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On the Utility of Historical Project Statistics for 
Cost and Schedule Estimation: Results from a 
Simulation-based Case Study 

Tarek K. Abdel-Hamid 
Department of Administrative Sciences, Naval Postgraduate School, Monterey, California 

Estimating the durat ion and cost of software projects 
has traditionally been, and continues to be, fraught 
with peril. This is in spite of the fact that over the last 
decade a large number of quantitative software esti
mation models have been developed. Our objective in 
this article is to challenge two fundamental assump
tions that underlie research practices in the area of 
software estimation, which may be directly contribut
ing to the industry 's poor track record to date. Both 
concern the "fitness " of raw historical project statis
tics for calibrating and evaluating (new) estimation 
models . 

A system dynamics model of the software develop
ment process is developed and used as the experimen
tation vehicle for this study. An overview of the 
model's structure is presented, followed by a discus
sion of the two experiments conducted and their re
sults. In the first, we demonstrate why it is inadequate 
to assess the accuracy of (new) estimation tools sim
ply on the basis of how accurately they replicate old 
projects. Second, we show why raw historical project 
results do not necessarily constitute the most "pre
ferred" and reliable benchmark for future estimation. 

1. INTRODUCTION 

Estimation of software cost and schedule is an essential 
foundation for software project planning and control. 
Without accurate cost and schedule estimates, 

· · · the manager can know with certainty neither what 
resources to commit to an effort nor, in retrospect, how 
well these resources were used. The lack of a firm founda
tion for these two judgements can reduce programming 
management to a random process in that positive control is 
next to impossible. This situation often results in the 
budget overruns and schedule slippages that are all too 
common··· [1] 
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Since the early 1950s, software development practi
tioners as well as researchers have been trying to 
develop algorithmic models to accurately estimate soft
ware costs and schedules. The earliest attempts were 
simple rules of thumb, such as " On a large project , 
each software performer will provide an average of one 
checked-out instruction per man-hour" [2]. More re
cently, organizations began collecting quantitative data 
during software development that characterize both the 
product under development (e.g., software complexity) 
as well as the software development process (e.g. , 
effort and schedule). This provided a basis for the 
development of a large number of quantitative estima
tion models over the last decade [e.g., 3-12] . 

Still, the accuracy of such quantitative tools has 
proven inadequate [13-15]. As a result, many software 
development organizations do not seem to trust any of 
the available quantitative models. A study of 30 organi
za~ions showed that the models were used only to 
"check manual estimates" [16]. 

Our objective in this article is to challenge two 
fundamental assumptions that underlie research prac
tices in the area of software estimation and that are may 
be directly contributing to the industry 's poor track 
record to date. Both concern the ''fitness'' of raw 
historical project statistics for calibrating and evaluat
ing estimation models. 

Consider, as an example, the case of a NASA soft
ware project that involved the development of a soft
ware system for controlling a NASA satellite. The 
system's size was initially estimated to be 16,000 deliv
ered source instructions (DSI), and the cost and sched
ule were estimated to be 1,100 man-days and 320 
working days, respectively. Upon completion, the pro
ject's actual results were as follows: 

Project size 
Development cost 
Completion time 

24 ,400 OSI 
2,200 man-days 

380 working days 

0164-1212/90/$3 .50 
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The above project statistics were then directly incor
porated into a database of historical project results that 
was developed to support two kinds of activities- first, 
to support the development, calibration, and fine-tuning 
of software estimatton tools. The underlying assump
tion here is that project results, such as the ones 
described earlier , constitute the most "preferred" and 
reliable benchmark for future estimation purposes 
· · · after all they are actual values. 

Second, completed project results are used in the 
ex-post evaluation of estimation models. That is, the 
accuracy of estimation models is assessed on the basis 
of how closely they replicate the results of old projects 
[17, 18]. For example, the accuracy of a new estima
tion tool can be assessed by applying it to the earlier 
project and calculating its resultant percent relative 
error. Thus , if some tool generates say 3,500 and 237 
estimates for the cost and duration of the project above, 
the percent relative error in estimating the latter would 
be: 

100* I Actual - Estimate I 
Percent Relative Error = ----------

Actual 

100* I 380-237 I 
380 

= 37.6 

Notice the rather fundamental assumption that under-
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lies such a practice, namely, that the project's comple
tion time and cost will remain to be 380 days and 
2,200 man-days, respectively. That is, it is assumed in 
the above calculation that a ·project's final cost and 
schedule values are independent of its initial estimation 
values! 

Both of the above assumptions are flawed. In the 
remainder of this article, we explain why they are 
flawed and discuss the implications for the practice of 
software cost and schedule estimation. But first, we 
discuss in the next section the system-dynamics-based 
simulation approach employed in this study. An 
overview of the model's structure is first presented , 
followed by a full discussion of the experiments con
ducted and their results. 

2. A SYSTEM DYNAMICS MODEL OF 
SOFTWARE DEVELOPMENT 

Our work on software project estimation is part of a 
larger project to study the dynamics of the entire 
software-development process. A major part of this 
effort is the development of a comprehensive system
dynamics model of software development. 

The model was based on a field study of project 
managers in five organizations. Figure 1 shows a high
level view of the model' s four subsystems: human 
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resource management, software production, control, 
and planning, and some of the relations between them. 
The actual model is very detailed and contains more 
than 100 causal links; a full description of the model's 
structure, its mathematical formulation, and its valida
tion is published elsewhere [19-21]. 

2. 1 Human Resource Management 

This subsystem captures the hiring, training , assimila
tion, and transfer of the human resource. The project's 
total work force is segregated into different types of 
employees (newly hired and experienced) . We make 
this distinction because new team members are usually 
less productive than veterans [22]. This segregation 
also allows us to capture the training process to assimi
late new members. The veterans usually train the new
comers, both technically and socially [23, 24]. This is 
important, because this training can significantly affect 
a project's progress by reducing the veteran's produc
tivity. 

In deciding how big a work force they need, project 
managers typically consider several factors. One, of 
course, is the project 's scheduled completion date. 
Another is the work force's stability, so managers try 
to predict project employment time for new members 
before they are hired. In general, the relative weight 
managers give to stability versus completion date 
changes as the project progresses. 

2. 2 Software Production 

This subsystem models development; it does not in
clude the operation and maintenance phases. The devel
opment phases included are designing, coding, and 
testing but not the initial requirements definition phase. 
We chose not to include requirements definition for two 
reasons. First , our focus is on the indigenous dev~lop
ment organization: project managers and developers, 
and how their policies, decisions, and actions affect 
development. In many organizations, defining user re
quirements is not completely within the control of this 
group. Second, "Analysis to determine requirements is 
distinguished as an activity apart from software devel
opment. Technically, the product of analysis is non
procedural (i.e ., the focus is functional)" [25]. 

As software is developed, it is reviewed to detect any 
errors, for example, using quality assurance activities 
such as structured walkthroughs. Errors detected 
through such activities are reworked. Not all software 
errors are detected during development, however, since 
some escape detection until the testing phase. 

The software production subsystem models produc
tivity and its determinants in great detail. Productivity 
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is defined as potential productivity minus the loss from 
faulty processes. Potential productivity is "the maxi
mum level of productivity that can occur when an 
individual or group · · · makes the best possible use of 
its resources " [26], and is a function of the nature of 
the task and the group's resources. Losses from faulty 
processes are losses in productivity from things like 
communication and coordination overheads and low 
motivation. 

2.3 Control Subsystem 

In all organizations, decisions are based on the informa
tion available to the decision maker. Often, this infor
mation is inaccurate. Apparent conditions may be far 
removed from those actually encountered , depending 
on information flows, time lag, and distortion . Thus, 
system dynarnicists go to great lengths to distinguish 
between actual and perceived model variables [27]. 

Progress rate is a good example of a variable that is 
difficult to assess during the project. Because software 
is basically an intangible product during most of the 
development, it is difficult to measure things like pro
gramming performance and intermediate work [28]. 

How can you measure progress? Our own field stud
ies corroborated published reports in which progress , 
especially in the earlier phases of development, is 
typically measured by the rate of resource expenditure 
rather than by accomplishments [29]. Baber [30] ex
plains: 

It is essentially impossible for the programmers to esti
mate the fraction of the program completed. What is 45% 
of a program? Worse yet, what is 45 % of three programs? 
How is he to guess whether a program is 40% or 50% 
complete? The easiest way for the programmer to estimate 
such a figure is to divide the amount of time actually spent 
on the task to date by the time budgeted for that task. Only 
when the program is almost finished or when the allocated 
time budget is almost used up will he be able to recognize 
that the calculated figure is wrong. 

When you measure progress this way, status reports 
become nothing more than an echo of the original plan. 
As the project advances toward its final stages, work 
accomplishments become relatively more visible, and 
project members better perceive how productive the 
work force has actually been. 

2.4 Planning Subsystem 

In the planning subsystem, you make project estimates, 
revising them as the project progresses. For example, 
when a project is behind schedule, you can revise the 
plan to hire more people, extend the schedule, or both. 

Figure 2 shows a detailed causal-loop structure of the 
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adjustments to work force and schedule. By dividing 
the value of man-days remaining at any point in the 
project by the time remaining, a manager can deter
mine the indicated work-force level, which is the 
work force needed to complete the project on time. 

Hiring decisions are not made solely on the basis of 
scheduling requirements . Managers must also consider 
the training requirements and the work force's stability. 
In general , the relative weighting between the desire 
for work-force stability and the desire to complete the 
project on time is not static; it changes through the 
project ' s life. 

Although management determines the work-force 
level needed to complete the project , this level does not 
necessarily translate into the actual hiring goal (the 
work-force level sought in Figure 2). The hiring goal is 
constrained by the ceiling on new hires . This ceiling 
represents the highest work-force level management 
believes can be adequately handled by its experienced 
project members. 

Thus, three factors-scheduled completion time, 
work-force stability, and training requirements-affect 
the work-force level. 

T. K. Abdel-Hamid 

Figure 2. The planning subsystem. 

THE DE-A SOFTWARE PROJECT: 
A CASE STUDY 

As part of model validation, a case-study was con
ducted at NASA to test the model's accuracy in repli
cating the dynamic behavior of a real software project , 
namely, NASA's DE-A project. (NASA was not one 
of the five organizations studied during model develop
ment.) The DE-A project, conducted by the Systems 
Development Section of the Goddard Space Flight Cen
ter (GSFC) at Greenbelt, Maryland was to design , 
implement, and test a software system for processing 
telemetry data and providing attitude determination and 
control for the DE-A satellite. The FORTRAN system 
runs on IBM system 360/ 95 and system 360/75 main
frames. 

At the start of the project , the estimates for system 
size, total development effort, and schedule were 16,000 
source instructions, 1,100 man-days, and 320 working 
days, respectively. On completion, the DE-A projec t 
had .delivered 24,400 source instructions in 2,200 
man-days and 380 working days. 

Figure 3 shows the model's simulation run of the 
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DE-A software project. As shown, the model accu
rately replicated the project's actual behavior. The 
figure illustrates that DE-A's management held to the 
project's estimated schedule in days during most of the 
project's design and coding phases, despite a gradual 
increase in the perceived project size. To maintain the 
schedule, management added to the project's work 
force. This behavior is not atypical. It arises, according 
to DeMarco (1982) from political considerations: 

Once an original estimate is made, it's all too tempting to 
pass up subsequent opportunities to estimate by simply 
sticking with your previous numbers. This often happens 
even when you know your old estimates are substantially 
off. There are a few different possible explanations for this 
effect: It 's too early to show slip . . . If I re-estimate now, 
I risk having to do it again later (and looking bad 
twice) ... As you can see, all such reasons are political in 
nature. 

The DE-A project's work force pattern, on the other 
hand, does not conform to the staffing pattern typically 

Figure 3. Model simulation of the DE-A project . 

portrayed in the literature where the work-force level 
rises, peaks, and then drops back to lower levels as the 
project nears the system testing phase (Boehm, 1981). 
Instead, the work force level rises steadily because 
NASA tied the launch of the satellite to the completion 
of the software . All software had to be accepted and 
frozen 90 days before launch and no serious schedule 
slippages were tolerated . 

Therefore , as the project approached this maximum 
tolerable completion date, pressures developed that 
overrode considerations of work-force stability. Man
agement would pay any price to avoid overshooting the 
90-day-before-launch date. This translated , as Figure 3 
indicates, into a hiring binge late in the life cycle. (In 
Abdel-Hamid [31], we investigate whether such a 
staffing policy did or did not contribute to the project's 
late completion.) 
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Model Experimentation. Controlled experimenta
tion in the software engineering field has proven to be 
too costly and time consuming [32]. Furthermore, the 
isolation of the effect and the evaluation of the impact 
of any given variable within a large, complex, and 
dynamic software project environment can be exceed
ingly difficult [33]. Accordingly, it is useful to seek 
other methods for testing software project management 
hypotheses. 

Simulation modeling provides a viable laboratory 
tool for such a task. In addition to permitting less costly 
and less time-consuming ~xperimentation, simulation
type models make "perfectly" controlled experimenta
tion possible. Indeed: 

The effects of different assumptions and environmental 
factors can be tested. In the model system, unlike the real 
systems , the effect of changing one factor can be observed 
while all other factors are held unchanged. Such experi
mentation will yield new insights into the characteristics of 
the system that the model represents . By using a model of 
a complex system, more can be learned about internal 
interactions than would ever be possible through manipu
lation of the real system. Internally, the model provides 
complete control of the system's organizational structure , 
its policies, and its sensitivities to various events [27]. 

In the introduction, we explained that the central 
issue in this article concerns the utility of historical 
project results for future project estimation. We ex
plained how raw project statistics are currently used 
both in the calibration and evaluation of software esti
mation models. And we suggested that two rather 
fundamental assumptions underlie such a practice
first, that a project's final results are independent of its 
initial estimation values, and second, that historical 
project results constitute the most "preferred" and 
reliable benchm¥ks for future estimation purposes. 

In the next sections, we will utilize our model as an 
experimentation vehicle to show why the above two 
assumptions are flawed. We will also discuss the impli
cations for the practice of software cost and schedule 
estimation. 

EXPERIMENT 1: DIFFERENT ESTIMATES 
CREATE DIFFERENT PROJECTS 

Let us assume that NASA is considering the adoption 
of one of two proposed estimation tools. The first is a 
software estimation "magician" called WHIZ, and the 
second is the basic version of TRW's COCOMO model 
[12]. To determine which of the two is more suited to 
the NASA environment, a test is conducted to assess 
the accuracy of the tools in replicating the results of the 
DE-A project. 

T. K. Abdel-Hamid 

Table 1. 

WHIZ COCOMO 

Duration Cost Duration Cost 

Estimates 237 3,500 237 1,305 

Actual 380 2,200 380 · 2,200 
% Relative error 37 .6 59 37.6 40.6 

Both WHIZ and basic COCOMO require just one 
input, namely, an estimate of the project ' s size in 
delivered source instructions (OSI). Based on DE-A's 
actual size of 24,400 OSI, WHIZ (in a snap) produces 
the following estimates: 
Estimated Effort = 3 ,500 man-days 

Estimated Duration = 237 days 

COCOMO's estimates are then calculated as follows 
[12]: 

Estimated Effort = 2 .4 {KDSI} i .os 

= 2.4 {24.4} I.OS 

= 68 . 7 man-months 

Estimated Duration = 2 .5 {EFFORT)°' 38 

= 2.5 (68.7}°'
38 

= 12 .5 months 

Assuming a man-month translates into 19 working days 
[12], the COCOMO effort and duration estimates trans
late into 1,305 man-days and 237 days, respectively. 

The percent relative errors can next be calculated 
and compared for both the WHIZ and COCOMO esti
mation tools. The results are presented in Table 1 
below: 

We would like to suggest that the above analysis has 
one basic flaw. It is in assuming that DE-A's final cost 
and schedule values are independent of the initial esti
mates used at the start of the project. That is, it is 
incorrect to assume that the DE-A project's final cost 
and schedule values under the two new estimation 
scenarios will remain to be 2,200 man-days and 380 
days (as in the base case). The reason is simply this: 
different initial project estimates do, in a very real 
sense, "create" different projects. This assertion is 
supported by two pieces of evidence; first, research 
findings reported in the literature, and, second, our 
own experimental results. 

Research findings indicate that the decisions that 
people make in project situations, and the actions they 
choose to take, are significantly influenced by the pres
sures and perceptions that project schedules produce 
[28, 34-36]. Figure 4's causal loop diagram depicts 
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Figure 4. The feedback impact of schedule estimates . 

such schedule influences. It shows how schedules have 
direct influence on hiring and firing decisions through
out a software project' s life. In TRW's COCOMO 
model, for example, the project ' s average staff size is 
determined by dividing the man-day estimates by the 
development duration estimate. Thus, a tight schedule 
means a larger work force. Also, scheduling can dra
matically change manpower loading throughout the life 
of a project [34). For example , on the DE-A project, 
we already noted how the work-force level shoots 
upwards toward the end of the project because of the 
strict schedule constraints on the project. 

Through its effects on the work-force level, a pro
ject's schedule in turn affects the project team's produc
tivity level (also illustrated in Figure 4). For example, 
the higher work-force level that would be deployed to 
deliver a project on a tighter schedule often leads to 
higher communication and training overheads on the 
project, which in turn leads to a decrease in productiv
ity [12, 34, 37, 38). 

In addition, productivity can be influenced by per
ceptions . For example, if a project is perceived to be 
behind schedule, software developers will tend to work 
harder in order to bring the project back on schedule 
[35]. In one empirical study, Boehm [12] reports that 
team members doubled their effort as schedule pres
sures mounted prior to major project milestones. 

Thus, initial project cost and schedule estimates in
fluence hiring and firing decision, productivity, com
munication and training overheads, and work intensity. 
All are critical factors that in turn significantly influ
ence the cost and schedule of software development. 

Note that such a "revelation" does introduce a 
significant complication into the task of evaluating new 
estimation tools. For once we accept the notion that 
different initial project estimates create different pro-
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jects , we must immediately disqualify that convenient 
benchmark that has traditionally been used for evaluat
ing (new) estimation tools, namely, the raw cost and 
schedule values of completed projects . 

One possible strategy to handle the task of evaluating 
WHIZ and COCOMO using DE-A's experience is to 
conduct a controlled experiment in which the DE-A 
project is undertaken two more times under the exact 
same conditions-except that in one case, it would be 
initiated using the WHIZ estimates (3,500 and 237), 
while in the other COCOMO's estimates (1,305 and 
237) would be used. While theoretically possible , such 
an option is, however, infeasible in practice . A more 
practical alternative, is to use simulation experimenta
tion. In addition to permitting less costly and less 
time-consuming experimentation, simulation makes 
perfectly controlled experiments possible. 

To assess the relative accuracy of the WHIZ and 
COCOMO estimates, we thus re-simulated the DE-A 
project, changing only its initial estimates . The WHIZ 
and COCOMO runs are depicted in Figure 5(a) and 
Figure 5(b), respectively. Since the project 's duration 
is estimated in both cases to be 237 days, differences in 
project results can be attributed entirely to the differ
ences in the man-day estimates. 

As the project results of Figure 5 clearly indicate, the 
different estimates do indeed create significantly differ
ent project dynamics. The difference between the work 
force patterns is particularly striking. Because WHIZ 
generates a larger man-day estimate for the project, a 
larger work-force level is assembled early on, and it 
remains relatively stable throughout the life of the 
project. Contrast this with Figure 5(b), where the 
work-force level is significantly lower throughout most 
of the life cycle, and then rises steadily late in the cycle 
(as also happens in the base-case). 

The resultant total project cost and duration values 
for the WHIZ and COCOMO estimation scenarios, 
together with the percent relative error calculations are 
presented in Table 2. 

The above results in Table 2 clearly contradict those 
shown in Table 1, where COCOMO was shown to be 
the more accurate estimator. Recall that the result of 
Table 1 was based on the assumption that the DE-A 
project 's cost and schedule remain unchanged at 2,200 
man-days and 380 days respectively, irrespective of 
which estimation tool is used to derive the project's 
initial estimates. The simulation results of Table 2, on 
the other hand, demonstrate that such an assumption is 
not only invalid, but can indeed lead to incorrect con
clusions. 

The message of this experiment's result is clear: the 
impacts of the initial cost and schedule estimates on the 
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Table 2. 

WHIZ COCOMO 

Duration Cost Duration Cost 

Initial estimates 237 3,500 237 1,305 
Final values 243 3,516 316 2,588 

% Relative error 2.5 0.5 25 49 .6 

~ynamics of a software project are both real and signif
icant. Ignoring their influence in the ex-post evaluation 
of estimation tools is, thus , an approximation that 
cannot be justified. 

5. EXPERIMENT 2: WHY FITTING TO RAW 
HISTORICAL VALUES MAY NOT BE "FITTING" 

The objective of this second experiment is to challenge 
the notion that raw historical project values constitute 
the one (and only) preferred benchmark for fitting, 
cal~brating, and fine-tuning estimation models. Again, 
as m experiment 1, we will use the DE-A project as a 
case example for refuting the above notion . 

Recall that DE-A's size was initially underestimated 
to be 16,000 OSI (instead of 24,400 OSI). According 
to Boehm [12], the tendency to underestimate the size 
?f a new software system is pervasive in the software 
mdustry. A major cause for undersizing is the "power
ful tendency to focus on the highly visible mainline 
components of the software, and to underestimate or 
completely miss the unobtrusive components (e.g., help 
message processing, error processing, and moving data 
around)" [12]. 

Schedule estimation models are garbage in - garbage 
out devices: If poor sizing data is input in one side, 
poor schedule estimates come out the other side. On the 
~E-A_ project, the initial 35% underestimation of pro
Ject size does indeed lead to an underestimate of the 
project's man-day and time requirements. As the DE-A 
project progressed and the level of knowledge of what 
the software was intended to do increased, the missed 
tasks were progressively discovered. This is reflected 
in the "Perceived Job Size in KDSI" curve in Figure 
3 • But, as is typically the case, newly discovered tasks 
do not necessarily trigger an appropriate adjustment to 
the project's man-day and schedule estimates. Only 
when the discovered • 'chunks'' of tasks are significant 
in size do project members "bother" to go through the 
trouble of formally updating their estimates [19]. The 
determining factor is not the absolute size of the discov
ered tasks, but rather their size relative to the amount 
of effort perceived remaining. For example, while a 
IO-man-day task discovered at the beginning of a 
2,000-man-day project might not trigger any adjust-
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ments in the project's estimates, it would be quite 
unlikely for this to happen if the IO-man-day task is 
discovered at the end of the development phase when 
only 20 man-days were remaining . 

A combination of programmers' optimism and the 
less-than-perfect accuracy in measuring development 
progress early in the life cycle mask the deficit in the 
project's man-day requirements that result from the 
a~ve practice [30, 34]. The classic result is the "90% 
syndrome" phenomenon, namely, where estimates of 
the fraction of work completed increase as originally 
planned until a level of 80%-90% is reached, and then 
they increase only very slowly until the project is 
actually completed . This was clearly manifested on the 
DE-A project as demonstrated by the '' Estimated Per
cent Complete" curve of Figure 3. 

Toward the end of the development phase, though , 
the discrepancy between the initial optimistic estimates 
and the project's true requirements becomes increas
ingly visible. As this happened on the DE-A project, 
management realized that many more tasks remain to 
be done and precious little time left to do them. Their 
response was that dramatic increase in staff size. How
ever, as was explained earlier, adding staff members 
that late in the project life cycle can be a costly 
strategy. 

We may now suspect that DE-A's cost of 2,200 
man-days may not be a desirable benchmark, since it 
reflects the inefficiencies incurred in the staffing of the 
project, which in turn were a result of the initial 
undersizing of the project. Thus , if a new project 
comes along that happens to be exactly similar to 
DE-A, and if we assume that its size is properly 
estimated at the start, then a more effective staffing plan 
would be devised that avoids DE-A's last-minute staff 
explosion. As a result the new project should require 
less than 2,200 man-days to accomplish. 

Notice, we used the word should and not would. 
For, if DE-A's (inflated) 2,200 man-days value is in 
fact adopted as the benchmark for estimating the new 
24,400 OSI project, such savings may indeed not be 
realized. The reason: the self-fulfilling prophecy of 
Parkinson's law . On a software project, work can 
expand in many different forms to fill the available 
time. For example, work expansion could take the form 
of goldplating (e.g ., adding features to the software 
product that make the job bigger and more expensive 
but that provide little utility to the user or maintainer 
when put into practice), or it could be in the form of an 
increase in people's slack-time activities (such as catch
ing up on the mail, coffee breaks, etc.) [12]. 

Therefore, what is needed is a strategy that allows us 
to "wring" out those man-day excesses from the DE-A 
project (because of undersizing), and thus derive an 
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ex-post-set of normalized cost and schedule estimation 
benchmarks (Figure 6[b]). In the remainder of this 
section, we demonstrate how the system dynamics sim
ulation model of software project management pro
posed in this article is utilized to accomplish this. 

The strategy involves re-simulating the DE-A project 
with no undersizing. In order to determine the extent 
of the man-day excesses, not one but several simulation 
runs were conducted in which the initial schedule esti
mate is held constant at 380 days, while the man-day 
estimate is gradually decreased to lower values. The 
results of such an experiment are shown in Figure 7. 
The X-axis depicts the different initial man-day esti
mates, while the Y-axis depicts the project's final 
(simulated) cost in man-days. 

The results indicate that using DE-A's (inflated) raw 
value of 2,200 is indeed wasteful. As the initial man-day 
estimate for the project is gradually lowered, savings 
are achieved, as wasteful project practices such as 
goldplating, unproductive slack time activities, etc . are 
gradually shrunk . This continues until the 1,900 man
day level is reached. Lowering the project's initial 
man-day estimate below this point, however, becomes 
counterproductive , as the project not only sheds off all 
its excess but also becomes in effect an underestimated 
project. Initial underestimation is costly (whether it is 
due to initial undersizing or not), as it often leads to an 
initial understaffing , followed by a costly staff buildup 
later in the lifecycle. 

The above results, thus, suggest that the widely held 
notion that raw historical project results constitute the 
most ''preferred' ' benchmark for future estimation is 
not only flawed but can be costly as well. In the 
particular case of NASA's DE-A project , a 1,900 

Figure 6. (a) Current practice ; (b) pro
posed normalization strategy. 

man-day value is clearly a more "preferred" bench
mark over DE-A ' s raw 2,200 value, as it would save 
NASA 234 man-days-a 10.6% saving in cost. 

CONCLUSION 

Three lessons can be drawn from the results of this 
research. First , that it is inadequate to assess the accu
racy of (new) estimation tools simply on the basis of 
how accurately they replicate old projects. Second , we 
showed why raw historical project results do not neces
sarily constitute the most "preferred" and reliable 
benchmark for future estimation. 

Third, the system-dynamics-based simulation ap
proach adopted in this study proved to be a viable 
research vehicle for the study of software project esti-

rn 
• < 
C 
z 
< 
:E 

Figure 7. Experiment 2 results. 
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mation. In addition to permitting less costly and less
time-consuming experimentation , simulation-type mod
els make "perfectly " controlled experimentation possi
ble. Furthermore, the model provided insight into the 
causes behind the different behavior patterns observed. 
In experiment I , we showed how the model can be 
used as a platform to try out new estimation tools , 
observe their impact, and evaluate their accuracy. And 
in experiment 2, the model was used to wring out 
man-day excesses incurred as a result of initial under
sizing and, hence, derive a normalized set of bench
marks for future estimation. 

Our future research will focus on operationalizing 
and institutionalizing the above ideas. This will involve 
~ncorporating some extensions to the model to expand 
its applicability to a larger class of projects at one of 
NASA's software development centers . The model will 
then be used to normalize an extensive database of raw 
historical results. A long-term study will then be under
taken to compare the performance of estimators that are 
calibrated using the normalized database vis-a-vis esti
mators calibrated using the database of raw historical 
values. 
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