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ABSTRACT 

 As web users resort to adopting encrypted networks like Tor to protect their 

anonymity online, adversaries find new ways to collect their private information. Since 

videos over the internet are a major source of recruitment, training, incitement to commit 

acts of terrorism, and more, this project envisions developing a machine learning 

algorithm that can help the Department of Defense find terrorists who take advantage of 

the dark web to help promote extremist ideology. This thesis describes the steps for 

training a machine learning classifier in a closed-world scenario to predict YouTube 

video patterns over an encrypted network like Tor. Our results suggest an adversary may 

predict the video that a user downloads over Tor with up to 92% accuracy, or may predict 

the length of a video with error as low as 5.3s. Similar to known website fingerprinting 

attacks, we show that Tor is susceptible to video fingerprinting, suggesting that Tor does 

not provide the level of anonymity as previously thought. 
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CHAPTER 1:
Introduction

1.1 Introduction
As the Department of Defense (DoD) and other agencies move to develop and integrate
Machine Learning (ML) strategies to fight terrorists who use the dark web for criminal
activities, video training and recruiting capability continues to be a valuable tool used by
terrorists [1]. While computer technology continues to advance, anonymous communica-
tions has become an enabler for criminal behavior in the dark web [2]. However, it has
been shown that some forms of traffic analysis may be used to predict people’s behavior on
the dark web. Such findings suggest that the dark web is not as anonymous as previously
thought [3].

The objective of this research is to identify video traffic patterns over TheOnion Router (Tor)
protocol. By impersonating an adversary, we first build a database in which we passively
observe video traffic between a client and her Tor connection. Then, we train various
classifier and regressor ML models to identify traffic patterns. Using this attack model,
we predict the name and length of a video that users are watching over Tor. The attack
is called Video Fingerprinting (VF). This research aims to use an ML classifier that can
achieve high accuracy on predicting a user’s video download over an encrypted network
such as Tor. Our findings support that Tor may not be as private as once thought. Moreover,
VF attacks performed on law-abiding users may prove to be a privacy challenge that must
be taken into consideration.

The focus of this research is to asses a Tor adversary’s ability to disrupt illegal recruitment
and training of terrorist organizations. This will be completed by determining the subject of
a video a terrorist sympathizer watches over the Tor network. More specifically, this thesis
explores how an ML classifier can be trained in a supervised environment to predict, with
high confidence, videos by observing encrypted traffic patterns over Tor.
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1.2 Purpose and Scope
The primary focus of this research is to create a VF attackmodel by collecting a high number
of video captures that can be used to train a detection algorithm for predicting video patterns
using ML techniques. The ML process will create models used to detect unusual frequent
patterns of videos in a VF attack environment. The goal is to study which traffic predictors
correlate best for video prediction. It is also important to evaluate how different ML models
perform in these various attack settings. We expect that the VF attack may reach similar
results compared to Website Fingerprinting (WF) attacks given that similar features are
used.

One hypothesis is that ML classifiers trained on encrypted video streams may be used by
adversaries to predict which videos users are watching. However, we seek to learn if ML can
in fact be used to predict user videos over encrypted traffic, and which ML models perform
best for predicting various labels such as a unique video identifier and a video length. This
research also focuses on learning if video streaming times correlate well enough with video
length to be used as a predictor for improving accuracy.

In addition, this research explores Deep Learning techniques proposed by Rahman et al. [4]
forWF attacks.We achieved similar resultswhenwe run Sirinam et al.’sDeep Fingerprinting
models [5] to perform the VF attack against Tor.

1.3 Thesis Organization
The thesis is organized as follows. Chapter 2 is an overview of the Tor network, previous
research on WF attack models, and provides a description of how this thesis proposes
to use the same WF concept to perform the VF attack over Tor. It also includes a brief
description of the different classifier and regressor ML algorithms that will be used in the
thesis. Chapter 3 describes our methodology including our process for obtaining the data
using a web crawler program, our data representation for exploration, our assumptions,
and our attack models. Chapter 4 describes how the data was generated in preparation to
be used for exploration with the different ML algorithms. It describes the results of our
experiments and major findings. Chapter 5 provides recommendations for future work.
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CHAPTER 2:
Background and Related Work

This chapter provides a comprehensive review of the literature related to the Tor network
and its challenges against WF attacks. It explores different studies that aim to predict the
websites a user visits over Tor by passively analyzing the traffic between the user and her
Tor connection. A similar approach may be used for predicting videos over Tor, which is
the scope of the rest of this thesis.

2.1 Networking Overview
As millions of people continue to look for ways to keep their identity private and pro-
tected from passive adversaries, the demand for anonymous communication systems has
significantly increased in recent years. Standard requests for information on the Internet
use Transmission Control Protocol (TCP), a highly symmetric protocol in that a client and
destination can transmit and receive data packets simultaneously [6]. In addition, the data
packet is encrypted as part of the Transport Layer Security (TLS) handshake to ensure that
sensitive information cannot be seen by eavesdroppers [7].

However, a passive adversary may still profile users by observing their URLs or the websites
they routinely visit [8]. One popular system is called Tor which allows users to build
an encrypted channel using randomly chosen proxies before making any requests on the
Internet [9]. This distributed architecture makes it very difficult for a passive adversary
to link a client to her destination, unless the adversary can observe traffic between both
the client and her entry node, and simultaneously the exit node and her destination; in
which case the adversary may deanonymize the client by performing an end-to-end timing
attack [10]. Additionally, other research has shown that the privacy Tor offers has been
challenged by passive and active attacks [11].

2.2 Tor Onion Router
Tor is an open-source network that allows anonymous communication by not letting an
eavesdropper link a client to her destination. To establish a secure connection, Tor chooses
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a path to build an encrypted circuit in which it routes encrypted data between a client and
destination through a random selection of three Tor relay nodes.

Shown in Figure 2.1 is a graphical representation of a Tor circuit. By default, the client
establishes a set of circuits and stores them in the circuit pool to be ready for use.When client
(A) makes a connection request to reach destination (B), a ready made circuit is retrieved
from the circuit pool. The client then receives a random circuit identification number that
is time stamped. After ten minutes, the circuit is switched to a new circuit that is waiting in
the circuit pool. The same process continues for the duration of the session. Through one
circuit, a client may connect to several different destination websites because each circuit
can be shared by several TCP streams [12].

Figure 2.1. Tor network.

The first hop in a Tor circuit is known as theGuard node. By establishing a unique symmetric
key between theGuard,Middle, andExit nodes, the client can route encrypted data. Initially,
the client is in possession of all three keys. The Tor browser encrypts the packet with the
three keys on top of the other in reverse order. As the Guard node T1 receives the packet,
it strips off the address of the Middle node T2. The Middle node T2 follows the same
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step, it decrypts the packet and forwards the packet onto the Exit node T3. Finally, the Exit
node decrypts the packet and determines the destination. Each of these nodes knows its
predecessor and successor are but no other node in the circuit. The final destination receives
a data packet without a Tor encrypted layer or the identity of the client. Instead, it is given
the identity of the Tor Exit node, in this example, T3.

In attempts to reveal possible attacks on the Tor network, researchers have experimentedwith
ways to test the anonymity of the network against traffic analysis. Danezis andMurdoch [13],
presented a technique on how an adversary has the advantage to collect and analyze the
routing of TCP streams over the Tor network between a client and theGuard node. Although
they point out in their research that their results did not allow them to predict the origin
of the client, they were able to uncover visited websites over a Tor connection [14]. In
addition, it was noted that the timing characteristics of a stream on a Tor node do not change
significantly, and the volume of traffic carried in one stream influences the latency of other
streams [13].

2.3 Website Fingerprinting
Recent studies have shown that Tor is vulnerable toWF attacks. Herrmann et al. [8], describe
how WF allows an adversary to passively identify websites in an encrypted connection by
analyzing the patterns in the network. Their classifier was able to identify 97% of 775
websites over Tor. Pachenko et al. [15] describes how an adversary with robust capabilities
as the Internet Service Provider (ISP) or limited resources from a home WiFi connection
could eavesdrop on a traffic transmission between a client and a Tor guard node. By
extracting features such as time, packet length, and direction without breaking the encrypted
transmission, the adversary could create a dataset to train a ML. Their research improved
website recognition over Tor from 3% to 55%".

Related work has examined the use of different types of ML classifiers to recognize several
websites. In addition, the main page of a website, referred to as the index, has been utilized
in the build-up of datasets with the goal to reach a successful WF attack.

Pachenko et al. [16] developed an approach called the novel WF attack that begins with
the collection of a large dataset consisting of more than 300,000 of the most commonly
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visited websites. They assume that the adversary has the resources to download and store
this large dataset. Using the K-Nearest Neighbor (kNN) classifier approach proposed by
Wang et al. [17], they evaluated the characteristics between a set of websites and individual
webpages by observing the transmission of metadata. Since the kNN classifier relies on
distance, it selects the length of the network packet, timestamp, and the outgoing packets.
In addition, collection of data from different locations showed that the accuracy was similar
for clients that use the same network. The authors point out that their assumptions result
in one of the most realistic attacks; they explain that this type of attack is costly for the
adversary since a large-scale dataset requires constant review of website updates.

Traditional ML algorithms have proven to be successful for performing WF attacks. How-
ever, Sirinam et al. [5], proposed a new type of WF attack called Deep Fingerprinting (DF)
that is based on a Convolutional Neural Network (CNN). Since Deep Learning (DL) models
do not require selection or fine-tuning of features by hand, they can produce high accuracy
on raw network traffic without the need for much prepossessing. The goal of this research
was to reevaluate the prior work [16] and [17] by introducing three different DL models:
1) a CNN model, 2) a Long Short-Term Memory (LSTM) model, and 3) a Stacked De-
noising Autoencoder (SDAE) model [18]. The results show a high accuracy of 94% for
the CNN model when used against Website Traffic Fingerprinting Protection with Adap-
tive Defense (WTF-PAD) and Walkie-Talkie (W-T) defenses. This suggests that, through
automated techniques, adversaries can train DL models to be successful for WF attacks.

Cai et al. [19], proposed an attack on Tor using pipelining. Pipelining is a sequence of data
processing components. Since ML components run asynchronously, the pipeline improves
performance by enabling data to be transformed and correlated into a model that can
be explored to reach results [20]. Since HTTP requests can be split into multiple partial
requests as cover traffic, pipelining can analyze the requests simultaneously even if the order
of requests are obfuscated. The authors used a Tor version of Firefox to demonstrate the
effectiveness of an attack when HTTP requests were made in random order. For the test,
all packets were padded to ±1500 to obtain the same probability. The results were positive,
showing a success of more than 83% with a dataset size of 100 webpages.
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2.4 Attack Models
The two attack models that are prevalent for video fingerprinting attacks are called closed-
world and open-world. A closed-world attack assumes the user will only download videos
that the adversary used to train their model [21]. This assumption is somewhat relaxed with
respect to the adversary’s probability of success because the model will never be challenged
with videos that it has not seen during training. For example, in our experiments, we use
the closed-world model in which the adversary trains on nine videos; during test time, the
user may not download any other videos on the Internet except for these nine.

In the real world, it is impossible to train on all the possible videos a user could download.
However, to simulate this, we can use an open-world attack model in which the user is
allowed to download videos that the adversary did not include in their training set. The
adversary would then train their ML algorithm on both videos of interest and a set of other
open world videos. At test time, the model will be better equipped for handling unknown
samples given that the user is allowed to download videos that the adversary did not include
in their training set.

2.5 Video Fingerprinting
In recent years, video streaming has become popular for educating, informing, and entertain-
ing large audiences over the Internet. However, similar to WF attacks on websites, network
analysis presents a privacy concern when an adversary uses VF techniques to identify video
streams over an encrypted network. Following the same WF concept, an adversary could
build a dataset in which they passively observe and download traffic between a client and
her Tor guard node [22]. Then, the adversary may train an ML classifier to identify traf-
fic patterns. Using this attack model, the adversary may predict which videos clients are
watching over Tor.

To the best of our knowledge, prior research on VF attacks have been done on popular video
streaming websites such as Netflix and Chrome [22], [23] among others. Following previous
work from Rahman et al. [4], we focused our research on YouTube videos stream over the
Tor network. The intent of this research is to explore different ML models and understand
how they perform on VF attacks against users who browse YouTube videos over Tor.
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Knowing that the number of users who watch videos on the Internet has surged in recent
years, Dubin et al. [24], explored a VF attack on HTTP encrypted adaptive streaming
by predicting the name of a video. To improve the Quality of Experience (QoE), video
streaming uses Dynamic Adaptive Streaming over HTTP (DASH), a Multi Bit Rate (MBR)
streamingmethodwhere a video is divided into segments and encodedmultiple times so that
the Adaptation Logic (AL) algorithm may select the best representation of each segment.
This work focused on YouTube videos played from a Chrome browser. The authors found
that a Support Vector Machines (SVM) classifier with Radial Basis Function (RBF) kernel
achieved an accuracy of 72%, and a kNN classifier with over 95% accuracy when a low
bit-rate was smaller than 400KB representing videos with low quality and size.

2.6 Machine Learning
ML is the art and science of programming computers so that they can learn from data [20].
Supervised ML (SML) uses algorithms to learn how to map a function from an input
variable G to the output ~. By approximating a function 5 as accurately as possible, when
a new input G is given, the output ~ can be predicted such that ~ = 5 (G). The components
[G1, G2, ..., G=] of G are known as features. The two main tasks used by Supervised Machine
Learning (SML) are classification and regression [20].

Following previous work from Panchenko et al. [15] and Wang et al. [25], this research
extracted features such as packet time, packet length, and packet direction to predict labels
such as the name or length of a YouTube video. These features were collected in a dataset
to be able to train SML models. In addition, the VF attack model was evaluated in a closed-
world setting, which assumes the user is viewing predetermined videos. One approach was
to perform an 80/20 random split of the data into a training and test set respectively, in
which the test set is used to test the model that was trained on the training set [20].

2.6.1 Classification Models
This research used the name of a video as the label for a classification task, and learn a
function 5 that may categorize the output ~ from observing a new input G. The accuracy,
precision, and recall will help analyze the performance of the classification models. As seen
in Table 2.1, the four possible outcomes are represented in the confusion matrix. The model

8



predicts True Positives and True Negatives when the prediction is the same as the label.
The model predicts False Positives and False Negatives when the prediction is positive
compared to a negative label, and when the prediction is negative compared to a positive
label, respectively [20].

Predicted Class = Yes Predicted Class = No
Actual Class = Yes True Positive False Negative
Actual Class = No False Positive True Negative

Table 2.1. Confusion matrix [20].

Accuracy is the "ratio of correctly predicted observations to the total number of observa-
tions" [26], seen in Equation 2.1.

�22DA02~ =
)% + )#

)% + �% + �# + )# (2.1)

Precision is the "ratio of observations correctly predicted divided by the total number of
positive observations" [26], seen in Equation 2.2.

%A428B8>= =
)%

)% + �% (2.2)

Recall is the "ratio of the positive observations correctly predicted divided by the total
observations" [26], seen in Equation 2.3.

'420;; =
)%

)% + �# (2.3)

K-Nearest Neighbor (kNN) In [20], Geron describes kNN as one of the most simple
ML classification algorithms. In the research we use a given N training sample where the
algorithm iterates through the training set and measures the Euclidean Distance from a new
sample to all the other data points. By selecting the "k" nearest neighbors, and allowing
each neighbor to have an equal vote, the new sample’s class is determined by the majority.
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In addition we use the weighted kNN where each neighbors’ vote carries a weight that is
inversely proportional to the distance from the new sample i.e. votes from closer neighbors
count more than votes from neighbors that are farther away. Being a hyperparameter of the
model, "k" may be tuned to achieve the best model fit.

RandomForest Classifier (RFC)The Random Forest algorithmworks as a large collection
of decorrelated decision trees [20]. Breiman’s paper describes the selection of features [27].
We use a similar concept to create a training matrix composed of a large number of sub-
samples in which features such as direction and time packets are randomly chosen for each
random decision tree that is created. Individual trees are limited to a depth of no more than
two nodes, causing each tree to be a relatively weak learner. However, bagging the set of
trees together and taking the average prediction produces a model that generalizes better
over new test samples and improves overall prediction accuracy.

Support Vector Machines (SVM) As Wang describes [28], SVMs are a "distance-based
metric function, which, given an instance, produces a value that describes which side of
the decision boundary the instance should reside." Using Wang et. al’s approach to classify
websites, our research uses a similar (SVM) approach to classify video "traffic instances"
where the function finds distance based similarities in the packet time or direction of our
YouTube traffic in order to classify the instances.

Convolutional Neural Network (CNN) CNNs is a class of deep neural networks. As
explained by Gall, "a neural network has an input layer, hidden layers, and an output layer
where the input layer accepts inputs in different forms, while the hidden layers perform
calculations on these inputs, and the output layer delivers the outcome of the calculations
and extractions." [29] As websites like YouTube have adopted video streaming techniques
such as DASH, research has shown that CNN layers can be used to generate representations
of features from the unique burst patterns that a YouTube video contains [20], [22].

2.6.2 Regression Models
In another experiment, the packet length of a video will be used as the label for a regression
task, and an estimation function 5 will be trained to regress a numerical output ~ from
observing a new input G. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and '2 metrics explained below were used to analyze the
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performance of the models [20].

MAE "represents the average of the absolute difference between the actual and predicted
values. It measures the average of the residuals in the dataset." [30] As seen in Equation 2.4,

MAE =
1
=

=∑
1
|ℎ(G) − ~ | (2.4)

the residuals are the vertical distance between the predicted value ℎ(G), and the label ~. The
absolute difference of the residuals is averaged over the dataset to give MAE.

MSE "represents the average of the squared difference between the original and predicted
values in the data set. It measures the variance of the residuals" [30], seen in Equation 2.5.

MSE =
1
=

=∑
1
(ℎ(G) − ~)2 (2.5)

RMSE "is the square root of mean squared error. It measures the standard deviation of
residuals" [30], seen in Equation 2.6.

RMSE =

√√
1
=

=∑
1
(ℎ(G) − ~)2 (2.6)

'2 or coefficient of determination "represents the proportion of the variance in the dependent
variable which is explained by the linear regression model. It is a scale-free score" [30],
seen in Equation 2.7. Values from 0 to 1 are interpreted as percentages. The higher the value
is, the better the model is.

'2 = 1 −
∑=

1 (~= − ~′)2∑=
1 (~ − ~′)2

(2.7)

Gradient Boost Regressor (GBR) GBR is an ensemble learning technique in which a
combination of several ML algorithms [31] known as weak learners [20], together are
trained with the effort to reach higher predictions compared to what a single ML model
could achieve. This approach uses a boosting technique where the predictors are trained in
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a sequential order, each learning the error rate produced from its predecessor [20].

Random Forest Regression (RFR) Similar to GBR, RFR is an ensemble of Decision Trees
trained by a bagging technique [20]. In bagging,ML algorithms are trained independently on
sub-samples of the training set, creating a robust approach vice using a singleML algorithm.
By averaging the individual model’s output, the overall predictions of the ensemble is
improved [32]. This technique improves variance for the ensemble aswhole, at the expense of
increased bias for each individual model within the ensemble; where 180B is a generalization
of errors due to wrong assumptions and the {0A80=24 is a model that is perceptive to small
variations in a training set [20].

K-Neighbors Regressor (kNR) kNR is another powerful regression model that may be
used to predict a continuous value such as the video length of a YouTube video. kNR
finds the nearest neighbors in a non-linear data distribution that matches the query point.
It approximates the association between independent features by averaging the closest
observation in the same neighbor. The prediction is the average of the observed values [33].
It is important to mention that the selection of the k value affects the outcome by overfitting
the data, which means that the variance of the error estimate could be high. Therefore,
choosing k requires testing on a range of k values, and selecting the value that generalizes
the best over test samples without overfitting the training data.
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CHAPTER 3:
Methodology

This chapter discusses the data collection and preparation process required to conduct an
evaluation of machine learning and its application for predicting YouTube videos. Addition-
ally, this chapter provides initial data representations and explores assumptions for using
the WF attack models and other ML models to achieve the VF attack.

3.1 Data collection
Using a similar web-crawler concept that Wang and Juarez applied to the WF attack
model [23], [28], we collected network traces from a home Wi-Fi network environment
to simulate the VF attack model. The steps illustrated in Figure 3.1 are the visual repre-
sentation of the Virtual Machine (VM) environment. The process to collect the data was
divided into five separate phases.

Figure 3.1. Virtual Machine environment.
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Phase 1 The collection and selection of the metadata was done in a VM environment.
Lubuntu1 version 20.04 VM operating system allowed the use of a lightweight sterile
environment with 350 Megabytes of RAM and low hardware requirements where YouTube
videos were passively downloaded from a Tor network.

Phase 2 The crawler [34] uses Selenium2 to automate the Tor Browser Bundle (TBB)
version 8.0.2 and the YouTube Data Application Programming Interface (API)3 to stop the
video capture when done playing. The Docker4 software helps run the crawler inside an
encapsulated package called tbcrawl container. In addition, the crawler uses tcpdump, a
program designed to capture network packets for analysis. It is important to mention that
a YouTube video will always play an advertisement before the user can watch the selected
video, the crawler is set to skip this option to recreate a user interaction with YouTube.

The configuration of a Tor circuit is set to close in 600000 (seconds), our approach follows
Wang and Goldberg [28] where the circuit is set to close in 10 minutes. By setting the
UseEntryGuard to 0, it prevents a user from using a fixed set of guard nodes, forcing the
guard node to be selected in a random fashion. Since a user is not expected to make changes
to these types of configurations, the crawler model proceeds to emulate a real collection of
data. Through Wireshark5, a network protocol analyzer, Packet Capture (PCAP) files are
saved for future use in a parser code, which is explained in Phase 3. Lastly, the crawler
takes screenshots every so often to let an adversary visually verify that data from a YouTube
video is being collected.

Phase 3 The next phase uses a parser code to identify and separate the data as needed. By
using the Scapy library to parse the captures and TShark to filter the traces by IP/MAC
address, the parser code processes IP-level capture PCAP files into a sequence of tuples con-
taining packet time and direction. The parser code recursively searches through directories
to find PCAP files. For each PCAP file, it parses through and fetches timestamp, packet size,
and direction. Applying Wang et al.’s [17] approach, we converted the raw packet direction
values to +1 for outgoing and -1 for incoming as observed from the clients perspective.

1https://lubuntu.net/
2http://docs.seleniumhq.org/
3https://developers.google.com/youtube/v3/
4https://www.docker.com/
5https://www.wireshark.org
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We also kept a copy of the raw times and directions for additional analysis as discussed in
Section 4.3.

Phase 4 Due to the high computation cost of collecting and processing metadata from a
home WiFi network, a parallel computing cluster was used to perform data exploration.
The Hamming supercomputer used by Naval Postgraduate School (NPS) provided enough
computer resources to parse the raw data into the required formats for the next research steps.
The Hamming resources used for this work included one node with 250GB of memory and
64 CPUs which allowed multiple SML models to run simultaneously.

Using Wang et al. [28] methodology, the "data was collected batch-by-batch, with each
batch corresponding to one circuit (one client)"; in our exploration, each batch took around
seven hours to download. By crawling and downloading the nine YouTube videos into a
batch, we collected each video 10 times. This resulted in a collection of 138 batches in the
course of seven months. Following Wang’s steps, "if the size of the video traffic instance
was less than 20% of the median size for that video, it was removed." This is an anomaly
we experienced same as Wang where he describes them as "failed instances, which may be
a failed connection to the server or a server-originated message that denied access to the
client." We also removed samples that downloaded less than 100 packets.

Phase 5 The last phase is run in a closed world environment where the video ID and video
length are used as labels in a training and test set. The dataset was created and stored
in a Pandas Dataframe with rows corresponding to each video recording, and the columns
corresponding to video identification, video length, last packet time, individual packet times
{C0, C1, C2, ...C=}, and individual packet directions {30, 31, 32, ...3=}. To deal with videos of
different lengths, we added padding in the form of zeros to the end of all samples to ensure
that the feature inputs should be the same size. This resulted in a total of 86,754 features for
all samples.

We used Equation 3.1 [20], which is described below, to scale the x values to help improve
the ML model.

G′ =
x − G
f

(3.1)
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First, we calculated the mean and standard deviation for every column. Then, the distri-
bution mean was shifted to zero by taking the column value and subtracting the mean.
The distribution was then divided by the standard deviation to bring the variance around
one for all the columns. This scaling procedure allows the data to be in the same scale
rather than having high and low values in the columns. As for the y values, we used the
video identification for the classifier ML algorithms and video length for the regressor ML
algorithms.

3.2 Dataset
For this research, we used the YouTube website, a popular video-sharing platform viewed
by millions of people. We collected nine popular movie trailers with different video lengths
in the range of two to seven minutes to create the dataset. These short videos were selected
with the assumption that an extremist group may post short propaganda videos that could
be seen by a regular user who uses YouTube as their search mechanism to search short
videos such as movie trailers. We attempted to achieve similar results as Herrmann et al. [8]
WF traffic analysis attack model, where the labels are webpages and the features are traffic
traces. In our approach, we used the video ID and video length of the YouTube videos as
the labels, and traffic traces as the features for a VF attack.

3.3 Threat Model
Following Ever, Juarez, Pachenko et al. [5], [11], [15] assumptions for a WF attack model,
we explored the same assumptions for a VF attack model as discussed below.

We assume that the DoD or other agency impersonate as an adversary that has the capability
to compromise an ISP or is able to access the WiFi of the client to passively observe traffic.
This approach recreates how an adversary can intercept the traffic trace without modifying
or decrypting the transmission to predict information about the YouTube video the client is
watching over a Tor network.

In this environment, we assume that an adversary compiled a series of popular movie trailers
watched by the client in recent months. This research considers Juarez’s [23] criticism for
a WF attack for not being a reflection of a real-world scenario. In a WF attack model, an
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adversary is not able to collect data from all the popular websites visited by a client. In our
case, an adversary with high resources will never be able to collect traffic traces for all the
videos YouTube has in its inventory. Instead, the assumption is that an adversary could use a
small training set as an initial approach to visualize the dataset and find possible anomalies.

By taking into consideration the relationship between download times and the actual play
time of each video, as well as between download times and the possible network latency that
a regular client may encounter, we attempt to predict the play time of a video by observing
a set of downloaded traffic traces and inspecting the direction of incoming and outgoing
packets.

Based on the amount of data collected, and the use of a specific version of the TBB (ruling
out software updates), we assume that the VF attack model will be as effective as the WF
attack model as shown in previous research [4], [15].

However, some concerns other researchers [35] have noted are:

• An adversary may not know if the client is playing multiple videos simultaneously.
• Downloading other files when the adversary is collecting data could create noise
traffic. Although this research does not work on these concerns, it is mentioned as a
concern that other researchers have worked on for the WF attack models [19], [36],
[37].

3.4 Attack Model
The intention of the adversary is to challenge the defense mechanism that Tor offers to a
client. As seen in phase 1 of Figure 3.1, by impersonating an eavesdropper who collects
several batches of YouTube videos into a dataset, we are able to analyze the traffic between
a client and the guard node of a Tor network.

After collection, the adversary extracts features from a dataset of nine YouTube videos with
length averaging between two and seven minutes. Some features that could help predict a
YouTube video ID or length are: 1) packet transmission time, and 2) incoming or outgoing
direction. Since this approach has been successful on WF attack models, an adversary
could potentially use the same features for a VF attack. By using these features in a closed
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world scenario, the adversary can monitor YouTube videos that a user possibly watches.
The exploration assumes a real scenario where an adversary knows the videos that a user is
watching.
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CHAPTER 4:
Test Design and Implementation

This chapter describes in-depth the five phases described in Chapter 3. It implements Scikit-
learn [38] for the classification and regression algorithms, and Tensorflow [39] for the CNN
algorithms. We explore the learning pipeline with the selected features and show how the
system was configured to produce ideal results.

4.1 Data Generation
By populating the dataset from the 2-tuples, packet times and directions, we experimented
with the performance of each of the algorithms. Using both packet times and directions as
features, and solely packet times and solely packet directions as features, we were able to
find strengths and weaknesses for each of the algorithms.

Before evaluating the algorithms in Section 4.5 and 4.6, we scaled and split the dataset into
a train and a test set. We used an 80-20 split where 80% of the data was used for training,
and 20% was used for testing [20]. In addition, the training set was used to fit the model,
where the data in the model is generalized as close as possible to a similar label. The test set
was set aside and used later to predict the unseen data. Additionally, outliers were removed
to improve the performance of the ML algorithms. Videos showing last packet time capture
with unusual sizes that were not close to the actual video length were removed from the
dataset. The action resulted in the removal of 5920 video captures leaving 5605 captures in
the dataset for exploration.

4.2 Initial Exploration
Initial visual exploration of the dataset shown in Figure 4.1, with a Heatscatter plot, reveals
a slight positive correlation between last packet time and video length. Using the dataset
with all nine videos, we explored the correlation between the video length represented as
length on the y-axis, and the time the last packet was received for the video download,
represented as the last packet time on the x-axis. The last packet time should be a good
indicator of video length because it marks the time at which the download is complete.
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Moreover, last packet time will always vary due to download speed, network latency, and
congestion. Figure 4.1 shows from the start of each video an increase in last packet time as
video length increases indicating a positive correlation.

Figure 4.1. Initial visualization of nine video lengths and their last packet
time captured. In a positive linear correlation, we expect to see the y values
increase as the x values increases [20].

Continuing the exploration, Table 4.1 shows more precisely the numerical representation
of existing correlation values ranging from -1 to 1 [20]. The table shows a fairly strong
positive correlation of 0.73 between last packet time and video length. Additionally, we see
a slight positive correlation between last packet time and video ID of 0.39. These results
suggest that last packet time should be a strong predictor for our ML algorithms. Moreover,
the table indicates that some features are correlated. For example, there is a correlation
of 0.52 between t100 and t500. This suggests that the selected ML approach should not
assume zero correlation among features. For example, since Logistic Regression assumes
zero correlation among features, it may not be the best approach for this dataset [20].
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length last pkt time t100 t500 d100 d500 video ID
length 1.00 0.73 -0.02 -0.01 -0.00 -0.01 0.39
last pkt time 0.73 1.00 0.01 0.06 0.01 -0.02 0.41
t100 -0.02 0.01 1.00 0.52 0.04 0.03 -0.04
t500 -0.01 0.06 0.52 1.00 0.03 0.02 -0.01
d100 -0.02 0.01 0.04 0.03 1.00 0.01 0.05
d500 -0.01 -0.02 0.03 0.02 0.00 1.00 -0.01
video ID 0.39 0.41 -0.04 -0.00 0.05 -0.01 1.00

Table 4.1. Correlation matrix.

Another approach for understanding correlation was by visualizing the correlation matrix
using the Seaborn Heatmap shown in Figure 4.2. The color bar chart displays dark colors
indicating low correlation, and light colors indicating high correlation. These values indicate
the same findings from Table 4.1 which are: 1) last packet time has a positive correlation
with video length and video ID, and 2) some features are correlated in the dataset.

Figure 4.2. Correlation matrix for different features and labels of the dataset.
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4.3 Data Format
We used two individual approaches to structure the dataset in preparation for the classifier
and regressor ML algorithms. Following Wang et al. [25], we used packet direction and
packet time as independent x values, and combined the packet timewith the last packet time
feature to explore which algorithm will provide higher performance. Figure 4.3 (a) shows
a representation after the data was scaled. Using the same dataset, we followed Bhat et
al. [35] and removed times from the dataset, and only kept the sign of the packet direction.
This approach removes the magnitude and only considers direction. The transformation is
shown in Figure 4.3 (b) where incoming and outgoing packets are represented by +1 and
-1 respectively. We found that method (a) produced the best results for all ML algorithms
other than CNNs, and method (b) produced the best results for CNNs.

Figure 4.3. a) Scaled dataset representing packet times and directions. b)
Dataset with packet directions only, i.e., +1 representing incoming, and -1
representing outgoing packets.

4.4 Voting Classifier
The voting classifier uses two ensemble learning techniques known as hard voting classifi-
cation and soft voting classification. As the name implies, the hard voting classifier votes
for the model with the maximum number of outputs that predict the label. In contrast, the
soft voting classifier makes a prediction by calculating the average of all the probabilities
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when comparing the models [20].

By training the Random Forest Classifier (RFC), the Support Vector Machine Classifier
(SVM), and the Logistic Regression Classifier (LRC) with an Ensemble Voting Classifier
using the packet times as the x value and video identification as the y value, we see in
Figure 4.4 that the LRC had the lowest accuracy. This may be due to the features of the
model having non zero correlation. Because of the low LRC accuracy, the Voting Classifier
Ensemble did not reach the highest accuracy that it normally achieves. Instead, our initial
approach shows that the RFC had the highest accuracy of 74% [40]. These results suggest
that an adversary may predict the video a user watches over Tor with 74% accuracy in a
closed-world attack model.
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Figure 4.4. Accuracy of four classifiers on predicting YouTube video ID using
packet times as features.

4.5 Machine Learning Classifiers
We now explore further into predicting the YouTube video ID using additional ML algo-
rithms with various feature sets. Moreover, we explore datasets composed of batches of
video ID, packet direction, packet time and, last packet time.
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4.5.1 Support Vector Machine (SVM)
The SVM model is trained in a SML [20], [41] environment. The exploration uses the RBF
kernel function where it uses a parameter W that scales the features to be greater than zero.
The kernel assesses how much influence each observation has in the training set to classify
the observation in a test set. By using two points, x and G′, RBF squares the difference
between them, which is represented as the amount of influence one observation has on the
other. By using W, the squared distances are scaled, thus scaling the influence. This method
ensures that observations far from each other are not selected as the influence [41]. Another
approach to help tune the parameters is the use of the linear kernel function where the
data is separated by a line between two x points, i.e., x and G′. This approach allows testing
the data much faster than the RBF kernel as it uses only the c parameter to optimize the
observation.

By using W and c parameters for the RBF kernel, the model is trained with various combi-
nations, such as c = {1, 10, 100, 1000} and W = {0.001, 0.0001} respectively. In addition,
we apply GridSearchCV where the number of estimators were fit to the model training set.
For the linear kernel we follow the same steps using c = {1, 10, 100, 1000}. The result
with the highest accuracy, using an x shape of (5229, 43378) and y shape of (5229, 1) was
72% when using the RBF kernel function with packet time as the features. The accuracy
dropped to 43.9% when only packet directions where used as features, and to 50.50% when
only last packet time was used.

Figure 4.5, is a visual representation of the RBF kernel function where the parameters c=103

and W=10−3 had the highest accuracy compared to other c and W parameter values.
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Figure 4.5. Visualization of the best C and W parameters for an SVM algo-
rithm.

4.5.2 Random Forest Classifier(RFC)
Using the Decision Tree Classifier (DTC) as the initial approach, we analyzed the accuracy
for predicting video ID for the feature sets: packet direction and packet time. In Table 4.2,
the models trained with only packet direction features, and only packet time features are
labeled as models (1) and (2) respectively. As seen in Table 4.2, we observed the highest
accuracy of 63.7% when using packet time features.

Initial Shape Train (1) direction Accuracy
Test shape (2) time

(5616, 86759) Train (4492, 86757) (1) 0.322
Test (1124, 86757) (1) (2) 0.567

(2) 0.637

Table 4.2. Decision Tree analysis of different traffic features. The highest
accuracy is achieved when the model is trained with packet time features.
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We performed the same experiments using a Random Forests Classifier, that is, a bag
of Decision Trees where the growth of each tree is limited and controlled by the max
depth parameter [20]. We applied the GridSearchCV function and continued using packet
time and last pkt time as the feature set. We trained on a range of parameters such as n
estimators = {50, 100, 300, 500, 800, 1200}, max depth = {2, 3, 5, 8, 10, 15, 25, 30,
50, 100}, min samples split = {2, 5, 10, 15, 100}, and min samples leaf = {1, 2, 5,
10} with a dataset using an x shape of (5605, 43378) and a y shape of (5605, 1).

Next, we used the feature importance function that Random Forests provides. The
model is first trained, then the most important features are scored from values ranging from
0 to 1. Values closer to 1 indicate features that contribute more to the classification. In our
analysis, the model was improved by removing 30499 features with score of 0 from the total
43378 features. The model was trained on a range of parameters such as n estimators =
{2, 50, 100, 300, 400, 500, 600}, and max leaf nodes = {2, 50, 100, 300, 400, 500, 600}.
Max leaf nodes and n estimators were also limited to prevent possible overfitting. These
steps led to the highest RFC accuracy score of 78%.

4.5.3 k-Nearest Neighbor Classifier(kNN)
For this classifier, we used the GridSearchCV function with packet times, and packet
direction feature sets. The dataset shape that gave the highest accuracy had x shape of
(5434, 43378), and y shape of (5434, 1).

New samples were classified by taking the shortest distance from the sample to the k nearest
neighbors. We tuned the parameter k from the values k = {3, 5, 11, 19} and settled on the
model that produced the highest accuracy. This step ensured the data did not have outliers
due to low k values or the data was not overfitting for large k values. Another parameter
that was tuned was the weight parameter used for weighted k-NN. This parameter allows
neighbors’ votes to count more if they are closer to the test point, and less if they are farther
away.EuclideanDistancewas used to find the distance between any two points in the dataset.
Manhattan Distance was also an optional distance metric in which the distance of two
points is calculated as the sum of the absolute differences of their Cartesian coordinates.
To control the different parameters selected, we used the auto option to determine the best
approach, and K-D tree to reduce the number of distance calculations from the training
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set [20], [42].

The use of the parameter grid allowed us to test all these different parameter selections. The
parameters that allowed us to reach a high accuracy were Manhattan Distance, weight
and the auto option. The outcome produced with the highest accuracy score came from the
features packet time with a 70% of accuracy score.

4.5.4 Convolutional Neural Network (CNN)
This research replicates a DF attack model that Sirinam and Juarez et al. [5], [20] used for a
WF attack. Tor uses lightweight defenses such as W-T and WTF-PAD as a countermeasure
to alleviate low latency overhead. Their work evaluates a DL attack model against website
traffic traces with W-T defense, WTF-PAD defense, and a defenseless Tor traffic called
Non-defended (NoDef).

Using Schuster et al.’s [22] proposal that CNNs may be used in an encrypted video stream
due to the unique characteristics of their burst patterns, we proceed to use CNNs for a VF
attack to predict YouTube videos over Tor. Applying previous steps to ensure the model
is not overfitting, the dataset was scaled and split into a train, a validation, and a test
set, with a ratio of 8:1:1 respectively. The packet direction was used for the x values, and
the corresponding YouTube video IDs for the y values. For this model, we followed Wang
et al.’s [17] approach in which the dataset was transformed to +1 for outgoing, and -1 for
incoming packets as shown in Figure 4.3 (b).

The closed-world assumption was used for the attack model against all three Tor defenses.
For the NoDef dataset, the model was composed of YouTube video traces with no Tor
defenses against a VF attack. Considering that a classifier improves its learning by using
more training epochs, we found that 60 training epochs achieved the highest accuracy
levels. From an early stage, we noticed that the shape of the dataset impacted the accuracy
percentage to predict the video ID. As seen in Figure 4.6, we notice that the classifier
improve its learning to predict videos when the train sample increases from 1320 to 3810
samples, improving the accuracy percentage to 84%.

The exploration of theWTF-PAD Tor defense presented a positive outcome.Wewere able to
reach an accuracy score of 84%with a train sample of 3577 samples. As for theW-T defense
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model, results improved as the train sample increase through the laps of our exploration.
The final result had 83% forW-T and 92% forW-T (Top-2), confirming that a neural network
model is a strong classifier when comparing with previous models.
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Figure 4.6. Performance of seven months on predicting YouTube video iden-
tification using direction as its feature.

4.6 Machine Learning Regressors
Predicting the video length could help aid classification tasks further down in the learning
pipeline. Furthermore, if an adversary is capable of predicting video length, they may be
able to improve classification accuracy in an open-world attack model by filtering out videos
that are significantly longer or shorter than videos of interest.
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Similar to the ML Classifiers, we used datasets composed of packet direction and packet
times, which were split into a train and test set. The length of each of the YouTube videos
was used as the continuous dependent variable. Further exploration of the Regressor models
resulted in higher '2 values when packet timeswere used for all three regressors rather than
both packet times and directions.

4.6.1 Gradient Boosting Regression (GBR)
Using the ensemble method, as seen in Table 4.3, the MAE shows that GBR is able to
predict a YouTube video length with an error of ±7.03 seconds.

GBR Mean Absolute Error 7.0326
GBR Mean Squared Error 288.3639
GBR Root Mean Squared Error 16.9813
GBR '2 0.9396

Table 4.3. Performance model for Gradient Boosting Regression.

4.6.2 k-Neighbors Regressor (kNR)
For the kNR model, we used packet times as a feature and dropped the remaining columns,
packet direction, and last packet time. The model used the nearest neighbor k=3 with
weights and Manhattan Distance as the distance metric. With these settings, kNR was
able to predict a video length with ±5.2861 mean absolute error.
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kNR Mean Absolute Error 5.2861
kNR Mean Squared Error 293.0589
kNR Root Mean Squared Error 17.1190
kNR '2 0.9238

Table 4.4. Performance model for k-Neighbors Regressor.

4.6.3 Random Forest Regression (RFR)
As shown in Table 4.5, the MAE is ±6.3521 which shows that RFR could be a second
choice after kNR when predicting the video length of a YouTube video.

RFR Mean Absolute Error 6.3521
RFR Mean Squared Error 297.1422
RFR Root Mean Squared Error 17.2378
RFR '2 0.9318

Table 4.5. Performance model for Random Forest Regressor.

4.7 Result Summary
By evaluating the performance of different ML classifiers and regressors with the different
input traces packet times and packet directions, we were able to find from early on that
regressors provide strong outcomes in predicting a video length. On the contrary, since the
traffic pattern of a video streaming is dynamic due to DASH, our exploration shows that
some of the classifiers such as kNN and SVM did not provide noticeable improvement in
predicting video identification like the RFC or the neural network models.

An approach that an adversary might take is to use the kNR regressor model to help improve
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the weaker classification models. Since the MAE result for the kNR had the lowest time to
predict the length of a YouTube video, an adversary could use it to create a new dataset in
which videos are classified based on their length, eliminating videos with a specific duration
that a user does not watch. However, the results observed over the last seven months show
that increasing the number of video captures could be a factor in improving the training on
some of the ML models in a closed world environment, which is important to consider for
an adversary attempting to improve the performance of the learning pipelining.
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CHAPTER 5:
Conclusion and Future Work

This research explored the performance of VF attacks using different classifier and regressor
models in a closed-world scenario. In addition, by replicating the DF attack model that
Sirinam and Juarez et al. [5], [20] used for their WF attack, we can confidently say that the
information of a video can be predicted. The DoD can use ML techniques to be one step
ahead of terrorists by identifying YouTube videos that are streamed from the dark web.

5.1 Contributions and Future Research
Although the results do not represent the total number of videos YouTube has available, we
are confident that our results show that a VF model is effective in predicting the different
labels from a small number of YouTube videos. During the period of the seven months
that this research took place, we noticed that the three regressor models were effective in
predicting the length of a video. Figure 5.1 shows that the Gradient Boosting Regression,
the Random Forest Regression and the k-Neighbors Regressor models were successful in a
closed-world setting.
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Figure 5.1. '2 score of different machine learning regressors that were used
to predict the length of YouTube videos.
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Figure 5.2 shows that less complexmodels such asRFC, SVM, or kNNwere not as successful
as the deep learning models. Nevertheless, when comparing these models, we propose that
a way to improve these conventional models could be by collecting more videos. Since we
noticed that each of the models improved their accuracy score when the shape of the model
increased, we believe that this approach could help improve the outcome of some of models.

One idea for future work is to test the attacks presented in this research using an open-world
attack model. In these experiments, the user will be allowed to download videos that the
adversary did not include in their training set. The adversary must include some form of
an open-world class in their model to be successful. This experiment would require more
collection of data. Perhaps two or three more video genres can be collected and used to train
and test a classifier in an open-world setting.

Additionally, in this work we trainedMLmodels to predict the video ID or regress the video
length. One idea would be to study how well ML models may perform at predicting the
video genre. If multiple genres of videos are collected, for example military videos, news
stories, etc., classifiers can be trained and tested for their accuracy to predict the video genre
to a specific viewer.
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Figure 5.2. Accuracy scores of different machine learning classifiers for pre-
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5.2 Conclusion
This research was able to prove that passive adversaries can use traffic patterns to train SML
models to predict a video ID or video length from a small set of possibilities. By creating a
small dataset composed of nine YouTube videos that were passively downloaded from a Tor
network, we were able to unmask video information from a user. Nevertheless, we propose
that future research increases the size of the dataset. This is an approach other research
has done for WF attack models [5], [8], [16], [20] and we are confident that this same
methodology could be successful for a VF attack model. If the dataset is increased to a large
number of videos, such as 100 videos, it could help improve the results in a closed-world
scenario. In addition, an adversary could continue improving the parameters during the
training cycle to deploy these models to an open-world scenario where the adversary is not
aware of the videos a user is watching.

Overall, similar WF attack models, we found that our VF attack models are successful in
finding information about a YouTube video downloaded over Tor. We show that the deep
neural network models reach accuracy results in the 90% range which are similar to the
result Sirinam and Juarez et al. [5], [20] had for their WF attack models. This tells us that
a Tor network is susceptible to the VF attack when using an ML algorithm with enough
features to predict a video identification or the video length. Either of these approaches
could provide insightful information for an organization like the DoD when posing as an
adversary to find specific videos posted by extremist groups on the Tor network.
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