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ABSTRACT 

 This thesis presents an application of image enhancement techniques for color and 

panchromatic imagery to hyperspectral imagery. In this thesis, a combination of 

previously used algorithms for multi-channel images are used in a novel way to 

incorporate multiple bands within a single hyperspectral image. The steps of the image 

enhancement include image degradation, image correlation grouping, low-resolution 

image fusion, and fused image interpolation. Image degradation is accomplished through 

a Gaussian noise addition in each band along with image down-sampling. Image 

grouping is done through the use of two-dimensional correlation coefficients to match 

bands within the hyperspectral image. For image fusion, a discrete wavelet frame 

transform (DWFT) is used. For the interpolation, three methods are used to increase the 

resolution of the image: linear minimum mean squared error (LMMSE), a maximum 

entropy algorithm, and a regularized algorithm. These algorithms are then used in 

combination with a principal component analysis (PCA). The use of PCA is used for data 

compression. This saves time at the expense of increasing the error between the true 

image and the estimated hyperspectral image after PCA. Finally, a cost function is used 

to find the optimal level of compression to minimize the error while also decreasing 

computational time. 
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EXECUTIVE SUMMARY 

Hyperspectral sensors capture images that have an enormous amount of spectral 

data. The spectral resolution of the hyperspectral wavelength bands allows for a better 

classification of material chemical composition compared to other remote sensors. Material 

classification is possible because different molecular structures of various chemicals 

absorb and reflect different wavelengths of light. Hyperspectral imagery has enabled many 

new remote sensing applications in agriculture, geology, medicine, and many more fields. 

An example of a hyperspectral image is shown in Figure 1. 

 
Figure 1.  Hyperspectral Image Example. Source: [1]. 

In Figure 1, the hyperspectral image can be thought of as a series of many images, 

where each image captures what the ground looks like at a particular wavelength of light. 

The airborne sensor receives the emitted wavelengths from the ground and counts the 

number of photons received at that exact wavelength. The series of images form a three-

dimensional cube of values, where x and y axes determine the location, and the z-axis 

defines the wavelength intensity. Lighter colors in this image indicate that the ground 

material reflects or emits that specific wavelength very well. This can be used to identify 

materials by comparing the wavelengths reflected with a database of known values. 

Hyperspectral images separate the detected photons into different wavelength 

bands. By separating the detection of a finite number of photons into many different 
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wavelength bands, each band individually does not receive many photons. The smaller 

number of photons available requires larger pixels and longer integration times to generate 

enough signal-to-noise-ratio to provide an accurate radiance measurement. In turn, larger 

pixels require larger optics to get the same spatial resolution. In airborne and space-based 

remote sensing systems, there is a practical upper bound on the size and weight of optics, 

which often means that hyperspectral systems have a lower spatial resolution as a result. 

Lower spatial resolution limits the usefulness of a hyperspectral image when used to 

classify and segment an image into groups of materials. Without enough spatial resolution, 

classification methods that sample small areas in clusters, such as the Simple Linear 

Iterative Clustering algorithm (SLIC), may not accurately define the boundaries of 

different compounds in an image. These classification methods are improved by having a 

larger sample size of data. 

An approach to overcome the low spatial resolution limitation is image 

enhancement through image processing techniques. It is possible to fuse information in the 

data by leveraging the similarities across the low-resolution bands. After fusing the data, 

the next step is to interpolate the fused data to a new higher resolution image with more 

useful information for segmentation and classification.  

This investigation aims to determine which interpolation methods work best to 

improve the hyperspectral image signal-to-noise ratio. We have compared six different 

interpolation methods to determine which methods increase the quality of the image. The 

first three methods use more complex interpolation algorithms in conjunction with image 

fusion. The three interpolation algorithms used with image fusion are a linear minimum 

mean squared error (LMMSE) algorithm, a maximum entropy algorithm, and a 

regularization algorithm. The following three methods act as a baseline for comparison and 

are simpler interpolation methods that do not use fused images. The three simple 

interpolation methods are a nearest neighbor, bilinear, and bicubic interpolation. The 

system diagram that visually represents this process is shown in Figure 2.  
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Figure 2.  Image Enhancement System Diagram. 

The image enhancement system diagram starts with the original hyperspectral 

image. Since several wavelength bands are in the hyperspectral image, this first box has 

several layers representing the multiple bands. Gray boxes represent functions in the 

algorithm. The next step is to down-sample and add noise to the high-resolution image to 

form a degraded low-resolution image. Down-sampling and degradation allow for a 

comparison of the interpolation result to the original unaltered data. After the down-

sampling, the low-resolution image is sent to two different parts of the investigation. Both 

the “blue” and “gold” side use all six interpolation methods. After interpolation, the signal-

to-noise ratio (SNR) and error are calculated. The left “blue” side is the uncompressed 

experiment, where the down-sampled and degraded low-resolution images are fed directly 

into the complex and simple interpolation algorithms. The right “gold” side is the 

compressed experiment, where the degraded low-resolution images are further compressed 

in size using a principal component analysis (PCA). The compressed section of the 

investigation determines what methods are best for small data sizes and the optimal 

compression level. On the gold side, time to calculate each interpolated image increases as 

the level of compression decreases. Time elapsed while calculating the estimated image 
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and the error between the estimate and the original image are used to generate a cost. The 

method with the least amount of cost is the most effective. 

After testing these six different methods of image enhancement, we have concluded 

that of the methods tested, the best algorithms for increasing signal-to-noise ratio are the 

Linear Minimum Mean Squared Error (LMMSE) algorithm and regularization algorithm. 

These two algorithms had the highest SNR performance of all six methods in the 

uncompressed data testing. For large datasets, image fusion used in conjunction with these 

LMMSE and regularization proves to be effective in image enhancement.  

The second goal of this investigation is to determine a method of selecting an 

optimal number of principal components (eigenvectors) to use for image enhancement 

when a principal component analysis was used to compress the hyperspectral data. As more 

eigenvectors are used, the error between the reconstructed image and the original image 

decreases. The time taken to conduct the compressed image enhancement is measured for 

all methods along with the error measurements. The error and the time elapsed are used in 

a cost function. The minimum of the cost function determines the optimal number of 

eigenvectors that balances the needs of estimated image accuracy and lower computational 

time. The visual representation of both the uncompressed and compressed image 

enhancement experiments can be seen in Figure 3. 
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Figure 3.  Uncompressed and Compressed Image Enhancement Process. 

In Figure 3, and as stated previously, both the blue and gold experiments use all six 

of the interpolation methods discussed previously. The three more complex methods fall 

under the box named “proposed method,” and the simple interpolation methods are under 

“single-step interpolation.” In the proposed method track, image grouping and fusion are 

used with the complex interpolation, whereas the single-step interpolation methods do not 

use image grouping and fusion. Separating these two tracks is done to compare the 

proposed image enhancement to the three simpler methods. If the proposed methods cannot 

produce better results than the single-step interpolation, then they are not methods with any 

practical use. As stated previously, the LMMSE and Regularization algorithm had the 

highest SNR in the uncompressed dataset. In the PCA compressed dataset, the highest 

performers were the LMMSE method for the Indian Pines image and the bilinear method 

for the Salinas image. A key detail is that the image of Indian Pines is approximately twice 

the size of the Salinas image. These results suggest that as the hyperspectral cube becomes 

larger, the more complex methods improve in producing an enhanced image from the 

dataset. However, as the image is compressed further, these methods break down and 

cannot produce accurate estimations of the original image. It is our recommendation that 

for hyperspectral image enhancement, data compression should not be used. The cost 

savings due to computational time reduction can be mitigated with stronger computational 
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hardware and code optimization. Additionally, it is recommended that image fusion used 

in conjunction with LMMSE and regularization methods be further investigated for use on 

a broader array of images than what is tested in this experiment. 

Reference 

[1] H. Zhang, L. Zhang, and H. Shen, “A super resolution reconstruction algorithm for 
hyperspectral images,” Signal Processing, vol. 92, pp. 2082–2096, 201.  
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I. BACKGROUND 

A. INTRODUCTION 

Remote sensing allows a user to understand the physical properties of various 

locations while maintaining a large range to the scene being viewed. Hyperspectral imagery 

has been used for remote sensing since the early 1990s [1]. Before this, traditional remote 

sensing consisted of panchromatic images, color images, or multi-spectral images with 

only a small number of wavelength bands. These were primarily based upon the visible 

spectrum. Images typically presented to the human eye consist of three bands: red, green, 

and blue (RGB), which correspond to approximately 0.6, 0.5, and 0.4 microns. Overhead 

imagery also made extensive use of panchromatic images. In panchromatic imaging, light 

is collected across the entire visible spectrum, combined and represented by a single 

intensity value per pixel, resulting in a grayscale image. Panchromatic imagery is 

advantageous because more photons are available in a broad spectrum of wavelength bands 

than what would be available in narrower bands with only specific wavelengths. In 

panchromatic imaging, pixels can be smaller, and thus the image resolution is improved. 

Image analysis has historically required manual inspection of captured photographs. In 

times of conflict, the location, material, and personnel of an adversary could be identified 

by analyzing panchromatic images. Unfortunately, as these methods became known, 

adversaries created ways of disguising themselves using camouflage to appear as 

background noise [2]. 

To counter deception tactics, more advanced sensors on surveillance aircraft were 

created that could detect anomalies normally invisible to the human eye. During the early 

1970s, multi-spectral sensors that could capture wavelengths of light invisible to the human 

eye became widely available. Remote sensing cameras such as the Landsat satellite have 

captured multi-spectral images of the surface of the Earth. Multi-spectral images allowed 

for monitoring crop health, flood, fire risk, and other environmental phenomena [1]. 

“Multi-spectral” is defined as the visible spectrum along with the near-infrared (NIR), 

short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) 

[1]. Multi-spectral imagery was beneficial for object detection and surveillance. Multi-
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spectral imaging, however, had its limitations in material classification due to the small 

number of bands that were acquired from an airborne sensor. A visual comparison of multi-

spectral and hyperspectral imaging can be seen in Figure 1. 

 
Figure 1. Hyperspectral / Multispectral Comparison. Source: [3].  

In Figure 1, the multi-spectral image has only a few discrete wavelength bands. 

This limits its ability to classify materials detected on the ground since only a few 

wavelengths are sampled. On the other hand, the hyperspectral image has a greater number 

of bands, effectively creating a continuous line of intensity values at each wavelength. This 

allows for a greater amount of wavelength samples. 

Hyperspectral imaging sensors allow more detailed spectral data to be acquired 

from a scene than multi-spectral sensors. This is accomplished through larger optical 

detector arrays combined with various prisms or interferometers that can capture the 

spectral content of a ground scene with much higher spectral resolution. The image 

generated by a hyperspectral instrument can be visualized as a three-dimensional (3D) 

array of values referred to as a “data cube.” The first and second dimensions are the x and 

y coordinates. The third dimension contains the intensity values at each pixel on each 
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wavelength band. An example of a ground scene captured is shown in Figure 2. This figure 

is an example of how the Airborne Visual and Infrared Imaging Spectrometer (AVIRIS) 

sensor captures different spectral plots at each pixel location. 

 
Figure 2. Visualization of Hyperspectral Data. Source: [4]. 

Figure 2 represents the spectral data that would be captured at different pixel 

locations if a hyperspectral image was taken of the landscape on the left. The multiple 

layers of the image represent 224 different wavelength bands captured. This is analogous 

to how a digital camera image has a red, blue, and green pane stacked on top of each other. 

At each location, a different spectrum would be captured, representing a different material. 

The 4 sample locations are cut out, and their plots are displayed on the right. Each material 

has a distinct wavelength “fingerprint” that allows the chemical composition of the material 

to be determined. 

Figure 3 shows an example pixel spectrum at the top-left pixel of the Indian Pines 

hyperspectral image [5]. At this location is a large, wooded area.  
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Figure 3. Hyperspectral Image Pixel Spectrum of Wood in Indian Pines HSI. 

The example pixel in Figure 3 has a minimum and maximum wavelength of 0.4 µm 

to 2.5 µm from the AVIRIS sensor construction. The height of the spectrum represents the 

number of photons at that wavelength captured by the sensor. Photon count represents how 

well a material on the ground reflects or emits that wavelength. By matching similar 

wavelength spectra in the hyperspectral image, it is possible to group and classify different 

parts of the image by material. Image classification, however, does have some limitations. 

Because the spectral bands are narrow (often 10nm or less), each pixel in a 

hyperspectral sensor must be large enough to capture enough photons to measure intensity 

accurately. Hyperspectral imaging provides extremely detailed spectral information at the 

cost of lower spatial resolution 

When used with classification algorithms, hyperspectral data can allow for very 

accurate classification of various materials on the ground. Much better than multi-spectral or 

panchromatic data. Hyperspectral data has many uses. Examples include surveying, locating 

chemicals, and detecting pollution. The exact material can be determined by comparing the 

captured spectrum to a spectral library such as the United States Geological Survey (USGS) 

library [6]. Figure 4 shows a chemical sample along with its reflectance spectrum. 
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Figure 4. Reflectance Values of Alunite. Source: [6]. 

In Figure 4, the reflectance spectrum of alunite is plotted. The RGB representation 

of the material is on the right. The right image is how alunite would look to the naked eye. 

On the left is the wavelength spectral data of alunite from 0.4µm to 2.5 µm. The Y-axis of 

the graph represents the ability of the material to reflect photons at a specific wavelength 

indicated on the X-axis. The left image is how alunite would be represented in a 

hyperspectral image pixel. 

B. PURPOSE 

The purpose of this work was to make the classification and segmentation of 

hyperspectral images more effective by diminishing the effects of random noise additions 

and increasing the spatial resolution of hyperspectral images. The proposed method aids 

hyperspectral image analysis by leveraging the similarities within a single hyperspectral 

image to increase the signal-to-noise ratio (SNR).  

C. RELATED WORK 

This work extends the image enhancement of multi-channel images explored by El-

Khamy, Hadoud, and Dessouky in [7]. They defined the three RGB interpolation 

algorithms that have been used in this experiment to increase the spatial resolution of the 

hyperspectral images [7]. They used a four-step process that consisted of image 

registration, image restoration, image fusion, and image interpolation. The three 
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interpolation algorithms they used in their approach were a Linear Minimum Mean 

Squared Error (LMMSE) algorithm, a maximum entropy algorithm, and a regularization 

algorithm. This thesis will focus on applying image fusion and interpolation to grouped 

bands in a hyperspectral image. 

Previous studies have applied a principal component analysis (PCA) in order to 

save computational time and have a more accurate spatial resolution after the image 

enhancement has been done on the hyperspectral image. In their paper, Zhang, Zhang, and 

Shen [8] conducted a PCA on the hyperspectral image before image reconstruction. The 

rationale being that “primary components contain most of the information of the 

hyperspectral image, which makes the resolution enhancement of the primary components 

quite important” [8]. Zhang and Zhang did not address the level of compression necessary 

to achieve the best results. An approximate percentage of components to use for best results 

are addressed in Chapter IV. 

The method of image degradation in this thesis is accomplished through the use of 

random gaussian noise with image down-sampling. In their paper, Sun, Xu, Yang, Chen, 

Fang, and Peng [9] degraded their images with random Gaussian noise. Gaussian-noise 

was used on each individual band in their low-resolution images. Next, their algorithm was 

used to remove the noise and improve image resolution. The image enhancement approach 

in this paper uses this method to generate degraded images that will be used to estimate the 

original hyperspectral images.  

D. SCOPE 

Hyperspectral data cubes are generated over long exposure times in order to acquire 

enough photons to accurately display an image. The high cost of flying hyperspectral 

sensors and the long integration times needed to gather the image during flight limit the 

number of data cubes available for public use. In this thesis, we have used two well-known 

data cubes used in many other studies. The data used in this thesis is publicly available 

through the Purdue hyperspectral database [5]. These two datasets were used due to their 

large differences in data size. The differences in data size aid in determining how data size 

affects the performance of the image enhancement algorithm. 
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E. THESIS OUTLINE 

The following chapters are organized as follows. Chapter II discusses the 

mathematical theories which define the three more complex methods used for image 

interpolation, image fusion, and image grouping. Chapter III goes into detail on the 

algorithm that was used to conduct the experiment. The results of the investigation are 

discussed in detail in Chapter IV. The conclusions derived from the results are addressed 

in Chapter V.  
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II. MATHEMATICAL PRELIMINARIES 

A. INTRODUCTION 

The proposed image enhancement approach in this thesis follows several steps. The 

steps are degraded low-resolution image generation, image grouping, image fusion, and 

image interpolation. The information in this chapter provides the mathematical principles 

that accomplish these image enhancement tasks. 

B. LOW-RESOLUTION IMAGE GENERATION 

A challenge with testing hyperspectral resolution techniques is that often the only 

sample available of a scene is a single hyperspectral image. Unlike conducting image 

enhancement with video data, there is often only a single capture of the hyperspectral scene. 

The single image serves as our high-resolution reference image for evaluating the image 

enhancement approach. Therefore, low-resolution images must be generated by down-

sampling and adding noise to the original hyperspectral image. Hyperspectral image 

degradation creates a set of low-resolution wavelength bands through the use of random 

noise addition and down-sampling of each wavelength band. The degradation process 

artificially creates errors, while image fusion and the advanced interpolation methods use 

the shared information from each grouped wavelength band in the fusion process to 

improve the image quality. 

The generalized image degradation equation is an iterative process done for each 

band in the hyperspectral image. The equation to create the degraded low-resolution 

images, as described in [10], is written as 

 for   1, 2,  ...,  k k k kg D f v k P= +      =  , (1)  

where gk is the generated low-resolution wavelength band, fk is the original high-resolution 

wavelength band, vk is the degradation noise added to each down-sampled wavelength 

band, Dk is the down-sampling matrix, and P is the total number of degraded wavelength 

bands. 
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Each matrix is a lexicographically ordered vector of the image pixels. 

Lexicographic ordering means that the image is sorted column-by-column to form a single 

vector. The original high-resolution image fk is of size N2 x 1. The down-sampling matrix 

Dk is of size M 2 × N 2 and shrinks the original image to a smaller size by sampling values 

at every other location. The result of multiplying fk by Dk creates the down-sampled matrix 

gk of size M 2 × 1, which are reordered to be the low-resolution images of size M x M. The 

noise vk is size M 2 × 1 and is added to the low-resolution image. N2 is the total number of 

pixels in the high-resolution wavelength band, and M2 is the total number of pixels in a 

low-resolution wavelength band. The down-sampling ratio between the two images is L, 

and their relationship is written as N=LM. A visual representation of multi-channel 

degradation can be seen in Figure 5. 

 
 

Figure 5. Multi-Channel Image Degradation Model. Source: [10]. 

In Figure 5, each of the high-resolution images from f1 to fp are down-sampled by 

their corresponding down-sampling matrix D1 to Dp. After down-sampling, random noise 

values v1 to vp are added to each down-sampled image to create the low-resolution 
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degraded images g1 to gp. In order to create a simpler implementation in software, it is 

advantageous to rewrite Equation 1 as a linear multiplication of matrices [10]: 

 g D f v= +  , (2) 

where [10]: 
 

 

1 1 1 1

2 2 2 2

0 0
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              





      



  (3)  

 The variables in Equation 3 g, f, v, and D  represent matrices that contain all of the 

resulting values from the iterative multi-channel degradation process.  

C. IMAGE GROUPING 

Image grouping is how groups of the degraded low-resolution bands are chosen for 

use in the proposed image enhancement approach. In this case, groups of bands from the 

hyperspectral image are taken and have their spatial information fused with a discrete 

wavelet frame transform (DWFT) before the final interpolation. Fusing wavelength bands 

with good spatial correlation is necessary because this will make sure that the fused image 

low-frequency spatial data is not drastically different from the original low-resolution 

wavelength band. By fusing data across multiple wavelength bands, both complementary 

and redundant information is incorporated. The inclusion of redundant information 

“reduces the uncertainty and increases the accuracy of the features” [7]. Complementary 

information, however, provides more detailed information regarding features not available 

from a single wavelength band. The method that was used to group bands for fusion is the 

2D correlation coefficient.  

In the hyperspectral image, the 2D correlation coefficient is calculated between 

every possible pairing of the different wavelength bands in the image. The correlation 

coefficient is calculated by [11]:     
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∑∑

∑∑ ∑∑
 , (4) 

where r is the correlation coefficient between the two bands, g1 is the first low-resolution 

hyperspectral wavelength band, and g2 is the second low-resolution hyperspectral 

wavelength band. E(g1) is the mean of the low-resolution band g1, and E(g2) is the mean 

of the low-resolution band g2. The spatial correlation between each wavelength band is 

what was used to match them in the grouping process. Equation 4 compares the pixel 

intensity value at all locations in the two images and then returns a value between -1 and 

1, which represents how closely correlated the two bands are. An example correlation 

coefficient stem plot for the first hyperspectral band is provided in Figure 6. This shows 

how well the first wavelength band in the image correlates with the rest of the wavelength 

bands. A higher correlation coefficient means those two bands are similar spatially. 

 
Figure 6. Correlation Coefficient of Band 1 and All Bands. 

In Figure 6, the height of each point represents the correlation coefficient between 

band 1 and the corresponding band number. Each band will have a different correlation 

plot. Once the correlation coefficient is calculated for each possible pairing, the first and 
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second maximum correlations are used to create the groups for the rest of the image 

enhancement process. The end of the fusion process will result in a fused low-resolution 

hyperspectral image with the same number of bands as the degraded low-resolution image. 

Each band in the fused image corresponds to the wavelet fusion of three bands from the 

degraded image  

D. IMAGE FUSION 

Image fusion is the process by which bands in the degraded low-resolution image 

are “fused” together into a single band that is later interpolated. The assumption is that each 

band in the image contains complementary information that can be combined and will 

result in a high-resolution band that has more information than what would be obtained 

through only a single band. Image fusion has several possible advantages, including image 

sharpening, feature enhancement, and improved classification [7]. The image fusion in our 

proposed algorithm is accomplished through a discrete wavelet frame transform (DWFT). 

 A discrete wavelet frame transform (DWFT) decomposes a band into additive 

spatial frequency components. Each component contains a different range of spatial 

frequencies of the band. This separates the spatial frequency components and allows the 

low, mid, and high spatial frequency data of several bands to be fused together. Given a 

degraded low-resolution band P, it is possible to construct the sequence of approximations 

[7]: 

 1 1 2 1 2 1( ) , ( ) ,..., ( )n n nf P P f P P f P P−= = =   (5) 

For a registered group of three bands, the method to create the approximation is by 

conducting successive convolutions on the band with the kernel given by [7]: 

 

1 4 6 4 1
4 16 24 16 4

1 6 24 36 24 6
256

4 16 24 16 4
1 4 6 4 1

H

 
 
 
 =
 
 
  

  (6) 
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A wavelet detail plane is calculated by the difference between two consecutive 

approximations. This difference l  will contain the high-frequency details, and Pn is a 

low-frequency component [7]. 

 1 , for  1, 2,...,l l lP P l n−= − =   (7) 

Then the fused image reconstruction formula is written as [7]: 

 
1

n

l n
l

P P
=

= +∑   (8) 

The model for how this is accomplished is shown in Figure 7. 

 
Figure 7. DWFT Image Fusion. Source: [7]. 

In Figure 7, two images are broken up into spatial frequency components. Those 

frequency components are then averaged and then the inverse of the DWFT was used to 

create a fused image with spatial frequency information of both starting images. This 
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process is completed two separate times. First, a fusion of the 1st band and 2nd band in the 

group of three bands. Then that fused result is fused with the final 3rd band in the group to 

yield a single fused image that incorporates spatial frequency information from all three 

bands. A fused band is calculated for each band in the hyperspectral image. The fused 

hyperspectral image is then sent to the image interpolation step. 

E. IMAGE INTERPOLATION 

The final step is to interpolate the fused image, which contains the additive 

components of several bands. These algorithms take the fused image and then interpolate 

it into a high-resolution image estimate. This is done in order to take advantage of the fused 

spatial data after the wavelet fusion has been completed. The expectation is that the 

combined data from multiple bands will aid in creating a final image that will improve the 

SNR of the final high-resolution image estimate. 

1. LMMSE Interpolation 

The LMMSE interpolation is done iteratively on each band in the fused low-

resolution hyperspectral image. The fused image has incorporated the information from the 

grouped bands of the degraded low-resolution image. The algorithm is based upon on 

finding the minimum estimate error possible and is written as follows [12]: 

 min ( ) ,t t

f
E e e E Tr ee

∧
   =        (9) 

where the error is defined as [12]: 

 e f f
∧

= −   (10) 

The LMMSE estimate of the high-resolution band is given by [12]: 

 1( )t t
f f vf R D DR D R g

∧
−= +   (11) 

D is the single band down-sampling and filtering matrix. Variable g is the fused low-

resolution band. For a down-sampling factor of two, the N x N high-resolution matrix is 
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transformed into an M x M matrix. Where N = 2M. The down-sampling matrix D is of size 

M2 x N2 and is written as [12]: 

 

1 1

1

1 1 0 0 0 0
0 0 1 1 0 01and  

2
0 0 0 0 1 1

D D D

D

= ⊗

 
 
 =
 
 
 





      



  (12) 

Rf is the high-resolution image autocorrelation matrix, and Rv is the noise variance. 

Both must be estimated in order to solve for the estimated high-resolution image. 

Estimating Rf is done by calculating the autocorrelation at different spatial positions of a 

bilinear or cubic interpolation of the fused degraded image. Rv is estimated by taking a 

small sample size of the band. 

2. Maximum Entropy Interpolation 

The maximum entropy model is also done iteratively on each fused band. 

Maximum entropy image interpolation assumes a unit energy for each band of the high-

resolution image estimate. The pixel values are treated as probabilities of photons present 

at a particular location in the band. The entropy of the high-resolution band estimate 

becomes [10]: 

 
2

2
1

log ( ) ,
N

e i i
i

H f f
=

= −  ∑   (13) 

where fi in this section is the desired high-resolution band. eH is the entropy of the band. 

The vector form of the equation is written as [10]: 

 2log ( )t
eH f f= −   (14) 

To maximize the entropy cost function, ψ, must be minimized such that [10]: 

 
2 2

2( ) log ( )tf f f g Df vλ  Ψ = − − −    (15) 
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λ  is a Lagrangian multiplier, g is the fused low-resolution band, and v  is random noise. 

The single-band degradation and down-sampling matrix D defined in Equation 12 was used 

for this interpolation method as well. By differentiating the left and right side of the 

equation and setting the derivatives to zero, the equation becomes [10]: 

 { }( ) 10 1 ln( ) 2 ( )
ln(2)

td f f D g D f
df

λ
∧ ∧Ψ  = = + + −  

  (16) 

Solving for f
∧

 results in [10]: 

 exp 1 ln(2) 2 (tf D g D fλ
∧ ∧ = − − −  

  (17) 

Because g D f
∧

− must be a small quantity to maximize the accuracy of the estimate, 

it leads to the form [10]: 

 ln(2) 2 ( )tf D g D fλ
∧ ∧ ≅ − −  

  (18) 

Solving for f
∧

 once again leads to [10]: 

 
1( ) ,t tf D D I D gη

∧
−≅ +    (19) 

where [10]:  

 1/ (2 ln(2))η λ= −   (20) 

3. Regularized Interpolation 

The regularization interpolation algorithm is an iterative approach completed on 

each fused band. The regularization algorithm minimizes a stabilizing functional in order 

to determine a high-resolution estimate. This method is beneficial due to the lower 

computational cost by avoiding a matrix inversion; however, the high number of iterations 

required to reach a solution is a potential drawback dependent on the data size.[13] The 

cost function to be minimized is written as [13]: 
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2 2

( )f g D f C fλ
∧ ∧ ∧

Ψ = − −   (21) 

C is the 2-dimensional regularization operator and λ is the regularization parameter 

of the cost function. This cost function controls the trade-off between fidelity to the data 

and the smoothness of the estimated high-resolution image.[13] The minimization is 

accomplished by taking the derivative of the function in Equation 22 [13]: 

 
( ) 0 2 ( ) 2t td f D g D f C C f

df
λ

∧
∧ ∧Ψ

= = − −   (22) 

The role of the 2-D operator C is to move small eigenvalues of D away from zero 

while leaving larger values constant. What this allows for is an incorporation of the 

required low spatial frequency information of the original band. It also minimizes the 

second and higher-order difference energy of the estimated high-resolution band. By 

solving through iteration, the high-resolution band can be estimated [13]:  

 { }1 0 ( )t t t
i i if f D g D D C C fη λ+ = + − +   (23) 

The image fi is the estimated high-resolution band at the ith iteration. 
0η  is a 

convergence parameter that is set at 10–3. The interpolation formula is written as [13]: 

 
1

,, ( ) ,t t t
i ji jf D D C C D gλ

∧
−= +    (24) 

where ,i jg is the fused low-resolution band of size M2 x 1 and ,i jf
∧

is size N2 x 1 both in 

lexicographic order as discussed in Chapter II, Section B. 

4. B-spline Variants: Nearest, Bilinear, Bicubic 

We have combined the spatial frequency information from multiple bands to 

increase the image quality of the high-resolution estimate. In order to have a baseline of 

performance, we will use three simple interpolation methods that will interpolate each band 

of the degraded low-resolution hyperspectral image independently. These methods will not 

incorporate information between bands through image fusion. 
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Splines are piecewise polynomials that can be used to interpolate images. These are 

known to be the simplest of image interpolation methods and was used to establish a 

baseline of comparison to the three more complex image interpolation methods. Each 

polynomial is of degree n, where n denotes the number of the convolutions of a rectangular 

pulse 0β . Splines can be characterized in terms of a B-spline expansion given by the 

equation: 

 ( ) ( ) ( )n
k k

k Z
f x c x x xβ
∧

∈

= −∑   (25) 

Z is a finite neighborhood around x. The B-spline basis function Bn(x) is a 

symmetrical bell curve obtained by n+1 convolutions of a rectangular pulse 0β  [7]: 

  (26) 

The nearest neighbor interpolation is the simplest interpolation method. It is done 

through a zero-order interpolation, i.e., using the rectangular pulse as the basis function. 

This rectangular pulse is shown in Figure 8. 
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Figure 8. Nearest Neighbor Spline Basis Function. Source: [7]. 

To calculate the bilinear and bicubic interpolations, the n=1 and n=2 basis functions 

are used. Their basis functions are shown in Figure 9. By convolving these basis functions 

throughout the image in two dimensions, the bilinear and bicubic interpolations are 

completed. 

 
Figure 9. Bilinear And Bicubic Basis Functions. Source: [7]. 
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F. PCA  

The fusion and interpolation steps in Sections D and E can be computationally 

intensive to operate on every band in a hyperspectral data cube. PCA was used because it 

compresses high-dimensional data into a lower-dimensional space while preserving as 

much variance as possible from the original space. This aids in calculation time by reducing 

the number of computations required to generate the estimated high-resolution image in 

the image enhancement process. A graphical representation of random data undergoing this 

projection is portrayed in Figure 10, where all of the data is compressed to the axis upon 

which most of the data information is contained (i.e., the “PC 1” axis). 

 
Figure 10. Eigenvalue Priority Determination. Source: [11]. 

There are several steps to project the space properly onto a lower-dimensional one. 

First, the covariance matrix of the image x must be calculated. The equation for the 

covariance matrix as written in [11] as 

 ( )( ){ }H
x xxC E x m x m= − −   (27) 
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The covariance matrix is related to the eigenvectors and eigenvalues of the data 

through the relationship [11]: 
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where U is the eigenvector matrix and Λ is the eigenvalue matrix. The next step is to 

project the data into the lower dimensional space y. This is done through first sorting the 

eigenvalues of the covariance matrix by descending value, as seen in Figure 11. Then the 

eigenvectors are sorted in the same manner based upon their eigenvalue order 

 
Figure 11. Eigenvalues Of The Indian Pines Hyperspectral Image. 
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Hy U x=   (29) 

  

is used to project the original space into an uncorrelated space y . In order to compress the 

information, it is desired that only a finite number of eigenvectors, Npca, are used to return 

to the original space after the compression. The equation to compress the original 

information is written as [11]: 
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where x
∧

 is the estimation of the original space from the projected space y . U is the sorted 

eigenvector matrix based upon the descending eigenvalues. Npca is the number of 

eigenvectors used to project the data. The higher number of eigenvectors, the more of the 

original space can be reconstructed when returning to the original space. However, it is 

usually the case that most of the information is contained in the first several eigenvectors, 

as the eigenvalue plot in Figure 11 shows that most of the data information is contained in 

the first few eigenvalues. A good visual representation is shown in Figure 12. This is an 

application of PCA where the original character dataset is shown on the top left along with 

the projected space for increasing numbers of eigenvectors used. The fewer number of 

eigenvectors used, the less of the spatial frequency information is taken from the original 

data. As higher amounts of eigenvectors are used, higher frequency components are added 

and more of the original data is kept after compression. As more data is retained, a more 

accurate representation of the final image is created, but a longer computation time is 

needed. A method to quantitatively compromise between computation time and image 

error is discussed in Section G. 
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Figure 12. Character Example of PCA. Source: [11]. 

G. OPTIMIZATION OF IMAGE COMPRESSION 

The method by which an optimal value for the PCA is determined by locating the 

minimum value of a compression cost function. This function incorporates the time taken 

to conduct the image enhancement on the compressed image and the error between the 

estimated high-resolution hyperspectral image and the original hyperspectral image. The 

greater the error and time elapsed, the higher the cost for that number of eigenvectors used 

for the compression. This was accomplished by executing the image enhancement on every 

possible compressed space available from using only the first eigenvector to using all the 

eigenvectors. The cost function used is written as: 

 2 2 = ( ) ( ) ,J a t b d+    (31) 
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where J is the cost value, t  is the time measured in seconds, and d  is the sum of the 

distance of each estimated pixel value from its original value in the original hyperspectral 

image. This distance is measured across all the bands in the estimated image. The 

coefficients a and b are used as weighting factors to represent the relative importance 

between time and error. An example of what the optimal location will look like when the 

cost is plotted for each eigenvector is shown in Figure 13. 

 
Figure 13. Example Of Optimal Compression Point. 

In Figure 13, the optimal compression point is illustrated by the minimum value on 

the graph. For the Indian Pines image, the minimum value occurred at 13 eigenvectors. 

The time taken was measured experimentally through recording the runtime of each 

image enhancement for each number of eigenvectors used to compress the data. The 

weighting factors a and b were chosen to represent the relative importance of time and 

error. The specific values are subjective. In this case, the error between the original image 

and the estimate was chosen to be much more important than the time elapsed. Therefore, 

the coefficient b is an order of magnitude larger than coefficient a. The use of a quadratic 
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cost function is to ensure that there is a minimum value for the cost that can be determined 

as the optimal value for PCA image enhancement. 
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III. IMAGE ENHANCEMENT APPROACH  

This chapter is a detailed description of the image enhancement approach used. The 

image enhancement algorithm is implemented in MATLAB. 

A. GENERAL IMAGE ENHANCEMENT APPROACH 

Section A is a summary of the overall enhancement approach. The following sections 

will go into detail about how each of the system blocks are accomplished. The proposed 

image enhancement approach is displayed in the system diagram shown in Figure 14.  

 
Figure 14. Image Enhancement System Diagram. 

The first goal of the proposed image enhancement process was to use the original 

hyperspectral images (Indian Pines and Salinas) as our high-resolution ground truth and 

reconstruct them from a simulated degraded low-resolution image. The original Indian 

Pines and Salinas images served as our high-resolution reference images. The system 

diagram starts with the original hyperspectral image.  



28 

The next step is to down-sample and then add noise to the image to create a 

degraded low-resolution image. Low-resolution image generation allows the interpolation 

result to be compared to the original unaltered data. After the down-sampling and 

degradation, the low-resolution image is fed to two different parts of the algorithm. Both 

the “blue” and “gold” paths use all six interpolation methods. The “blue” side is the 

uncompressed experiment, where the degraded low-resolution images are fed directly into 

the complex and simple interpolation algorithms. The estimated images are used to 

calculate the SNR and the error. For the SNR, binary truth data was used to define the 

signal. For error, the difference between the estimate and the original image is calculated. 

The second goal of this investigation is to determine a method of selecting an 

optimal number of principal components (eigenvectors) when PCA was used for image 

enhancement. As more eigenvectors are used, the error between the reconstructed image 

and the original image decreases [8]. The “gold” side is the compressed experiment. In the 

compressed experiment, the low-resolution images are compressed using principal 

component analysis (PCA). The compressed images are then interpolated and compared to 

the original high-resolution image. Comparing to the reference determines what methods 

are best for small data sizes and an optimal compression level. On the gold side, time to 

calculate each interpolated image increases as the level of compression decreases. Time to 

calculate the estimated image and the error between the estimate and the original image are 

used to calculate a cost. The method with the least amount of cost is the most effective. 

The detailed outline of both the uncompressed and compressed image enhancement 

experiments can be seen in Figure 15.  
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Figure 15. Uncompressed And Compressed Image Enhancement Process. 

In Figure 15, and as stated previously, both the blue and gold experiments use all 

six of the interpolation methods discussed previously. The three more complex methods 

fall under the box named “proposed method.” The simple interpolation methods are under 

“single-step interpolation.” In the proposed method track, image grouping and fusion are 

used with the complex interpolation, whereas the single-step interpolation methods do not. 

Separating these two tracks is done to compare the proposed image enhancement to the 

three simpler methods. If the proposed methods cannot produce better results than the 

single-step interpolation, then they are not methods with any practical use.  

B. DATA IMPORTATION 

To import the images, the data was first loaded into the workspace with the “load” 

command. This created a MATLAB “double” variable, which included the photon counts 

captured at each wavelength and pixel on the AVIRIS sensor. The Indian Pines 

hyperspectral image is loaded into the workspace as a 145x145x200 double. The Salinas 

hyperspectral image is loaded into the workspace as an 83x86x204 double. Excerpts of the 
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data matrix for one wavelength band is shown in Figure 16 and 17 for the Indian Pines and 

Salinas image.  

 

 

Figure 16. Band 1 MATLAB Table for Salinas  

In Figure 16, the photon counts for each Salinas pixel location for rows 1–18 and 

columns 1- 8 from band 1 are displayed. 

SALINAS PHOTON COUNTS FOR BAND 1 
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Figure 17. Band 1 MATLAB Table for Indian Pines  

In Figure 17, the photon counts for each Indian Pines pixel location for rows 1–18 

and columns 1- 8 from band 1 are displayed. 

C. IMAGE PREPARATION 

In order to use the images in our proposed method, the data is converted into 

grayscale images through the “mat2gray()” function. This normalizes the pixel values to 

be decimal values between 0–1. This ensures that both of the images can be displayed in 

MATLAB and can be used in the subsequent steps. The converted data for band 1 of the 

Salinas and Indian Pines data is shown in Figures 18 and 19. 

INDIAN PINES PHOTON COUNTS FOR BAND 1 
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Figure 18. Normalized Pixel Values for Salinas 

In Figure 18, the photon counts of Figure 16 are converted to decimal values 

between 0 and 1, where 1 corresponds to the maximum value in the matrix, and 0 

corresponds to the minimum value in the matrix. 

SALINAS NORMALIZED PIXEL VALUES FOR BAND 1 
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Figure 19. Normalized Pixel Values for Indian Pines 

Figure 19 contains the normalized values of the photon counts for the Indian Pines 

hyperspectral band 1. These values are the normalization of the values in Figure 17.  

The next step for image preparation was to extend the images in order to make 

symmetrical rows and columns that were divisible by 2 for the low-resolution degraded 

images. For Indian Pines, the hyperspectral image was extended through a zero-order hold 

to a size of 148x148x200. For the Salinas, the image was extended through a zero-order 

hold to a size of 88x88x204. The zero-order hold takes the values at the edge of the image 

and extends them at a constant value.  

D. IMAGE DEGRADATION 

The next step in the algorithm was to down-sample each band in the hyperspectral 

image using a 2D down-sampling filter, which compresses the image to one-half of the 

original size. The method by which this is accomplished is by taking the values at every 

INDIAN PINES NORMALIZED PIXEL VALUES FOR BAND 1 
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second pixel location in the band as discussed in Equation 3. The implementation in code 

was done by indexing the original high-resolution data matrix at even locations.  

After down-sampling, random gaussian noise was added to the low-resolution 

wavelength bands to simulate images captured on a hyperspectral camera. The “imnoise()” 

function is used to add random gaussian noise to each band in the down-sampled image to 

create degraded low-resolution images.  

E. GROUND TRUTH DATA 

The next part of the image enhancement algorithm was to import the ground truth 

binary data into the MATLAB workspace. The ground truth was used later to calculate the 

signal-to-noise ratio of the enhanced images. The ground truth data for Indian Pines is 

shown in Figure 20.  

 
Figure 20. Indian Pines Ground Truth Data. 

In Figure 20, white areas are where the desired signal is located in the image. The 

black areas of the image are defined as the noise for the SNR calculation. The ground truth 

data for the Salinas hyperspectral image is shown in Figure 21. 
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Figure 21. Salinas Ground Truth Data 

In Figure 21, the ground truth for the Salinas data is displayed. The white areas 

correspond to the signal locations, and the black areas correspond to the noise locations. 

F. IMAGE BAND GROUPING 

The next step in the image enhancement approach was to group bands for image 

fusion. There are four parts to image grouping. First, calculate the zero-mean low- 

resolution bands. Second, calculate the correlation between the zero-mean bands. Third, 

sort the bands into groups of three. Finally, store the resulting groups of three bands in a 

matrix to use for image fusion. The method of grouping was to calculate the cross-

correlation between all wavelength bands within the hyperspectral image. Zero-mean 

images remove the correlation caused by a similar offset [11]. The zero-mean wavelength 

bands were calculated by subtracting the mean of the band from itself. This was done to 

aid in removing a common mean between wavelength bands as the cause for a high 

correlation coefficient between them. If the mean was not subtracted, a similar mean across 

wavelength bands could cause drastically different images to have a high correlation [11]. 

These low-resolution zero-mean wavelength bands were used to create a correlation matrix 

between bands. An example of the correlation matrix is shown in Figure 22. 
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Figure 22. Low-Resolution Hyperspectral Correlation Matrix for Indian 

Pines. 

In Figure 22, the higher correlations are indicated by a lighter color. The darker 

colors indicate a low or even negative correlation. The x and y coordinates represent pairs 

of bands, and the z-axis value represents the correlation coefficient. Bands 74 and 79 have 

a correlation coefficient of 0.88. These correlation values are used to group the wavelength 

bands. The correlation values are sorted from highest to lowest for each band. A matching 

function creates groups of three bands based upon the highest correlations. The two highest 

correlation values are used as the 2nd and 3rd band in the group. An excerpt from the Salinas 

grouping pairs matrix is shown in Table 1.  
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 Salinas Wavelength Band Grouping Table 

 
 

The grouping matrix was used later in the image fusion step in order to have a stored 

set of indexes that can be referenced for the groups of bands. In the fusion step, the function 

increments which group to look at in Table 1. Then the 1st, 2nd, and 3rd bands in the group 

are fused together. 

Some wavelength bands are used more than others due to some bands being 

spectrally similar while having low spatial correlation. The disparity between spatial and 

spectral correlation leads to groupings that are not symmetrical. When the top three values 

are calculated with either using the “maxk()” or “sort()” functions in MATLAB, there are 

several non-repeating examples in the groupings. These functions return the highest n 

values in an array. In Table 1, the first band taken from the low-resolution image will 

always be the group number. These values are marked in gray. An example of the non-

repeating nature is shown in group 17. Normally, it would be expected that band 17 would 

be most correlated with the wavelengths closest to it, such as 16 and 18. However, because 

band 17 is most correlated with 18 and 21, those are the bands chosen for the group. For 

band 21, the highest correlating bands are those that are neighboring it. The explanation 

for this is that band 17 has its own highest correlation with 18 and 21, but bands 18 and 21 

have higher correlations with other bands. 
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G. IMAGE FUSION 

After the image grouping, the three bands are then fused using a discrete wavelet 

frame transform (DWFT). The first step is to calculate the wavelet transform and the 

wavelet coefficients. These calculations are done by implementing the wavelet functions 

defined in Chapter II, Section D. In MATLAB, this can be done by using the DWFT 

function “swt2()” shown in Appendix A, Section E. By fusing the grouped bands through 

the wavelet coefficient addition, the spatial frequency information of each band is 

incorporated.  

Next, an inverse discrete wavelet frame transform was used to create a fused image 

from the coefficients that were added together. The function in MATLAB is “iswt2().” The 

resultant output is a fused image with spatial frequency components of all three grouped 

bands. An example is shown in Figure 23 of the image fusion result after fusing the 50th 

group. Group 50 uses bands 50, 49, and 51 of the degraded low-resolution image. 

 
Figure 23. Image Fusion Example Band for Salinas. 

observation 1: band 50 observation 2: band 51

observation 3: band 49 fused image
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In Figure 23, the three bands that are used and the resulting fused band are very 

similar to the naked eye. Although individual pixel values at each location in the bands 

vary by very small amounts, these small deviations can lead to large impacts in SNR 

performance across an entire hyperspectral image with hundreds of bands. 

H. IMAGE INTERPOLATION 

The next step in the proposed image enhancement algorithm is to interpolate the 

fused data. The fused image data is interpolated using the LMMSE, maximum entropy, 

and normalization algorithms, which are attached in Appendix A, Sections B, C, and D. 

The purpose of the interpolation is to estimate the high-resolution hyperspectral image that 

was used for error calculation and signal-to-noise ratio.  

The unfused low-resolution images are interpolated using the simpler interpolation 

methods of bilinear, bicubic, and nearest neighbors. These will act as a baseline to measure 

the effectiveness of image fusion and more complex interpolation methods. Each of these 

interpolation methods attempts to increase the resolution by the same factor that the image 

was down-sampled by. An example of the resulting image set is shown in Figure 24. 
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Figure 24. Indian Pines Interpolation Set of a Single Hyperspectral Band. 

In Figure 24, the 200th band of the estimated image is shown for each method used 

on the Indian Pines hyperspectral image. The LMMSE, max entropy, and regularization 

algorithm reduce background noise and enhance feature edges. This can be very helpful in 

segmentation and aid in visual classification. 

I. IMAGE ERROR 

Image error was calculated by adding the distance of each estimated interpolation 

pixel from the reference high-resolution image pixels across the entire hyperspectral cube. 

The calculation for this was done by the sum of the absolute value difference matrix in all 

dimensions, as shown in Equation (32) 

 ( ) ,
x y z

Error A B= −  ∑∑∑  (32) 

LR Image Band Number = 200 Reference HR Band Number = 200 Nearest

Bilinear Bicubic LMMSE

Max Entropy Regularized
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where A is the high-resolution reference image, and B is the estimated high-resolution 

image. This was done through matrix subtraction, then by taking the absolute value of the 

difference in all dimensions. The sum of all the differences between the original 

hyperspectral image pixel values and the image estimate pixel values is our error metric. 

J. SIGNAL-TO-NOISE RATIO 

The signal-to-noise ratio was calculated by using the labeled truth matrix data 

supplied by the database to assign what was the true signal in the reference image. The 

signal matrix was calculated by multiplying the binary ground truth through every band in 

the estimated high-resolution image. This creates a signal image that only includes the parts 

of the image that are labeled as actual signals by the hyperspectral database. The inverse 

of the labeled truth is then multiplied by the estimated high-resolution image to calculate 

the noise component of the image. The SNR of the entire hyperspectral cube was calculated 

by finding the ratio of the sum of all true signal values in the hyperspectral cube to the sum 

of all noise components of the hyperspectral cube. This was done through Equation 33. 

 

 20 ,x y z

x y z

A
SNR Log

B

 
 =   
 
 

∑∑∑
∑∑∑  (33) 

 

where A is the signal matrix pixel value sum in all dimensions calculated by using the 

“sum()” function for all dimensions, and B is the noise matrix pixel value sum in all 

dimensions. An example of Signal and Noise images is shown in Figure 25. 
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Figure 25. SNR Visualization Images. 

In Figure 25, the signal and noise images are made by multiplying a band of the 

estimated hyperspectral image by the ground truth data. White areas in the ground truth 

image are areas where the database has defined the signal to be located. Multiplying the 

ground truth and estimate generates the part of the estimated image that has useful signal 

components. The inverse of the ground truth data is achieved by essentially reversing 

which spots are white with the spots that are black in the image. Multiplying the inverse of 

ground truth to each band in the hyperspectral image results in the noise component of the 

hyperspectral image. 

K. IMAGE COMPRESSION 

Image compression was done using a PCA. The mathematical algorithm to conduct 

PCA compression is described in Chapter II, Section F. The code to implement PCA is in 

Appendix A, Section A. For each level of compression, from 1 to 20 eigenvectors, the 

compressed image was interpolated. The compressed interpolation image estimate was 

Ground Truth Signal

Noise
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then used to calculate the error and SNR. The time elapsed while calculating the estimated 

image was recorded for each level of compression.  

L. IMAGE ESTIMATION TIME AND COST  

Image estimation computation time was calculated through the use of the “tic toc” 

function in MATLAB, which records the time between the two points in code. In each loop 

of the PCA compression, the time to calculate the image estimations is recorded. The “tic” 

is used at the beginning of the loop, the “toc” at the end of the loop and the data recorded 

in the variable “time PCA.” The time to estimate the image along with the error value 

associated with the level of compression was used to calculate the cost. The equation for 

cost is Equation (31).  
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IV. RESULTS 

A. OVERVIEW OF RESULTS 

In this chapter we will discuss the results of the image enhancement approach 

outlined in Chapter III. The image enhancement approach is applied to the Salinas and 

Indian Pines datasets. In both the compressed and uncompressed steps of the algorithm, 

the speed, error, SNR, and cost of each method were recorded. 

B. DATASET 

1. Sensor 

The data used in this thesis was acquired from publicly available databases. In this 

analysis, the corrected data was used. The image was first captured on June 12, 1992, and 

was downloaded from Purdue’s imaging research database [5]. The device that obtained 

the hyperspectral image was the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS). The AVIRIS is a “whisk broom” scanning sensor that sweeps detector pixels 

(Silicon (Si) detectors for the visible range, indium gallium arsenide (InGaAr) for the NIR, 

and indium-antimonide (InSb) detectors for the SWIR) across a 614 pixel-wide swath using 

a spectrometer to separate the light into 224 unique spectral bands in a range of 0.4 microns 

to 2.5 microns. Each band has a resolution of 0.01 microns calibrated to within a 1-

nanometer error.  

2. Images 

The images used for this experiment in hyperspectral-image enhancement were 

hyperspectral images of Indian Pines and Salinas. Table 2 lists the data characteristics of 

both hyperspectral images.  
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 Salinas and Indian Pines Dataset Details 

 Indian Pines Salinas 

BANDS 220 204 

ROWS 145 83 

COLUMNS 145 86 

PIXELS 4,625,500 1,456,152 

 

In Table 2, the number of pixels in the Indian Pines image is approximately 3 times 

that of the Salinas image. Figure 26 is a false-color representation of the Indian Pines scene. 

This scene has many details in the spatial domain and thin boundaries between farmlands. 

These details allow for a better visual evaluation of the performance of the image 

enhancement approach presented in this thesis. 

 
Figure 26. Indian Pines Represented in RGB. Source: [5]. 
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In Figure 26, the red, blue, and green wavelength pixel values of the Indian Pines 

hyperspectral image are used to generate an RGB image.  

C. NON-COMPRESSED RESULTS 

The first part of the results will analyze the uncompressed image enhancement of 

the hyperspectral cube. This will measure the performance of each method before the 

compression into a lower-dimensional space through the use of PCA.  

1. Error Performance 

As discussed in Chapter III, Section F, the error is measured as the absolute value 

difference between the pixel intensity values of the reference image and the estimated high-

resolution image. In Table 3, the error is calculated for each interpolation method using the 

Salinas and Indian Pines data. The reason for the difference in magnitude between the 

Indian Pines Data and the Salinas data is due to their differences in image size. The lowest 

error value is in bold. 

 Uncompressed Indian Pines and Salinas Error 

 Indian Pines Salinas 

Nearest 
Neighbor 

120400 18412 

Bilinear 120231 18579 

Bicubic 108062 16411 

LMMSE 172511 50612 

Max Entropy 163199 39841 

Regularized 153116 40394 
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In both the Salinas and Indian Pines hyperspectral images, the bicubic interpolation 

was best at recreating an exact estimation of the original data cube. Its error from the 

original values across the entire image was far less than any other method used. However, 

this does not represent the enhancement of the image. SNR will add additional perspective 

on how the more complex methods aid in identifying meaningful features in the image. 

2. Signal-to-Noise Ratio 

The SNR was calculated using the method described in Chapter III, Section G. The 

SNR values listed in Table 4 are used to determine the effect that each method has on the 

SNR using the ground truth data. It is important to note that different images will have a 

different maximum SNR. If the ground truth covers most of the image, then the magnitude 

of SNR will be very high, as most of the image is the signal desired. The difference in SNR 

values between each method for an image column in Table 3 should be used to compare 

the effectiveness of each method at enhancing the image signal data, rather than simply 

looking at the SNR magnitude. 

 Uncompressed Indian Pines and Salinas SNR 

 Indian Pines Salinas 

Nearest 
Neighbor 

-11.42 .091 

Bilinear -11.59 .063 

Bicubic -11.36 .039 

LMMSE -11.08 .259 

Max Entropy -11.23 .025 

Regularized -11.00 .043 

 

In both the Salinas and Indian Pines data, the two best performers were the LMMSE 

and Regularization algorithm. It is important to note that the method with the least error, 

the bicubic interpolation, had the least SNR in both cases. The bicubic interpolation is 

effective in recreating the original image but does not enhance the desired features of 
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interest. The error performance in most methods was inversely related to its SNR 

performance. This was caused by an increase of intensity values of the signal portion of 

the hyperspectral image. Since the pixel intensity values were increased, it increased the 

error as we have defined it in Chapter III, Section F. 

D. PCA IMAGE ENHANCEMENT RESULTS 

The next step in the algorithm is to compress the hyperspectral cube using several 

levels of compression by using a finite number of eigenvectors Npca. This was the 

“compressed” side of the image enhancement approach seen in Figures 14 and 15. In this 

case, this meant compressing the data using 1 to 20 eigenvectors of the covariance matrix. 

For each level of compression, the image enhancement was done on the compressed image. 

1. PCA Error Performance 

As described in Chapter III, Section F, the error for each compressed image was 

calculated in the same manner as the uncompressed method. This was done by measuring 

the difference between the estimated image and the reference image. The error for both the 

Salinas and Indian Pines methods tended to decrease as more eigenvectors were used, and 

the level of compression decreased. This was due to more information from the original 

dataspace being added. This generally would make the estimated image closer to the 

reference image. However, in some cases, the information added caused the methods to 

erroneously interpolate the final image. This led to an error increase for some compression 

levels, indicating that at some point, adding higher-frequency components was detrimental. 

The error values trend similarly to the uncompressed results, with the bicubic interpolation 

being the method that created the least difference between the estimated image and the 

reference. Figures 27 and 28 show the Indian Pines and Salinas error plots. 
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Figure 27. Indian Pines Error for Each Level of Compression. 

In Figure 27, the bicubic interpolation again was the best performing method at 

recreating the original high-resolution image. As more eigenvectors are introduced, the 

different methods diverge in their error values. The regularized algorithm did not perform 

well when the data was compressed to a lower-dimensional space, as seen by its higher 

error value. 
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Figure 28. Salinas Error for Each Level of Compression. 

In Figure 28, it is apparent that the smaller data size of the Salinas hyperspectral 

image, along with the data compression from PCA, caused the error values of the LMMSE 

and regularized interpolation methods to be high compared to the other methods. the 

bicubic, max entropy, nearest neighbor, and bilinear methods performed much better in 

compressed data spaces. 

2. PCA SNR Performance 

The SNR performance of the six methods at each level of compression would be 

expected to follow the trend similar to the uncompressed SNR plots. The error plots for 

each dataset followed the uncompressed results closely. For the SNR, however, the results 

for the compressed data deviate from the uncompressed data results. In Figures 29 and 30, 

the SNR for both the regularization and LMMSE algorithms is erratic and inconsistent. 

This is also evident in their high error values in Figures 27 and 28. This drives the 
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conclusion that the compressed data does not give enough information for these methods 

to be effective in accurately interpolating the fused image. This causes the methods to 

introduce errors in the estimated image, causing the low SNR and high error values. 

 
Figure 29. Indian Pines SNR for Each Level of Compression. 

In Figure 29, the highest SNR values across all levels of compression were from 

the LMMSE method. The worst performing method was the regularization method. The 

conclusion that was drawn from this was that due to the larger data set from the Indian 

Pines image, the LMMSE interpolation was able to effectively filter noise and enhance the 

signal portions of the image as defined in Chapter III, Section E. 
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Figure 30. Salinas SNR for Each Level of Compression. 

In Figure 30, the highest SNR values across all levels of compression were from 

the Regularization method. The worst performing method was the LMMSE method. The 

conclusion that was drawn from this was that due to the smaller data set from the Salinas 

image, the LMMSE interpolation was unable to effectively filter noise and enhance the 

signal portions of the image as defined in Chapter III, Section E. The effectiveness of the 

regularization method is counter-intuitive when taking into consideration its poor 

performance in the Indian Pines compressed images. Possible causes for this could be the 

way that data was oriented in the Salinas image.  

3. PCA Speed Performance 

The PCA time elapsed for both the Salinas and Indian Pines dataset increases 

linearly with the number of eigenvectors used for compression. The time taken for each 

compression level is shown in Figures 31 and 32 for both datasets. The total time for the 

Indian Pines hyperspectral image was approximately 7 times longer than the Salinas total 

compression time. This is explained through the larger amount of data present in the Indian 
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Pines hyperspectral image. The total number of pixels in the Indian Pines hyperspectral 

cube is approximately 3 times that of the Salinas data cube.  

 
Figure 31. Indian Pines Time Elapsed for Image Estimation for Each Level of 

Compression. 
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Figure 32. Salinas Time Elapsed for Image Estimation for Each Compression 

Level. 

4. PCA Cost Per Level of Compression 

The cost of each method used was calculated by the cost function defined in 

Chapter II, Section G. By incorporating the error and the time taken to complete the image 

enhancement, it is possible to determine an optimal number of eigenvectors to use in the 

image compression. In Figures 33 and 34, the cost for each compression level is displayed. 

In general, the cost is dominated by the error value due to the weighting factors placing 

emphasis on the error rather than the time for the calculation. Between the Indian Pines 

and Salinas datasets, the major difference is the performance of the LMMSE and 

Regularization algorithms. This performance drop is caused by the difference in the data 

size of the low-resolution degraded images. Salinas has fewer pixels in its hyperspectral 

image. When the smaller Salinas hyperspectral data is degraded, down-sampled, and 

compressed, the LMMSE and regularization algorithms perform poorly. 

 



56 

 
Figure 33. Indian Pines Cost for Each Level of PCA Compression. 

In Figure 33, the minimum cost level for the Indian Pines image is located at 13 

eigenvectors used for the PCA compression. This is common across all of the methods 

used. 



57 

 
Figure 34. Salinas Cost for Each Level of PCA Compression 

In Figure 34, the minimum cost level for the Salinas image is located at 8 

eigenvectors used for the PCA compression. This is common across all of the methods 

used. The cost for LMMSE and Regularization methods were high due to their high error 

values. 

5. Optimal Eigenvalue Determination 

The optimal number of eigenvalues for compression can be determined by the 

compression level with the corresponding lowest cost value. The lowest cost values for 

each method are shown for both datasets in Table 4. The percentage of eigenvectors used 

for the Indian Pines image was an average of 5% of the total eigenvectors in the image. For 

the Salinas data, the average amount of eigenvectors used was 4%. 
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 Indian Pines and Salinas Optimal Compression Level.  

 Indian Pines Salinas 

Nearest 
Neighbor 

13/20 8/20 

Bilinear 13/20 8/20 

Bicubic 13/20 8/20 

LMMSE 13/20 8/20 

Max Entropy 13/20 8/20 

Regularized 13/20 8/20 
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V. CONCLUSIONS 

A. CONCLUSIONS 

Of the six methods examined in this thesis, the performance of the three complex 

methods used with image fusion was undoubtedly dependent on the dataset size. The three 

proposed methods had difficulty maintaining image estimation accuracy when dealing with 

highly compressed low-resolution data, as seen in Figures 29 and 30. In contrast, the 

simpler methods were better able to recreate the original hyperspectral image even at higher 

compression levels. However, the three complex methods performed much better using the 

metric of SNR, as seen in Table 4. If the goal is to only recreate the original hyperspectral 

data to the maximum extent, the bicubic method is the most effective out of these six 

methods. If the goal is to enhance the desired signal in the image, then the LMMSE and 

regularization algorithms perform best.  

The compression level was shown to be a determining factor in the effectiveness of 

the more complex methods. In the uncompressed datasets, the Bicubic interpolation 

without image fusion had the least deviation from the reference hyperspectral image. 

Conversely, The LMMSE and regularization algorithms had the best SNR performance in 

the uncompressed image enhancement algorithm. In the compressed datasets, the best 

performance in reference image error was accomplished through the use of the bicubic 

interpolation. The best SNR performance in the Indian Pines hyperspectral image was the 

LMMSE algorithm. However, when LMMSE was used in the compressed dataset of the 

Salinas hyperspectral image, the LMMSE algorithm no longer performs correctly.  

It is my conclusion that for image classification, SNR in this investigation is more 

important than image error. SNR determines the ability to detect the desired signals in the 

image. The image error for the complex methods can be attributed to the signal portion of 

the hyperspectral image being enhanced. As the signal portion of the estimated image is 

enhanced, the greater the difference is from the original image. Therefore, the LMMSE 

and Regularized algorithms are best for interpolating fused images with uncompressed 

data. The change in performance due to image size leads to the conclusion that if the 
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degraded low-resolution image does not have enough pixels, the more complex 

interpolation methods are ineffective and can be detrimental to the final image 

interpolation. The benefit of this image enhancement approach would be that it would be 

easier to conduct image segmentation and classification as the true source signals in the 

hyperspectral image are enhanced over the noise components.  

B. FUTURE STUDIES 

Future studies could expand the number of algorithms used in combination with the 

PCA compression in order to explore methods that are best compatible with compressed 

data and high-order information loss. There are several methods that could be used 

throughout the image enhancement process. For the image grouping, feature-based, 

Fourier-based, and area-based methods are possible. For image fusion, curvelet fusion and 

pixel-level fusion methods can be used. Finally, for interpolation, a Projection onto Convex 

Sets (POCS) algorithm could be used. Any combination of these methods and many not 

listed here could be explored in order to maximize the information from degraded low-

resolution images. 
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APPENDIX. MATLAB CODE 

A. OVERALL IMAGE ENHANCEMENT CODE 

%NOTES 
%use LR images to fuse, input g and other necessary parameters as 
inputs to 
%the functions 
clc 
clear 
close all 
load SalinasA_corrected.mat 
load SalinasA_gt.mat 
 
%AVIRIS SENSOR DATA 
wavelength_range = (2.5e-6)-(.4e-6); 
wavelength_perband = wavelength_range/224; 
wavelengths = .4e-6:wavelength_perband:(.4e-6+((224-
1)*wavelength_perband)); 
 
%set original HR images 
HRimages = salinasA_corrected; 
%set signal to binary for signal error calculation 
len=3; 
X=salinasA_gt; 
gt = wextend(‘addrow’,’sp0’,X,len,’d’); 
len=2; 
gt = wextend(‘2D’,’sp0’,gt,len,’d’);   
Signal = (gt>0); 
 
figure() 
imshow(Signal) 
%we will use the  
%reorganize each band plane into a feature vector of length k1*k2 
%where kHR1 is pixel length in x direction -> 
%kHR2 is pixel length in down directrion \/ 
%bands equals number of spectral band in the image 
bands = length(HRimages(1,1,:)); 
 
%Normalize Values 
for band = 1:bands 
HRimages(:,:,band) = mat2gray(HRimages(:,:,band)); 
end 
 
HRimages_temp = zeros(88,88,bands); 
%pad to get even row and collumn size for wavelet fusion 
for band=1:bands 
len=3; 
Y=HRimages(:,:,band); 
Y = wextend(‘addrow’,’sp0’,Y,len,’d’);  
len=2; 
HRimages_temp(:,:,band)=wextend(‘2D’,’sp0’,Y,len,’dr’);  



62 

end 
HRimages = HRimages_temp; 
kHRcol = length(HRimages(1,:,1)); 
kHRrow = length(HRimages(:,1,1)); 
 
trueSignal = zeros(kHRrow,kHRcol,bands); 
for band = 1:bands 
trueSignal(:,:,band) = Signal.*HRimages(:,:,band); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%image degredation noise and downsampling 
LRimages = zeros(44,44,bands); 
%create the low-resolution images through noise and down-sampling 
for band = 1:bands 
f1 = HRimages(:,:,band); 
h = ones(2,2)/4;  
[M,N] = size(f1); 
g = filter2(h,f1);  
g = g(1:2:M,1:2:N);  
SNR = 50;  
gg = im2col(g,[M/2,N/2],’distinct’);  
n_var = var(gg)/10^(SNR/10);  
g = imnoise(g,’gaussian’,0,n_var);  
LRimages(:,:,band) = g; 
end 
 
%record Low-res image size 
kLRrow = length(LRimages(:,1,1)); 
kLRcol = length(LRimages(1,:,1)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%use correlation to match up different bands within single 
hyperspectral 
%image 
zm_LRimages = zeros(44,44,bands); 
%create zero mean low-res images for cross correlation calculation 
for band = 1:bands 
zm_LRimages(:,:,band) = LRimages(:,:,band)-mean2(LRimages(:,:,band)); 
end   
 
%find zero-mean cross-correlation between each band 
Rxy = supercorr(zm_LRimages); 
%look at cross-correlation between bands 
figure() 
mesh(Rxy) 
%use cross correlation to pair bands into groups of 3 
pairings = zeros(3,bands); 
%each band will have two pairings, first image of 3 is original band 
pairings(1,:) = 1:bands; 
 
for band = 1:bands 
  x=Rxy(band,:); 
  [val,ind] = sort(x,’descend’); 
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pairings(2,band)=ind(2); 
pairings(3,band)=ind(3); 
%[maxes,i]=maxk(x,3); 
%pairings(2,band)=i(2); 
%pairings(3,band)=i(3); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%image fusion 
%now we will treat the group of three as observations 
%%% fused LR images 
fusedLR = zeros(kLRrow,kLRcol,bands); 
for band=1:bands  
%index each a seperate observation of the scene 
  ob1 = LRimages(:,:,pairings(1,band)); 
ob2 = LRimages(:,:,pairings(2,band)); 
  ob3 = LRimages(:,:,pairings(3,band)); 
%fuse image 1 and 2 then that result with 3 
fused12 = wavelet_fusion(ob1,ob2); 
fusedLR(:,:,band) = wavelet_fusion(fused12,ob3); 
end 
 
% ob1 = LRimages(:,:,pairings(1,50)); 
% ob2 = LRimages(:,:,pairings(2,50)); 
% ob3 = LRimages(:,:,pairings(3,50)); 
% figure() 
% subplot(2,2,1) 
% imshow(ob1) 
% title(‘observation 1: band 50’) 
% subplot(2,2,2) 
% imshow(ob1) 
% title(‘observation 2: band 51’) 
% subplot(2,2,3) 
% imshow(ob1) 
% title(‘observation 3: band 49’) 
% subplot(2,2,4) 
% imshow(fusedLR(:,:,50)) 
% title(‘fused image’) 
 
 
 
Factor = 2; 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%image interpolation  
%time storage 
time = zeros(1,bands); 
 
% %create baseline interpolations for time calculations 
%  
%preallocate data space 
original_nearest2D = zeros(kHRrow,kHRcol,bands); 
original_bilinear2D = zeros(kHRrow,kHRcol,bands); 
original_bicubic2D = zeros(kHRrow,kHRcol,bands); 
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original_LMMSE2D = zeros(kHRrow,kHRcol,bands); 
original_MaxEnt2D = zeros(kHRrow,kHRcol,bands); 
original_Reg2D = zeros(kHRrow,kHRcol,bands); 
 
for k=1:bands 
tic 
%interpolate 
original_nearest2D(:,:,k) = imresize(LRimages(:,:,k),Factor,’nearest’); 
original_bilinear2D(:,:,k) = 
imresize(LRimages(:,:,k),Factor,’bilinear’); 
original_bicubic2D(:,:,k) = imresize(LRimages(:,:,k),Factor,’bicubic’); 
%USE LR AND INPUT PARAMETERS AS PART OF FUNCTION 
original_LMMSE2D(:,:,k) = LMMSE_algorithm_redo(fusedLR(:,:,k),n_var); 
original_MaxEnt2D(:,:,k)= max_entropy_algorithm_redo(fusedLR(:,:,k)); 
original_Reg2D(:,:,k)= 
salinas_regularized_algorithm_redo(fusedLR(:,:,k)); 
k 
time(k)=toc; 
end 
 
 
%Show first interpolation results 
for j=50:50:200 
figure() 
 
subplot(3,3,1) 
imshow(LRimages(:,:,j)) 
title([‘Salinas LR Image Band Number = ‘,num2str(j)]); 
 
subplot(3,3,2) 
imshow(HRimages(:,:,j)) 
title([‘Salinas Reference HR Band Number = ‘,num2str(j)]); 
 
subplot(3,3,3) 
imshow(original_nearest2D(:,:,j)) 
title(‘Nearest’) 
 
subplot(3,3,4) 
imshow(original_bilinear2D(:,:,j)) 
title(‘Bilinear’) 
 
subplot(3,3,5) 
imshow(original_bicubic2D(:,:,j)) 
title(‘Bicubic ‘) 
 
subplot(3,3,6) 
imshow(original_LMMSE2D(:,:,j)) 
title(‘LMMSE’) 
 
subplot(3,3,7) 
imshow(original_MaxEnt2D(:,:,j)) 
title(‘Max Entropy’) 
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subplot(3,3,8) 
imshow(original_Reg2D(:,:,j)) 
title(‘Regularized’) 
pause(.01) 
end    
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%Signal to noise calculation 
%snr storage for each interpolation 
snr = zeros(6,bands); 
%cost storage 
cost = zeros(6,bands); 
%signal 
sig_nearest=trueSignal.*original_nearest2D; 
sig_bilinear=trueSignal.*original_bilinear2D; 
sig_bicubic=trueSignal.*original_bicubic2D; 
sig_LMMSE=trueSignal.*original_LMMSE2D; 
sig_MaxEnt=trueSignal.*original_MaxEnt2D; 
sig_Reg=trueSignal.*original_Reg2D; 
 
%noise 
noise_nearest=(~trueSignal).*original_nearest2D; 
noise_bilinear=(~trueSignal).*original_bilinear2D; 
noise_bicubic=(~trueSignal).*original_bicubic2D; 
noise_LMMSE=(~trueSignal).*original_LMMSE2D; 
noise_MaxEnt=(~trueSignal).*original_MaxEnt2D; 
noise_Reg=(~trueSignal).*original_Reg2D; 
 
%difference between final and original images 
  diff_nearest = abs(original_nearest2D-HRimages); 
diff_bilinear = abs(original_bilinear2D-HRimages); 
diff_bicubic = abs(original_bicubic2D-HRimages); 
diff_LMMSE = abs(original_LMMSE2D-HRimages); 
  diff_MaxEnt = abs(original_MaxEnt2D-HRimages); 
diff_Reg = abs(original_Reg2D-HRimages); 
 
diff(1)=sum(sum(sum(diff_nearest))); 
diff(2)=sum(sum(sum(diff_bilinear))); 
diff(3)=sum(sum(sum(diff_bicubic))); 
diff(4)=sum(sum(sum(diff_LMMSE))); 
  diff(5)=sum(sum(sum(diff_MaxEnt))); 
  diff(6)=sum(sum(sum(diff_Reg))); 
   
%caclulate the total signal to noise for each band 
for k = 1:bands 
sig_nearest_tot=sum(sum(sig_nearest(:,:,k))); 
sig_bilinear_tot=sum(sum(sig_bilinear(:,:,k))); 
sig_bicubic_tot=sum(sum(sig_bicubic(:,:,k))); 
sig_LMMSE_tot=sum(sum(sig_LMMSE(:,:,k))); 
sig_MaxEnt_tot=sum(sum(sig_MaxEnt(:,:,k))); 
sig_Reg_tot=sum(sum(sig_Reg(:,:,k))); 
 
noise_nearest_tot=sum(sum(noise_nearest(:,:,k))); 
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noise_bilinear_tot=sum(sum(noise_bilinear(:,:,k))); 
noise_bicubic_tot=sum(sum(noise_bicubic(:,:,k))); 
noise_LMMSE_tot=sum(sum(noise_LMMSE(:,:,k))); 
noise_MaxEnt_tot=sum(sum(noise_MaxEnt(:,:,k))); 
noise_Reg_tot=sum(sum(noise_Reg(:,:,k))); 
 
snr(1,k)=20*log(sig_nearest_tot/noise_nearest_tot); 
snr(2,k)=20*log(sig_bilinear_tot/noise_bilinear_tot); 
snr(3,k)=20*log(sig_bicubic_tot/noise_bicubic_tot); 
snr(4,k)=20*log(sig_LMMSE_tot/noise_LMMSE_tot); 
snr(5,k)=20*log(sig_MaxEnt_tot/noise_MaxEnt_tot); 
snr(6,k)=20*log(sig_Reg_tot/noise_Reg_tot); 
end 
 
fprintf(‘Current Elapsed Time is %f minutes\n’,sum(time)/60) 
 
Unlike conducting image enhancement with video data, there is o% cost 
function parameters 
  a=.01; %time 
b=1; %diff importance 
 
t_sum = sum(time); 
snr_mean = zeros(1,6); 
for j=1:6 
snr_mean(j) = mean(snr(j,:)); 
end 
 
for kk = 1:bands 
cost(1,kk)= a*t_sum^2+b*(diff(1)).^2; 
cost(2,kk)= a*t_sum^2+b*(diff(2)).^2; 
cost(3,kk)= a*t_sum^2+b*(diff(3)).^2; 
cost(4,kk)= a*t_sum^2+b*(diff(4)).^2; 
cost(5,kk)= a*t_sum^2+b*(diff(5)).^2; 
cost(6,kk)= a*t_sum^2+b*(diff(6)).^2; 
end  
 
[mincost_nearest,i1] = min(cost(1,:)); 
[mincost_bilinear,i2] = min(cost(2,:)); 
[mincost_bicubic,i3] = min(cost(3,:)); 
[mincost_LMMSE,i4] = min(cost(4,:)); 
[mincost_MaxEnt,i5] = min(cost(5,:)); 
[mincost_Reg,i6] = min(cost(6,:)); 
 
N = 1:bands; 
 
figure() 
semilogy(N,diff(1)*ones(1,bands),’.’,N,diff(2)*ones(1,bands),’o’,N,diff
(3)*ones(1,bands),’*’,N,diff(4)*ones(1,bands),’-
’,N,diff(5)*ones(1,bands),’--’,N,diff(6)*ones(1,bands),’--’) 
title(‘Salinas Error Value for Each Method Uncompressed’) 
legend(‘Nearest’,’Bilinear’,’Bicubic’,’LMMSE’,’MaxEnt’,’Regularized’) 
grid on 
xlabel(‘Band’) 
ylabel(‘Error’) 
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figure() 
semilogy(N,snr_mean(1)*ones(1,bands),’.’,N,snr_mean(2)*ones(1,bands),’o
’,N,snr_mean(3)*ones(1,bands),’*’,N,snr_mean(4)*ones(1,bands),’-
’,N,snr_mean(5)*ones(1,bands),’--’,N,snr_mean(6)*ones(1,bands),’--’) 
title(‘Salinas Mean SNR accross the HSI bands for Each Method 
Uncompressed’) 
legend(‘Nearest SNR’,’Bilinear SNR’,’Bicubic SNR’,’LMMSE SNR’,’MaxEnt 
SNR’,’Regularized SNR’) 
grid on 
xlabel(‘Band’) 
ylabel(‘SNR’) 
 
figure() 
semilogy(N,cost(1,:),’.’,N,cost(2,:),’o’,N,cost(3,:),’*’,N,cost(4,:),’-
’,N,cost(5,:),’--’,N,cost(6,:),’--’) 
title(‘Cost Function using Mean Time Uncompressed’) 
legend(‘Nearest’,’Bilinear’,’Bicubic’,’LMMSE’,’MaxEnt’,’Regularized’) 
grid on 
ylabel(‘Cost’) 
 
figure() 
plot(N,time) 
title(‘Speed Performance Uncompressed’) 
y=sum(time)/60; 
legend([‘Calculation Time total = ‘,num2str(y),’ minutes’]) 
grid on 
xlabel(‘Band’) 
ylabel(‘Time(s)’) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
% PCA SECTION START 
% organize 3D matrix into 2D  
% use degraded LR images 
d = zeros(kLRrow*kLRcol,bands); 
for i=1:bands 
  d(:,i) = reshape(LRimages(:,:,i),[1,kLRrow*kLRcol]); 
end 
 
%covariance matrix 
C = cov(d); 
 
%eigenvectors and eigenvalues 
[U,Lamda] = eig(C); 
 
%sort eigenvalues 
L = sum(Lamda); 
[L,x] = sort(L,’descend’); 
%sort eigenvectors 
for i = 1:length(x) 
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 Ut(:,i) = U(:,x(i)); 
end 
U = Ut; 
 
%Plot eigenvalues by decreasing magnitude 
figure() 
loglog(L) 
semilogy(L) 
grid on 
title(‘Salinas Eigenvalues’) 
xlim([0,length(L)]) 
xlabel(‘Eigenvalue #’) 
ylabel(‘Magnitude’) 
 
%Plot the cumulative function of the eigenvalues, show response 
L_cum = cumsum(L); 
L_cum=horzcat([0],L_cum); 
figure() 
semilogy(L_cum) 
loglog(L_cum) 
grid on 
title(‘Salinas Cumulative Sum of Eigenvalues’) 
xlim([0,length(L_cum)]) 
 
NPCA = 1:20; 
time_PCA = zeros(1,length(NPCA)); 
%compression of original data and estimated data using NPCA 
eigenvectors of 
%covariance matrix 
for Npca=NPCA 
  U_Proj=U(:,1:Npca);  % Identify projection directions 
  %project onto lower dimensional space 
  d_Projected = U_Proj’*d’; 
  d_Projected_2D = reshape(d_Projected’,[kLRrow,kLRcol,Npca]); 
   
  %interpolate fused compressed data 
  tic 
  for k = 1:Npca 
      %interpolate 
      dnearest2D1(:,:,k) = 
imresize(d_Projected_2D(:,:,k),Factor,’nearest’); 
      dbilinear2D1(:,:,k) = 
imresize(d_Projected_2D(:,:,k),Factor,’bilinear’); 
      dbicubic2D1(:,:,k) = 
imresize(d_Projected_2D(:,:,k),Factor,’bicubic’); 
      %USE LR AND INPUT PARAMETERS AS PART OF FUNCTION 
dLMMSE2D1(:,:,k) = LMMSE_algorithm_redo(d_Projected_2D(:,:,k),n_var); 
      dMaxEnt2D1(:,:,k)= 
max_entropy_algorithm_redo(d_Projected_2D(:,:,k)); 
      dReg2D1(:,:,k)= 
salinas_regularized_algorithm_redo(d_Projected_2D(:,:,k));        
  end 
  time_PCA(Npca)=toc; 
  %reshape into proper dimensions 
  for j=1:Npca   
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      ddnearest1D(j,:) = 
reshape(dnearest2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
      ddbilinear1D(j,:)= 
reshape(dbilinear2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
      ddbicubic1D(j,:) = 
reshape(dbicubic2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
      ddLMMSE1D(j,:) = reshape(dLMMSE2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
      ddMaxEnt1D(j,:) = 
reshape(dMaxEnt2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
      ddReg1D(j,:) = reshape(dReg2D1(:,:,j),[1,(kLRrow*Factor)^2]); 
  end    
   
  %Project into original space 
  %put projected images back into original space 
  d_pca_nearest1D1 = U_Proj*(ddnearest1D); 
  d_pca_bilinear1D1 = U_Proj*(ddbilinear1D); 
  d_pca_bicubic1D1 = U_Proj*(ddbicubic1D); 
  d_pca_LMMSE1D1 = (U_Proj*(ddLMMSE1D)); 
  d_pca_MaxEnt1D1 = (U_Proj*(ddMaxEnt1D)); 
  d_pca_Reg1D1 = (U_Proj*(ddReg1D)); 
  d_pca_original1D1 = (U_Proj*d_Projected); 
   
  %reshape into 2-D 
  for k=1:bands   
      ddnearest2D(:,:,k) = 
reshape(d_pca_nearest1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
      ddbilinear2D(:,:,k)= 
reshape(d_pca_bilinear1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
      ddbicubic2D(:,:,k) = 
reshape(d_pca_bicubic1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
      ddLMMSE2D(:,:,k) = 
reshape(d_pca_LMMSE1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
      ddMaxEnt2D(:,:,k) = 
reshape(d_pca_MaxEnt1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
      ddReg2D(:,:,k) = 
reshape(d_pca_Reg1D1(k,:),[(kLRrow*Factor),(kLRcol*Factor)]); 
  end 
   
%     %Show first interpolation results 
%     for j=50:50:200 
%         figure() 
%  
%         subplot(3,3,1) 
%         imshow(LRimages(:,:,j)) 
%         title([‘LR Image Band Number = ‘,num2str(j)]); 
%  
%         subplot(3,3,2) 
%         imshow(HRimages(:,:,j)) 
%         title([‘Reference HR Band Number = ‘,num2str(j)]); 
%  
%         subplot(3,3,3) 
%         imshow(ddnearest2D(:,:,j)) 
%         title(‘Nearest’) 
%  
%         subplot(3,3,4) 
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%         imshow(ddbilinear2D(:,:,j)) 
%         title(‘Bilinear’) 
%  
%         subplot(3,3,5) 
%         imshow(ddbicubic2D(:,:,j)) 
%         title(‘Bicubic ‘) 
%  
%         subplot(3,3,6) 
%         imshow(ddLMMSE2D(:,:,j)) 
%         title(‘LMMSE’) 
%  
%         subplot(3,3,7) 
%         imshow(ddMaxEnt2D(:,:,j)) 
%         title(‘Max Entropy’) 
%  
%         subplot(3,3,8) 
%         imshow(ddReg2D(:,:,j)) 
%         title(‘Regularized’) 
%         pause(.01) 
%     end    
  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
   
  %Signal to noise calculation 
  %signal 
  sig_nearest=trueSignal.*ddnearest2D; 
  sig_bilinear=trueSignal.*ddbilinear2D; 
  sig_bicubic=trueSignal.*ddbicubic2D; 
  sig_LMMSE=trueSignal.*ddLMMSE2D; 
  sig_MaxEnt=trueSignal.*ddMaxEnt2D; 
  sig_Reg=trueSignal.*ddReg2D; 
 
  %noise 
  noise_nearest=(~trueSignal).*ddnearest2D; 
  noise_bilinear=(~trueSignal).*ddbilinear2D; 
  noise_bicubic=(~trueSignal).*ddbicubic2D; 
  noise_LMMSE=(~trueSignal).*ddLMMSE2D; 
  noise_MaxEnt=(~trueSignal).*ddMaxEnt2D; 
  noise_Reg=(~trueSignal).*ddReg2D; 
 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
  %difference between final and original image 
  diff_PCA_nearest = abs(ddnearest2D-HRimages); 
  diff_PCA_bilinear = abs(ddbilinear2D-HRimages); 
  diff_PCA_bicubic = abs(ddbicubic2D-HRimages); 
  diff_PCA_LMMSE = abs(ddLMMSE2D-HRimages); 
  diff_PCA_MaxEnt = abs(ddMaxEnt2D-HRimages); 
  diff_PCA_Reg = abs(ddReg2D-HRimages); 
   
  diff_PCA(1,Npca)=sum(sum(sum(diff_PCA_nearest))); 
  diff_PCA(2,Npca)=sum(sum(sum(diff_PCA_bilinear))); 



71 

  diff_PCA(3,Npca)=sum(sum(sum(diff_PCA_bicubic))); 
  diff_PCA(4,Npca)=sum(sum(sum(diff_PCA_LMMSE))); 
  diff_PCA(5,Npca)=sum(sum(sum(diff_PCA_MaxEnt))); 
  diff_PCA(6,Npca)=sum(sum(sum(diff_PCA_Reg))); 
   
  %caclulate the total signal to noise for each band 
  for k = 1:bands 
      sig_nearest_tot=sum(sum(sig_nearest(:,:,k))); 
      sig_bilinear_tot=sum(sum(sig_bilinear(:,:,k))); 
      sig_bicubic_tot=sum(sum(sig_bicubic(:,:,k))); 
      sig_LMMSE_tot=sum(sum(sig_LMMSE(:,:,k))); 
      sig_MaxEnt_tot=sum(sum(sig_MaxEnt(:,:,k))); 
      sig_Reg_tot=sum(sum(sig_Reg(:,:,k))); 
 
      noise_nearest_tot=sum(sum(noise_nearest(:,:,k))); 
      noise_bilinear_tot=sum(sum(noise_bilinear(:,:,k))); 
      noise_bicubic_tot=sum(sum(noise_bicubic(:,:,k))); 
      noise_LMMSE_tot=sum(sum(noise_LMMSE(:,:,k))); 
      noise_MaxEnt_tot=sum(sum(noise_MaxEnt(:,:,k))); 
      noise_Reg_tot=sum(sum(noise_Reg(:,:,k))); 
 
      snr(1,k)=20*log(sig_nearest_tot/noise_nearest_tot); 
      snr(2,k)=20*log(sig_bilinear_tot/noise_bilinear_tot); 
      snr(3,k)=20*log(sig_bicubic_tot/noise_bicubic_tot); 
      snr(4,k)=20*log(sig_LMMSE_tot/noise_LMMSE_tot); 
      snr(5,k)=20*log(sig_MaxEnt_tot/noise_MaxEnt_tot); 
      snr(6,k)=20*log(sig_Reg_tot/noise_Reg_tot); 
  end 
 
  fprintf(‘Current Elapsed Time is %f minutes\n’,sum(time_PCA)/60) 
 
  %cost function parameters 
  a=.01; %time 
  b=1; %diff importance 
   
  for j=1:6 
      snr_mean(j,Npca) = mean(snr(j,:)); 
  end 
 
  cost_PCA(1,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(1,Npca)).^2; 
  cost_PCA(2,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(2,Npca)).^2; 
  cost_PCA(3,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(3,Npca)).^2; 
  cost_PCA(4,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(4,Npca)).^2; 
  cost_PCA(5,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(5,Npca)).^2; 
  cost_PCA(6,Npca)= a*(time_PCA(Npca))^2+b*(diff_PCA(6,Npca)).^2; 
 
  Npca 
end 
 
 
figure() 
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plot(NPCA,diff_PCA(1,:),’.’,NPCA,diff_PCA(2,:),’o’,NPCA,diff_PCA(3,:),’
*’,NPCA,diff_PCA(4,:),’-’,NPCA,diff_PCA(5,:),’--’,NPCA,diff_PCA(6,:),’-
-’) 
title(‘Salinas Error Value for Each Level of Compression’) 
legend(‘Nearest’,’Bilinear’,’Bicubic’,’LMMSE’,’MaxEnt’,’Regularized’) 
grid on 
xlabel(‘Npca’) 
ylabel(‘Error’) 
 
figure() 
plot(NPCA,snr_mean(1,:),’.’,NPCA,snr_mean(2,:),’o’,NPCA,snr_mean(3,:),’
*’,NPCA,snr_mean(4,:),’-’,NPCA,snr_mean(5,:),’--’,NPCA,snr_mean(6,:),’-
-’) 
title(‘Salinas Mean SNR accross the HSI bands for Each Level of 
Compression’) 
legend(‘Nearest SNR’,’Bilinear SNR’,’Bicubic SNR’,’LMMSE SNR’,’MaxEnt 
SNR’,’Regularized SNR’) 
grid on 
xlabel(‘Npca’) 
ylabel(‘SNR’) 
 
figure() 
plot(NPCA,cost_PCA(1,:),’.’,NPCA,cost_PCA(2,:),’o’,NPCA,cost_PCA(3,:),’
*’,NPCA,cost_PCA(4,:),’-’,NPCA,cost_PCA(5,:),’--’,NPCA,cost_PCA(6,:),’-
-’) 
title(‘Salinas PCA Cost Function’) 
legend(‘Nearest’,’Bilinear’,’Bicubic’,’LMMSE’,’MaxEnt’,’Regularized’) 
grid on 
xlabel(‘Npca’) 
ylabel(‘Cost’) 
 
figure() 
plot(NPCA,time_PCA) 
title(‘Salias PCA Speed Performance’) 
y=sum(time_PCA)/60; 
legend([‘Calculation Time total = ‘,num2str(y),’ minutes’]) 
grid on 
xlabel(‘Npca’) 
ylabel(‘Time(s)’) 
 
 
 

B. MAXIMUM ENTROPY FUNCTION  

The maximum entropy function code is a function that has an input of a low 

resolution band and the output is a high resolution band. The function code was derived 

from Image Super Resolution and Applications [7]. 

 
function [band] = max_entropy_algorithm_redo(LR_fused_image_band) 
g = LR_fused_image_band; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
[~,M] = size(g); 
N = 2*M;  
g = g’;  
g = im2col(g,[M M],’distinct’);  
I = speye(N^2);  
H1 = sparse(M,N);  
counter = 1;  
for i = 1:M  
  H1(i,counter) = 1;  
  H1(i,counter+1) = 1;  
  counter = counter+2;  
end 
H1 = H1/2;  
H = kron(H1,H1);  
HH = H’*H;  
gama = 0.001;  
Hopt = inv(HH+gama*I)*H’;  
f = Hopt*g;  
f = col2im(f,[N N],[N N],’distinct’);  
band=f’; 
end 
 

C. LMMSE FUNCTION  

The LMMSE function code is a function that has an input of a low resolution band 

and the output is a high resolution band. The function code was derived from Image Super 

Resolution and Applications [7]. 

 
function [band] = LMMSE_algorithm_redo(LR_fused_image_band,n_var) 
g = LR_fused_image_band; 
f = LR_fused_image_band;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
selectau = 0; 
if ~selectau  
  key0 = 4;  
end  
if ~selectau 
  a = -1/2;  
  s = 0.5;  
  [M,N] = size(f);  
  ff = zeros(M,N);  
  x = f(:,N-1:N);  
  x = rot90(x,2);  
  y = f(:,1); 
  f = [y,f,x];  
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  for i = 1:M  
      for j = 2:N+1  
          switch key0  
              case 1  
                  ff(i,j-1) = f(i,j)*(1-s)+f(i,j+1)*s; 
                  %bilinear  
              case 2  
                  ff(i,j-1) = f(i,j-1)*(a*s^3-
2*a*s^2+a*s)+f(i,j)*((a+2)*s^3 -(3+a)*s^2+1)+f(i,j+1)*(-
(a+2)*s^3+(2*a+3)*s^2-a*s)+f(i,j+2) *(-a*s^3+a*s^2);  
                  % Bicubic  
              case 3  
                  ff(i,j-1) = f(i,j-1)*((3+s)^3-
4*(2+s)^3+6*(1+s)^3-4*s^3)/6+f(i,j)*((2+s)^3-
4*(1+s)^3+6*s^3)/6+f(i,j+1)*((1+s)^3-4*s^3)/6+f(i,j+2)*s^3/6; 
                  % Cubic?Spline  
              case 4  
                  ff(i,j-1) = f(i,j-1)*((-1/6)*(1+s)^3+(1+s)^2+(-
85/42)*(1+s)+(29/21))+f(i,j)*(0.5*s^3-
s^2+(1/14)*s+13/21)+f(i,j+1)*(0.5*(1-s)^3-(1-
s)^2+(1/14)*s+13/21)+f(i,j+2)*((-1/6)*(2-s)^3+(2-s)^2-(85/42)*(2-
s)+29/21); 
                  % Cubic o? Moms  
          end  
      end 
  end 
  ff = ff(:,1:N);  
  fff(1:M,1:2:2*N) = f(1:M,2:N+1);  
  fff(1:M,2:2:2*N) = ff(1:M,1:N); 
  f = fff’;  
  clear ff fff  
  a = -1/2;  
  s = 0.5;  
  [M,N] = size(f);  
  ff = zeros(M,N); 
  x = f(:,N-1:N); 
  x = rot90(x,2); 
  y = f(:,1);  
  f = [y,f,x];  
  for i = 1:M  
      for j = 2:N+1  
          switch key0  
              case 1  
                  ff(i,j-1) = f(i,j)*(1-s)+f(i,j+1)*s; 
                  %bilinear 
              case 2  
                  ff(i,j-1) = f(i,j-1)*(a*s^3-
2*a*s^2+a*s)+f(i,j)*((a+2)*s^3-(3+a)*s^2+1)+f(i,j+1)*(-
(a+2)*s^3+(2*a+3)*s^2-a*s)+f(i,j+2)*(-a*s^3+a*s^2);  
                  % Bicubic  
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              case 3  
                  ff(i,j-1) = f(i,j-1)*((3+s)^3-
4*(2+s)^3+6*(1+s)^3-4*s^3)/6+f(i,j)*((2+s)^3-
4*(1+s)^3+6*s^3)/6+f(i,j+1)*((1+s)^3-4*s^3)/6+f (i,j+2)*s^3/6; 
                  % Cubic?Spline  
              case 4  
                  ff(i,j-1) = f(i,j-1)*((-1/6)*(1+s)^3+(1+s)^2+(-
85/42)*(1+s)+(29/21))+f(i,j)*(0.5*s^3-
s^2+(1/14)*s+13/21)+f(i,j+1)*(0.5*(1-s)^3-(1-
s)^2+(1/14)*s+13/21)+f(i,j+2)*((-1/6)*(2-s)^3+(2-s)^2-(85/42)*(2-
s)+29/21); 
                  % Cubic o? Moms  
          end  
      end  
  end 
  ff = ff(:,1:N); 
  fff(1:M,1:2:2*N) = f(1:M,2:N+1);  
  fff(1:M,2:2:2*N) = ff(1:M,1:N);  
  fff = fff’;  
  fff = (fff>=0).*fff; 
else 
  fff = f1;  
end  
wlength = 3;  
[~,M1] = size(fff);  
fff(M1+wlength,M1+wlength) = 0;  
for j = 0:M1-1  
  for k = 0:M1-1  
      sum = 0;  
      for n = 1:wlength  
          for m = 1:wlength  
              sum = sum+fff(n,m)*fff(n+j,m+k);  
          end 
      end 
      RRR(j+1,k+1) = 1/((wlength)^2)*sum;  
  end 
 
end 
 
[~,M] = size(g); 
N = 2*M;  
R = 2;  
kff = zeros(N,N); 
kff = RRR’;  
kff = im2col(kff,[N N],’distinct’); 
kff = sparse(1:N^2,1:N^2,kff); 
g = g’;  
g = im2col(g,[M M],’distinct’); 
I = speye(M^2)/12; 
H1 = sparse(M,N);  
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counter = 1;  
for i = 1:M  
  H1(i,counter) = 1;  
  H1(i,counter+1) = 1;  
  counter = counter+2;  
end 
H1 = H1/2;  
H = kron(H1,H1);  
Hz1 = speye(M^2)*n_var; 
HH = H*kff*H’;  
I = speye(size(HH)); 
Hopt = kff*H’*inv(HH+Hz1); 
f = Hopt*g;  
f = col2im(f,[N N],[N N],’distinct’); 
f = (f>=0).*f; 
f = f’; 
band=f; 
end 
 

D. REGULARIZED FUNCTION  

The Regularized function code is a function that has an input of a low resolution 

band and the output is a high resolution band. The function code was derived from Image 

Super Resolution and Applications [7]. 
function [band] = regularized_algorithm_redo(LR_fused_image_band) 
g = LR_fused_image_band; 
[M,N] = size(LR_fused_image_band); 
M = 2*M; 
N = 2*N; 
lamda = .001;  
g = [rot90(g(:,1:4),2),g,rot90(g(:,M/2-8:M/2),2)];  
g = [rot90(g(1:4,:),2);g;rot90(g(M/2-8:M/2,:),2)]; 
[L1,L2] = size(LR_fused_image_band); 
L1 = 2*L1; 
L2 = 2*L2; 
M = 24;  
N = 12;  
I = speye(M^2); 
H1 = sparse(M/2,M); 
counter = 1;  
for i = 1:M/2  
   H1(i,counter) = 1;  
   H1(i,counter+1) = 1;  
   counter = counter+2;  
end;  
H1 = H1/2;  
H = kron(H1,H1);  
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HH = H’*H;  
beta = 0.125;  
Q1 = sparse(M,M);  
for i = 1:M  
   Q1(i,i) = -2;  
end 
for i = 1:M-1  
   Q1(i,i+1) = 1;  
end  
for i = 2:M  
   Q1(i,i-1) = 1;  
end  
Q = kron(Q1,Q1);  
QQ = Q’*Q;  
L = inv(HH+lamda*QQ);  
for ii = 1:L1/8  
  for jj = 1:L2/8  
      ii;  
      f = g(4*ii+1-4:4*(ii+1)+4,4*jj+1-4:4*(jj+1)+4); 
      z = f; 
   y = im2col(z,[N N],’distinct’);  
      x1 = L*H’*y;  
      x1 = col2im(x1,[M M],[M M],’distinct’);  
      xx1(8*(ii-1)+1:8*(ii),8*(jj-1)+1:8*(jj)) = x1(9:16,9:16);  
end  
end  
%[a,b] = size(xx1); 
xx1 = max(xx1,0);  
xx1 = min(xx1,1); 
len=4; 
xx1=wextend(‘2D’,’sp0’,xx1,len,’dr’); 
%%%%%%%%%%%%%%%%%%%%%%%%% 
band=xx1; 
end 

E. DWFT FUNCTION 

The DWFT function code is a function that has an input of two low-resolution 

images and the output is a fused low-resolution band. The function code was derived from 

Image Super Resolution and Applications [7]. 
function fused = wavelet_fusion(g1,g2) 
%DWFT Fusion 
%THE WAVELET FRAME TRANSFORM STEP FOR BOTH IMAGES.  
[a1,h1,v1,d1] = swt2(g1,1,’db2’);  
%[a1,h1,v1,d1] = swt2(g1,1,’db2’);  
[a2,h2,v2,d2] = swt2(g2,1,’db2’);  
%SELECTION OF COEFFICIENT USING Linear combination BETWEEN THE 
APPROXIAMTION 
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A = imlincomb(0.5,a1,0.5,a2);  
%INVERSE FRAME WAVELET TRANSFORM TO GENERATE THE FUSED IMAGE.  
Z = iswt2(A,h1,v1,d1,’db2’);  
fused = Z;  
%imshow(fused) 
end 

F. CORRELATION FUNCTION 

function corr_btw_bands = supercorr(HR_image) 
[row,col,bands] = size(HR_image); 
for i=1:bands; 
  for j = 1:bands; 
  Rxx(i,j)=corr2(HR_image(:,:,i),HR_image(:,:,j)); 
  end 
end 
corr_btw_bands=Rxx; 
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