticians may use different prior distributions, and

therefore sensitivity analysis of the posterior distribution to different prior distributions

is important.

A prior distribution and likelihood function are said to be conjugate when the

resulting posterior distribution is the same type of distribution as the prior distri-

bution. There are many conjugate models. One of relevance to this chapter is the

Beta-Binomial model where a Beta prior distribution and Binomial likelihood model

result in a Beta posterior probability distribution. Many real-world Bayesian models

are too complex to produce analytical and tractable posterior distributions due to diffi-

cult multi-dimensional integrals. Historically Bayesian statistics was largely restricted

to conjugate models for computational simplicity. However, due to recent advances

in computing power and techniques such as Markov chain Monte Carlo (a method of

calculating numerical approximations of multi-dimensional integrals) most posterior

distributions can now be estimated numerically.
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Case 1: Collective classification decisions with known

user accuracy

In this case we outline a simple example of users classifying images of bird and planes.

Initially we assume:

• Users are independent.

• There are only two image classes: birds, and planes.

• We have perfect knowledge of every user’s accuracy.

• User accuracies are the same for both image classes.

• All images are of equal difficulty to identify.

• User accuracy does not change over the number of identifications the user has

done.

For each image we use Bayes’ formula to calculate the posterior probability that

the image belongs to each class given the user identifications for the image and class

prevalences. An image is classified as the class with the highest posterior probability. In

the case that both classes have equal posterior probabilities we will classify the image

as a bird. Initially we assume all users have the same user accuracy. We compare

the classification accuracy from using Bayes’ formula to using a simple majority vote

classification rule for a range of user identifications per image and user accuracies. We

then extend our analysis to the case that users are either amateurs or experts and then

generalise the analysis to all users having a unique identification accuracy.

Common user accuracy

First, we assume all users have the same user accuracy, θ. We investigate how the

expected classification accuracy changes as more users identify images or user accuracy

varies. We also consider the optimal user accuracy and number of identifications per

image given a trade-off between these two inputs.

Probability an image is a bird given user responses

First, we will calculate the Bayesian posterior probability that the true identity of an

image is a bird given the user identifications of the image. Let t define the true identity

of the image:

t =

1, if image is a bird

0, if image is a plane.
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Prior distribution. Before we obtain any responses from users the prior distribution

for the unknown t is expressed as Pr(t = 1) = ρB and Pr(t = 0) = ρP where ρB, and

ρP are the bird and plane prevalences, respectively. Since, we only have bird and plane

images ρB + ρP = 1.

Data model and likelihood. The data used to update the prior information consists

of the identification responses from the users. Let x(k) be the response from user k

where,

x(k) =

1, if user k says image is a bird

0, if user k says image is a plane.

Suppose we have one image that has been classified by user one as {x(1)}. We have

the following likelihood function:

Pr(x(1)|t = 1) = θx
(1) · (1− θ)1−x(1)

Pr(x(1)|t = 0) = (1− θ)x(1) · θ1−x(1) .

Thus, the probability that a user correctly classifies the image as a bird is θ and

the incorrectly classifies the image as a bird (when it is a plane) is 1− θ.

Directed acyclic graphs (DAGs) are commonly used in Bayesian statistics to visu-

alise the relationships between parameters in the model. A DAG of case 1 is shown

in Figure 3a.2. Square nodes are known parameters and circular nodes are unknown

parameters. Directed edges indicate a conditional dependence between two nodes.

Posterior distribution. Using Bayes’ Theorem we combine the information from the

user response with the prior probability to calculate the posterior probability the true

identity of the image is a bird given the user response:

Pr(t = 1|x(1)) =
Pr(x(1)|t = 1) · Pr(t = 1)

Pr(x(1)|t = 1) · Pr(t = 1) + Pr(x(1)|t = 0) · Pr(t = 0)

=
θx

(1) · (1− θ)(1−x(1)) · ρB
θx(1) · (1− θ)(1−x(1)) · ρB + (1− θ)x(1) · θ(1−x(1)) · (1− ρB)

.

We extend the likelihood function and posterior distribution to include identification

responses from K independent users where all users have common user accuracy θ.
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Figure 3a.2: Model for case 1 takes known user accuracy, user responses
and class prevalences to infer true image identity. Circular nodes are un-
known variables and square nodes are known parameters. Plates are over users,
k = 1, 2, ...K. Directed edges indicate a conditional dependence between two
nodes.

If the K users identified an image respectively as {x(1), ..., x(K)} using the binomial

distribution we have the following likelihood functions for n of the K users saying an

image is a bird:

Pr(
K∑
k=1

x(k) = n|t = 1) = L(n,K, θ)

Pr(
K∑
k=1

x(k) = n|t = 0) = L(n,K, 1− θ).

Where,

L(n,K, θ) =

(
K

n

)
θn · (1− θ)K−n.

Therefore our posterior probability that the image identity is a bird given n out of

K users said it was a bird is:

Pr(t = 1|
∑
k

x(k) = n) =
θn · (1− θ)K−n · ρB

θn · (1− θ)K−n · ρB + (1− θ)n · θK−n · (1− ρB)
. (3a.1)
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Image classification based on user responses

We will use the posterior probability of an image being a bird to decide the collective

classification of an image. We will let t̂ define the collective classification of an image:

t̂ =

1, if image is classified as a bird

0, if image is classified as a plane

t̂ =

1, if Pr(t = 1|
∑

k x
(k) = n) ≥ 0.5

0, if Pr(t = 1|
∑

k x
(k) = n) < 0.5.

From Equation 3a.1 we see that we will classify an image as a bird if;

θn · (1− θ)K−n · ρB ≥ (1− θ)n · θK−n · (1− ρB)

n ≥ K

2
− 1

2

log( ρB
1−ρB

)

log( θ
1−θ )

for θ > 0.5, (3a.2)

where n is the number of users that said the image was a bird.

For simplicity we will refer to the RHS of equation 3a.2 as n∗, i.e. the Bayesian

decision threshold. Therefore,

t̂ =

1, if n ≥ n∗

0, if n < n∗.

Classification accuracy

We will let Z indicate if we correctly classify an image:

Z =

1, if t̂ = t

0, Otherwise.

Then the classification accuracy, α, of classified images is defined as the expected

value of Z:
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α = E(Z)

= Pr(Z = 1)

= Pr(t̂ = t)

= Pr(t̂ = 1 ∩ t = 1) + Pr(t̂ = 0 ∩ t = 0)

= Pr(t̂ = 1|t = 1) · Pr(t = 1) + Pr(t̂ = 0|t = 0) · Pr(t = 0)

= Pr(Z = 1|t = 1) · Pr(t = 1) + Pr(Z = 1|t = 0) · Pr(t = 0)

= E(Z|t = 1) · Pr(t = 1) + E(Z|t = 0) · Pr(t = 0)

= ρB(1− F (bn∗c , K, θ)) + (1− ρB)F (bn∗c , K, 1− θ).

Where F (bn∗c , K, θ) is the cumulative binomial distribution function with param-

eters θ and K.

Figure 3a.3 shows how classification accuracy, α, varied over a range of user accu-

racies, θ, and number, n, of identifications per image for ρB = 0.6 and ρP = 0.4. As

expected, with higher individual user accuracy, θ, fewer identifications, n, per image

are needed to reach a classification accuracy, α, of 95% as shown by the 0.95 iso-

accuracy curve in Figure 3a.3. When user θ = 0.5, α = ρB regardless of how many

users identify each image. Whereas, when θ = 1 it only takes one identification to

reach α = 100%. As expected, if θ > 0.5 classification accuracy, α, will tend towards

100% as the number of identifications per image increases. This result matches the

Condorcet Jury Theorem that states, provided individual accuracy is more than 50%,

the probability of the group making the correct decision will tend towards 1 as the size

of the group increases (Condorcet, 1785).

Given a fixed budget constraint, the results in Figure 3a.3 can be used to perform

a statistical power analysis to find the number of users and user accuracy to maximise

classification accuracy for a given bird prevalence. For example, given we have a budget

that can afford either 1 user with user accuracy 0.9, 20 users with user accuracy 0.5,

or any equivalently priced combination in between. We can use this information to

draw an iso-cost line on our classification accuracy figure as shown by the dotted line

in Figure 3a.3. To maximise classification accuracy along this iso-cost line we use the

method of Lagrange multipliers (Lagrange, 1804) and find the point on the iso-accuracy

curve furthest from the origin that is tangent to the iso-cost curve, shown in Figure

3a.3 as a solid triangle. For any budget constraint we can find an optimal combination

of number of users and user accuracy.
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Figure 3a.3: Higher user accuracy means fewer users (lower data redun-
dancy) are required to identify an image to reach a fixed classification
accuracy. Background colour is classification accuracy as a function of user accu-
racy, θ, and data redundancy, n, for ρB = 0.6. Solid lines are iso-accuracy curves.
The dotted line is an example iso-cost line. Maximum classification accuracy for
the costs is achieved at 5 users with 0.82 user accuracy, shown as a solid triangle.

Bayes’ formula vs. majority vote decision rule

In this subsection we examine when the Bayes’ decision threshold differs from the sim-

ple majority and compare the classification accuracy of the two classification methods.

Bayes’ decision threshold in Equation 3a.2 differs from majority vote by the 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

term, i.e. the majority vote threshold is n ≥ K
2

.

In the following cases the two decision thresholds converge, i.e. K
2
− 1

2

log(
ρB

1−ρB
)

log( θ
1−θ )

→ K
2

:

1. We have no prior information on bird and plane image prevalence and assume

ρB = ρP = 0.5, 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

= 0.

2. As θ → 1, i.e. users have perfect accuracy, 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

→ 0.
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3. As the number of users, K, increases the importance of the second term, 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

,

of Bayes’ decision threshold diminishes relative to the first term, K
2

.

When Bayes’ decision threshold is equal to the majority vote decision threshold

both classification methods have the same classification accuracy, shown in Figure 3a.4.

There are many cases when Bayes’ decision rule is different from the majority

vote decision rule. For example, when birds are the dominant species, ρB > 0.5 and

0.5 < θ < 1 then 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

> 0 and n∗ < K
2

, i.e., a fewer number of users is required

to identify an image as a bird to make a group classification of a bird using Bayes’

formula than using majority vote. When θ → 0.5, i.e. user accuracy tends towards

random guessing, and birds are the dominant species (i.e. ρB > 0.5), 1
2

log(
ρB

1−ρB
)

log( θ
1−θ )

→ ∞
and therefore n∗ → −∞. This means that zero users need to identify an image as a

bird to make a group classification of a bird. Effectively, when θ is close to random

guessing (θ = 0.5) user identifications are not contributing any value to the classi-

fication decision and the Bayes’ classification decision is based on always voting for

the dominant species. However, due to requiring the decision rules, n∗ and K
2

, to be

rounded up to the nearest integer, the majority vote and Bayes decision thresholds are

stepwise functions and are equal for more values of ρB and θ than just ρB = 0.5 and

θ = 1, shown in Figure 3a.4.

As expected, when the two classification methods have different decision thresholds

using Bayes’ classification rule always results in a higher classification accuracy than

majority vote, Figure 3a.4. However, Bayes’ formula achieves this higher classification

accuracy by classifying the dominant class more accurately than the minority class.

Therefore, if the objective is to maximise the minority class classification accuracy

then majority vote would be used.

Varied user accuracy

In reality, it is very unlikely that all users will have the same user accuracy. In this

section we now relax the common user accuracy assumption by first considering the

case where there are expert and amateur users and then considering the general case

where all users have a unique user accuracy.

As in the common user accuracy case we assume all users are independent, there

are only two image classes, we have perfect knowledge of every user’s accuracy, users

have the same classification accuracy for both categories and every image is of equal

difficulty to classify.
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Figure 3a.4: Using Bayes’ formula to make a group classification decision
always results in a higher or equivalent classification accuracy compared
to using majority vote. A Bayes’ formula and majority vote decision thresholds
as a function of bird prevalence for θ = 0.7 and K = 7. B Bayes’ formula and
majority vote decision thresholds as a function of user accuracy for ρB = 0.7 and
K = 7. C Bayes’ formula and majority vote classification accuracy as a function
of bird prevalence for θ = 0.7 and K = 7. D Bayes’ formula and majority vote
classification accuracy as a function of user accuracy for ρB = 0.7 and K = 7.

Amateurs and experts

We consider the case that each user is either an amateur or an expert, i.e. some users

are very accurate at identifying images (experts) and the other users (amateurs) are

less accurate at identifying images. This is a relevant scenario to consider for citizen

science projects like iNaturalist NZ where the users are a mix of qualified ecologists

and amateur nature watchers. We assume that all amateurs have the same accuracy,

θA, and all experts have the same accuracy, θE, and θA < θE. We assume we have

perfect knowledge of who are the amateurs and experts and there are KA amateurs

and KE experts.
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Prior distribution. Our prior distribution for the unknown t is the same as the

case where all users have the same user accuracy. That is, Pr(t = 1) = ρB and

Pr(t = 0) = ρP = 1− ρB.

Data model and likelihood. The data used to update the prior information consists

of the responses from the KA + KE users. If the KA amateur users identified an

image respectively as {x(1), ..., x(KA)} and the KE expert users identified the image

respectively as {x(1), ..., x(KE)} we have the following likelihood functions for nA of the

KA amateur users and nE of the KE expert users saying an image is a bird:

Pr(

KA∑
kA=1

x(kA) = nA,

KE∑
kE=1

x(kE) = nE|t = 1) = L(nA, KA, θA) · L(nE, KE, θE)

Pr(

KA∑
kA=1

x(kA) = nA,

KE∑
kE=1

x(kE) = nE|t = 0) = L(nA, KA, 1− θA) · L(nE, KE, 1− θE)

Posterior distribution. Using Bayes’ Theorem we can find the posterior probability

that the image identity is a bird given nA amateurs and nE experts say the image is a

bird from KA amateurs and KE experts respectively. As with the common user accu-

racy case we classify an image as a bird if the posterior probability an image is a bird is

greater than or equal to 0.5, i.e. Pr(t = 1|
∑KA

kA=1 x
(kA) = nA,

∑KE
kE=1 x

(kE) = nE) ≥ 0.5.

Classification accuracy. We calculate the classification accuracy over a range of

combinations of amateurs and experts for given amateur and expert accuracies by us-

ing simulations of the amateurs and experts identifying images and the resulting image

classification based on Bayes’ formula to find the proportion of correctly identified im-

ages.

Figure 3a.5 shows how classification accuracy varies over different combinations of

amateurs and experts. As expected, we found that increasing the number of expert

users increases classification accuracy more rapidly than adding additional amateur

users. Similarly, to the case of a common user accuracy we can use iso-accuracy curves

to show the combinations of amateurs and experts that result in the same classification

accuracy. For example, in Figure 3a.5 where amateur accuracy is 0.6 and expert accu-

racy is 0.85 we see that one expert achieves a classification accuracy of 0.85, whereas,

it takes 26 amateurs to achieve 0.85 classification accuracy. We may also perform a

power analysis to find the optimal number of amateurs and experts to maximise clas-

sification accuracy given a budget constraint, as shown by the solid triangles in Figure
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3a.5 where the iso-cost line is tangent to the iso-accuracy curve.

Figure 3a.5: There is a range of combinations of expert users and am-
ateurs users that achieve the same classification accuracy. This plot is
generated via a simulation where the background colour is classification accuracy
as a function of the number of experts and number of amateurs for amateur ac-
curacy of 0.6, expert accuracy of 0.85 and bird prevalence of 0.6. Solid lines are
iso-accuracy curves. Dotted lines are Iso-cost lines for the case that 1 expert costs
the same as 10 amateurs. Maximum classification accuracy given the budget con-
straint of 8 experts or 80 amateurs is achieved with 7 experts and 4 amateurs,
shown as a solid triangle.

Generalisation to unique user accuracy for all users

We consider the most likely scenario in citizen science projects where all K users have

a unique user accuracy {θ(1), ..., θ(K)}.

Data model and likelihood. If the K users identified an image respectively as

{x(1), ..., x(K)} we have the following likelihood functions for the user responses:

Pr(x(1), ..., x(K)|t = 1) = ΠK
k=1(θ(k))x

(k) · (1− θ(k))1−x(k)

Pr(x(1), ..., x(K)|t = 0) = ΠK
k=1(1− θ(k))x

(k) · (θ(k))1−x(k) .
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Posterior distribution. Applying Bayes’ Theorem we obtain the following posterior

probability that an image is a bird given the responses from the K users:

Pr(t = 1|x(1), ..., x(K)) =

ΠK
k=1(θ(k))x

(k) · (1− θ(k))1−x(k) · ρB
ΠK
k=1(θ(k))x(k) · (1− θ(k))1−x(k) · ρB + ΠK

k=1(1− θ(k))x(k) · (θ(k))1−x(k)(1− ρB)
. (3a.3)

In the case that all users have the same user accuracy, θ, Equation 3a.3 reduces to

Equation 3a.1.

Classification accuracy. As with the common user accuracy case we classify an im-

age as a bird if the posterior probability that an image is a bird given the user responses

is greater than or equal to 0.5, i.e. Pr(t = 1|x(1), ..., x(K)) ≥ 0.5.

Similar to the amateur and expert case, classification accuracy can be calculated by

simulating the users identifying a large number of images, making a group classification

decision for each image, and then calculating the proportion of images they correctly

identified. We can use this analysis to answer questions such as: “Given 5 users with

user accuracies {θ(1), ..., θ(5)} identify an image what is the expected group classification

accuracy?” or “If we increase one of the user’s accuracies how much do we improve

the expected group classification accuracy?”
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Case 2: Estimating user accuracy when ground truth

is known

In case 1 we classified images based on a Bayes’ decision rule that is a function of user

accuracy, user identifications and class prevalences. In this case we explore how we can

use Bayesian statistics to estimate user accuracy when the ground truth of the images

are known. It is common for classification based citizen science projects to initially ask

users to classify images with known ground, often called a testing stage. As well as

providing information on user accuracies, testing stages provide a training opportunity

for users. We will refer to the classification of images with known ground truth as

the testing stage and with unknown ground truth as the classification stage. In this

case we introduce a two-stage classification method where we initially estimate user

accuracies in a testing stage and then, using Bayes’ Theorem, as in case 1, we use these

user accuracy estimations to classify images in a classification stage. We explore the

trade-off on classification accuracy of distributing user responses between the testing

and the classification stages.

As in case 1, we assume:

• Users are independent.

• There are only two image classes, birds or planes.

• User accuracies are the same for both image classes.

• All images are of equal difficulty to identify.

However, in this case we assume we do not know the user accuracies but we do

know the ground truth of the images.

We assume user k has identified m(k) images. The user identifications form a se-

quence of Bernoulli trials where y(k) is the number of images user k correctly identified.

Each trial is independent and exchangeable as we are assuming the user does not im-

prove or worsen their user accuracy over time. Therefore, we can model the number of

successes, y(k), user k has from the m(k) trials as a binomial distribution where θ(k) is

the unknown user accuracy:

y(k)|θ(k) ∼ Bin(m(k), θ(k))

Prior distribution. We know θ(k) can only take on values between 0 and 1, therefore,

we will assign θ(k) a Beta distribution prior as it is a continuous probability distribution

defined on the interval [0, 1]:
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θ(k)|a(k), b(k) ∼ Beta(a(k), b(k)),

where a(k) and b(k) reflect a prior knowledge of user k’s accuracy and can be inter-

preted as the number of correct and incorrect identifications respectively that the user

makes. If we have no prior knowledge on suitable values for a(k) and b(k) we can assign

a non-informative uniform prior by setting a(k) = b(k) = 1.

Figure 3a.6: Model for case 2 takes known image identities, user responses
and user accuracy priors to estimate posterior user accuracies. Circular
nodes are unknown variables and square nodes are known parameters. Plates are
over users, k = 1, 2, ...K and images, i = 1, 2, ..., I. Directed edges indicate a
conditional dependence between two nodes.

Posterior distribution. Using Bayes’ formula to combine user identifications with

the prior distribution we obtain the unnormalised posterior probability distribution for

θ(k):

θ(k)|y(k),m(k) ∼ Beta(a(k) + y(k), b(k) +m(k) − y(k)). (3a.4)

Every time user k makes a new identification we update the posterior distribution

by adding 1 to the first parameter, a(k) + y(k), if it was a correct identification or to

the second parameter, b(k) +m(k) − y(k), if the identification was incorrect. A DAG of

Case 2 in shown in Figure 3a.6. Figure 3a.7 shows how the shape of the Beta posterior

distributions change as the number of user identifications increases for different prior

distributions.

We use the mean of user k’s Beta posterior distribution as an estimate of user k’s
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Figure 3a.7: The prior distribution has less effect on the posterior distri-
bution as the number of user identifications increases. Posterior distribu-
tions of user accuracy as the number of identifications increases for a user with 0.7
user accuracy. A uniform prior, a=1, b=1. B correct informative prior, a=7, b=3.
C incorrect informative prior, a=2, b=8. D incorrect informative prior, a=9, b=1.

accuracy:

θ̄(k) =
a(k) + y(k)

a(k) + b(k) +m(k)
. (3a.5)

This is a generalisation of the standard user accuracy estimator;

θ̄(k) =
y(k)

m(k)
,

which does not include any prior information about user accuracies that we may

have from similar exercises. The Bayesian estimator (Equation 3a.5), also avoids the

problematic estimated values of 0, and 1, which tend to occur with small sample sizes.

Although this approach of estimating user accuracy with the Bayesian estimator
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mean is computationally efficient it disregards the variance in the posterior distribution.

Two-stage classification method

In this section we outline our two-stage classification method that consists of: the

testing stage, and the classification stage. In the testing stage user accuracies are

estimated using Equation 3a.5. In the classification stage these user accuracy estima-

tions are combined with user responses, and class prevalence values by Bayes’ theorem

(Equation 3a.3 from Case 1) to classify all images. IT is the number of images in the

testing stages, IC is the number of images in the classification stage, and IT + IC = I.

A DAG for the two-stage classification method is shown in Figure 3a.8.

Figure 3a.8: The two stage classification method utilises methods from
case 2 to estimate user accuracy in the testing stage, and methods from
case 1 to classify images in the classification stage. Circular nodes are
unknown variables and square nodes are known parameters. Plates are over users,
k = 1, 2, ...K, testing stage images, i = 1, 2, ..., IT , and classification stage images
i = 1, 2, ..., IC . Directed edges indicate a conditional dependence between two
nodes.

This classification method is a relatively simple step from majority vote to a classi-

fication method that includes user accuracy estimations. However, there are two main

limitations. First, there is no feedback between the two stages and therefore the model

is unable to capture changes in user accuracies overtime, often referred to as learning

or tiring effects. Second, there is a trade-off on classification accuracy of splitting user

responses between the two stages.
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Trade-off between testing stage and classification stage

In Chapter 2 we found that 75% of users that have done identifications on iNatrulaist

NZ have done less than 10 identifications. It has also been reported by Sauermann and

Franzoni (2015a) that this phenomenon of most users contributing a small number of

responses is common to most citizen science projects. Therefore, when citizen science

projects ask users to initially identify images with known ground truth (in the testing

stage) there is a risk that users will do fewer identifications on images with unknown

ground truth (in the classification stage). As a result we have a trade-off between

requiring users to identify more testing images and therefore improving our estimate of

their user accuracy, or leaving more identifications for the classification stage to have

more identifications per image and therefore a higher classification accuracy.

We created a simulation to show the impact on classification accuracy of splitting

user identifications between the testing and classification stages, given ρb,θ,a, b, where

bold indicates a vector. In the testing stage each user identifies m images and in the

classification stage each image is identified by n users. Simulations, preformed for

m = 1, ..., 40 and n = 1, ..., 20, are as follows:

1. For each user, simulate responses to m testing stage images and estimate each

user’s accuracy, θ̂(k), as in Equation 3a.5.

2. For each classification stage image, randomly select n users to identify the image

and simulate their identifications, {x(1)
i , ..., x

(n)
i } given their true user accuracies

{θ(1), ..., θ(n)}.

3. Given the estimated user accuracies from step 1, user identifications from step 2

and ρB use Bayes’ formula to classify each classification stage image as in case 1,

Equation 3a.3.

4. Evaluate classification accuracy as the proportion of correctly classified classifi-

cation stage images.

Results from the simulation outlined above are shown in Figure 3a.9 for the ar-

bitrary example with I = 104 images, K = 103 users, ρB = 0.9, and θ(k) = 0.7 for

k = 1, ..., K. The prior parameters for user accuracy were set at a(k) = 6, and b(k) = 4

for k = 1, ..., K, corresponding to low expectation of 60% user accuracy. The solid

iso-accuracy curves show different combinations of m and n that result in the same

classification accuracy and the dotted iso-cost lines show different combinations of m

and n that result in the same classification effort. An optimal distribution of iden-

tifications between the testing and classification stage is at the tangent point of the

iso-accuracy and iso-cost lines, shown with solid triangles. For example, shown in Fig-

ure 3a.9, if we are limited to 120,000 user identifications this is distributed as either
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Figure 3a.9: Given a certain number of identifications per user we can use
simulations to find the optimal allocation of identifications to the testing
stage and classification stage. Colours show classification accuracy, α, for the
two-stage method as a function of m and n, the number of testing images per
user and the number of identifications per image in the classification stage. Solid
lines show iso-accuracy curves, dotted lines show iso-cost lines, and circle markers
show optimal allocation of identifications given a fixed number of identifications
per user. Parameters used: ρB = 0.9, and θ(k) = 0.7 for k = 1, ..., K. The prior
parameters for user accuracy were set at a(k) = 6, and b(k) = 4 for k = 1, ..., K.

120 images per user in the testing stage, 12 identifications per image in the classifi-

cation stage, or any combination of m and n that satisfies 103n + 104m = 120, 000.

The highest classification accuracy we can achieve is 95% by approximately assigning

n = 11 (i.e. 11 identifications per image in the classification stage) and m = 13 (i.e. 13

images per user in the testing stage). In conclusion, given a fixed set of identifications,

one may use the above simulations to find the optimal distribution of identifications

between the two stages.
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Case 3: Classifying images based on user accuracies

when no user accuracies or ground truth are known.

In case 2 we found there is a trade-off between allocating user identifications to a

testing stage to improve user accuracy estimations or to the classification stage to

improve classification accuracy. To eliminate this trade-off many existing works have

considered how to estimate user accuracies and infer image ground truth from user

identifications alone. Dawid and Skene (1979) completed some of the early research

in this field by proposing an Expectation-Maximisation (EM) algorithm for modelling

individual clinician error rates and compiling patient records when the patient’s true

response is not available. This is analogous to citizen science projects where multiple

users have identified the same image but their responses are subject to error. The EM

algorithm used by Dawid and Skene (1979) has the following iterative procedure:

1. Make initial estimates of the patient response ground truths.

2. Maximisation step. Calculate maximum likelihood estimations for individual

clinician error rates and patient response prevalences.

3. Expectation step. Calculate new estimates of the patient response ground truths.

4. Repeat until both the maximum likelihood estimates and ground truth estimates

converge.

It has been shown that the EM algorithm provides a slow but reliable method of

obtaining maximum likelihood estimates of the parameters of interest.

Inspired by the early work of Dawid and Skene (1979) many other models have been

developed to infer ground truth and user accuracy from user identifications. Zheng

et al. (2017) provide a detailed survey of 17 representative truth inference models, in-

cluding EM, and performed a comprehensive comparison of the 17 methods using 5

real datasets. Variations between the 17 models included incorporating task difficulty

and/or latent topics in the model, modelling user accuracy as a single value or a con-

fusion matrix, including modelling of user bias and variance, modelling user confidence

based on number of identifications per user, and treating users as independent or de-

pendent.

The general approach adopted by most of the methods was similar to the EM

algorithm:

1. Initialise user accuracies.

2. Infer the ground truth of each image based on user identifications and accuracies.
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3. Estimate and update user accuracy based on user identifications and the inferred

image classifications.

4. Repeat until both the user accuracy estimates and ground truth estimates con-

verge.

Zheng et al. (2017) concluded the classical EM method has a relatively simple im-

plementation and attains very good results, however, a high performing extension of the

EM method is a Bayesian classifier combination model (Kim and Ghahramani, 2012).

Incorporating task difficulty or latent topics did not significantly improve classification

accuracy. Modelling user accuracy as confusion matrices performs significantly better

than a single user accuracy value per user. Modelling other user features (e.g. user

bias, variance, and confidence) did not result in significant benefits.

In this section we outline the Independent Bayesian Classier Combination (IBCC)

model described by Kim and Ghahramani (2012), but, we simplify the way user accu-

racies are modelled. We outline a Gibbs’ sampling algorithm for the IBCC model that

combines our image classification methods from case 1 and user accuracy estimation

methods from case 2.
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Independent Bayesian classifier combination model

Kim and Ghahramani (2012) introduced the IBCC model that treats all user as inde-

pendent. IBCC combines discrete, categorical responses, such as image identifications

by citizen scientists to estimate image ground truth and user accuracy. IBCC extends

the earlier work of Dawid and Skene (1979) to allow Bayesian inference techniques,

such as Gibbs’ sampling, as suggested in Kim and Ghahramani (2012).

As in case 1 and case 2 we assume:

• Users are independent.

• User accuracies are the same for all image classes.

• All images are of equal difficulty to identify.

However, in case 1 and case 2 we assumed there were only two classes of images,

birds and planes. In this section we relax this assumption and generalise to J classes.

As in case 1, we have I images, for which we wish to infer a set of ground truth

labels t̂ = {t̂1, t̂2, ..., t̂I}. The ground truth, ti, for image i takes a value j ∈ {1, ..., J}
where J is the number of classes. For image i, we assume the true label ti is gen-

erated by a multinomial distribution, a generalisation of the binomial distribution to

more than two outcomes, with parameters ρ: p(ti = j|ρ) = ρj, which models the class

prevalences. For image i, the identification by user k, x
(k)
i ∈ {1, ..., J}.

We simplified the IBCC model outlined by (Kim and Ghahramani, 2012) from

modelling user accuracy as a confusion matrix to assuming that an identification x
(k)
i

by user k is generated from a multinomial distribution with the following probabilities:

p(x
(k)
i |ti = j) =

θ(k), if x
(k)
i = ti

1−θ(k)
J−1

, if x
(k)
i 6= ti,

(3a.6)

where θ(k) is the classification accuracy of user k. A user has the same user accuracy

at classifying every class, all images have equal classification difficulty, and if a user

incorrectly classifies an image they are equally likely to classify the image as one of the

J − 1 remaining classes.

The posterior distribution over the unknown variables t and θ given the user re-

sponses x is given by:

p(t,θ|x) ∝ p(x|θ, t)p(θ|a, b)p(t|ρ). (3a.7)
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Figure 3a.10: IBCC model takes known user accuracy priors, class preva-
lences, and user responses to estimate user accuracies and infer true
image identities Circular nodes are unknown parameters and square nodes are
known parameters. Plates are over users, k = 1, 2, ...K and images i = 1, 2, ...I.

Equation 3a.7 is the IBCC model and the DAG for IBCC is shown in Figure 3a.10.

Noteworthy, the IBCC DAG is effectively a combination of the DAGs from case 1 and

case 2.

Inference for the unknown parameters t and θ can be done via Gibbs sampling.

IBCC Gibbs sampling algorithm

Gibbs sampling, introduced by Geman and Geman (1984), is a Monte Carlo Markov

Chain (MCMC) algorithm that is commonly used to generate samples that approx-

imate a posterior distribution when an analytical derivation is intractable or direct

sampling is difficult. Gibbs sampling generates posterior distribution samples by se-

quentially sampling from the conditional probability distribution of each variable with

the remaining variables fixed to their current values. Gibbs sampling is suited to mod-

els such as the IBCC model as the conditional probability distributions for all the

parameters are easily computed.

Conditional probability distributions

First, we define the following indicator function;

I{Z} =

1, Z is true

0, otherwise.
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From the posterior distribution function, Equation 3a.7, the conditional probability

distribution function for t is a multinomial distribution with event probabilities given

as:

p(ti = j|all) ∝ ρj

K∏
k=1

(θ(k))
I
{x(k)
i

=j} ·
(1− θ(k)

J − 1

)(1−I
{x(k)
i

=j}

)
, (3a.8)

where Equation 3a.8 is an extension of Equation 3a.3 from Case 1 to more than

two classes.

Similarly, the conditional probability distribution for θ is given as;

p(θ(k)|all) ∼ Beta
(
a(k) +

∑
i

I
x
(k)
i =ti

, b(k) +
∑
i

I
x
(k)
i 6=ti

)
, (3a.9)

where Equation 3a.9 is an extension of Equation 3a.4 from Case 2 to more than

two classes.

Since the conditional density of t is a multinomial distribution and the conditional

density of θ is a Beta distribution they can be sampled from easily in the Gibbs’ sam-

pling algorithm.

Gibbs sampling algorithm

1. Initialise the values of t and θ.

2. Calculate p(ti = j|all) using Equation 3a.8 for j ∈ 1, ..., J for all images.

3. Sample ti for i = 1, ..., I from the multinomial distribution given the probabilities

calculated in step 2. Replace current value of ti with new sample.

4. Sample θ(k) for k = 1, ..., K from the Beta distribution given in Equation 3a.9,

using the current t. Replace current value of θ(k) with new sample.

5. Record current t and θ sample values in a list of sample values.

6. Repeat all steps from step 2 until a sufficient approximation is obtained, or

convergence is observed.

In the Gibbs sampling algorithm step 2 and step 3 use the methods from Case 1

extended to multiple classes. Step 4 uses methods from Case 2, however, rather than

estimating each user’s accuracy as the mean of their posterior distribution a sample is

drawn from the updated posterior distribution each iteration and therefore variance in

the distribution is regarded.
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Convergence

For each parameter the stationary distribution of the Markov chain from the Gibbs

sampling algorithm is the desired posterior distribution, where, a stationary distribu-

tion of a Markov chain is a probability distribution that remains unchanged in the

Markov chain as time progresses. But, how do we know when the Gibbs sampling

algorithm has converged? It may be the case that each Markov chain has converged

to the stationary distribution and we may need many samples from the stationary dis-

tribution to accurately approximate the posterior distribution. This has been a well

studied area of MCMC algorithms. Cowles and Carlin (1996) and Brooks and Roberts

(1998) both reviewed a wide range of MCMC convergence diagnostic methods. They

concluded that many theoretical convergence tests are not practical to apply, and are

often unreliable. To ensure convergence it is common practice to run Gibbs sampling

algorithms for a large number of iterations and visually check for convergence by in-

specting trace plots of parameter values against iteration number. Due to it likely

taking a while for the stationary distribution to be reached, early “burn-in” iterations

are discarded. It is also good practise to run multiple chains from different starting

points and check they converge to the same distribution/density plots.

We estimate ti for i = 1, ..., I and θ(k) for k = 1, ..., K from the sampled values by

taking the mean of all the θi samples and the mode of all the ti values, after removing

the burn-in samples.

Modelling user accuracy with a confusion matrix

In the IBCC model outlined by (Kim and Ghahramani, 2012) user accuracies were

modelled as a confusion matrix as shown in Equation 3a.10. Each row of the confu-

sion matrix is independent and for a given ground truth value j, the distribution over

responses from user k has a parameter vector from the corresponding row of the con-

fusion matrix. Modelling user accuracy with a confusion matrix models the situation

where a user has different abilities at identifying different classes and is more likely

to confuse particular pairs or groups of classes. For example, on iNaturalist NZ well

known species may be easily identified, whereas an uncommon species without distinc-

tive features may be misclassified more often, and if a user incorrectly classifies a kiwi

they are probably more likely to mistake it for a weka than a seal.

θ(k) =


θ

(k)
(1,1), . . . θ

(k)
(1,J)

...
. . .

...

θ
(k)
(J,1), . . . θ

(k)
(J,J)

 (3a.10)
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The user accuracy confusion matrix could be non symmetric in the case that there

is not a 1-1 mapping between user identification classes and ground truth classes. For

example, users may classify land types as either forested, or non-forested, but ground

truth labels may include more detailed classes, e.g. urban, grasslands, e.t.c.

Instead of modelling user accuracy, θ(k), for all classes as a Beta distribution as

shown in equation 3a.9 each row of the confusion matrix would be modelled with a

separate Beta or Dirichlet distribution. The Dirichlet distribution is a multivariate

generalisation of the Beta distribution and a conjugate prior of the multinomial distri-

bution. We would choose a Beta distribution in the case of only two classes, or if we

wanted to model users as equally likely to misclassify an image with any of the other

J − 1 classes. Otherwise, we would model every row of the confusion matrix with a

Dirichlet distribution as done by Kim and Ghahramani (2012):

θ
(k)
j |α

(k)
j ∼ Dir(α

(k)
j )

Where α
(k)
j = {α(k)

(j,1), ..., α
(k)
(j,J)} reflects a prior knowledge of user k accuracy and

α
(k)
(j,1) can be interpreted as the number of identifications for class 1 given the true class j.

As a result the conditional density function for t shown in Equation 3a.8 would

become:

p(ti = j|all) ∝ ρj

K∏
k=1

θ
(k)

j,x
(k)
i

.

Similarly, the conditional density function for θ shown in Equation 3a.9 would

become:

p(θ
(k)
j |all) ∼ Dir(α

(k)
j +N

(k)
j ).

Where

N
(k)
j =

[ ∑
i|ti=j

I
x
(k)
i =1

, ...,
∑
i|ti=j

I
x
(k)
i =J

]
.
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Discussion

In this chapter we worked through three cases of including user accuracy in collective

classification decisions. In the first case, we assumed that user accuracy was perfectly

known. We used Bayes’ formula to calculate the probability that the identity of the

image was one of the two classes. In the second case, we used a Bayesian approach to

estimate user accuracy when ground truth was known. In some citizen science projects

the users identify a mix of images with known ground truth (the testing stage) and

images with unknown ground truth (the classification stage). We explored the trade-off

on overall classification accuracy of asking users to identify images in the testing stage

versus the classification stage, In case 3, we assumed that user accuracy was unknown

and there were no images with known ground truth. We outlined a Bayesian method

that is able to simultaneously estimate user accuracy and the identity of the images.

Using Bayes’ formula and Bayesian techniques to include user accuracy and class

prevalence in collective classification decisions can improve the classification accuracy

compared to simple majority vote. However, obtaining information about these extra

variables, in particular user accuracy, is not without costs. Including a testing stage

in a classification based citizen science project is an effective and simple method to

estimate user accuracies. However, it requires allocating some of each users limited

identifications to the testing stage and therefore reducing the number of identifica-

tions available in the classification stage. This method also provides no feed back

between user identifications in the classification stage and user accuracy estimations

and therefore cannot account for a user learning or tiring effect. Including testing im-

ages throughout a users participation on a classification based citizen science project

rather than just at the beginning would allow this two-stage method to regularly up-

date user accuracy estimations. This would enable the two-stage method to account

for temporal variation in user accuracy, like the IBCC model but with significantly less

computational effort. However, the trade-off between distributing user responses to

test images and classification stage images must always be considered.

To address the trade-off from distributing identifications between the testing and

classification stages many models and algorithms have been developed to estimate user

accuracy and classify images simultaneously. In Case 3 we outlined the IBCC model

and a suitable Gibbs sampling algorithm in the context of classification based citizen

science. The IBCC model combines the methods from Case 1 and Case 2, and allows

for information feedback between all user identifications and their user accuracy es-

timation. However, implementing the IBCC model with a Gibbs sampling algorithm

is significantly more computationally expensive than a testing stage method or simple

majority vote.
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Chapter 3b

Citizen science decisions: A Bayesian

approach optimises effort

All the votes were summed,

user effort was wasted.

Bayesian sorts that.
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Abstract

Volunteer citizen scientists are an invaluable resource for classifying large numbers of

images that are used for species monitoring. Citizen science projects often rely on the

“wisdom of the crowd” through majority vote methods to produce accurate classifica-

tions and assume all volunteer citizen scientists have equal ability.

We use a Bayesian framework to estimate iNaturalist NZ user accuracies and si-

multaneously collectively classify the observations. We calculate the probability that

the inferred observation classification from the Bayesian framework is correct for each

observation given the assumed true user accuracies. We refer to this probability as the

classification certainty.

Our results show that 50% of images were classified by more volunteer citizen sci-

entists than required to reach a minimal desired collective classification certainty level

and more than one third of identifications were above the number required to meet the

minimal desired classification certainty.

Over 60% of observations that are yet to be considered research grade have a high

classification certainty that has already surpassed the desired minimal level and could

therefore be upgraded to research grade with no additional identifications.

Synthesis and applications With more sophisticated collective classification meth-

ods than a simple majority vote procedure citizen science data and volunteer citizen

scientists effort could be utilised more optimally.
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Introduction

Citizen science, the involvement of many individuals that are mostly not trained as

scientists, in collecting, categorising, transcribing, or analysing scientific data (Bonney

et al., 2014), has increased rapidly in the last decade (Kosmala et al., 2016). In partic-

ular, due to technological advances in instrumentation the amount of imagery data is

accumulating faster than the processing abilities of research institutions (Porter et al.,

2009). Thus, there is a growing demand for computer algorithms and human resources

to assist in analysing and categorising the data (Matabos et al., 2017). For imagery

data the human eye is still vastly more accurate than computer algorithms (Schoen-

ing et al., 2012; Aguzzi et al., 2009; Purser et al., 2009). Therefore, volunteer citizen

scientists are invaluable to categorising the large imagery databases. For example, cit-

izen science platform Zooniverse that largely hosts classification based citizen science

projects has long relied on volunteer citizen scientists to classify enormous amounts of

images, videos, and audio. Their projects have led to the classification of more than a

million galaxies, the recovery of lost fragments of ancient poetry, and the classification

of thousands of wildebeest (Simpson et al., 2014). However, typically a large share

of the volunteer citizen scientists only participate once in the project with a low level

of effort, leaving a small proportion of volunteer citizen scientists that contribute a

large share of the effort (Sauermann and Franzoni, 2015b). Thus, it is important to

optimally utilise volunteer citizen scientists efforts.

Classification citizen science projects vary in the level of training and guidance they

provide to volunteer citizen scientists. For example, Zooniverse projects provide their

users with tutorials and guides (Simpson et al., 2014). Land type classification citizen

science project Geo-Wiki provides users with training material and requires users to

classify some images with known ground truth to judge the quality of the contributions

(See et al., 2015). On the other hand, iNaturalist is a network of citizen science projects

that provides users with an online community to share observations of biota and also

classify these observations. However, iNaturalist users are not given any specific classi-

fication training and the project does not include any observations with known ground

truth.

Citizen science image classification relies on the “wisdom of the crowd” rather than

the knowledge of an expert. Group judgements have long been noted to be able to

be more accurate than individual decisions, and this concept dates back to the Con-

dorcet Jury Theorem (Condorcet, 1785). Multiple users identify each image resulting

in the citizen science project building up a database of user identifications per image.

Many classification based citizen science projects then use a simple majority vote rule

to combine individual user identifications into a collective classification, for example
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projects from Zooniverse (e.g. Snapshot Serengeti), and the iNaturalist network (a

collection of localised country websites that are fully connected to the global iNatural-

ist community). Majority vote is a simple method to collate user identifications but

it has the potential to introduce errors due to variations in users’ abilities to identify

species or events (Bird et al., 2014). A simple majority vote rule weights every user’s

identifications equally even though there is often wide variation in user accuracies.

Many studies have considered how to enhance the quality of collective classifications

by incorporating a measure or estimate of user ability. A simple approach is to acquire

information on users’ confidence in their vote and then use this information to weight

the votes by placing more emphasis on the votes with high confidence (See et al., 2013).

This method is problematic as some users overestimate their abilities while other users

underestimate their abilities (Kruger and Dunning, 1999). An improvement of this

basic confidence weighted method may be using the surprising popular vote approach

outlined by Prelec et al. (2017) that makes a collective classification by selecting the

answer that is more popular than people predict. Another common approach is to

estimate user accuracy by comparing user responses to expert responses for a subset

of the images. For example, Geo-wiki is experimenting with a user accuracy estima-

tion for each user based on the identifications given for the user testing images that

have known ground truth (See et al., 2015). Hsing et al. (2018) used a ‘gold standard’

set of classifications created by themselves to determine the accuracy of Mammal-

Web citizen scientists. Siddharthan et al. (2016) developed a supervised incremental

Bayesian model to re-evaluate the quality of the consensus label following each species

identification that also accounts for species-specific differences in the ease of identifi-

cation and differential skill level among users. Other studies have considered how to

estimate user accuracies and infer image ground truth from user identifications alone.

Dawid and Skene (1979) completed some of the early research in this field by proposing

an Expectation-Maximisation (EM) algorithm for modelling individual clinician error

rates and compiling patient records when the patient’s true response is not available.

A high performing extension of the EM method is an independent Bayesian classifier

combination (IBCC) model (Kim and Ghahramani, 2012; Zheng et al., 2017). The

IBCC model assumes all user identifications are independent and combines discrete,

categorical responses, such as image identifications by citizen scientists, to estimate

image ground truth and user accuracy. The IBCC model extends the earlier work of

Dawid and Skene (1979) to allow Bayesian inference techniques, such as Gibbs’ sam-

pling, as suggested in Kim and Ghahramani (2012).

We apply the IBCC model to the iNaturalist NZ citizen science project, the New

Zealand member of the iNaturalist network, to estimate user accuracies and simulta-

neously collectively classify the observations in the absence of any observation with
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known ground truth. Assuming the estimated user accuracies are the true user accu-

racies we use Bayes’ formula to calculate the probability that the IBCC observation

classifications are correct and refer to this probability as the classification certainty. We

analyse the number of observations that meet a classification certainty threshold and

could therefore be considered ready for research use with no further identifications.

We also analyse the number of overclassified observations that would still meet the

classification certainty threshold with fewer identifications and subsequently we assess

the number of superfluous identifications.

64



Materials and Methods

Data

We used observation and identification data from the first five years (August 2012 -

July 2017) of iNaturalist NZ. iNaturalist NZ observations are classified using a simple

majority vote rule. Observations on iNaturalist NZ are assigned to one of three quality

grades, casual, “needs ID”, or research, depending on how many users have identified

the observation and the level of consensus between the identifiers. A quality grade

of casual means that the observation is considered non-verifiable, i.e. it has no photo

or sound clip, or has been flagged as non-wild. Verifiable observations are labelled as

“needs ID”. An observation moves from “needs ID” grade to research grade when it

has been identified by at least two users and the majority (> 50%) of the users agree

on the observation identity. iNaturalist NZ users are able to identify casual and “needs

ID” observations by either agreeing with the previous user identifications or by sug-

gesting another identification from the database of taxa. Identifications can be made

at any level of taxonomic rank, however, only observations with a majority consen-

sus at a species or subspecies level will progress to research grade. However, there is

an exception that some observations with a majority consensus at a genus level may

also move to research grade if someone flags the observation ID as “it’s as good as

it can be”. Once an observation is considered research grade further identifications

may still be contributed to the observation and the classification or quality grade of

the observation could change. For this study we only kept identifications at a species

or subspecies level as that is the desired taxonomic rank for observation final classifi-

cations. As a result 17.43% (50732) of observations were removed from the data set

because they have no identifications at a species or subspecies level. Computer vision

was added to the iNaturalist platform throughout the second half of 2017. The com-

puter vision algorithm is trained on historical verifiable iNaturalist observations and

provides identifiers with an automated list of taxon suggestions. Computer vision was

first integrated into the iNaturalist iOS application on June 29, 2017. However, it was

not fully integrated into the Android application and web observation uploader until

September 2017. There were 38 observations that received an identification in July

2017 by iOS users that used a suggestion from the computer vision technology. Given

the small scale of observations these identifications affected (0.1% of observations that

we considered) we did not filter these out of our dataset. iNaturalist NZ observations

are categorised into 13 ‘iconic’ taxa based on the identifications. Table 3b.1 shows the

number of observations, number of users that identified an observation, and number

of species and subspecies taxa per iconic taxon. Some iconic taxa are nested in lower

taxonomic ranks than others (e.g. Animals, Insects) and observations are assigned to

the lowest matching iconic taxon.
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Iconic taxa Observations Users
Species and
subspecies

Observations
with multiple IDs
per user

Identification
agreement:
last user
identification
per observation

Protozoans 180 86 44 2.22% 98.89%

Amphibians 368 171 32 41.30% 98.10%

Chromista 1085 119 80 0.37% 97.70%

Ray finned
fish

1633 243 445 7.59% 96.51%

Reptiles 1643 338 183 9.92% 92.94%

Animal 3697 444 496 6.84% 97.08%

Arachnids 4048 440 332 4.69% 98.72%

Mollusks 4213 306 628 14.50% 95.11%

Mammals 6717 758 236 2.80% 96.41%

Fungi 11280 599 2073 6.30% 98.46%

Insects* 29026 1540 3707 4.16% 98.72%

Birds* 50290 4005 810 6.37% 97.34%

Plants* 126134 1681 6645 5.87% 97.98%

All
observations

240314 5921 15617 5.93% 97.82%

Table 3b.1: iNaturalist NZ data summary by the 13 iconic taxa. Observa-
tions: total number of observations with species and/or subspecies level identifica-
tions. Users: number of unique users that have identified an observation by iconic
taxa. Species and subspecies: number of unique species or subspecies by iconic
taxa. *Not included in IBCC calculations.

IBCC model

We use a simplified version of the Independent Bayesian Classification Combination

(IBCC) model outlined by Kim and Ghahramani (2012) to estimate user identifica-

tion accuracies and classify the iNaturalist NZ observations. Applying the original

IBCC model outlined in (Kim and Ghahramani, 2012) to the first 5 years of iNatural-

ist NZ data is extremely computationally expensive, largely due to the large number

of species/subspecies. Therefore, we apply the IBCC model separately to each iconic
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taxon subset. Very few observations, 133 (0.06%), had identifications from more than

one iconic taxon subset. Identifications are made by individual users and classifications

are the result of collating identifications for an observation. User accuracy, denoted as

θ, is the ability of a user to correctly identify an observation.

We have I observations, for which we wish to infer a set of ground truth labels

t̂ = {t̂1, t̂2, ..., t̂I}. The ground truth, ti, for observation i takes a value j ∈ {1, ..., J}
where J is the number of species and subspecies. For observation i, we assume the true

label ti is generated by a multinomial distribution with parameters ρ: p(ti = j|ρ) = ρj,

which models the species and subspecies prevalences. For observation i, the identifica-

tion by user k is denoted x
(k)
i ∈ {1, ..., J}.

We simplified the IBCC model outlined by Kim and Ghahramani (2012) from mod-

elling user accuracy as a confusion matrix to assuming that an identification x
(k)
i by

user k is generated from a multinomial distribution with the following probabilities:

p(x
(k)
i = j|ti) =

θ(k), if j = ti
1−θ(k)
J−1

, if otherwise
(3b.1)

For each iconic taxon subset θ(k) is the classification accuracy of user k and users

have the same user accuracy at classifying every species and subspecies within the

subset. All observations are assumed to have equal classification difficulty, and if a user

incorrectly classifies an observation they are assumed to be equally likely to classify the

observation as any one of the J − 1 remaining species or subspecies within the subset.

We assigned θ(k) a Beta distribution prior with parameters (a(k), b(k)) where a(k)

and b(k) are chosen to reflect any existing belief or information about a user’s accuracy:

θ(k)|a(k), b(k) ∼ Beta(a(k), b(k)).

We have assumed that the underlying species prevalence, ρ is fixed and known. We

have evaluated it directly from the overall iNaturalist NZ observations. In practice,

the values may come from previous studies or via expert opinion elicitation. The

uncertainty about the parameter could also be incorporated via an additional prior

distribution.

The posterior distribution over the unknown variables t and θ given the user re-

sponses x is given by:

p(t,θ|x) ∝ p(x|θ, t)p(θ|a, b)p(t|ρ). (3b.2)

The directed acyclic graph for IBCC is shown in Figure 3b.1. Inference for the
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Figure 3b.1: IBCC model takes known user accuracy priors, species and
subspecies prevalences, and user identifications to estimate user accu-
racies and infer true observation identities Circular nodes are unknown pa-
rameters and square nodes are known parameters or observations. Plates are over
users, k = 1, 2, ...K and observations i = 1, 2, ...I. The arrows indicate the direc-
tion of conditional dependency.

unknown parameters t and θ is done via Gibbs sampling.

IBCC Gibbs sampling algorithm

First, we define the following indicator function;

I{Z} =

1, Z is true

0, otherwise.

From the posterior distribution function, Equation 3b.2, the conditional probability

distribution function for t is a multinomial distribution with event probabilities given

as:

p(ti = j|all) ∝ ρj

K∏
k=1

(θ(k))
I
{x(k)
i

=j} ·
(1− θ(k)

J − 1

)(1−I
{x(k)
i

=j}

)
, (3b.3)

Similarly, the conditional probability distribution for θ is given as;

θ(k)|all ∼ Beta
(
a(k) +

∑
i

I
x
(k)
i =ti

, b(k) +
∑
i

I
x
(k)
i 6=ti

)
. (3b.4)

Since the conditional distribution of t is a multinomial distribution and the con-

ditional distribution of θ is a Beta distribution they can be sampled from easily in a

Gibbs’ sampling algorithm as follows.
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1. Initialise the values of t and θ.

2. Calculate p(ti = j|all) using Equation 3b.3 for j ∈ 1, ..., J for all observations.

3. Normalise p(ti = j|all) by dividing by
∑J

j=1 p(ti = j|all).

4. Sample ti for i = 1, ..., I from the multinomial distribution given the probabilities

calculated in step 2. Replace current value of ti with new sample.

5. Sample θ(k) for k = 1, ..., K from the Beta distribution given in Equation 3b.4,

using the current t. Replace current value of θ(k) with new sample.

6. Record current t and θ sample values in a list of sample values.

7. Repeat steps 2-6 until convergence of the distributions for ti and θ(k) is visually

observed in the density and trace plots.

We estimate ti for i = 1, ..., I and θ(k) for k = 1, ..., K from the sampled values by

taking the mean of all the θ(k) samples and the mode of all the ti values, after removing

burn-in samples.

iNaturalist NZ data adjustment for IBCC model

iNaturalist NZ users are able to identify the same observation multiple times. This

usually occurs when a user changes their mind about their previous identification or

they are refining the taxonomic rank of their identification. Since the IBCC model as-

sumes that user identifications are independent, if a user identifies an observation more

than once we only keep their final identification. Overall, less than 6% of observations

had multiple identifications by the same user, Table 3b.1. In general there is a high

level of agreement between user identifications across all the observations, Table 3b.1,

with 97.82% of observations having no identification disagreements.

We do not include the insect, bird, and plant subsets in our analysis due to the large

size of these subsets and subsequent long run time of the Gibbs sampling algorithm,

however, in the discussion section we discuss methods to reduce the run time on these

subsets.

Prior sensitivity and convergence analysis on mollusks

The mollusk subset was used for prior sensitivity and convergence analysis as it is a

relatively large subset but with a relatively short Gibbs sampling algorithm run time.

We tested the sensitivity of user accuracy, θ(k), and observation classifications, ti esti-

mations to a range of user accuracy prior distributions that reflected highly accurate,
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lowly accurate, and uninformative a priori views of user accuracy. For example, for a

highly accurate prior we assigned all users a = 9 and b = 1, which would correspond

to an assumption that the user is correct in an average of 90% of assessments. For

low accuracy users we assigned all users a = 1 and b = 9 and for an uninformative

prior we assigned all users a = 1 and b = 1. As expected user accuracy estimations

for users with a low number of identifications (< 10) are sensitive to the prior dis-

tribution parameters. However, these users contribute a small amount of the total

mollusks identifications (5.31%). In contrast, user accuracy estimations for users who

have individually contributed a larger number of identifications (≥ 40) are insensi-

tive to different prior values and overall these users have contributed 85.28% of the

mollusk identifications. Observation classifications are not sensitive to user accuracy

prior distributions. We tested the sensitivity of parameter estimations to different

species and subspecies prevalence distributions. In particular, an informative measure

of species and subspecies prevalence calculated as the proportion of total identifications

per species and subspecies and an uninformative distribution of an equal prevalence

value for each species and subspecies. Observation classifications and user accuracy

estimations are not sensitive to species and subspecies prevalence distributions. Con-

vergence was assessed visually by inspecting trace plots and density plots. Due to the

large number of estimated parameters we only inspected convergence for 100 parame-

ters. We found that there was excellent convergence after 1500 samples and discarding

the first 500 burn in samples. We fit the model on the remaining iconic taxa subsets

by generating 1500 samples for each subset using our Gibbs sampling algorithm, and

retain the final 1000 samples. Species and subspecies prevalence estimations are calcu-

lated as the proportion of identifications for each class, and we assign an uninformative

user accuracy prior of a = 1, b = 1 to all users.

Classification certainty

After using the IBCC Gibbs sampling algorithm to estimate user accuracies, θ̂(k), and

observation classifications, t̂i, we calculate the probability that the inferred observa-

tion classification from the Gibbs sampling algorithm is correct for each observation

given the assumed true user accuracies, species and subspecies prevalence, ρi, and user

identifications, x
(k)
i :

p(ti = t̂i|θ̂(k), x
(k)
i , ρi).

We refer to this probability as the classification certainty for observation i.

We calculate the classification certainty of observations in casual, “needs ID”, and

research grade observations. We then calculate the number of observations that would
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be labelled research grade if the research quality grade was based on a threshold of

classification certainty rather than a majority vote. We also calculate the number of

extra identifications above the number required to meet the minimum classification

certainty and subsequently the number of observations that could be labelled research

grade after a single user identification.
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Results

Using the IBCC model with Gibbs sampling resulted in the same classification as a

simple majority vote method for the vast majority (99.76%) of research grade obser-

vations. More than half of the 53 observations classified differently across the two

methods are due to subtle differences between species or subspecies, e.g. Erinaceus

europaeus ssp. occidentalis vs. Erinaceus europaeus. The other 24 observations had

greater disagreements between species or subspecies and often more than 3 identifica-

tions.

Users that do a large number of identifications have a high estimated user accuracy

within a given iconic taxon subset (Fig 3b.2). For example, users that have done less

than 10 identifications within a given iconic taxon subset have an average estimated

user accuracy of 0.69, whereas, users that have done 30 or more identifications within

a given iconic taxon subset have an estimated expected user accuracy of 0.95.
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Figure 3b.2: Users with high identification activity have the highest user
accuracy estimations. User accuracy estimations within a given iconic taxon
subset

from the IBCC model Gibbs sampling output by identification activity level for all
iconic taxa subsets.

Using the estimations from the IBCC model we found a lot of the casual and

“needs ID” grade observations have a high classification certainty and therefore could

be upgraded to research grade with no additional identifications (Fig 3b.3). For a 95%

classification certainty threshold to be considered research grade, 76.25% of casual and

61.27% of “needs ID” grade observations could be upgraded to research grade, (Table
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3b.2). If we required a 99% classification certainty threshold to be considered research

grade these values reduce to 65.26% of casual and 41.86% of “needs ID” grade ob-

servations that could be upgraded to research grade (Table 3b.2). We have excluded

observations flagged as non-wild from the casual grade observations in our results

as iNaturalist have made a conscious decision to not allow non-wild observations to

progress to research grade to discourage non-wild observations on the platform. As

a result 27.89% of casual grade observations are excluded from the results. Interest-

ingly, a higher proportion of casual grade observations could be upgraded to research

grade than “needs ID” grade observations. This may be because many of the casual

grade observations do not have any media and therefore only a single identification

from the user that shared the observation due to the lack of ability for any other users

to provide an identification. In contrast, observations in the “needs ID” often have

conflicting identifications.
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Figure 3b.3: Given the estimated user accuracies, and observation classi-
fications from the IBCC model a high proportion of casual and “needs
ID” grade observations have classification certainties greater than 0.95.
Classification certainty is the probability that the inferred observation classifi-
cation from the IBCC model is correct given the assumed true user accuracies.
Classification certainty is calculated for every observation and this plot shows the
cumulative distribution function for casual and need ID grade observations.

Conversely, many observations have more identifications than required to ensure

their classification certainty is greater than the set threshold. For a 95% research

grade classification certainty threshold, 61.80% of all observations could have reached

the threshold with fewer identifications and 43.02% of identifications were not required

to ensure all research grade observations met the classification certainty threshold, (Ta-

ble 3b.2). Similarly, for a 99% research grade classification certainty threshold, 50.20%

of all observations had unnecessary identifications and 34.85% of identifications were
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Research grade classification certainty threshold
95% 99%

proportion (value) proportion (value)

Upgradeable casual grade observations 76.36% (3319) 65.23% (2837)

Upgradeable “needs ID” observations 61.27% (4116) 41.86% (2812)

Underclassified research grade observations 00.24% (53) 00.39% (86)

Observations with excess identifications 61.80% (20505) 50.20% (16656)

Superfluous identifications 43.02% (27942) 34.85% (22639)

Number of observations that could be
research grade with 1 identification

78.80% (26149) 57.95% (19229)

Number of observations that could be
research grade with 1 identification
and user accuracy > 0.95

58.80% (19510) 50.15% (16641)

Table 3b.2: Total upgradeable casual and “needs ID” grade observations, under
classified research grade observations, and superfluous identifications for two re-
search grade classification certainty thresholds: 95% and 99%.

not required to ensure all research grade observations were above the classification cer-

tainty threshold (Table 3b.2).

Many observations could be considered research grade after the initial identification

by using the output from the IBCC model and categorising observations as research

grade when they have a classification certainty greater than a chosen threshold value.

For a 95% threshold value 78.80% of observations could be considered research grade

with a single identification and in the case of a 99% threshold value this proportion

reduces to 57.95% of observations. The initial identifiers on these research grade ob-

servations mostly have a high user accuracy. The initial identification may be made

by the user that shared the observation, or if they do not provide an identification the

initial identification may be made by any other iNaturalist NZ user. For a 95% research

grade classification certainty threshold, 74.61% (19510) of the observations that could

be considered research grade with a single identification were initially classified by a

user with an estimated accuracy greater than 95% . When the classification threshold is

99%, 86.54% (17082) of the observations that could be considered research grade with

a single identification were initially classified by a user with an accuracy greater than

95%. However, some of the observations that could be considered research grade after

a single identification are initially classified by users with low accuracies, sometimes

less than 0.5, as the classification certainty calculation also depends on the prevalence

of the identified species. For example, a user with an accuracy of 0.27 was the initial
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identifier of a fungi observation that had a classification certainty of 0.98 after the first

identification and they identified it as an Amanita muscaria which has a relatively high

prevalence value (0.057) compared to the other 2072 fungi species/subspecies. This is

a fairly rare situation with only 4 observations that could be considered research grade

having an initial identifier with a user accuracy less than 0.5 at a 95% classification

certainty threshold level and 0 observations at a 99% threshold classification certainty

level. If we imposed the extra condition of requiring user accuracy to be greater than

0.95 for observations that met the classification certainty threshold value with the

initial identification the proportion of observations that could be considered research

grade with a single observation would reduce. At a 95% classification certainty thresh-

old the proportion would reduce from 79% (26149) of observations to 59% (19510)

of observations and at a 99% classification certainty threshold the proportion would

reduce from 58% (19229) to 50% (16641) of observations (Table 3b.2).

Across iconic taxa subsets there are variations in the above key results. Results

by iconic subset are in the supplementary information. For example, only 1 (6.25%)

protozoan casual grade observation is upgradeable to research grade at a 95% threshold

level, whereas, 90.81% (3419) of mammal casual grade observations are upgradeable

to research grade (Table S1). In New Zealand, the total number of mammal species is

very small and it is likely tractable for many non-expert identifiers to master identifying

mammal observations, therefore, this result is unlikely to generalise to other geographic

regions. The differences in upgradeable “needs ID” observations is less variable across

taxa, however, there is still a large difference between upgradeable mammal obser-

vations (88.07%), and upgradeable fungi (53.00%) or protozoan (51.25%) “needs ID”

grade observations at a 95% threshold level. Under classified research grade observa-

tions are very consistent across all iconic taxa subsets. Approximately 80% of chromista

and mollusk observations had superfluous identifications, whereas, approximately 40%

of mammal observations had superfluous identifications at a 95% threshold level. At a

95% threshold level, protozoans, amphibians, ray finned fish, fungi and reptiles all have

approximately 65%-75% of observations that could be considered research grade with

a single identification, whereas, more than 80% of chromista, arachnid, mollusk, and

mammal observations could be considered research grade with one identification. The

differences in results between a 95% and 99% threshold value are reasonably consistent

across all results and iconic taxa, with the exception of upgradeable casual grade ob-

servations. There is approximately a 44% point reduction in upgradeable causal grade

observations between the two threshold levels for ray finned fish, but only a 7% point

reduction for mammals and no decrease for protozoans.
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Discussion

Citizen science projects are often used to classify a large number of objects and rely on

the valuable efforts of volunteer citizen scientists, however, our results demonstrated

that these efforts could be used more optimally. In particular, for iNaturalist NZ a high

proportion of observations could be considered research grade with a single identifica-

tion. In the future the excess identification effort could potentially be redirected to

observations that need further identifying to reach a desired classification certainty to

be considered research grade. However, any redirected observations would likely need

to be of a similar taxon because we do not expect that users will be equally accurate at

identifying observations to a species level across different taxa. By allowing observa-

tions to move to research grade after one identification there would be less interaction

between users and perhaps lost learning opportunities for more novice users. There

may be an increased risk of incorrect classifications as the process is moving from the

“wisdom of the crowd” to relying on the knowledge of an “expert”. If this strategy

of categorising observations as research grade once they reach a certain classification

threshold value was adopted, extra measures could be put in place to ensure inaccurate

users were not able to be the sole identifier on a research grade observation. For exam-

ple, a minimum user accuracy standard could be required for a user to be a ‘trusted’

sole identifier of a research grade observation. This is particularly important when the

initial identification is of a species with a relatively high prevalence as in this case the

user may have a relatively low user accuracy and the classification certainty could still

be above the research grade threshold. To mitigate the risk of “trusted” users never

getting feedback on a series of incorrect identifications, we could require that some of

their observations get at least a second identification as a feedback mechanism. The

framework outlined in this paper could be used to select the proportion of observations

that are required to have at least two identification so as to optimise the trade-off

between minimising the potential for classification error and minimising the number of

unnecessary identifications.

Currently, iNaturalist NZ observations are in the casual quality grade for two rea-

sons; a non-wild observation, or no media (image or sound file) provided. We removed

the non-wild observations from our results. However, if casual grade observations with

no media that are contributed by “trusted” users were able to progress to research

grade, this could allow more observations to be considered research grade that would

otherwise be stuck in casual grade. For example, on iNaturalist NZ there are a number

of casual grade observations with no media that have been contributed by established

ecologists and are very likely accurately classified, however, they have no means of

being verified by another user. There is also a trade-off in a user’s effort between the

quantity and detail of observations. Observations without media can be made faster
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than those with such evidence, and so more can be made for the same amount of effort.

Therefore, “trusted” users would be able to make many more research grade observa-

tions per unit effort. This would result in more knowledge and monitoring.

The IBCC model allows citizen science projects to estimate user accuracies and

collectively classify observations when there is no known ground truth for any obser-

vations. The user accuracy estimations are largely based on the user accuracy prior

parameters and the level of identification agreement with other users. On iNaturalist

NZ there a is very high level of agreement between users at a species and subspecies

level, and, especially when we only consider users’ most recent identifications. There-

fore, there is a risk that the IBCC model over estimated user accuracy values. Also,

if all users that identify an image agree on the classification, in most cases the IBCC

model considers this to be the correct answer and as a result the user accuracies in-

crease - ignoring the possibility that they could all be incorrect. Further steps in this

research would be to consider all the identifications made by users, not just the last,

in particular looking at the first identification per user per observation. We could also

consider using taxonomic experts to independently assess the identifications of a ran-

dom subset of observations that we consider at research grade and check for incorrect

identifications.

The IBCC model assumes that user identifications are independent. On iNatu-

ralist NZ users are able to see all the previous identifications from other users when

they make their identification, in fact, there is an option to simply agree with the

previous identification. Given the human tendency to follow the crowd (Asch, 1956)

it is very unlikely that all iNaturalist NZ identifications are independent. However,

it is difficult to know which identifications would be the same if users were not able

to see previous identifications. One method to improve trust in the independence of

identifications would be to filter out agreements made by the initial identifier after an-

other user identifies the observation. However, this would just address one example of

non-independence between identifications. In reality most of the identifications will be

non-independent and this is beneficial when it results in identifiers gradually refining

the classification to the true identity.

We simplified the IBCC model outlined by (Kim and Ghahramani, 2012) by as-

suming a user is equally likely to correctly identify any species or subspecies within an

iconic subset, and, if they incorrectly identify the observation, they are equally likely

to identify it as any of the remaining species or subspecies in the subset. In contrast,

Kim and Ghahramani (2012) modelled user accuracy as a confusion matrix which is

a more accurate approach. For example, a user may confuse a Porphyrio hochstetteri

(Takahē) with a Porphyrio melanotus (Pūkeko), two visually similar ground-dwelling
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Rallidae but it is probably much less likely that they would confuse a Takahē with a

Rhipidura fuliginosa (P̄iwakawaka) a small flying forest bird. However, given the large

number of species and subspecies on iNaturalist NZ and the high proportion of users

that have made less that 10 identifications, there is a risk of not having enough data

per user and species or subspecies to accurately model user accuracy as a confusion

matrix. By calculating a separate user accuracy for each of the 13 iconic taxa subsets

we reduce some of the problems that come with not modelling user accuracy as a con-

fusion matrix and greatly reduce the computational expense.

We omitted the insect, bird, and plant subsets from our analysis due to the large

size of the data sets and subsequent long running time of the Gibbs sampling algo-

rithm. The inefficiency in the algorithm is due to step 2 of the algorithm where one

must calculate p(ti = j|all) using Equation 3b.3 for j ∈ 1, ..., J for all observations.

However, we could make predictions about results for these subsets based on the results

from the 10 subsets we ran the IBCC model on. These predictions could be refined

further by the work of Wiggins and He (2016), who found that there are notable bias

in the level of identification attention by taxon on the iNaturalist platform. They also

found that a heightened level of identification attention contributes to the reliability

of the classifications. For example, they found bird observations received more com-

munity validation interactions than plant observations. Alternatively, we could split

these subsets into smaller subsets based on the taxonomic hierarchy assuming there is a

low level of identification crossover between the smaller subsets. For example we could

split the plant subset into subsets based on plant phylum. Fortunately, in this study

the two full conditional distributions that are sampled from in the Gibbs sampling

algorithm are well known distributions, however, if this was not the case one could

use suitable techniques to improve the efficiency of the Gibbs sampling algorithm. For

example, the use of non-parametric proposal probability density functions for drawing

from the full conditional distributions (Gilks et al., 1995), or reusing samples from a

Metropolis–Hastings algorithm within a Gibbs sampler (Martino et al., 2018).

The computational efficiency of the IBCC model estimation with Gibb’s sampling

can be improved by using sequential updating. That means, every time a new rat-

ing is done in the iNaturalist NZ system, the model will be rerun only with this new

data point rather than with the entire historical dataset. Sequential updating typically

involves approximating posterior distributions by a multivariate Gaussian or, if the

parameters are independent of each other, a-posteriori by suitable univariate distri-

butions. We found low correlation between our user accuracy parameters a-posteriori

and the QQ-plots of Mahalanobis distances for the posterior distribution of the logit

transformation of these parameters indicated multivariate normality. It may thus be

possible to devise an efficient algorithm for sequential updating, which will be the focus

78



of our future work.

This study was conducted on a snapshot of iNaturalist NZ data before the com-

plete integration of computer vision to the platform. The initial computer vision model

was fully integrated into the iNaturalist platform in September 2017. Subsequently,

improvements have been made to the computer vision model in June 2019 and March

2020. This study provides an important baseline of iNaturalist NZ user accuracies

and classification reliability prior to the addition of computer vision. There is a need

for future work to validate that computer vision is improving the classification accu-

racy of research grade images on iNaturalist NZ. However, it is important for future

data users to recognise that there have been multiple changes to the computer vision

technology in this time period and therefore identifications contributed across these

changes are fundamentally different due to the different data generating mechanisms.

To account for the inclusion of the computer vision, one would have to specify the

computer vision accuracy Pr(computer chooses i | image is class j) in addition to the

user accuracy Pr(user chooses k | image is class j), and derive the conditional prob-

ability Pr(user chooses k | computer chooses i, image is class j). However, the exact

nature of this model is beyond the scope of this paper and is subject of the future work.

This study has shown that by adopting a more sophisticated collective classification

method than a simple majority vote procedure citizen science projects could optimise

the citizen scientist’s efforts. By making a citizen science project more effort efficient

large gains could be generated in both the research value of the data and the engage-

ment of the citizens.
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Chapter 4a

A mechanistic model of a citizen sci-

entist encountering individuals

The first building block.

A model to simulate,

photos shared per walk.
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Abstract

Observation based citizen science data is often collected with minimal collection pro-

tocols, which results in significant sources of bias in the data. For example, the list

of observations from a citizen science walk is likely to not be a complete list of the

individuals encountered during the walk.

In this chapter we outline a mechanistic model of a citizen scientist walking through

a field with a population of a given taxon that could be encountered and subsequently

an observation of an individual could be shared to iNaturalist NZ. We include some of

the typical biases we would expect from citizen scientists, in particular, during a walk,

an observation of each encountered individual is not shared to iNaturalist NZ.

The mechanistic model has parameters for the length of the observer walk, ob-

server’s perceptive radius, home range radius of the taxon, population size in the field,

speed of the taxon relative to the observer, and the probability of an observer sharing

an observation to iNaturalist NZ.

We use the mechanistic model to simulate the probability distribution of the number

of observations shared during an observer walk and where possible we use an analyt-

ical approach to verify the results. Based on our assumption that the parameters in

each observer walk are identical, the resulting probability distribution of the number

of shared observations is always binomially distributed.

This model is an important step in our wider method to use simulated iNaturalist

NZ data to test the ability to make reliable ecological inferences about taxon population

changes from noisy citizen science observation data.

81



Introduction

Over the next three chapters we switch our focus from citizen science image classi-

fication accuracy, and instead consider if these observations of taxa can be used to

reliably identify biological trends in the taxa abundances. As discussed in the intro-

duction to this thesis, ecological citizen science data may include presence-only data,

or presence and absence data (Bird et al., 2014). iNaturalist is an example of a citizen

science project that gathers presence-only ecological data. This type of data collection

protocol improves the accessibility of the project to varying levels of participants’ mo-

tivation, commitment, and skills (Bird et al., 2014). However, the lack of information

on taxa absence, and no metadata about an observer’s effort (e.g. the walk length

or duration) increase the challenge of distinguishing between temporal changes in a

taxon abundance and temporal changes in observer effort. Throughout, the next three

chapters we use stochastic processes, in particular random walks and stochastic simu-

lations, combined with statistical model fitting with the empirical iNaturalist NZ data

to understand if we are able to robustly detect ecological changes in taxon abundances

from noisy citizen science data.

This chapter is the first building block of our method to find the signal of abun-

dance change in the noise of citizen science data. We outline a model of a single citizen

scientist walking through a field with a population of a given taxon that they may

encounter and subsequently share an observation of to iNaturalist NZ. Our model aims

to include some of the typical biases we would expect from citizen scientists, partic-

ularly that observers do not share an observation of every individual they encounter.

In the subsequent chapter this single citizen scientist model is scaled up to simulate

multiple years of iNaturalist NZ data. We use the simulated iNaturalist NZ data to

test the ability to make reliable ecological inferences about taxon abundance changes

from noisy citizen science observation data. Finally, in the third chapter we use max-

imum likelihood model fitting techniques to gain insights into typical citizen science

observation sharing behaviours.

Our model is a mechanistic model of a citizen scientist (observer) walking through

a field with a population of a given taxon. An individual (i.e. a member of a given

taxon) may be encountered and subsequently an observation of the individual could

be shared to iNaturalist NZ. The model includes parameters for the length of the ob-

server’s walk, the perceptive radius of the observer, the number of individuals in the

field, the radius of individuals’ home range, and the probability of an observer sharing

an observation of an individual to iNaturalist NZ. We consider three scenarios of how

an individual moves within their home range. First we assume they are stationary, e.g.

a tree, second, we assume they move very fast, e.g. a fast flying bird, and finally we
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outline a general model where the individuals are randomly walking within their home

range.

For all three cases of individual movement, we use the mechanistic model to simulate

the probability distribution of the number of observations shared during an observer

walk. For the first two cases an analytical approach is used to verify the simulated

probability distributions. The probability distribution is a function of the observer

parameters (walk length, perceptive radius, and probability of sharing an observation)

and the individual parameters (number of individuals, and home range radius). For

simplicity we assume that all observer walks have an identical set of parameters. This

is a significant simplification. Ultimately, we are assuming that each observation is

shared with the same probability and this results in the probability distribution of

the number of observations shared per walk always being binomially distributed. In

Chapter 4c we relax the assumption that all observations are shared with the same

probability.

Models like we outline in this chapter with two groups moving in space (e.g. walker

and population members) have a lot in common with foraging theory models. Such

as, predator and prey models, where the predator are aiming to maximise foraging of

prey and the prey are trying to avoid the predators (Pitchford et al., 2003). However,

we assume the observer never deviates from their pre-defined path and that there is

no spatial pattern to the individuals in the field. For example, there is no clustering

or repelling of neighbouring individuals, the individual is not reacting to a citizen sci-

entist entering their home ranges, and the citizen scientist is not adopting any optimal

foraging theory in an attempt to maximise the number of individuals they encounter.
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Random walk background

Random walk processes are a widely used mathematical modelling technique for ani-

mal, micro-organisms, and cell movement models (Codling et al., 2008). The insight

from the rigorous mathematics that underlies random walk theory gives them the abil-

ity to distinguish underlying mechanisms from observed data. This insight has greatly

improved the understanding of various movement mechanisms that occur in nature

(Codling et al., 2008).

A simple random walk model is uncorrelated and unbiased, where, in this context

uncorrelated means the direction of movement is completely uncorrelated with the

previous directions moved, and unbiased means that there is no preferable direction.

Therefore in a simple random walk model the process is Markovian with regard to

the location and the direction moved at each step is completely random (Weiss and

Weiss, 1994). This simple model is the basis of most of the theory of diffusive processes.

A common extension of the simple random walk model is a correlated random walk.

These random walks include a correlation between successive step orientations that is

referred to as ‘persistence’ (Patlak, 1953). This results in a local direction bias as each

step tends to a point in the same direction as the previous step. However, over time

the influence of the initial direction of movement diminishes. In the long term step

orientations are uniformally distributed. Since animals have the tendency to move for-

ward (i.e. persistence) correlated random walks have been frequently used to model

animal paths in many contexts (Siniff and Jessen, 1969; Bovet and Benhamou, 1988;

Turchin, 1998).

A biased random walk is when a global directional bias is introduced by making the

probability of moving in a certain direction greater. This leads to the drift-diffusion

equation. A range of factors may be causing the bias. For example, chemical gradients

(Alt, 1980), mean-reversion movements within a home range (Blackwell, 1997; James

et al., 2017), or external environmental factors (Hill and Häder, 1997).

Movement within a confined area can be modelled by introducing a repelling or

reflecting boundary condition. An absorbing boundary condition can be used to model

walkers leaving the system upon reaching a given point. These models can also used

to model development or growth where different life stages are reached, (Pitchford and

Brindley, 2001; Pitchford et al., 2005).

In our model we assume that the individuals are performing unbiased and uncorre-

lated random walk with a reflecting boundary condition on the home range perimeter.
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Mechanistic model

Figure 4a.1 shows the layout of the mechanistic model where there are n individuals

randomly placed in the field of area Ω. Each individual is confined to a home range

with radius RH . The observer walks a length L from point A to point B and has a

perceptive radius of RP .

Figure 4a.1: Model diagram of an observer walking in a field containing
individuals. The observer walks a distance L from point A to point B and has
a perceptive radius of RP and therefore has a perceptive area as shown in pale
yellow. The individuals are randomly placed in the field and are confined to a
circular home range with radius RH , shown in grey. The field has an area Ω.
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Case 1: Individuals do not move

First we consider the case where the individuals are stationary while the observer walks

a path from point A to point B. For example, plant species would be modelled by this

case. In this case the individual’s home range is not relevant as the individual is unable

to move. Figure 4a.2 illustrates this simplified layout of the mechanistic model.

Figure 4a.2: The home range is not applicable for stationary individuals.
The individuals do not move in the time it talks the observer to walk from point
A to point B and therefore the home ranges of the individuals are not required.

Analytical solution of probability of encountering a single individual

Assuming individuals are independent, in this case the distribution of individual obser-

vations per observer walk of length L follows a binomial distribution with parameters n

and p. Where n is the number of individuals and p is the probability that an individual

will be encountered and shared to iNaturalist NZ by the observer. The probability, p, a

single individual is encountered and is shared on iNaturalist NZ is given by the proba-

bility a single individual is encountered, penc, multiplied by the probability an observer

photographs and shares the photograph to iNaturalist NZ, pshared. The probability a

single individual is encountered, penc is analytically calculated as the proportion of the

field that is covered by the perceptive area of the observer (pale yellow in Figure 4a.2):

penc =
2RPL+ πR2

P

Ω
. (4a.1)

p = penc · pshared
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Clearly, if the observer’s perceptive radius, RP , increases or the length of the walk,

L, increases, the observer’s perceptive area will increase and therefore the probability

of an observation, p, will increase, assuming the field area, Ω, is unchanged. In practise

we assume that the observer’s perceptive radius is relatively small and the length of

the walk is relatively long, therefore the
πR2

P

Ω
term in Equation 4a.1 is negligible and

Equation 4a.2 can be used as an approximation for the perceptive area when the path

walked is not perfectly straight.

penc ≈
2RPL

Ω
. (4a.2)

The expected number of individual observations per citizen science walk of length

L is given as:

E(individual observations) = np

Numerical verification of analytical solution

The analytical results for this simple case can be easily verified by a simple simulation

as follows:

1. Randomly place n individuals on a grid with an area Ω.

2. Define an observer walk of length L.

3. Calculate the minimum distance, dn, from each individual to the path of the

observer’s walk. Where the minimum distance is the length of a perpendicular

line from the individual’s location to the citizen scientist’s walking path.

4. Sum the number of points that are within the observer’s perceptive area, i.e.∑
n(dn ≤ RP ). Each observation is shared with probability pshared, independent

of other observations.

5. Repeat the simulation many times and record the number of encounters per

simulation (i.e. citizen scientist walk).

Figure 4a.3 shows the analytically calculated and simulated distribution of individ-

ual encounters when, Rp = 15, L = 250, Ω = 5002, and n = 50, with penc = 0.03.
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Figure 4a.3: Individual encounters are binomially distributed when indi-
viduals do not move and all observers have the same observation be-
haviour. The analytically calculated and simulated distribution of individual
encounters during one citizen science walk when, Rp = 15, L = 250, Ω = 5002,
and n = 50, with penc = 0.03.
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Case 2: Individuals move very fast

At the other end of the scale is the possibility that the individuals move so fast they

cover their entire home range every time the observer takes a step. For example, a

Rhipidura (P̄iwakawaka) or a Petroica australis (South Island Robin) move so fast

that you are almost certain to observe them as they fly around their home range so

quickly and frequently. We model this case in a similar way to the first case where

individuals did not move. However, now we want to know if any section of the individ-

ual’s home range overlaps with the observer’s path. Therefore, rather than calculating

if an individual is within the perceptive radius, RP , of the observer’s path we want

to calculate if the origin of an individuals home range is within the combined radius

of the perceptive radius and home range radius, RP + RH , of the path. Figure 4a.4,

illustrates the layout of this model. In particular, Figure 4a.4 shows three possible

scenarios for the origin of the individual’s home range:

1. The distance, d, from the origin of the individual’s home range to the path is

more than the combined radius of the perceptive radius and home range radius,

i.e. d > RP +RH . In this case there is no overlap of the individual’s home range

and the perceptive area and therefore the individual is not encountered.

2. d = RP +RH , at the point where the home range and perceptive area are tangent

the individual is encountered.

3. d < RP + RH , there is an overlap between the individual’s home range and the

perceptive area and therefore the individual is encountered.

Analytical solution of probability of encountering a single individual

Similar to the stationary individual case, the distribution of individual observations

per observer walk of length L follows a binomial distribution with parameters n and

p, where n is the number of individuals and p is the probability that an individual

will be encountered and shared to iNaturalist NZ by the observer. The probability

an individual is encountered, penc, is analytically calculated as the proportion of the

field that is covered by sweeping out an area surrounding the observer’s path of width

RP +RH (pale yellow and blue in Figure 4a.4):

penc =
2(RP +RH)L+ π(RP +RH)2

Ω
. (4a.3)

Again, as in the case with stationary individuals this encounter probability, p, will

increase if the observer’s perceptive radius (RP ) increases, the length of the walk (L)

increases, the probability of sharing an observation (pshared) increases, or in this case if
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Figure 4a.4: Model diagram of an observer walking in a field containing
fast moving individuals. Individuals more very fast and cover their entire
home range every time the observer takes a step. If the distance, d, from the
origin of the individual’s home range to the path of the observer is less than or
equal to the combined radius of the perceptive radius and home range radius the
individual will be encountered. Individual 1 is not encountered, individual 2 and
3 are encountered.

the home range radius (RH) of the individual increases, assuming the field area (Ω) is

unchanged.

Numerical verification of analytical solution

Similar to the case of stationary individuals the analytical results for this case can be

easily verified by a simple simulation as follows:

1. Randomly place n individuals on a grid with an area Ω.

2. Define an observer walk of length L.

3. Calculate the minimum distance, dn, from each individual to the path of the

observer’s walk.

4. Sum the number of points that are within the combined radius of the perceptive

radius and home range radius, i.e.
∑

n(dn ≤ RP + RH). Each observation is

shared with probability pshared, independent of other observations.

5. Repeat the simulation many times and record the number of encounters per

simulation. 4a.3.
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Figure 4a.5: Individual observations are binomially distributed when in-
dividuals move very fast and all observers have the same observation
behaviour. The analytically calculated and simulated distribution of individ-
ual observations during one citizen science when, Rp = 15, RH = 30, L = 250,
Ω = 5002, and n = 50, with penc = 0.115.

Figure 4a.5 shows the analytically calculated and simulated distribution of indi-

vidual encounters when, Rp = 15, RH = 30, L = 250, Ω = 5002, and n = 50, with

penc = 0.115. Note that all the applicable parameters are the same as the example for

the stationary individual case but as expected the probability, penc, of an individual

encounter is higher. Figure 4a.6 shows how the probability of an individual observa-

tion increases as either the perceptive radius or the home range radius increases when

L = 250, and Ω = 5002, and pshared = 1. The walker will encounter the individual if

the walker is within the individual’s home range. Therefore, even when the walker’s

perceptive radius is zero the probability of an encounter increases as the size of the

individual’s home range increase.
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Figure 4a.6: For a very fast moving individual the probability of an en-
counter increases as either the observer’s perceptive radius increases
or the individual’s home range radius increases. A unit increase in an ob-
server’s perceptive radius, or in the individual’s home range radius equally increase
the individuals encounter probability.
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Case 3: Individuals do a random walk

A more general scenario is that the individuals are doing a random walk inside their

home range as the observer walks through the field. To build this into the mechanistic

model we assume the individuals are performing a simple unbiased and uncorrelated

random walk with a reflecting boundary condition on the home range perimeter. A

diagram of this scenario is shown in Figure 4a.7. The individual is confined to a home

range with radius RH . Each step the individual moves a distance δx and τ is the time

between steps. The diffusion coefficient is given as D = δx2

2τ
, (Codling et al., 2008).

The diffusion coefficient is held constant as we alter the individual’s step size, δx, and

therefore τ to ensure the results from the random model are convergent. The citizen

scientist travels at a constant speed VW along a path of length L from point A to point

B and has a perceptive range of RP .

Figure 4a.7: The generalised case where the individual is doing a random
walk within it’s home range. The individual is doing a simple uncorrelated
and unbiased random walk with a reflective boundary condition. The individual
random walk step size is δx and the time between steps is τ .

Simulated probability of encountering a single individual

In the previous two cases we calculated penc analytically and numerically verified the

calculation. In this case we use simulations to find the probability the observer will

encounter the individual as below:
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1. Uniformly select a random point in the field as the origin of the individual’s home

range.

2. Uniformly select a random starting point for the individual within the home

range.

3. Calculate the distance, d, from the individual’s starting point to the start point

A of the citizen scientist’s walk.

4. If d is less than the observer’s perceptive radius, d < RP , record that the indi-

vidual has been encountered.

5. Perform a step in the individual’s random walk:

• Randomly select an angle, θ ∈ [0, 2π], for the direction of the individual’s

step and calculate the new location of the individual after taking a step of

distance δx.

• If the new individual location falls outside of the individual’s home range

change the step direction to be in the opposite direction to impose a reflective

boundary condition on the perimeter of the home range.

6. Calculate the location of the observer given t and VW .

7. Calculate the distance, d, from the individual’s new location to the updated

location of the observer.

8. If d is less than the observer’s perceptive radius, d < RP , record that the in-

dividual has been encountered. Note, we are assuming the observer recognises

if they have already encountered the individual and therefore the individual is

either encountered or not encountered during the walk.

9. Repeat steps 5 - 8, nsteps = VWL
τ

times until the observer has finished their walk.

10. Repeat the simulation many times and each simulation record if the individual

was encountered.

11. Pr(individual encounter) = number of simulations with an individual encounter
number of simulations

.

The initial location of the individual within their home range is uniformally dis-

tributed. Therefore, in the short and long term the distribution of locations the indi-

vidual has visited within their home range is uniform. In our simulations the individual

typically does 1500 steps and only covers a small portion of their home range. This

is why we chose this random walk specification as it models the walker encountering

the individual at a random time and location. We could have chosen an alternative
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specification, for example a mean-reversion random walk, where the individual is likely

to move back towards the centre of the home range as they stray toward the edge of

the home range (James et al., 2017).

Figure 4a.8: Individual encounters are binomially distributed when indi-
viduals randomly walk within their home range and all observers have
the same observation behaviour. The simulated distribution and a fitted bi-
nomial distribution of individual encounters when, n = 50, Rp = 15, RH = 30,
L = 250, Ω = 5002, VW = 2, δx = 0.2, D = 0.0625, and no. steps = 1562 with
penc = 0.036.

Similar to the stationary and fast moving individual cases the distribution of indi-

vidual encounters per observer walk of length L follows a binomial distribution with

parameters n and penc. The probability, penc, of an individual being encountered by

the observer is calculated using the above simulation and is dependent on the length

of the observer’s walk, L, the individuals home range radius, RH , and the observer’s

perceptive radius, RP .

Figure 4a.8 shows the simulated distribution and a fitted binomial distribution of in-

dividual encounters where the simulation parameters are: n = 50, Rp = 15, RH = 30,

L = 250, Ω = 5002, VW = 2, δx = 0.2, D = 0.0625, and no. steps = 1562 with

penc = 0.036. As expected, the probability of encountering an individual converges to

approximately 0.036 as the size of δx is reduced but D = 0.0625 is held constant.

In this example the parameters that are also applicable to the stationary and fast
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Figure 4a.9: The probability of encountering an individual converges as
we reduce the individual step size in the random walk model. As expected,
the probability of encountering an individual converges to approximately 0.036 if
we fix D = 0.0625 and reduce the random walk step size δx.

moving individual cases are the same but as expected the probability, penc, of encoun-

tering an individual falls between the penc from these two extreme cases. Figure 4a.10,

shows how the probability of encountering a random walking individual converges to

the slow and fast individual cases as we vary the relative speed of the individual com-

pared to the citizen scientist walking speed. For example, when the individual’s speed

is 1/10 the speed of the citizen scientist the probability of an individual encounter is

close to the case of the stationary individuals where the relative speed is zero. As the

individual’s speed becomes much faster than the citizen scientist’s speed the probability

of an individual encounter increases. The upper-bound on the encounter probability

is given by the case where the individual is moving very fast. In Figure 4a.10 we also

plotted the results for an example with a larger perceptive radius. In this example, the

lower-bound and upper-bound are higher than the previous example, and as expected

the probability of encounter from the random walk model are also higher.

Figure 4a.11 shows how the probability, penc, of a individual encounter increases as

either the observer’s perceptive radius increases or the individual’s home range radius

increases, with the exception of when the walker’s perceptive radius is zero. When

the individual is doing a random walk, if the walker’s perceptive radius is zero the

only time the walker will see the individual is if they are both on exactly the same x, y

coordinate. The probability of this occurring is effectively zero and therefore regardless
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Figure 4a.10: The probability of encountering an individual converges
to the stationary and very fast moving cases as we vary the relative
speed of the individual compared to the observer. The dashed lines are the
analytical lower and upper-bounds that are given by the stationary and fast moving
individual cases. When the individual’s speed is 1/10 the speed of the observer the
probability of an individual encounter is close to the case of stationary individuals
where the relative speed is zero. As the individual’s speed becomes much faster
than the observer the probability of an individual encounter increases. Increasing
the walker’s perceptive radius shift all the probabilities up.

of the size of the individual’s home range, if the walkers perceptive radius is zero, there

is zero chance of an encounter. This is in contrast to the fast moving individual case

where if the walker is within the individual’s home range the walker will encounter the

individual, regardless of the size of the walker’s perceptive radius.
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Figure 4a.11: For an individual randomly walking within their home
range, the probability of encountering an individual increases as either
the observer’s perceptive radius increases or the individual’s home range
radius increases. With the exception of when the walker’s perceptive radius is
zero, where there is a zero probability of the walker encountering the individual
regardless of the size of the individual’s home range.
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Discussion

In this chapter we built a simple mechanistic model to describe the citizen science

scenario of an observer walking in a field and encountering individuals that they may

subsequently share an observation of to iNaturalist NZ. We made a bold assumption

that all observers walks have the same set of parameters. This is a particularly simpli-

fying assumption with regard to the length of the observer walk, number of individuals

in the field, and the probability that an observer will share an observation of each

individual taxon they encounter. We also assumed that an observer never shares more

than one observation of the same individual, but is equally likely to share subsequent

observations of different individuals of the same taxon. We assumed there is no spatial

pattern to the individuals within the field. As a result the probability distribution of

the number of observations shared per observer walk is always binomially distributed.

The probability parameter in the binomial distribution encompasses both the probabil-

ity that an encounter occurs and that an observation of the encounter is subsequently

shared to iNaturalist NZ.

The probability an individual is encountered depends on the home range radius of

the individual, the perceptive radius of the observer, the length of the observer’s walk,

and the relative speed of the individual compared to the observer. We considered the

two extreme relative speed cases where individuals are either stationary or moving

very fast compared to the walker. The stationary case models plant and fungi species

where the observer will not encounter the individual unless it is within their perceptive

radius. Whereas, the very fast moving individual case models species like the fantail

or South Island robin where if any part of the individual’s home range is within the

observer’s perceptive radius they will encounter the individual as the individual is con-

stantly covering their entire home range.

In this chapter we assumed that an observer has the same probability of sharing an

observation of each individual they encountered. In reality this is unlikely to be the

case for the majority of iNaturalist NZ observers. It is more likely observers have a

range of different behaviours. For example, some observers may regularly share many

observations, other observers may only share one observation per walk, or some ob-

servers may have a decaying probability of sharing an observation as the walk and

number of encounters progress. In Chapter 4c we revisit this assumption by fitting

multiple candidate models of the probability of sharing an observation to empirical

data from iNaturalist NZ.

The mechanistic model in this chapter was built to simulate iNaturalist NZ ob-

servers sharing observations of individuals they have encountered in the wild. This is

99



the first building block in our larger method to understand if we are able to robustly de-

tect temporal ecological changes in species abundance from noisy citizen science data.

In Chapter 4b we use the result from this chapter - that the number of observations

shared per walk is binomially distributed - to simulate multiple years of iNaturalist

NZ data from multiple observers. We use the simulated iNaturalist NZ data to test

the ability to make reliable ecological inferences about taxon abundance changes from

noisy citizen science observation data.
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Chapter 4b

Extracting the change signal from noisy

ecological citizen science data

Annual trends are found.

Are they species driven or,

observer changes?
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Abstract

Observed counts in ecological monitoring programmes, particularly when citizen scien-

tists are involved, are the result of two linked stochastic processes. The first stochastic

process is that of the true biological state, and the second is the observation process

that consists of the variation in the observer’s behaviour.

Inference is desired on the first stochastic process about the true biological state.

However, when there are limited measurable covariates about observer behaviour, it is

extremely challenging to specify a statistical model and make inferences about the bio-

logical state without falsely drawing conclusion based on changes in observer behaviour.

In this chapter we generate computer simulated citizen science data based on the

iNaturalist NZ dataset with sources of variation in observer effort. We use the simu-

lated data to test the ability of statistical models to accurately infer annual trends in

species abundance.

We find that with the current number of years of observation data on iNaturalist

NZ, and the minimal amount of information about variation in observer behaviour,

it is difficult to use statistical methods to reliably estimate annual trends in species’

abundances.

We apply our method in more detail to the kiwi taxa and show that data from

iNaturalist NZ is unlikely to be able to detect a 2% annual increase in kiwi over a

10 year period with the current level of kiwi observation activity on iNaturalist NZ.

However, over a 20 year period iNaturalist NZ data would be able to reliably detect a

2% annual increase in the combined kiwi taxa.

The work in the chapter highlights the importance of a citizen science project having

measurable covariates about observer behaviour if the aim is to use the collected data

to make ecological inferences about temporal changes in species abundances.
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Introduction

Monitoring changes in species’ populations is crucial to identifying extinction risk

(Mace and Lande, 1991), evaluating the performance of conservation efforts (McKin-

ley et al., 2017), monitoring ecological responses to climate change, and reporting

against national and international targets (Butchart et al., 2010). Species monitoring

by trained experts and in standardised forms is resource intensive and costly. These

practices struggle to provide the information required for extensive ecological monitor-

ing as they are often biased towards developed countries in temperate regions (Hudson

et al., 2014; McGeoch et al., 2010; Martin et al., 2012), and monitoring schemes typi-

cally do not deliver long-term data or at regional scales, making it difficult to monitor

biodiversity change across space and time (Hudson et al., 2014; Schmeller et al., 2009).

Citizen science, on the other hand, provides access to an abundance of labour, skills

and computational power (Cohn, 2008b; Silvertown, 2009). Often citizen science is the

only practical way to answer ecological questions at the scales relevant to species range

changes, migration patterns, disease spread and impacts of climate change (Tulloch

et al., 2013; Miller-Rushing et al., 2012). Furthermore, citizen science has exploded

in popularity in recent years. For example, the birdwatching citizen science project,

eBird, has formed one of the largest biodiversity datasets in the world (Wiggins, 2011).

However, there is ongoing debate and doubt on the precision and usefulness of citizen

science data in scientific research due to the uncertainty of the variability in partic-

ipants abilities and effort, and the opportunity for persistent bias in the data (Crall

et al., 2011; Dickinson et al., 2010).

Many ecological citizen science projects began with the goal of engaging partici-

pants in the natural world, rather than collecting data for scientific research (Tonachella

et al., 2012). As a result, many citizen science projects have collection protocols that

limit the ability to apply post-hoc statistical manipulation to the data. This may influ-

ence the types of research questions particular citizen science data are able to answer

and/or make it difficult to draw ecological inferences (Bird et al., 2014; Crall et al.,

2011; Wiggins et al., 2011; Tonachella et al., 2012). For example, the variation in

participants’ sampling efforts spatially, temporally, and across taxa are often unknown

and difficult to infer, making it difficult to isolate true ecological changes from changes

in participants’ efforts and abilities. However, collection protocols vary widely across

citizen science projects and some citizen science projects collect an extensive amount

of metadata on the participants’ behaviours. For example eBird requires observers to

select one of four different protocols to follow while counting birds. Three of these are

effort-based sampling protocols: travelling count, stationary count, and area count.

These require participants to supply associated information, for example the amount

of time spent observing and the distance travelled. The fourth protocol is a less rig-
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orous option, called “casual observation” and only requires date, location, and species

observed to describe the sampling event. Once an observer has selected a protocol and

entered location information, a checklist is displayed of the species most likely to be

observed at the reporting location on the selected date. The participant then provides

the number of individuals seen of each species and submits the completed checklist to

the eBird database for further verification (Sullivan et al., 2009). On the other hand,

the iNaturalist citizen science project is completely curiosity driven with no standard

sampling structure. iNaturalist observers share observations when they desire, where

they desire, and of what they desire and there is no need or option to record species

absences, or participant recording effort. In this chapter we show that this lack of

information about recorder effort severely limits the ability to use the iNaturalist NZ

dataset to draw ecological inferences about species abundances.

The debate on the ability of citizen science to produce data as useful as that from

standardised collection methods has been ongoing in the literature (Cohn, 2008b; Gal-

loway et al., 2006). In some cases there is substantial variation in the quality and

usability of data collected by volunteers versus professionals, and at other times there

are negligible differences. The variation largely depends on the scope of the project

and collection protocols, the volunteer skill level, and the professional data collection

methods (Galloway et al., 2006). Some research has shown the combination of the large

size of the datasets and the use of appropriate statistical and analytical tools means

that any bias and noise in the data can be minimised, and citizen science data can pro-

vide similar information to professionally collected and designed monitoring programs

(Szabo et al., 2012; Hochachka et al., 2007; Szabo et al., 2010). For example, Szabo

et al. (2012) compared two datasets of bird observations from Mount Lofty Ranges,

South Australia. The first dataset was from a weakly structured national bird atlas

collected by volunteer surveyors who were free to choose where and when to visit. The

second dataset was from monitoring surveys by experienced and paid surveyors that

are carried out twice a year, using a stratified sampling design to determine the loca-

tion of the survey. Szabo et al. (2012) found that the two independent datasets were

highly correlated and minimum population estimates from the two datasets agreed very

well. On the other hand the ability of citizen scientists (even those who have received

training) to produce data that has a comparable quality to data collected by profession-

als has been questioned in the scientific literature (Anderson, 2001; Fitzpatrick et al.,

2009). For example, Fitzpatrick et al. (2009) conducted an experiment to compare the

ability of volunteer and experienced observers to detect low-density populations of the

hemlock woolly adelgids (Adelges tsugae), an insect pest of eastern hemlock (Tsuga

Canadensis) trees. They found that volunteers who received 15 minutes of training

had a lower probability than experienced observers at detecting the low densities of

the actively spreading invasive species in hermlock trees.
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Appropriate statistical and analytical tools are often required to address varia-

tion/bias in the data due to recorder behaviour or data quality issues in citizen science

data. However, the types of tools that are useful and reliable are very dependent on

the nature and the specifications of the citizen science project. Isaac et al. (2014) con-

structed computer simulated citizen science data and compared type I error rates (the

false rejection of the null hypothesis) of 11 statistical methods that aim to estimate

the temporal trend of a focal species in noisy ecological data. The sources of bias they

simulated were: an increase in site visits over time, an observer bias towards sites with

a high proportion of the focal species, a decline in sampling effort per site visit, species

becoming more detectable over time, and a decline in non-focal species over time. The

methods of trend estimation they considered included a simple approach of a Poisson

generalised linear model (GLM) that included no mechanism to control for variation in

recorder activity. They also modelled the response variable as a proportion of visits in

a given year that produced a record of the focal species by using a binomial GLM with

year as a covariate. Modelling the focal species as a proportion is expected to make the

trend estimate robust to variations in recording effort. They added extra components

to the simple binomial GLM to account for other sources of variation in the data. For

example, including a covariate of the number of unique species per site visit to con-

trol for uneven sampling effort. Their simulations and subsequent calculation of type

I errors for all 11 methods found that no method was wholly robust under all varia-

tion scenarios, but the more detailed models - for example the models that included

covariates for species list lengths - are more robust to additional sources of variation.

A successful example of using a relatively sophisticated method to model citizen sci-

ence count is by Tonachella et al. (2012). They used a mixed effect generalised linear

model (GLMM) to analyse data from the Great Whale Count, an annual citizen science

event where humpback whale (Megaptera novaeangliae) sightings in Maui County are

counted by volunteers for one day during the breeding season. Observer, year, and site

effects were included in the GLMM to account for the bias and variation these effects

contribute to the count data. Their random effects model estimated an increase of

humpback whale sightings in the Maui coastal waters of 5.2% per year which is similar

to other Hawaiian humpback whale counts (Mobley et al., 2001).

It is not always a given that suitable covariates/explanatory variables about ob-

server behaviour will be recorded throughout the citizen science data collection process.

This is especially the case for ecological citizen science projects that did not initially

have an aim of using the collected data to make inferences about changes in species

abundances. In this chapter, we investigate the ability to use statistical models to

detect ecological changes in species abundances when there are minimal measurable

covariates that describe observer behaviour. We follow a similar method to Isaac et al.
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(2014) of using computer simulated citizen science data to understand the statistical

properties of candidate models that aim to find the signal of annual species abundance

change in the noise of citizen science data. The chapter has the following layout.

Chapter outline

iNaturalist NZ data. We summarise and visualise the relevant data from iNaturalist

NZ that will be used to both parametrise the simulated data, and in the model fitting

on iNaturalist NZ data section.

Statistical model background. We provide background information on gener-

alised linear models (GLM), and in particular Poisson GLMs as this is the family of

model we use throughout this chapter.

Model fitting on simulated data. We extend the single citizen scientist sim-

ulations from Chapter 4a to construct simulated citizen science data from multi-

ple observers over multiple walks and years. Where possible our simulated data is

parametrised using iNaturalist NZ data. We add variation into the simulated data by

annually increasing the number of observers, allowing variation in the annual number

of walks per observer, and allowing variation in the number of individuals per observer

walk. For each additional source of variation in the simulated data we test if we are

able to specify a suitable Possion GLM by measuring the type 1 error rate.

iNaturalist NZ trends. We fit the most comprehensive candidate model given

the explicitly known meta-data about citizen science behaviour to all the iNaturalist

NZ species that have at least 7 years of data.

Case study: Can citizen science data be used to reliably detect a 2%

annual increase in a kiwi species abundance? The 2018 - 2028 Kiwi Recovery

Plan in New Zealand outlines the goal to reach 100,000 kiwi by 2030 by growing all

kiwi species by at least 2% per year (Germano et al., 2018). We use simulated data to

examine the power of our most comprehensive model to detect a genuine 2% increase

in a species. In this section the simulated data is parametrised to reflect the iNatural-

ist NZ kiwi data. We explore the relationship between the model power and years of

citizen science data.

Discussion. We discuss the findings of this chapter and potential paths forward to

be able to reliably use iNaturalist NZ data to make ecological inferences about temporal

changes in species abundances.
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iNaturalist NZ data

In this section we outline and visualise the key data from iNaturalist NZ that will

be used to parametrise the simulated data. We consider research grade observations

for the 7 years from January 2013 to December 2019. Over the 7 years there have

been 449,512 research grade observations by 10,499 observers. For the remainder of

this chapter we refer to research grade observations as, simply, observations. Both the

numbers of observations and observers have increased steadily over the last 7 years, as

shown in Table 4b.1. However, the average number of observations per observer has

been relatively stable over the 7 years.

Year
Number of

active observers
Number of

observations
Average observations

per observer

2013 514 17033 33

2014 699 25786 37

2015 1356 34418 25

2016 1571 48314 31

2017 2549 68267 27

2018 3472 101907 29

2019 4974 153787 31

Total 10499 449512 43

Table 4b.1: The number of active observers and observations per year
has increased steadily over the last 7 years. This table shows the annual
number of iNaturalist NZ observers, research grade observations and the average
number of observations per observer from 2013 to 2019.

Within the list of observations there are 11407 unique taxa and Figure 4b.1 shows

the distribution of total observations per taxa. A large number of taxa have had very

few observations over the 7 years, with 25% of the taxa having had only 1 observation,

and 68% of taxa have had on average 2 or less observations per year. At the other end

of the scale, Kererū is the taxon with the largest number of observations, and there

have been 8404 Kererū observations over the 7 years.

Figure 4b.2 shows the distribution of taxon observations in the first year the taxon

was observed by an iNaturalist NZ observer. Most taxa had very few observations in

the first year they were observed by an iNaturalist NZ observer with 62% of taxa only

having one observation in the first year and 96% of taxa having 10 or fewer observa-
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Figure 4b.1: The majority of taxa have had fewer than 100 observations
on iNaturalist NZ. This figure shows the distribution of the total number of
observations per taxon on iNaturalist NZ from 2013 to 2019.

tions in the first year. Not all taxa were first observed in the first year of our data,

in fact only 30% of the taxa were first observed in year 1, Figure 4b.3. In the 7th

year of data, 2019, 12% (1359) of the taxa were first observed. For the purposes of

this chapter we only consider taxa that were first observed on iNaturalist NZ in year 1

(2013). We impute a zero count if there is a year they did not have any observations.

After removing these taxa and grouping any subspecies observations with their parent

species, 3218 taxa remain.

An important metric for parametrising the simulations in this chapter is the num-

ber of walks an observer does per year. We use the iNaturalist NZ data to find the

number of unique days per year an iNaturalist NZ observer shares an observation. We

use the number of days an observer shares an observation per year as a proxy for the

number of observer walks per year. From the iNaturalist NZ data we have an empirical

distribution of the number of observer walks per year, shown in Figure 4b.4. In this

empirical distribution the probability of an observer doing one walk per year is 0.46,

and the probability of the observer doing less than 15 walks per year is 0.90.
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Figure 4b.2: More than half of the taxa only had one observation in the
first year they were observed on iNaturalist NZ. This figure shows the
distribution of the number of observations per taxa in the first year they were
observed on iNaturalist NZ.

Figure 4b.3: Just over a quarter of taxa were first observed on iNaturalist
NZ in the first year of the data (2013). This figure shows a cumulative plot
of the proportion of taxa that were observed in the first 7 years of iNaturalist NZ
data.
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Figure 4b.4: Most observers only share observations to iNaturalist NZ
from one walk per year. This figure shows the empirical distribution of the
number of unique days an observer shares an observation to iNaturalist NZ per
year. We consider this a proxy for the number of walks an observer does per year
that results in an observation being shared to iNaturalist NZ. The probability of
an observer doing one walk per year is 0.46, and the probability of the observer
doing less than 15 walks per year is 0.90.
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Statistical model background

In this section we introduce the statistical models we use to model the observation

count data in the simulated iNaturalist NZ data. First, we introduce generalised liner

models (GLMs) and in particular a Poisson GLM that is useful for modelling count

data. In general, a generalised linear model (GLM) consists of three steps, (Zuur et al.,

2009):

1. An assumption about the distribution of the response variable, xi.

2. The specification of the systematic component in terms of explanatory variables.

3. The relationship/link between the mean value of the response variable and the

systematic component.

For example, for a Poisson GLM:

1. We assume xi is Poisson distributed with mean and variance µi

2. The systematic component is given as η(Xi1, ..., Xiq) = α + β1Xi1 + ... + βqXiq.

Where, Xi1, ..., Xiq are the explanatory variables and α, β1, ..., βq are the unknown

parameters.

3. There is a logarithmic link between the mean of xi and the systematic component

η(Xi1, ..., Xiq). A logarithmic link ensures that the fitted values are always non-

negative.

Therefore, we have:

xi ∼ Pois(µi)

E(xi) = µi

log(µi) = η(Xi1, ..., Xiq) or µi = eη(Xi1,...,Xiq) (4b.1)

Where, for a Poisson distribution the variance is equal to the mean, µi.

A simple, but naive, Poisson GLM model for iNaturalist NZ observations would be:

xt ∼ Pois(µt)

E(xt) = µt and var(xt) = µt

log(µt) = α + βt or µt = eα+βt (4b.2)

Where, xt is the number of observations in year t, α and β are the unknown intercept

and slope parameters, and t ∈ {1, ..., 7}. This is implicitly assuming the mean number

of observations per year is either exponentially growing or decaying, or constant if

β = 0 with time.
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Offset number of observers per year

Annually the number of iNaturalist NZ observers, K, has been increasing, Table 4b.1.

Therefore, we need to account for the number of observers in the Poisson GLM as there

may be a larger number of observations in one year simply because the number of ob-

servers was larger. We could work with densities, e.g. number of observations
number of observers

. However, by

using densities we lose information on the magnitude of the number of observations

and the number of observers. Another option is to use the number of observers as an

explanatory variable, however, this would mean we are modelling a functional rela-

tionship between the number of observers and the number of observations. A neater

method is to use the number of observers as an offset. We now assume that the number

of observations, xt, in year t is Poisson distributed with mean µt×Kt. Kt is also called

the exposure or intensity parameter of the Poisson process, and µt, is the expected

number of observations per observer in year t. In our case Kt is the number of ob-

servers in year t. This leads to the following GLM with the number of observers as an

offset:

xt ∼ Pois(µt ×Kt)

E(xt) = µt ×Kt

log(µt) = α + βt or µt = eα+βt

E(xt) = Kte
α+βt (4b.3)

Overdispersion

In a Poisson distribution the mean is equal to the variance. Overdispersion is present

when the variance is larger than the mean. Overdispersion may cause standard errors

of the estimates to be underestimated, i.e. a variable may appear to be a significant

predictor when it is in fact not significant. Hilbe (2011) distinguishes between apparent

and real overdispersion. Apparent overdispersion is mainly due to model misspecifi-

cation, for example, missing covariates or interactions, non-linear effects of covariates

entered as linear terms in the systematic part of the model, or the wrong choice of link

function. Whereas, real overdispersion is when no model misspecification can be iden-

tified because the variation in the data really is larger than the mean. A model may be

overdispersed if the value of the Pearson χ2 statistic divided by the degrees of freedom

is greater than 1.0. The quotient of either is called the dispersion parameter. Small

amounts of overdispersion are of little concern and the tolerance of what is considered

small is dependent on the number of responses in the model.

If it is evident that the overdispersion in the model is not apparent overdispersion, a

quasi-Poisson GLM can be tried to deal with the overdispersion before considering more
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complicated methods like a negative binomial GLM. A quasi-Poisson GLM consists of

the following steps:

1. E(xt) = µt and var(xt) = φ× µt

2. log(µt) = η(Xi1, ..., Xiq) or µt = eη(Xi1,...,Xiq)

The key difference between a Poisson GLM and quasi-Poisson GLM is that in

a quasi-Poisson GLM a Poisson distribution is not explicitly specified, instead only a

relationship between the mean and variance of xt is specified. The parameter estimates

are not changed by using a quasi-Poisson GLM, however, the standard errors of the

parameters are multiplied with the square root of the dispersion parameter, φ. If the

dispersion parameter φ = 1 in the quasi-Poisson GLM the results for the estimated

parameters and standard errors will be the same as the Poisson GLM. As a rule of

thumb, if φ is larger than 15, then other methods should to be considered to deal with

overdispersion, e.g. the negative binomial GLM or zero-inflated models, (Zuur et al.,

2009).
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Model fitting on simulated data

In this section we generate simulated citizen science observation data. Subsequently

we specify a GLM model that models the annual number of taxon observations as

a function of observer behaviour covariates and the temporal changes in the taxon

abundance. In the simulated data we have control over the sources of variation due to

citizen scientist behaviour that are present in the data. In Chapter 4a we introduced

a simple mechanistic model of an observer walking through a field with individual

population members that could be encountered. These encounters could result in

observations being contributed to iNaturalist NZ. In this section we scale that simple

single observer model up to simulated iNaturalist NZ data by considering the following

elements:

• 7 years of iNaturalist NZ observation data.

• Annually increasing number of iNaturalist NZ observers.

• Variation in the number of walks per observer per year.

• Variation in the expected number of individual population members per observer

walk.

The null hypothesis is that there is no annual change in a given taxon abundance.

We simulate data iNaturalist NZ observation data given the null hypothesis. We begin

with a base scenario where there are 7 years of data but none of the above sources of

variation are present. We then build up to a scenario where all of the above sources

of variation are present. For each case of simulated data we specify a Poisson GLM.

We test the validity of the model by measuring the type 1 error rate, where a type 1

error is the false rejection of the null hypothesis. If the model is adequately modelling

the variation in citizen science behaviour the type 1 error rate should by definition be

α, where α is the statistical significance level. If the type 1 error rate is larger than

α the model is falsely finding significant trends in the annual species abundance at a

greater rate than expected. We use the following process for a given expected number

of observations in the first year:

1. Simulate 7 years of observation data.

2. Fit a Poisson GLM model to the annual number of observations.

3. Record the annual trend parameter, and corresponding p-value.

4. Repeat steps 1-3 multiple times.

5. Calculate the type 1 error rate, i.e. the number of simulations with a significant

p-value for the annual trend estimate at a 0.05 significance level.
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6. Repeat the above steps for a range of expected number of observations in the

first year.

Table 4b.2 outlines the assumptions we enforce and relax per case in this section.

The probability of an individual observation is calculated using the mechanistic

random walk model from Chapter 4a. Recall that this probability is a combination

of the probability an individual is encountered and the probability an observation is

then shared to iNaturalist NZ. The probability that an individual in encountered is

dependent on the individual’s home range radius, perceptive radius of the observer,

the length of the path the observer walks, and the relative speed of the individual to

the observer. We are assuming these variables remain constant over time and therefore

the probability of an individual observation being shared to iNaturalist NZ is constant

over the years of the scaled up simulation.

Assumption
Base
case

Variation in
# individuals

Variation in
# observers

Variation in
expected
# walks
per observer

Combined
case

7 years of data 3 3 3 3 3

Fixed number of
observers per year

3 3 7 3 7

Equal number of
walks per observer
per year

3 3 3 7 7

Equal number of
individuals in the
field per walk

3 7 3 3 7

Equal probability of
individual observation
per observer

3 3 3 3 3

Table 4b.2: Summary of assumptions per simulation case.
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Base case: no variation

In this case we assume the following:

• 7 years of data.

• Fixed number of observers per year.

• Equal number of walks per observer per year.

• Equal number of individuals in the field per walk.

• Equal probability of individual observation per observer.

Simulation set-up

We ran a very simple simulation as follows to calculate the type 1 error rate given the

true null hypothesis of no annual change in the species abundance:

1. Set number of observers K, probability of an observation p, number of individuals

n, number of walks per observer, per year W . In total there are Wt walks per

year, where Wt = KW .

2. Every year the number of individual observations, xt, is calculated by:

(a) Randomly sample the number of observations per observer walk, xwt , from a

Poisson distribution Pois(np), where np is the expected number of individual

observations per walk, and w ∈ 1, ...,Wt. Note we are using a Poisson

approximation to a binomial random variable, this is a good approximation

as n is large and p is small.

(b) Sum the number of observations per observer walk to get the total number

of observations in year t: xt =
∑Wt

w=1 x
w
t .

3. Fit a Poisson GLM as follows:

xt ∼ Pois(µt)

E(xt) = µt and var(xt) = µt

log(µt) = α + βt or µt = eα+βt (4b.4)

4. Record if the p-value for the trend estimate parameter, β, is significant at a 0.05

significance level.

5. Repeat steps 2 - 4, 104 times and calculate the type 1 error rate, i.e. the propor-

tion of simulations where the true null hypothesis of no trend in species abundance

is falsely rejected.
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6. Repeat the above steps for a range of expected number of observations in year 1

by adjusting n, p, K, or W , where E(Observations in year 1) = npKW .

In this case the number of observations xt in year t is Poisson distributed (an

approximation of the binomial distribution due to the small value of p), and the mean

number of observations per year is constant. Therefore, the model in Equation 4b.4 is

perfectly specified and β = 0.

Simulation results

As an example, we set p = 0.0002, 20 observers per year, and assumed every observer

just did one walk per year. We varied n in steps of 250 between 250 and 7500 to

simulate datasets with the expected number of observations in year 1 ranging from 1

to 30. As expected the type 1 error rate is approximately 5% at a 0.05 significance

level. Figure 4b.5 shows the distribution of type 1 error rates for multiple repeated

runs of this simulation and this is typical for a range of parameter values.

Figure 4b.5: At a 0.05 significance level the type 1 error rate for the base
case is near 5%. The distribution of type 1 error rates is generated from multiple
runs of the base case simulation.
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Variation in number of individuals per walk

In the base case we assumed that on every observer walk there is the same number

of individuals in the field to be observed. In reality, this is effectively assuming all

observer walks are in the same location and of the same length. To simulate some

spatial variation and variation in the length of the observer walks we allow the actual

number of individuals in the field to vary between walks. We do not relax any of the

other assumptions as shown in Table 4b.2.

Simulation set-up

We change the method to calculate the number of observations per walk in step 2 of

the base case simulation to the following:

1. For each observer walk, w, randomly sample from a Poisson distribution the

number of individuals, n(w), in the field. Where,

n(w) ∼ Pois(n).

Note, we are assuming that n(w) are independent random variables and are in-

dependent of the observer, i.e. there is no tendency for some observers to go on

longer walks or to visit densely populated areas.

2. Randomly sample the number of observations per observer walk, xwt , from the

Poisson distribution Pois(n(w)p), where n(w)p is the expected number of individual

observations per walk.

3. Sum the number of observations per observer walk to get the total number of

observations in year t: xt =
∑Wt

w=1 x
w
t .

Therefore, the simulation to calculate the type 1 error rate is the same as the base

case with the exception that step 2 is replaced with the above steps. Figure 4b.6 shows

the distribution of observations in the first year for this case and also the base case. In

the base case we know that the number of observations per year is Poisson distributed

(an approximation of the binomial distribution due to the small value of p). In this case

we found numerically that the number of observations per year also follows a Poisson

distribution. Therefore this simulation is not different from the base case. However, it

could be different if we selected a broader distribution for the number of individuals in

the field per year (e.g. a geometric or negative-binomial distribution).
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Figure 4b.6: The number of observations in the first year of the simulated
data follows a Poisson distribution for the base case, and the case with
variation in the number of individuals per walk. In the base case the number
of observations per year is the sum of samples from a Poisson distribution with a
fixed mean, np. Whereas, in the case where the number of individuals varies per
walk the number of observations per year is the sum of samples from a Poisson
distribution that has a Poisson distributed mean.

Simulation results

Given that randomly sampling the number of individuals in the field per citizen science

walk from a Poisson distribution contributes little variance to the simulation, the results

from this simulation are the same as the base case. On average the type 1 error rate is

5% at a 0.05 significance level across the range of expected number of observations in

year 1.
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Variation in annual number of observers

Annually the number of iNaturalist NZ observers has increased, shown in Table 4b.1.

In this case we include this variation in our simulation and assume all other sources of

variation are absent, as outlined in Table 4b.2. Our scaled up simulation is simulating

the annual number of observations of a single species. It is very unlikely that every

iNaturalist NZ observer is searching for each species therefore we scale the number of

observers per species down to 5% of the total iNaturalist NZ observers.

As with the base case we use a simulation to calculate the type 1 error rate when

the null hypothesis is there is no temporal trend in the species abundance. However,

we now have a different number of observers every year and we offset by a proxy for

this number in the Poisson GLM. We use a proxy because in the iNaturalist NZ data

we do not have any knowledge of the walks that observers go on that result in zero

observations. Therefore, we offset by the number of observers that shared at least one

observation each year, because this is something we can extract from the iNaturalist

NZ data. The simulation is as follows:

1. Set the number of observers per year Kt as 5% of the total annual iNaturalist NZ

observers (shown in Table 4b.1), the probability of an individual observation p,

number of individuals n, and number of walks per observer per year W . In total

there are Wt walks per year, where Wt = KtW

2. Every year the number of individual observations, xt, is calculated by:

(a) Randomly sample the number of observations, xwt , per observer walk from

the Poisson distribution Pois(np), where np is the expected number of indi-

vidual encounters per walk.

(b) Sum the number of observations per observer walk to get the total number

of observations in year t: xt =
∑Wt

w=1 x
w
t .

3. Fit a Poisson GLM with an offset for the annual number of observers that shared

at least one observation, K∗t , as follows:

xt ∼ Pois(µt)

E(xt) = µt ×K∗t and var(xt) = µt ×K∗t
log(µt) = α + βt+ log(K∗t ) or µt = K∗t e

α+βt (4b.5)

4. Record if the p-value for the trend estimate parameter, β, is significant at a 0.05

significance level.
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5. Repeat steps 2 - 4 104 times and calculate the type 1 error rate, i.e. the proportion

of simulations where the true null hypothesis of no temporal trend in species

abundance is falsely rejected. Repeat the above steps for a range of expected

number of observations in year 1 by adjusting n, p, or W ,

Simulation results

As with the base case the type 1 error rate is on average 5% at a 0.05 significance level

as the added variation of increasing the number of observers per year is captured in

the Poisson GLM by the observer offset.
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Variation in expected annual number of walks per observer

In the base case we assumed that all observers did the same number of walks per year.

However, in reality some observers go walking in search of individuals to observe often,

whereas, other observers only go as little as once per year. In the data section of this

chapter we outlined a proxy for the distribution of observer walks per year and here we

include that information in the simulation below. Here we vary the number of annual

observer walks. No other sources of variation are present (Table 4b.2).

1. For every observer, k, randomly sample an annual expected number of walks,

E(W (k)) from the empirical distribution of observer walks per year, Figure 4b.4.

2. Every year of the simulation we randomly sample the actual number of walks,

W
(k)
t , for the observer from the Poisson distribution:

W
(k)
t ∼ Pois(E(W (k))).

Therefore the total number of walks for year t from all observers is:

Wt =
K∑
k=1

W
(k)
t .

Note, we are assuming the expected number of walks per year for each observer does

not change over time, i.e., the observer does not become more or less active over time.

But we are assuming that the number of walks per year for any observer is Poisson

distributed.

As we did with the base case, we use a simulation to calculate the type 1 error

rate given the true null hypothesis of no temporal trend in the species abundance.

However, we now have a different number of walks per observer with some variation

in the total number of walks per year due to the stochastic nature of the number of

annual walks an observer does. In reality we are not going to know exactly how many

walks an observer did per year as we have presence-only data on iNaturalist NZ, i.e.

we are not aware of walks observers do that result in zero observations. Therefore,

we cannot use the information about the number of walks per year to fit the Poisson

GLM model. We fitted a Poisson GLM model as we did in the base case, as the only

deviation in this simulation from the base case is the difference in the number of walks

each observer does. However, overdispersion was detected. This overdispersion is most

likely apparent overdispersion due to a misspecification of the model as we have no

covariate to account for the variation in the number of walks a person does per year.

However, we corrected the standard errors using a quasi-Poisson GLM model where

the variance is given by φ× µ, where µ is the mean and φ is the dispersion parameter.
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Therefore we have the following simulation to calculate the type 1 error rate when

there is variation in the number of walks per observer:

1. Set number of observers K, probability of an individual observation p, number

of individuals n.

2. Randomly sample the annual expected number of walks per observer, E(W (k)),

from the empirical distribution of observer walks per year, shown in Figure 4b.4.

3. For each year, t = 1, ..., 7:

(a) Randomly sample from a Poisson distribution the actual number of walks

per user, W
(k)
t . Where,

W
(k)
t ∼ Pois(E(W (k))).

(b) Calculate the total number of annual observer walks as,

Wt =
K∑
k=1

W
(k)
t .

(c) Randomly sample the number of observations, xwt , per observer walk from

the Poisson distribution Pois(np), where np is the expected number of indi-

vidual encounters per walk.

(d) Calculate the total number of annual observations as,

xt =
Wt∑
w=1

xwt .

4. Fit a quasi-Poisson GLM as follows:

E(xt) = µt and var(xt) = φ× µt
log(µt) = α + βt or µt = eα+βt (4b.6)

5. Record if the p-value for the trend estimate parameter, β, is significant at a 0.05

significance level.

6. Repeat steps 2 - 4 104 times and calculate the type 1 error rate, i.e. the proportion

of simulations where the true null hypothesis of no temporal trend in species

abundance is falsely rejected. Repeat the above steps for a range of expected

number of observations in year 1 by adjusting n, p, or K.
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Simulation results

In this simulation scenario the type 1 error rate was on average 5% at a 0.05 significance

level across a range of expected number of observations in the first year. Figure 4b.7

shows the distribution of type 1 error rates for multiple repeated runs of this simulation.

This is a similar result to the base case, however, there is slightly more variance in the

distribution of type 1 error rates,

Figure 4b.7: At a 0.05 significance level the type 1 error rate for the case
of annual variation in the expected annual number of observer walks is
near 5%. The distribution of type 1 error rates is generated from multiple runs
of the simulation with annual variation in the expected annual number of observer
walks.
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Combined case: all sources of variation

Finally, we combine all the above sources of variation to create a simulation that in-

cludes some of the sources of variation that are likely present in the iNaturalist NZ

data. However, we still assume the probability of sharing an observation of an indi-

vidual is fixed over time and equal across observers. Therefore, we have the following

sources of variation in this combined simulation (Table 4b.2):

• Increasing number of observers per year.

• Variation in number of walks per observer per year.

• Variation in number of individuals in the field per walk.

Simulation set-up

To include all the three forms of variation into the combined case we have the following

simulation to calculate the type 1 error rate:

1. Set the following parameters:

• Probability of observing an individual, p.

• Number of observers per year Kt as 5% of the total annual iNaturalist NZ

observers shown in Table 4b.1.

• Number of individuals, n

2. Randomly sample the annual expected number of walks per observer, E(W (k)),

from the empirical distribution of observer walks per year shown in Figure 4b.4.

3. For each year, t = 1, ..., 7:

(a) Randomly sample from a Poisson distribution the actual number of walks

per user, W
(k)
t . Where,

W
(k)
t ∼ Pois(E(W (k))).

(b) Calculate the total number of annual observer walks as,

Wt =
K∑
k=1

W
(k)
t .

(c) For every walk, w:
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i. Randomly sample from a Poisson distribution the number of individuals,

n(w), in the field. Where,

n(w) ∼ Pois(n).

Note, we are assuming that n(w) are independent random variables and

are independent of the observer, i.e. there is no tendency for some

observers to go on longer walks or to visit densely populated areas.

ii. Randomly sample the number of observations per observer walk, xwt ,

from the Poisson distribution Pois(n(w)p), where n(w)p is the expected

number of individual observations per walk.

(d) Calculate the total number of annual observations as,

xt =
Wt∑
w=1

xwt .

4. Fit a quasi-Poisson GLM with an offset for the number of observers that shared

at least one observation per year as follows:

E(xt) = µt ×K∗t and var(xt) = φ× (µt ×K∗t )

log(µt) = α + βt+ log(K∗t ) or µt = K∗t e
α+βt (4b.7)

5. Record if the p-value for the trend estimate parameter, β, is significant at a 0.05

significance level.

6. Repeat steps 2 - 4 104 times and calculate the type 1 error rate, i.e. the proportion

of simulations where the true null hypothesis of no temporal trend in species

abundance is falsely rejected.
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Simulation results

Figure 4b.8 shows three examples of situations that may arise when fitting a Poisson

GLM to simulated annual observation data where there is no annual increase in the

given taxon abundance. Case A is the most frequent occurrence where no significant

annual trend is detected. The number of observations per year is still increasing because

the number of observers per year is increasing. However, the number of observations

per observer is relatively flat over the 7 years. In case B, a significant positive trend is

found, despite there being no annual increase in the taxon abundance. In this case the

number of observations per observer has an increasing trend over the 7 years. This is

due to the stochastic nature of the simulation. In case C, a significant negative trend

is found. In this case the total number of observations per year is increasing, but the

number of observations per observer in decreasing.

On average, across the range of expected number of observations in year 1, the type

1 error rate for the annual trend estimate parameter is above 5% at a 0.05 significance

level, shown in Figure 4b.9. This indicates that the Poisson GLM is not capturing

all the variation in the simulated data that is due to citizen scientist variation, and

therefore some of this variation is being mistaken for a change in the underlying species

abundance. The type 1 error rate converges to approximately 12%. For low expected

number of observations in year 1, the type 1 error rate is less than 12%. This is because,

for these lower values, the Poisson distribution that the number of observations per

walk is being sampled from has a small mean, and therefore there is not a possibility

of sampling a value less than that observed in year 1. This is eliminating the random

possibility of a downward trend in the annual number of observations per observer.

Therefore, for these lower expected number of observations in year 1, the type 1 errors

are only occurring when there is randomly an annual increase in the number of obser-

vations per observer.

The inflated type 1 error rate for this case shows that a Poisson GLM is a poor

choice to model citizen science data when the only known meta-data about observer

effort is the number of active observers per year. On the contrary, if we off-set by

the number of walks per year, including walks that resulted in zero observations, the

type 1 error rate returns to the expected 5% at a 0.05 significance level. This is not

a source of information that is currently collected by iNaturalist NZ. However, other

observation sharing citizen science project, e.g. eBird, do collect this information and

therefore a Poisson GLM may be a suitable choice to model annual eBird observation

data.

Given the inability to specify a suitable Poisson GLM to model simulated iNatural-

127



Figure 4b.8: Given a true null hypothesis of no annual change in the taxon
abundance, the stochastic nature of citizen science may still result in
significant positive and negative trends being found in a fitted GLM.
All these plots are examples from the combined case of all sources of variation,
and the true null hypothesis of no annual change in the taxon abundance. The
number of observers is increasing annually. The figures on the right show an annual
increase in the number of observations, despite case A having no annual change in
the number of observations per observer, and case C having an annual decline in
the number of observations per observer.

ist NZ data, due to a lack of meta-data about changes in observer behaviour, we do not

consider any other type of statistical model. All models will suffer the same problem of

poor performance due to the model specification not covering the applicable range of

explanatory variables. Before additional candidate models are pursued, we would need

to gather additional citizen science behaviour data either explicitly from the citizen

science project, or infer the information from the already collected data.

If we naively apply this model to the 3218 taxa in the iNaturalist NZ dataset with

7 years of observation data to test the null hypothesis that the annual taxa abundance
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Figure 4b.9: For the combined case with three sources of variation, when
we include an observer offset in the Poisson GLM, the type 1 error
rate for the trend estimate parameter is above 5% at a 0.05 significance
level. In these simulations the null hypothesis of no annual change in a given
taxon abundance is true. Therefore a type 1 error occurs when the GLM model
detects a significant annual trend. If we offset by the total number of walks the
type 1 error rate is on average 5% at a 0.05 significance level. However, the number
of total walks (including walks with zero observations) is not known on iNaturalist
NZ.

is not changing, we will expect to find more than 5% of taxa with false significant

trends (type 1 errors) at a 5% significance level. It will be difficult to know which

taxa have shown a significant trend due to a type 1 error, versus which taxa have had

an ecological annual change in their abundance. Even with more information about

annual changes in citizen scientist behaviour, it is still very unlikely that a statistical

model will be able to be specified that captures the wide range of variation in citizen

science data. Therefore, any significant results from a statistical model applied to an-

nual citizen science data should be analysed with a degree of caution as it is very likely

that there will be an inflated level of type 1 errors.

Later in this chapter we measure the power of the model to detect genuine annual

abundance trends. Given only 7 years of observation data there is also a high risk of

type 2 errors, where we fail to reject the null hypothesis of no annual trend, when there

is actually an annual trend in the species abundance, i.e. we do not find a significant

trend when one exists.
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iNaturalist NZ trends

In this section we naively fit the quasi-Poisson GLM model with an observer offset,

outlined in Equation 4b.7, individually to each of the 3218 species in the cleaned

iNaturalist NZ dataset that have 7 years of observation data. This is naive for many

reasons, the most obvious being that the model already had an inflated level of type 1

errors on the simulated data with limited and known sources of citizen science variation.

It is also naive because we are assuming that all species have the same mechanisms

that affect their annual number of observations. For example in the quasi-Poisson GLM

model we offset by the total annual number of iNaturalist NZ observers. However, it

is naive to assume all species have had the same annual growth in observer effort. For

example, there could be a species that has become boring to observers over the years

and as a result every year fewer observers share an observation of that species.

Results

We found 17% of the species that have 7 years of iNaturalist NZ data had a significant

annual abundance trend at a 0.05 significance level, and 13% had both an acceptable

dispersion parameter (0.1 < φ < 15) and significant trend (Table 4b.3). Figure 4b.10

shows the proportion of significant trends by the expected number of observations in

year 1, versus the percentage of type 1 errors in the simulated data. On average, in

the real iNaturalist NZ data we found more significant trends than the expected type

1 error rate, given the results from the simulated data. However, this does not provide

any conclusive evidence that some of these significant trends are not type 1 errors, as it

is very likely that the in real iNaturalist NZ data there is more variation due to citizen

scientist behaviour than in the simulated data. Therefore, we would expect a higher

rate of type 1 errors when fitting a quasi-Poisson GLM with an observer offset to the

real iNaturalist NZ data.

Figure 4b.11, shows the distribution of the significant trend values given the num-

ber of observations in the first year. Each vertical slice of the plot is a histogram of the

annual trend estimates, given the number of observations in year 1. We have grouped

together all the significant trends for taxa that had more the 11 observations in the first

year, as there were few taxa in this category, while keeping in mind that the majority

of these significant trends may be type 1 errors. The majority of the significant trends

are negative. This is likely because the specified GLM is offsetting by an annually

increasing number of observers. Therefore, if the observation counts are static over the

7 years, the model will conclude a negative trend. In the case that annual observations

were static, the Poisson GLM model would find an annual trend value of -0.375 (shown

as a dashed line on Figure 4b.11). The lower the number of observations in the first
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Number of species Percentage of species

Total species 3218 -

Acceptable dispersion 3047 95%

Significant trend 557 17%

Acceptable dispersion
and significant trend

423 13%

Table 4b.3: 13% of the 3218 iNaturalist NZ species with 7 years of obser-
vation data were found to have a significant trend with an acceptable
dispersion parameter from the fitted GLM model. A quasi-Poisson GLM
with an observer offset was individually fitted to each of the iNaturalist NZ taxa
with 7 years of observation data. An acceptable dispersion parameter is assumed
to be 0.1 < φ < 15. Significant trends are at a 0.05 significance level.

year the wider the spread of estimated significant trend values. This is likely because

for small observation counts the type one errors are very noisy. This plot highlights

the fact that with only 7 years of observation data it is difficult to find a significant

trend of a small magnitude.

Figure 4b.10: There are a higher proportion of significant trends in the
real iNaturalist NZ data than in the simulated data that had a true null
hypothesis of no annual change in species abundances. The red points are
the proportion of significant trends found in the iNaturalist NZ data. The black
points are the type 1 error rates in the simulated citizen science data with a true
null hypothesis of no annual change in a given taxon abundance.

Figure 4b.12 shows the annual observations and annual observations per observer

for three iNaturalist NZ taxon with significant annual trend values. In all three exam-

ples the annual number of observations is increasing, despite two of the taxon having a
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Figure 4b.11: Most significant trends found in the iNaturalist NZ data
are negative. Significant annual trends are from the Poisson GLM fitted to
iNaturalist NZ data at a 0.05 significance level. Each vertical slice of this plot is
a histogram of the significant trend estimate given the number of observations in
the first year. Significant trends for taxa with at least 11 observations in the first
year have been grouped together. The dashed line is the expected annual trend
estimate if there is no annual variation in the number of observations.

significant negative annual trend value. This is because the annual number of observers

is also increasing and at a faster rate than the observations per observer are decreasing.

In all three examples a dashed line is plotted that represents the expected number of

observations if the null hypothesis of no annual change in the taxa abundance was true.
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Figure 4b.12: Example plots of iNaturalist NZ taxon with significant an-
nual trends. In all examples the annual number of observations is increasing,
despite the first two examples having a significant negative annual trend value.
This is because the number of observers in increasing each year. On the left hand
plots, the dashed lines show the expected number of annual observations if there
was no annual change in the number of observations per observer. The solid line
on the left hand plots show the fitted values from the Poisson GLM with an ob-
server offset. In the first two examples the annual trend estimate is negative. In
the third example the annual trend estimate is positive. The left hand plots show
the expected number of observations per observer.
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Case study: Can citizen science data be used to re-

liably detect a 2% annual increase in a kiwi species

abundance?

The 2018 - 2028 Kiwi Recovery Plan by the New Zealand Department of Conservation

outlines the goal to reach 100,000 kiwi by 2030 by growing all kiwi species by at least

2% per year (Germano et al., 2018). Furthermore, in this plan it is identified as an issue

(Issue 4.4) that the full potential of synergies between national survey programmes (e.g.

DOC national biodiversity monitoring, iNaturalist NZ, eBird) and kiwi monitoring are

not being realised. In this case study we take a closer look at the iNaturalist NZ kiwi

data and use simulations to explore if a 2% increase is possible to detect in noisy citizen

science data for taxa, like kiwi, that have relatively low densities and detection rates

on iNaturalist NZ. However, recall that the specification of the GLM in the previous

section was problematic and therefore this result does not guarantee a true biological

trend. Also, increases in the number of observations per year (as seen in Brown Kiwi

and Great Spotted Kiwi) may be explained by the annually increasing number of

observers (Table 4b.1).

Kiwi data

In 2018 there were approximately 70,000 kiwi in New Zealand, split among 5 species

and 14 taxa, (Germano et al., 2018). The 5 species are: Little spotted kiwi, Great

spotted kiwi, Brown kiwi, Rowi, and Tokoeka. The Rakiura kiwi is a subspecies of

the Tokoeka kiwi and is a relatively prevalent kiwi taxon. All 5 kiwi species and the

Rakiura kiwi have research grade observations on iNaturalist NZ between January 2013

and December 2019. Figure 4b.13 shows the annual iNaturalist NZ observations per

kiwi taxa between 2013 and 2019. In the previous section of this chapter we found that

the Little Spotted kiwi was the only kiwi taxa with a significant trend value of −0.42 in

the results from the GLM model. Recall that the Poisson GLM model we fitted has an

offset for the annual number of observers. Therefore, a significant trend is indicating

that there is an annual change in the number of observations per observer. Figure

4b.14, shows the annual number of kiwi observations per iNaturalist NZ observer for

the 6 kiwi taxa. As expected, the number of observations per observer for the Little

Spotted kiwi declined over the 7 years.

Kiwi are nocturnal, which makes it challenging in a mostly photo based citizen

science project for observers to share a kiwi observation. However, photos do not need

to be of the bird. Instead photo evidence of a kiwi, e.g. a footprint, feather, or burrow,

may be adequate. On iNaturalist NZ there is also the ability for an observation to
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reach research grade with a sound file.

Figure 4b.13: There have been iNaturalist NZ kiwi observations for 6
kiwi taxa between 2013 and 2019. These graphs show the annual number of
research grade kiwi observations by kiwi taxa between 2013 and 2019. Note the
y-axis scales are different for each taxa.

Table 4b.4 shows the 2018 abundance estimates for each kiwi taxa (Germano et al.,

2018) alongside the corresponding number of 2018 iNaturalist NZ research grade ob-

servations. With knowledge of the species abundances, and assuming the number of

kiwi observations per observer walk is binomially distributed, we can estimate the

probability of sharing a kiwi observation (this is a combination of the probability of

encountering and sharing an observation of a kiwi) for each kiwi taxa as:

Pr(Kiwi observation shared to iNat NZ per walk) =
2018 observations

2018 abundance× number of walks

For example, if 3000 walks took place in 2018 with the possibility of sharing a kiwi

observation then the encounter probabilities for each kiwi taxa are very small as shown

in Table 4b.4. 3000 walks is an arbitrary number but it is assuming that every year

20% of the total iNaturalist NZ observers would potentially share a kiwi observation.

This is a useful calculation for parametrising the following simulations. However, we

are assuming that all 70,000 kiwi are available to observe. In reality, many of these

kiwi probably spend most of their time in an area that is not accessible to humans.

Further, these kiwi taxa are limited to particular locations within New Zealand. For
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Figure 4b.14: The number of observations per observer for the Little
Spotted kiwi declined between 2019 and 2019. The Poisson GLM model
we fitted to iNaturalist NZ data in this chapter had an annual offset for the number
of observers. Therefore, a significant trend is indicating that there is an annual
change in the number of observations per observer. The only kiwi taxa with a
significant trend was the Little Spotted kiwi with a negative significant trend.
Note the y-axis scales are different for each taxa.

example the Rakiura kiwi is only found on Rakiura Island (Stewart Island), and the

Rowi kiwi is only found in Ōkarito.

Methods

To test if iNaturalist NZ data would be able to be used to identify a 2% increase in a

kiwi taxa abundance we use the simulation framework outlined earlier in this chapter,

but parametrise it to reflect the kiwi taxa. We set an annual increase of 2% in the

initial abundance, and consider a range of encounter probabilities that span the above

probability estimations of encountering and sharing an observation for each kiwi taxa.

We run the simulations over 10 years to reflect the time frame of the Kiwi Recovery

Plan, and over 20 years to understand the impact that more years of data has on the

power to identify an annual 2% increase in kiwi abundance. We extrapolate the number

of iNaturalist NZ observers to 2038 (20 years after the start to the Kiwi Recovery Plan)

by fitting a linear model to the known 7 years of iNaturalist NZ observers. We assumed

that every year 20% of the total iNaturalist NZ observers would potentially share a

kiwi observation if they encountered a kiwi. This is a fairly modest assumption given

136



Taxon
iNaturalist NZ

observations 2018
iNaturalist NZ
walks estimate

Actual abundance
estimate 2018

Observation
probability

Little spotted kiwi 4 3000 1900 7.0× 10−7

Great spotted kiwi 6 3000 14000 1.4× 10−7

Brown kiwi 6 3000 25100 8.0× 10−8

Rowi 1 3000 600 5.6× 10−7

Tokoeka* 2 3000 12550 5.3× 10−8

Rakiura 6 3000 12300 1.6× 10−7

Total 25 3000 66450 1.3× 10−7

Table 4b.4: All kiwi taxa have a low probability of being encountered
and shared as an observation to iNaturalist NZ. The 2018 iNaturalist NZ
research grade kiwi observations and 2018 kiwi abundance estimations are used to
estimate the probability of an iNaturalist NZ observer encountering and sharing a
kiwi observation by taxa for an assumed number of annual walks. In 2018 there
were no Tokoeka kiwi observations so the 2017 count of 2 Tokoeka kiwi observations
was used in the probability calculation as an example of a non-zero probability.

the popularity of kiwi taxa in New Zealand, and gives an average of 3000 walks in 2018

(the first year of the simulation).

Model power

Let β be the type 2 error rate at a 0.05 significance level (i.e. the rate at which a false

null hypothesis is not rejected). The power of a statistical test is the probability of

rejecting the null hypothesis when the alternative hypothesis is true:

power = Pr(reject H0|H1 is true).

Therefore,

power = 1− β.

Isaac et al. (2014) suggested an alternative power calculation to allow power com-

parisons across model with varying levels of inflated type 1 error rates:

power = 1− β − α,

where α is the type 1 error rate. Therefore, when a model has an inflated type 1 error

this bias towards finding significant trends when they do not exist is not contributing

to the power calculation. For this case study, we checked the type 1 error rates across

the parameter space of interest and found that is was consistently near 5% therefore
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we use the traditional calculation of power = 1− β.

Results

Over a 10 year period, and with the current level of kiwi observation activity on iNat-

uralist NZ, it is unlikely the data could be used to detect a 2% increase in a kiwi taxa

abundance. The power of the model was less than 10% within the parameter space

that the 6 kiwi taxa fall within (the parameters are the p and n in Table 4b.4), Figure

4b.15. That is, less than 10% of simulations were able to find a significant trend value

when there was a genuine 2% annual increase in the kiwi abundances. For all kiwi taxa

data pooled together the power of the model was approximately 20%.

Figure 4b.15 may be used to indicate the observation probability required to be

able to spot a significant trend when there is an annual 2% increase in the underlying

abundance. For example, for each individual kiwi taxa the observation probability

would have to be much larger to be able to spot a significant trend 75% of the time

when there is an annual 2% increase in the underlying abundance. Whereas, for all

the kiwi taxa combined if the observation probability was 8 times larger there would

be a 75% chance of spotting a significant trend when there is a 2% increase in the kiwi

abundance and given 10 years of kiwi observation data.

After 20 years of iNaturalist NZ kiwi data the power to detect a 2% annual increase

in the kiwi abundance is much larger than after 10 years of data, Figure 4b.16. For

all the kiwi taxa combined the power of the model to detect a 2% annual increase is

95%. For all the individual kiwi taxa the power is approximately 50%. However, we

have assumed that the number of observers increased linearly over this period. There

is no certainty that this observer effort increase will be the case for all iNaturalist NZ

observers, and further that it will apply to kiwi observations.

Figure 4b.17 shows the distribution of the estimated significant trend values when

the simulations are parametrised for the combined kiwi taxa point with 10 years of

observation data. When the null hypothesis of no annual trend is true, the estimated

significant trend values (i.e. type 1 errors) are symmetrically and bi-modally distributed

about zero. The bi-modal shape is due to there being insufficient data to detect very

small trends. However, when there is a genuine 2% annual increase in the kiwi abun-

dance, there are firstly a higher proportion of significant trends, 19% versus 5.5% when

the null hypothesis was true. Furthermore, the majority of the estimated significant

trends are positive, however the mean is approximately 4%. Figure 4b.18, shows the

same plot but for 20 years of simulated data. In the scenario where the null hypothesis

of no annual trend is true there are just over 6% of simulations where the fitted GLM
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resulted in a type 1 error. Again, these estimated significant trends are symmetrically

and bi-modally distributed about zero. When there was a genuine 2% annual increase

in the kiwi abundance, 97% of the simulations resulted in the fitted GLM returning a

significant trend estimate and these are symmetrically distributed around 2%.

Figure 4b.15: With the current level of kiwi observation activity on iNat-
uralist NZ it is unlikely a significant trend could be found in the data.
The heatmap shows the percentage of simulations with a significant estimated
trend when the actual kiwi abundance trend was increasing by 2% annually and
the simulations were run over 10 years. Points for the 6 kiwi taxa that have iNat-
uralist NZ observations are plotted, as well as a point for the combination of all 6
taxa.
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Figure 4b.16: If there were 20 years of kiwi data on iNaturalist NZ there
is a high probability of identifying a significant trend in the data. The
heatmap shows the percentage of simulations with a significant estimated trend
when the actual kiwi abundance trend was increasing by 2% annually and the
simulations were run over 20 years. Points for the 6 kiwi taxa that have iNaturalist
NZ observations are plotted, as well as a point for the combination of all 6 taxa.

Figure 4b.17: Significant trend estimations from 10 years of simulated
data parametrised for all kiwi Left: null hypothesis is true. Right: null hy-
pothesis is false and there is a 2% annual increase in the kiwi abundance.
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Figure 4b.18: Significant trend estimations from 20 years of simulated
data Left: null hypothesis is true. Right: null hypothesis is false and there is a
2% annual increase in the kiwi abundance.
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Discussion

This chapter has three areas of focus to explore the feasibility of using statistical models

to estimate annual trends in species abundances from citizen science data with both

minimal data collection protocols, and limited metadata on observer effort. As we

have done throughout this thesis, we used the iNaturalist NZ dataset as a case study.

The iNaturalist NZ data meets both the criteria of having a data collection protocol

with minimal guidelines for the observers, and a minimal amount of metadata data

on observer effort. First, we generated computer simulated citizen science data with

various sources of variation in citizen scientist observer effort. We used the simulated

data to test the performance of statistical models to detect annual trends in a species

abundance. Second, we fitted the same statistical model to every species in the iNat-

uralist NZ dataset that had 7 years of observation data to estimate the annual change

in the species abundance. Third, we explored if citizen science data from iNaturalist

NZ could be used to detect a 2% annual increase in a kiwi species abundance.

The often relaxed data collection protocols in citizen science, coupled with no or

limited metadata on citizen science recording effort, make it particularly difficult to

use statistical methods to isolate ecological changes from changes in citizen science

behaviour. Even in standardised ecological monitoring programmes, observed counts

are the result of two linked stochastic processes (Kery et al., 2009). The first stochastic

process is that of the true biological state, and the second is the observation process

that consists of the variation in the observer’s behaviour. Inference is desired on the

first stochastic process about the true biological state. However, when there are no

or limited measurable covariates about observer behaviour, it is extremely challenging

to specify a statistical model and make inferences about the biological state without

falsely drawing conclusion based on changes in observer behaviour. In citizen sci-

ence projects like iNaturalist NZ with minimal data collection protocols, and minimal

explicit metadata about citizen science effort, this problem of disentangling ecological

change from citizen scientist change is difficult and largely unexplored in the literature.

Simulated data

The ability of a statistical model to reliably detect the ecological change in a species

abundance from the noise of citizen science can be tested with simulated citizen science

data. In this chapter, we followed a similar approach to Isaac et al. (2014). We used

computer simulated citizen science data with varying sources of variation from the cit-

izen scientists to test the performance of statistical models to detect trends in species

abundances. We simulated multiple years of observations for a particular species by
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scaling up the single citizen scientist simulation from Chapter 4a. Where possible we

parametrised the simulated data to resembled iNaturalist NZ data. For example, based

on the iNaturalist NZ data the simulated data had: 7 years of data, an annually in-

creasing number of observers, and variation in the number of walks per year for each

observer. In the simulated data the annual species abundance was set to no annual

change. We fitted a Poisson GLM to the simulated datasets and measured the type 1

error rate, given the true null hypothesis of no annual change in the species abundance.

We found that for measurable levels of variation in citizen science behaviour, it is

possible to specify a model that reasonably captures the variation present in the data.

For example, if the only source of variation is an annual increase in the number of active

citizen scientists, then this can be included as an off-set in the model specification and,

as expected, the resulting type 1 error rate of 5% and at 0.05 significance level. How-

ever, if there are other sources of variation present in the data that are not currently

recorded in the iNaturalist NZ metadata, for example the number of walks a citizen

scientist does per year, then this cannot be specified in the model and the type 1 error

rates are greater than 5% at a 0.05 significance level. This indicates that there is more

variation in the data than the model is specifying, or the data is overdispersed. As we

outlined earlier in this chapter there is apparent overdispersion and real overdispersion.

Apparent overdispersion may be due to a model misspecification, and real overdisper-

sion is when the variation in the data really is larger than the mean (in the case of a

Poisson GLM). In the case of annual observation data from citizen scientists it is very

likely that a large component of overdispersion in the model is apparent overdispersion

because there is often a lack of information about annual changes in citizen science be-

haviour and therefore no ability to capture this variation with a covariate in the model.

iNaturalist NZ data

Testing the validity of a statistical model on simulated iNaturalist NZ citizen science

data provides insight into how reliable the statistical model will be when applied to

the real iNaturalist NZ dataset. Despite an inflated type 1 error rate when using a

quasi-Poisson GLM with an observer offset to model annual citizen science observation

data, we fitted the model to 3218 species with seven years of iNaturalist NZ observation

data. For each species, the fitted GLM provided an estimate of the annual change in

the species abundance. However, we found for a large proportion of the species the

GLM either had an unacceptable dispersion parameter or did not detect a significant

trend.

We fitted the same Poisson GLM to each species - a mega-fitting approach - even
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with a well specified model, there are problems with this approach. A mega-fitting

approach neglects the reality that there are differences in the factors influencing the

annual observation data of each species. For example, we applied the same increasing

observer offset to the Poisson GLM we fitted to each species. However, we do not know

that this increase in observer effort has been distributed evenly across all species. Also,

fitting the same model multiple times inevitably results in type 1 errors where the null

hypothesis is falsely rejected, i.e. we falsely find a significant trend estimate when there

was no annual change in the species abundance. For a well specified model we would

expect a type 1 error to occur in 5% of the species or realisations of the simulation. For

the simulated data, when we had control of all the sources of additional variation but

omitted our knowledge of the total number of walks per year (as this is not information

that is available in the iNaturalist NZ dataset), we found that more then 5% of the

GLM fits resulted in a type 1 error. In the actual iNaturalist NZ data the type 1 error

rate is likely to be larger as there are likely additional sources of variation beyond the

annual change in the species abundance and those that we have accounted for in the

GLM model. Therefore, it is possible that the 13% of species that had a significant

trend estimate and acceptable dispersion parameter are all type 1 errors.

Detecting a 2% annual increase in a kiwi abundance

As well as type 1 errors, there is also the risk of type 2 errors. A type 2 error occurs

when we fail to reject the false null hypothesis of no annual change in the species abun-

dance, i.e. we fail to identify a significant annual trend that is actually present in the

species abundance. As a case study we considered the ability to detect a 2% annual

increase in the kiwi abundance given 10 and 20 years of iNaturalist NZ data. We used

simulated data to show that with only 10 years of data where there is a true 2% annual

increase in the taxa abundance we could not reliably detect an annual increase for any

of the kiwi taxa, including all the taxa combined together. However, with 20 years

of kiwi citizen science data there was a relatively high probability of detecting a 2%

annual increase in the underlying kiwi abundance for each of the kiwi taxa, and espe-

cially for all the taxa combined together. This result is based on the assumption the

number of observers continued to increase annually over the 20 years. Observations are

consistently being shared to iNaturalist NZ, and we have shown as the number of years

that data is collected for increases, the ability of this data to make temporal ecological

inferences about a species abundance will improve.

The kiwi case study also raises the issue of the appropriateness of applying the same

model specification to each species. For each species we offset by the total number of

observers in New Zealand. However, some species are confined to very small geograph-

144



ical locations within New Zealand. For example the Rakiura kiwi is only found on

Rakiura Island (Stewart Island), and the Rowi kiwi is only found in Ōkarito. There-

fore in these cases it would be more sensible to offset by the total number of observers

that have shared an observations from Rakiura Island, and Ōkarito.

Gathering more metadata about observer effort

More metadata about citizen scientists’ observation behaviour is required to form well

specified models. We have shown in this chapter that with the current limited metadata

about annual changes in citizen science observer effort, i.e. just the annual change in

number of active observers, it is not possible to specify a statistical model for changes

in annual observation data. There are two options to rectify this problem: (1) explic-

itly collect additional metadata from the iNaturalist NZ observers, e.g. the number

of walks they do per year, length of walks, time spent observing, etc; (2) infer this

metadata from the already collected information.

The first option of explicitly collecting this additional metadata is done on the

eBird citizen science project. Observers have the option of selecting a collection pro-

tocol where they share information about the time spent observing, distance travelled,

and species they did not observe. eBird, also has the option of an observer sharing

a ”casual observation” which is similar to the protocol iNaturalist NZ currently uses.

The ability for the observer to select different observing protocols means that the cit-

izen science project and observers get the best of both worlds. If the citizen scientist

wants to share casual observations they are able to, and these observations could be ex-

cluded from any analysis of annual changes in species abundances. On the other hand,

if an observer is willing to share a more complete set of data, they are able to select

a suitable protocol. The additional information that is collected in these effort-based

sampling protocols can then be included in the specification of a suitable statistical

model. iNaturalist NZ may be in a good position to adopt these different collection

protocols. For example, iNaturalist NZ has already built up a solid base of observers

that may be willing to contribute the additional information. Furthermore, iNaturalist

NZ has an expansive observation dataset that could be used to create lists of expected

species at different locations to aid with the collection of absence data.

The second option of inferring metrics of observer effort from the already collected

dataset reduces the burden on the observer, but may be subject to error. For example,

Isaac et al. (2014) used records of other species to control for variation in observer ef-

fort, by either assuming that the record of one species indicates the absence of others,

or as a means for estimating observer sampling effort. However, this largely relies on

the assumption that species are recorded in assemblages and therefore the failure to
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record a species is interpreted as a non-detection, instead of a “not searched for”. In

the case of iNaturalist NZ, this is likely a false assumption. As we showed in Chapter

2, most iNaturalist NZ observers share very few observations to the project, and it is

very unlikely that these observers did not encounter more taxa during the days they

shared an observation.

Areas for future work

Throughout this chapter we made the simplifying assumption to not include variation

in observer probability of sharing an observation. This is almost certainly not the case

as we are assuming every observer has the same probability of sharing an observation,

and that throughout a walk an observers’ probability of sharing an observation does

not change. However, this assumption greatly simplified our simulation process as for

ever observer walk we were able to draw from a binomial distribution the number of

individuals that were observed given the probability of sharing an observation and the

number of individuals present during the walk. Recall from Chapter 4a that the prob-

ability of sharing an observation is a combination of the encounter probability and the

probability of sharing an observation to iNaturalist, where the encounter probability is

a function of the length of the observer walk, the observer’s perceptive radius, the home

range of the individual, and the relative speed of the individual to the observer. In the

next chapter, we revisit this assumption that there is no variation in the probability of

sharing an observation.

Inferences about species abundances from citizen science data may be used as an

early warning system to identify species that need further monitoring. In practice, the

estimations of species trends we found from the iNaturalist NZ data could be used as

an early warning sign of species that may require more robust monitoring. For exam-

ple, our model estimated that the little spotted kiwi abundance is declining. In the

kiwi case study we found that, based on less than 10 years of data, this trend estimate

may not accurately reflect the biological changes in the kiwi abundance. However,

it may warrant further investigation with more standardised practices and also close

monitoring as more years of kiwi data build up on iNaturalist NZ. However, it is im-

portant to be aware of the type 1 and type 2 error rates when using this method in

practice. A type 1 error could result in spending unnecessary resources monitoring a

species that was not experiencing any annual change in abundance. However, a type 2

error of failing to identify a species that either has an annually increasing or decreasing

abundance could be much more problematic. For example, it could lead to the unno-

ticed decline of a native species abundance or an undetected explosion of an unwanted

invasive species abundance. The results from the simulated datasets provide insights
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into the likelihood of a species being subject to a type 1 or type 2 error and this could

be used to assign a level of confidence about trend estimates from the iNaturalist NZ

dataset

Conclusion

Observational citizen science data without standardised data collection protocols is

subject to noise in the data from many sources of variation in the observer behaviours.

Without measurable covariates about the observation process it is difficult to use a

statistical model to estimate annual changes in a species abundance without making

spurious conclusions based on the noise of the citizen scientist behaviour. However,

these problems could be alleviated by introducing the explicit collection of data on

observer effort, or inferring metrics on observer effort from the already recorded ob-

servation data. In the complete absence of being able to use observational ecological

citizen science data to reliably monitor changes in a species population, there are many

other purposes and benefits of the citizen science projects, for example encouraging

participants to explore and engage with nature. This is a very important quality as

research has shown that if people are actively engaged in nature they are more eager

to support policies and efforts to enhance and restore nature (Toomey et al., 2020;

McKinley et al., 2017).
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Chapter 4c

Modelling variation in citizen scien-

tists’ contribution behaviours

Data and models,

combined to find insights, show

observers get bored.
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Abstract

In the previous two chapters we built up a method to understand when noisy ecologi-

cal citizen science, e.g. iNaturalist, may be used to detect actual temporal abundance

changes for a taxon. However, until now we have assumed the probability of an ob-

server sharing an observation of an individual member of a taxon is homogeneous across

observers, walks, and throughout a walk.

In this chapter we outline three candidate models that include varying levels of ob-

server variation to generate the probability distribution of the number of observations

shared per observer walk. We include a model that allows an observer’s probability of

sharing an observation of an individual to decay as the walk and number of individual

encounters progresses.

We use maximum likelihood model fitting techniques to fit the three models to

empirical probability distributions of the number of observations shared on walks in

the iNatualist NZ dataset. We consider the empirical probability distributions of the

number of observations an observer shares of a particular taxon during a walk, any

taxa within a particular iconic taxa subset, and just any taxa during a walk.

For all subsets of the iNaturalist NZ data the model that allows the probability of

sharing an observation to decay as a walk progresses almost always has support from

the empirical data.

The binomial model that assumes observer behaviour is homogeneous across ob-

servers, walks, and throughout a walk has the least support of the three models we

consider.

The results from this chapter give insights into when our assumption of homoge-

neous observation behaviour was valid in the previous two chapters. Furthermore, this

work provides viable alternatives to our previous assumption of homogeneous observa-

tion behaviour. Future work would involve incorporating the results from this chapter

into the methodology outlined in the previous two chapters.
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Introduction

In previous two chapters (Chapter 4a and Chapter 4b) when we modelled iNaturalist

NZ observers sharing observations of individuals, we assumed all observers had the

same probability of encountering and sharing observations. We assumed this proba-

bility was homogeneous across different observers, different walks, and throughout a

given walk. However, in reality it is unlikely all observers will be homogeneous with

respect to observation behaviour. For example, Sauermann and Franzoni (2015b) ex-

amined daily contribution patterns of citizen scientists in seven different citizen science

projects hosted on the platform Zooniverse. They found that a small number of par-

ticipants contributed a large share of the contributions. In particular, a large share of

participants only contributed once to a citizen science project. They also found that

participation frequency declined over time for even the highly active users. We found

in Chapter 2 that iNaturalist NZ does not deviate from this typical effort profile. Over

the 7 years of iNaturalist NZ data from 2013 - 2019, 10% of observers have shared

90% of the observations. Furthermore, 35% of observers only shared one observation

to iNaturalist NZ. Therefore, it is clear that assuming all observers have the same ob-

servation behaviour is a great simplification of reality. However, it was also a practical

simplification to build up the methods in the previous two chapters.

In this chapter we aim to link the distributions of daily observations per observer to

an underlying mechanism that is driving the observer variation. We model both inter-

observer variation (variation between different observers/walks) and intra-observer

variation (variation within one observer/walk). Recall, we have assumed that ob-

servers do at most one walk per day. Therefore, the number of unique days per year an

observer shares an observation is also the number of walks the observer does per year.

Our approach is to outline candidate models that describe a physically plausible mech-

anism within our context, rather than blindly fitting statistical models. For simplicity

we only consider three models. The first model is the binomial base case model we ex-

plored in Chapter 4c, where all observers have the same observation behaviour during

a walk and across different walks, i.e. no inter or intra-observer variation. The second

model, a beta-binomial model, allows inter-observer/walk variation in the probability

of sharing an observation of an individual. The third model, a decay model, allows

both inter and intra-observer variation in the probability of sharing an observation

of an individual. The decay model allows the probability of an observer sharing an

observation to decay as the walk progresses and they encounter more individuals. We

are only considering three models, therefore in an absolute sense none of these models

may be the best fit or describe the complexity underlying the sharing of observations to

iNaturalist NZ. However, we will at least be able test if the binomial model in Chapter

4c is supported by the empirical data from iNaturalist NZ.
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Although not in the context of citizen science data, Lloyd-Smith et al. (2005) car-

ried out a similar analysis in their work on fitting three candidate models to empirical

probability distributions of the number of secondary cases caused by each infectious

individual from eight directly transmitted diseases. They considered three plausible

candidate models: (1) a Poisson model that neglects individual variation in the repro-

ductive number; (2) a geometric model that models constant per capita rates of leaving

the infectious state; (3) a negative binomial model as a general model to incorporate

variation in individual infectious histories. Lloyd-Smith et al. (2005) estimated the pa-

rameters of each model using maximum-likelihood methods. They compared candidate

models using Akaike’s information criterion (AICc) modified for a small sample size.

In this chapter we follow a similar format to the work by Lloyd-Smith et al. (2005).

We consider the empirical probability distributions of the number of observations per

observer walk for three cases: (1) the number of observations an observer shares of

members of a particular taxon per walk; (2) the number of observations an observer

shares of any taxa within a particular iconic taxa subset per walk; (3) the number of

observations an observer shares of any taxa per walk. For all three cases of empirical

probability distribution, we use maximum-likelihood methods to estimate the param-

eter values for our three candidate models. We compare the goodness of fit across

the three candidate models using AIC. As a result, we gain insights into the types of

behaviours iNaturalist NZ observers may have and how these behaviours vary across

different taxon and observers. This work shows us that our assumption of homoge-

neous inter-observer and intra-observer behaviour in Chapter 4a and Chapter 4b was

not always supported by the empirical data.
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Materials and Methods

Models

In this section we outline the three candidate models that we fit to the empirical prob-

ability distributions of the number of observations shared per observer walk. There

is only data for walks where at least one observation was recorded, i.e. all the walks

with zero observations are absent from the iNaturalist NZ dataset. Therefore, in all

the subsequent model fitting we truncate the models to remove any zero values.

Model 1: Homogeneous observers

This is the naive model we assumed in Chapter 4a and Chapter 4b. Figure 4c.1

shows an outline of this model. All observers have the same probability of sharing an

observation of each individual they encounter during a walk. This probability does

not vary during a walk, between walks, or between observers. In other words, inter-

observer and intra-observer behaviour is homogeneous. The number of individuals that

may be observed per walk is fixed at n. The number of observations y(i,j) by observer

i on walk j is modelled by a binomial distribution:

y(i,j)|p ∼ Bin(n, p).

Where p is the probability of sharing an observation of one of the n individuals.

Because we do not have any data for walks with zero observations we truncate the

binomial distribution to make it exclusive of zeros:

Pr(y(i,j) = k|p, n) =

(
n
k

)
pk(1− p)n−k

1− (1− p)n
, 1 ≤ k ≤ n
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Figure 4c.1: Model 1: Homogeneous observers. All observers have the same
probability of sharing an observation of each individual they encounter during a
walk. This probability does not vary during a walk, between walks, or between
observers. The resulting probability distribution of the number of observations per
walk is binomially distributed.
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Model 2: Inter-observer/walk variation

In this model we relax the assumption that the probability of sharing an observation

of an individual is homogeneous across walks and observers. However we still assume

the probability of sharing an observation does not vary during a walk. In other words,

we have have introduced inter-observer/walk variation in the probability of sharing

an observation. Figure 4c.2 shows a diagram of this model. The probability p(i,j) of

observer i on walk j sharing an observation of each individual they encounter is sampled

from a Beta distribution. A Beta distribution is a continuous probability distribution

defined on the interval [0, 1]:

p(i,j)|a, b ∼ Beta(a, b).

Where a and b are the shape parameters of the beta distribution. Then,

π(p|a, b) =
pa−1(1− p)b−1

B(a, b)
, 0 ≤ p ≤ 1.

Where B(a, b) is the beta function.

The number of observations, y(i,j), by observer i on walk j follows a binomial dis-

tribution:

y(i,j)|p(i,j), n ∼ Bin(n, p(i,j)).

And

Pr(y(i,j) = k|p, n) = L(p|k) =

(
n

k

)
pk(1− p)n−k.

The beta distribution is a conjugate distribution of the binomial distribution. This

means that there is an analytically tractable compound distribution and one can think

of the parameter p in the binomial distribution as being randomly sampled from a beta

distribution. The compound beta-binomial distribution is given by

f(k|n, a, b) =

∫ 1

0

L(p|k)π(p|a, b)dp

=

(
n

k

)
1

B(a, b)

∫ 1

0

pk+a−1(1− p)n−k+b−1dp

=

(
n

k

)
B(k + a, n− k + b)

B(a, b)

(4c.1)

by using B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.
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We truncate the beta-binomial probability distribution to be exclusive of zeros.

Clearly, if p(i,j) = p for all i and j then the beta-binomial distribution is equivalent to

the binomial distribution and therefore model 2 is equivalent to model 1.

Figure 4c.2: Model 2: Inter-observer/walk variation. The probability that
an observer shares an observation of each individual they encounter during a walk
is sampled from the beta distribution. Therefore, this probability may vary across
walks and observers and we have introduced inter-observer/walk variation in the
probability of sharing an observation. The resulting probability distribution of the
number of observations per walk follows a beta-binomial distribution.
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Model 3: Inter-observer/walk and intra-walk variation

In this model we introduce observation fatigue or boredom per walk. As an observer

progresses through their walk the probability of sharing an observation of each newly

encountered individual decays. Figure 4c.3 shows a diagram of this model. Each

observer begins a walk with a probability p
(i,j)
1 of sharing an observation of the first

individual they encounter. There are multiple options for selecting this first proba-

bility. For simplicity we assume all observers always share an observation of the first

individual they encounter. We could assume all observers have a probability p of shar-

ing an observation of the first individual. Or we could also assume all observers have

a probability p drawn from a beta distribution of sharing an observation of the first

individual. However, because we would truncate any resulting distribution to remove

the walks with zero observations all these cases are equivalent to assuming the observer

always share an observation of the first individual.

As each subsequent individual is encountered the probability of sharing an obser-

vation decays according to a decay parameter λ(i,j):

p
(i,j)
2 = p

(i,j)
1 e−λ

(i,j)

,

p
(i,j)
3 = p

(i,j)
1 e−2λ(i,j) ,

...

p(i,j)
n = p

(i,j)
1 e−(n−1)λ(i,j) .

The decay parameter λ(i,j) for observer i on walk j is drawn from a gamma distri-

bution:

λ(i,j) ∼ Gamma(k, θ).

Where, k is the shape parameter and θ is the scale parameter of the gamma distri-

bution.

Therefore, the number of observations y(i,j) shared by observer i on j is modelled

as,

y(i,j) ∼
∑
n

Bernoulli(p(i,j)
n ).

We do not need to truncate this distribution as we have assumed that every walk

has at least one observation. This model would be equivalent to model 1 if λ(i,j) = 0

for all i and j and p
(i,j)
1 = p for all i and j. Similarly, this model would be equivalent

to model 2 if λ(i,j) = 0 for all i and j and p
(i,j)
1 ∼ Beta(a, b) for all i and j.
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Figure 4c.3: Model 3: Inter-observer/walk and intra-walk variation. The
probability that an observer shares an observation of each individual they en-
counter during a walk decays according to a decay parameter that is drawn from a
gamma distribution. This decay parameter may vary across walks and observers.
Therefore, we have inter-observer/walk variation and also intra-walk variation in
the probability of sharing an observation. The resulting probability distribution
of the number of observations per walk does not follow a standard distribution.
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Data

As we did in Chapter 4b, we consider iNaturalist NZ observations for the 7 years from

January 2013 to December 2017. However, in this chapter we include verifiable ob-

servations, i.e. we also include observations that have attached media but have not

progressed from the “needs id” quality grade to “research grade”. In total over the 7

years there are 632, 916 observations, of 18, 417 unique taxa that have been shared by

12, 555 observers.

In this chapter we are modelling the number of observations an observer shares per

‘walk’. Recall, from Chapter 4b that we assume observers do at most one walk per

day. Therefore, we consider the distribution of observations per day as a proxy for the

distribution of observations per walk.

We fit the three observer behaviour candidate models to the following three vari-

ations of the empirical probability distributions of observations per walk from the

iNaturalist NZ data. Table 4c.1 summarises the three variations of empirical distribu-

tions.

1. The probability distribution of the number of daily observations shared by each

observer for a unique taxon, e.g. house sparrow (Passer domesticus). We refer

to these probability distributions as taxon distributions. Figure 4c.4 shows two

examples of these distributions.

2. The probability distribution of the number of daily observations shared by each

observer for each iconic taxon. Recall that iNaturalist NZ has 13 iconic taxa and

some iconic taxa are nested in lower taxonomic ranks than others (e.g. Animals,

Insects). Observations are assigned to the lowest matching iconic taxon. We refer

to these probability distributions as as the iconic taxon distributions. Figure 4c.5

shows two examples of these distributions.

3. The probability distribution of the number of daily observations shared by each

observer for any taxa. We refer to these probability distributions as the observer

distributions. Figure 4c.6 shows two examples of these distributions.

To ensure we have sufficient data for modelling fitting we only consider empirical

probability distributions that have at least 30 data points. For the taxon distributions

this means that for a taxon to be included in the analysis there needs to be at least 30

daily counts of observations shared by any observer for that taxon. For the observer

distribution, an observer needs to have at least 30 unique days of observation data.

There are only 13 iconic taxa (amphibians, animals, arachnid, birds, chromista, fungi,

insects, mammals, mollusks, plant, protozoan, ray-finned fish, reptile), and all iconic
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Taxon distributions Iconic taxon distributions Observer distributions

Data pooled by Each unique taxon Each unique iconic taxon Each unique observer

Data point
Daily observation count
by an observer for a
given taxon

Daily observation count
by an observer for a
given iconic taxon

Daily observation count
for a given observer

Total distributions 18,417 13 12,555

Distributions with
more than 30
data points

3,314 (18%) 13 (100%) 623 (5%)

Table 4c.1: Summary of the three empirical probability distributions used
in candidate observer behaviour model fitting. We fit the candidate observer
behaviour models to 3,314 taxon distributions, 13 iconic taxon distributions and
623 observer distributions.

taxa have at least 30 daily observation counts by any observer. 30 data points is an

arbitrary value, however, we test that the results still hold with 100 data points. Table

4c.1 outlines the number of distributions we would have for each of the three cases

if we did not have a lower limit on the number of data points, and the number that

remain after applying the limit. Only 18% of taxon distribution and 5% of observer

distributions remain. However, the 18% of taxon distributions still include data from

95% of the observers and 85% of the observations. The 5% of observer distributions

include data from 86% of the taxa and 54% of the observations.

We remove all daily counts of observations that are greater than 30 observations.

This is an attempt to remove the instances where an observer bulk uploads multiple

observations on the same day, but the observations were either taken across multiple

days or by multiple people. We fit the three candidate models to the taxon and iconic

taxon empirical probability distributions with and without the daily counts from ob-

servers that have only shared one observation to iNaturalist NZ. This exclusion of some

observers has no impact on the total number of taxon and iconic taxon distributions

we consider for model fitting.
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Figure 4c.4: The majority of observers share one observation of a par-
ticular taxa per walk. These are example distributions for the daily number
of observations by each observer for a unique taxon. On the majority of walks
where an observer shared an observation of a Mainland Tui Prosthemadera novae-
seelandiae, only one Mainland Tui observation was shared, however, on some of
those walks upto 14 Mainland Tui observations were shared. For the Variable Oys-
tercatcher Haematopus unicolor no observer has shared more than 4 observations
on a single walk.

Figure 4c.5: The majority of observers share fewer than 5 bird or 5 mam-
mal observations per walk. Example distributions for the daily number of
observations by each observer for each iconic taxon. On the majority of walks
where an observer shared an observation of any bird taxon the majority of ob-
servers shared fewer than 5 observations of any bird taxon on the same walk. This
is also the case for mammal observers. However, some observers have shared up
to our truncation point of 30 bird observations per walk.
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Figure 4c.6: The distribution of observations per walk by an observer
varies largely between observers. Example distributions for the daily number
of observations by each observer of any taxa. Observer 1 most often shared 1 or
2 observations of any taxa per walk, however, sometimes they shared up to 13
observations in a single walk. Observer 2 often shared up to 5 observations of any
taxa per walk, and occasionally they shared 12 observations on a single walk.
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Model fitting

We estimate the parameters for each model by using maximum likelihood estimation.

For model 1, we estimate the probability p of sharing an observation of each encoun-

tered individual. For model 2, we estimate the shape parameters a and b of the beta

distribution that the probability parameters p(i,j) are sampled from. For model 3, we

estimate the shape parameters, k and θ, of the gamma distribution that the decay

parameters λ(i,j) are sampled from. For all three models we assume a fixed value for

the number of individuals n.

Model comparison

We use the Akaike information criterion (AIC) to compare the three candidate models.

Akaike (1974) defined an information criterion (AIC) that is a rigorous way to estimate

the Kullback-Leibler (K-L) distance based on the empirical log-likelihood function at

its maximum point as:

AIC = −2log(L(θ̂|y)) + 2K.

Where log(L(θ̂|y)) is the numerical value of the log-likelihood at its maximum point

and K is the number of estimated parameters. The preferred model is the candidate

model with the minimum AIC value. AIC rewards goodness of fit (as assessed by the

likelihood function), while penalising based on the number of estimated parameters.

The parameter penalty discourages overfitting from increasing the number of parame-

ters in the model, which almost always improves the goodness of the fit.

∆i Level of empirical support for model i

0 - 2 Substantial

4 - 7 Considerably less

> 10 Essentially none

Table 4c.2: Rules of thumb for interpreting ∆i. Table from Burnham and
Anderson (2002).

AIC estimates the quality of each model relative to each other model in the set

and therefore AIC does not inform anything about the absolute quality of the model.

Furthermore, an individual AIC value, by itself, is not interpretable. Thus, the AIC

differences ∆i for model i are very important and useful:

∆i = AICi − AICmin.
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The model estimated to be best has ∆i ≡ min ≡ 0. The larger ∆i is, the less

plausible it is that model i is also a good fit given the empirical data. Some rough

rules of thumb given by (Burnham and Anderson, 2002) are outlined in Table 4c.2.

163



Results

By taxon

In this case we are modelling the number of observations of a particular taxon that an

observer shares per walk. For example, the number of house sparrow Passer domesticus

observations an observer shares per walk. We considered each walk (by any observer)

that involved an observation of taxon x. From these walks we found the empirical

probability distribution of the number of observations of taxon x shared per walk. We

fitted the three candidate models to the 3,314 taxon distributions with more than 30

data points.

Model fit comparison

Table 4c.3 shows the decay model has empirical support (i.e. AIC difference, ∆i < 7)

for all 3,314 of the taxon distributions we considered in the model fitting. The beta-

binomial model has empirical support for 77% of the taxon distributions and the bino-

mial model has empirical support for 66% of the taxon distributions. The decay model

is the best fit (i.e. AIC difference, ∆i = 0) for 51% of the taxa, the binomial model is

the best fit for 47% of the taxa, and the beta-binomial model is the best fit for 11% of

the taxa. Note that for some taxa both the decay model and beta-binomial model had

∆i = 0. The AIC calculation has the 2K term that penalises the AIC score based on

the number of parameters, K, in the model. For most taxa the maximum log-likelihood

value of the beta-binomial model and binomial model differ by less than 2. Therefore,

the AIC score is lower for the binomial model as it has one less parameter than the

beta-binomial model. These results are consistent with and without observations from

observers that have only done one iNaturalist NZ observations. These results are also

consistent if we only consider taxon distributions with more than 100 data points.

We sub-setted these results by the 13 iNaturalist iconic taxa (plants, insects, birds,

fungi, arachnids, animals, mollusks, mammals, ray-finned fish, reptiles, chromista, am-

phibians, and protozan). The following iconic taxa subsets contained less than 100

taxa and were left out of the following analysis; mammals, ray-finned fish, reptiles,

chromista, amphibians, and protozan. Table 4c.3 shows that there were only minor

differences in the model fit results across the iconic taxa groups.
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Decay parameter analysis

Since the decay model (model 3) with inter-observer/walk variation and intra-walk

variation has empirical support for all the taxon distributions we did further analysis

on the decay rates. For each taxon x, we have the maximum likelihood estimation of

k and θ, the two parameters for the gamma distribution that describes the decay rate,

λ(x). In this analysis we considered the expected decay rate for taxon x,

E(λ(x)) = k(x)θ(x).

Figure 4c.7 shows the distribution of the expected decay rates of each taxon per

walk. Most taxa have an expected decay rate close to 5, which translates to approxi-

mately a probability of 0.007 of sharing a second observation given a second individual

has been encountered. We found that there is no evidence of a correlation between the

number of observations for a taxon and the expected decay rate for the taxon.

Figure 4c.7: The majority of taxa have a decay rate close to 5. A decay
rate of 5 results in a probability of 0.007 of sharing a second observation given a
second individual has been encountered.

We grouped the expected decay rates by the 13 iconic taxa subsets. We compared

the distribution of decay rates across the iconic taxa subsets that have more than 100

individual taxa (7 of the 13 iconic taxa). Figure 4c.8 A shows box plots of the dis-

tributions of expected decay rates by each of these iconic taxa subsets. A box plot

shows the median, 25th and 75th percentile, the maximum, and minimum points of

the data. The distribution of expected decay rates for the 7 iconic taxa subsets appear

to be similar. However, taxon within the mollusk iconic taxa subset appear to have

slightly lower decay rates and taxon within the arachnid iconic taxa subset appear to
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have slightly larger decay rates.

Figure 4c.8: The distribution of expected decay rates for the 7 iconic
taxa subsets with more than 100 individual taxa appear to be similar.
A, Box plots (median, 25th and 75th percentile, the maximum, and minimum)
of the expected decay rates for each of the iconic taxa with model fit results for
more than 100 individual taxa. B, the mean of the expected decay rates. Error
bars show 95% confidence intervals around the mean and were calculated by using
bootstrap samples of the datasets for each iconic taxa subgroup. We have excluded
iconic taxa subsets that had fewer than 100 taxa.

Figure 4c.8 B shows a 95% confidence interval on the mean of expected decay rates
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within each iconic taxa subset. The 95% confidence intervals around the mean were

calculated by using bootstrap samples of the datasets for each iconic taxa subgroup.

The mean of the expected decay rates for taxa within the mollusk iconic taxa subsets

are smaller than the taxa within the other iconic taxa subsets.

We split the taxa into subsets by the establishment means; endemic, native, and

introduced. For 660 (20%) of the taxa we do not have data on their establishment

mean and they are left out of this analysis. For the remaining taxa 40% are endemic,

30% are native, and 30% are introduced. We further filtered these results to just plant

and just bird taxa because for these two iconic taxa subsets it is likely that most

iNaturalist NZ observers will have some knowledge of the taxa that are native and/or

endemic, verses introduced to New Zealand. For bird taxa, 43% are endemic, 36% are

native, and 21% are introduced. For plant taxa, 42% are endemic, 25% are native,

and 34% are introduced. Figure 4c.9 shows the mean of the expected decay rates for

taxa within these three subsets. Across all the data, introduced taxa, on average have

a higher expected decay rate than taxa that are either endemic or native. This result

is also the case when we just consider the 1,330 plant taxa with establishment means

data. For the 144 bird taxa with establishment means data the result is less definitive

but still follows the same trend.

Figure 4c.9: On average endemic and native taxa have a lower expected
decay rate than introduced taxa. The error bars are 95% confidence intervals
on the mean and were calculated by using bootstrap samples of the datasets for
each subset of data. We repeated this analysis for all the data, just the bird taxa,
and just the plant taxa.
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By iconic taxa

In this case we are modelling the number of observations of any taxa within an iconic

taxon subset an observer shares per walk. For example, the number of bird observations

an observer shares per walk. We considered each walk that involved an observation

of any taxon within iconic taxon subset xI . From these walks we found the empirical

probability distribution of the number of observations of any taxa within the iconic

taxon subset xI shared per walk. We fitted the three candidate models to each of the

13 iconic taxa distributions.

Model fit comparison

For all 13 iconic taxa the decay model is the best fit and the binomial or beta-binomial

model have no support. That is, ∆Decay = 0, ∆Binomial > 7, and ∆Beta-binomial > 7 for all

13 iconic taxa. This result is the same with and without the daily observation counts

from observers that have only shared one observation to iNaturalist NZ.

Decay parameter analysis

As we did with the taxon distribution analysis, we analyse how the decay parameters

vary across the 13 iconic taxa distributions. For each iconic taxon we have a maximum

likelihood estimation of k and θ, the two parameters for the gamma distribution that

the decay rate parameter, λ, is sampled from for each iconic taxon. Figure 4c.10 shows

the relationship between the number of taxa per iconic taxon subset and the expected

decay rate of any taxon within a particular iconic taxon subset (adjusted r-squared =

0.24). However, the fitted linear model does not have a significant slope. Note that

the number of taxa does not necessarily correlate with the number of individuals. For

example, an iconic taxa subset could have a lot of different rare taxa, whereas, an-

other iconic taxa subset could have few unique taxa but they might be very prevalent.

Therefore, a more insightful investigation would be the correlation between expected

decay rates and the population size of the iconic taxa subset.
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Figure 4c.10: The relationship between the number of taxa per iconic
taxon subset and the expected decay rate of any taxon within a par-
ticular iconic taxon subset. We fitted a liner model between the number of
taxa in an iconic taxon subset and the expected decay rate of a taxa within that
iconic taxon subset set. The slope parameter is not statistically significant and the
adjusted r-squared is 0.25.
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By observer

In this case we are modelling the number of observations a particular observer shares

of any taxa per walk. For each observer we found the empirical probability distribution

of the number of observations of any taxa they shared on a walk. We fitted the three

candidate models to each of these observer distributions with more than 30 data points

(i.e. observers that have done more than 30 walks).

Model fit comparison

Table 4c.4 shows the decay model has empirical support (i.e. AIC difference, ∆i < 7)

for 93% (577) of the observer distributions we considered in the model fitting. The

beta-binomial model has empirical support for 43% of the observer distributions and

the binomial model has empirical support for 13% of the observer distributions. The

decay model is the best fit (i.e. AIC difference, ∆i = 0) for 75% of the observers, the

beta-binomial model is the best fit for 19% of the observer, and the binomial model the

best fit for 6% of the observers. These results are also consistent if we only consider

observer distributions with more than 100 data points.

Proportion Value

Decay model is best fit (∆Decay = 0) 75% 468

Decay model has substantial support (0 ≤ ∆Decay ≤ 2) 83% 520

Decay model has support (∆Decay < 7) 93% 577

Beta-binomial model is best fit (∆Beta-binomial = 0) 19% 119

Beta-binomial model has substantial support (0 ≤ ∆Beta-binomial ≤ 2) 29% 183

Beta-binomial model has support (∆Beta-binomial < 7) 43% 269

Binomial model is best fit (∆Binomial = 0) 6% 36

Binomial model has substantial support (0 ≤ ∆Binomial ≤ 2) 8% 51

Binomial model has support (∆Binomial < 7) 13% 78

Table 4c.4: The decay model has support from the empirical data for the
large majority of the observers distributions. Summary of Akaike infor-
mation criterion difference (∆i) for the three fitted models fitted to the observer
distributions. The observer distributions are the probability distribution of the
number of observations an observer shares per walk of any taxa.
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Decay parameter analysis

Figure 4c.11 shows the distribution of decay rates for each observer distribution where

the decay model has empirical support (i.e. AIC difference, ∆i < 7). The expected

decay rate is centered around 2 which translates to approximately a probability of 0.14

of sharing a second observation, given a second individual in encountered. These decay

rates are lower than when we considered taxa individually.

Figure 4c.11: The majority of observers have an expected decay rate less
than 4 when we consider sharing observations of any taxa to iNaturalist
NZ on a walk. This histogram shows the distribution of expected estimated
expected decay rates across the 623 observers that had at least 30 data points and
were therefore included in the model fitting.

We found that there is a negative correlation between the number of observations

an observer has shared to iNaturalist NZ and their estimated expected decay rate on

a particular walk, Figure 4c.12. A linear model between the log of number of observa-

tions an observer has shared and the expected decay rate has a statistically significant

slope (p=2e-9) and an adjusted R-squared value of 0.1. For this reason we did not

subset the decay results any further, for example into subgroups based on the number

of observations an observer has shared.
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Figure 4c.12: There is a negative correlation between the number of ob-
servations an observer has shared to iNaturalist NZ and the expected
decay rate on a walk. We fitted a liner model between the number of observa-
tions an observer has shared to iNaturalist NZ and the expected decay rate. The
slope parameter is statistically significant (p=2e-9 and the adjusted r-squared is
0.1).
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Discussion

In this chapter we revisited our assumption in Chapter 4a and Chapter 4b that an

observer’s probability of sharing an observation of an individual they encounter is ho-

mogeneous across walks, between different observers, and also for the duration of the

walk. We outlined three candidate models that included physically plausible sources

for the variation in this probability of sharing an observation. The first model was

the model with no variation that we assumed in Chapter 4a and Chapter 4b. The

second model introduced variation between walks and observers in the probability of

sharing an observation. This was modelled by for each walk, sampling the probability

of sharing an observation from a beta distribution. The third model introduced vari-

ation during the walk in the probability of sharing an observation of an encountered

individual. This was modelled by including a decay parameter that was sampled from

a gamma distribution. After every encounter of an individual the probability of sharing

an observation was reduced according to the decay parameter.

We used maximum-likelihood model fitting methods to fit these three models to

the empirical probability distributions of the number of observations shared per walk

from iNaturalist NZ. We considered three slices of the empirical data of the number

of observations shared per walk. First, we considered the number of observations ob-

servers share of each taxon per walk. For example, the number of observations of a

house sparrow per walk. Second, we considered the number of observations observers

share of any taxa within an iconic taxon subset per walk. For example, the number of

observations of any bird taxa per walk. Third, we considered the number of observa-

tions observers share of any taxa per walk.

We compared the goodness of fit of the three models to the empirical data by com-

paring the AIC values. AIC is useful in selecting the best model in the set of candidate

models. However, if all the models are very poor, AIC will still select the model esti-

mated to be best. But even that relatively best model might be poor in an absolute

sense. Therefore, there is no guarantee that there is not a model outside of the three

models we considered that is a better fit than all three models.

The model fitting results were similar for all three slices of empirical probability

distributions from the iNaturalist NZ data. The model that allowed an observer’s prob-

ability of sharing an observation to decay throughout the walk was most often the best

fitting model and was almost always supported by the empirical data. The binomial

model that we have assumed to be the case in 4a and Chapter 4b had support from

the empirical data for 2/3 of the taxa. However, when we considered the number of

observations shared per walk of any taxa within an iconic taxa subset, or any taxa, the
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binomial model does not have very much support from the empirical data. In Chapter

4a we were considering the observations shared per walk of a particular taxon. There-

fore, on average, our assumption that the number of observations shared per walk by

a given observer is binomially distributed is supported by the empirical data for 66%

of the taxa.

In this chapter we have assumed that the variation in the number of observations

shared per observer walk is due to variation in an observer’s probability of sharing an

observation of each individual they encountered. However, there are many other factors

that could be contributing to the variation in the number of observations shared per

walk. For example, the distance of the walk, the duration of the walk, or the number

of individuals present on a walk. We have also only modelled two forms of variation

beyond our base case of no variation in the probability of an observer sharing an obser-

vation. Despite not exhaustively modelling all the potential sources of variation during

an observer walk we have still learnt the fundamental point, that regardless of the rea-

son, it is not always supported by the empirical data that the probability distributions

of the number of observations shared per walk follow a binomial distribution. Further,

we have learnt that observers are more likely to just share one observation per walk

than would be expected from a binomial model. A model that allows a decay in ob-

servation sharing enthusiasm throughout a walk is well supported by the empirical data.

There are multiple factors that could be contributing to the tendency of observers

to share just one observation per walk. For example, many observers may take mul-

tiple photographs throughout a walk, but they are often not sharing observations to

iNaturalist NZ until after the walk is complete, and therefore it is quite likely they

would just select the best photo to share. We also did not consider the probability of

encountering multiple individuals and therefore the ability to share more than one ob-

servation. Future work would involve including the decay model in the simulated data

in Chapter 4a. This would enable us to quantify the impact this decaying behaviour

and therefore tendency to just share one observation per walk has on the ability to

robustly detect temporal changes in the underlying taxa abundances. This analysis

would provide an insight into how important it is to encourage citizen scientists to

share multiple observations and particularly multiple observations per walk.
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Chapter 5

Final Discussion

Options were explored.

Suggestions are given to,

improve certainty.
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Citizen science has grown rapidly in recent years and collectively citizen scientists

have formed some of the largest biodiversity datasets in the world (Bonney et al., 2014,

2009; Baker, 2016; Pocock et al., 2017; Wiggins, 2011). However, there are ongoing

concerns on the ability to use the data in a scientific framework (Bird et al., 2014;

Dickinson et al., 2010). This thesis has explored a range of mathematical and statisti-

cal techniques that may be used at different stages and with different types of citizen

science projects to improve the scientific usefulness of citizen science outputs.

In Chapter 2 we described the iNaturalist platform, and presented a range of data

from the New Zealand chapter of the platform. iNaturalist NZ has minimal protocols

for participants to follow. This presents challenges when attempting to make use of

the data for scientific purposes. The iNaturalist NZ citizen science project was used as

a case study to develop and test our methods and these methods may be generalised

to other similarly structured citizen science projects.

In Chapter 3a and 3b we focused on the image classification element of the iNat-

uralist NZ citizen science project. Currently, iNaturalist uses a simple majority vote

method to combine individual citizen scientists’ classifications for an image into a final

classification. We outlined a Bayesian approach that estimates and utilises a measure

of each participant’s ability to classify an image. This approach optimises the citizen

scientists’ classification efforts while also ensuring a desired level of certainty in final

classification.

In Chapter 4a and 4b we focused on the observation sharing stage of iNaturalist

NZ. We used random walk theory to explore the ability to make reliable ecological

inferences about temporal changes in species abundances from noisy citizen science ob-

servation data. We found that without sufficient meta-data about observer behaviour

it is difficult to specify an appropriate statistical model. Therefore, it is challenging

to differentiate between changes in species abundances due to variation in observer

behaviour, versus ecological changes in species abundances.

In Chapter 4c, we used maximum likelihood model fitting techniques to gain in-

sights into typical citizen science observation sharing behaviours. We found that the

probability of an observer sharing an observation decays throughout a citizen scientist

walk, and that this probability was well supported by the iNaturalist NZ data. In

fact, many citizen scientist walks on iNaturalist NZ only result in the sharing of one

observation.

The design of a citizen science project greatly determines its usefulness. The design

can impact on the ability to apply post-hoc statistical and mathematical manipulations
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to the data, and the conclusions that can be reached. Some designs allow user identi-

fication accuracy to be efficiently and precisely estimated. In Chapter 3a, we showed

that combining individual identifications with Bayes’ formula, when the accuracy of

the users is known, always results in a higher or equivalent classification accuracy com-

pared to using a majority vote. Designs allowing metadata about observer recording

behaviour are also useful. In Chapter 4b we showed that the ability to use the breadth

of citizen science observation data to robustly monitor ecological changes in species

abundances is dependent on knowledge of variation in citizen scientists’ recording be-

haviours. Thus, the design of a citizen science project or platform can greatly impact

future reliability and usefulness of the data for scientific purposes.

Modern technology is changing the landscape of citizen science (Newman et al.,

2012). Historically, iNaturalist relied solely on humans to classify the breadth of obser-

vations shared to the platform. A small portion of iNaturalist NZ participants reported

the vast majority of total identifications. However, in 2017 a computer vision algorithm

that was trained on historical iNaturalist research grade observations was integrated

into the platform. With an increasing rate of new observations, all of which require

identification, computer vision has the potential to take much of this work burden.

An important piece of future work will be to evaluate the impact that the addition

of computer vision has had on the image classification process on iNaturalist NZ. Our

work in Chapter 3b estimating user accuracies and classification accuracies on the first

five years of iNaturalist NZ data, before the addition of computer vision, will provide

a useful baseline for future evaluations.

Users of research grade iNaturalist observations (e.g. computer vision algorithms

using the data for training) rely on these observations to be accurate. Our Bayesian

approach, applied to the first five years of iNaturalist NZ data, was able to move an ob-

servation to research grade once the certainty of the collective classification was above

a set threshold, rather than requiring a majority vote. In theory, this improves and

quantifies the accuracy of research grade observations. However, within the iNaturalist

NZ data there is a high level of agreement between identifiers on the vast majority of

observations. As a result, the estimated user accuracies are high for most users. This

may be truthful, but it may also be inflated due to the high level of agreement among

identifiers. Therefore, important future work will be to validate the results from this

Bayesian approach by asking expert panels to classify a selection of images.

Observation-based citizen science projects are often the only practical way to gather

data at the scales required to answer many ecological and conservation questions (Tul-

loch et al., 2013; Miller-Rushing et al., 2012). We explored using iNaturalist NZ data

for temporal monitoring of species abundance. This work could be adapted to monitor-
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ing changes in species distributions. However, if we did so, it would still be necessary

to differentiate between ecological changes in a species’ distribution while accounting

for variation in recorder behaviour. For example, a species distribution could appear

to be expanding, but that observation may simply be due to an increasing number

of participants making observations across a larger area of New Zealand, and record-

ing them in iNaturalist NZ. Currently in the scientific literature, iNaturalist data has

largely been used for discovering new species (Lebel et al., 2020) and monitoring the

arrival and spread of invasive species (New Zealand bio-recording network trust, 2020).

Thus, there is a lot of unexplored potential of the use of iNaturalist NZ observation

data, and this thesis makes significant headway in tapping into that potential.

Recruiting and sustaining citizen science participation is challenging (Tinati et al.,

2017). In Chapter 2 we showed that a small portion of participants make the vast

majority of both observation and identification contributions to iNaturalist NZ. For

many taxa, a citizen scientist will share at most one observation per walk. Further, in

Chapter 4c we showed that the probability of an observer sharing a second observation

of the same species in a walk is very low. This adds to the challenge of being able to use

observation data to detect temporal changes in the abundance of a species population.

If the majority of observers only share at most one observation of one species per walk,

it will be very difficult to detect changes in abundance, as this may have no influence

on the number of recorded observations.

In Chapter 3b we showed that adopting a Bayesian approach for the classification

of research grade observations optimised the allocation of identifications. As a result,

with the same number of identifications, more observations could reach research grade.

If this method was implemented on iNaturalist NZ, it could aid our work in Chapter

4b, as there would be more research grade observations per species and therefore an

increased ability to detect a temporal ecological trend in the species population.

Recommendations for iNaturalist NZ

To improve the ability to use iNaturalist NZ data for scientific research questions, we

make the following recommendations for the platform.

Image classification

Research grade classification accuracy could be improved by accounting for differences

in user accuracies. We have outlined a Bayesian approach that simultaneously estimates

user accuracies and image classifications. This approach is suitable for iNaturalist NZ

as there is no requirement that users have identified any images with a known identity.

However, the Bayesian approach is computationally expensive and therefore may be
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problematic to use in operation across the iNaturalist platform. An estimation of user

accuracy may be efficiently obtained by requiring users to identify some images with

a known identity. This could be a one-off when the user first joins iNaturalist or

periodically. Given there are currently no images that have been identified with known

ground truth on the iNaturalist NZ platform, one method going forward would be to

add some images with a known identity. Alternatively, images that have already been

classified to research grade could be validated by an expert panel.

Observation sharing

To improve the ability to use research grade observation data for species population

monitoring, we also recommend that iNaturalist introduces a method to collect infor-

mation on observer behaviour. This could be done by adopting a similar approach to

eBird, where there are multiple recording protocols for the observer to select from and

some require the observer to also log information about their recording effort. Alter-

natively further work could be done on inferring recording effort from data that are

already collected, or on investigating the minimal amount of additional information

required from observers to obtain a reliable measure of variation in recorder effort.

Sustaining participation

iNaturalist NZ, like many citizen science projects, faces the problem that there are a

few regular participants make the vast majority of the contributions. This limits the

usefulness of the data collected from the majority of observers and identifiers due to

the inability to make an inference about observer behaviour, and insufficient informa-

tion to estimate identifier accuracy. We recommend that iNaturalist investigates and

implements mechanisms to increase participant retention and activity. For example,

the critical challenge of recruiting and sustaining participation (Tinati et al., 2017) has

led to some pursuing gamification of citizen science (Tinati et al., 2017; Iacovides et al.,

2013; Eveleigh et al., 2013).

Conclusion

Ecological citizen science has seen rapid growth in recent years. For many projects

the focus has been more on fostering an interest in nature and building connected

communities of nature watchers, rather than ensuring the data will be able to be

robustly used for scientific purposes. With the solid base of participants that ecological

citizen science projects have built up, and the expanding literature on using citizen

science for scientific purposes, now is a great time for ecological citizen science projects

to make changes to their platforms that fill the gaps of any information they are failing

to collect that would allow them to answer desired scientific questions.
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