
c© 2012 Harshitha Menon Gopalakrishnan Menon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4839039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

META-BALANCER: AUTOMATED LOAD BALANCING BASED ON APPLICATION
BEHAVIOR

BY

HARSHITHA MENON GOPALAKRISHNAN MENON

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor Laxmikant Kale

Abstract

With the dawn of petascale, and with exascale in the near future, it has become significantly

difficult to write parallel applications that fully exploit the processing power, and scale to

large systems. Load imbalance, both computationally and communication induced, presents

itself as one of the important challenges in achieving scalability and high performance. Prob-

lem sizes and system sizes have become so large that manually handling the imbalance in

dynamic applications, and finding an optimum distribution of load has become a herculean

task. Charm++ [6] provides the user with a run time system that performs dynamic load

balancing. To enable Charm++ to perform load balancing in an efficient manner, the user

takes certain decisions such as when to load balance and which strategy to use, and informs

the Charm++ run-time system of these decisions. Many a times, taking these important

decisions involve hand tuning each application by observing various runs of the application.

In this thesis, a Meta-Balancer which relieves the user from the effort of making the load

balancing related decisions, is presented. The Meta-Balancer is a part of the Charm++ load

balancing framework. It identifies the characteristics of the application, and based on the

principle of persistence and the accrued information, makes load balancing related decisions.

We study the performance of the Meta-Balancer in the context of leanmd mini application.

We also evaluate the Meta-Balancer in the context of micro benchmarks such as kNeighbor

and jacobi2D.

We also present several new load balancing strategies, that have been incorporated into

Charm++, and study their impact on the performance of applications. These new strategies

are: 1) RefineSwapLB, which is a refinement based load balancing strategy, 2) CommAwar-

ii

eRefineLB, which is a communication aware refinement strategy, 3) ScotchRefineLB, which

is a refinement based graph partitioning strategy using Scotch [2] – a graph partitioner,

and 4) ZoltanLB, which is a multicast aware load balancing strategy using Zoltan [3] – a

hypergraph partitioner.

iii

To my parents, Gopalakrishnan Parat and Surya Gopalakrishnan, for their love and

support.

iv

Acknowledgments

I would like to thank my advisor, Prof. Kale, for his guidance, support and his faith in my

capability without which this thesis would not have materialized.

I would like to thank PPL members, Nikhil Jain, Gengbin Zheng and Esteban Meneses, who

provided valuable suggestions and insights into the problem.

Finally and most importantly, I would like to thank my family for their support, encourage-

ment and being the pillar of my life.

v

Table of Contents

List of Figures . viii

Chapter 1 Introduction . 1

Chapter 2 Load Balancing in Charm++ 4
2.1 Charm++ Load Balancing Framework . 4
2.2 Existing Load Balancers . 6
2.3 New Load Balancers . 7

2.3.1 RefineSwapLB . 7
2.3.2 ZoltanLB . 9
2.3.3 ScotchRefineLB . 10
2.3.4 CommAwareRefineLB . 11

Chapter 3 Meta-Balancer . 13
3.1 Motivation . 13
3.2 Iterative Applications . 14
3.3 Decisions in Meta-Balancer . 14
3.4 Statistics Collection . 14

3.4.1 Existing Synchronous Statistics Collection 15
3.4.2 Asynchronous Collection of Statistics via Reduction 15
3.4.3 Extracting per Iteration Information 16

3.5 Load Balancing Period . 17
3.5.1 Ideal LB Period . 18
3.5.2 Verification . 19
3.5.3 Implementation: Computation Intensive Application 21
3.5.4 Implementation: Communication Intensive Application 22
3.5.5 Dynamic Triggers . 23

3.6 LB Period Intimation . 23
3.6.1 Consensus on LB Period . 24
3.6.2 Dynamic Refinement of LB Period 25

3.7 Strategy Selection . 26
3.7.1 Communication vs Computation Strategy 26
3.7.2 Refinement vs Comprehensive Strategy 28
3.7.3 Overall Strategy Selection . 29

vi

Chapter 4 Conclusions and Future Work 31

References . 32

vii

List of Figures

2.1 Comparison of RefineLB with RefineSwapLB for leanmd 8
2.2 Speedup in the total application time for BT MZ on Steele 10
2.3 Time per step for lbtest . 11

3.1 Periodic Statistics Collection . 17
3.2 Elapsed time vs LB Period for jacobi2D . 20
3.3 Identifying LB Period for jacobi2D . 21
3.4 Dynamic triggering of LB for kNeighbor . 22
3.5 Intimating the calculated LB period . 26
3.6 leanmd mini-application . 28
3.7 kNeighbor with high communication . 29
3.8 Flowchart describing strategy selection . 30

viii

Chapter 1

Introduction

With the dawn of petascale, and with exascale in the near future, it has become significantly

difficult to write parallel applications that fully exploit the processing power and show scal-

ability. Many parallel programming paradigms have been proposed, and are being used to

answer the following key issues: 1) How to obtain scalable performance? 2) How to make

parallel programming easy without loss of performance? One of the proposed paradigms,

which has gained momentum and shown good results, relies on division of labor between the

application writers and the run-time system (RTS). In this paradigm, the application writer

is responsible for decomposing the problem at hand as it seems best from the application’s

perspective. The RTS takes the decomposed application, and runs it on the given system.

Charm++ [6], ParalleX [5], FG-MPI [7] and Adaptive MPI [9] are some of the practical

implementations of the frameworks that belong to this family of programming paradigm.

In Charm++, computation is over-decomposed into fine-grained tasks or objects, where

the number of such tasks is much larger than the number of processors (typically an order

of magnitude larger). Overdecomposition offers many advantages over its simple processor

based decomposition counterpart, in which only one task is run per processor. It provides

an overlap of computation with communication without any effort from the programmer. It

also enables adaptive resource management and dynamic load balancing. In addition, fault

tolerance can be achieved with minimal efforts from the programmer. High Performance

Computing applications, such as Molecular Dynamics [11], Fractography, Weather Simula-

tion [12], Cosmology [4] to name a few, have fine-grain parallelism and, have been shown to

achieve scalability and high performance using Charm++.

1

Obtaining good performance with fine-grained parallelism essentially requires a smart

and adaptive resource allocation to maintain load balance, in terms of computation and

communication. Expecting application programmers to handle load imbalance, and perform

resource allocation in dynamic applications is unrealistic. To this end, Charm++ provides a

comprehensive measurement-based dynamic load balancing framework. Charm++ run-time

system performs automatic measurement of task load, processor load and communication

pattern, which is subsequently used by the load balancing framework [1] to migrate over-

decomposed objects to balance computational load and reduce the communication overhead

at runtime.

To enable Charm++ to perform load balancing in an optimal manner, the programmer

takes certain decisions related to load balancing, such as when to perform load balancing and

which strategy to use. Many a times, coming up with these decisions involve hand tuning

each application by observing application characteristics over multiple runs and experiment-

ing with the available options. For example, if the application has significant communication

overhead, it is beneficial to use a communication aware load balancing strategy rather than

a strategy that balances the computational load. But, if the application is computationally

heavy, then using a computational balancing strategy will help improve the performance.

Similarly, the decision on frequency of load balancing, i.e., how often to call the load bal-

ancer, depends on the overheads and gains associated with load balancing for an application.

These overheads include the time spent in computing the new mapping of tasks to proces-

sors as well as the time spent in migration. The benefit of performing load balancing is

the improved performance in subsequent iterations. However, if the load balancing is done

frequently, the overheads incurred may nullify performance gains and may results in worse

execution time.

We have observed that, in many dynamic applications, the above mentioned decisions

should not be taken statically. The ideal load balancing period may vary as the application

behavior changes. Similarly, the best strategy for doing load balancing may change over

2

the period of time. Moreover, the gains obtained by performing load balancing may or

may not be significant, and one may wish to use a strategy which incurs proportionate

overheads. However, it is not possible for the application writer to be aware of these dynamic

variations and take the correct decisions statically. But the Charm++ RTS has the necessary

dynamic information about the characteristics of the application, and about the potential

gains, and overheads of performing load balancing. Therefore, it will benefit the application

performance if the RTS can automatically decide and control the load balancing decisions.

In this thesis, we present a Meta-Balancer which relieves the application writer from these

load balancing related decisions. The Meta-Balancer, which is a part of the Charm++ RTS,

identifies the characteristics of the application and, based on the principle of persistence

and the accrued information, makes these load balancing related decisions. We study the

performance of Meta-Balancer in the context of several mini applications such as leanmd and

NPB. We also present the impact of using the Meta-Balancer on micro benchmarks such as

kNeighbor and jacobi2D.

3

Chapter 2

Load Balancing in Charm++

Overdecomposition is key to writing scalable applications in Charm++. The overdecom-

position of computation into fine-grain tasks by the programmer results in the creation of

chares or virtual objects. From the programmer’s perspective, operations are performed by

the chares. In general, the programmer need not be concerned with the underlying details,

such as the processor on which a chare executes, how the scheduling of multiple chares on

a single processor is done etc. Any application run begins with an initial static placement

of chares which can be specified by the programmer or left at RTS’s discretion. This place-

ment, however, can be changed as the execution progresses by migrating chares from one

processor to other processors. Such a migration is needed if the initial placement leads to

a load imbalance, either computational or communication induced. An intelligent and need

based migration is facilitated by the Charm++ load balancing framework [1]. The frame-

work relies on the principle of persistence, which states that in most applications the load

either changes slowly, or changes abruptly, but infrequently. In such situations, data from

the recent past is a good predictor of the near future, and is being used by Charm++ RTS.

For other unexpected situations, the application can provide performance estimates for the

chares to supplant the measurements.

2.1 Charm++ Load Balancing Framework

The load balancing framework in Charm++, which is a part of Charm++ RTS, is a mea-

surement based framework, and is responsible for two key tasks. Firstly, it instruments the

4

application code at a very fine-grain level and provides the vital statistics for load balancing.

Secondly, it executes the load balancing strategy to determine a mapping of chares onto

processors and performs the migration.

The task of chare migration, performed by load balancing framework, is facilitated by

Charm++’s object model. A typical Charm++ application consists of parallel C++ objects

or chares, which promotes data encapsulation. For each chare, there is a well-defined region

of memory on which it operates. This simplifies the packing of data for migration at level

of chares, in comparison to a process level migration or thread level migration. Delivery

of messages to a processor on which the (migrated) chare resides is handled by Charm++

RTS. As stated earlier, from a programmer’s point of view, chares are location independent;

messages are usually delivered to chares instead of processors. Thus, there is no processor-

specific state that an application writer needs to worry about for chare migration; Charm++

RTS takes care of the run-time state associated with the migrating chares.

Charm++ object model also simplifies the task of application instrumentation. The

RTS treats chares uniformly by instrumenting the start and the end time of each method

invocation on the chares, rather than deriving execution time from some application-specific

knowledge. Further, the Charm++ RTS can record chare-to-chare and collective commu-

nication patterns as every communication initiated by chare is eventually handled by the

RTS. The RTS also separates the idle time from communication overhead.

To summarize, during an application run, several chare specific and processor specific

statistics are collected. For a chare, these statistics include the amount of time it is active

on a processor, and the communication (number of messages exchanged and volume of data

exchanged) it does with every other chare. For a processor, the framework records the idle

time and the background load. Current mapping of chares to processors is also provided by

the load balancing framework.

However, the task of initiating load balancing and selection of load balancing strategy is

the responsibility of the programmer. In a typical program, the load balancing is initiated

5

by making AtSync call in chares. Once triggered, the load balancing framework takes control

on every processor. Thereafter, the statistics associated with all the processors and chares

are sent either to a central processor (if using a centralized strategy) or to a set of processor

(if using a hybrid strategy). At these hub(s), the load balancing framework computes the

new mapping of chares to processors using the collected statistics, and the strategy specified

by the programmer either as a run time argument or during code compilation. Once the

new mapping is computed, migrations are initiated. Eventually, the chares resumes their

execution as ResumeFromSync function is invoked on them by the RTS.

2.2 Existing Load Balancers

There are several in-built load balancing strategies in Charm++ that can be used by ap-

plication developers, some of which are described here for completeness (and for the benefit

of the reader to understand the presented results better). A broad classification of these

load balancers can be made on two key criteria: 1) Is the current mapping being given any

importance? 2) Which performance metric is being given importance? If a load balancer

completely ignores the current mapping, and computes a new mapping afresh, we say that it

is a comprehensive load balancer. In contrast, if a load balancer gives importance to current

mapping, and makes a few changes to it to derive a new mapping, we call it a refinement

load balancer. In terms of application performance metric, a load balancer may favor reduc-

ing either computation imbalance or communication overhead. The following strategies are

commonly used by application writers in Charm++:

GreedyLB: A comprehensive load balancer which only considers computational load. It

is based on the greedy heuristic that maps the heaviest chares on to the least loaded

processors until the load on all the processors is close to the average load.

RefineLB: A refinement load balancer is generally used after GreedyLB for computational

centric load balancing. It migrates chares from processors with greater than average

6

load (starting with the most overloaded processor) to those with less than average

load. This strategy also aims to reduce the number of chares migrated.

MetisLB: A comprehensive strategy that uses Metis [8] to partition the chares into par-

titions equal to the number of processors. Charm++ RTS provides the computation

and the communication graph to METIS, which uses the recursive graph partitioning

algorithm. The aim of this strategy is to minimize the cut, among the partitions,

induced in the communication graph.

ScotchLB: A comprehensive strategy that uses Scotch [2] to perform the partitioning.

Scotch, like Metis, aims to obtain partitions with minimum cut.

RefineCommLB: A refinement strategy similar to RefineLB, that also considers the com-

munication overhead along with the computation load, and then performs the refine-

ment strategy, in which chares from heavily loaded processors are moved to light weight

processors.

2.3 New Load Balancers

Several new load balancing strategies have been added to Charm++ which are described

in detail in this section. Among these new strategies, RefineSwapLB, ScotchRefineLB and

CommAwareRefineLB are refinement load balancers. ZoltanLB, which is based on Zoltan [3]

hypergraph partitioner, is a comprehensive load balancer useful for applications with multi-

casts (one-to-many communication).

2.3.1 RefineSwapLB

This is a refinement based load balancing strategy, which is an improvement over RefineLB.

RefineLB is an algorithm which improves the load balance by incrementally adjusting the

existing chare distribution. Refinement is used with an overload threshold, which is typically

7

 550

 600

 650

 700

 750

 800

 850

 60 65 70 75 80 85 90 95 100

tim
e

pe
r s

te
p

(m
s)

cores

RefineLB vs RefineSwapLB

RefineLB
RefineSwapLB

Figure 2.1: Comparison of RefineLB with RefineSwapLB for leanmd

set as 1.003 times the average load across all processors. A processor is considered to be

overloaded, if its load is above this threshold. The cost of the algorithm is low because only

the overloaded processors are examined, and it results in only a few chares being migrated.

But RefineLB may get stuck in a local minima if it cannot move any chare from the most

overloaded processor to any other processor without making it overloaded. To handle this

scenario, RefineSwapLB has been implemented.

Similar to RefineLB, RefineSwapLB tries to move chares from overloaded processor to

less loaded processor without causing them to become overloaded. If it cannot find such

a processor, then it swaps chares between processors in order to reduce the load on the

overloaded processor without overloading the other processor.

Performance analysis

To compare the performance of RefineSwapLB with RefineLB, we use leanmd, in which

we observed that RefineLB gets stuck in a local minima. leanmd is a molecular dynamics

simulation program written in Charm++. We ran the application for non-power of two

number of processors, where RefineLB was not able to balance the load effectively. It

8

can be seen in Figure 2.1, that RefineSwapLB improves the balance, and reduces the per

step iteration time incomparison to RefineLB. We attribute this difference to the ability

of RefineSwapLB to swap chares when it is unable to move chares from the overloaded

processors.

2.3.2 ZoltanLB

ZoltanLB uses Zoltan, a hypergraph partitioner, to partition chares among procesors. Hyper-

graph is a generalization of a graph, where a hyperedge can connect any number of vertices.

Hyperedge is a useful way of representing a group of vertices, which are connected in some

respect (an edge is special case of hyperedge which connects two vertices). In a multicast

communication, which is common in many applications, a message is sent from a chare to a

group of chares. These chares form the vertices of the hypergraph and the multicast forms

a hyperedge in the hypergraph. This hypergraph is provided to Zoltan which partitions the

chares and maps them onto processors. This load balancer should be used for multicast

aware load balancing.

Performance analysis

To compare the performance of ZoltanLB with MetisLB and ScotchLB, we use leanmd

application. leanmd is a molecular dynamics simulation program written in Charm++. In

each iteration of leanmd, the atoms contained in a cell are sent to every compute that needs

them. This transfer of atoms from cells to computes is performed in an efficient manner

using multicast.

1-away (27 chares in multicast) 2-away (45 chares in multicast)
ZoltanLB 5.5 7
MetisLB 8.5 10.15
ScotchLB 8.2 10.9

Table 2.1: Comparison of ZoltanLB with MetisLB and ScotchLB for leanmd

Table 2.1 shows the impact of using ZoltanLB over MetisLB and ScotchLB for multicast

aware load balancing. It can be seen that ZoltanLB reduces the number of multicast messages

9

by mapping chares participating in a multicast onto same processors.

Figure 2.2: Speedup in the total application time for BT MZ on Steele

2.3.3 ScotchRefineLB

A new feature of Scotch 6.0 is the ability to compute remappings of a graph, based on an

existing mapping. Every vertex of the graph to be remapped is associated with a fictitious

edge that connects it to a fictitious vertex that represents the old partition. Doing so allows

us to integrate the migration cost within the existing edge cut minimization process. All

of the fictitious edges are weighted, with a weight that represents the cost of migrating the

vertex to another partition. A new refinement load balancer, ScotchRefineLB, has been

implemented to advantage of this functionality

Performance analysis

We present the results for the NAS BT multi-zone benchmark runs on Steele, which is

an infiniband cluster located at Purdue University. For these experiments, the number

of chares per processor varies with the class of the benchmark used and the system size.

For example, a run of class D on 256 processors will have, on an average, four chares per

processor. The baseline run, in which no load balancing is performed, is called NoLB.

We ran class C on 32 and 64 cores, and class D on 128 and 256 cores. The result for a

complete run of BT-MZ, in which load balancing is performed once in every 1000 iterations,

10

is presented in Figure 2.2. The application time primarily consists of the time per step and

the migration time. Refinement-based load balancers, RefineLB and ScotchRefineLB, which

take the migration cost into account, migrate very few chares. ScotchRefineLB performs

best among all the load balancers and shows a speedup of 1.5 to 2.8 in comparison to NoLB.

In comparison to other load balancers, ScotchRefineLB performs better by 11%.

 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

256 512 1024

Ti
m

e
pe

r s
te

p
(s

)

Number of cores

lb test: time per step

No LB
GreedyLB
RefineLB

CommAwareRefineLB
ScotchLB

ScotchRefineLB

Figure 2.3: Time per step for lbtest

2.3.4 CommAwareRefineLB

This is a refinement based load balancing strategy, similar to RefineLB, which also takes

communication into account while deciding to migrate chares. It minimizes the load imbal-

ance by moving chares from overloaded processors to less loaded processors with which it is

already communicating. This strategy keeps track of all the processor a chare communicates

with and migrates the chare from the overload processor to less loaded processor among the

communcating processors. If none of the communicating processors are underloaded, the

chare is moved to any available underloaded processor. This reduces the communication

overhead as well as the number of chares migrated.

11

Performance analysis

We present results for lbtest on Blue Gene/P in Figure 2.3. lbtest is a micro-benchmark

distributed with Charm++. It creates a communication graph of chares (which can be

random or regular), and assigns variable loads, in the user specified range, to the chares.

In each iteration, every chare communicates with its neighbors in the graph, and performs

the alloted amount of computation. It can be seen that CommAwareRefineLB gives a

performance better than ScotchLB, and comparable to ScotchRefineLB, which are graph

based partitioners. In the case of 512 cores, CommAwareRefineLB gives a performance gain

of 22% over NoLB (when load balancing is not performed), and 4% over ScotchRefineLB.

CommAwareRefineLB, apart from reducing the number of chares migrated, also takes lesser

time for strategy in comparison with graph based partitioners.

12

Chapter 3

Meta-Balancer

The current load balancing framework in Charm++ is application driven. It is invoked

when the application makes a call to AtSync, and uses a strategy specified by the user as

a command line argument. In this chapter, we introduce Meta-Balancer, which is a new

component added to the load balancing framework of Charm++ RTS. It is responsible for

complete automation of the load balancing process, and makes it RTS driven.

3.1 Motivation

Understanding the characteristics of an application, and taking appropriate load balancing

decisions is important to improving its performance. Some of these load balancing related

decisions, which programmer has to take are, the frequency of load balancing and the strat-

egy to use. In the case of a dynamic application, it becomes challenging to identify the

characteristics of the application and take these decisions a priori. Many a times, applica-

tion characteristics change over time, and affect the load balancing related decision making.

For such applications, it is difficult and suboptimal to decide upfront on how frequently the

load balancing should be done and which type of load balancing strategy should be used.

To this end, we propose Meta-Balancer which relieves application writers of such decision

making related to load balancing and improve the overall performance.

13

3.2 Iterative Applications

Meta-Balancer has been written keeping in mind applications which adhere to the princi-

ple of persistence (§2). From Meta-Balancer’s perspective, an application run consists of

multiple iterations. The load balancing framework is triggered frequently using AtSync at

suitable places by the application writer. Meta-Balancer takes control at each AtSync call

and performs various tasks such as statistics collection, decision making, load balancing,

migration etc., each of which is described in detail in the following sections.

3.3 Decisions in Meta-Balancer

The key decisions related to load balancing which Meta-Balancer takes, based on the char-

acteristics of the application, are:

• Frequency of load balancing

• Adaptive triggering of load balancing

• Strategy Selection

– Communication vs Computation strategy

– Comprehensive vs Refinement strategy

3.4 Statistics Collection

The statistics collected by Charm++ RTS are chare specific and processor specific (§2.1).

Some of these statistics such as the chare load, the processor load and the processor idle time

are continuously monitored by the Meta-Balancer. These statistics presents a holistic picture

of the application. Meta-Balancer collects these minimal statistics at a central location, and

based on the characteristics of the application, controls the load balancing decisions as

described in this section.

14

3.4.1 Existing Synchronous Statistics Collection

In Charm++, a special set of chares called LB Manager, are initialized by the Charm++

RTS on each processor. During the execution of an application, the LB Manager on each

processor, monitors the chares executing on that processor. It collects the necessary statistics

and stores them using LB Database, which is another set of chare array initialized by the

RTS. When a particular chare is being executed, RTS notifies the LB Manager to update the

corresponding timers. Similarly, when RTS receives request for communication by a chare,

it intimates the LB Manager which make corresponding changes in the LB Database.

In the exising framework, when AtSync is called, a synchronous gather of processor and

chare statistics is performed. The collection of statistics at a central processor requires two

barriers - local and global. On each processor, a local barrier is invoked on the chares that

reside on it. Once all the chares have reached the local barrier on a processor, it takes part

in a global barrier, during which the statistics are sent to the central processor. Having

obtained the statistics, the central processor makes decisions regarding the placement of

chares onto processors and informs rest of the processors. Currently, the statistics sent by

the processor to the central processor includes all the statistics that have been collected since

last load balancing. Note that, in the current framework, the invocation of load balancing

using AtSync is determined by the programmer and is an infrequent event.

3.4.2 Asynchronous Collection of Statistics via Reduction

For the Meta-Balancer to control the load balancing decision, frequent aggregation of statis-

tics at a central location is necessary. However, frequent collection of entire statistics is time

consuming and results in substantial overheads. In order to prevent these overheads, only

minimal statistics (§3.4) needs to be collected periodically. Moreover, instead of perform-

ing a gather of these minimal statistics at a central location, a reduction whose results are

delivered to the central location is sufficient.

15

It is to be noted that, with the minimal statistics being reduced periodically and fre-

quently, it is not advisable to have a local and a global barrier. Presence of a frequent local

and global barrier may result in substantial overheads and a slow-down of the application.

The overheads and slow-down has been mitigated by the use of Charm++’s asynchronous re-

duction of the minimal statistics. Reduction, which is done via a spanning tree in Charm++,

ensures that there is not much communication introduced by the Meta-Balancer.

3.4.3 Extracting per Iteration Information

At the end of every iteration, when AtSync is called by a chare, it updates its load infor-

mation by intimating AdaptiveLB Manager, which is a chare array initiated by RTS for

Meta-balancer. Once the chare has updated its load information, it moves onto the next

iteration. Therefore, on a processor, different chares may be executing different iterations.

This asynchronous scheme, without local barrier, accrues precise information about per chare

per iteration. But it complicates the process of obtaining processor specific information. To

obtain the utilization statistics of the processor for an iteration, it is required to approximate

the idle time for that iteration. The idle time for a processor for an iteration i is obtained

using

idle time = (total idle time until all chares finish the iteration)× (3.1)(
number of chares

sum of current iteration of chares

)

where the chares being considered are the ones residing on the processor

This is approximately equivalent to idle time till now divided by the total iterations.

Utilization is calculated using

utilization =
idle time

processor load+ idle time
. (3.2)

16

a1 b1 a2 b2

c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

Figure 3.1: Periodic Statistics Collection

Once all the chares residing on a processor have updated their load for an iteration, the

AdaptiveLB Manager contributes minimal statistics to the reduction, which delivers the

reduced statistics to the central processor as shown in Figure 3.1. The reduction is performed

in such a manner that the central processor receives the average load per processor, maximum

processor load and the minimum utilization ratio.

3.5 Load Balancing Period

Load balancing is performed to remove the load imbalance, which results in the improve-

ment of application performance. However, there is an overhead or cost associated with load

balancing. The cost consist of the time spent in the load balancing strategy to find new

mapping of chares onto processors, and the cost of migrating them if needed. Therefore, if

17

load balancing is performed very frequently, it may degrade the performance or reduce the

gains from performing load balancing. In contrast, if load balancing is performed very infre-

quently, load imbalance may result in suboptimal performance. The optimal performance is

obtained only if load balancing is performed at an ideal frequency, where the gains obtained

from load balancing is maximized despite the incurred overheads.

3.5.1 Ideal LB Period

In this section, we describe the theory of identifying the ideal load balancing period which

is used by Meta-Balancer. Let,

τ be the ideal load balancing period,

γ be the total iterations an application executes,

Γ be the total application execution time, and

θ be the cost associated with load balancing

Let the maximum time per iteration, approximately equal to the maximum load on most

loaded processor, be represented by the line equation

y = mx+ cm (3.3)

where m is the slope and cm is the offset with respect to the maximum load value after load

balancing.

Similarly, let the average time per iteration, approximately equal to the average load on

the processors, be represented by the line equation

y = ax+ ca (3.4)

where a is the slope and ca is the offset.

18

Application execution time, Γ, can be computed by an integral of maximum time per

iteration over the total iterations and load balancing cost as shown below:

Γ =
γ

τ
× (

∫ τ

0
(mx+ cm)dx+ θ) +

∫ γ

0
(ax+ ca)dx

Γ =
γ

τ
× (

mτ 2

2
+ cmτ + θ) + γ × (

aγ

2
+ ca)

Γ = γ × (
mτ

2
+ cm +

θ

τ
+
aγ

2
+ ca)

In order to minimize Γ, we differentiate it with respect to τ , and obtain the following

value of τ , which is used by the Meta-Balancer as the ideal load balancing period.

d

dτ
(Γ) = γ × (

m

2
− θ

τ 2
) = 0

τ =

√
2θ

m
(3.5)

Note that, the load balancing period is calculated and continuously refined, using Eq 3.5,

as the application executes. At any instant in the application run, the current value of load

balancing period is used by the Meta-Balancer to determine when next to perform load

balancing.

3.5.2 Verification

The relationship between the total application time and the load balancing period for ja-

cobi2D is presented in Figure 3.2. jacobi2D is a benchmark that performs a 5-point stencil

computation over a given two dimensional set of points. It has a communication pattern,

which is representative of communication in Weather Research and Forecast Model [10].

For this experiment, the total load and the load distribution is continuously changed as the

benchmark executes. The experiment was run on Intrepid, which is an IBM’s Blue Gene/P

19

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

El
ap

se
d

tim
e

(s
)

LB Period

Elapsed time vs LB Period

elapsed time

Figure 3.2: Elapsed time vs LB Period for jacobi2D

machine installed at ANL. It can be observed from the Figure 3.2 that, if the load balancing

is performed frequently, it leads to low performance. On the other hand, if load balancing

is done infrequently, it results in bad performance due to load imbalance. However, there

exists an ideal LB period in the range of 150 to 250 iterations, where the application achieves

maximum gains due to load balancing.

For the same benchmark, Meta-Balancer calculates the ideal load balancing period based

on the theory described earlier (§3.5.1). Figure 3.3 shows the LB period identified by the

Meta-Balancer. As seen in the figure, the Meta-Balancer identifies that the load balancing

has to be performed initially in the 14th iteration, because of the high computation load

imbalance. Following the initial load balancing, based on the cost of LB, Meta-Balancer

identifies an LB period of 210 and 180 iterations. This is in the range of the ideal period as

shown in Figure 3.2, and gives the best performance possible. This experiment demonstrates

that the Meta-Balancer, by observing the application behavior, is able to extract the max-

imum possible gains due to load balancing, which otherwise is obtained by trying multiple

values in different runs.

20

 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022
 0.023
 0.024
 0.025

 0 50 100 150 200 250 300 350 400

B
en

ch
m

ar
k

tim
e

(s
)

Iterations

jacobi2D

average load
maxmum load

Figure 3.3: Identifying LB Period for jacobi2D

3.5.3 Implementation: Computation Intensive Application

In this section, we present the details of how Meta-Balancer identifies the load balancing

period for a computationally intensive application. As stated earlier, Meta-Balancer period-

ically collects minimal statistics (§3.4.3). Once these minimal statistics have been collected

for a few iterations, a linear-extrapolation of these values is done, relying on the principle

of persistence. Hence, we obtain curves that represent predicted maximum load and the

predicted average load for the application run. Using them, we obtain the maximum load

curve equation with respect to the average curve (Eq 3.3 in §3.5.1). Finally, the cost of load

balancing along with the other calculated values, are substituted in Eq 3.5 to obtain the

ideal LB period. This LB period is broadcast to all the processors. As more statistics are

collected, the LB period is refined and the refined value is sent to all the processors.

When the load balancing is performed, the expectation is that the load balancing strategy

will make the maximum load equal to or close to the average load. Hence, we use the

maximum load curve with respect to the average curve as the curve required by Eq 3.3.

But, it can so happen that the load balancing strategy is not able to balance beyond a

21

certain threshold. This inefficiency in LB strategies needs be incorporated into the LB

period calculation. We deal with this situation by shifting the average curve up by the

imbalance ratio which a load balancing strategy could not even out. An expected value of

the imbalance ratio is obtained by performing some post processing on the new mapping and

the statistics collected so far. The expected maximum load after load balancing is calculated

to be the predicted average load times the imbalance ratio. Thereafter, maximum load curve

is calculated with respect to this expected load, and the LB period is calculated as described

in the previous section (§3.5.1). This adjustment to the expected maximum load after load

balancing prevents frequent load balancing in cases, where the load balancer cannot improve

the balance of load.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 50 100 150 200 250 300 350 400

Lo
ad

 (s
)

Iterations

kNeighbor

average load
maximum load

Figure 3.4: Dynamic triggering of LB for kNeighbor

3.5.4 Implementation: Communication Intensive Application

For communication intensive application, deciding LB period based on only computation

load will result in suboptimal performance. However, we observed that a small variation of

the above scheme can be used for such application. In addition to considering computation

22

load of processors for extrapolation, and calculation of LB period, Meta-Balancer also adds

the idle time observed on each processor to the predicted maximum load value, and to the

predicted average load value. This ensures that the time spent while waiting for data from

other processors is accounted for in the ideal load balancing period calculation.

3.5.5 Dynamic Triggers

In dynamic applications, the load in the system can change unexpectedly. If the load balanc-

ing period has been decided, the refinement based on the new statistics collected can take

time. It can result in a delay in performing load balancing, which reduces the performance

gains due to load balancing. Since, the Meta-Balancer periodically monitors the load in the

system, it is in a position to trigger load balancing immediately in such scenarios. In the

current set up, if the Meta-Balancer notices that the imbalance ratio, given by maximum load
average load

,

is beyond a threshold of 1.1, it triggers the load balancing as soon as possible.

The verification of this aspect of Meta-Balancer was done using kNeighbor benchmark,

in which a sudden load imbalance was introduced in middle of the benchmark run. It can be

seen in Figure 3.4 that, when the load in the system changes suddenly, Meta-Balancer iden-

tifies this change in the load distribution of the application and triggers the load balancing

process.

3.6 LB Period Intimation

Once the ideal load balancing period has been identified (or a dynamic trigger is identi-

fied), all the processors needs to be intimated about it, so that they take part in the load

balancing process. However, this load balancing period may not be suitable for performing

load balancing, as it may lead to application getting hung, as described in detail in the next

section.

23

3.6.1 Consensus on LB Period

During the load balancing process, all the processors reach a local and a global barrier,

and send their detailed statistics to a central processor. Centralized load balancing process

involves executing the strategy to identify the new mapping of chares on to the processors,

and migrating them. When the load balancing is carried out, we expect the chares to remain

idle. To enforce this, whenever a chare finishes an iteration, at AtSync, it checks if it needs

to go into load balancing stage. On reaching the communicated LB period, the chares enter

the load balancing stage. If it is not time for load balancing, the chare resumes its work.

However, chares on a processor can be in different iterations depending on their load, the

processor load and the communication dependencies. To ensure that the application does not

hang, all the chares have to be at the same iteration to perform centralized load balancing.

An example, where an application can hang if this constraint is not met is as follows. Let

the ideal load balancing period intimated be iteration i. Consider a chare a, which finished

iteration i, and hence enters the load balancing stage. Consider another chare b, which is

executing iteration i + 1, and is waiting for a message from chare a, which chare a was to

send in iteration i+ 1. Since the chare a has become idle, b remains waiting for the message

from a and cannot complete its iteration. However, load balancing cannot proceed until b

enters the load balancing phase, and sends its data. This causes the application to hang.

To avoid such a scenario, which causes the application to hang, all the chares need to

reach a consensus on the iteration number to enter the load balancing stage. Since the

chares can be in different iterations, we use the following scheme shown in Figure 3.5 to

obtain consensus.

When the central processor identifies the ideal load balancing period, which is a tentative

LB period, it broadcasts this information to all the processors. On receiving the tentative LB

period, the processors informs the root with information about the maximum iteration, which

any chare residing on the processor is executing. Upon receiving the maximum iteration of

24

all the chares in the system, the root decides the final load balancing period. If the tentative

LB period is beyond the maximum iteration, i.e. no chare has reached the tentative LB

period, the LB period is set to the tentative value. But, if any chare has gone past the ideal

load balancing period, the final load balancing period is set to be that maximum iteration.

This final LB period is broadcasted to all the processors.

Meanwhile, on each processor, whenever a chare finishes its iteration, before entering the

next iteration, it checks if it has reached the maximum of the tentative LB period or the

value the processor had sent. If it has not reached the limit, it resumes its work. If it has

reached the limit, it waits for the final verdict on the LB period. It is said to be in a pause

state. On receiving the final LB period, a chare in pause state, decides to either resume its

work, or enter the load balancing stage. Any chare which reaches the final lb period, enters

into LB stage. This scheme ensures that all the chares arrive at a consensus regarding the

load balancing period and enters the LB stage at the same iteration.

3.6.2 Dynamic Refinement of LB Period

As the statistics collection proceeds, the predicted load might change and become refined.

This in turn leads to the refinement of ideal LB period. When the ideal LB period changes,

this is intimated to all the processors and chares using the scheme described in the previous

section (§3.6.1). Unless any chare has entered the load balancing phase, it is possible to ex-

tend the LB period. Similarly, the LB period can be reduced from the previously announced

period if no chare has gone beyond that period.

25

d7

e11 e12 e13

LB Period
BCast 10

c8

Max
Iteration

a10 b10

c9d8

ROOT

PE0

PE1

PE2

PAUSE b11 b13

Final LB Period
BCast 13

d10 c13d9

LOAD BALANCE

1 2 3 4

PAUSE

Figure 3.5: Intimating the calculated LB period

3.7 Strategy Selection

3.7.1 Communication vs Computation Strategy

Data and their associated computations are distributed across several interconnected pro-

cessing elements (processors) which work in parallel. Accessing data on remote processors

requires inter-processor communication. Consequently, the efficient use of such distributed

memory parallel machines requires spreading the computation load evenly across different

processors and minimizing the communication overhead. Depending on the type of appli-

cation, preference should be given to load balancing strategies that either minimizes load

imbalance or that minimizes communication overhead.

26

Applications have various characteristics that helps determine whether it is communica-

tion intensive or computation intensive. Presence of idle time is an indicator of the need

to perform load balancing. This idle time can be either due to computational load imbal-

ance, or due to high communication volume. In presence of idle time, Meta-Balancer uses

alpha−beta cost of an application to determine if it is a communication intensive application.

We define alpha− beta cost of an application as

alpha− beta = α ∗mn + β ∗mv (3.6)

where mn is number of messages sent

mv is the total number of bytes transferred

α is per message start up cost, and

β is per byte send cost

If the alpha−beta cost of an application is at least 10% of the total load, it indicates that

this is a communication intensive application. To minimize the communication overhead,

graph partitioner based load balancing strategies, such as MetisLB or ScotchLB, are used by

the Meta-Balancer. In case a refinement based strategy is required, CommAwareRefineLB

or ScotchRefineLB, is used.

If an application is not communication intensive, then imbalance in load will result

in heavy degradation of performance. For such applications, strategies that balances out

the load, such as GreedyLB, RefineLB or RefineSwapLB, are used by the Meta-Balancer.

Imbalance in load can be identified by the ratio of maximum load on a processor
average load per processor

. If this ratio is

beyond a threshold of 1.1, then there is considerable imbalance.

These features of Meta-Balancer were verified by using leanmd and kNeighbor. leanmd

is a computation intensive benchmark, in which load imbalance is high when the applica-

tion begins. However, there is very little variation in the load of a chare through out the

application run. As shown in Figure 3.6, Meta-Balancer identifies leanmd to be a compu-

27

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 (s
)

Iterations

leanmd

average load
maximum load

Figure 3.6: leanmd mini-application

tation intensive benchmark, and invokes GreedyLB, which results in perfect load balance

and low per iteration time. In contrast, for a kNeighbor run with large communication,

Meta-Balancer invoked MetisLB, and reduced the iteration time as shown in Figure 3.7.

3.7.2 Refinement vs Comprehensive Strategy

The load balancing strategies map chares onto the processors based on the computation

load or on the communication pattern. There are two categories of algorithms used for

load balancing. One is comprehensive algorithms, also called as from-scratch, that does not

take the existing chare mapping into account. The other is the refinement-based algorithms

that takes the existing mapping into account in order to limit the number of chare move-

ments. Reducing the chare movements leads to lesser migration cost. The computation

based comprehensive strategies include GreedyLB and computation based refine strategies

include RefineLB and RefineSwapLB. In the case of communication aware load balancing

strategies, comprehensive strategies include MetisLB, ScotchLB and ZoltanLB, and refine-

ment based strategies include ScotchRefineLB and CommAwareRefineLB. Meta-Balancer

28

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

R
at

io

Iterations

kNeighbor Communication Intensive

imbalance ratio (max/avg)
idle/load

Figure 3.7: kNeighbor with high communication

begins every application run with a call to comprehensive strategy. Thereafter, refinement

strategies are invoked unless it observes that refinement strategies performed poorly in com-

parison to comprehensive strategies. The Meta-Balancer takes history into account, and

invokes the strategies based on the quality of results they provided.

3.7.3 Overall Strategy Selection

Figure 3.8 shows the flowchart describing the strategy selection for communication vs com-

putation, and comprehensive vs refinement. Whenever Meta-Balancer receives statistics, it

checks to see if there is load imbalance. Load imbalance is calculated by maximum load
average load

. If the

load imbalance is within certain threshold, currently set to 1.10, it indicates that there is not

much load imbalance in the application. But, this does not necessarily mean that there is no

communication overhead. At this point, Meta-Balancer checks to see if the utilization is low

(or idle time is high). If there is no idle time, Meta-Balancer concludes that the application

is perfectly balanced. Otherwise, it calculates the alpha− beta cost. If the alpha− beta cost

is more than 10% of the total load, it invoke the communication minimization LB strategy.

29

Lot of idle
time

load
imbalance

No LB Comm LB

N

N Y

Y

Y ∝𝓑cost first time Y
Comprehensive

strategyN

high imb

N

Y

good
comprehensive

lb

Y
N

good
Refine LB N

Y

RefineLB

N

start

LB Strategy Selection

Figure 3.8: Flowchart describing strategy selection

If there is not significant amount of communication in the application, and there is load im-

balance, it invoke strategies that balances the load. It is preferable to use refinement based

strategies instead of comprehensive strategies since they reduce the number of chare migra-

tions. Hence, only if it is the first time that the load balancing is called, then comprehensive

strategy is invoked. In the consecutive runs, refinement-based strategies are preferred over

comprehensive, if their performance is comparable.

30

Chapter 4

Conclusions and Future Work

Load imbalance, both computationally and communication induced, is a key factor that

affects performance and scalability of an application. Leaving it to the application program-

mer to manually handle this imbalance in a dynamic application, and to find an optimum

load distribution throughout the run of the application, is unreasonable and inefficient.

Charm++ provides the user with a RTS that performs dynamic load balancing. In this the-

sis, we proposed a Meta-Balancer, which is a part of Charm++ RTS, that controls the load

balancing decision based on the application characteristics. We studied the performance of

Meta-Balancer in the context of multiple mini-applications and micro-benchmarks. It was

shown that Meta-Balancer is able to identify an ideal load balancing period which gives the

maximum performance gains. In the case of leanmd mini-application, it could be seen that

after the initial load balancing, the Meta-Balancer identified that there was no significant

imbalance to trigger load balancing and the ideal load balancing period was long. On the

other hand, in kNeighbor, the sudden change in the load imbalance caused Meta-Balancer

to trigger load balancing. We also observed that Meta-Balancer was able to identify the key

characteristics of the application, either computation or communication bound, and select

the strategy accordingly. This shows that Meta-Balancer is successful in controlling and

selecting load balancing decisions based on the characteristics of the application without

much overhead.

Future work involves expanding the strategy selection to Hierarchical vs Centralized

strategy. Another area of exploration is the use of topology-aware mapping strategies vs

non topology-aware.

31

References

[1] Robert K. Brunner, Versatile automatic load balancing with migratable objects, TR 00-
01, January 2000.

[2] Cdric Chevalier, Franois Pellegrini, Inria Futurs, and Universit Bordeaux I, Improve-
ment of the efficiency of genetic algorithms for scalable parallel graph partitioning in
a multi-level framework, In Proceedings of Euro-Par 2006, LNCS 4128:243252, 2006,
pp. 243–252.

[3] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D.
Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio, New challenges in
dynamic load balancing, Appl. Numer. Math. 52 (2005), no. 2–3, 133–152.

[4] Filippo Gioachin, Amit Sharma, Sayantan Chakravorty, Celso Mendes, Laxmikant V.
Kale, and Thomas R. Quinn, Scalable cosmology simulations on parallel machines, VEC-
PAR 2006, LNCS 4395, pp. 476-489, 2007.

[5] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling, Parallex an advanced parallel
execution model for scaling-impaired applications, ICPPW ’09: Proceedings of the 2009
International Conference on Parallel Processing Workshops (Washington, DC, USA),
IEEE Computer Society, 2009, pp. 394–401.

[6] L.V. Kalé and S. Krishnan, CHARM++: A Portable Concurrent Object Oriented Sys-
tem Based on C++, Proceedings of OOPSLA’93 (A. Paepcke, ed.), ACM Press, Septem-
ber 1993, pp. 91–108.

[7] Humaira Kamal and Alan Wagner, FG-MPI: Fine-Grain MPI for multicore and clus-
ters, The 11th IEEE International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDESC), IEEE, April 2010.

[8] George Karypis and Vipin Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, TR 95-035, Computer Science Department, University of
Minnesota, Minneapolis, MN 55414, May 1995.

[9] Orion Lawlor, Milind Bhandarkar, and Laxmikant V. Kalé, Adaptive mpi, Tech. Report
02-05, Parallel Programming Laboratory, Department of Computer Science, University
of Illinois at Urbana-Champaign, 2002.

32

[10] Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W.
Wang, The Weather Research and Forecast Model: Software Architecture and Perfor-
mance, Proceedings of the 11th ECMWF Workshop on the Use of High Performance
Computing In Meteorology, October 2004.

[11] James Phillips, Gengbin Zheng, and Laxmikant V. Kalé, Namd: Biomolecular simula-
tion on thousands of processors, Workshop: Scaling to New Heights (Pittsburgh, PA),
May 2002.

[12] Eduardo R. Rodrigues, Philippe O. A. Navaux, Jairo Panetta, Celso L. Mendes, and
Laxmikant V. Kale, Optimizing an MPI Weather Forecasting Model via Processor Vir-
tualization, Proceedings of International Conference on High Performance Computing
(HiPC), 2010.

33

	List of Figures
	Chapter 1 Introduction
	Chapter 2 Load Balancing in Charm++
	Charm++ Load Balancing Framework
	Existing Load Balancers
	New Load Balancers
	RefineSwapLB
	ZoltanLB
	ScotchRefineLB
	CommAwareRefineLB

	Chapter 3 Meta-Balancer
	Motivation
	Iterative Applications
	Decisions in Meta-Balancer
	Statistics Collection
	Existing Synchronous Statistics Collection
	Asynchronous Collection of Statistics via Reduction
	Extracting per Iteration Information

	Load Balancing Period
	Ideal LB Period
	Verification
	Implementation: Computation Intensive Application
	Implementation: Communication Intensive Application
	Dynamic Triggers

	LB Period Intimation
	Consensus on LB Period
	Dynamic Refinement of LB Period

	Strategy Selection
	Communication vs Computation Strategy
	Refinement vs Comprehensive Strategy
	Overall Strategy Selection

	Chapter 4 Conclusions and Future Work
	References

