
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1990

On the Utility of Historical Project Statistics for
Cost and Schedule Estimation: Results from a
Simulation-based Case Study

Abdel-Hamid, Tarek K.
Science Direct

Abdel-Hamid, Tarek K. "On the utility of historical project statistics for cost and
schedule estimation: results from a simulation-based case study."Journal of Systems
and Software13.1 (1990): 71-82.
http://hdl.handle.net/10945/68470

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

J . SYSTEMS SOFIW ARE 71
1990 ; 13:71-82

On the Utility of Historical Project Statistics for
Cost and Schedule Estimation: Results from a
Simulation-based Case Study

Tarek K. Abdel-Hamid
Department of Administrative Sciences, Naval Postgraduate School, Monterey, California

Estimating the durat ion and cost of software projects
has traditionally been, and continues to be, fraught
with peril. This is in spite of the fact that over the last
decade a large number of quantitative software esti
mation models have been developed. Our objective in
this article is to challenge two fundamental assump
tions that underlie research practices in the area of
software estimation, which may be directly contribut
ing to the industry 's poor track record to date. Both
concern the "fitness " of raw historical project statis
tics for calibrating and evaluating (new) estimation
models .

A system dynamics model of the software develop
ment process is developed and used as the experimen
tation vehicle for this study. An overview of the
model's structure is presented, followed by a discus
sion of the two experiments conducted and their re
sults. In the first, we demonstrate why it is inadequate
to assess the accuracy of (new) estimation tools sim
ply on the basis of how accurately they replicate old
projects. Second, we show why raw historical project
results do not necessarily constitute the most "pre
ferred" and reliable benchmark for future estimation.

1. INTRODUCTION

Estimation of software cost and schedule is an essential
foundation for software project planning and control.
Without accurate cost and schedule estimates,

· · · the manager can know with certainty neither what
resources to commit to an effort nor, in retrospect, how
well these resources were used. The lack of a firm founda
tion for these two judgements can reduce programming
management to a random process in that positive control is
next to impossible. This situation often results in the
budget overruns and schedule slippages that are all too
common··· [1]

Address correspondence to Tarek K. Abdel-Hamid, Depart
ment of Administrative Sciences, Naval Postgraduate School,
Monterey, CA 93943.

© Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010

Since the early 1950s, software development practi
tioners as well as researchers have been trying to
develop algorithmic models to accurately estimate soft
ware costs and schedules. The earliest attempts were
simple rules of thumb, such as " On a large project ,
each software performer will provide an average of one
checked-out instruction per man-hour" [2]. More re
cently, organizations began collecting quantitative data
during software development that characterize both the
product under development (e.g., software complexity)
as well as the software development process (e.g. ,
effort and schedule). This provided a basis for the
development of a large number of quantitative estima
tion models over the last decade [e.g., 3-12] .

Still, the accuracy of such quantitative tools has
proven inadequate [13-15]. As a result, many software
development organizations do not seem to trust any of
the available quantitative models. A study of 30 organi
za~ions showed that the models were used only to
"check manual estimates" [16].

Our objective in this article is to challenge two
fundamental assumptions that underlie research prac
tices in the area of software estimation and that are may
be directly contributing to the industry 's poor track
record to date. Both concern the ''fitness'' of raw
historical project statistics for calibrating and evaluat
ing estimation models.

Consider, as an example, the case of a NASA soft
ware project that involved the development of a soft
ware system for controlling a NASA satellite. The
system's size was initially estimated to be 16,000 deliv
ered source instructions (DSI), and the cost and sched
ule were estimated to be 1,100 man-days and 320
working days, respectively. Upon completion, the pro
ject's actual results were as follows:

Project size
Development cost
Completion time

24 ,400 OSI
2,200 man-days

380 working days

0164-1212/90/$3 .50

72 J . SYSTEMS SOFTWARE
1990 ; 13:71 -8 2

The above project statistics were then directly incor
porated into a database of historical project results that
was developed to support two kinds of activities- first,
to support the development, calibration, and fine-tuning
of software estimatton tools. The underlying assump
tion here is that project results, such as the ones
described earlier , constitute the most "preferred" and
reliable benchmark for future estimation purposes
· · · after all they are actual values.

Second, completed project results are used in the
ex-post evaluation of estimation models. That is, the
accuracy of estimation models is assessed on the basis
of how closely they replicate the results of old projects
[17, 18]. For example, the accuracy of a new estima
tion tool can be assessed by applying it to the earlier
project and calculating its resultant percent relative
error. Thus , if some tool generates say 3,500 and 237
estimates for the cost and duration of the project above,
the percent relative error in estimating the latter would
be:

100* I Actual - Estimate I
Percent Relative Error = ----------

Actual

100* I 380-237 I
380

= 37.6

Notice the rather fundamental assumption that under-

Figure 1

Human

Schedule

....... ~
,u .. '"""" ~""'"" Needed c.Completlon Forec1sted

)

Dote Co~;:~lon

Adlu tments
to Worktorce / /
and Schedul ~

T. K. Abdel-Hamid

lies such a practice, namely, that the project's comple
tion time and cost will remain to be 380 days and
2,200 man-days, respectively. That is, it is assumed in
the above calculation that a ·project's final cost and
schedule values are independent of its initial estimation
values!

Both of the above assumptions are flawed. In the
remainder of this article, we explain why they are
flawed and discuss the implications for the practice of
software cost and schedule estimation. But first, we
discuss in the next section the system-dynamics-based
simulation approach employed in this study. An
overview of the model's structure is first presented ,
followed by a full discussion of the experiments con
ducted and their results.

2. A SYSTEM DYNAMICS MODEL OF
SOFTWARE DEVELOPMENT

Our work on software project estimation is part of a
larger project to study the dynamics of the entire
software-development process. A major part of this
effort is the development of a comprehensive system
dynamics model of software development.

The model was based on a field study of project
managers in five organizations. Figure 1 shows a high
level view of the model' s four subsystems: human

Software Production

Perceived
Productivity

Pro1ect Tosks _/
Perceived Completed

\

\ Level ol
""--- Accuracy In

measuring
Progress

Etlort Percelv•d
Still Needed

~ .. ,
Prolect

SIU

Control

Historical Project Statistics

resource management, software production, control,
and planning, and some of the relations between them.
The actual model is very detailed and contains more
than 100 causal links; a full description of the model's
structure, its mathematical formulation, and its valida
tion is published elsewhere [19-21].

2. 1 Human Resource Management

This subsystem captures the hiring, training , assimila
tion, and transfer of the human resource. The project's
total work force is segregated into different types of
employees (newly hired and experienced) . We make
this distinction because new team members are usually
less productive than veterans [22]. This segregation
also allows us to capture the training process to assimi
late new members. The veterans usually train the new
comers, both technically and socially [23, 24]. This is
important, because this training can significantly affect
a project's progress by reducing the veteran's produc
tivity.

In deciding how big a work force they need, project
managers typically consider several factors. One, of
course, is the project 's scheduled completion date.
Another is the work force's stability, so managers try
to predict project employment time for new members
before they are hired. In general, the relative weight
managers give to stability versus completion date
changes as the project progresses.

2. 2 Software Production

This subsystem models development; it does not in
clude the operation and maintenance phases. The devel
opment phases included are designing, coding, and
testing but not the initial requirements definition phase.
We chose not to include requirements definition for two
reasons. First , our focus is on the indigenous dev~lop
ment organization: project managers and developers,
and how their policies, decisions, and actions affect
development. In many organizations, defining user re
quirements is not completely within the control of this
group. Second, "Analysis to determine requirements is
distinguished as an activity apart from software devel
opment. Technically, the product of analysis is non
procedural (i.e ., the focus is functional)" [25].

As software is developed, it is reviewed to detect any
errors, for example, using quality assurance activities
such as structured walkthroughs. Errors detected
through such activities are reworked. Not all software
errors are detected during development, however, since
some escape detection until the testing phase.

The software production subsystem models produc
tivity and its determinants in great detail. Productivity

J . SYSTEMS SOF1W ARE
1990; 13:71- 82

73

is defined as potential productivity minus the loss from
faulty processes. Potential productivity is "the maxi
mum level of productivity that can occur when an
individual or group · · · makes the best possible use of
its resources " [26], and is a function of the nature of
the task and the group's resources. Losses from faulty
processes are losses in productivity from things like
communication and coordination overheads and low
motivation.

2.3 Control Subsystem

In all organizations, decisions are based on the informa
tion available to the decision maker. Often, this infor
mation is inaccurate. Apparent conditions may be far
removed from those actually encountered , depending
on information flows, time lag, and distortion . Thus,
system dynarnicists go to great lengths to distinguish
between actual and perceived model variables [27].

Progress rate is a good example of a variable that is
difficult to assess during the project. Because software
is basically an intangible product during most of the
development, it is difficult to measure things like pro
gramming performance and intermediate work [28].

How can you measure progress? Our own field stud
ies corroborated published reports in which progress ,
especially in the earlier phases of development, is
typically measured by the rate of resource expenditure
rather than by accomplishments [29]. Baber [30] ex
plains:

It is essentially impossible for the programmers to esti
mate the fraction of the program completed. What is 45%
of a program? Worse yet, what is 45 % of three programs?
How is he to guess whether a program is 40% or 50%
complete? The easiest way for the programmer to estimate
such a figure is to divide the amount of time actually spent
on the task to date by the time budgeted for that task. Only
when the program is almost finished or when the allocated
time budget is almost used up will he be able to recognize
that the calculated figure is wrong.

When you measure progress this way, status reports
become nothing more than an echo of the original plan.
As the project advances toward its final stages, work
accomplishments become relatively more visible, and
project members better perceive how productive the
work force has actually been.

2.4 Planning Subsystem

In the planning subsystem, you make project estimates,
revising them as the project progresses. For example,
when a project is behind schedule, you can revise the
plan to hire more people, extend the schedule, or both.

Figure 2 shows a detailed causal-loop structure of the

74 J . SYSTEMS SOFfW ARE
1990; 13:71-82

~
MAN-DAYS
REMAINNG

I

~

MAXIMUM
TOlERAl!l£
CO!PlET1CN

MTE

TIME
REMANNG

CLAelT ~ WIUNGNESS
w:R<R:R:E------ LEVEL------ TOOWGE

l£\IEl. IEBlED v«lA<fCR:E

I
CEJUNGON

lOTAL
~

/\
HIRING ASSIMILATION
OEI.AY DELAY

adjustments to work force and schedule. By dividing
the value of man-days remaining at any point in the
project by the time remaining, a manager can deter
mine the indicated work-force level, which is the
work force needed to complete the project on time.

Hiring decisions are not made solely on the basis of
scheduling requirements . Managers must also consider
the training requirements and the work force's stability.
In general , the relative weighting between the desire
for work-force stability and the desire to complete the
project on time is not static; it changes through the
project ' s life.

Although management determines the work-force
level needed to complete the project , this level does not
necessarily translate into the actual hiring goal (the
work-force level sought in Figure 2). The hiring goal is
constrained by the ceiling on new hires . This ceiling
represents the highest work-force level management
believes can be adequately handled by its experienced
project members.

Thus, three factors-scheduled completion time,
work-force stability, and training requirements-affect
the work-force level.

T. K. Abdel-Hamid

Figure 2. The planning subsystem.

THE DE-A SOFTWARE PROJECT:
A CASE STUDY

As part of model validation, a case-study was con
ducted at NASA to test the model's accuracy in repli
cating the dynamic behavior of a real software project ,
namely, NASA's DE-A project. (NASA was not one
of the five organizations studied during model develop
ment.) The DE-A project, conducted by the Systems
Development Section of the Goddard Space Flight Cen
ter (GSFC) at Greenbelt, Maryland was to design ,
implement, and test a software system for processing
telemetry data and providing attitude determination and
control for the DE-A satellite. The FORTRAN system
runs on IBM system 360/ 95 and system 360/75 main
frames.

At the start of the project , the estimates for system
size, total development effort, and schedule were 16,000
source instructions, 1,100 man-days, and 320 working
days, respectively. On completion, the DE-A projec t
had .delivered 24,400 source instructions in 2,200
man-days and 380 working days.

Figure 3 shows the model's simulation run of the

Historical Project Statistics J . SYSTEMS SOF1W ARE
1990; 13:71-82

----_,.,.f"'\·~ -----• • • • • > > > , >
............ w
:, ::, :, :, :,
u u u u u

0 00::, C
0 -4 ON C
• 0 -

4

0 0 0 O 0
o-o-""'
N 0

N

00000

PERCEIVE:> c:!oJECT SIZE ,,,.·-'/ I ,c,

Ill IC)SI ~ ••r •• •••• •• •••• .lij / ' •• J•J•,···' 1'
.··1.o••··· cg_,,,..

•· .• ,, ____:__-,.i

-.,. ----- ., - • • [..,,t' .,/ ,,. - ·
,.,.,.•· ,,,,• C ,r

.. •, e ~/:¥,..
£STI!'1ATED PROJECT COST • _..

IS NA.'--DAYS • ,- • •• ~ - __ ,!._..,....------i<_ -- ())), - I g-_. _, -· - -- ..,
"r--------~-----------~--=-=--------- ------

----~£-7 .--,--(4) ~ _;_, ,-1
_..,,... • • WORXTORCE

/ / (5) (PEOPU:)
C ~ ,.,••·· "-. ~st !:u ~ed

••• ... C.cn:,oJ.et~ -·· .

········----····•J

7S

0 JOO 200 300 380 !I~
(DAYS)

,.... _____ DESI GS PH>.5! --------COD INC PHASE -------
1
-TISTI11G~

DE-A's actual "Estimated Schedule in Day~"
DE-A's actual "Estimated Project Cost in Man-Days"
DE-A's actual "Workforce" (full-time-equivalent people)

DE-A software project. As shown, the model accu
rately replicated the project's actual behavior. The
figure illustrates that DE-A's management held to the
project's estimated schedule in days during most of the
project's design and coding phases, despite a gradual
increase in the perceived project size. To maintain the
schedule, management added to the project's work
force. This behavior is not atypical. It arises, according
to DeMarco (1982) from political considerations:

Once an original estimate is made, it's all too tempting to
pass up subsequent opportunities to estimate by simply
sticking with your previous numbers. This often happens
even when you know your old estimates are substantially
off. There are a few different possible explanations for this
effect: It 's too early to show slip . . . If I re-estimate now,
I risk having to do it again later (and looking bad
twice) ... As you can see, all such reasons are political in
nature.

The DE-A project's work force pattern, on the other
hand, does not conform to the staffing pattern typically

Figure 3. Model simulation of the DE-A project .

portrayed in the literature where the work-force level
rises, peaks, and then drops back to lower levels as the
project nears the system testing phase (Boehm, 1981).
Instead, the work force level rises steadily because
NASA tied the launch of the satellite to the completion
of the software . All software had to be accepted and
frozen 90 days before launch and no serious schedule
slippages were tolerated .

Therefore , as the project approached this maximum
tolerable completion date, pressures developed that
overrode considerations of work-force stability. Man
agement would pay any price to avoid overshooting the
90-day-before-launch date. This translated , as Figure 3
indicates, into a hiring binge late in the life cycle. (In
Abdel-Hamid [31], we investigate whether such a
staffing policy did or did not contribute to the project's
late completion.)

76 J. SYSTEMS SOFfW ARE
1990; 13:71-82

Model Experimentation. Controlled experimenta
tion in the software engineering field has proven to be
too costly and time consuming [32]. Furthermore, the
isolation of the effect and the evaluation of the impact
of any given variable within a large, complex, and
dynamic software project environment can be exceed
ingly difficult [33]. Accordingly, it is useful to seek
other methods for testing software project management
hypotheses.

Simulation modeling provides a viable laboratory
tool for such a task. In addition to permitting less costly
and less time-consuming ~xperimentation, simulation
type models make "perfectly" controlled experimenta
tion possible. Indeed:

The effects of different assumptions and environmental
factors can be tested. In the model system, unlike the real
systems , the effect of changing one factor can be observed
while all other factors are held unchanged. Such experi
mentation will yield new insights into the characteristics of
the system that the model represents . By using a model of
a complex system, more can be learned about internal
interactions than would ever be possible through manipu
lation of the real system. Internally, the model provides
complete control of the system's organizational structure ,
its policies, and its sensitivities to various events [27].

In the introduction, we explained that the central
issue in this article concerns the utility of historical
project results for future project estimation. We ex
plained how raw project statistics are currently used
both in the calibration and evaluation of software esti
mation models. And we suggested that two rather
fundamental assumptions underlie such a practice
first, that a project's final results are independent of its
initial estimation values, and second, that historical
project results constitute the most "preferred" and
reliable benchm¥ks for future estimation purposes.

In the next sections, we will utilize our model as an
experimentation vehicle to show why the above two
assumptions are flawed. We will also discuss the impli
cations for the practice of software cost and schedule
estimation.

EXPERIMENT 1: DIFFERENT ESTIMATES
CREATE DIFFERENT PROJECTS

Let us assume that NASA is considering the adoption
of one of two proposed estimation tools. The first is a
software estimation "magician" called WHIZ, and the
second is the basic version of TRW's COCOMO model
[12]. To determine which of the two is more suited to
the NASA environment, a test is conducted to assess
the accuracy of the tools in replicating the results of the
DE-A project.

T. K. Abdel-Hamid

Table 1.

WHIZ COCOMO

Duration Cost Duration Cost

Estimates 237 3,500 237 1,305

Actual 380 2,200 380 · 2,200
% Relative error 37 .6 59 37.6 40.6

Both WHIZ and basic COCOMO require just one
input, namely, an estimate of the project ' s size in
delivered source instructions (OSI). Based on DE-A's
actual size of 24,400 OSI, WHIZ (in a snap) produces
the following estimates:
Estimated Effort = 3 ,500 man-days

Estimated Duration = 237 days

COCOMO's estimates are then calculated as follows
[12]:

Estimated Effort = 2 .4 {KDSI} i .os

= 2.4 {24.4} I.OS

= 68 . 7 man-months

Estimated Duration = 2 .5 {EFFORT)°' 38

= 2.5 (68.7}°'
38

= 12 .5 months

Assuming a man-month translates into 19 working days
[12], the COCOMO effort and duration estimates trans
late into 1,305 man-days and 237 days, respectively.

The percent relative errors can next be calculated
and compared for both the WHIZ and COCOMO esti
mation tools. The results are presented in Table 1
below:

We would like to suggest that the above analysis has
one basic flaw. It is in assuming that DE-A's final cost
and schedule values are independent of the initial esti
mates used at the start of the project. That is, it is
incorrect to assume that the DE-A project's final cost
and schedule values under the two new estimation
scenarios will remain to be 2,200 man-days and 380
days (as in the base case). The reason is simply this:
different initial project estimates do, in a very real
sense, "create" different projects. This assertion is
supported by two pieces of evidence; first, research
findings reported in the literature, and, second, our
own experimental results.

Research findings indicate that the decisions that
people make in project situations, and the actions they
choose to take, are significantly influenced by the pres
sures and perceptions that project schedules produce
[28, 34-36]. Figure 4's causal loop diagram depicts

Historical Project Statistics

Product ivity

Comm,~ l ~~~
t<aiomg °'"hoad P,oI"' shortage,

Schedule
est imates

Work force/ ~ Project
hiring & firing perceived

status

Figure 4. The feedback impact of schedule estimates .

such schedule influences. It shows how schedules have
direct influence on hiring and firing decisions through
out a software project' s life. In TRW's COCOMO
model, for example, the project ' s average staff size is
determined by dividing the man-day estimates by the
development duration estimate. Thus, a tight schedule
means a larger work force. Also, scheduling can dra
matically change manpower loading throughout the life
of a project [34). For example , on the DE-A project,
we already noted how the work-force level shoots
upwards toward the end of the project because of the
strict schedule constraints on the project.

Through its effects on the work-force level, a pro
ject's schedule in turn affects the project team's produc
tivity level (also illustrated in Figure 4). For example,
the higher work-force level that would be deployed to
deliver a project on a tighter schedule often leads to
higher communication and training overheads on the
project, which in turn leads to a decrease in productiv
ity [12, 34, 37, 38).

In addition, productivity can be influenced by per
ceptions . For example, if a project is perceived to be
behind schedule, software developers will tend to work
harder in order to bring the project back on schedule
[35]. In one empirical study, Boehm [12] reports that
team members doubled their effort as schedule pres
sures mounted prior to major project milestones.

Thus, initial project cost and schedule estimates in
fluence hiring and firing decision, productivity, com
munication and training overheads, and work intensity.
All are critical factors that in turn significantly influ
ence the cost and schedule of software development.

Note that such a "revelation" does introduce a
significant complication into the task of evaluating new
estimation tools. For once we accept the notion that
different initial project estimates create different pro-

J . SYSTEMS SOFTWARE
1990; 13: 71 - 82

77

jects , we must immediately disqualify that convenient
benchmark that has traditionally been used for evaluat
ing (new) estimation tools, namely, the raw cost and
schedule values of completed projects .

One possible strategy to handle the task of evaluating
WHIZ and COCOMO using DE-A's experience is to
conduct a controlled experiment in which the DE-A
project is undertaken two more times under the exact
same conditions-except that in one case, it would be
initiated using the WHIZ estimates (3,500 and 237),
while in the other COCOMO's estimates (1,305 and
237) would be used. While theoretically possible , such
an option is, however, infeasible in practice . A more
practical alternative, is to use simulation experimenta
tion. In addition to permitting less costly and less
time-consuming experimentation, simulation makes
perfectly controlled experiments possible.

To assess the relative accuracy of the WHIZ and
COCOMO estimates, we thus re-simulated the DE-A
project, changing only its initial estimates . The WHIZ
and COCOMO runs are depicted in Figure 5(a) and
Figure 5(b), respectively. Since the project 's duration
is estimated in both cases to be 237 days, differences in
project results can be attributed entirely to the differ
ences in the man-day estimates.

As the project results of Figure 5 clearly indicate, the
different estimates do indeed create significantly differ
ent project dynamics. The difference between the work
force patterns is particularly striking. Because WHIZ
generates a larger man-day estimate for the project, a
larger work-force level is assembled early on, and it
remains relatively stable throughout the life of the
project. Contrast this with Figure 5(b), where the
work-force level is significantly lower throughout most
of the life cycle, and then rises steadily late in the cycle
(as also happens in the base-case).

The resultant total project cost and duration values
for the WHIZ and COCOMO estimation scenarios,
together with the percent relative error calculations are
presented in Table 2.

The above results in Table 2 clearly contradict those
shown in Table 1, where COCOMO was shown to be
the more accurate estimator. Recall that the result of
Table 1 was based on the assumption that the DE-A
project 's cost and schedule remain unchanged at 2,200
man-days and 380 days respectively, irrespective of
which estimation tool is used to derive the project's
initial estimates. The simulation results of Table 2, on
the other hand, demonstrate that such an assumption is
not only invalid, but can indeed lead to incorrect con
clusions.

The message of this experiment's result is clear: the
impacts of the initial cost and schedule estimates on the

J . SYSTEMS SOFfW ARE
1990; 13:71-82

T. K. Abdel-

"
> > >
:, :, :,
u u u

0
000
NOO

0
,n O 0
.,.. 0 O .., . ..,

0
000
... 0 0

0
00

,n O 0

000

• . ., .
u:t
:, ::, :,
u u u

0
000
NOO

0
000
.,.. 0 0

N •
N

0
00

"'~ C?_ ...

000

(1)
WORJU'ORCE

(PEOPLE) / \ -· - --- ~- -....

-----~-------
(2)

.......

ESTIMATED SCHEDULE IH /
DAYS \ ,J"/ ~--· ,1••····· ---------··········--·-.1••·· ~-

_/

V
~.,,. (3)

/ CUMULATicr: PROJECT COST

/ ~ 1H K/\11-DAYS

iJ ~_,--L.,..i-----

0

J ,r""
J'~

rt'-:.-~_...,.-

(2)

ESTIMATED SOIEDULE l.H
DAYS ---~

,J" --~ _ _,_.-r_.-_,_
..,.. -- / ~_,..,..,.

(4)
TRAINING OVEP.HEAD

(K/\11-DAYS)

100

(a)

.................•.... -. ···················~---

(l)

WORKFORCE

200

",..--...

/
(PEOLPE)_)_,_.J.-----------r-":;:5=":,.,--

-~--
CUMULATIVE PROJECT ""'I. ,-

IH KAIi _D,1\Y S _,J ---

..... .,,.
_.,,....\.

__ ,.,,.,. (4)

I
/

.

243
TIHE (DA l

. ~

.,..r!_ - _ _,, _______ ,_

~C.-• -~,...-
TRAINING 0VE.RH

IKAN_DAYS)
0 100 200

(b)

Figure 5. (a) The WHIZ simulation run; (b) the COCOMO simulation run.

JOO)16

TlKE (DAYS

Historical Project Statistics

Table 2.

WHIZ COCOMO

Duration Cost Duration Cost

Initial estimates 237 3,500 237 1,305
Final values 243 3,516 316 2,588

% Relative error 2.5 0.5 25 49 .6

~ynamics of a software project are both real and signif
icant. Ignoring their influence in the ex-post evaluation
of estimation tools is, thus , an approximation that
cannot be justified.

5. EXPERIMENT 2: WHY FITTING TO RAW
HISTORICAL VALUES MAY NOT BE "FITTING"

The objective of this second experiment is to challenge
the notion that raw historical project values constitute
the one (and only) preferred benchmark for fitting,
cal~brating, and fine-tuning estimation models. Again,
as m experiment 1, we will use the DE-A project as a
case example for refuting the above notion .

Recall that DE-A's size was initially underestimated
to be 16,000 OSI (instead of 24,400 OSI). According
to Boehm [12], the tendency to underestimate the size
?f a new software system is pervasive in the software
mdustry. A major cause for undersizing is the "power
ful tendency to focus on the highly visible mainline
components of the software, and to underestimate or
completely miss the unobtrusive components (e.g., help
message processing, error processing, and moving data
around)" [12].

Schedule estimation models are garbage in - garbage
out devices: If poor sizing data is input in one side,
poor schedule estimates come out the other side. On the
~E-A_ project, the initial 35% underestimation of pro
Ject size does indeed lead to an underestimate of the
project's man-day and time requirements. As the DE-A
project progressed and the level of knowledge of what
the software was intended to do increased, the missed
tasks were progressively discovered. This is reflected
in the "Perceived Job Size in KDSI" curve in Figure
3 • But, as is typically the case, newly discovered tasks
do not necessarily trigger an appropriate adjustment to
the project's man-day and schedule estimates. Only
when the discovered • 'chunks'' of tasks are significant
in size do project members "bother" to go through the
trouble of formally updating their estimates [19]. The
determining factor is not the absolute size of the discov
ered tasks, but rather their size relative to the amount
of effort perceived remaining. For example, while a
IO-man-day task discovered at the beginning of a
2,000-man-day project might not trigger any adjust-

J . SYSTEMS SOFTWARE
1990; 13:71- 82

19

ments in the project's estimates, it would be quite
unlikely for this to happen if the IO-man-day task is
discovered at the end of the development phase when
only 20 man-days were remaining .

A combination of programmers' optimism and the
less-than-perfect accuracy in measuring development
progress early in the life cycle mask the deficit in the
project's man-day requirements that result from the
a~ve practice [30, 34]. The classic result is the "90%
syndrome" phenomenon, namely, where estimates of
the fraction of work completed increase as originally
planned until a level of 80%-90% is reached, and then
they increase only very slowly until the project is
actually completed . This was clearly manifested on the
DE-A project as demonstrated by the '' Estimated Per
cent Complete" curve of Figure 3.

Toward the end of the development phase, though ,
the discrepancy between the initial optimistic estimates
and the project's true requirements becomes increas
ingly visible. As this happened on the DE-A project,
management realized that many more tasks remain to
be done and precious little time left to do them. Their
response was that dramatic increase in staff size. How
ever, as was explained earlier, adding staff members
that late in the project life cycle can be a costly
strategy.

We may now suspect that DE-A's cost of 2,200
man-days may not be a desirable benchmark, since it
reflects the inefficiencies incurred in the staffing of the
project, which in turn were a result of the initial
undersizing of the project. Thus , if a new project
comes along that happens to be exactly similar to
DE-A, and if we assume that its size is properly
estimated at the start, then a more effective staffing plan
would be devised that avoids DE-A's last-minute staff
explosion. As a result the new project should require
less than 2,200 man-days to accomplish.

Notice, we used the word should and not would.
For, if DE-A's (inflated) 2,200 man-days value is in
fact adopted as the benchmark for estimating the new
24,400 OSI project, such savings may indeed not be
realized. The reason: the self-fulfilling prophecy of
Parkinson's law . On a software project, work can
expand in many different forms to fill the available
time. For example, work expansion could take the form
of goldplating (e.g ., adding features to the software
product that make the job bigger and more expensive
but that provide little utility to the user or maintainer
when put into practice), or it could be in the form of an
increase in people's slack-time activities (such as catch
ing up on the mail, coffee breaks, etc.) [12].

Therefore, what is needed is a strategy that allows us
to "wring" out those man-day excesses from the DE-A
project (because of undersizing), and thus derive an

80 J. SYSTEMS SOFTWARE
1990; 13:71-82

T. K. Abdel-Hamid

RAW ~CAL -----------------~ CALIBRATION/
ESTIMATION

(Al ClJRRENI' PRACTICE

ex-post-set of normalized cost and schedule estimation
benchmarks (Figure 6[b]). In the remainder of this
section, we demonstrate how the system dynamics sim
ulation model of software project management pro
posed in this article is utilized to accomplish this.

The strategy involves re-simulating the DE-A project
with no undersizing. In order to determine the extent
of the man-day excesses, not one but several simulation
runs were conducted in which the initial schedule esti
mate is held constant at 380 days, while the man-day
estimate is gradually decreased to lower values. The
results of such an experiment are shown in Figure 7.
The X-axis depicts the different initial man-day esti
mates, while the Y-axis depicts the project's final
(simulated) cost in man-days.

The results indicate that using DE-A's (inflated) raw
value of 2,200 is indeed wasteful. As the initial man-day
estimate for the project is gradually lowered, savings
are achieved, as wasteful project practices such as
goldplating, unproductive slack time activities, etc . are
gradually shrunk . This continues until the 1,900 man
day level is reached. Lowering the project's initial
man-day estimate below this point, however, becomes
counterproductive , as the project not only sheds off all
its excess but also becomes in effect an underestimated
project. Initial underestimation is costly (whether it is
due to initial undersizing or not), as it often leads to an
initial understaffing , followed by a costly staff buildup
later in the lifecycle.

The above results, thus, suggest that the widely held
notion that raw historical project results constitute the
most ''preferred' ' benchmark for future estimation is
not only flawed but can be costly as well. In the
particular case of NASA's DE-A project , a 1,900

Figure 6. (a) Current practice ; (b) pro
posed normalization strategy.

man-day value is clearly a more "preferred" bench
mark over DE-A ' s raw 2,200 value, as it would save
NASA 234 man-days-a 10.6% saving in cost.

CONCLUSION

Three lessons can be drawn from the results of this
research. First , that it is inadequate to assess the accu
racy of (new) estimation tools simply on the basis of
how accurately they replicate old projects. Second , we
showed why raw historical project results do not neces
sarily constitute the most "preferred" and reliable
benchmark for future estimation.

Third, the system-dynamics-based simulation ap
proach adopted in this study proved to be a viable
research vehicle for the study of software project esti-

rn
• <
C
z
<
:E

Figure 7. Experiment 2 results.

2100

2000

1900

1800 +---.--.--.----.--...---.--..---.--r---1

1400 1600 1800 2000 2200 2400

ESTIMATED MAN·DAYS

Historical Project Statistics

mation. In addition to permitting less costly and less
time-consuming experimentation , simulation-type mod
els make "perfectly " controlled experimentation possi
ble. Furthermore, the model provided insight into the
causes behind the different behavior patterns observed.
In experiment I , we showed how the model can be
used as a platform to try out new estimation tools ,
observe their impact, and evaluate their accuracy. And
in experiment 2, the model was used to wring out
man-day excesses incurred as a result of initial under
sizing and, hence, derive a normalized set of bench
marks for future estimation.

Our future research will focus on operationalizing
and institutionalizing the above ideas. This will involve
~ncorporating some extensions to the model to expand
its applicability to a larger class of projects at one of
NASA's software development centers . The model will
then be used to normalize an extensive database of raw
historical results. A long-term study will then be under
taken to compare the performance of estimators that are
calibrated using the normalized database vis-a-vis esti
mators calibrated using the database of raw historical
values.

REFERENCES

1. J. A. Farquhar , A Preliminary Inquiry into the Software
Estimation Proce ss, tech. rep , AD Fl2 052 , Defence
Documentation Center, Alexandria, Va. , August 1970.

2. B. W. Boehm, Software Engineering Economics , IEEE
Trans. Software Engineering January, 4-21 (1984).

3. R. K. B. Black, et al. , BCS Software Production Data,
Boeing Computer Services , Inc ., Final Technical Re
port , RADC-TR-77-116 , NTIS AD-A039852 , March
1977.

4 . C. E. Walston and C. P. Felix , A Method of Program
ming Measurement and Estimation, IBM Systems J.,
16, 54- 73 (1977) .

5. L. H. Putnam , A General Empirical Solution to the
Macro Software Sizing and Estimating Problem , IEEE
Trans. Software Engineering July, 345-361 (1978).

6. W. M. Carriere and R. Thibodeau, Development of a
Logistics Software Cost Estimating Technique for For
eign Military Sales, General Research Corp . , Rep . CR-
3-839, June 1979.

7. F. R. Freiman and R. D. Park, PRICE Software Model
-Version 3: An Overview, IEEE PINY Workshop
on Quantitative Software Models , IEEE Cat.
TH0067-9 , October 1979, pp. 32-41.

8. J . J . Bailey and V. R. Basili , A Meta Model for
Software Development Resource Expenditures , in The
Fifth International Conference on Software Engi
neering, March 1981, pp. 107-116 .

9. H. F. Dircks, SOFCOST: Grumman 's Software Cost
Estimating Model , IEEE NAECON 1981 May 1981.

10. R. C. Tausworthe , Deep Space Network Software Cost
Estimation Model , Jet Propulsion Lab, Pasadena , Calif.,
1981.

J . SYSTEMS SOFIW ARE
1990 ; 13 :71- 82

81

11. R. W. Jensen , An Improved Macrolevel Software De
velopment Resources Estimation Model , Fifth /SPA
Conference, pp. 88- 92, April 1983.

12. B. W . Boehm, Software Engineering Economics ,
Prentice-Hall , Englewood Cliffs , New Jer sey , 1981.

13. R. Thibodeau , An Evaluation of Software Cost Estimat
ing Models , General Research Corp. , Rep . Tl0-2670 ,
April 1981.

14. Mohanty , S. N. " Software Cost Estimation : Present
and Future ." Software Practice and Experience, Vol.
11 (1981), 103- 121.

15. Barbacci , M . R., Habermann , A. N ., and Shaw, M .
" The Software Engineering Institut e: Bridging Practice
and Potential. " IEEE Software, November 1985,
4 - 21.

16. M . V . Zelkowitz , et al. Software Engineering Practices
in the US and Japan , Computer June , 57 - 66 (1984).

17. S. D . Conte , H . E. Dunsmore , and V. Y. Shen,
Software Engineering Metrics and Models ,
Benjamin/Cummings , Menlo Park , Calif. , 1986.

18. C. F . Kemerer , An Empirical Validation of Software
Cost Estimation Models , Commun. ACM 30 (5), May
1987.

19. T. K. Abdel-Hamid , The Dynamics of Software Devel
opment Project Management: An Integrative System
Dynamics Perspective, unpublished Ph .D. dissertation ,
Sloan School of Management, MIT , January 1984.

20 . T . K. Abdel-Hamid and S. E. Madnick , Modeling the
Dynamics of Software Project Management , Commun.
ACM December (1988).

21. T. K . Abdel-Hamid and S. E. Madnick , Software
Development Dynamics: An Integrated Approach ,
Prentice-Hall , Englewood Cliffs, New Jersey , 1990.

22. Cougar , J. D . and Zawacki, R. W. Motivating and
Managing Computer Personnel. New York , N.Y.:
John Wiley & Sons, Inc., 1980.

23 . H. S. Bott , The Personnel Crunch , in Perspectives on
Information Management (J. B. Rochester, ed .), Wi
ley, New York, 1982.

24. Winrow , Acquiring Entry-Level Programmers , in
Computer Programming Management (]. Hannan,
ed.) , Auerbach Publishers , Pennsauken , New Jersey ,
1982.

25. C . L. McGowan and R. C. McHenry, Software Man
agement, in Research Directions in Software Tech
nology (P. Wegner, ed.), MIT Press, Cambridge ,
Mass., 1980.

26. I. D. Steiner , Group Process and Productivity, Aca
demic Press, New York, 1972.

27. J. W. Forrester, Industrial Dynamics , The MIT Press ,
Cambridge, Mass ., 1961.

28. H. D. Mills, Software Productivity , Little, Brown &
Co., Canada , 1983.

29. T. DeMarco, Controlling Software Projects, Yourdon
Press, New York, 1982.

30. R. L. Baber , Software Reflected, North Holland , New
York , 1982.

31. T. K. Abdel-Hamid, The Dynamics of Software Project
Staffing: A System Dynamics Based Simulation Ap-

82 J . SYSTEMS SOFTWARE
1990; 13:71-82

proach, IEEE Trans. Software Engineering February
(1989).

32. Myers, W. "The Need for Software Engineering,"
Computer, February 1978.

33. R. L. Glass, Modern Programming Practices: A
Report from Industry, Englewood Cliffs, New Jersey,
1982.

34. F. P. Brooks, The Mythical Man Month, Addison
Wesley, Reading, Mass., 1978.

35. R. L. Ibrahim, Software Development Information Sys
tem, J. Syst. Management Dec., 34-39 (1978).

T. K. Abdel-Hamid

36. A. Radice, Productivity Measures in Software, In The
Economics of Information Processing Volume 2:
Operations, Programming, and Software Models (R.
Goldberg and H . Lorin, eds.), John Wiley, New York,
1982.

37. R. F. Scott and B. D. Simmons, Programmer Produc
tivity and the Delphi Technique, Datamation May,
71- 73 (1974).

38. M. L. Shooman, Software Engineering - Design, Re
liability and Management , McGraw-Hill, New York,
1983.

