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ABSTRACT 

 A decline of the Arctic sea ice in response to a warming climate is assessed in the 

historical sea ice simulations from state-of-the-art global climate models participating in 

Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Accurate simulations of 

sea ice are important for projections of its regional and global effects on the air-sea 

exchanges, weather, and climate. The timing and rate of simulated sea ice decline is 

compared with available observations for sea ice area and volume. Analysis indicates 

multi-model means and long-term trends for these common sea ice metrics are well 

represented, but the individual CMIP6 model ability to represent the observed accelerated 

rate in sea ice decline remains a challenge. Local and regional sea ice biases are identified 

through spatial analysis metrics, like sea ice thickness distribution pattern and sea ice 

edge analysis. Large model spatial errors imply limitations in or lack of representation of 

some key physical processes. The oceanic heat transport (OHT) and its forcing of the 

pan-Arctic sea ice decline are examined as possible model limitations. CMIP6 models 

show a strong correlation between increasing OHT and decreasing sea ice trends but 

likely underestimate the northward OHT over the polar cap (70°–90°N). Isolating 

specific model limitations and identifying possible processes affecting them will guide 

future model improvements critical to our understanding and projection of Arctic climate 

change. 
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I. INTRODUCTION  

The Arctic climate is changing in response to greenhouse gas (GHG) forcing and 

the sea ice cover is declining at a rate faster than has been predicted by most state-of-the-

art Earth System and global climate models (hereafter called climate models) (IPCC 2014, 

2019). With the potential for increased economic and military activity as a result of 

extended periods of ice-free Arctic and subarctic waterways in the future, it is of strategic 

importance to the United States to obtain credible information from climate predictions 

and projections (Department of Defense 2019; Department of the Navy 2021). To 

accomplish this, it is first necessary to understand and represent the underlying key 

physical processes and resulting feedbacks in climate model simulations of the historical 

climate record. Improved climate model simulations of past states are a first step toward 

improving model projections of future states. Many studies have documented the 

representation of Arctic sea ice in different phases of the Coupled Model Intercomparison 

Project (CMIP) simulations, but few have focused on diagnosing the causality of climate 

model local and regional biases (Stroeve et al. 2012; SIMIP Community 2020; Shu et al. 

2020; Shen et al. 2021). 

A. MOTIVATION 

1. Earth’s Climate Is Changing 

Earth’s climate is changing at an unprecedented rate, driven largely by increased 

levels of carbon dioxide and other GHGs (IPCC 2014). According to the Intergovernmental 

Panel on Climate Change (IPCC), anthropogenic radiative forcing is manifested in a 

number of observed physical changes in the environment (IPCC 2014). Since around 1900, 

nearly our whole planet has experienced surface warming, and the combined land and 

ocean surface air temperature (SAT) has warmed by 0.85 °C between 1880-2012 (IPCC 

2014). Over roughly the same period, global mean sea level has risen by about 20 cm, 

resulting mostly from glacier melt and ocean thermal expansion. Additionally, the global 

near surface ocean temperature (i.e., upper 75 m) has warmed by 0.11 °C during the period 

1971-2010 (IPCC 2014). It is the ocean which accounts for more than 90% of the additional 
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energy stored within Earth’s climate system, with 60% of the net energy increase stored 

within the upper 700m during the period 1971-2010 (IPCC 2014). 

Even more striking than the general global warming trends is the much larger surface 

warming experienced in the Arctic. Here the warming rate exceeds the rest of the planet by a 

factor of 2 to 3 (Serreze and Barry 2011). This so-called Arctic amplification (Serreze and 

Francis 2006) of SATs is prominently linked to the rapidly diminishing Arctic sea ice cover by 

way of positive feedback processes. One such process is the ice-albedo feedback, whereby the 

loss of highly reflective sea ice reduces the surface albedo, thus increasing absorption of 

shortwave radiation and available heat in the upper ocean commanding further sea ice melt 

(Perovich et al. 2008; Serreze and Barry 2011). The net result is a larger ocean surface area 

containing ice-free conditions over a greater number of days. Longer periods of seasonally ice-

free conditions in the Arctic Ocean and its approaches allow for increased access to the Arctic 

region (Melia et al. 2016). Global competition for control and influence across the region is of 

strategic importance to the United States. 

2. Persistent in situ Arctic Observing Systems Are Scarce 

Observational studies describing the rapid changes of the Arctic climate are critical 

to advance knowledge of causality and predict the future state. However, a number of 

challenges impede in situ collection. Access to much of the Arctic Ocean and Northern 

hemisphere cryosphere is limited by way of geopolitical obstacles (e.g., Russian policy), 

as well as the inhospitable climate itself (Uotila et al. 2019). For instance, ubiquitous winter 

sea ice cover over the Arctic Ocean limits shipboard access and inhibits widespread 

oceanographic data collection (e.g., Argo-buoys) during a large portion of the year (Uotila 

et al. 2019). Extreme temperatures, weather, and high risk to personnel make manned ice 

camps largely untenable, so the limited observation stations for ocean and atmosphere data 

must operate autonomously for extensive periods. 

Most Arctic in situ observations are limited and discrete in both time and space. 

But they are the geophysical ground truth for the physical processes occurring within the 

environment. As well they are essential in constraining historical climate model 

simulations and building confidence in the complex simulated processes therein. Satellite-



3 

derived observations may serve as a better reference for intercomparisons among sea ice 

model simulations (Markus et al. 2009), but some of the products are only available after 

2010 during the freeze-up season normally from October to April. 

3. Climate Models Fill Data Gaps 

Global climate models are uniquely capable to complement many of the 

observational systems listed above. They provide “access” to all regions of the Arctic on 

dependable time and spatial scales (NOAA 2021). Climate models inform the projections 

of future climate states, weather, and environmental hazards (NOAA 2021). Their role is 

also central in shaping policy and infrastructure preparedness (e.g., IPCC 2014). In the 

United States alone, no less than four government organizations operate global climate 

models (i.e., NOAA, NASA, DOE, NSF), commanding a great number of resources (Golaz 

et al. 2019; Held et al. 2019; Danabasoglu et al. 2020; Kelley et al. 2020). Climate models 

have long been used as a tool to better understand and predict the inner workings of the 

Earth system (e.g., Mahlstein and Knutti 2011; DeRepentigny et al. 2020; Im et al. 2021). 

But the physics of the Earth system are complicated and complex (e.g., Kirtman et al. 2012; 

Maslowski et al. 2012). Accordingly, simplifications must be made, and parameters 

manipulated to best represent the physical reality (e.g., Roach et al. 2018). Some of these 

choices and limitations result in systematic model biases, e.g., cold SAT bias in high 

latitudes (e.g., Davy and Esau 2014). Furthermore, many climate model simulations are 

not necessarily tuned for the Arctic climate, and therefore may not represent observed 

feedback processes (e.g., Urrego-Blanco et al. 2016). 

B. NAVAL RELEVANCE 

1. United States Arctic Strategy 

The Arctic is defined as the region north of the Arctic Circle and is depicted along 

with the pan-Arctic regional geography in Figure 1. The United States is an Arctic nation 

by way of Alaska and by treaty with Canada (Department of the Navy 2021). Strategic 

documentation calling for preparations for climate change and to operate United States 

forces in a more accessible Arctic region has increased over the last decade. The Arctic 

region was specifically included in the National Security Strategy 2010 and 2015, as well as 
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making new entries as standalone guidance in the National Strategy for the Arctic Region 2013, 

and Department of Defense (DOD) Arctic Strategy 2016 and 2019. When questioned by 

United States Congress as to the need for such rapid updates to Arctic strategies, the Secretary 

of the Navy Richard Spencer replied, “The damn thing melted” (Werrell and Femia 2018). The 

urgency reflected by Secretary Spencer’s comment has echoed across all service components, 

with each branch having published a recent Arctic strategy to date. 

 
Figure 1. Map of pan-Arctic regional geography. Source: Department of the 

Navy (2021). 

The DOD Arctic Strategy 2019 outlined three ways to support the end-state for the 

Arctic as “a secure and stable region in which United States national security interests are 

safeguarded, the United States homeland is defended, and nations work cooperatively to 

address shared challenges” (Department of Defense 2019). They include (Department of 

Defense 2019) 
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• Building Arctic awareness; 

• Enhancing Arctic operations; and, 

• Strengthening the rules-based order in the Arctic.  

2. United States Navy Arctic Strategy 

According to O’Rourke et al. (2019), “in support of National and DOD objectives 

for the Arctic, the Navy will… defend United States sovereignty” and preserve freedom of 

the seas. The United States Navy strategy, A Blue Arctic, nested the following three naval 

objectives in 2021 to meet those listed above (Department of the Navy 2021) 

• Maintain enhanced presence; 

• Strengthen cooperative partnerships; and, 

• Build a more capable Arctic naval force. 

The Navy must operate further north and with increasing regularity in the coming 

decades. The lengthening of summer melt seasons (Markus et al. 2009) increases the 

navigability of the Arctic sea routes (i.e., Northern Sea Route, Northwest Passage, and 

Transpolar Route) and results in more human activity in and around the Arctic regions 

(Melia et al. 2016). Figure 2 illustrates the Arctic transit sea routes and the anticipated sea 

ice extent minima over the next decade. These Arctic shipping routes are most 

commercially enticing between the European and Asian markets, whereby transit time and 

distance may be reduced by as much as 40% (e.g., from 30 days to 18 days) compared to 

the primary alternative Suez canal route (Melia et al. 2016). Furthermore, natural resource 

exploration and commercial fishing over the vast Arctic continental shelf will likely 

increase over the near future (Department of the Navy 2021; Task Force Climate Change 

2014). Thus, knowledge of the timing for access to these regions holds strategic 

importance.  
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Figure 2. Arctic sea routes and the anticipated sea ice minima through 2030. 

Source: Task Force Climate Change (2014). 

The Navy strategy clearly articulates the expected speed at which great power 

competition will jockey for advantage in the region. For example, large investments have 

already been made in Russia’s Arctic defense, as well as posturing for unlawful regulation 

of the Northern Sea Route (Department of the Navy 2021). Additionally, Chinese 

investments in polar-capable cargo ships, icebreakers, and accompanying port 

infrastructure foreshadow their own Arctic ambition (Department of the Navy 2021). 

Because of the potential for future competition and conflict in the more accessible Arctic, 

the United States must work closely with allies and partners, both military and civilian, to 

improve regional understanding of the environment and the operating capabilities of the 

force (Department of the Navy 2021). 
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According to the Department of the Navy (2021), “understanding and predicting 

the physical environment from sea floor to space, today and for decades, is critical for 

mission advantage.” To build a more Arctic capable naval force, the Navy emphasizes 

professional military education to “deepen our knowledge of current and future challenges” 

conducting Arctic operations (Department of the Navy 2021). Additionally, research is 

needed to understand the underlying key physical processes which will reduce model 

uncertainty in the seasonal and sub-seasonal sea ice predictions, and future projections of 

climate change impacts on sea ice.  

C. RESEARCH GOALS 

Our research was conducted to support United States Navy objectives and address 

science questions from CMIP6 Sea Ice Model Intercomparison Project (SIMIP) (Notz et 

al. 2016). To do so, we assessed CMIP6 simulations of sea ice with a focus on the role of 

oceanic forcing in the generation of sea ice biases. Understanding the causality of sea ice 

biases may inform modeling groups of focused improvement areas and caution against the 

use of particular models for certain process studies. Questions that were posed by SIMIP 

(Notz et al. 2016) and foundational for this research include the following: (a) Why do 

CMIP6 sea ice simulations differ from each other and/or the observational records? (b) Do 

CMIP6 sea ice simulations have systematic regional biases in the distribution of the sea ice 

pack as a result of oceanographic influence? This dissertation has two primary research 

objectives and several underlying science questions: 

1. Assess progress and outstanding limitations in the historical sea ice 

simulations from the state-of-the-art global climate models participating in 

the CMIP6. 

• How well do CMIP6 models simulate the 1979-2014 observed 

mean sea ice state and trends? 

• Do CMIP6 models simulate the apparent accelerated rate of sea ice 

decline shown in observations?  
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• Can new spatial analysis metrics of sea ice provide model bias 

information beyond that from standard time series metrics? 

2. Examine the role of oceanic forcing (e.g., oceanic heat transport (OHT) 

and convergence) in causing local and regional biases in Arctic sea ice in 

individual CMIP6 models. 

• How well do CMIP6 models simulate the OHT shown in the 

limited in situ observations and in ocean reanalyses? 

• Are biases in CMIP6 sea ice simulations related to the simulated 

OHT?  

D. STRUCTURE OF THIS DISSERTATION 

Following this introduction is a background chapter covering the Arctic region, the 

observed decline in sea ice, and a review of recent CMIP6 sea ice studies. Next, three 

“results” chapters are presented in journal article format, each with its own distinct sections 

including an introduction, data and methods, results, discussion and conclusion. The first 

paper, “An Assessment of the Pan-Arctic Accelerated Rate of Sea Ice Decline in CMIP6 

Historical Simulations” (in review), examines the full suite of CMIP6 models and 

addresses temporal variability in sea ice area and volume simulations. The second paper, 

“A Spatial Evaluation of Arctic Sea Ice and Regional Limitations in CMIP6 Historical 

Simulations” (Watts et al. 2021), evaluates spatial variability in sea ice thickness and extent 

in order to identify persistent regional biases in CMIP6 models. Chapter V is my 

contribution to a coauthored paper in preparation, “Assessment of Oceanic Heat Transport 

and Its Effects on Pan-Arctic Sea Ice Decline in CMIP6 Historical Simulations”, which 

examines the role of OHT on the sea ice cover in CMIP6 models. A summary of 

conclusions and recommendations for future research is presented in Chapter VI. 
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II. BACKGROUND 

A. ARCTIC SEA ICE 

The region of the Earth that is characterized by water in the frozen form is called 

the cryosphere, which includes glaciers, permafrost, snow, and sea ice. Sea ice is the frozen 

water that is created by cooling of the ocean sea surface to the freezing temperature. The 

presence of sea ice floating on the ocean surface substantially modifies the surface albedo 

(i.e., the ratio of the solar energy reflected by a surface to the total  solar energy received 

by the surface) (NSIDC 2020) and alters the momentum, heat, and mass exchanges 

between the atmosphere and ocean (Parkinson et al. 1987; Rampal et al. 2011). The level 

of impact that sea ice has on these exchanges is not static, rather it evolves based on sea 

ice physical characteristics such as age, sea ice thickness (SIT), sea ice concentration (i.e., 

percentage of ice-covered area; SIC), and presence of snow cover (Tschudi et al. 2011; 

Stroeve et al. 2012; Bokhorst et al. 2016). For instance, as young sea ice forms, it traps 

brine pockets within which makes the ice darker in appearance than pure ice. Therefore, it 

reflects a smaller amount of shortwave radiation. As the sea ice thickens and ages, brine 

pockets drain and the sea ice becomes lighter in color, thus more reflective. Additionally, 

the presence of clean snow cover (i.e., with no contaminants) on sea ice results in the most 

reflective surfaces on Earth (i.e., albedo ~0.9) (NSIDC 2020). 

The Arctic sea ice cover experiences a strong mean annual cycle in both sea ice 

extent (i.e., area covered by at least 15% or more SIC; SIE) and sea ice volume (SIV). Over 

the period 1981-2010, the monthly mean SIE maximum in March and minimum in 

September averaged 15.4×106 km2 and 6.4×106 km2, respectively (Stroeve and Notz 2018). 

The seasonal evolution of sea ice is controlled by both thermodynamic growth or melt and 

by dynamic redistribution. Growth of sea ice occurs if the surface mixed layer is cooled 

down to a freezing temperature (which is a function of salinity) and SATs are below the 

freezing temperature of sea water. If SATs remain below the sea water freezing 

temperature sea ice will continue to form. While Arctic sea ice grows almost exclusively 

as basal growth, it melts as the result of different basal, lateral, and surface processes. One 

such melting process driven by the ocean is when sea water temperature increases above 
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the freezing point and basal and/or lateral melt occurs. On the other hand, one of several 

atmospheric driven melting processes is surface melt of sea ice by SAT increasing above 

the freezing point. 

The sea ice that forms following the September minimum is first year ice by 

definition (NSIDC 2021). First year ice that forms and melts out every year is called 

seasonal sea ice (thinner and weaker), and is most commonly found in Arctic marginal seas 

(e.g., Barents and Chukchi seas) (Serreze and Stroeve 2015). In contrast to seasonal sea 

ice, the perennial sea ice, or multiyear ice (MYI), survives at least one melt season. MYI 

is usually the thickest and oldest sea ice. Additional components of sea ice are polar cap 

ice (which forms a large portion of the MYI), pack ice (i.e., seasonal), and land fast ice 

(i.e., connected with the shore ocean bottom). 

Arctic sea ice is in constant motion (Serreze and Meier 2019). The general 

circulation of the sea ice is driven mainly by the anticyclonic Beaufort gyre and the 

transpolar drift (Figure 3). High atmospheric pressure over the Beaufort Sea sets up 

anticyclonic surface wind stress, which leads to Ekman transport convergence and sea ice 

convergence within the Beaufort gyre and the buildup of sea ice along the north Greenland 

and Canadian Arctic Archipelago coasts (Kwok 2018). On the other hand, the transpolar 

drift results in sea ice export from the Arctic, primarily through the Fram Strait. On shorter 

time scales, variability in sea ice cover is dominated by transient atmospheric forcing (e.g., 

low pressure weather systems). These transient systems tend to occur over the Arctic 

marginal seas during the colder winter months and disrupt the general circulation and 

introduce warmer subarctic air which can inhibit sea ice growth (Woods and Caballero 

2016). 
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Figure 3. Schematic of Arctic surface currents. Adapted from AMAP (2007). 

B. OBSERVED SEA ICE CHANGES 

Remote sensing of the Arctic sea ice began late in 1978 using passive microwave 

measurements of SIC. This observational data, extending through today, provides the most 

established and continuous measure of Arctic sea ice, albeit only a two-dimensional data 

set with grid size of about 25 km x 25 km. Interpreting the observational passive microwave 

data does come with its own algorithm and internal uncertainties (Screen 2011; Eisenman 

et al. 2014; Meier et al. 2014). According to Ivanova et al. (2014), these uncertainties peak 

during the summer season, largely due to extensive melt pond coverage and regions of low 

SIC, and especially in the marginal ice zone (MIZ; SIC between 20-80%). Using long-term 

passive microwave SIE timeseries reduces some of the observational uncertainty triggered 

by relatively low-resolution observations, difficulty distinguishing thin ice from open 

ocean, and changing pole hole size. The pole hole is an area not observed by satellite due 

to orbit paths, whose size has changed three times over the satellite record. We note that 

measurements of SIT over the period of satellite observations are discontinuous, and 
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include collection by submarine, aircraft, ships, and more recently Light Detection and 

Ranging (LIDAR) satellite observations (i.e., ICESat from 2003 to 2009, CryoSat-2 since 

2010, and ICESat-2 launched in 2018). Therefore, uncertainty in modeled SIV and SIT is 

not as well constrained as SIE (Zygmuntowska et al. 2013; Kwok 2018). 

SIE has decreased across all months between 1979-2018, with September sea ice 

showing the largest decline, reducing by 12.8 ±2.3% per decade (IPCC 2019). This 

decreasing trend is about 83,000 km2 per year, an area equivalent to about the size of 

Maine. Figure 4 shows the Arctic regions most impacted by the negative SIC trends for 

March and September (Stroeve and Notz 2018). Additionally, an accelerated rate in SIA 

and SIE decline was reported by Comiso et al. (2008) subsequent to the record setting 

September SIE minimum in 2007 (which has since been eclipsed by September 2012; 

Figure 5), and has continued through present day (Stroeve and Notz 2018). The cause of 

this accelerated rate of sea ice decline is subject of active research, but can at least partly 

be attributed to lengthening of the melt season, increasing inflow of warm air during winter 

months, and increased net heat transport into the Arctic (e.g., Burgard and Notz 2017; 

Stroeve and Notz 2018). 
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SIC trends (% per year) and statistical significance (%) for March (1979-2018) and 
September (1979-2017). 

Figure 4. Arctic sea ice concentration trends. Source: Stroeve and Notz 
(2018). 

 
Monthly SIA anomaly for November 1978 to September 2007 (green 
and blue), 12-month running mean (red) and linear trend lines for the 
full record (black) and 1978-1996 (green) and 1996-2007 (blue). An 
anomaly is the difference between the reference and observed values. 
Here the reference is the 1979-2007 SIA monthly mean annual cycle. 

Figure 5. Observed accelerated decline in Arctic sea ice area. Source: 
Comiso et al. (2008). 
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However, this two-dimensional view of sea ice loss does not report the full story. 

SIT, and consequently SIV, are also well reported to be in rapid decline (Kwok and 

Rothrock 2009; Schweiger et al. 2011; Maslowski et al. 2012; Stroeve et al. 2014). Most 

notably, the Arctic sea ice is thinning and becoming much younger, having lost more than 

50% of its MYI during the period 1999–2017, according to Kwok (2018). This is illustrated 

in Figure 6 showing the sea ice age in late April for 1984 and 2018, and by time series of 

the percentage among first year and MYI (Stroeve and Notz 2018). Not only is the sea ice 

thinning due to a warming climate, but as older ice is exported from the Arctic, it is not 

replenished (Serreze and Meier 2019). Thus, the general SIT state of the Arctic is 

dramatically changing. 

 
Ice age during the last week of April in 1984 and 2018 (top left and right, respectively). 
Time series of different age classes given as the percent of total extent (bottom left) 
averaged over the Arctic Ocean Domain (bottom right). 

Figure 6. Arctic sea ice age from 1984 to 2018. Source: Stroeve and Notz 
(2018). 
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C. PHYSICAL PROCESSES IMPACTING SEA ICE 

Sea ice advection and deformation are driven by winds and ocean currents (Kwok 

et al. 2013; Serreze and Meier 2019). For any defined region or grid cell, the sea ice mass 

can be changed when ice is transported into or out of the region, or undergoes convergence 

(i.e., ridging or rafting) which results in thickening. The ice thickness is important as it 

alters the response of the sea ice to atmospheric and oceanic forcing (Kwok et al. 2013). 

Thick ice has deep keels that expose large surface area to surface ocean currents. On the 

other hand, thin sea ice is more susceptible to atmospheric forcing. In a study by Kwok et 

al. (2013), thinner sea ice had faster drift speeds than thicker sea ice in response to similar 

changes in the Arctic Oscillation (AO) during the period 1982-2009. Additionally, faster 

sea ice drift speeds have consequence on the efficiency of sea ice export through Fram 

Strait, particularly during Arctic dipole anomaly during 2001-2009 (Kwok et al. 2013). 

The Arctic is changing in response to a range of forcing induced by increased levels 

of GHG in the atmosphere. One example is the forcing associated with increases in Arctic 

SATs, which have increased at a rate greater than those at lower latitudes (Ballinger et al. 

2020). Warmer Arctic SATs reduce sea ice mass and initiate the annual summer melt 

earlier, which results in a higher percentage of heat-absorbing open water area during the 

summer (Stroeve and Notz 2018). A warmer upper ocean, in turn, melts adjacent sea ice as 

well as requiring more time to cool before freeze-up. This positive ice-albedo feedback is 

a key process in what is called the Arctic amplification (Serreze et al. 2009). 

Variability in the sea ice cover is largely driven by climate scale variations in 

atmospheric and oceanic forcing (Garuba et al. 2020). Diagnosing the relative roles of the 

atmospheric and oceanic processes in the sea ice melting is challenging as they are not 

independent processes (Serreze and Meier 2019). Several studies have focused on the 

atmospheric processes driving interannual to decadal variability (Rigor et al. 2002; 

Watanabe and Hasumi 2005; Deser and Teng 2008). Key among the atmospheric variations 

are those involving large-scale changes in Arctic winds, SATs, humidities, and other 

atmospheric variables that occur on scales of months to years. Examples include the AO, 

North Atlantic Oscillation, and the Arctic dipole anomaly (Serreze and Meier 2019). For 

instance, during the positive AO, the prevailing sea level pressure anomaly over the central 
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Arctic is negative and results in anomalously cyclonic surface wind stresses (Rigor et al. 

2002; Watanabe and Hasumi 2005). Thus, sea ice: a) advection from the western Arctic to 

eastern Arctic decreases, b) export through Fram Strait increases, and c) advection away 

from the Siberian coast results in more thin ice production in coastal leads (Rigor et al. 

2002). Anomalous wind patterns also impact the surface energy budget. Winds from the 

south usually bring warmer temperatures and more humid air, thereby inhibiting sea ice 

growth or hastening its melt depending on the season (Serreze and Meier 2019). 

The role of oceanic forcing on the declining trends of Arctic sea ice has been the 

subject  of a number of observational and modeling studies (Schlichtholz 2011; Årthun et 

al. 2012; Woodgate et al. 2012; Schlichtholz 2019). The consensus from these studies is 

that ocean forcing is involved in the recent sea ice melt in the regions exposed to the 

northward flow of Pacific and Atlantic water. There, sea ice is strongly impacted by the 

advection of warm water from the lower latitudes, including variations in ocean heat and 

volume fluxes (Maslowski et al. 2012). These findings are consistent with an observed 

increasing trend in OHT (i.e., advection of ocean heat content) from the Pacific and 

Atlantic ocean basins during approximately 2000-2018 (Woodgate et al. 2012; Tsubouchi 

et al. 2021) when sea ice rate of decline is accelerated (Comiso et al. 2008). 

D. COUPLED MODEL INTERCOMPARISON PROJECTS 

1. Over 20 Years of Experience 

The CMIPs are a foundational element of today’s climate research (Eyring et al. 

2016). Tightly associated with the World Climate Research Programme (WCRP), the 

different phases of CMIP have provided invaluable insight into the past, current, and future 

climate for over 20 years (Eyring et al. 2016). All climate models participating in CMIP 

have a global domain. Results and analyses from previous CMIP phases have contributed 

extensively to international assessments of climate change (e.g., IPCC 2014) and policy 

recommendations. In the sixth phase of CMIP (CMIP6), the focus is on answering the 

WCRP’s Grand Science Questions, including: a) “How does the Earth system respond to 

forcing?; [and b)] What are the origins and consequences of systematic model biases?” 

(Eyring et al. 2016). The CMIP6 simulations of Earth’s climate include simulations of the 
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responses to historical forcing and simulations of the future responses, including a) an 

abrupt quadrupling of CO2 concentration (relative to the 1850 pre-industrial control value; 

a high emissions scenario) and b) a 1% per year CO2 concentration increase. The latter is 

the standard CO2 rate increase used since CMIP2, and the former is continued from CMIP5. 

CMIP6 model simulations and their studies will be used to inform the IPCC’s Sixth 

Assessment Report (AR6), which is currently in preparation. 

Climate models have long been used as a tool to better understand, predict, and 

project the complex innerworkings of the Earth system. They also offer an opportunity to 

improve our process level understanding of climate and to complement in situ historical 

observation gaps from data sparse environments. For example, in the case of reanalysis 

data, model simulations are constrained by observations or assimilated to provide best 

estimates. Climate models are often the best tool to quantify the internal variability of 

observed trends and whether a simulation falls within the observed uncertainty level (Kay 

et al. 2011). Fully coupled models commonly include individual climate system 

components for at least the atmosphere, ocean, land, and sea ice (Kauffman et al. 2004). 

The components are joined by a coupler that exchanges heat, momentum, and mass fluxes 

across the interfaces (e.g., ocean-atmosphere and ocean-sea ice) at set time intervals. The 

coupler interface allows for the boundary interface computation to be completed once and 

ensures conservation of fluxed quantities (Kauffman et al. 2004). 

2. CMIP Simulations of Sea Ice 

CMIP phases 3, 5, and 6 provide several model variables used to describe the 

simulated sea ice. The number and variety of variables, as well as the number of 

participating modeling centers and individual ensemble members has increased through 

the phases. There have been many studies documenting the representation of Arctic sea ice 

in these CMIP simulations, but few have focused on diagnosing the causality of local and 

regional model biases. Provided here is a short review of the most common sea ice variable 

metrics: SIE or SIA, SIV, and SIT. 

The spread in CMIP simulations of SIE and SIA has remained relatively constant 

throughout all CMIP phases (Stroeve et al. 2012; Shu et al. 2020; SIMIP Community 
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2020). Figure 7 illustrates the point, showing large model spread in simulating the 1979-

1998 mean SIA and SIV among individual models for CMIP phases 3, 5, and 6 (SIMIP 

Community 2020). Also evident is the relatively consistent skill, relative to observations 

or SIV reference, of the CMIP multimodel mean (MM). For example, the SIA MM remains 

largely unchanged and around the observed value for each of the CMIP phases. On the 

other hand, the SIV MM noticeably decreased from CMIP5 to CMIP6 indicating a 

generally thinner sea ice cover, and closer to the commonly used Pan-Arctic Ice Ocean 

Modeling and Assimilation System (PIOMAS) SIV reanalysis (Davy and Outten 2020; 

SIMIP Community 2020).  

 
The 1979-1998 mean SIA and SIV for March (on left) and September (on right) for CMIP3 
(blue), CMIP5 (orange), and CMIP6 (green). Horizontal dashes represent model first 
ensemble simulation and crosses represent multimodel ensemble mean. The thick dashed 
lines denote SIA observations. 

Figure 7. Comparison of simulated mean sea ice area and volume in 
different phases of CMIP. Source: SIMIP Community (2020). 
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Other improvements in the sea ice simulations relative to observations include a 

progressively more realistically negative SIE decline in the CMIP MM and an increase in 

the number of individual models exceeding the observed rate (Stroeve et al. 2012; Shu et 

al. 2020; Davy and Outten 2020; Shen et al. 2021). Davy and Outten (2020) reported that 

CMIP6 simulations improved on the CMIP5 simulations in better representing the 

observed ice edge retreat in the Barents Sea, for which the CMIP5 simulations showed too 

slow a decline in SIE.  

Stroeve et al. (2012) suggests internal variability has a strong impact on the 

September SIE trends. In a study of the CMIP5 models, they found that 16% of the 

ensemble members have trends that are indistinguishable from zero. However, in a 

comparison study between phases 5 and 6, Shen et al. (2021) indicates a reduction in the 

contribution of internal variability to the 1979-2014 September SIE trend, from 33% to 

22%, respectively. 

The first CMIP phase to enable a comprehensive intercomparison of SIT and SIV 

was CMIP5. While Stroeve et al. (2014) found good agreement in Arctic mean SIT in 

CMIP5 compared to available observations and reanalysis, but substantial differences in 

the thickness patterns were revealed (e.g., location and extent of thickest ice). For example, 

a large number of sea ice simulations failed to locate the thickest sea ice along the Canadian 

Arctic Archipelago and northern Greenland coasts (Stroeve et al. 2014). These failures are 

largely attributed to biases in the simulated general atmospheric circulation. Correctly 

simulating the SIT pattern is important in determining local surface heat fluxes, which have 

impacts on both sea ice mass and the rate of sea ice loss (Stroeve et al. 2014). 

The SIMIP community (2020) reported sea ice sensitivity improvements in CMIP6 

models over previous CMIPs. For example a larger number of models display “the 

observed sensitivity of Arctic sea ice to anthropogenic CO2 emissions (i.e., 2.73×106 km2 

of sea ice loss per ton of CO2)… [or] to global warming” (i.e., 4.01×106 km2 of sea ice loss 

per degree of warming) over the period 1979-2014 (SIMIP Community 2020). However, 

only a small number of models simulate plausible values (i.e., within two standard 

deviations) for both (SIMIP Community 2020).  



20 

Advances in sea ice models, like improved ice rheology, parametrizations, or higher 

resolution, could be responsible for some of the improvements discussed here. However, 

factors other than model structure have also been reported in a number of studies. For 

example, the inclusion of volcanic emissions in the historical forcing for all models from 

CMIP3 to CMIP5 strongly influenced the sea ice trends (Rosenblum and Eisenman 2016). 

In another study, Rosenblum and Eisenman (2017) discovered that CMIP5 simulations 

with rates of sea ice decline comparable to observations (1979-2013) also have positive 

global warming biases, which when bias corrected resulted in the models underestimating 

the observed negative sea ice trends. Rosenblum and Eisenman (2017) “leverage[d] the 

approximately linear relationship between SIE and global-mean surface temperature” for 

bias correction of CMIP5 models. According to Rosenblum and Eisenman (2017) “this 

suggests that the models may be getting the right sea ice trends for the wrong reasons.” 

General underestimation of the simulated historical declining trends is concerning and 

raises concerns about the accuracy and reliability of model projections of the future Arctic 

sea ice state. 

The consensus among climate scientists is that a seasonally ice-free Arctic will 

occur when the SIE falls below 1.0×106 km2. The Arctic SIE minimum occurs in 

September, so projections of September SIE are used to estimate when an ice-free Arctic 

is likely to occur in the future. While there is a large spread among models, the majority of 

CMIP6 sea ice projections indicate this will likely occur before the year 2050 in the high 

emissions scenario (Eyring et al. 2016; Davy and Outten 2020; SIMIP Community 2020). 

However, in the low anthropogenic CO2 emissions scenario the Arctic is predicted to 

stabilize around 2040 at about 2.5×106 km2, and there is a better than 50% chance the Arctic 

will not become seasonally ice free (Eyring et al. 2016; Davy and Outten 2020). The 

uncertainty in the timing of the first ice-free September has not appreciably improved over 

the CMIP phases (Stroeve et al. 2012; SIMIP Community 2020). 



21 

III. ASSESSMENT OF THE PAN-ARCTIC ACCELERATED RATE 
OF SEA ICE DECLINE IN CMIP6 HISTORICAL SIMULATIONS 

This chapter was submitted to Journal of Climate for publication (14 July 
2021). Except for figure numbering, the formatting has been retained as 
submitted. As the main author of the work, I made the major contributions 
to the research and writing. Co-authors include W. Maslowski1,Y.J. Lee1, 
J. Clement Kinney1, and R. Osinski2. 

A. INTRODUCTION 

Relative to the global average, the Arctic surface climate represents an amplified 

response to forced greenhouse warming, largely due to several positive feedbacks within 

the atmosphere-ocean-sea ice system. One of the most exemplary reflections of Arctic 

amplification (Serreze and Francis 2006) is the negative trend in sea ice cover observed 

over all months of the satellite record since 1978 (Serreze and Barry 2011; Notz and 

Stroeve 2018). Under a reduced sea ice cover regime, the Arctic region not only absorbs 

more shortwave radiation, but also exchanges additional momentum and heat across the 

ocean-atmosphere interface (Parkinson et al. 1987; Rampal et al. 2011; Proshutinsky et al. 

2019). Thus, the surface energy budget is significantly altered (Jackson et al. 2011; 

Timmermans et al. 2018). Climate change has been experienced most dramatically in the 

high latitudes (e.g., sea ice loss and warmer SATs) (Serreze et al. 2009; Taylor et al. 2013; 

IPCC 2019), potential linkages with mid-latitude weather and climate are subjects of active 

observations and model research (e.g., Cohen et al. 2020). It is therefore imperative that 

global climate model simulations reflect the changing Arctic sea ice state.  

In this contribution to Phase 6 of the CMIP, we assess historical model simulations 

of the observed accelerated sea ice trend reflected by a gradual loss of pan-Arctic SIA and 

SIE prior to the late 1990s, followed by an enhanced rate of decline through present day 

(Comiso et al. 2008; Serreze and Stroeve 2015). All months of SIA and SIV in the available 

CMIP6 historical simulations are examined. According to observational and model 
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reconstructed estimates, the negative trend in SIT and SIV has been even stronger than that 

in SIA and SIE (Kwok and Rothrock 2009; Schweiger et al. 2011; Maslowski et al. 2012; 

Stroeve et al. 2014).  

Simulations of the historical Arctic sea ice over the past several phases of CMIP 

have shown similar performance (e.g., spread in mean values, seasonal cycles, and long-

term trends) with respect to the large-scale integrated measures of SIA, SIE, and SIV 

(SIMIP Community 2020; Shu et al. 2020; Davy and Outten 2020; Shen et al. 2021). For 

example, large model spread in these integrated measures endures whereas the CMIP 

multi-model ensemble mean continues to outperform all individual models. While some 

improvements have been reported in CMIP6, including a larger percentage of models 

simulating the observed sensitivity of Arctic sea ice to anthropogenic CO2 emissions and 

global warming (SIMIP Community 2020), September SIE trends closer to observations 

(Shu et al. 2020; Davy and Outten 2020; Shen et al. 2021), and a modest reduction in 

September SIE internal variability (Shen et al. 2021), much uncertainty remains as to 

whether the improvements are attributed to upgraded model physics, forcing, or ‘by 

chance’ variability. Still CMIP6 models lack the skill to simulate the faster decline in 

perennial (i.e., September) SIE observed for 1979-2014 (Davy and Outten 2020; Shu et al. 

2020; Shen et al. 2021), and especially after 2000 (Shu et al. 2020). 

In this study, we examine both the full Arctic SIA and SIV time series (i.e., seasonal 

and perennial) instead of the single months of SIA maximum and minimum (March and 

September, respectively) and focus on the acceleration of the negative trend in recent 

decades. This paper is organized as follows, data and methods are presented in Section B. 

Results in Section C emphasize a) the pan-Arctic sea ice state for 1979-2014, b) an 

acceleration of trends in SIA and SIV decline, and c) the utility of CMIP6 SIV MM as SIV 

reference. These are followed with the discussion in Section D and conclusions in Section E. 

B. DATA AND METHODS 

1. Model Output and Observation Data 

Our study used the CMIP6 historical experiment data to evaluate Arctic sea ice 

during the recent past in climate models (Notz et al. 2016; Eyring et al. 2016). Sea ice 
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outputs for 42 CMIP6 models, including all 268 of their ensemble members, were retrieved 

from the Earth System Grid Federation (ESGF) repository (https://esgf-

node.llnl.gov/search/cmip6/). Additionally, depth-integrated northward net OHT outputs 

(hfbasin) available from 17 out of 42 CMIP6 models were retrieved from the ESGF 

(Griffies et al. 2016). Table 1 summarizes the model metadata and the variables used for 

this analysis.  

To compare model simulations of sea ice against observations, we first retrieved 

monthly mean SIC data for the period 1979-2014 from the National Oceanic and 

Atmospheric Administration (NOAA)/National Snow and Ice Data Center (NSIDC) and 

the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) 

Ocean and Sea Ice Satellite Application Facility (OSI-SAF). Following SIMIP Community 

(2020; Olason and Notz 2014), a mean observational reference SIC was determined by 

combining the National Aeronautics and Space Administration (NASA) Team (NT) and 

Bootstrap (BS) SIC algorithms (Cavalieri et al. (1984) and Comiso (1986), respectively) 

from NOAA/NSIDC climate data record (CDR) of Passive Microwave SIC, Version 3 

(Meier et al. 2017; ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02202_V3) and 

the OSI-SAF team SIC algorithm (OSI-450; Lavergne et al. 2019; 

https://doi.org/10.15770/EUM_SAF_OSI_0008). The OSI-SAF data was first linearly 

interpolated onto the NSIDC grid, and then averaged with the NT and BT data to create 

our primary observational reference. For the NT and BT data, the pole hole was filled by 

the average SIC around the pole hole edges (Olason and Notz 2014). Monthly mean SIA 

was calculated by multiplying the grid cell area by SIC. The spread in observational 

estimates (i.e., standard deviation) as the result of algorithm differences can be interpreted 

as the observational uncertainty (Meier and Stewart 2019; SIMIP Community 2020). 
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Table 1. Coupled Model Intercomparison Project Phase 6 (CMIP6) model 
simulations used in this analysis 

Model Ens 
No. 

DOI 

si
co

nc
 

si
vo

l 

si
m

as
s 

si
ar

ea
n 

si
vo

ln
 

hf
ba

si
n 

ACCESS-CM2 3 10.22033/ESGF/CMIP6.4271; v20200817 x x     
ACCESS-ESM1.5 20 10.22033/ESGF/CMIP6.4272; v20200817 x x     
AWI-CM 1.1 MR 5 10.22033/ESGF/CMIP6.2686; v20181218    x x  
AWI-ESM 1.1 LR 1 10.22033/ESGF/CMIP6.9328; v20200212    x x  
BCC-CSM 2 MR 3 10.22033/ESGF/CMIP6.2948; v20200218 x x     
BCC-ESM 1 3 10.22033/ESGF/CMIP6.2949; v20200218 x x     
CAMS-CSM 1.0 2 10.22033/ESGF/CMIP6.9754; v20190708 x x     
CanESM5 25 10.22033/ESGF/CMIP6.3610; v20190429 x  x   x 
CanESM5-CanOE 3 10.22033/ESGF/CMIP6.10260; v20190429 x  x   x 
CAS-ESM2-0 4 10.22033/ESGF/CMIP6.3353; v20201225 x x     
CESM2 11 10.22033/ESGF/CMIP6.7627; v20190308 x x     
CESM2-FV2 3 10.22033/ESGF/CMIP6.11297; v20191120 x x     
CESM2-WACCM 3 10.22033/ESGF/CMIP6.10071; v20190227 x x     
CESM2-WACCM-FV2 3 10.22033/ESGF/CMIP6.11298; v20191120 x x     
CIESM 3 10.22033/ESGF/CMIP6.8843; v20200420 x x     
CNRM-CM6-1 20 10.22033/ESGF/CMIP6.4066; v20181126 x x     
CNRM-CM6-1-HR 1 10.22033/ESGF/CMIP6.4067; v20191021    x x  
CNRM-ESM2-1 5 10.22033/ESGF/CMIP6.4068; v20181206 x x     
E3SM 1.0 5 10.22033/ESGF/CMIP6.4497; v20190926 x  x    
E3SM 1.1 1 10.22033/ESGF/CMIP6.11485; v20191210 x  x    
E3SM 1.1 ECA 1 10.22033/ESGF/CMIP6.11486; v20200127 x  x    
EC-Earth3 9 10.22033/ESGF/CMIP6.4700; v20200403  x    x 
EC-Earth3-Veg 7 10.22033/ESGF/CMIP6.4706; v20200312  x    x 
FGOALS-f3-L 3 10.22033/ESGF/CMIP6.3355; v20191031 x x    x 
GFDL-CM4 1 10.22033/ESGF/CMIP6.8594; v20180701 x x     
GFDL-ESM4 1 10.22033/ESGF/CMIP6.8597; v20180701 x x     
GISS-E2.1H 10 10.22033/ESGF/CMIP6.7128; v20191003 x x     
HadGEM3-GC31-LL 3 10.22033/ESGF/CMIP6.6109; v20200330 x x    x 
HadGEM3-GC31-MM 4 10.22033/ESGF/CMIP6.6112; v20191207 x x    x 
IPSL-CM6A-LR 32 10.22033/ESGF/CMIP6.5195; v20180803 x  x   x 
KIOST-ESM 1 10.22033/ESGF/CMIP6.5296; v20201211 x  x    
MIROC6 10 10.22033/ESGF/CMIP6.5603; v20181212 x  x   x 
MPI-ESM1.2-HAM 3 10.22033/ESGF/CMIP6.5016; v20190627 x x    x 
MPI-ESM1.2-HR 10 10.22033/ESGF/CMIP6.6595; v20190710 x x    x 
MPI-ESM1.2-LR 10 10.22033/ESGF/CMIP6.6595; v20190710 x x    x 
MRI-ESM2.0 5 10.22033/ESGF/CMIP6.6842; v20190904    x x x 
NorCPM1 30 10.22033/ESGF/CMIP6.10894; v20190914 x x    x 
NorESM2-LM 3 10.22033/ESGF/CMIP6.8036; v20190920 x x    x 
NorESM2-MM 3 10.22033/ESGF/CMIP6.8040; v20191108 x x    x 
SAM0-UNICON 1 10.22033/ESGF/CMIP6.7789; v20190323 x x    x 
TaiESM1 1 10.22033/ESGF/CMIP6.9755; v20200630 x x     
UKESM1.0-LL 14 10.22033/ESGF/CMIP6.6113; v20200310 x x    x 

The gridded variables used for this study are sea ice area fraction (siconc), sea ice volume per area 
(sivol), and sea ice mass per area (simass). Integrated variables used for this study are Northern 
Hemisphere sea ice area (siarean), extent (siextentn), and volume (sivoln), and northward oceanic 
heat transport (hfbasin).  
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A long-term observational time series of SIV does not exist due to the lack of 

persistent SIT observations over the Arctic. Instead, we use the CMIP6 SIV MM as the 

primary reference for model intercomparison. Additionally, two SIV reanalyses are 

included for further comparison against CMIP6 models. These include the PIOMAS 

(Zhang and Rothrock 2003) and an ice-ocean version of the Regional Arctic System Model 

(RASM-G; Maslowski et al. 2012; Roberts et al. 2015; Hamman et al. 2016; Cassano et al. 

2017) forced with the Japanese 55-year atmospheric reanalysis (JRA-55) data. The 

monthly mean PIOMAS version 2.1 SIV reanalysis data for the period 1979-2014 was 

retrieved from the Polar Science Center at University of Washington 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/). The 

RASM-G is used as an alternative SIV model reanalysis and is available from the Naval 

Postgraduate School. 

2. Methods 

Time series linear trend analysis was used to examine the monthly mean pan-Arctic 

SIA and SIV for the period of 1979-2014 and the two selected subperiods 1979-1996 and 

1997-2014. The loss of sea ice is generally best described by linear regression models for 

at least the last 30 years (Peng et al. 2020). Here, the simulated SIA time series for CMIP6 

models was preferably calculated by the product of SIC (siconc) and grid cell area 

(areacell) for all northern hemisphere ocean grid cells. If these variables were not provided, 

we used the variable called Northern Hemisphere SIA (siarean). Analogously, we 

computed simulated SIV time series by the product of SIV (sivol) or sea ice mass (simass) 

divided by density of sea ice (ρsi) and areacell for all Northern Hemisphere ocean grid cells. 

If not provided, instead we used the Northern Hemisphere SIV (sivoln). Following SIMIP 

Community (2020), SIA was analyzed as our two dimensional sea ice evaluation metric 

over SIE (i.e., area of SIC greater than at least 15%) which is a strongly grid dependent 

metric (Notz 2014). Nevertheless, we also calculated SIE and determined that the average 

difference in sea ice trends between the two metrics to be less than 5% for the CMIP6 

models (individual model differences ranges from 0.1% to 24%; Table 2). 
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Table 2. Difference in trends between the choice of CMIP6 sea ice extent 
and area  

Model  Full   P2  
SIE SIA Abs Error % SIE SIA Abs Error % 

ACCESS-CM2 -0.32 -0.33 5.91 -0.21 -0.23 9.69 
ACCESS-ESM1.5 -0.39 -0.37 4.99 -0.33 -0.33 1.71 
AWI-CM 1.1 MR -0.39 -0.37 5.24 -0.50 -0.46 7.27 
AWI-ESM 1.1 LR -0.35 -0.32 7.76 -0.47 -0.38 18.78 
BCC-CSM 2 MR -0.53 -0.52 1.25 -0.59 -0.63 8.17 
BCC-ESM 1 -0.42 -0.44 3.37 -0.44 -0.49 11.67 
CAMS-CSM 1.0 -0.26 -0.24 7.06 -0.19 -0.18 5.01 
CanESM5 -0.84 -0.82 2.99 -1.07 -1.04 2.80 
CanESM5-CanOE -0.79 -0.78 1.26 -1.25 -1.27 1.23 
CAS-ESM2-0 -0.45 -0.41 8.53 -0.57 -0.51 11.33 
CESM2 -0.52 -0.52 0.13 -0.48 -0.47 2.51 
CESM2-FV2 -0.47 -0.49 2.62 -0.49 -0.52 7.29 
CESM2-WACCM -0.52 -0.56 6.72 -0.44 -0.49 11.00 
CESM2-WACCM-FV2 -0.56 -0.59 4.95 -0.51 -0.57 12.52 
CIESM -0.25 -0.23 7.13 -0.16 -0.17 4.37 
CNRM-CM6-1 -0.25 -0.24 2.61 -0.21 -0.21 3.38 
CNRM-CM6-1-HR -0.29 -0.29 0.20 -0.42 -0.41 2.32 
CNRM-ESM2-1 -0.36 -0.35 2.99 -0.38 -0.38 0.46 
E3SM 1.0 -1.06 -1.01 4.93 -1.46 -1.41 3.64 
E3SM 1.1 -0.76 -0.69 10.02 -0.85 -0.84 1.05 
E3SM 1.1 ECA -0.69 -0.66 3.52 -0.78 -0.83 6.72 
EC-Earth3 -0.68 -0.65 4.06 -0.87 -0.83 5.18 
EC-Earth3-Veg -0.61 -0.59 4.01 -0.94 -0.91 2.90 
FGOALS-f3-L -0.36 -0.36 0.61 -0.31 -0.33 5.08 
GFDL-CM4 -0.50 -0.49 2.90 -0.76 -0.76 0.37 
GFDL-ESM4 -0.36 -0.35 2.62 -0.23 -0.21 9.82 
GISS-E2.1H -0.70 -0.74 4.77 -0.80 -0.84 5.26 
HadGEM3-GC31-LL -0.53 -0.54 1.75 -0.92 -0.92 0.45 
HadGEM3-GC31-MM -0.45 -0.47 6.06 -0.51 -0.59 15.00 
IPSL-CM6A-LR -0.53 -0.54 1.44 -0.57 -0.57 0.35 
KIOST-ESM -0.25 -0.25 1.62 -0.53 -0.54 1.86 
MIROC6 -0.31 -0.32 3.53 -0.45 -0.44 1.74 
MPI-ESM1.2-HAM -0.39 -0.38 1.09 -0.42 -0.31 25.66 
MPI-ESM1.2-HR -0.44 -0.41 5.95 -0.55 -0.51 6.07 
MPI-ESM1.2-LR -0.38 -0.36 6.75 -0.44 -0.40 8.59 
MRI-ESM2.0 -0.42 -0.43 0.85 -0.36 -0.38 4.59 
NorCPM1 -0.19 -0.20 4.27 -0.19 -0.21 8.47 
NorESM2-LM -0.22 -0.25 13.26 0.04* -0.02 - 
NorESM2-MM -0.10 -0.13 24.03 0.01* -0.04 - 
SAM0-UNICON -0.45 -0.42 7.81 -1.00 -0.90 10.63 
TaiESM1 -0.64 -0.61 5.19 -1.00 -0.97 2.42 
UKESM1.0-LL -0.61 -0.59 3.68 -0.74 -0.72 2.70 
CMIP6 MM -0.47 -0.47 1.57 -0.56 -0.55 0.53 
CMIP6 average error - - 4.77 - - 6.25 
Observations -0.53 -0.51 3.77 -0.65 -0.67 3.08 

Absolute (Abs) error resulting from the choice between CMIP6 SIE and SIA trends for the period 
1979-2014 (Full) and 1997-2014 (P2) [(SIE-SIA)/SIE]. Note that * indicates positive P2 SIE trend 
which produces too large error % and is excluded (-) from CMIP6 average error. 
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Characteristic anomalies were all calculated relative to the 1979-2014 monthly 

mean for the individual models and the observational references by removing their own 

mean annual cycles. Assessing monthly anomalies allowed us to remove the seasonal 

signal that could otherwise distort the statistics and reduce the influence of individual 

model biases when examining trend behaviors of the simulated ice pack. Since the majority 

of CMIP6 models provided multiple ensemble members, up to 32 (Table 1), all results are 

model ensemble means unless otherwise noted. Also, a CMIP6 multi-model mean (MM) 

was calculated for SIA, SIV, and OHT; we averaged the individual model ensemble means 

instead of all ensemble members in order to avoid biasing the MM towards the large 

ensemble models.  

Model and observed characteristic trends (𝛽𝛽𝑚𝑚 and 𝛽𝛽𝑜𝑜, respectively) were 

determined by least-squares linear regression of the monthly mean anomaly time series. 

Anomaly trends, hereafter referred to as trends, are shown as the ‘physical amount’ of 

change (e.g., SIA), or the percentage change relative to the 1979-2014 mean, per decade. 

Trend uncertainties were calculated following Santer et al. (2008) and Stroeve et al. (2012), 

whereby we adjusted the modeled and observed standard errors (𝑠𝑠(𝛽𝛽𝑚𝑚) and 𝑠𝑠(𝛽𝛽𝑜𝑜), 

respectively) using an effective sample size (neff) to account for large lag-1 temporal 

autocorrelation (AR1) of the trend residuals: 

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡(1 − 𝐴𝐴𝐴𝐴1)/(1 + 𝐴𝐴𝐴𝐴1) 

where ntot is the number of total months over which the trend is calculated. This is necessary 

because many geophysical data show pronounced month-to-month persistence, and as such 

are not statistically independent. Essentially, larger AR1 reduces the number of statistically 

independent samples, therefore decreasing the statistical degrees of freedom and increasing 

trend uncertainty.  

Furthermore, assuming a normal distribution (Santer et al. 2008; Stroeve et al. 

2012), we applied a paired two-tailed t-test (d) against p=0.10, in which the observed trend 

is tested against each model realization trend to reject the null hypothesis, which states that 

the model trend is no different than the observed trend. 
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𝑑𝑑 = (𝛽𝛽𝑚𝑚 − 𝛽𝛽𝑜𝑜)/�𝑠𝑠(𝛽𝛽𝑚𝑚)2 + 𝑠𝑠(𝛽𝛽𝑜𝑜)2 

C. RESULTS 

Figure 8a shows the apparent accelerated decline of SIA from the combined passive 

microwave observations that are similarly reported in previous studies (Comiso et al. 2008; 

Stroeve et al. 2012b; Serreze and Stroeve 2015). In this contribution, we examine the linear 

trends of SIA anomalies for the mutual period of satellite observations and the historical 

CMIP6 simulations (1979-2014) and two sub-periods: 1979-1996 (P1) and 1997-2014 

(P2). The P2 rate of decline in observations, –0.67×106 km2 (–6.61%) decade-1, represents 

a 100% increase of the P1 rate, –0.33×106 km2 (–3.25%) decade-1 (Figure 8a). Our analysis 

also examines an accelerated rate in SIV decline shown in the PIOMAS reanalysis (Figure 

8b). Here the P2 rate, –4.74×103 km3 (–23.48%) decade-1, represents around 200% increase 

of the P1 rate, –1.49×103 km3 (–7.38%) decade-1. 

1. 1979-2014 Mean State and Trends of Simulated Arctic Sea Ice 

First, we examine the CMIP6 long-term Arctic sea ice statistics and trends. Figure 

9a shows a time series of the 12-month running mean SIA for the CMIP6 models and the 

combined passive microwave observations. Collectively, the MM SIA time series shows 

approximately 0.5×106 km2 positive bias relative to the observed SIA time series (Figure 

9a,b; see also Figure 10a for individual model SIA time series). For the majority of CMIP6 

models, mean SIA ranges between 9 and 14×106 km2 in P1 and 8 and 13×106 km2 (Figure 

9a) in P2, and their time series remain within one standard deviation (σ) from the CMIP6 

MM. However, six CMIP6 models are notably biased, showing time series outside of the 

±1σ range from the CMIP6 MM for the total period (Figure 9a). Furthermore, GISS-E2.1H 

and BCC-CSM 2 MR are largest positively biased (greater than 2σ over the MM) and 

CIESM is largest negatively biased (2σ under the MM). 



29 

 
(a) Monthly combined passive microwave observations SIA anomaly (gray), and (b) 
PIOMAS SIV anomaly (gray) referenced to the period 1979 to 2014. The anomalies based 
on 12-month running mean (black) are used to determine a linear fit with 95% confidence 
intervals (c.i.) for the periods 1979 to 2014 (blue), 1979 to 1996 (P1, red), and 1997-2014 
(P2, green). 

Figure 8. Anomaly linear trends of observed sea ice area and PIOMAS sea 
ice volume 
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CMIP6 model simulations and the combined passive microwave observations (obs) (a) 12-
month running means of SIA. Gray shading indicates one and two standard deviation (s.d.; 
σ) from the multi-model mean (MM), respectively. (b) SIA mean bias (i.e., model SIA 
minus observed SIA) and one s.d. (error bar) for models in reference to the observed SIA. 
Gray shading indicates one and two s.d. for observed SIA anomaly. (c) SIA anomaly trend 
and 95% confidence interval (c.i.; 2σ error bar) for models. Two gray shading indicates 
68% (darker) and 95% (lighter) c.i. for observed SIA anomaly trend. 

Figure 9. CMIP6 sea ice area statistics and trends for 1979-2014 
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(a) CMIP6 models and the combined passive microwave observations: 12-month running 
means of SIA (×106 km2). (b) CMIP6 models and the PIOMAS and RASM-G reanalyses: 
12-month running means of SIV (×103 km3). Gray shading indicates one standard deviation 
(σ) from the multi-model mean (MM). Note that NorCPM1 is not shown because it is out 
of the axes range in (b). 

Figure 10. Individual CMIP6 ensembles 12-month running mean for sea ice 
area and volume 
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All models simulate a decline in SIA with varying intensity, in general agreement 

with the observed historical decline for the 36-year period (Figure 9c and Table 3). 

However, the majority of CMIP6 models underestimate the SIA trend, and those which 

exceed it usually have positive SIA bias (Figure 9b,c). But slower rates of SIA decline are 

not unique to the models with low SIA bias (e.g., CAMS-CSM 1.0). The individual model 

trends are spread relatively wide, ranging from less than one quarter (e.g., NorESM2-MM 

at –0.13×106 km2 decade-1) to twice (e.g., E3SM 1.0 at –1.01×106 km2 decade-1) the trend 

observed. About 25% of CMIP6 models show trends within ±2σ of the observed trend, and 

about 60% have overlapping error bars (Figure 9c), which indicates that the simulated and 

observed values are from the same population distribution. Despite large intermodel 

variability, the CMIP6 SIA MM rate of decline, –0.47×106 km2 decade-1, underestimates 

the observed trend (–0.53×106 km2 decade-1) only by about 10%. Individual ensemble 

member trends are shown in Figure 11a (Shen et al. 2021).  
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Table 3. CMIP6 sea ice area anomaly trends 

Model Full P1 P2 Accelerated 
 Trend (P2/P1) Mean c.i. Mean c.i. Mean c.i. 

ACCESS-CM2 -0.33 0.12 -0.22 0.29 -0.23 0.33 1.04 
ACCESS-ESM1.5 -0.37 0.13 -0.20 0.31 -0.33 0.31 1.67 
AWI-CM 1.1 MR -0.37 0.12 -0.18 0.29 -0.46 0.26 2.62 
AWI-ESM 1.1 LR -0.32 0.08 -0.46 0.22 -0.38 0.23 0.83 
BCC-CSM 2 MR -0.52 0.18 -0.29 0.49 -0.63 0.45 2.18 
BCC-ESM 1 -0.44 0.12 -0.31 0.37 -0.49 0.28 1.56 
CAMS-CSM 1.0 -0.24 0.09 -0.34 0.24 -0.18 0.25 0.52 
CanESM5 -0.82 0.13 -0.50 0.28 -1.04 0.26 2.09 
CanESM5-CanOE -0.78 0.18 -0.16 0.29 -1.27 0.24 7.82 
CAS-ESM2-0 -0.41 0.10 -0.19 0.28 -0.51 0.22 2.65 
CESM2 -0.52 0.16 -0.20 0.38 -0.47 0.48 2.38 
CESM2-FV2 -0.49 0.15 -0.08 0.38 -0.52 0.33 6.84 
CESM2-WACCM -0.56 0.13 -0.34 0.33 -0.49 0.38 1.44 
CESM2-WACCM-FV2 -0.59 0.13 -0.38 0.33 -0.57 0.41 1.50 
CIESM -0.23 0.11 -0.06 0.33 -0.17 0.25 2.80 
CNRM-CM6-1 -0.24 0.11 -0.22 0.29 -0.21 0.30 0.98 
CNRM-CM6-1-HR -0.29 0.09 -0.01 0.23 -0.41 0.24 46.80 
CNRM-ESM2-1 -0.35 0.13 -0.25 0.36 -0.38 0.35 1.51 
E3SM 1.0 -1.01 0.25 -0.25 0.42 -1.41 0.51 5.56 
E3SM 1.1 -0.69 0.16 0.04 0.34 -0.84 0.25 -23.00** 
E3SM 1.1 ECA -0.66 0.18 0.19 0.26 -0.83 0.36 -4.34** 
EC-Earth3 -0.65 0.14 -0.40 0.35 -0.83 0.34 2.06 
EC-Earth3-Veg -0.59 0.14 -0.39 0.30 -0.91 0.26 2.36 
FGOALS-f3-L -0.36 0.12 -0.25 0.27 -0.33 0.32 1.32 
GFDL-CM4 -0.49 0.12 -0.52 0.34 -0.76 0.28 1.46 
GFDL-ESM4 -0.35 0.11 -0.30 0.46 -0.21 0.18 0.69 
GISS-E2.1H -0.74 0.18 -0.36 0.44 -0.84 0.45 2.34 
HadGEM3-GC31-LL -0.54 0.18 0.06 0.32 -0.92 0.24 -15.64** 
HadGEM3-GC31-MM -0.47 0.14 -0.24 0.28 -0.59 0.30 2.39 
IPSL-CM6A-LR -0.54 0.16 -0.31 0.40 -0.57 0.41 1.81 
KIOST-ESM -0.25 0.09 -0.24 0.22 -0.54 0.22 2.28 
MIROC6 -0.32 0.09 -0.10 0.20 -0.44 0.24 4.59 
MPI-ESM1.2-HAM -0.38 0.16 0.00 0.40 -0.31 0.35 - 
MPI-ESM1.2-HR -0.41 0.15 -0.26 0.35 -0.51 0.34 1.99 
MPI-ESM1.2-LR -0.36 0.10 -0.24 0.27 -0.40 0.25 1.66 
MRI-ESM2.0 -0.43 0.12 -0.29 0.29 -0.38 0.36 1.29 
NorCPM1 -0.20 0.08 -0.08 0.18 -0.21 0.19 2.67 
NorESM2-LM -0.25 0.08 -0.27 0.21 -0.02 0.20 0.06 
NorESM2-MM -0.13 0.08 -0.16 0.19 -0.04 0.23 0.23 
SAM0-UNICON -0.42 0.14 -0.02 0.23 -0.90 0.32 49.09 
TaiESM1 -0.61 0.16 -0.08 0.24 -0.97 0.42 11.91 
UKESM1.0-LL -0.59 0.13 -0.25 0.26 -0.72 0.24 2.83 
CMIP6 SIA MM -0.47 0.07 -0.22 0.15 -0.56 0.10 2.55 
Observations -0.51 0.09 -0.33 0.21 -0.67 0.27 2.03 

Linear trend (×106 km2 decade-1) and 95% confidence interval (×106 km2 decade-1; c.i.) of monthly 
mean sea ice area anomalies (in reference to individual model or observation 1979-2014 
climatology) for the periods 1979-2014 (Full), 1979 to 1996 (P1), and 1997 to 2014 (P2). 
Accelerated trend is determined by the ratio of P2 trend to P1 trend. Note that **negative ratio is 
the result of a positive P1 trend, the magnitude should not be compared. 
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(a) SIA and (b) SIV trends from 1979-2014 for all individual model ensemble members 
and the CMIP6 multi-model mean. Error bars indicate the 95% confidence intervals (c.i.). 
The dark and light gray horizontal shading indicates the adjusted c.i.: ± one standard 
deviation (σ) (68%) and ±2σ (95%) from the observed SIA trend in (a) and CMIP6 SIV 
MM trend in (b), respectively (following Santer et al. (2008) and Stroeve et al. (2012)). 

Figure 11. CMIP6 model ensemble member sea ice area and sea ice volume 
trends for 1979-2014 
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Next, we follow with a similar analysis for SIV. Figure 12a shows a time series of 

12-month running mean SIV for the CMIP6 models and PIOMAS and RASM-G SIV

reanalyses. One model, NorCPM1, has such a high bias (40×103 km3; more than twice as

large as any other model; Figure 12b) that we excluded it from the CMIP6 SIV MM. For

the majority of CMIP6 models, SIV ranges within ±1σ from the MM (i.e. 11-35×103 km3;

Figure 12), but models are more evenly spread out across the broader range of ±2σ of the

SIV MM compared to SIA shown in Figure 9a. Beyond around the year 2000, the model

spread in simulated SIV is reduced 45% to a minimum range of 11-22×103 km3 (Figure

12a). This indicates that large simulated ice thickness uncertainty exists during the early

portion of our analysis period. Models with largest bias are E3SM 1.1 ECA, largest

positively biased, and CIESM, largest negatively biased (Figure 12b; see Figure 10b for

individual model SIV time series).

Collectively, the CMIP6 SIV MM mean of 21.4×103 km3 and trend of –2.88×103 

km3 decade-1 for 1979-2014 pairs well with the two SIV reanalyses (Figure 12b,c and Table 

4). Relative to the CMIP6 SIV MM mean, PIOMAS has a slight negative difference in 

mean (20.2×103 km3) and trend (–3.03×103 km3 decade-1), while RASM-G has no 

difference in mean and a slower trend (–2.52×103 km3 decade-1). All models simulate a 

decline in SIV with varying intensity, which qualitatively matches the reanalyses and 

satellite estimated (Kwok 2018) SIV trends. Individual CMIP6 SIV trend ranges from –

0.68×103 km3 decade-1 (CNRM-CM6-1) to –5.66×103 km3 decade-1 (E3SM 1.0). About 

30% of the CMIP6 models show SIV trends within ±2σ of the CMIP6 MM trend (about 

40% for PIOMAS trend), and about 80% have overlapping error bars with the MM (Figure 

12c). Individual ensemble member trends are shown in Figure 11b. 

Only four models (CESM2, GFDL-CM4, IPSL-CM6A-LR, MPI-ESM1.2-HR) are 

within two confidence intervals for both SIA and SIV respective reference means and 

trends for 1979-2014. 
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CMIP6 model simulations and the PIOMAS and RASM-G reanalyses (a) 12-month 
running means of SIV (×103 km3). Gray shading indicates one and two standard deviation 
(s.d.; σ) from the CMIP6 SIV multi-model mean (MM), respectively. (b) SIV mean bias 
(i.e., model SIV minus MM SIV) and one s.d. (error bars) for models in reference to the 
MM SIV. Two gray shading indicates one and two s.d. from the CMIP6 MM mean. (c) 
SIV mean trend and 95% confidence interval (c.i.; error bar) for models. Two gray shading 
indicates 68% and 95% c.i. for the MM SIV anomaly trend, respectively. Note that 
NorCPM1 is not shown because it is out of the axes’ range except in (c). 

Figure 12. Sea ice volume statistics and trends for 1979-2014 
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Table 4. CMIP6 sea ice volume anomaly trends 

Model Full P1 P2 Accelerated 
 Trend (P2/P1) Mean c.i. Mean c.i. Mean c.i. 

ACCESS-CM2 -3.34 0.74 -2.01 1.78 -3.76 3.80 1.87 
ACCESS-ESM1.5 -2.07 0.64 -0.91 1.75 -2.21 2.16 2.42 
AWI-CM 1.1 MR -1.37 0.38 -0.54 1.18 -1.48 0.72 2.72 
AWI-ESM 1.1 LR -1.55 0.37 -1.99 1.92 -1.82 0.53 0.92 
BCC-CSM 2 MR -0.90 0.20 -0.69 0.50 -0.86 0.46 1.24 
BCC-ESM 1 -1.48 0.34 -1.17 1.79 -1.54 0.56 1.31 
CAMS-CSM 1.0 -0.79 0.26 0.03 0.87 -0.86 0.59 -32.39** 
CanESM5 -3.99 0.98 -2.16 2.69 -4.95 1.98 2.29 
CanESM5-CanOE -4.28 0.78 -2.05 2.19 -6.70 1.36 3.27 
CAS-ESM2-0 -1.33 0.21 -0.87 0.57 -1.21 0.44 1.40 
CESM2 -2.78 0.65 -1.90 2.33 -2.52 1.99 1.33 
CESM2-FV2 -3.84 0.84 -2.64 2.54 -4.37 1.71 1.66 
CESM2-WACCM -4.82 0.72 -3.99 6.14 -4.01 1.11 1.00 
CESM2-WACCM-FV2 -4.75 0.67 -3.16 2.31 -5.27 0.95 1.67 
CIESM -0.44 0.13 -0.16 0.37 -0.30 0.31 1.83 
CNRM-CM6-1 -0.68 0.31 -0.63 1.00 -0.61 0.86 0.96 
CNRM-CM6-1-HR -1.00 0.17 -0.31 0.48 -1.14 0.34 3.68 
CNRM-ESM2-1 -0.71 0.28 -0.52 0.91 -0.80 0.87 1.55 
E3SM 1.0 -5.66 0.96 -2.25 1.86 -6.64 1.07 2.94 
E3SM 1.1 -5.58 0.41 -7.30 1.26 -6.22 0.74 0.85 
E3SM 1.1 ECA -5.19 2.46 2.16 0.84 -12.22 5.70 -5.66** 
EC-Earth3 -4.75 1.20 -3.03 3.23 -5.65 4.91 1.87 
EC-Earth3-Veg -4.54 1.92 -2.67 1.95 -6.56 24.54 2.46 
FGOALS-f3-L -2.03 0.93 -1.42 10.64 -2.41 1.81 1.69 
GFDL-CM4 -2.22 0.50 -1.67 5.41 -3.33 0.52 1.99 
GFDL-ESM4 -1.86 0.34 -1.49 0.51 -0.72 0.65 0.48 
GISS-E2.1H -2.17 0.42 -1.44 1.34 -2.22 0.80 1.54 
HadGEM3-GC31-LL -4.49 1.65 -1.01 1.47 -6.84 1.22 6.75 
HadGEM3-GC31-MM -4.29 2.51 -2.55 1.35 -5.01 2.07 1.97 
IPSL-CM6A-LR -2.75 0.88 -1.85 2.50 -2.46 1.22 1.33 
KIOST-ESM -1.70 0.00 -3.19 0.00 -4.27 3.55 1.34 
MIROC6 -2.30 0.82 -0.69 0.48 -3.11 2.85 4.49 
MPI-ESM1.2-HAM -2.76 1.14 -0.07 1.83 -1.52 3.29 22.12 
MPI-ESM1.2-HR -2.17 0.61 -1.14 1.18 -2.64 0.98 2.32 
MPI-ESM1.2-LR -2.03 0.68 -1.23 1.17 -2.28 0.94 1.86 
MRI-ESM2.0 -1.71 0.33 -1.65 0.93 -1.68 0.91 1.02 
NorCPM1 -3.23 0.75 -1.78 1.43 -4.74 1.55 2.67 
NorESM2-LM -3.27 2.05 -2.21 3.66 -2.91 0.64 1.32 
NorESM2-MM -2.80 1.35 -1.59 0.49 -2.83 0.81 1.78 
SAM0-UNICON -4.27 0.51 -4.07 1.50 -4.04 2.14 0.99 
TaiESM1 -4.17 4.62 -0.18 2.43 -7.04 1.01 39.48 
UKESM1.0-LL -5.02 1.61 -1.88 1.73 -7.19 1.83 3.83 
CMIP6 SIV MM -2.88 0.89 -1.66 1.92 -3.55 2.06 2.13 
PIOMAS -3.03 1.01 -1.49 2.34 -4.74 1.40 3.18 
RASM-G* -2.52 0.36 -3.07 0.86 -3.11 1.12 1.01 

Linear decadal trends (×103 km3 decade-1) and 95% confidence interval (×103 km3 decade-1; c.i.) of 
monthly mean SIV anomalies (in reference to individual model 1979-2014 climatology) for the 
periods 1979-2014 (Full), 1979 to 1996 (P1; *except RASM-G for 1980 to 1997), and 1997 to 2014 
(P2). Accelerated trend is determined by the ratio of P2 trend to P1 trend. Note that **negative ratio 
is the result of a positive P1 trend, the magnitude should not be compared. 
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2. Sea Ice Variability 

In order to evaluate CMIP6 model skill in simulating sea ice variability, Taylor 

diagrams (Taylor 2001) are used to quantify the statistics of CMIP6 sea ice anomalies 

against observations and the CMIP6 SIV MM reference (Figure 13). This analysis 

essentially removes the individual model bias and presents the following statistics: the 

correlation coefficient (r) measures the strength of linear relationship, the unbiased root-

mean-square difference (uRMSD) describes the difference between the observed and 

simulated values, and the normalized standard deviation (σ) indicate the ratio of model 

variability against the reference. Figure 13a shows the model SIA anomaly against the 

observed SIA anomaly for the period 1979-2014. Additionally, individual SIA 

observational estimates (i.e., BT, NT, and OSI-450) are included to quantify uncertainties 

resulting from choice of algorithm. Relative to the combined SIA observations, all 

individual observational estimates have strong correlation coefficients of 0.98 (p<0.01), 

and BT / NT has a slight positive / negative bias with larger standard deviation while OSI-

450 has a slight positive bias and smaller standard deviation (Figure 13a). 

About 80% of the CMIP6 SIA simulations have anomaly correlation coefficients 

greater than 0.7 (the lower end of strong correlation, p<0.05), and about 43% also have 

normalized standard deviations between 0.75 and 1.25 (Figure 13). The majority of the 

CMIP6 models (64%) show lower SIA variability (i.e., normalized standard deviation is 

less than one) than in observations, which is manifested in the CMIP6 SIA MM (Figure 

13a). We also examined the detrended SIA anomalies (Figure 14) to evaluate model 

interannual variability without the influence of the negative long-term SIA trend. When 

detrended, all CMIP6 models shift left in the Taylor diagram (indicating lower correlation) 

and only 12 models (about 30%; CAS-ESM2-0, CESM2, CESM2-FV2, CESM2-

WACCM, CESM2-WACCM-FV2, E3SM 1.0, HadGEM3-GC31-LL, HadGEM3-GC31-

MM, GISS-E2.1H, IPSL-CM6A-LR, MRI-ESM2.0, TaiESM1) exceed weak correlation 

(r>0.3, p<0.05) against the observed SIA anomaly and have normalized standard 

deviations between 0.75 and 1.25. These models (except GISS-E2.1H, E3SM 1.0) also 

show low bias and have realistic trends in SIA (Figure 9b,c). This suggests that the 

moderate model ‘skill’ identified in Figure 13a for nearly half the CMIP6 models is mostly 
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controlled by larger correlation and standard deviation values resulting from long-term 

trends in the SIA decline. 

 
Model skill in representing the monthly anomalies of (a) SIA and (b) SIV reference over 
the period 1979 to 2014. Taylor diagram displays the unbiased root-mean-square difference 
(uRMSD), correlation coefficient (r), and normalized standard deviation (s.d.) divided by 
the observed s.d. (0.64×106 km2) for SIA and the CMIP6 multi-model mean (MM) s.d. 
(3.05×103 k m3) for SIV. The square marker indicates the perfect model. 

Figure 13. Taylor diagrams illustrating CMIP6 skill in simulating sea ice 
variability 
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Model skill in representing (a) the monthly anomalies of (a) SIA and (b) SIV reference 
over the period 1979 to 2014. Taylor diagram displays the unbiased root-mean-square 
difference (uRMSD), correlation coefficient (r), and normalized standard deviation (s.d.) 
divided by the observed s.d. (0.37×106 km2) for SIA and the CMIP6 multi-model mean 
(MM) s.d. (0.61×103 km3) for SIV. The square marker indicates the perfect model. 

Figure 14. Taylor diagrams illustrating CMIP6 skill in simulating detrended 
sea ice variability 

For SIV anomaly (Figure 13b), we evaluated CMIP6 models against the CMIP6 SIV 

MM anomaly for the period 1979-2014. Also shown are the two SIV reanalyses, PIOMAS 

and RASM-G, which both have strong correlation and comparable standard deviation against 

the CMIP6 MM. All models, except CIESM and KIOST-ESM, are strongly correlated 

(r>0.7, p<0.05) against the CMIP6 MM, but also show larger spread in SIV variability 

compared to the SIA spread (Figure 13b). When the same normalized standard deviation 

criteria used for SIA is applied (between 0.75 and 1.25), we find 11 CMIP6 models (about 
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26%; ACCESS-CM2, CESM2, GFDL-CM4, GISS-E2.1H, IPSL-CM6A-LR, MIROC6, 

MPI-ESM1.2-HAM, MPI-ESM1.2-HR, NorCPM1, NorESM2-LM, NorESM2-MM) 

reasonably simulate the interannual variability statistics of the CMIP6 SIV MM. When 

detrended, there is large model spread against the CMIP6 SIV MM (Figure 14b). 

3. Accelerated Rates of Sea Ice Decline 

Next, we gauged the ability of CMIP6 models to simulate multidecadal trends on a 

shorter scale than shown in section 3a. Our reference is the apparent accelerated decline of 

SIA from observations (Figure 8a) based on linear trends for two sub-periods: P1 (1979-

1996) and P2 (1997-2014). However, for shorter periods (i.e., 18 versus 36 year periods) 

we must consider that the contribution of internal climate variability increases and makes 

the forced signal more difficult to detect (Kay et al. 2011). Nevertheless, both P1 and P2 

observational trends are statistically different from zero trend at ±2σ confidence interval.  

We evaluated both the CMIP6 individual ensemble member simulations and the 

model ensemble mean of SIA trends, and whether they are consistent with observations at 

a level of statistical significance. Following Santer et al. (2008) and Stroeve et al. (2012), 

Figure 15 shows the simulated SIA trend for all individual CMIP6 ensemble members for 

periods P1 and P2. There is a large range in SIA trends among models as well as within 

individual model’s ensemble members, the latter indicating sizeable internal variability. 

The model spread is much larger when analyzing the shorter climate periods (i.e., P1 and 

P2; Figure 15a,b) rather than the full historical simulation period (Figure 11a). Another 

consequence of examining the shorter time periods P1 and P2 is the sizable trend 

uncertainty (i.e., large error bars) that results from substantial lag autocorrelation in the 

SIA time series (i.e., AR1 ranges from 0.52 to 0.89) and the subsequent adjustment of 

independent samples size. 
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SIA trends from (a) 1979-1996 and (b) 1997-2014 for all individual model ensemble 
members and the CMIP6 multi-model mean (MM). Error bars indicate the model ±2σ 
(95%) confidence intervals. The dark and light gray horizontal shading indicates the 
adjusted ±1σ (68%) and ±2σ observed SIA trend, respectively (following Santer et al. 
[2008] and Stroeve et al. [2012]). 

Figure 15. CMIP6 ensemble member sea ice area trends for periods P1 and P2 

Of the total of 268 CMIP6 ensemble members examined here, trends in 145 (54%) 

for P1 and 68 (25%) for P2 are positive or not statistically different from zero trend, while 

trends in 128 (48%) and 149 (56%) members fall outside ±2σ of the observed P1 and P2 

trend, respectively (Figure 15a,b, respectively). 48 (18%) members from 24 CMIP6 models 
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have at least one realization with a positive P1 trend, and despite the larger observed 

negative trend signal of P2, 20 (7%) members from 10 CMIP6 models show a positive P2 

SIA trend (Figure 15a,b, respectively). 

The ensemble mean SIA anomaly trends for P1 and P2 are shown alongside 

observations in Figure 16a and Table 3. We consider a model which replicates the observed 

SIA accelerated trend ( i.e., ratio of P2/P1 equals ~2.0, to possess some skill in representing 

the multi-decadal variability). In view of SIA observational algorithm uncertainty, we note 

that the individual accelerated trends are all about 2.0 (not shown). The P1 CMIP6 SIA 

MM trend is –0.22×106 km2 decade-1, with individual models ranging from 0.19×106 km2 

decade-1 (E3SM 1.1 ECA) to –0.52×106 km2 decade-1 (GFDL-CM4). The P2 MM trend is 

–0.56×106 km2 decade-1, with individual models ranging from –0.02×106 km2 decade-1 

(NorESM2-LM) to more than twice the observed rate, –1.41×106 km2 decade-1 (E3SM 1.0). 

Collectively, the MM underestimates the observed trend in SIA by 33% during P1 and 16% 

during P2, yet its accelerated trend of 2.6 is about 25% larger (Table 3). All but six CMIP6 

models (AWI-ESM 1.1 LR, CAMS-CSM 1.0, CNRM-CM6-1, GFDL-ESM4, NorESM2-

LM, NorESM2-MM) show an accelerated rate of sea ice decline between periods P1 and 

P2, and therefore qualitatively match the observations (Figure 16). However, the rate of 

decline during P2 in 29 (69%) CMIP6 models is slower than that of observations; albeit 

notably faster (i.e., greater than –1.0×106 km2 decade-1) in CanESM5, CanESM5-CanOE, 

and E3SM 1.0. Still, the accelerated trend in 45% of CMIP6 models is greater than 2.0 

(Table 3).  
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Decadal SIA anomaly trends for the periods 1979 to 1996 (P1 in x-axis) and 1997-2014 
(P2 in y-axis) for (a) all months, (b) March, and (c) September for CMIP6 models and 
passive microwave combined observations. Error bars indicate two standard deviation 
(95% confidence interval) for each period. The solid magenta line illustrates the observed 
SIA acceleration ratio (slope of P2/P1= (a) 2.03, (b) 0.95, and (c) 3.28) and the gray dashed 
line illustrates an acceleration ratio of 1. 

Figure 16. CMIP6 ensembles accelerated trends in sea ice area decline 
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The SIA anomaly linear trends are sensitive to the choice of break point (i.e., year) 

used to define the period P1 and P2 (Table 5). The absolute error from using an alternate 

later subperiod (e.g., break point between 1999 and 2000, cf. Shu et al. 2020) for the 

observed SIA accelerated trend is about 6%, while models show greater sensitivity with an 

average error of about 37% (ranges from 5% to 90%). Of the 42 CMIP6 models examined 

here, only six (CAMS-CSM 1.0, EC-Earth3-Veg, GFDL-CM4, KIOST-ESM, MPI-

ESM1.2-HAM, NorESM2-MM) show a stronger accelerated trend when we split the time 

series at year 2000, which indicates these models simulate a stronger decline of sea ice 

later in the analysis period (Table 5). Thirty-six of 42 models have an identifiable break 

point that separates a relatively weaker SIA trend followed by a stronger SIA trend at some 

point during the 1990’s and the year 2014 (not shown). And for 30 CMIP6 models, this 

occurs before our defined break point between P1 and P2. As such, models with break 

points in the early 1990’s will include more negative trend during the defined P1 period 

than those with break points later in the 1990’s. The result is that the accelerated trend in 

these models tends to be lower (i.e., left of the solid magenta line; Figure 16a) than those 

with later break points during P1. Only six models (AWI-ESM 1.1 LR, BCC-CSM 2 MR, 

EC-Earth3-Veg, KIOST-ESM, SAM0-UNICON, TaiESM1) have break points occurring 

between 1996 to 2000, which best coincides with observations (Comiso et al. 2008; Stroeve 

et al. 2012b; Serreze and Stroeve 2015). 

Table 5. Sensitivity of sea ice area accelerated trend ratio to choice of break 
point 

Model SP1 SP2 Absolute 
Error % 

ACCESS-CM2 1.04 0.53 49.68 
ACCESS-ESM1.5 1.67 1.01 39.77 
AWI-CM 1.1 MR 2.62 1.69 35.24 
AWI-ESM 1.1 LR 0.83 1.19 42.82 
BCC-CSM 2 MR 2.18 1.90 13.11 
BCC-ESM 1 1.56 1.38 11.24 
CAMS-CSM 1.0 0.52 0.65 23.88 
CanESM5 2.09 1.80 13.87 
CanESM5-CanOE 7.82 4.55 41.79 
CAS-ESM2-0 2.65 2.03 23.42 
CESM2 2.38 0.98 58.79 
CESM2-FV2 6.84 1.96 71.41 
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Model SP1 SP2 Absolute 
Error % 

CESM2-WACCM 1.44 0.94 34.74 
CESM2-WACCM-FV2 1.50 1.03 31.42 
CIESM 2.80 1.25 55.28 
CNRM-CM6-1 0.98 0.88 11.07 
CNRM-CM6-1-HR 46.80 4.21 91.01 
CNRM-ESM2-1 1.51 1.14 24.93 
E3SM 1.0 5.56 2.99 46.17 
E3SM 1.1 -23.00** 3.29 - 
E3SM 1.1 ECA -4.34** 6.36 - 
EC-Earth3 2.06 1.72 16.40 
EC-Earth3-Veg 2.36 2.48 5.11 
FGOALS-f3-L 1.32 0.87 34.31 
GFDL-CM4 1.46 1.88 29.16 
GFDL-ESM4 0.69 0.11 84.36 
GISS-E2.1H 2.34 1.66 29.13 
HadGEM3-GC31-LL -15.64** 15.95 - 
HadGEM3-GC31-MM 2.39 2.01 16.04 
IPSL-CM6A-LR 1.81 1.37 24.25 
KIOST-ESM 2.28 3.98 74.80 
MIROC6 4.59 2.73 40.45 
MPI-ESM1.2-HAM - 1.51 - 
MPI-ESM1.2-HR 1.99 1.67 16.18 
MPI-ESM1.2-LR 1.66 1.44 12.94 
MRI-ESM2.0 1.29 0.80 37.69 
NorCPM1 2.67 1.40 47.64 
NorESM2-LM 0.06 -0.29** - 
NorESM2-MM 0.23 0.34 49.15 
SAM0-UNICON 49.09 -30.28** - 
TaiESM1 11.91 4.90 58.84 
UKESM1.0-LL 2.83 1.84 34.92 
CMIP6 MM 2.55 1.80 29.43 
CMIP6 average error - - 36.97 
Observations 2.04 1.91 6.31 

SIA anomaly absolute errors between acceleration ratios (P2/P1) resulting from 
the choice of subperiod years 1979-1996 and 1997-2014 (SP1) and subperiod 
years 1979-1999 and 2000-2014 (SP2) [(SP1-SP2)/SP1]. SP1 and SP2 
acceleration ratios are determined from model ensemble means. The alternate 
choice of SP2 follows Shu et al. (2020). Note that ** indicates a negative ratio 
that is the result of a positive P1 trend, the magnitude should not be compared and 
it is not used to determine % error (-). 

 
Figure 16b,c show SIA accelerated trend analysis for the months of March and 

September, respectively. March SIA observations indicate a near steady rate of sea ice 

decline exists for both P1 and P2, –0.38×106 km2 decade-1 (Figure 16b). For September, 

observations show a substantial accelerated rate of SIA decline (P2/P1=3.3) from –

0.33×106 km2 decade-1 during P1 to –1.12×106 km2 decade-1 during P2 (Figure 16c). 

However, such a strong seasonal distinction is not shown in the CMIP6 SIA MM. Instead, 
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the relative magnitude of accelerated trend is basically the same (P2/P1=2.4) for March 

and September, though the latter does have larger magnitude negative trends. It is clear the 

September SIA decline drives the accelerated rate observed for the full ice cover (Stroeve 

and Notz 2018). However, this is not ubiquitous in CMIP6 models, of which many show a 

more dampened response meaning smaller September and larger March rates of SIA 

decline. 

Next, we apply similar analysis to evaluate CMIP6 SIV trends and examine whether 

an accelerated rate of SIV decline is shown (as in the case for PIOMAS, Figure 8b). The 

CMIP6 SIV MM trend for P1 is –1.66×103 km3 decade-1, about 10% stronger than 

PIOMAS (–1.49×103 km3), and for P2 the MM trend is –3.55×103 km3 decade-1, which is 

about 25% weaker than PIOMAS (–4.74×103 km3, Table 2). The result is the CMIP6 SIV 

MM shows an accelerated trend (P2/P1=2.1) that is two thirds the rate of PIOMAS 

(P2/P1=3.2). On the other hand, the CMIP6 MM accelerated trend is about twice that of 

RASM-G, which has no appreciable change in SIV trend between P1 and P2, and can be 

interpreted as a lower bound (Table 4). 

In Figure 17, SIV trends for all CMIP6 individual ensemble members and both SIV 

reanalyses are shown for periods P1 and P2. As was the case for SIA, large internal 

variability of simulated SIV trends is exhibited between models and within a model’s 

ensemble members (Figure 17). Also, the model spread is larger when analyzing the shorter 

climate periods (i.e., P1 and P2) rather than the full SIV historical simulation period (Figure 

11b). Trend uncertainty (i.e., error bars) for SIV is even larger than for SIA due to large 

autocorrelation; SIV AR1 is greater than 0.85 for P1 and greater than 0.80 for P2 in all 

models (not shown). Both P1 and P2 CMIP6 SIV MM and RASM-G trends are statistically 

different than zero, while the PIOMAS SIV P1 trend is not (Figure 17). For PIOMAS, this 

is due in part to large trend uncertainty as result of P1 AR1=0.95. 

Of the 268 CMIP6 ensemble members examined here, 247 (92%) members for P1 

and 202 (75%) members for P2 have 2σ trend uncertainties within their respective CMIP6 

SIV MM 2σ trend uncertainties (Figure 17a,b, respectively). Forty-two (16%) members 

from 19 CMIP6 models have at least one realization with a positive P1 trend, and despite 
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the larger negative trend signal of P2, seven members from five CMIP6 models show a 

positive P2 trend. 

 
SIV trends from (a) 1979-1996 and (b) 1997-2014 for all individual model ensemble 
members and PIOMAS and RASM-G reanalyses. Error bars indicate the model ±2σ (95%) 
confidence intervals. The dark and light gray horizontal shading indicates the adjusted ±1σ 
(68%) and ±2σ CMIP6 SIV multi-model mean (MM), respectively (following Santer et al. 
(2008) and Stroeve et al. (2012)). 

Figure 17. CMIP6 ensemble member sea ice volume trends for periods P1 and 
P2 
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In Figure 18, SIV anomaly trends for CMIP6 ensemble means and the SIV 

reanalyses are shown for P1 and P2 and listed in Table 4. Individual CMIP6 model trends 

for P1 range between 2.16×103 km3 decade-1 (E3SM 1.1 ECA) and –7.30×103 km3 decade-

1 (E3SM 1.1). For P2, CMIP6 model ranges between –0.30×103 km3decade-1 (CIESM) and 

–12.22×103 km3 decade-1 (E3SM 1.1 ECA). All but seven CMIP6 models (AWI-ESM 1.1 

LR, CESM-WACCM, CNRM-CM6-1, E3SM 1.0, GFDL-ESM4, MRI-ESM2, SAM0-

UNICON) show an accelerated rate of sea ice decline between the periods P1 and P2, and 

therefore qualitatively match the PIOMAS SIV tendency (Table 4). The rate of decline 

during P2 in 30 (71%) CMIP6 models is slower than that of PIOMAS; albeit notably faster 

in nine models (i.e., greater than –6.0×103 km3 decade-1): CanESM5-CanOE, E3SM 1.0, 

E3SM 1.1, E3SM 1.1 ECA, EC-Earth3-Veg, HadGEM3-GC31-LL, SAMO-UNICON, 

TaiESM1, and UKESM1.0-LL. The SIV accelerated trend is larger than PIOMAS for about 

20% of CMIP6 models, while 29 (69%) CMIP6 models range between the accelerated 

trend values given by PIOMAS and RASM-G, 3.2 and 1.0, respectively. 

Of the 42 CMIP6 models examined here, 37 have an identifiable break point that 

separates a relatively weaker SIV trend followed by a stronger SIV trend at some point during 

the 1990’s and the year 2014 (not shown). For 33 CMIP6 models, this occurs before our 

defined break point between P1 and P2 (i.e., 1997). Only four models (AWI-ESM 1.1 LR, 

BCC-CSM 2 MR, CanESM5-CanOE, NorCPM1) have a break point occurring between 1996 

and 2000 and corresponding with the period of SIA accelerated decline from observations. 

Figure 18b and 18c show SIV accelerated rate analysis for the months of March 

and September, respectively. The CMIP6 MM SIV trends for both March and September 

are similar, showing P1 rates of sea ice decline around –1.6×103 km2 decade-1 and P2 rates 

about –3.5×103 km2 decade-1. The same is true for the PIOMAS P1 trends for both March 

and September (about –1.6×103 km2 decade-1), but the PIOMAS September P2 trend is 

22% stronger than the March P2 trend (–5.0×103 km2 decade-1 and –4.1×103 km2 decade-1, 

respectively). Thus, SIV accelerated trends for the CMIP6 SIV MM are about P2/P1=2.1 

and show little seasonality, while PIOMAS accelerated trends range between P2/P1=2.8 

and 3.5 (March and September, respectively). So PIOMAS suggests some seasonal 

enhancement of the SIV decline during P2 while the CMIP6 MM does not. 
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Decadal SIV anomaly trends for the periods 1979 to 1996 (P1 in x-axis) and 1997-2014 
(P2 in y-axis) for (a) all months, (b) March, and (c) September for CMIP6 models and 
PIOMAS and RASM-G reanalyses. Error bars indicate 2σ (95%) confidence interval for 
each period. The solid magenta line illustrates the CMIP6 multi-model mean (MM) SIV 
acceleration ratio (slope of P2/P1= (a) 2.13, (b) 2.21, and (c) 1.96), the dotted magenta line 
illustrates the PIOMAS SIV acceleration ratio (slope of P2/P1=3.18 (b) 2.71, and (c) 3.42), 
and the gray dashed line illustrates an acceleration ratio of 1 (e.g., RASM-G). Note that 
E3SM 1.1 ECA is not shown because it is out of the axes range. 

Figure 18. CMIP6 ensembles accelerated trends in sea ice volume decline 
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D. DISCUSSION 

Incorporating relevant observationally constrained metrics to qualify sea ice 

simulations is important to help identify models suited for further process-level analysis. 

Here we used an analysis of the accelerated rate of sea ice decline between the periods P1 

and P2 (Figure 16 and Figure 18) to help qualify the CMIP6 models’ capability to represent 

the complex climate interactions that have contributed to the Arctic amplified response to 

global climate warming. Additionally, fully coupled simulations from the better 

performing models may provide further insights into understanding potential linkages 

between the Arctic and the mid-latitude weather and climate. While SIA simulations are 

reasonably well constrained against passive microwave observations, simulations of the 

three dimensional sea ice state (i.e., SIV) are not (Zygmuntowska et al. 2013). As such, our 

criteria for identifying quality simulations of SIV is less certain and requires some 

discussion. 

Internal variability of the climate, as well as of individual climate model 

simulations, must always be considered when comparing against observations. 

Specifically, it is known that internal climate variability permits a range of possible 

outcomes of Arctic sea ice states, of which the observed state is but one realization 

(England et al. 2019). Such variability can account for as much as 50% of the September 

SIE trend in the pan-Arctic sea ice loss since 1979 (Stroeve et al. 2007; Kay et al. 2011; 

Stroeve et al. 2012b), and from 10% to 75% of regional SIC trends (England et al. 2019). 

For CMIP6 models, Shen et al. (2021) inferred about 22% of the 1979-2014 September 

SIE trend can be attributed to model internal variability, assuming no bias in model 

response to external forcing. While not quantified here, we demonstrated that analysis of 

shorter time series (e.g., less than 20 years in the analysis of accelerated rate of SIA/SIV 

decline) contributed to large trend uncertainties (Kay et al. 2011) in CMIP6. However, the 

next iteration of CMIP should have a longer overlapping period of historical experiment 

and SIA observations, and therefore reduced trend uncertainty. Additionally, we 

intentionally analyzed CMIP6 ensembles and the CMIP6 MM in order to reduce the impact 

from internal model variability. 
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Due to large uncertainties in estimated SIT observations and the corresponding SIV 

time series, we examined two SIV reanalyses, RASM-G and PIOMAS, alongside the 

CMIP6 models. We note that the spatial and temporal SIT uncertainties vary widely within 

PIOMAS, with Schweiger et al. (2011) reporting for 1979-2010 a conservative volume 

trend uncertainty estimate of 1.0×103 km3 decade-1 based on three PIOMAS integration 

runs. The PIOMAS domain-wide SIV bias relative to the SIT CDR (Lindsay 2010) has 

been estimated at –2.8×103 km3 for March and –1.5×103 km3 for October, or about 10% of 

the total SIV over the same period. In Figure 19, we show the 12-month running means of 

PIOMAS and RASM-G SIV anomaly with linear trends. The RASM-G SIV mean is 

21.0×103 km3 (Figure 12b) and linear trend is –2.52×103 km3 decade-1 for 1979-2014 

(Table 4), which is 4% above and 17% slower compared to the PIOMAS mean and trend, 

respectively. The RASM-G simulated range of 15-27×103 km3 (Figure 12a) is another 

expression of slightly thicker ice in P2, yet well correlated SIV evolution compared to the 

PIOMAS range, with a 20% smaller standard deviation (Figure 13b).  

A short period of CryoSat-2 SIV observations (October to April during 2010-2014) 

overlap the CMIP6 historical period and offer an observational constraint for a portion of 

period P2, albeit too short for more than a qualitative interpretation here. Against the 

CryoSat-2 SIV time series, RASM-G shows little bias and root-mean-square error 

(RMSE), PIOMAS shows notable bias of –2.3×103 km3 and RMSE 2.6×103 km3, and the 

CMIP6 SIV MM splits the difference (i.e., –1.0×103 km3 bias and RMSE 1.9×103 km3; 

Figure 20b,c). The PIOMAS negative SIV bias increases against higher observed SIV 

values (Figure 20d), thus the bias is most pronounced during the months of largest SIT 

(e.g., March-May). This likely contributes to a P2 trend that is too strong resulting from 

overly deep troughs in the SIV anomaly during 2010-2014 (Figure 8b and Figure 19). 
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The 12-month running mean of SIV anomalies for PIOMAS (solid black) and RASM-G 
(dashed black) referenced to the period 1979-2014 and 1980-2014, respectively. The SIV 
anomaly is used to determine linear fit with 95% confidence intervals (c.i.) for the periods 
1979 to 2014 (blue), 1979 to 1996 (P1, red), and 1997-2014 (P2, green). 

Figure 19. 12-month running means of PIOMAS and RASM-G sea ice 
volume anomaly 



54 

 
Comparison of SIV (a) correlation coefficient (r), (b) mean bias, and (c) root-mean-square 
error (RMSE) for CMIP6 models and PIOMAS and RASM-G reanalyses against available 
months of CryoSat-2 satellite observations in October-April during the period of 2000-
2014. (d) Scatter plots of PIOMAS, RASM-G and CMIP6 multi-model mean (MM) against 
CryoSat-2. The blue diagonal line indicates a 1 to 1 ratio between model and CryoSat-2. 

Figure 20. Comparison of models against CryoSat-2 sea ice volume 
observations (October to April during 2010-2014) 

The P1 SIV trend for RASM-G is twice as strong as that for PIOMAS, and it is 

larger than the CMIP6 MM trend, while the P2 trend for RASM-G is 12% smaller than the 
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MM trend but 34% less than PIOMAS trend for P2 (Table 4). The overall result is only a 

slight increase in strength between P1 and P2 in RASM-G, which is half of the CMIP6 

MM acceleration ratio but close to 3 times smaller than the one for PIOMAS. Given the 

reasonable RASM-G skill in simulating both SIV time series and SIT spatial patterns 

(Watts et al. 2021) and the reported bias in PIOMAS SIV combined with uncertainty in its 

trend estimates, RASM-G offers an alternative to the PIOMAS perspective on the mean 

state and evolution of SIV in the Arctic. Further constraints on the historical evolution of 

SIT and SIV (i.e., longer period of CryoSat-2 combined with ICASat-2 observations) will 

assist future model intercomparison projects. 

The Arctic sea ice decreases near linearly to global mean temperature rise (Gregory 

et al. 2002; Rosenblum and Eisenman 2016) and cumulative CO2 emissions (Zickfeld et 

al. 2012; Notz and Stroeve 2016), revealing temperature as the primary driver for sea ice 

decline. For CMIP6, 70% of SIA simulations have CO2 sensitivity within plausible ranges, 

while only 28% have plausible sea ice loss per degree of warming (SIMIP Community 

2020) for the period 1979-2014. With respect to CO2 sensitivity, the percent of plausible 

models is similar to the number of plausible SIA and SIV trends in our analysis (60% and 

80%, respectively; Figure 9c and Figure 12c). It might be informative to examine in a future 

separate study whether the plausible models from SIMIP Community (2020) respond with 

the same magnitudes over the shorter periods P1 and P2 used in our accelerated trend 

analysis. Of the 13 models identified by SIMIP Community (2020) with plausible sea ice 

sensitivity to warming and a plausible amount of decline, only three have accelerated trend 

rates matching observations (our Table 1; BCC-CSM 2 MR, CNRM-CM6-1-HR, GISS-

E2.1H). 

The regions of largest observed SIC decline before about 2000 was over the East 

Siberian, Chukchi, and Beaufort seas, but has since shifted to the Laptev, Kara, and Barents 

seas region. This spatial pattern explains the accelerated decline in sea ice cover, but is not 

well represented by CMIP6 models (Shu et al. 2020), thus indicating insufficient 

representation of physical processes there. For example, a number of studies describe an 

increase in Atlantic water OHT into the Arctic Ocean beginning around 2000 (Tsubouchi 

et al. 2021), so called Atlantification (Årthun et al. 2012). Prior to this, Arctic energy 
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budget studies show near equilibrium heat exchanges (i.e., meridional OHT and vertical 

heat exchange between ocean-atmosphere) over the period 1979-2001 (Serreze et al. 2007). 

In contrast, Mayer et al. (2016) showed that increased OHT preconditioned the Arctic sea 

ice minimum of 2007, after which positive radiative flux anomalies drove the large energy 

signal through 2015. While detailed analysis of possible causality of the sea ice decline is 

beyond the scope of this paper, preliminary evidence from our analysis suggests increased 

northward OHT in CMIP6 models could be closely linked to their simulations sharing the 

characteristic accelerated sea ice decline. 

About half of the CMIP6 models analyzed here provided the latitude- and depth-

integrated variable northward OHT (i.e., hfbasin) from all ocean processes (e.g., resolved 

advective transport, diffusion, etc.; Griffies et al. 2016) which we used for a first order 

examination of oceanic forcing on sea ice (Figure 21). A reasonably clear direct 

relationship is shown between models with positive OHT anomaly trends at 80° N 

(CanESM5, CanESM5-CanOE, EC-Earth3, EC-Earth3-Veg, HadGEM3-GC31-LL, 

HadGEM3-GC31-MM, IPSL-CM6A-LR, and UKESM1.0-LL) and the magnitude of 

negative SIA anomaly trends (Figs. 9a and 9c, respectively; r<–0.95, p<0.05). For these 

models, more Atlantic Ocean heat is carried poleward across 80 ºN from the shallow shelf 

regions of the Barents and Kara seas as well as through Fram Strait and into the Arctic 

Eurasian basin. This suggests that the magnitude of Atlantic OHT may be a key process 

underlying CMIP6 models’ ability to simulate the observed rates of SIA decline. 

Additionally, these models have SIA anomaly trends at or exceeding observations (Figure 

9c). The relationship between OHT anomaly and SIV anomaly is not as clear as for SIA 

(Figure 21b,d, respectively). We speculate that accelerated loss of SIV in CMIP6 may 

result from other dominant processes, such as the forced greenhouse warming. We propose 

further process-level examination of CMIP6 model’s simulated OHT may advance 

understanding of its impact on sea ice decline. 
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36-month running means of (a) SIA anomaly and (b) SIV anomaly for a subset of CMIP6 
model simulations. (c) Scatter plot of northward global OHT anomaly linear trends at 80° 
N (y-axis) and pan-Arctic SIA anomaly linear trends (x-axis) for the period 1979-2014. 
The vertical magenta line illustrates the combined passive microwave observations trend 
(−0.51 ×106 km2 decade-1). (d) Scatter plot of northward global OHT anomaly linear trends 
at 80° N (y-axis) and pan-Arctic SIV anomaly linear trends (x-axis) for the period 1979-
2014. The vertical magenta line illustrates the CMIP6 multi-model mean trend (−2.8 ×103 
km3 decade-1). 

Figure 21. Oceanic heat forcing on pan-Arctic sea ice 
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E. CONCLUSIONS 

Most CMIP6 models simulate an accelerated rate of decline in SIA (86%) and SIV 

(88%) starting in the mid-1990s, but it starts earlier than SIA observations in a majority of 

models. The majority of CMIP6 models underestimate the SIA trend, and those that do 

exceed the rate of decline mostly have positive SIA bias. The majority of CMIP6 models 

do not simulate the SIV accelerated rate of decline shown in PIOMAS reanalysis. Given 

that SIV simulations are not well constrained by observations, we offer that CMIP6 SIV 

MM trends may be a suitable reference estimate. Internal variability is large among 

individual CMIP6 ensemble member simulations, particularly when examining shorter 

time periods (i.e., 18 years versus 36 years).  

F. DATA AVAILABILITY  

CMIP6, EUMETSAT, NSIDC, and PIOMAS data used for this study can be 

acquired from the links provided in Section III.B.1. The RASM-G data can be acquired 

from Naval Postgraduate School 

(https://nps.app.box.com/folder/139647168752?s=xyp563ee40w6lffn4718zr52a6m7rtcc). 
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IV. A SPATIAL EVALUATION OF ARCTIC SEA ICE AND 
REGIONAL LIMITATIONS IN CMIP6 HISTORICAL 

SIMULATIONS 

This chapter was published in Journal of Climate (1 August 2021), DOI: 
10.1175/JCLI-D-20-0491.1. Except for figure numbering, the formatting 
has been retained as submitted. As the main author of the work, I made the 
major contributions to the research and writing. Co-authors include W. 
Maslowski3,Y.J. Lee3, J. Clement Kinney3, and R. Osinski4. 

A. INTRODUCTION 

The Arctic is warming at twice the rate of the rest of the planet, evidenced by rising 

SATs in response to GHGs (Serreze et al. 2009; Serreze and Barry 2011; Taylor et al. 2013; 

IPCC 2019). One of the most striking reflections of this Arctic amplification (Serreze and 

Francis 2006) is the accelerated decrease in SIE (Meier et al. 2017) observed for each 

month of the year over the satellite record since 1978 (Serreze and Barry 2011; Stroeve 

and Notz 2018). Changes in the sea ice cover alter the surface albedo, the upper ocean heat 

content, and thus the surface energy budget of the Arctic Ocean (Jackson et al. 2011; 

Timmermans et al. 2018). In addition, a diminishing Arctic sea ice cover increases the air-

sea exchange of momentum, surface buoyancy flux, and freshwater content (Parkinson et 

al. 1987; Rampal et al. 2011; Proshutinsky et al. 2019). Hence, a better understanding of 

the sea ice reduction is needed to improve climate predictions and projections. 

The primary objective of this study is to assess and guide improvements of 

outstanding pan-Arctic as well as regional limitations in historical simulations of sea ice, 

by employing a combination of common and new metrics on a subset of state-of-the-art 

Earth System Models (ESMs) participating in CMIP6 (Eyring et al. 2016). This is 

motivated in part by the need to better understand the complex operation of the Earth 

system under climate forcing and in part to convey confidence in model skill to project the 

future. The latter is based on the argument that a model’s ability to simulate ‘known’ mean 

climate state, trends, variability and extremes raises confidence in its projections (Randall 

 
3 Department of Oceanography, Naval Postgraduate School 
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et al. 2007; Massonnet et al. 2012). However, past model performance of particular 

observables (e.g. pan-Arctic SIE) alone is not sufficient to describe the quality of a model’s 

future projection, due in large part to internal variability, observational uncertainty, and 

model tuning (Notz 2015). Internal climate variability itself allows for a range of possible 

outcomes of Arctic sea ice states, of which the observed state is but one realization (Notz 

2015; England et al. 2019). 

While modern ESMs generally capture much of the physics and the downward 

trends of the observed Arctic SIE, they have so far underestimated its acceleration in 

response to GHG forcing and increasing global SAT (e.g. Winton 2011; Massonnet et al. 

2012; Stroeve and Notz 2015; Rosenblum and Eisenman 2017; SIMIP Community 2020). 

In addition, according to observational and model reconstructed estimates, the negative 

trend in SIT and SIV has been even stronger than that in SIE (Kwok and Rothrock 2009; 

Schweiger et al. 2011; Maslowski et al. 2012; Stroeve et al. 2014). This aspect alone 

corroborates the need for observationally-constrained metrics of SIT and SIV for model 

evaluation as they allow for additional insights into regional and seasonal biases and overall 

quality of sea ice simulations. At the same time, observations of sea ice from passive 

microwave satellites contain internal and algorithm uncertainties (Screen 2011; Eisenman 

et al. 2014; Ivanova et al. 2014; Meier et al. 2014), while pan-Arctic and long-term 

estimates of SIT and SIV are not readily available from satellites as they cover relatively 

short time period. In particular, uncertainty in satellite-derived estimates of pan-Arctic SIT 

distribution and summer SIC pose considerable challenges (Zygmuntowska et al. 2013; 

Kwok 2018). 

In this study, we expand on the published CMIP6 Arctic sea ice analyses (Shu et 

al. 2020; SIMIP Community 2020; Shen et al. 2021) to isolate specific spatial model 

limitations. In particular, we examine SIE, SIT and SIV from a subset of 12 CMIP6 models, 

that provides a good representation of the whole set (as discussed in Section B), for the 

period 1979-2014. The integrated ice-edge error (IIEE; Goessling et al. 2016) and Spatial 

Probability Score (SPS; Goessling and Jung 2018) analyses, referred to collectively as ice 

edge analysis, are introduced to identify regions commonly challenging for the majority or 

individual CMIP6 models to accurately replicate sea ice conditions. The rest of this paper 
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is organized as follows: in Section B we describe data and methods; in Section C results 

are presented, emphasizing a) the mean state and decline in pan-Arctic sea ice, b) the 

simulated SIT spatial distribution, and c) a regional ice edge analysis; and in Section D are 

the discussion and conclusions. 

B. DATA AND METHODS 

1. Model Sea Ice Output 

Sea ice outputs for a subset of CMIP6 models (Table 6) were retrieved from the 

ESGF repository (https://esgf-node.llnl.gov/search/cmip6/). Our study used the historical 

experiment data to evaluate the capability of the participating CMIP6 models to represent 

Arctic sea ice during the recent past. These experiments were initialized and forced with 

common time-dependent observations, including anthropogenic short-lived climate 

forcing, carbon emissions, land use, and GHG historical concentrations, for the time period 

of 1850 to 2014 (Notz et al. 2016; Eyring et al. 2016). 

The 12 models selected for our study range from ± two standard deviations of the 

CMIP6 multi-model mean SIA and SIV, as shown in Table S3 of the online supplementary 

material of SIMIP Community (2020). We chose a limited number of models, 

representative of the whole with respect to multi-model mean and spread (Table 7), to 

highlight the range of simulated sea ice biases and limitations and a workable subset to 

present the utility of ice edge analysis. Additional criteria for model selection included the 

availability of sea ice variables for spatial analysis (e.g., SIT and SIC) and a representation 

of different sea ice model components used in CMIP6 simulations (e.g., NEMO-LIM, 

CICE, MPAS-Sea ice, GELATO). 
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Table 6. CMIP6 model and RASM metadata used in this study 

Model Name 
Label (No. of 

ensemble  
members) 

Organization 
Components Resolution 

(km) A/O/I 
Model 

Variable Atmosphere (A) / Ocean (O) / Sea Ice (I) 

Canadian Earth 
System Model 
(CanESM) 5 

CanESM5 
(25) 

Canadian Centre for 
Climate Modelling 
and Analysis  

Canadian Atmosphere Model (CanAM5)/ Nucleus for 
European Modelling of the Ocean (NEMO) 
v3.4.1/NEMO-Louvain-la-Neuve Sea Ice Model 
(LIM2) 
DOI: 10.22033/ESGF/CMIP6.3610; v20190429 

500/100/100 siconc simass  

Community 
Earth System 
Model (CESM) 
2 

CESM2 
(11) 

National Center for 
Atmospheric 
Research (NCAR) 

Community Atmosphere Model (CAM6)/ Parallel 
Ocean Program version 2 (POP2)/Los Alamos 
National Laboratory Sea Ice Model version 5.1 
(CICE5.1) 
DOI: 10.22033/ESGF/CMIP6.7627; v20190308 

100/100/100 siconc 
sivol 
 

CESM Whole 
Atmosphere 
Community 
Climate Model 
(WACCM) 

CESM2-
WACCM 
(3) 

NCAR Whole Atmosphere Community Climate Model 
(WACCM6)/POP2/CICE5.1 
DOI: 10.22033/ESGF/CMIP6.10071; v20190227 

100/100/100 siconc sivol 
 

National 
Center 
Meteorological 
Research 
(CNRM) Earth 
System Model 
2 

CNRM-
ESM2-1 
(5) 

CNRM-CERFACS Action de Recherche Petite Echelle Grande Echelle 
(ARPEGE 6.3)/NEMO3.6/Global Experimental Leads 
and Ice for Atmosphere and Ocean (GELATO 6.1) 
DOI: 10.22033/ESGF/CMIP6.4068; v20181206 

250/100/100 siconc sivol  

Energy 
Exascale ESM 
(E3SM) 

E3SM 1.0 
(5) 

Department of 
Energy E3SM 
Project 

E3SM Atmosphere Model (EAM)/Model for 
Prediction Across Scales (MPAS)-Ocean/ MPAS-Sea 
Ice 
DOI: 10.22033/ESGF/CMIP6.4497; v20190926 

100/50/50 siconc* 
simass*  

Flexible Global 
Ocean‐
Atmosphere‐
Land System 
Model 
(FGOALS) 

FGOALS-f3-
L 
(3) 

Institute of 
Atmospheric 
Physics (IAP) 

FAMIL2.2/State Key Laboratory of Numerical 
Modeling for Atmospheric Sciences and Geophysical 
Fluid Dynamics (LASG)/IAP Climate Ocean Model, 
(LICOM3.0)/CICE4.0 
DOI: 10.22033/ESGF/CMIP6.3355; v20191031 

100/100/100 siconc sivol 
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Model Name 
Label (No. of 

ensemble  
members) 

Organization 
Components Resolution 

(km) A/O/I 
Model 

Variable Atmosphere (A) / Ocean (O) / Sea Ice (I) 

Geophysical 
Fluid 
Dynamics 
Laboratory  
(GFDL) ESM 4 

GFDL-ESM4 
(1) 

National Oceanic 
and Atmospheric 
Administration 

GFDL-AM4.1/GFDL-OM4p5 Modular Ocean Model 
(MOM6)/GFDL-SIM4p5 Sea Ice Simulator (SIS2.0) 
DOI: 10.22033/ESGF/CMIP6.8597; v20180701 

100/50/50 siconc sivol 
 

Goddard 
Institute of 
Space Studies 
(GISS) 

GISS-E2.1H 
(10) 

National 
Aeronautics and 
Space 
Administration  

GISS-E2.1/Hybrid Coordinate Ocean Model 
(HYCOM)/GISS Sea Ice 
DOI: 10.22033/ESGF/CMIP6.7128; v20191003 

250/100/100 siconc* 
areacello 
sivol  

Institut Pierre 
Simon Laplace 
(IPSL) Climate 
Model 6 

IPSL-CM6A-
LR 
(32) 

IPSL Climate 
Modelling Centre 
 

LMDz/NEMO-OPA/NEMO-Louvain-la-Neuve Sea 
Ice Model (LIM3) 
DOI: 10.22033/ESGF/CMIP6.5195; v20180803 

250/100/100 siconc simass 
 

Model for 
Interdisciplinar
y Research on 
Climate 
(MIROC) 6 

MIROC6 
(10) 

Japan Agency for 
Marine-Earth 
Science and 
Technology 

Center for Climate System Research (CCSR) 
Atmospheric General Circulation model 
(AGCM)/CCSR Ocean Component model 
(COCO4.9)/COCO4.9 
DOI: 10.22033/ESGF/CMIP6.5603; v20181212 

250/100/100 siconc simass  

Max Planck 
Institute (MPI)- 
ESM 

MPI-ESM1.2-
HR (10) 

Max Planck Institute 
for Meteorology  

ECHAM6.3/MPIOM1.63/unnamed 
DOI: 10.22033/ESGF/CMIP6.6595; v20190710 

100/50/100 siconc sivol  

United 
Kingdom ESM 
(UKESM) 1 

UKESM1.0-
LL 
(14) 

Met Office Hadley 
Centre 

MetUM Hadley Centre Global Environment Model 
(HadGEM3-GA7.1)/NEMO-HadGEM3-
GO6.0/CICE-HadGEM3-GSI8 
DOI: 10.22033/ESGF/CMIP6.6113; v20200310 

250/100/100 siconc 
sivol 
 

Regional 
Arctic System 
Model 
(RASM) Sea 
Ice-Ocean 

RASM-G 
(1) 

Naval Postgraduate 
School 

Japanese 55-year Reanalysis (JRA55-do)/ 
POP2/CICE6 

50/9/9 siconc  
sivol 

CMIP6 model and Regional Arctic System Model (RASM-G) simulations used in this analysis. The number of ensemble members is 
indicated in parentheses under the column Label. Native model grids are used unless otherwise annotated with * indicating re-grid. The 
gridded variables used for this study are sea ice area fraction (siconc), sea ice volume per area (sivol), and sea ice mass per area (simass). 
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Table 6 summarizes the model metadata, climate system components with nominal 

resolutions, and the model variables used for analysis. The horizontal resolution of the 

CMIP6 sea ice model component varies between 50 km to 500 km, with the majority still 

using a relatively coarse resolution of one-degree (~100 km). All but one CMIP6 model in 

our study, GFDL-ESM4, produced output from multiple ensemble members (up to 32). 

Unless otherwise indicated, all values presented in figures and tables show ensemble means 

of individual models.  

In addition to our CMIP6 analysis, we analyze sea ice model output from the 

Regional Arctic System Model (RASM; Maslowski et al. 2012; Roberts et al. 2015; 

Hamman et al. 2016; Cassano et al. 2017). The forced sea ice − ocean model configuration, 

which we term RASM-G (Figure 22 shows RASM-G domain), was used for a high spatial 

resolution (~9 km) hindcast simulation, results of which are presented here. It was 

initialized after a 57-year spin up and forced with the Japanese 55-year atmospheric surface 

reanalysis data for driving ocean-sea ice models (JRA55-do; Tsujino et al. 2018). This 

RASM-G hindcast simulation provides a complementary reconstruction of multidecadal 

sea ice conditions for the period of 1980 to 2014, in addition to the remotely-sensed 

observations and PIOMAS (Zhang and Rothrock 2003) reanalysis data.  

Due to the lack of persistent SIT observations over the Arctic, we use the PIOMAS 

sea ice reanalysis as a SIT ‘observational’ proxy reference, following a number of previous 

studies favorably comparing PIOMAS results against thickness observations from 

submarines, satellites and airborne (Zhang and Rothrock 2003; Schweiger et al. 2011; 

Stroeve et al. 2014). The PIOMAS version 2.1 SIV and effective SIT were retrieved from 

the Polar Science Center at University of Washington 

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/) in order to 

evaluate SIT simulations of CMIP6 models. Here we use SIV time series and monthly 

mean gridded effective SIT (Zhang and Rothrock 2003; Schweiger et al. 2011).  
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Table 7. Sea ice area and volume mean and standard deviation for the 
period 1979-1998 for models and observational references 

Model March 
SIA 

Mean 

s.d. September 
SIA 

Mean 

s.d. March 
SIV 

Mean 

s.d. September 
SIV 

Mean 

s.d. 

CanESM5 (25) 15.97 0.29 6.81 0.36 34.46 1.44 18.51 1.47 
CESM2 (11) 13.96 0.11 4.30 0.50 24.90 1.24 9.69 1.50 
CESM2-WACCM (3) 14.31 0.20 5.81 0.58 31.56 2.42 17.34 3.01 
CNRM-ESM2-1 (5) 15.41 0.18 4.82 0.30 18.65 0.43 3.25 0.38 
E3SM 1.0 (5) 20.57 0.23 5.44 0.38 41.71 1.92 32.74 2.54 
FGOALS-f3-L (3) 16.48 0.22 4.90 0.34 30.08 1.00 11.75 0.95 
GFDL-ESM4 (1) 14.10 0.42 5.88 0.48 21.90 1.09 8.34 1.44 
GISS-E2.1H (10) 21.03 0.14 10.58 0.64 31.46 0.93 10.24 1.16 
IPSL-CM6A-LR (32) 15.14 0.19 4.96 0.48 28.61 1.31 10.04 1.44 
MIROC6 (10) 12.07 0.07 5.37 0.17 27.03 0.56 14.79 0.68 
MPI-ESM1.2HR (10) 14.20 0.18 4.36 0.22 26.95 0.86 7.88 0.75 
UKESM1.0-LL (14) 16.26 0.17 7.54 0.32 47.41 1.32 31.03 1.73 
CMIP6 subset mean  15.79 2.63 5.90 1.75 30.42 7.51 14.47 8.56 
CMIP6 multi-model  
             mean* 

15.46 2.01 6.07 1.55 30.99 9.5 14.55 10.47 

RASM-G (1) 14.58 0.24 5.16 0.59 30.73 1.71 12.46 1.84 
Observations* (3) 14.35 0.54 5.97 0.66 - - - - 
PIOMAS - - - - 29.28 1.26 14.20 1.49 

Monthly mean (×106 km2) and standard deviation (s.d.) for SIA (×106 km2) and SIV (×103 km3) for the period 
1979-1998 for March and September of all ensemble members (# in parentheses) per model of our subset of 
CMIP6 models. The CMIP6 multi-model mean for all CMIP6 models and SIA passive microwave 
observations from SIMIP community (2020) for the same period are denoted by *. 
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Figure 22. Domain map of Regional Arctic System Model. Adapted from 

Maslowski et al. (2012). 

2. Observational Sea Ice Data 

Monthly mean SIC data for the period of 1979-2014 were retrieved from the 

NOAA)/NSIDC and the EUMETSAT OSI-SAF. A mean observational SIC was 

determined by combining the NT and BS SIC from CDR of Passive Microwave SIC, 

Version 3 (Meier et al. 2017; 

ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02202_V3) and the OSI-SAF team 

SIC estimate (OSI-450; Lavergne et al. 2019; 

https://doi.org/10.15770/EUM_SAF_OSI_0008). We use this combined SIC estimate as 

the primary observational reference for SIE time series analysis. For the ice edge analysis, 

we use the merged NT/BS SIC as observational reference data. The spread in observational 

estimates as a result of algorithm differences can be interpreted as the observational 

uncertainty, or absolute uncertainty (Meier and Stewart 2019; SIMIP Community 2020). 
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Monthly mean SIT estimates from ICESat were retrieved from NSIDC (Yi and Zwally 

2009; https://nsidc.org/data/NSIDC-0393/versions/1) for the period 2003-2008, and CryoSat-

2 from the Alfred Wegener Institute (Hendricks and Ricker 2019; 

https://spaces.awi.de/display/SIRAL) for the period 2010-2014. Satellite SIT observations are 

available only during the colder months from October to April, which is why we limit our SIT 

analysis to the month of March. For ICESat, SIT data are available for shorter campaign 

periods than CryoSat-2 and does not align seamlessly with our selected month (but CyroSat-2 

does), so some temporal sampling bias is expected in the model comparison.  

3. Sea Ice Extent, Volume, and Thickness 

We computed simulated SIE time series using the CMIP6 variables of SIC (siconc) 

and grid cell area (areacell) by calculating the total area of all grid cells with SIC ≥ 15%. 

SIE is a prevalent metric used for model comparisons and benefits from the availability of 

a long-term passive microwave satellite record and the reduction of uncertainties in SIC 

associated with the pole hole, melt ponds, thin ice, and MIZs. We chose the SIE metric, as 

opposed to SIA, to show results consistent with the ice edge spatial analyses methods 

described below (section B.4). The primary shortfall of the SIE metric is that it is strongly 

grid-dependent (Notz 2014) as compared to SIA, and that both SIA and SIE afford only a 

limited two-dimensional sea ice evaluation. In determining an ensemble model mean SIE, 

SIE time series for each ensemble member is first calculated before averaging. 

The SIV metric incorporates the vertical dimension, i.e. thickness, and it provides 

a more complete measure of the state and rapid change of the Arctic sea ice (Kwok and 

Rothrock 2009; Stroeve et al. 2012). For each model, we computed simulated ensemble 

mean SIV time series using the CMIP6 variables (e.g., SIV (sivol) or sea ice mass (simass), 

and areacell provided by the modeling groups) (see Table 6). A CMIP6 MM SIE and SIV 

for our study subset is determined by averaging the 12 individual model ensemble means. 

Sea ice anomalies are calculated relative to the 1979-2014 monthly mean for the individual 

models and observational references. 

We also examined model simulated SIT in order to assess its spatial pattern 

distributions. Monthly ensemble mean SIT was calculated on the model’s native grid 

(where available) using the CMIP6 variables: e.g., sivol or simass multiplied by density of 
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sea ice (ρsi), per areacell (see Table 6). A SIT cutoff of 6 m, informed by Melling (2002), 

was applied to all models when determining correlation and RMSE to correct for erroneous 

values of too thick sea ice simulated in portions of the Canadian Arctic Archipelago (CAA) 

by some models.  

4. Ice Edge Analysis 

Two ice edge spatial analysis techniques were evaluated to compare the satellite 

observed SIE against model simulations of SIE. Firstly, the Spatial Probability Score (SPS) 

is a probabilistic verification score for contours (Goessling and Jung 2018). For the sea ice 

edge contour, SPS is defined as 

𝑆𝑆𝑃𝑃𝑆𝑆 =  � ��𝑃𝑃[𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15]𝑓𝑓(𝑥𝑥, 𝑦𝑦) − 𝑃𝑃[𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15]𝑜𝑜(𝑥𝑥, 𝑦𝑦)�
2
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑦𝑦𝑥𝑥
 

where 𝑃𝑃[𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15]𝑓𝑓 is the ensemble probability of having 𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15 and 

𝑃𝑃[𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15]𝑜𝑜 is the binary field (1 or 0) representing ‘perfect’ SIE observations. Simply 

put, the SPS is a summation of the areal differences between the ‘true’ ice edge and the 

probabilistic modeled ice edge. The total SPS is therefore spatial integration of local areas 

that are both overestimated and underestimated by model SIE. Additionally, the average of 

the squared difference term in the SPS equation is the local Brier score (Brier 1950), and 

is used here in spatial maps to evaluate each grid cell skill between zero and one in 

representing the ice edge (cf. Wayand et al. 2019). A Brier score of zero represents a perfect 

prediction of SIE, and the score of one represents the alternative extreme. 

The other spatial analysis technique we apply is the integrated ice-edge error (IIEE) 

(Goessling et al. 2016). The IIEE is a special case of SPS whereby 𝑃𝑃[𝑠𝑠𝑠𝑠𝑠𝑠 > 0.15]𝑓𝑓 is 

replaced by a binary deterministic value, as is the case for models with single member 

simulations. While the majority of modeling centers participating in CMIP6 do provide at 

least a limited number of ensemble members, there is a large range (e.g., 1-32). It is through 

this lens we evaluate the mean IIEE against the SPS. For IIEE, each individual ensemble 

member was first treated as a single deterministic simulation then averaged across all 
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individual model ensembles to determine the individual model mean. Here we calculated 

CMIP6 and RASM-G monthly mean SPS and IIEE over several Arctic regions. 

Sea ice observations and model data used for spatial analyses were linearly regridded, 

as needed, onto the NSIDC Sea Ice Polar Stereographic (SIPS) North 25 km × 25 km grid to 

allow for cell by cell comparison between the simulated and the observed values in both time 

and space between models. The absolute mean errors resulting from the grid interpolation are 

conservatively estimated at less than 4% for SIE or SIA (up to 3% for 50 km resolution GFDL-

ESM4 and up to 3.6% for 100 km resolution CESM2; Figure 23).  

 
Absolute mean error as a result of interpolating (a,b) SIA and (c,d) SIE from nominal native 
grid (a,c) 100 km (using CESM2) and (b,d) 50 km (using GFDL-ESM4) to the NSIDC Sea 
Ice Polar Stereographic North 25 km × 25 km grid. 

Figure 23. Mean error as the result of interpolating sea ice area and extent 
from native model grid to NSIDC 25 km × 25 km grid  
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C. RESULTS 

Prior to presenting spatial evaluation results, we first introduce time series analysis 

of the commonly used SIE and SIV metrics. These results reveal the simulated sea ice 

spread of our selected CMIP6 models and set the stage for spatial analyses. For both SIE 

and SIV, we find that CMIP6 MM outperforms any single model in representing the mean 

state and trend of the historical sea ice cover. 

1. Sea Ice Extent and Volume 

Figure 24 shows the SIE mean annual cycle for CMIP6 and RASM-G models and 

the combined passive microwave observations, and Table 8 summarizes the SIE 12-month 

running mean, standard deviation, and linear trends from 1979 to 2014. We can clearly see 

that GISS-E2.1H is highest biased across all months, while E3SM 1.0 and MIROC6 both 

exhibit biases in winter months outside one standard deviation of the MM spread (Figure 

24a) relative to the observed mean SIE annual cycle. Additionally, all models, except 

GISS-E2.1H, exhibit a realistic seasonal cycle consisting of SIE maximum in March and 

minimum in September. Consistent with Shu et al. (2020), the month of March has a 

slightly larger spread among the CMIP6 models than September (Figure 24a), suggesting 

larger winter sea ice edge variability across models. 

All models simulate SIE negative trends with varying intensity (Table 8), in general 

agreement with the observed historical SIE decline for the 36-year period (1979-2014). 

The CMIP6 MM rate of decline, –0.55×106 km2 decade-1, matches closely the observed 

trend (–0.53×106 km2 decade-1). However, individual CMIP6 model trends are spread 

relatively wide, with only four of 12 CMIP6 models falling within two standard deviations 

of the observed trend. The discrepancy here can be mostly explained by model bias, i.e., 

positive (negative) bias models tend to have stronger (weaker) declining trends (Table 8). 
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Table 8. Mean and standard deviations (s.d.) of 12-month running mean sea 
ice extent and anomaly linear trends 

Model Sea Ice Extent 
 Mean 

(×106 km2) 
s.d. 

(×106 km2) 
Linear 
Trend 

(×106 km2 

decade-1) 

s.d. 
(×106 km2 

decade-1) 

CanESM5 12.62 0.87 -0.84 0.06 
CESM2 10.93 0.58 -0.52 0.07 
CESM2-WACCM 11.60 0.55 -0.52 0.05 
CNRM-ESM2-1 11.85 0.39 -0.36 0.05 
E3SM 1.0 14.73 1.14 -1.06 0.11 
FGOALS-f3-L 12.88 0.38 -0.36 0.05 
GFDL-ESM4 11.32 0.46 -0.36 0.05 
GISS-E2.1H 17.83 0.74 -0.70 0.08 
IPSL-CM6A-LR 11.38 0.55 -0.53 0.07 
MIROC6 10.18 0.34 -0.31 0.04 
MPI-ESM1.2HR 11.45 0.46 -0.44 0.06 
UKESM1.0-LL 13.07 0.65 -0.61 0.06 
CMIP6 MM  12.49 2.06 -0.55 0.06 
RASM-G* 11.65 0.47 -0.44 0.04 
Observations 11.96 0.58 -0.53 0.04 
PIOMAS - - - - 

Mean and standard deviations (s.d.) of 12-month running mean SIE and their 
anomaly linear trend and s.d. for CMIP6 models, RASM-G, and the combined 
passive microwave observations for the period 1979 to 2014 (*except RASM-G for 
1980 to 2014). 
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Seasonal cycle of (a) SIE and (b) SIV for CMIP6 models and RASM-G with combined 
passive microwave observations and PIOMAS for the period 1979 to 2014. The CMIP6 
multi-model mean and standard deviation are displayed by a black line and gray shading. 

Figure 24. Mean annual cycles of sea ice extent and volume for the period 
1979-2014 

Figure 24b shows the mean SIV annual cycle for CMIP6 and RASM-G models and 

PIOMAS reanalysis, while Table 9 summarizes their respective SIV 12-month running 

means, standard deviations, and linear trends. Compared to SIE, the SIV shows a relatively 

larger model spread, with the largest bias in UKESM1.0-LL and CNRM-ESM2-1 (Figure 

24b). All models, except E3SM 1.0, have a realistic seasonal cycle consisting of the SIV 

maximum in April and the SIV minimum in September. 

As in the case for SIE, all models simulate a declining SIV trend with varying 

intensity, which qualitatively matches the PIOMAS and satellite estimated (Kwok 2018) 

SIV trends. The CMIP6 MM SIV mean of 20.36×103 km3 and trend of –3.02×103 km3 

decade-1 for 1979-2014 pairs very well with the PIOMAS mean of 20.18×103 km3 and trend 
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of –3.03×103 km3 decade-1 (Table 9). Here seven of 12 CMIP6 models fall within two 

standard deviations of the PIOMAS SIV trend. 

Table 9. Mean and standard deviations (s.d.) of 12-month running mean sea 
ice volume and anomaly linear trends 

Model Sea Ice Volume 
 Mean 

(×103 km3) 
s.d. 

(×103 km3) 
Linear 
Trend 

(×103 km3 
decade-1) 

s.d. 
(×103 km3 
decade-1) 

CanESM5 23.82 4.15 -3.99 0.62 
CESM2 15.83 2.96 -2.78 0.48 
CESM2-WACCM 21.37 5.01 -4.82 0.37 
CNRM-ESM2-1 10.54 0.79 -0.71 0.10 
E3SM 1.0 28.30 6.04 -5.66 0.55 
FGOALS-f3-L 20.25 2.20 -2.03 0.37 
GFDL-ESM4 14.19 2.09 -1.86 0.34 
GISS-E2.1H 20.14 2.26 -2.17 0.12 
IPSL-CM6A-LR 17.72 2.84 -2.75 0.21 
MIROC6 19.80 2.48 -2.30 1.68 
MPI-ESM1.2HR 16.38 2.29 -2.17 0.20 
UKESM1.0-LL 35.99 5.32 -5.02 2.19 
CMIP6 MM  20.36 3.16 -3.02 0.60 
RASM-G* 21.03 2.64 -2.52 0.36 
Observations - - - - 
PIOMAS 20.18 3.31 -3.03 0.51 

Mean and standard deviations (s.d.) of 12-month running mean SIV and their 
anomaly linear trend and s.d. for CMIP6 models, RASM-G, and PIOMAS for the 
period 1979 to 2014 (*except RASM-G for 1980 to 2014). 

2. Sea Ice Thickness 

An accurate spatial distribution of SIT is key to estimates of SIV and it reflects the 

skill in simulation of local processes, coupled interactions and energy transfer between the 

ocean below, the sea ice and the atmosphere above (Stroeve et al. 2014). We first assess 

whether the CMIP6 models accurately simulate the spatial distribution of SIT by focusing 

on the months of mean SIE maximum (March, Figure 25) and minimum (September, 

Figure 26) for the period 1979-2014. The mean satellite observed ice edge, determined 

from the gridded NSIDC monthly SIE, is included on each SIT image. However, because 

of the satellite limitations in differentiating thin ice (at least up to 0.2 m) from open water 

(personal communication, W. Meier, NSIDC), we impose the limit SIT > 0.1 m in order to 

provide a conservative and comparable estimate of the simulated ice edge.  
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March mean SIT distribution for (a-l) CMIP6 models (1979-2014), (m) the RASM-G 
simulation (1980-2014), and (n) PIOMAS (1979-2014). Magenta contours indicate the 
averaged March NSIDC sea ice edge for the same period. Spatial pattern correlation 
coefficients (r) and root-mean-square error (RMSE) for individual models against 
PIOMAS reanalysis are included in the upper-left corner of each panel. 

Figure 25. March mean sea ice thickness distribution for the period 1979-
2014 
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Same as Figure 6 but for September mean SIT and magenta contours indicate averaged 
September NSIDC sea ice edge. 

Figure 26. September mean sea ice thickness distribution for the period 1979-
2014 
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The PIOMAS simulated monthly mean ice thickness (Figure 25n and Figure 26n) 

is often used as an historical observational ‘proxy’ (e.g. Labe et al. 2018) with the following 

caveats: PIOMAS has a general tendency to underestimate SIT in regions of thick (> 3.5 

m) ice (e.g., near the CAA and north of Greenland), and overestimate ice thickness in 

regions of thin ice. Additionally, PIOMAS has a tongue of ~2.5 m ice that extends across 

the Arctic to the Chukchi and East Siberian seas in March that is not depicted in in situ 

observations (Schweiger et al. 2011a; Stroeve et al. 2014). Here we include a spatial pattern 

correlation coefficient (r, at 99% confidence interval) and RMSE against PIOMAS on each 

figure. However, as was the case for CMIP5 (Stroeve et al. 2014), nearly all CMIP6 models 

show high correlation (r>0.84) with PIOMAS for March SIT (except GISS-E2.1H, r=0.73; 

Figure 25) which makes identification of poor performers less effective, despite some 

models clearly underrepresenting general SIT patterns described below.  

Six of 12 CMIP6 models (CanESM5, CESM2, CESM2-WACCM, FGOALS-f3-L, 

IPSL-CM6A-LR, and MIROC6) demonstrate a reasonable pattern of SIT relative to the 

PIOMAS SIT distribution reference. This means that generally, they correctly locate the 

thickest (at least 3.5 m) Arctic sea ice along the CAA and north of Greenland, as well as 

thinner March sea ice located along the Eurasian shelf (Figure 25). For September, the 

same six models also maintain an appreciable amount of thick ice (at least 3.0 m) along the 

CAA and northern Greenland. In contrast, four of the 12 CMIP6 models (CNRM-ESM2-

1, GFDL-ESM4, GISS-E2.1H, and MPI-ESM1.2-HR) fail to maintain an appreciable 

amount of sea ice which is greater than 2.0 m at the September sea ice minimum (Figure 

26). On the other hand, UKESM1.0-LL (Figure 25l and Figure 26l) is laden with sea ice 

greater than 3.5 m throughout the analysis period and it covers a much larger area. 

Turning towards the period of satellite-derived SIT observations and following 

Stroeve et al. (2014), we show spatial pattern correlations and RMSE between models, 

ICESat, and CyroSat-2 in Figure 27, and difference plots in Figure 28 and Figure 29. For 

the period 2003-2008, models show low correlations against ICESat (all of which are 

significant at the 99% confidence interval) ranging from r=0.18 to 0.46 and RMSE from 

0.73 m to 1.38 m (Figure 27a and Figure 27c).  
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Spatial pattern correlations (a and c) and RMSE (b and d) of March SIT between CMIP6 
models, PIOMAS and RASM-G with ICESat for the period of 2003-2008 and CryoSat-2 
for the period of 2011-2014, respectively (following Stroeve et al. [2014]). 

Figure 27. Spatial pattern correlations and root-mean-square error of March 
sea ice thickness between models and ICEsat and CryoSat-2 

Overall, models tend to underestimate SIT along the CAA and north and east of 
Greenland, and overestimate SIT over the Beaufort and Chukchi seas and along the 
Siberian coast (Figure 28). Nine of 12 CMIP6 models exhibit overestimation of SIT 
throughout the western Arctic (Figure 28), which may be in part the result of the timing of 
ICESat collected observations (i.e., late February through early March) and the historically 
low sea ice cover during the collection years (Stroeve et al. 2014). In comparison against 
CryoSat-2 for the later period 2011-2014, all models show larger correlation ranging from 
r=0.47 to 0.65 and smaller RMSE from 0.63 m to 0.92 m than against ICESat (Figure 27b 
and Figure 27d). Regional SIT differences between models and CryoSat-2 are consistent 
with those against ICESat but are less pronounced (Figure 29). 
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March SIT differences for the period 2003-2008 between (a-l) CMIP6 models, (m) RASM-
G, (n) PIOMAS and ICESat. ICESat data are shown in (o). 

Figure 28. March sea ice thickness differences for the period 2003-2008 
between models and ICESsat  
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March SIT differences for the period 2011-2014 between (a-l) CMIP6 models, (m) RASM-
G, (n) PIOMAS and CryoSat-2. CryoSat-2 data are shown in (o). 

Figure 29. March sea ice thickness differences for the period 2011-2014 
between models and CryoSat-2.  

The RASM-G simulated SIT agrees well with PIOMAS (Figure 25m and Figure 

26m), and ICESat and CryoSat-2 (Figure 28 and Figure 29, respectively). In comparison 
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with PIOMAS, RASM-G mean SIT along the Eurasian shelf is thinner for both March and 

September. Additionally, RASM-G maintains a larger area of thick (>3.5 m) September 

sea ice along and within the CAA and north of Greenland. Evaluated against ICESat and 

CryoSat-2 (Figure 27), RASM-G spatial pattern (correlation and RMSE) is highly 

correlated with PIOMAS reanalysis and is similar to the better performing CMIP6 models. 

Overall, we find that the RASM-G simulated SIT distribution represents a comparable skill 

to PIOMAS. 

3. Sea Ice Edge 

The final metrics we present for CMIP6 sea ice analysis are the SPS and the IIEE. 

For our subset of CMIP6 models, all but GFDL-ESM4 includes multiple ensemble 

members, and therefore we present the majority of our main text findings and figures from 

the SPS analysis. However, we show that IIEE is also an appropriate technique to compare 

the simulated ice edge across a spectrum of ensemble model classes (i.e., single through 

small to large ensemble models). Additional IIEE results are shown in the supporting 

material.  

First, we analyze the SPS for the whole pan-Arctic (Figure 30), defined here as all 

areas within the NSIDC SIPS North 25 km × 25 km grid with the exception of Hudson 

Bay, and for the 11 sub-regions (Figure 31 and Figure 32). Second, we apply the SPS 

analysis and examine the local Brier score in order to identify regions where CMIP6 

models commonly have difficulty in reproducing sea ice coverage skillfully (Figure 33 and 

Figure 34). We restrict our SPS analysis to the long-term mean errors, avoiding interannual 

comparisons, of which no CMIP6 models from our subset show predictive SIE skill (not 

shown). 
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Pan-Arctic monthly mean (a) SPS and (b) IIEE for the period 1980-2014 for CMIP6 
models and RASM-G. (c) Pan-Arctic monthly mean SPS subdivided into two components: 
overestimation (positive) and underestimation (negative). 

Figure 30. Pan-Arctic monthly mean sea ice edge analysis metrics for the 
period 1980-2014 

The resulting pan-Arctic SPS exhibits a strong mean annual cycle (Figure 30a). 

Over the 35-year record (1980-2014), most CMIP6 models have a relatively steady SPS 
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during the colder months of December through April, with relatively better performing 

models showing SPS ranges between 0.7×106 km2 to 1.0×106 km2 (CESM2, CNRM-

ESM2-1, IPSL-CM6A-LR, MIROC6, MPI-ESM1.2-HR, and UKESM1.0-LL). All 

models, except CanESM5, experience increased SPS during the warmer summer/autumn 

months (July through October) ranging from 0.8×106 km2 to 2.5×106 km2. FGOALS-f3-L 

and GISS-E2.1H have less dramatic seasonal cycles due to their colder season SPS 

remaining high, when their minimum ranges from 1.9×106 km2 to 2.3×106 km2. The timing 

of individual model SPS peak ranges from July through October, with the majority of 

CMIP6 models peaking in August (five models) or October (three models). GISS-E2.1H 

has the largest single month SPS, near 2.5×106 km2 in October. The lowest single month 

SPS values, near 0.7×106 km2, occur in May (MIROC6) and November (UKESM1.0-LL). 

Compared against the SPS, the pan-Arctic mean IIEE magnitude is always larger, 

by annual mean factor ranging between 1.2 (GISS-E2.1H) to 1.7 (IPSL-CM6A-LR), for all 

models with multiple ensemble members (Figure 30b). Additionally, the shape of a 

model’s mean annual cycle and relative performance against other models remains largely 

consistent between the chosen metrics (except the shape of GISS-E2-1H). Note that the 

single ensemble member GFDL-ESM4 SPS and IIEE are the same. 
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Pan-Arctic monthly mean IIEE for individual ensemble members, IIEE ensemble mean, 
and SPS for the period 1980-2014. Note that GFDL-ESM4 and RASM-G have single 
ensemble members are therefore not included. 

Figure 31. Ensemble member spread in integrated ice-edge error and 
comparison against Spatial Probability Score for individual CMIP6 

models 

In Figure 31, we show the individual model ensemble member’s IIEE alongside 

their mean IIEE and SPS. This detailed look illustrates the IIEE spread about the model’s 

mean across the whole seasonal cycle, which is not evident from the SPS alone. The 
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individual model spread between ensemble realizations can be interpreted as the model 

internal variability in simulating the sea ice edge.  

In Figure 30c, the two separate components of pan-Arctic SPS, overestimation 

(SPS-O) and underestimation (SPS-U), are further examined. For December through April, 

SPS-O has a greater inter-model spread than SPS-U. Neither component of SPS has much 

change from month to month during this period. However, during the spring melt through 

autumn freeze up, individual models do show considerable temporal variability in SPS (i.e., 

variability in the position of the sea ice edge). Magnitudes of SPS-O in five of 12 CMIP6 

models (CanESM5, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, and MPI-ESM1.2-

HR) exhibit relatively small (<0.4×106 km2) changes from June through November (Figure 

30c). However, MIROC6, UKESM1.0-LL, and GISS-E2.1H have increased values of SPS-

O during the same period, suggesting that the simulated sea ice is not melting in the right 

regions and/or as fast as observed. On the other hand, E3SM 1.0, FGOALS-f3-L, and 

CESM2-WACCM models have decreased values of SPS-O. In contrast, most CMIP6 

models (except UKESM1.0-LL and CanESM5) have distinct seasonal surges of SPS-U for 

June through November. Four of 12 CMIP6 models have peak SPS-U in July/August and 

six models peak in September/October. Models with larger SPS-U early in the melt season 

(July/August) suggests that sea ice is removed by melting or advection faster than 

observed. Models with peak underestimation occurring later into the freeze up season 

(September/October) suggests that sea ice is not growing quick enough in their simulations. 

Figure 32a shows the 35-year mean monthly SPS-O/U for individual models and 

the relative contribution per Arctic sub-region (defined in Figure 32b) for March. During 

both winter and spring (December through May; Figure 33), the areas which contribute to 

SPS are predominantly limited to the sub-Arctic seas (i.e., Bering Sea, Nordic Seas, and 

Baffin Bay), because the ice-covered Arctic interior is all frozen and well represented by 

all CMIP6 models during this period. The majority of the SPS is composed of 

overestimations across the Greenland and Barents seas and underestimations for the Bering 

Sea. We use stacked SPS bar charts in Figures 13-15 to identify the common regions of 

large SPS-O/U, as well as diagnose differences between the seasonal evolution of 

individual model SPS. For example, CanESM5 and GISS-E2.1H have the same region of 
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primary overestimation over the Greenland Sea, but have different secondary error regions; 

for CanESM5 it is the Baffin Bay, whereas for GISS-E2.1H it is the Barents Sea (Figure 

32a).  

 
(a) March monthly mean SPS overestimation and underestimation for CMIP6 models and 
RASM-G and the relative contribution of the Arctic sub-regions. (b) Arctic regional mask 
defined in this study: KS = Kara Sea; LAP = Laptev Sea; ESS = East Siberian Sea; CS = 
Chukchi Sea; BEA = Beaufort Sea; CAA = Canadian Arctic Archipelago; CEN = Central 
Arctic; BAF = Baffin Bay; GRE = Greenland Sea; BAR = Barents Sea; BS = Bering Sea). 
(adapted from Meier et al. (2007)) 

Figure 32. Regional monthly mean Spatial Probability Score overestimation 
and underestimation for the period 1980-2014 
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Regional monthly mean SPS for the period 1980-2014 from CMIP6 models and RASM-G 
subdivided between Arctic regions from December to May (a-f). 

Figure 33. Regional monthly mean Spatial Probability Score for the period 
1980-2014 from December to May 
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Figure 35 displays the mean local Brier score for March and clearly depicts 

individual model regions contributing to the total SPS. However, because the Brier score 

is the squared difference, it does not distinguish between overestimation or underestimation 

of the ice edge. GISS-E2.1H, E3SM 1.0, FGOALS-f3-L, and CanESM5 have particularly 

high winter SPS values, which can be attributed to a substantial overestimation of the ice 

edge position in the Greenland Sea (Figure 32a and Figure 35). Additionally, GISS-E2.1H 

and FGOALS-f3-L notably overestimate the Barents Sea ice edge, and E3SM 1.0, 

FGOALS-f3-L, and CanESM5 overestimate the position of the Baffin Bay ice edge. On 

the other hand, MIROC6 is identified as having the largest SPS-U during this period, which 

can be attributed to a large underestimation of ice edge in both the Greenland and Bering 

seas (Figure 32a and Figure 35). 
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Like Figure 14 but for the months of June to November (a-f). 

Figure 34. Regional monthly mean Spatial Probability Score for the period 
1980-2014 from June to November 
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Next, we examine the remaining, mostly warmer Arctic months of June through 

November (Figure 34). Three principal regions can be identified as the largest contributors 

of SPS for each month. As sea ice retreats poleward, the number of regions which 

contribute to SPS increases and evolves in time. In June (Figure 34a), the Greenland and 

Barents seas and Baffin Bay are the regions of primary SPS (predominantly 

overestimation). This suggests that as the observed sea ice is retreating, the CMIP6 models 

tend to melt sea ice too slowly. In July (Figure 34b), Barents Sea overestimation decreases 

(but still remains a substantial error source) and the underestimation of Baffin Bay and the 

Kara Sea is increasing. This suggests that the simulated sea ice over the Barents Sea is 

catching up (i.e., accelerating modeled sea ice retreat, from a slow start of sea ice melt) and 

that sea ice over Baffin Bay and the Kara Sea reduces faster than the observed retreat. 

August is dominated by SPS-U across the East Siberian and Kara seas, and CAA (Figure 

34c), implying that simulated sea ice along the Arctic periphery generally melts quicker 

than observed. In September (Figure 34d and Figure 36), the CAA and central Arctic Ocean 

ice edges are generally underestimated by CMIP6 models. On the other hand, the East 

Siberian Sea is nearly split among ice edge overestimation and underestimation. October 

ice edge errors are dominated by underestimation over the East Siberian, Kara, and 

Beaufort seas (Figure 34e), suggesting that sea ice growth is slower in a number of model 

simulations relative to observations. November SPS (Figure 34f) is dominated by 

overestimation of the Greenland and Barents seas, and underestimation of the Chukchi Sea. 

This suggests the CMIP6 models are over efficient in sea ice growth over the Greenland 

and Barents seas and have slow growth over the Chukchi Sea.  
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March mean local Brier score for (a-l) CMIP6 models and (m) RASM-G for the period 
1980-2014. Magenta contours indicate the averaged March NSIDC sea ice edge for the 
same period. 

Figure 35. March mean local Brier score for the period 1980-2014 
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Same as Figure 16 but for September and the magenta contours indicate the averaged 
September NSIDC sea ice edge. 

Figure 36. September mean local Brier score for the period 1980-2014 

Details of model specific regional SPS evaluation are summarized in Table 10, 

which shows the regional SPS-O/U values accumulated over the months of greatest SPS 
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spatial variability within the Arctic, June through November. The regions of the Barents 

Sea and Baffin Bay account for nine of 12 CMIP6 models largest SPS-O during this 6-

month period, while the Greenland Sea accounts for the other three models (CESM2, 

CNRM-ESM2-1, and MIROC6). The regions with the largest SPS-U are the Kara Sea 

(CanESM5, CESM2-WACCM, E3SM 1.0, IPSL-CM6A-LR, and UKESM1.0-LL), the 

East Siberian Sea (CESM2 and CNRM-ESM2-1), and Baffin Bay (GFDL-ESM4 and 

GISS-E2.1H). Restricting analysis in Table 10 to the extended-interior Arctic (excluding 

the Barents and Greenland seas and Baffin Bay), we find that the Kara and East Siberian 

seas are the regions with the largest SPS, either for overestimation or underestimation, for 

most of the CMIP6 models. Of note, four of 12 CMIP6 models (CESM2, E3SM 1.0, 

MIROC6, and UKESM1.0-LL) have an inverse relationship between regions with largest 

SPS-O and largest SPS-U in the Kara and East Siberian seas (i.e., the Kara (East Siberian) 

Sea is largest overestimated and the East Siberian (Kara) Sea is largest underestimated). 

The other regions of peak SPS are the Chukchi Sea (CanESM5 and GFDL-ESM4) and the 

Beaufort Sea (IPSL-CM6A-LR) for SPS-O, and CAA (GFDL-ESM4 and MPI-ESM1.2-

HR) for peak SPS-U.  

The RASM-G sea ice simulation shares the strong SPS and IIEE seasonality 

observed in the majority of CMIP6 models and has a peak in August (Figure 30). However, 

compared to those models its IIEE is notably lower, by 0.5-1.0×106 km2, throughout the 

year (Figure 30b). The RASM-G simulation has a relatively steady SPS-O of 0.3-0.4×106 

km2 throughout the year, and a slightly smaller baseline SPS-U from December through 

April (Figure 30c). The region which contributes the greatest ice edge error for the RASM-

G simulation from June through November is the Greenland Sea (Table 10). Limiting our 

scope to the extended-interior Arctic (defined above), we find the regions with greatest 

errors in RASM-G are SPS-O of 0.22×106 km2 across the Kara Sea, and SPS-U of 0.68×106 

km2 across the East Siberian Sea (Table 10).  
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Table 10. Accumulated 35-year (1980-2014) monthly mean SPS (×106 km2, SPS) for the months of the greatest SPS 
spatial variability within the Arctic, June through November. 

Region CanESM5 CESM2 
CESM2-
WACCM 

CNRM-
ESM2-1 E3SM 1.0 FGOALS-f3-L 

GFDL-
ESM4 

GISS-
E2.1H 

IPSL-
CM6A-LR MIROC6 

MPI-
ESM1.2HR 

UKESM
1.0-LL RASM-G 

KS O 0.11 0.22 0.45 0.28 0.05 0.78 0.47 *1.10 0.02 0.48 0.17 0.35 0.22 
U 0.75 0.69 0.61 0.62 1.30 0.34 0.78 0.03 *1.57 0.32 0.67 0.46 0.40 

LS O 0.22 0.15 0.35 0.30 0.37 0.24 0.25 *0.55 0.07 0.31 0.17 0.50 0.20 
U 0.28 0.47 0.24 0.29 0.27 0.37 0.62 0.03 *0.90 0.15 0.41 0.07 0.25 

ESS O 0.31 0.12 0.48 0.15 0.46 0.19 *0.61 0.37 0.08 0.41 0.23 0.61 0.07 
U 0.27 0.94 0.30 1.00 0.20 *1.10 0.19 0.21 0.90 0.40 0.40 0.04 0.68 

CS O 0.36 0.04 0.18 0.06 0.26 0.03 *0.75 0.43 0.11 0.33 0.11 0.48 0.16 
U 0.15 0.87 0.50 0.76 0.39 *1.30 0.12 0.14 0.38 0.22 0.42 0.09 0.31 

BEA O 0.14 0.05 0.09 0.05 0.08 0.08 0.32 0.21 0.14 0.21 0.10 *0.34 0.07 
U 0.24 0.76 0.56 0.86 0.66 *0.95 0.28 0.10 0.21 0.28 0.41 0.04 0.30 

CAA O 0.11 0.06 0.09 0.04 0.04 0.09 0.07 0.10 0.11 0.12 0.01 *0.13 0.03 
U 0.21 0.39 0.30 0.57 0.68 0.55 0.80 0.41 0.14 0.37 *1.55 0.13 0.63 

CEN O 0.09 0.06 0.08 0.10 0.05 0.12 0.08 *0.14 0.02 0.08 0.09 0.12 0.08 
U 0.02 0.33 0.11 0.06 0.40 0.08 0.34 0.00 *0.60 0.05 0.06 0.01 0.04 

BB O 1.60 0.27 0.31 0.24 *1.85 1.60 0.13 0.73 0.60 0.56 0.08 0.68 0.25 
U 0.05 0.47 0.50 0.58 0.23 0.15 *1.33 0.50 0.26 0.40 0.98 0.16 0.58 

GRE O 1.14 0.51 0.86 0.59 0.89 1.77 0.37 *3.74 0.20 0.05 0.25 0.84 0.59 
U 0.11 0.42 0.29 0.56 0.62 0.21 *1.07 0.28 0.65 1.04 0.72 0.13 0.80 

BAR O 0.24 0.47 1.15 0.59 0.10 1.67 1.12 *4.20 0.05 0.16 0.44 0.98 0.31 
U 0.46 0.37 0.21 0.25 0.79 0.16 0.39 0.03 *0.83 0.52 0.32 0.12 0.34 

BS O 0.03 0.00 0.01 0.01 0.02 0.00 0.08 0.11 0.00 0.04 0.02 *0.17 0.06 
U 0.13 0.20 0.18 0.18 0.17 *0.20 0.12 0.09 0.18 0.16 0.18 0.09 0.07 

Pan-
Arctic 

O 4.36 1.94 4.03 2.41 4.16 6.57 4.25 11.69 1.40 2.74 1.67 5.20 2.04 
U 2.68 5.91 3.80 5.75 5.71 5.41 6.02 1.83 6.62 3.90 6.11 1.32 4.40 

Bold values indicate individual model maximum SPS overestimation (O) and bold italics indicate the maximum SPS underestimation (U) for each region (see Figure 
32b; KS = Kara Sea; LAP = Laptev Sea; ESS = East Siberian Sea; CS = Chukchi Sea; BEA = Beaufort Sea; CAA = Canadian Arctic Archipelago; CEN = Central 
Arctic; BAF = Baffin Bay; GRE = Greenland Sea; BAR = Barents Sea; BS = Bering Sea). The largest SPS-O and SPS-U in each region are indicated by *. 
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D. DISCUSSION AND CONCLUSIONS 

In light of modest improvements of sea ice simulation in CMIP6 models over 

previous CMIP phases (Davy and Outten 2020; Shu et al. 2020; SIMIP Community 2020; 

Shen et al. 2021), we investigated how these models represent the spatial patterns of ice 

thickness and ice edge. While standard sea ice integrated analyses are good in identifying 

highly biased models, we caution against the potential for seemingly ‘good’ models 

arriving at the ‘right’ answer for the wrong reasons, especially without ensuring that the 

responsible physics to get the state correct is reasonably resolved and not by chance of 

internal variability (Stroeve and Notz 2015; Jahn et al. 2016). We argue that basic 

comparisons of time series of integrated SIE and SIV are not enough to qualify model 

performance and diagnose biases. Hence, we present spatial analysis techniques to assist.  

Qualitative examination of the SIT spatial distributions showed that half of the 

analyzed CMIP6 models reasonably simulated March and September SIT (Figure 25 and 

Figure 26) for the period 1979-2014 against PIOMAS reanalysis. However, spatial pattern 

correlation and RMSE (Figure 27) does not clearly distinguish models with poor SIT 

patterns or lend itself to regional diagnostics. Because of the narrow range of values, e.g., 

PIOMAS ranges r=0.73 to 0.92 and RMSE=0.43 m to 0.81 m (Figure 25) and CryoSat-2 

ranges r=0.47 to 0.65 and RMSE=0.63 m to 0.92 m (Figure 27b and Figure 27d), it is 

difficult to classify meaningful SIT differences between models.   

We performed an ice edge analysis and identified several common ‘problem’ 

regions, which may benefit from further regional analyses at the individual model level. 

Note that the analyses with SIA carry similar, if not larger, uncertainties related to coarse 

resolution in both models and satellite measurements, especially due to melt pond coverage 

during the melt season, detection of thin ice (by passive microwave) and the MIZs (Ivanova 

et al. 2014; Yang et al. 2016; Comiso et al. 2017). To our understanding, the limitation 

with differentiating melt ponds and low SIC from open ocean surface by passive 

microwave satellites is the primary reason why the NSIDC and other centers choose SIE 

as their primary and less uncertain diagnostics of summer-time ice cover. Given the above 

concerns with SIA, we find SPS and IIEE as reasonable options to quantify regional errors 
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in the simulated sea ice cover and to narrow possible oceanic/atmospheric drivers of such 

errors. Hence, given the continued challenges with accurate SIA estimates the ice edge 

analysis appears to be a promising methodology for diagnosing model biases related to 

specific regional processes.  

Our spatial analysis metrics identified Arctic regions with large ice edge and ice 

thickness errors, therefore pointing to limitations in or lack of representation of some 

physical processes within individual CMIP6 models. We postulate that many of them could 

be related to the oceanic forcing in the marginal and shelf seas. For example, during the 

warmer months, the SPS in the interior Arctic is generally largest over the East Siberian 

and Kara seas (Table 10), with many sea ice simulations tending to respond slowly to the 

seasonal changes (i.e., slow to melt or/and slow to grow). In case of errors of ice growth in 

these regions, we hypothesize this may be the result of models taking additional time to 

ventilate the excess heat accumulated in the upper ocean through the summer, to cool water 

down to freezing temperature in order to begin the ice growth. Another related cause of 

such errors might be an over estimation of the surface mixed layer depth, which would also 

take more time to cool down before freezing. Note that these two issues would affect a 

model representation of Arctic amplification hence more than just simulation of sea ice. 

In the case of models that consistently underestimate the position of the sea ice edge 

for the Barents and Kara seas (e.g., GFDL-ESM4 and IPSL-CM6A-LR in Figure 26g and 

Figure 26i), possible causes may be an overestimated transport of warm Atlantic Water 

across or underestimated cooling over the Barents Sea (Maslowski et al. 2012a). The 

resulting excess of OHT could be accelerating ice melt and delaying freeze-up over the 

Barents Sea and further downstream, over the northern Kara Sea (and beyond).  

During the colder months, the majority of SPS are overestimations over the 

Greenland and Barents seas and underestimations over the Bering Sea. On the European 

side, this could again be related to variability in volume and heat fluxes from the North 

Atlantic Ocean and their distribution between the Labrador, Greenland, and Barents seas, 

which may lead to interrelated inaccuracies in simulated sea ice over those regions. For 

example, if too much warm Atlantic water is diverted from entering the Labrador or eastern 

Greenland seas, and instead enters the Barents Sea, we could expect an overestimation of 
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ice melt in the latter region with underestimation of melt in the former two regions (e.g., 

IPSL-CM6A-LR in Figure 25i). Onarheim et al. (2018) found that the Barents Sea, 

considered a hotspot for recent climate change, contributes the largest fraction of winter 

sea ice loss through 2016. Possible explanations of the significant loss in the Barents Sea 

include a decreased sea ice import and the impact on upper ocean stratification (Lind et al. 

2018) and greater control of the sea ice cover after around 2003 by Atlantic water ocean 

heat anomalies across the Nordic and Barents seas (Schlichtholz 2019). We found that the 

majority of CMIP6 models, consistent with Shu et al. (2020), underrepresent the strength 

of March SIC decline over the Barents Sea compared to NSIDC (not shown), which is 

indicative of potential model limitations in representing these dynamics.  

Sea ice edge and thickness distribution is also determined by atmospheric forcing. 

Previous CMIP studies have shown that inaccurate SIT patterns are often associated with 

model deficiencies in simulating the observed Arctic sea level pressure patterns and 

associated geostrophic winds (Schweiger et al. 2011; Stroeve et al. 2014). Inaccurate 

simulations of the position and/or strength of large-scale circulation patterns, like the 

Beaufort High, can allow for sea ice convergence in regions not generally observed 

(DeRepentigny et al. 2016). Additionally, strong cyclones and anomalous circulation 

patterns can also contribute to anomalous SIT and SIE patterns in model simulations. For 

example, atmospheric heat and moisture drawn into the high-latitudes can increase 

downward longwave radiation which inhibits sea ice growth (Cai et al. 2020). Also, 

synoptic storms can excite inertial oscillations in sea ice (Roberts et al. 2015), which can 

lead to increased deformation rates and hence change in SIT. 

Modeled SIT in the Bering Sea generally replicates observed ice thickness patterns 

well, but models tend to underestimate the SIE there. Given that sea ice in the Bering Sea 

melts completely every summer, most of the CMIP6 models get the SIT correct as long as 

they can replicate that seasonal retreat. However, first-year sea ice is more susceptible to 

atmospheric forcing and its variability (Rampal et al. 2011), hence the problems with 

simulation of the ice edge there. Model limitations in representing the Bering Sea dynamics 

also affect the Chukchi and East Siberian seas downstream, as those marginal seas are 

tightly connected via the advection of Pacific water (Maslowski et al. 2014). The 
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northeastward transport of warm Pacific summer water across Bering Strait into the East 

Siberian Sea is another process likely to be difficult to represent in the CMIP6 models with 

coarse horizontal resolution (e.g., the width of the Bering Strait is less than the single grid 

cell size for all but three models examined here). Yet the oceanic forcing of sea ice in the 

East Siberian Sea might play a role in its negative concentration trend, which Onarheim et 

al. (2018) identified as the largest in observed summer ice loss in the Arctic through 2016. 

The choice of CMIP6 ice edge analysis technique as a model bias diagnostic was 

shown to be mostly arbitrary between the SPS and the mean IIEE. The exception to this is 

the case of single member simulations. Because not all CMIP6 models provide multiple 

ensemble realizations, the deterministic models may appear less skillful by the SPS in 

representing the ice edge than their ensemble model counterparts (see GFDL-ESM4, 

Figure 30a and Figure 30b). While the benefits of using ensemble models are beyond 

argument, our application of the mean IIEE identified the same relative model biases as the 

SPS, albeit with larger magnitudes. As such, the IIEE approach may provide a more 

equitable comparison of an individual model’s skill in randomly representing the sea ice 

edge in any single realization (Figure 31). 

RASM-G is examined alongside the CMIP6 models and achieves favorable results 

in all categories, so it is reasonable to consider it as a realistic alternative sea ice reference 

simulation of the multi-decadal evolution of the Arctic sea ice, especially with regard to 

SIT and SIV. The RASM-G configuration is similar to PIOMAS, in which both models 

use atmospheric reanalysis to force the ocean and sea ice model components. However, 

PIOMAS assimilates SIC and sea surface temperature data in order to improve model 

performance of sea ice characteristics. Yet, assimilated SIC fields come with passive 

microwave uncertainties (Yang et al. 2016), described earlier, which might contribute to 

the reported PIOMAS SIT and SIV biases and uncertainty in its trend estimates (Lindsay 

2010; Schweiger et al. 2011a). RASM-G does not use data assimilation for its components 

and still performs remarkably well in replicating observed SIE, as well as comparable to 

PIOMAS SIT distribution and SIV time series over multiple decades. We attribute this in 

part to the realistic atmospheric forcing, as well as to a more realistic representation of sea 

ice relevant processes (e.g., oceanic forcing along MIZs) and high spatial and temporal 
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resolution. This lends confidence in the RASM-G model physics yielding correct depiction 

of the mean state and evolution of the Arctic ice pack.  
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V. ASSESSMENT OF OCEANIC HEAT TRANSPORT AND ITS 
EFFECTS ON PAN-ARCTIC SEA ICE DECLINE IN CMIP6 

HISTORICAL SIMULATIONS 

A. INTRODUCTION 

The Earth’s energy balance is characterized by a surplus of incoming solar energy 

over the tropics and midlatitudes and a solar energy deficit at and near the poles (von 

Schuckmann et al. 2016). Thus, poleward atmospheric and oceanic heat transport acts to 

distribute the radiative imbalance (Czaja and Marshall 2006). Averaged over the Arctic 

polar cap (i.e., 70°–90°N) since 2000, this amounts to annual mean atmospheric and 

oceanic net meridional transports of energy into the Arctic of about 1400 TW and 190 TW, 

respectively (Mayer et al. 2019). For long-term mean energy conservation, the net radiation 

at the top of the atmosphere (TOA) must balance this regional influx of heat (Mayer et al. 

2019). However, less energy is leaving via the TOA than is being transported in, and this 

discrepancy is explained by energy storage associated with ocean warming and ice melting. 

The Arctic energy imbalance is on the order of about 12 TW (~1 Wm-2) reported by Mayer 

et al (2019), with 2/3 warming the ocean and 1/3 melting the sea ice. Variability in the 

amount of OHT has been shown to impact the Arctic sea ice cover, particularly in winter 

over the Barents and Greenland seas during the periods of maximum SIE (Francis and 

Hunter 2007; Polyakov et al. 2010; Årthun et al. 2012; Smedsrud et al. 2013). However, 

the magnitude of oceanic heat convergence in such regions as the Barents and Kara seas 

might be significantly underestimated in many coarse resolution global climate models 

(Smedsrud et al. 2013). 

In this study, OHT and its impact on the historical simulations of pan-Arctic sea ice 

cover is examined in a subset of models participating in CMIP6. Earlier in Chapter III, we 

showed that CMIP6 model simulations do not generally replicate the strength of the 

accelerated rate in SIA decline beginning around the year 2000. In Chapter IV, we 

identified Arctic subregions with large ice edge errors, suggesting these may be the result 

of model limitations in representing some physical processes. Collectively, the Arctic 

regions that are responsible for the accelerated rate in the observed SIC decline (Shu et al. 
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2020) are also the same regions for which many CMIP6 models showed large ice edge 

errors. These regions are the Kara, Laptev, and Barents seas (Figure 32). They are also 

closely connected to the Atlantic Water inflow and are most impacted by recent 

Atlantification of the Arctic (Årthun et al. 2012). 

Studies of in situ oceanic volume and heat transports have mostly been limited to 

individual Arctic gateways and for relatively short time periods. Table 11 shows the 

observational estimates for the four primary Arctic gateways from a number of observation 

studies (Schauer et al. 2008; Smedsrud et al. 2013; Curry et al. 2014; Roach et al. 1995; 

Woodgate et al. 2012). The results from individual gates have large variability and 

uncertainty and collectively fail to ‘close’ the Arctic Ocean volume (or mass) budget. 

Additionally, a closed volume is prerequisite to determine the amount of ocean heat gained 

or lost within (Schauer et al. 2008), defined here as OHT convergence (OHTC). Thus, 

confidence in the OHT estimates for individual gateways is questionable (Schauer et al. 

2008). However, recent studies by Tsubouchi et al. (2018, 2021) overcome the mass budget 

discrepancy by using the box inverse model along with in situ data from moored and 

shipboard instruments. This mass constrained reconstruction offers a holistic approach to 

the Arctic mass and energy budget, and to improve OHT and OHTC estimates (Table 11). 

Also, a significant OHT increase of 21 TW into Arctic Mediterranean is reported to have 

occurred since 2001 (Tsubouchi et al. 2021). 

In this study, we analyze OHT analysis in CMIP6 models using the model variable 

northward OHT, hfbasin (Griffies et al. 2016). To our knowledge, this is the first CMIP6 

study to present such analyses, and thus may be a useful baseline for the CMIP6 models, 

and for future discovery and comparison. We first examine the global OHT mean annual 

cycle against OHT from reanalysis data sets and estimates for the Arctic OHTC. Next, we 

evaluate the 1979-2014 time series, focusing on OHT mean and trends, and on the role of 

Atlantic OHT forcing on the pan-Arctic sea ice cover. 
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Table 11. Ocean volume and heat transport for the four primary pan-Arctic gateways 

 Volume Transport (Sv)  Oceanic Heat Transport (TW) 
 FS BSO DS BE  FS BSO DS BE 
 Mean s.d. Mean s.d. Mean s.d. Mean s.d.  Mean s.d. Mean s.d. Mean s.d. Mean s.d. 
Observations –2.01 2.71 2.32 1.02 –1.63 0.73 0.84 0.74  365 65 702 212 203 93 10-206 - 
Tsubouchi et al.  
    2018 

–1.1 1.2 2.3 1.2 –2.1 0.7 0.7 0.7  ^58 ^10 *64 *33 ^29 ^10 **8 **13 

ORA MM7 –1.9 - 3.0 - –2.3 - 1.1 -  21 - 72 - 5 - 5 - 
Ocean volume and heat transport (OHT) annual mean and standard deviation (s.d.) through the Fram Strait (FS), the Barents Sea Opening (BSO), the Davis Strait 
(DS), and the Bering Strait (BE). OHT for Tsubouchi et al. (2018) are shown as referenced to the temperature used in the observational study annotated (0.0C*,–
0.1C^,–1.9C**) . Observations cover a range of time periods (see reference texts for details), while the ocean and sea ice reanalysis multi-model mean (ORA MM) 
is for 1993–2010 (Uotila et al. 2019). 1Schauer et al. (2008), 2Smedsrud et al. (2013), 3Curry et al. (2014), 4Roach et al. (1995), 5Schauer and Beszczynska-Möller 
(1995), 6Woodgate et al. (2012), 7Uotila et al. (2019) 
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B. DATA AND METHODS 

1. Model Output and Observational Data 

Our study used the CMIP6 historical experiment data to evaluate the Arctic sea ice 

response to OHT for the period 1979-2014 (Notz et al. 2016; Eyring et al. 2016; Griffies 

et al. 2016). Models were selected based on the availability of required variables at the time 

of manuscript preparation. Model outputs for 17 CMIP6 models, including 165 individual 

ensemble members, were retrieved from the ESGF repository (https://esgf-

node.llnl.gov/search/cmip6/). Table 1 summarizes the metadata and the variables used for 

this model evaluation. We only analyzed outputs from models that provide data for the 

variable hfbasin. This variable is the “depth-integrated northward net OHT integrated 

within [the Atlantic, Indo-Pacific, and global] basins” (Griffies et al. 2016). 

We chose the same SIA and SIV observational reference data sets for 1979-2014 

described in Chapters III and IV. The SIA observational reference was calculated after 

averaging data from three SIC algorithms (i.e., NSIDC NT and BT, and OSI-SAF). For 

SIV, we used the CMIP6 SIV multi-model mean (MM) as our primary temporal analysis 

reference, and include the PIOMAS (Zhang and Rothrock 2003) and the RASM-G for 

comparison. The CMIP6 SIV MM time series was calculated by averaging the 42 CMIP6 

model ensemble means. 

To compare model simulations of OHT against recent reanalyses, we retrieved the 

mass-balanced monthly mean OHT from Norwegian Marine Data Centre (Tsubouchi et al. 

2021; http://metadata.nmdc.no/metadata-

api/landingpage/0a2ae0e42ef7af767a920811e83784b1). Additionally, mean monthly 

OHT (Mayer et al. 2019) was retrieved from ECMWF Ocean Reanalysis System 5 

(ORAS5; Zuo et al. 2019; https://icdc.cen.uni-hamburg.de/daten/reanalysis-ocean/easy-

init-ocean/ecmwf-oras5.html) and Centro Euro-Mediterraneo sui Cambiamenti Climatici 

coupled ocean-sea ice reanalysis (C-GLORS v7; Storto and Masina 2016; http://c-

glors.cmcc.it/index/index-7.html?sec=7). 
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2. Methods 

We examined CMIP6 ensemble means for all models and all variables, except for 

the single realization SAMO-UNICON. Use of the ensemble mean instead of a single 

realization emphasizes our interest in the mean forced signal and reduces the influence of 

model internal variability. For temporal analysis, individual model ensemble mean time 

series are calculated by averaging their ensemble members. The pan-Arctic SIA and SIV 

time series is calculated as described in the previous chapter. The CMIP6 OHT time series 

is determined for specific lines of latitude directly from the CMIP6 variable northward 

OHT (hfbasin).  

Sea ice and OHT anomalies were determined by removing the respective mean 

annual cycle for individual models, observations, and reanalyses. Unless otherwise 

indicated, the anomaly period is 1979-2014. Characteristic trends and their uncertainties 

were calculated by simple linear regression and following Santer et al. (2008) to adjust for 

the effects of autocorrelation in the number of independent time samples (see Chapter III 

for our calculation of confidence interval). 

Figure 37 shows the approximate locations of the Arctic gateways and the 

southernmost lines of latitude used to determine OHT and OHTC in observations and 

reanalyses (Tsubouchi et al. 2018; Mayer et al. 2019) and in the CMIP6 models for this 

study. We chose 65°N to examine the global pan-Arctic OHT and its component pathways, 

which include the Bering Strait (i.e., Pacific Ocean pathway) and the Davis Strait and 

Nordic Seas (Atlantic Ocean pathways). The line of latitude 80°N encompasses the 

predominant Atlantic-Arctic Ocean communication pathways, namely the Fram Strait 

between Greenland and Svalbard, and the land arc including Svalbard, Franz Josef Land, 

and Severnaya Zemlya. Additionally, 80°N encompasses the Nares Strait, located between 

the Canadian Arctic Archipelago and Greenland, an important pathway for Arctic water 

export.  
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Approximate locations of the gateways and lines of latitude where OHT was determined 
by observations or calculated for CMIP6 simulations and ocean reanalyses. The 
ARCGATE region (Tsubouchi et al. 2018) is defined by Bering Strait, Barents Sea 
Opening, Fram Strait, and Davis Strait gateways. The polar cap (70°N), pan-Arctic (65°N), 
and interior Arctic (80°N) regions indicate the southernmost lines of latitude used for OHT 
convergence with 90°N. 

Figure 37. Map of pan-Arctic gateways and lines of latitude used in this 
study. Adapted from Mayer et al. (2019). 

The northward OHT (in TW) across a line of latitude is the total amount of 

poleward OHT supplied from the lower latitudes to the region at and poleward of the 

latitude. For the global basin, this is the OHTC in TW. However, this definition of the 

OHTC does not account for other processes that determine the total energy content of the 

ocean in the defined region, e.g., surface absorption of shortwave radiation or surface heat 

exchanges with the atmosphere. Still, this definition is helpful as we examine the 

magnitude of ocean heat supplied to the Arctic, particularly during the periods of total 

darkness and very cold SATs. We also assess the ocean basin specific northward OHT (i.e., 

Atlantic and Pacific basins). Unlike the global basin, the Atlantic and Pacific basins do not 

explicitly close the mass and heat budget required to determine basin specific OHTC. In 
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this case, convergence must be determined for a specified region within two lines of 

latitude, e.g., between 65°N and 80°N in this study. Thus, we differentiate between the flux 

variable OHT and OHTC. 

For spatial analysis of SIA and SIT, we first linearly regridded CMIP6 model SIC 

and SIV onto the NSIDC SIPS North 25 km x 25 km grid (following Watts et al. 2021) 

before averaging. When plotting SIC or SIT mean and linear trend figures, a mask was 

applied to pixels with SIC less than 10% or SIT less than 10, respectively. 

C. RESULTS 

1. Oceanic Heat Transport Mean and Seasonal Cycle 

First, we compare the CMIP6 model simulations of northward OHT against 

recently published reanalyses. Table 12 compares ARCGATE observations (Tsubouchi et 

al. 2018) of the 2005 to 2009 annual mean OHTC to estimates from ocean reanalyses (e.g., 

ORAS5 and C-GLOS v7) and an estimate from Mayer et al. (2019) using a variational 

approach to enforce budget closure. The ORAS5 and C-GLORS v7 both underestimate 

ARCGATE observations by 9% and 15%, respectively, while Mayer et al. (2019) 

overestimates the same by about 5%. Note that the Barents Sea Opening (included in 

ARCGATE observations) is a meridional gateway and does not lend itself to CMIP6 

northward OHT analysis, thus no CMIP6 MM estimate is shown (Table 12). However, the 

polar cap (70-90°N)  results from Mayer et al. (2019) provide good comparison for CMIP6 

models. For 2005–09, the mean polar cap OHTC for both ORAS5 and C-GLORS v7 

underestimate the Mayer et al. (2019) by about 15%, and CMIP6 OHTC MM 

underestimates it by about 20%. For the longer period 2001–14, the CMIP6 MM shows 

similar mean OHTC as reanalyses (Table 12). 
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Table 12. Estimates of oceanic heat transport. Adapted from Mayer et al. 
(2019). 

 Mean (ARCGATE) Mean (Polar Cap) Trend 
 2005-2009 2001-2017 2005-2009 2001-2017 2001-2017 
Tsubouchi et al. 2018 156 - - - - 
Mayer et al. 2019 163 - 238 - - 
ORAS5 141 131 201 194 1.11 
C-GLORS v7 132 128 204 192 1.41 
CMIP6 MM - - 191 193 *0.72 

OHT convergence annual mean (TW) and monthly mean anomaly linear trend (TW per 
year) for Arctic gates (ARCGATE) observations, ocean reanalyses, and CMIP6 multi-model 
mean (MM) for the periods indicated. ARCGATE are defined in Tsubouchi et al. (2018). * 
indicates 2001-2014 for CMIP6 MM historical simulation. 

 

Figure 38a shows the 2005 to 2009 CMIP6, Mayer et al. (2019), and ORAS5 polar 

cap mean annual cycle for Global OHTC. The CMIP6 OHTC MM shares a similar seasonal 

cycle with Mayer et al. (2019), ORAS5, and C-GLORS v7 reanalyses consisting of January 

maximum and June minimum. However, the magnitude of the CMIP6 OHTC MM mean 

is 20% less (Table 12) and each month is smaller than Mayer et al. (2019), particularly for 

July–January (Figure 38a). Individual CMIP6 simulations of OHTC have large model 

spread, and all but the two MPI-ESM1.2 models generally simulate the estimated mean 

annual cycle. Both MPI-ESM1.2 models show peak OHTC in summer (Figure 38a). 
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Seasonal cycles of global OHT convergence (OHTC) across (a) 70°N for CMIP6 models 
and ocean reanalyses and estimate from Mayer et al. (2019) for the period 2005 to 2009, 
and (b) 65°N for CMIP6 models for the period 1979-2014. The CMIP6 multi-model mean 
is displayed by a red line. 

Figure 38. Global oceanic heat transport convergence mean annual cycle 

For our study, we expand the area of interest from 70°N to 65°N (i.e., pan-Arctic 

65°–90°N) to examine a larger portion of the Nordic Seas and incorporate the Pacific 

inflow through the Bering Strait. Figure 38b shows the global OHTC pan-Arctic mean 

annual cycle for CMIP6 models for 1979 to 2014. The OHTC calculated at this more 

southerly latitude results in a larger magnitude than in Figure 38a, but the mean annual 
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cycles are similar. Here, the CMIP6 MM is maximum in December and minimum in May, 

and simulates OHTC of about 270 TW and 200 TW, respectively. With the exception of 

the two MPI-ESM1.2 models and FGOALS-f3-L, the simulated peak OHTC ranges from 

230 TW (NorESM2-MM) to 350 TW (HadGEM3-GC31-MM) and minimum OHTC 

ranges from 160 TW (both EC-Earth3 models) to 240 TW (MIROC6). FGOALS-f3-L 

simulates a relatively weak OHTC seasonal cycle and has the largest negative bias (about 

–100 TW) against the CMIP6 MM (Table 13). Both MPI-ESM1.2 models show a unique 

OHTC peak around 350 TW during June–July. 
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Table 13. Oceanic heat transport and convergence across lines of latitude 65°N and 80°N 

 Oceanic Heat Transport  Oceanic Heat Convergence 
 65°N 80°N  65°N minus 80°N 
 Atlantic Pacific Global Atlantic Global  Atlantic Global 
 Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.  Mean s.d. Mean s.d. 
CanESM5 229 38 4 6 257 37 66 29 67 28  164 21 190 21 
CanESM5-CanOE 215 43 4 7 244 42 55 32 56 31  161 26 188 26 
EC-Earth3 196 55 13 21 209 47 46 19 37 20  151 43 172 30 
EC-Earth3-Veg 198 55 12 21 210 47 49 19 39 20  149 43 171 30 
FGOALS-f3-L 149 34 - - 139 19 1 11 -9 23  148 28 148 28 
HadGEM3-GC31-LL 245 52 2 12 247 49 34 15 24 15  211 48 223 41 
HadGEM3-GC31-MM 255 63 6 15 261 59 42 15 31 17  213 53 230 46 
IPSL-CM6A-LR 218 47 6 12 224 40 68 17 63 18  151 39 161 29 
MIROC6 250 21 0 1 254 18 6 9 6 9  244 27 249 24 
MPI-ESM1.2-HAM 282 39 0 0 282 39 35 28 35 28  247 36 247 35 
MPI-ESM1.2-HR 255 36 0 0 255 36 30 19 30 19  225 28 225 28 
MRI-ESM2.0 260 46 9 17 270 37 16 7 14 8  244 41 256 34 
NorESM2-LM 218 35 - - 218 35 9 6 9 6  208 32 208 32 
NorESM2-MM 206 25 - - 206 25 9 4 9 4  197 25 197 25 
NorCPM1 248 17 - - 244 17 - - 11 5  - - 233 16 
SAM0-UNICON - - - - 271 49 - - 9 6  - - 261 51 
UKESM1.0-LL 260 46 1 11 259 49 17 11 27 11  243 40 233 48 
CMIP6 MM 230 25 5 9 238 25 32 10 27 8  197 21 211 19 

Mean and standard deviation (s.d.) of oceanic heat transport (TW) across lines of Latitude 65°N and 80°N, and difference between them, oceanic heat 
convergence (TW), for CMIP6 models for the period 1979-2014. 
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Next, we show separately the CMIP6 mean annual cycle for the Atlantic and Pacific 

basins OHT. At 65°N, seasonal cycles of the Atlantic OHT (Figure 39a) are similar to 

Global OHTC (Figure 38b) for the CMIP6 MM and for individual models. Note that 

FGOALS-f3-L shows the largest difference between the Atlantic OHT and global OHTC 

mean annual cycles, with maximum Atlantic OHT about 50 TW larger than the Global 

OHTC (Figure 38b and Figure 39a). This suggests a substantial amount of ocean heat exits 

the Arctic by some alternate pathway not accounted for in the Atlantic basin OHT, e.g., 

possibly the Canadian Arctic Archipelago. For the Pacific OHT seasonal cycle at 65°N 

(Figure 39b), most models show maximum OHT in August (10–45 TW) and minimum in 

December–June (–5 TW), with the CMIP6 MM showing peak August OHT of about 20 

TW. Note that only 12 of 17 CMIP6 models provide values for Pacific OHT at 65°N, and 

three more have zero annual mean (Table 13). 

At 80°N, only the Atlantic basin OHT seasonal cycle is shown because the models 

do not differentiate Pacific basin transport north of the Bering Strait (Figure 39c). Here the 

CMIP6 Atlantic OHT MM seasonal cycle ranges between 20–40 TW with November 

maximum and June minimum with a mean value of 30 TW mean (Table 13). Individual 

CMIP6 models are evenly spread from about zero (FGOALS-f3-L) to 68 TW (IPSL-

CM6A-LR), indicating a wide range in magnitude of Atlantic origin OHT entering the 

Arctic interior (i.e., poleward of 80°N).  

Next, we investigate the OHTC between 65°–80°N in CMIP6 models (Figure 40 

and Table 13). Most oceanic heat transported into the Arctic region at 65°N is of Atlantic 

Ocean origin and the CMIP6 OHT MM shows as much as 96% (Table 13). The relatively 

warm Atlantic water flows north of 65°N through the Nordic Seas and splits between the 

Fram Strait or the Barents Sea Opening gateways. As the Atlantic water flows poleward it 

exchanges energy with the atmosphere and sea ice, thus decreasing the magnitude of 

northward OHT (Skagseth et al. 2008). Alternatively, ocean heat enters the Arctic region 

from the Pacific Ocean by way of the Bering Strait gateway (Woodgate et al. 2010).  
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Mean seasonal cycle of Atlantic Water OHT across (a) 65°N and (b) 80°N, and Pacific 
Water OHT across (c) 65°N for CMIP6 models for the period 1979-2014. The CMIP6 
multi-model mean are displayed by a red line. 

Figure 39. Mean annual cycle of Atlantic and Pacific oceanic heat transport  
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Global and Atlantic mean OHT convergence (OHTC) between 65°N to 80°N for CMIP6 
models for the period 1979-2014. No OHTC is calculated for NorCPM1 and SAM0-
UNICON because no value for Atlantic OHT at 80°N is specified. 

Figure 40. Global and Atlantic mean oceanic heat transport convergence for 
the period 1979-2014 

The CMIP6 Atlantic sub-polar OHTC MM is 197 TW, while the CMIP6 global 

sub-polar OHTC MM is about 7% larger at 211 TW (Table 13). Individual CMIP6 models 

simulate mean Atlantic sub-polar OHTC ranges from 148 TW (FGOALS-f3-L) to 247 TW 

(MPI-ESM1.2-HAM). In terms of the percent of OHTC within the Atlantic sub-polar 

region, the CMIP6 models range from about 70% (CanESM5 and IPSL-CM6A-LR) to 

99% (FGOALS-f3-L and MIROC), and the CMIP6 MM shows 86% convergence (Table 

13). In this study, we are most interested in the impact of Atlantic OHT trend on the pan-

Arctic sea ice cover, thus the remaining figures and results reflect this. Note that SAM0-

UNICON data does not include separate Atlantic or Pacific OHT and is therefore excluded 

from basin-level analysis (Table 13). 
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In Figure 41 we examine the 24-month running mean Atlantic OHT and the Atlantic 

sub-polar OHTC anomalies for the CMIP6 models. The CMIP6 MM shows an increasing 

trend in OHT for both the pan-Arctic and Arctic interior (Figure 41a and Figure 41b, 

respectively) that noticeably increases after the year 2000. At 80°N, eight of 16 CMIP6 

models (CanESM5, CanESM5-CanOE, EC-Earth3, EC-Earth3-Veg, HadGEM3-GC31-

LL, HadGEM3-GC31-MM, IPSL-CM6A-LR, UKESM1.0-LL) show a change in OHT of 

about 20 TW or more over the study period. Similar OHT change is also evident at 65°N 

for these models (except for IPSL-CM6A-LR), indicating that the increased OHT signal 

seen at 80°N propagates through the sub-polar Atlantic region. However, this is not the 

case for IPSL-CM6A-LR, which shows a decrease in OHT at 65°N, thus less ocean heat 

converges within the sub-polar Atlantic over the analysis period. Note that MPI-ESM1.2-

HAM also shows OHT trend inconsistency between their 65°N and 80°N OHT, indicating 

more ocean heat converges within the sub-polar Atlantic over time. Altogether, the CMIP6 

MM Atlantic sub-polar OHTC anomaly shows little change over the analysis period 

(Figure 41c). 

2. Temporal Analysis of OHT Forcing on Pan-Arctic Sea Ice 

The expected response of sea ice to increasing OHT is for it to melt or decline. We 

examine this expected behavior by comparing CMIP6 simulations of monthly mean OHT 

anomalies against their monthly mean SIA (Figure 42 and Figure 43) and SIV (Figure 44 

and Figure 45) anomalies. Here we show correlations for the full time series (i.e., month to 

month for January 1979 to December 2014) and the selected months of SIA maximum and 

minimum (March and September, respectively). December is also shown because it falls 

in the middle of the 80°N polar night, and therefore the atmosphere is generally below the 

freezing point of sea water and the region does not receive incoming shortwave radiation. 

As such, the atmospheric forcing on sea ice associated with shortwave radiation should be 

at or close to a minimum, and therefore somewhat isolate the oceanic forcing signal from 

the atmospheric. 
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24-month running means of Atlantic OHT anomaly at (a) 65°N and (b) 80°N, and OHTC 
anomaly between 65°N to 80°N for CMIP6 models for the period 1979-2014. No OHTC 
anomaly is calculated for NorCPM1 and SAM0-UNICON because no value for Atlantic OHT 
at 80°N is specified. The CMIP6 multi-model mean are displayed by a red line. 

Figure 41. 24-month running means of Atlantic oceanic heat transport 
anomaly 
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Correlation of OHT anomaly at 65°N against pan-Arctic sea ice area (SIA) anomaly for 
CMIP6 models for the period 1979-2014. Significant correlations (p<0.01) are indicated 
by filled bars. No OHT anomaly is calculated for SAM0-UNICON because no value for 
Atlantic OHT is specified. 

Figure 42. Correlation of oceanic heat transport anomaly against pan-Arctic 
sea ice area anomaly at 65°N for the period 1979-2014 
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Correlation of OHT anomaly at 80°N against pan-Arctic sea ice area (SIA) anomaly for 
CMIP6 models for the period 1979-2014. Significant correlations (p<0.01) are indicated 
by filled bars. No OHT anomaly is calculated for NorCPM1 and SAM0-UNICON because 
no value for Atlantic OHT is specified. 

Figure 43. Correlation of oceanic heat transport anomaly against pan-Arctic 
sea ice area anomaly at 80°N for the period 1979-2014 
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As in Figure 42 but for SIV anomaly. 

Figure 44. Correlation of oceanic heat transport anomaly against pan-Arctic 
sea ice volume anomaly at 65°N for the period 1979-2014 
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As in Figure 43 but for SIV anomaly. 

Figure 45. Correlation of oceanic heat transport anomaly against pan-Arctic 
sea ice volume anomaly at 80°N for the period 1979-2014 

Correlation between pan-Arctic SIA and Atlantic OHT the CMIP6 simulations is 

generally stronger at 80°N (Figure 43) than for 65°N (Figure 42). For the full time series, 

11 CMIP6 models show statistically significant anticorrelation between OHT and SIA 

anomalies at 80°N, meaning higher values of OHT have smaller values of SIA, and vice 

versa (Figure 43). The eight models identified earlier showing the greatest change in OHT 

anomaly (Figure 41b) are also identified here, with strongest anticorrelation across all 
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months examined (Figure 43). Differences between OHT correlation against pan-Arctic 

SIA at different latitudes is mostly in magnitude, but some model simulations do suggest 

opposing physical processes. For example, IPSL-CM6A-LR shows significant positive 

correlation for OHT at 65°N, i.e., decreasing heat transport and decreasing SIA anomaly, 

which is opposite to the OHT at 80°N results. In this case, the positive correlation is likely 

the result of the decreasing trends in Atlantic sub-polar OHTC (Figure 41c) and OHT at 

65°N. 

Correlation between CMIP6 model simulations of pan-Arctic SIV against OHT are 

very similar to the SIA results. Most models show stronger correlation against SIV for 

OHT at 80°N than for OHT at 65°N (Figure 45 and Figure 44, respectively). As was the 

case for SIA, IPSL-CM6A-LR shows some months of positive correlation between SIV 

and OHT at 65°N, as do the two NorESM2 models. Additionally, no meaningful lag 

correlation between monthly mean OHT and SIA or SIV is evident in the CMIP6 models 

(not shown). 

Next, we examine the relationship among CMIP6 simulations for OHT and pan-

Arctic SIA anomaly trends for the period 1979-2014 in Figure 46. A strong linear negative 

relationship exists between model simulations with large positive OHT trends (e.g., both 

CanESM5 models) and their negative trends of SIA. This can be interpreted as showing 

that CMIP6 model simulations of sea ice are sensitive to the trend in OHT. The CMIP6 

models are mostly divided between SIA simulations that show either stronger or weaker 

trends against the observed annual trend of –51×103 km2 per year from the combined 

passive microwave observations (Figure 46). The CMIP6 SIA MM trend in this model 

subset is about 6% slower (–47×103 km2 per year) than the observed trend, and its OHT 

MM trend ranges between 0.7 to 0.9 TW per year (at 80°N and 65°N, respectively). The 

CMIP6 models with the slowest SIA trends show little to no trend in OHT anomaly at 80°N 

(FGOALS-f3-L, MIROC6, and both NorESM2 models), and the OHT anomaly trend at 

65°N for these models shows larger spread (Figure 46). A recent estimate of the OHT into 

the Arctic Mediterranean (i.e., similar to our OHT at 65°N) from Tsubouchi et al. (2021) 

for 1993-2016 reveals a trend near 1.3 TW per year (or about 45% larger than the CMIP6 

OHT MM at 65°N). 
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Annual pan-Arctic SIA anomaly trends (in x-axis) and OHT anomaly trends (in y-axis) for 
the period 1979 to 2014 for CMIP6 models. OHT anomaly trends for 65°N and 80°N are 
indicated by open and filled symbols, respectively. The solid black line and gray shading 
indicates the passive microwave combined observations SIA decline (-51×103 km2 year-1) 
and standard deviation (66% uncertainty). The dashed gray line indicates the estimated 
OHT anomaly trend (1.3 TW year-1) for the Arctic Mediterranean (Tsubouchi et al. 2021). 
No 80°N OHT anomaly trend for NorCPM1 is shown because no value for Atlantic OHT 
is specified. 

Figure 46. Trends comparison between oceanic heat transport and sea ice area 
for the period 1979-2014 

Similar analysis for OHT and pan-Arctic SIV is shown in Figure 47. CMIP6 models 

are again divided between a grouping with faster SIV decline than the CMIP6 SIV MM 

reference trend of –290 km3 per year (from Chapter 3), and larger trends in OHT, and an 

opposite grouping. This 16-model CMIP6 subset has a SIV MM trend of –340 km3 per 

year, which is about 17% faster than the reference from all CMIP6 models. Individual 

CMIP6 SIV trends generally share the same relationship between OHT as was shown for 

SIA (Figure 46). That is, models with larger trends in OHT tend to have larger negative 

trends in SIV. 
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Annual pan-Arctic SIV anomaly trends (in x-axis) and OHT anomaly trends (in y-axis) for the 
period 1979 to 2014 for CMIP6 models. OHT anomaly trends for 65°N and 80°N are indicated by 
open and filled symbols, respectively. The solid black line and gray shading indicates the CMIP6 
MM SIV decline (-290 km3 year-1, from previous chapter) and standard deviation (66% 
uncertainty). The dashed gray line indicates the estimated OHT anomaly trend (1.3 TW year-1) for 
the Arctic Mediterranean (Tsubouchi et al. 2021). No 80°N OHT anomaly trend for NorCPM1 is 
shown because no value for Atlantic OHT is specified.  

Figure 47. Trends comparison between oceanic heat transport and sea ice 
volume for the period 1979-2014 

3. Spatial Analysis of OHT Forcing on Pan-Arctic Sea Ice 

The 1979-2014 mean SIC and anomaly linear trend for selected CMIP6 models are 

shown for the months of March and September in Figure 48 and Figure 49, respectively. 

These models are evenly divided between larger and smaller trends than the observed pan-

Arctic SIA anomaly trend of –510×103 km2 per year range (Figure 46). They range from –

320×103 km2 per year (MIROC6) to –820×103 km2 per year (CanESM5). In March, the 

Barents Sea region shows the largest negative SIC trends for all models except FGOALS-

f3-L (Figure 48). CanESM5, MPI-ESM1.2-HR, and UKESM1.0-LL show the largest 

regional trends (Figure 48g,k,l) and also indicate large positive OHT trends at 65°N ranging 
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from 0.6 to 2.6 TW per year (Figure 46). In September, there is more variation among 

CMIP6 models as to the region with largest negative SIC trends. However, CanESM5 and 

UKESM1.0-LL clearly show strong SIC decline along the MIZ near the Barents and 

Nordic seas (Figure 49g,l), and both have substantial positive OHT trends at 80°N ranging 

from 0.7 to 2.4 TW per year (Figure 46). On the other hand, FGOALS-f3-L and IPSL-

CM6A-LR show a more widely distributed SIC decline over much of the Arctic (Figure 

49h,i), and show positive and negative OHT trends at 80°N, respectively. 

 
March mean SIC for (a-f) CMIP6 models and (g) the NSIDC passive microwave 
observations for the period 1979-2014. March SIC annual trend for (h-m) CMIP6 models 
and (n) observations for the period 1979-2014. 

Figure 48. March mean sea ice concentration and linear trends in CMIP6 
models and observations for the period 1979-2014 
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September mean SIC for (a-f) CMIP6 models and (g) the NSIDC passive microwave 
observations for the period 1979-2014. September SIC annual trend for (h-m) CMIP6 
models and (n) observations for the period 1979-2014. 

Figure 49. September mean sea ice concentration and linear trends in CMIP6 
models and observations for the period 1979-2014 

In Figure 50 and Figure 51, the same models selected for SIC spatial analysis are 

shown here for the 1979-2014 mean SIT and anomaly linear trend for March and 

September, respectively. As discussed previously in Chapter IV, CMIP6 models show a 

wide range in representing the observed and estimated spatial distribution of SIT. The 

CMIP6 models have SIV anomaly trend ranges from –0.52×103 km3 per year (UKESM1.0-

LL) to –0.20×103 km3 per year (FGOALS-f3-L), compared against the 42-model CMIP6 

SIV MM trend of –0.29×103 km3 per year (Figure 47). In March, the regions of largest SIT 

decline in the CMIP6 models are largely coincident with their regions of thickest sea ice 

(Figure 50). This is most notable for CanESM5 and UKESM1.0-LL, which also have the 
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largest rates of SIV decline as well as strong positive Atlantic OHT trends at 65°N and 

80°N (Figure 50h,m). In September, unlike the SIA decline along the MIZ, the SIT decline 

is almost ubiquitous for all regions and for all CMIP6 models (Figure 51).  

 
March mean SIT for (a-f) CMIP6 models and (g) PIOMAS for the period 1979-2014. 
March SIT difference (2014 minus 1979) for (h-m) CMIP6 models and (n) PIOMAS. 

Figure 50. March mean sea ice thickness and linear trends in CMIP6 models 
and PIOMAS for the period 1979-2014 
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September mean SIT for (a-f) CMIP6 models and (g) PIOMAS for the period 1979-2014. 
September SIT difference (2014 minus 1979) for (h-m) CMIP6 models and (n) PIOMAS. 

Figure 51. September mean sea ice thickness and linear trends in CMIP6 
models and PIOMAS for the period 1979-2014 

D. DISCUSSION AND CONCLUSION 

Although largely unaddressed in this study, atmospheric forcing is manifest in a 

number of processes driving the simulated Arctic sea ice decline (e.g., Liang et al. 2020). 

These likely include changes in large-scale atmospheric circulation (e.g., North Atlantic 

Oscillation, variations in the polar vortex), warming SATs caused by increased GHG 

emissions, and sea surface warming resulting from reduced sea ice cover (i.e., ice-albedo 

feedback). Because all CMIP6 models simulate negative SIA and SIV trends (Figure 46 

and Figure 47) regardless of trends in the simulated OHT, the influence of atmospheric 
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forcing in CMIP6 models is clear. However, the majority of models with little to no 

Atlantic OHT trend at 80°N underestimate the rate of observed SIA decline (by up to 65% 

in NorESM2-MM). Thus, atmospheric forcing alone is likely insufficient to account for 

the observed sea ice decline (e.g., Deser and Teng 2008). 

Assuming the atmospheric forcing in the CMIP6 models similarly accounts only 

for a part of sea ice variability, then the oceanic forcing must account for the remaining 

external forcing of sea ice decline. A number of studies indicate increased OHT into the 

Arctic region, particularly AW through the Fram Strait and Barents Sea, which has impacts 

on the sea ice cover there (Polyakov et al. 2017; Tsubouchi et al. 2021). In contrast to the 

CMIP6 models which underestimate the SIA decline, those which exceed it exhibit strong 

positive OHT trends at 80°N (Figure 46). Thus, CMIP6 pan-Arctic sea ice simulations 

appear to be sensitive to OHT, but quantifying sensitivity is beyond the scope of this study. 

This also suggests that accurate delivery of ocean heat into the Arctic may be a key process 

for better representation of a) the 1979-2014 SIA trend, and b) the observed accelerated 

rate of sea ice decline (Comiso et al. 2008; Serreze and Stroeve 2015). 

Determining a causal link between OHT and sea ice decline for the summer months 

(e.g., September) is complicated due to the atmospheric forcing discussed earlier. 

However, the winter sea ice decline is more straightforward. During the polar night, SATs 

are well below the sea water freezing temperature and there is no incoming shortwave 

radiation (e.g., December at 80°N), thus the OHT impacts on sea ice may be relatively 

pronounced in December. 

Some limitations in our OHT analysis methods are worth discussing here. First, 

OHT is determined by both the volume transport and ocean temperature, but our methods 

did not permit analysis of these two variables separately. Such analysis could be a useful 

intercomparison for modeling centers to understand biases and disentangle systematic 

limitations. Second, while our analysis clearly illustrates the impact of increased OHT 

trends on pan-Arctic sea ice, particularly at 80°N, we were unable to differentiate the path 

of Atlantic OHT (i.e., West Spitsbergen Current or Barents Sea Opening). Regional OHT 

analysis better suited for differentiating these pathways is needed to diagnose model 

performance relative to observations. 
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A small number of CMIP6 models examined here in Chapter V are included in the 

Chapter IV spatial analysis and warrant qualitative discussion. Recall that Figure 35f,l 

show the March mean spatial Brier Scores for FGOALS-f3-L and UKESM1.0-LL. For 

FGOALS-f3-L, an increased trend in OHT at 80°N is not simulated well (Figure 41) and 

the position of the Bering and Greenland seas and Baffin Bay ice edge is poorly represented 

(Figure 35f). On the other hand, UKESM1.0-LL simulates an increased trend in OHT at 

80°N and a much better overall representation of the sea ice edge (Figure 35l). Of the 

models analyzed here, the CanESM5 simulates the largest OHT trend at 80°N and well 

represents the March ice edge in Barents Sea (Figure 35l). However, the accompanying 

large Brier Score in the Greenland Sea and Baffin Bay may be an example of a poorly 

represented distribution of heat (e.g., bias towards BSO pathway). While not a conclusive 

finding, this does support our hypothesis that simulations of OHT may have a substantial 

role in representation of the sea ice. 

In summary, compared to best estimates and recent reanalyses, the CMIP6 MM 

likely underestimates the northward OHT into the Arctic, particularly during the months 

July-November. About half of the CMIP6 models analyzed here have an increasing trend 

in Atlantic OHT into the pan-Arctic region after about 2000. This is consistent with 

recently published observational studies showing a similar increase (e.g., Tsubouchi et al. 

2021). A strong linear negative relationship exists between those model simulations with 

large positive Atlantic OHT trends and their negative SIA trends. Additionally, those same 

models have strong correlation between Atlantic OHT anomalies and pan-Arctic SIA 

anomalies. While not a conclusive finding, this does suggest that model simulations of 

OHT are sensitive to the trend in OHT and may have a substantial role in representation of 

the sea ice. 
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VI. CONCLUSION 

The research conducted as part of this dissertation focused on (a) improving the 

United States Navy’s understanding of the changing Arctic environment under the effects 

of climate change, (b) identifying progress and limitations in global climate model 

simulations of Arctic sea ice, and (c) suggesting areas for future study and potential model 

improvements. At the time of research preparation, CMIP6 data were freshly filtering into 

the ESGF repository from an increasing number of modeling centers and no CMIP6 

intercomparison studies had yet been published. As such, the primary direction for this 

research was clear, contribute to the base CMIP6 scientific knowledge through model 

intercomparison. 

Since the observed climate is but one realization in nature, and given the countless 

physical interactions occurring in the environment, it is unreasonable to expect a ‘perfect’ 

representation of past observations (Notz 2015). In the case of sea ice simulations, Notz 

(2015) attributes the discrepancies against observations with model and climate internal 

variability, measured uncertainty in observations, and model tuning. While model skill in 

simulating the past may not translate directly into skillful projections, it is hard to argue 

that a model showing little skill against the past will perform considerably better for future 

projections (Randall et al. 2007; Massonnet et al. 2012). Thus, model intercomparison 

against available observations is a necessary first step to identify higher quality simulations 

and uncover biases that may compound future uncertainty in climate projections. 

A. SUMMARY OF FINDINGS 

Provided here is a summary of conclusions from the three results chapters. While 

sea ice simulations in CMIP6 show a wide range in representing the historical state of the 

Arctic sea ice, they do share a number of characteristics common to observations. Nearly 

all CMIP6 models have SIE and SIA mean annual cycles with September minimum and 

March maximum. They all have declining trends in SIE and SIA over the period of satellite 

observations, 1979-2014. The mean annual cycle for SIV is also well represented in CMIP6 

with September minimum and April maximum. CMIP6 simulations of sea ice respond to 
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the increasing magnitude of cumulative CO2 concentration in the atmosphere and to global 

warming (global mean SAT) by losing sea ice. Thus, models generally simulate the 

observed multidecadal decline of sea ice in a warming climate.  

1. CMIP6 Multimodel Mean Time Series 

Collectively, the CMIP6 MM tends to outperform individual CMIP6 ensembles and 

closely matches the existing sea ice observations. Examining the CMIP6 MM provides the 

best estimate of the average sea ice response to climate forcing for the period 1979-2014. 

Because individual models have structural biases and varied responses to different climate 

forcing, averaging therefore reduces signal variability and gives confidence that the forced 

signal is represented. Additionally, analysis of the MM spread (i.e., standard deviation) 

provides estimates for the internal climate variability in response to forcing. The CMIP6 

SIA MM rate of decline, –0.47×106 km2 decade-1, underestimates the observed trend (–

0.53×106 km2 decade-1) only by about 10%. And the 12-month running mean CMIP6 MM 

SIA has approximately 0.5×106 km2 positive bias relative to the observed SIA, or about 

5% relative to the total ice-covered area. 

The CMIP6 SIA MM has an accelerated rate of decline between periods P1 and P2 

that is about 25% larger than the observations. However, the magnitude of SIA MM decline 

in periods P1 and P2 are 33% and 16% slower than observations, respectively. The 

observed accelerated rate of SIA decline is predominantly associated with the strong 

negative trend in September SIA. During P1, the CMIP6 SIA MM simulates a similar 

September SIA rate of decline, but underestimates the P2 rate (by around 25%) and 

consequently the accelerated September SIA decline. On the other hand, the March CMIP6 

SIA MM has an accelerated rate of decline that is not shown in SIA observations. Thus, 

the CMIP6 SIA MM dampens the observed seasonality in accelerated SIA decline, i.e., 

overestimates the March and underestimates the September P2 SIA trends. 

The CMIP6 SIV MM mean of 21.4×103 km3 and trend of –2.88×103 km3 decade-1 

for 1979-2014 pairs well with the SIV reanalyses. For example, relative to PIOMAS the 

SIV MM mean is about 6% overestimated and the trend is about 5% underestimated. The 

CMIP6 SIV MM has an accelerated rate of decline between periods P1 and P2. Compared 
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against PIOMAS SIV reanalysis, the SIV MM has a 10% stronger declining trend in P1 

and a 25% weaker trend in P2. The CMIP6 SIV MM has a mostly constant decline in SIV 

across all months and both periods P1 and P2. In contrast, the PIOMAS reanalysis indicates 

a substantial seasonal signal in the September SIV decline during P2. This discrepancy 

may be caused by PIOMAS underestimation bias of thicker sea ice, particularly during the 

later P2 period, and by errors in data assimilation of SIC around the MIZ (Zygmuntowska 

et al. 2013). 

2. CMIP6 Ensembles Time Series 

Individual sea ice simulations for CMIP6 models have both positive and negative 

biases against observations, with several models exceeding ±2σ of the observed mean. 

These biases can be attributed to several causes, e.g., the model structure or parameter 

tuning, internal variability, sensitivity to external forcing, and lack of or limitation in the 

representation of some physical processes. For example, a bias in the surface energy budget 

may result in simulations of too thick or too thin sea ice. Such a model may nevertheless 

respond to external forcing consistent with observations and/or display comparable sea ice 

variability, and thus may still be a suitable representation for climate analysis. Also, large 

spread among CMIP6 models and across ensemble members within a model indicate large 

uncertainty due to internal variability. 

The majority of CMIP6 models underestimate the 1979-2014 SIA trend, and those 

which overestimate it usually have positive SIA bias. About 25% of CMIP6 models show 

trends within ±2σ of the observed trend, and about 60% are within overlapping uncertainty 

estimates for the simulated and observed values, indicating they are from the same 

population distribution. About 70% of CMIP6 models have mean SIA within ±2σ of the 

observed SIA mean. SIA anomaly variability is lower than the observations in more than 

60% of the CMIP6 models, which indicates less extreme SIA interannual variability. Most 

models simulate a somewhat faster rate of decline in SIA starting in the mid-1990s (86%), 

i.e., accelerating decline, with about half of the models at least doubling their period P2 

SIA trends relative to those in P1. 
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For SIV, more models show trends that exceed the reference (i.e., CMIP6 MM for 

SIV) and PIOMAS than for SIA, albeit with larger model and observed trend uncertainty. 

About half of the CMIP6 models simulate mean SIV within ±2σ of the CMIP6 SIV MM 

mean, and about 30% are within ±2σ of the SIV MM trend. About 70% of CMIP6 models 

have a slower P2 rate of decline and slower accelerated trend than PIOMAS. Given that 

SIV is not well constrained in sea ice simulations and the large uncertainty in SIV 

reanalyses, we offer that CMIP6 SIV MM trends and acceleration rate for the time being 

may be a more suitable reference estimate. 

3. Spatial Analysis of Sea Ice Edge and Thickness 

 The integrated measures of SIA and SIV time series provide relatively 

straightforward comparison among the CMIP6 sea ice simulations. However, they provide 

only a limited comparison and require a bit of caution. For example, SIA can mask 

underlying inaccuracies in the simulated sea ice due to cancellation errors in regions of 

positive and negative bias. Therefore, a simulation may compare favorably to observations, 

but not consistent with the physical processes under examination. In addition, knowledge 

of model bias, e.g., northern hemisphere SIA, but not of the region or process responsible 

may be of limited value to the individual modeling center and unactionable. Thus, 

comparison of simulated sea ice time series is not enough to diagnose regional and seasonal 

biases. 

Examining the spatial distribution of SIT and the sea ice edge allows for a more 

thorough analysis of the sea ice state and change. This also lends itself to discerning 

potential causes of systematic sea ice biases in particular models. However, the tools and 

interpretation for such model comparison are not as well defined as for the time series. 

Narrowing the number of CMIP6 models analyzed to 12 was practically necessary to 

demonstrate spatial analysis with a workable subset. In particular, the ice edge analysis was 

proposed as a useful new metric to identify regional biases and guide further analyses, 

which should lead to improvements of common or individual model physics limitations in 

future CMIP simulations.  
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CMIP6 models have a wide range of SIT distribution patterns, as well as biases in 

ice edge representation. For SIT, the basic pattern of greatest SIT along the Canadian 

Archipelago and north of Greenland in March is mostly represented by the CMIP6 models. 

However, several models have significant pattern differences, likely associated with poorly 

represented general atmospheric circulation patterns, e.g., Beaufort High (Stroeve et al. 

2014). Furthermore, the quantitative spatial pattern correlation for March does not clearly 

distinguish models with poor SIT patterns or lend itself to regional diagnostics. In contrast, 

the September SIT patterns may offer more meaningful differences between models, but 

have the issue of data sparse SIT observations in summer. 

Because CMIP6 models correctly simulate the fully ice-covered Arctic interior in 

winter, the majority of ice edge errors during the colder months are in vicinity of the sub-

Arctic marginal seas (e.g., Bering Sea, Nordic Seas, Barents Sea, Baffin Bay). 

Overestimations of the ice edge across the Greenland and Barents seas, and 

underestimations for the Bering Sea are dominant during this period. The months of 

greatest ice edge error variability among Arctic sub-regions occurs from June through 

November. Examination of the region and timing (i.e., months) of over- and 

underestimations of the ice edge points to potential limitations in or lack of representation 

of some physical processes within individual CMIP6 models. Collectively, the peak 

regional ice edge errors evaluated over these months are overestimation of the Barents Sea 

and Baffin Bay for nine of 12 CMIP6 models, and underestimation over the Kara Sea (5 

models), and East Siberian Sea and Baffin Bay (each with 2 models). 

4. Oceanic Heat Transport and Convergence 

One such process that could contribute to discrepancies between the simulated and 

observed accelerated rate of decline in SIA, as well as the large ice edge errors in certain 

Arctic sub-regions, is the representation of warm ocean currents and their impact on the 

sea ice edge and thickness. In the majority of CMIP6 models, northward OHT in the polar 

cap region is likely underestimated when compared against reanalyses, but the seasonal 

cycles appear well represented. The CMIP6 OHT convergence (OHTC) MM shows about 

96% of the total OHT into the pan-Arctic enters via the Atlantic pathway, compared against 
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the Pacific. There is strong correlation between increasing OHT and decreasing sea ice 

trends in CMIP6 models. And several models simulate an increased magnitude of Atlantic 

OHT into the pan-Arctic region after around 2000, which is consistent with recently 

published observations and reanalysis studies (Mayer et al. 2016; Tsubouchi et al. 2021). 

B. RECOMMENDATIONS FOR FUTURE WORK 

Continued research is needed on the heels of the accelerated rate analysis for SIA 

and SIV from this dissertation. A study investigating the future projections of SIA and SIV 

against more recent observations, i.e., 2015-21, would be interesting to examine whether 

past performance indeed reflects future model skill. Additionally, would sub-selecting 

models result in significant differences in future projections, e.g., year of seasonally ice-

free Arctic? While the process and utility of sub selecting models is open for debate, the 

identification of plausible model simulations could improve projection uncertainties. 

Advocates of sub selection will point out grossly biased model simulations, e.g., NorCPM1 

lacking ‘skill’ in SIV and providing questionable value to the MM mean, could be set aside. 

However, in the other extreme, too strict a criterion reduces the likelihood of the 

MMensemble spread representing internal climate variability. 

Future studies are required to investigate processes responsible for the accelerated 

rate in sea ice decline in CMIP6 simulations. This dissertation identified the OHT as one 

potential driver, but a more thorough examination of the Arctic Ocean energy budget is 

needed. In particular, does the atmospheric surface flux or the meridional oceanic flux 

dominate in models which have accelerated rates of sea ice decline? 

One effort to improve underlying physical processes of climate models is the 

application of increased temporal and spatial resolutions. As computational resources 

become ever more abundant, modeling centers and scientists turn towards higher resolution 

simulations to resolve and link connections between climate model components. Yet, 

higher resolution alone does not necessarily result in improved simulations, rather it 

provides a path forward for improvement, but still requiring evaluation of 

parameterizations and fine tuning. Nevertheless, given the example of RASM-G, higher 

model resolution is critical for improving not only the Arctic sea ice but also global climate 
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forecasts because of more realistic representation of the Arctic environments:  e.g., ocean 

bathymetry, land topography, coastal geometry, coastal and shelf circulation, mesoscale 

eddies, sea ice deformations, polar lows and cyclones, clouds and atmospheric convection. 

The role of enhanced horizontal resolution in process level improvement for CMIP6 

models is under active investigation in High Resolution Model Intercomparison Project 

HghResMIP v1.0 for CMIP6 (Haarsma et al. 2016). 

Finally, the collection and availability of more observational data to evaluate and 

constrain model simulations of the environment is critical. For instance, a longer period of 

overlap among historical simulations and observations, e.g., SIT and SIA, will decrease 

uncertainty in the current sea ice state and trends. In future CMIP historical simulations, 

the observational overlap with passive microwave data will be extended, but also the scant 

Arctic SIT observations will also be increased following the launch of ICESat-2 in 2018 

and joining CryoSat-2 (in orbit since 2010). Ice-Tethered Profilers (ITP) provide 

hydrographic observation data under the ice since 2004. Comparing CMIP models against 

ITPs located in purposefully sampled regions, e.g., near Pacific and Atlantic water inflows, 

may further illuminate model limitations and biases in the simulations of oceanic forcing 

on sea ice. Additionally, persistent hydrographic observations at the Arctic gateways are 

important to quantify changes in volume and heat transport and convergence. 
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