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ABSTRACT

This thesis introduces two new extensions to L1 adaptive control theory. The first is an

L1 adaptive state feedback controller with generalized proportional adaptation law for a

class of linear systems with input–gain uncertainties and unmatched nonlinear disturbances.

The proportional adaptation law provides an adaptive estimate that is directly proportional

to the error between the output of the system and the state predictor. One advantage of

the new adaptive law is the additional phase margin in the estimation loop, allowing for

accommodation of first order sensor dynamics in the state predictor. An additional benefit

is the reduction of the required computational resources, since the error bounds reduce at

a rate directly proportional to the adaptation gain as compared to the square root of the

adaptation gain achieved by the L1 adaptive controllers using gradient descent adaptation

laws. In addition, an L1 adaptive funnel controller and variable dependent adaptation law

are provided as particular cases for the generalized proportional framework. Also presented is

the connection between the generalized proportional feedback law and previous L1 switching

controller. The second extension is an L1 adaptive controller for a class of uncertain systems

in the presence of time and output dependent unknown nonlinearities and uncertain input

matrix with performance specifications defined via a time–varying reference system using

output feedback. It is shown that both extensions exhibit the standard characteristics of the

L1 adaptive control theory: scaling of transient responses, a guaranteed time–delay margin at

high adaptation rates, and the trade off between robustness and performance is determined

by the design of a low pass filter.
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CHAPTER 1

INTRODUCTION

Control systems are often developed with the use of a system model; however, model er-

rors are inevitable due to several factors such as imprecise parameter values, linearization,

unmodeled disturbances, and more. From this fundamental problem, the idea of adaptive

controllers arose. Adaptive controls is the concept of estimating the system’s uncertainty

through monitoring the system’s behavior, then using the acquired information to produce

a control input that can better achieve the desired performance. Examples of such adap-

tive controllers are presented in [1] and [2]. In order to adapt quickly to parameters and

disturbances, fast estimation is required. Fast estimation, on the other hand, can lead to

high frequencies in the control channel, ultimately reducing the robustness of the system.

Investigation into robustness and proposed modifications to prevent instability are given by

Ioannou and Kokotović [3–5], Peterson and Narendra [6], Kresselmeier and Narendra [7], and

Narendra and Annaswamy [8]. However, these modifications lack analytical quantification

of how robustness margins, adaptation rate, and transient response are related. The result

was a need within the adaptive controls community to find a new adaptive architecture with

quantifiable decoupling of adaptation from robustness.

The L1 adaptive controller, first developed by Cao and Hovakimyan [9], describes such

an architecture. The core concept is to have the adaptive controller attempt to control the

plant only within the bandwidth of the control channel. By doing so, the system can achieve

fast adaptation without allowing high frequencies to enter the control channel, resulting in a

more robust system. In [9], multiple L1 adaptive controllers are presented for various classes
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of uncertain systems. For all L1 adaptive architectures, the transient performance of the

closed–loop adaptive system is quantified both for the system input and output by uniform

performance bounds with respect to an L1 reference system, which incorporates a lowpass

filter. The performance bounds can be arbitrarily improved by increasing the adaptation

gain. The analytical lower bound on the stability margins of the L1 adaptive controller is

derived in [10], where it is proven that in the presence of arbitrarily large adaptation gains,

the L1 adaptive controller preserves robustness and has guaranteed, bounded away from

zero stability margins. For applications of the L1 adaptive control theory we refer the reader

to [11] and references therein. This thesis presents two new extensions to the L1 adaptive

control theory.

Chapter 2 presents the first extension which generalizes the adaptive estimation laws to

a proportional type with time–varying gain. In [9], two different estimation laws have been

considered in Chapter 3 (Sections 3.2 and 3.3), leading to performance bounds of identical

structure. In [12], switching estimation laws are considered, leading to identical bounds.

The proportional estimation law presented in this thesis again leads to bounds of the same

structure, and it is shown that the switching law falls within the generalized proportional

framework. As compared to the gradient minimization type adaptation laws for which the

performance bounds were inverse proportional to the square root of the adaptation gain,

the performance bounds derived here are inverse proportional to the adaptation gain itself

and therefore require less computational effort to achieve similar bounds. Three examples of

specific adaptation laws that fall under the generalized time–varying proportional adaptive

framework are also presented. These examples include a switching adaptation law [12, 13],

funnel–control–law [14–16], and a variable dependent adaptation law.

In section 2.4, an analysis of the performance and stability margins is conducted. The

proposed L1 adaptive control architecture results in a linear closed–loop adaptive system

which allows for the use of standard frequency domain analysis tools. The results of the
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proportional controller are compared to the performance and robustness results obtained by

L1 adaptive controllers with gradient minimization type adaptive laws [10].

In section 2.5.3, the variable dependent control law is proposed as method to adjust the

proportional adaptation gain between a minimum and maximum value based on the value of

a provided variable. We present two examples that benefit from this type of variable based

adaptive gain structure. First, we investigate the peaking phenomenon [17–19], which occurs

in adaptive control systems due to the initialization errors. The variable dependent control

law uses the value of the error to adjust the gain in effort to reduce peaking. We compare

this method with other methods used to reduce peaking. Secondly, as mentioned earlier, the

L1 adaptation schemes involve a fast estimation loop that demands a high CPU rate. The

proposed variable dependent adaptation gain allows for the system to change adaptation

rate in response to CPU processing availability.

Chapter 3 presents the second extension of the thesis. This extension considers the class of

uncertain systems with time and output dependent unknown nonlinearities and uncertainty

in the input matrix. The presented L1 adaptive control architecture achieves performance

specifications defined by a linear time-varying (LTV) reference system, which is critical in

applications covering a wide range of operating conditions. A typical example of time-varying

reference system would be the one resulting from a gain-scheduled baseline controller over

an entire flight envelope. This extension integrates and extends the results from [20–22] to

perform using output feedback for LTV reference systems. It is important to emphasize the

relevance of robust output feedback control since full state measurement of a system is often

unavailable. Several solutions for this problem have been proposed in [23–28].

The extension presented in this thesis expands upon the L1 adaptive controller for time-

varying reference systems proposed in [20], which yields semiglobal performance results for

the original uncertain time-varying system with state feedback. The piecewise constant

adaptation law for output-feedback systems, presented in [22], is modified to preform with
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LTV reference systems. Like all other L1 adaptive controllers, the proposed controller retains

the property that the L1 norms for the error signals between the reference system and the

closed-loop adaptive system can be systematically reduced by increasing the adaptation rate.

Chapter 4 concludes the thesis by providing a summary of the two new L1 adaptive control

theory extensions presented. Please note that the variable names in Chapter 2 may be reused

and redefined in Chapter 3 due to limitation of available variable names.
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CHAPTER 2

PROPORTIONAL ADAPTATION LAW

2.1 Problem Formulation

Consider the system given by

ẋ(t) = Amx(t) + bmωu(t) + f (t, x(t)) ,

y(t) = c⊤x(t) , x(0) = x0 ,

(2.1)

where x(t) ∈ R
n is the system state vector; u(t) ∈ R is the control signal; bm ∈ R

n is a

known constant vector; Am is a known Hurwitz n x n matrix specifying the desired poles of

the closed-loop dynamics; ω ∈ R is an unknown constant with known sign; f : R×R
n → R

n

is an unknown map; and the initial condition x0 is inside an arbitrarily large known set, i.e.,

‖x0‖∞ ≤ ρ0 <∞ with known ρ0 > 0. Let dr ∈ R
+ be the relative degree of the system. The

system above is subject to the following assumptions:

Assumption 1 (Lipschitz continuity). There exist constants L > 0 and B > 0, such that

‖f(t, x1)−f(t, x2)‖∞ ≤ L ‖x1 − x2‖∞ ,

‖f(t, x)‖∞ ≤ L ‖x‖∞ + B ,

hold uniformly for t ≥ 0, where the numbers L and B can be arbitrarily large.

Assumption 2. Let ω ∈ Ω , [ωl, ωu], where 0 < ωl < ωu are given known upper and lower
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Plant

State predictor

Adaptation lawControl law

ẋ = Amx+ bmωu+ f (t, x)
y = c⊤x

˙̂x = Amx̂+ bmω0u+ η̂

ŷ = c⊤x̂

η̂ = −Γ(t)x̃

ω0u+ η̂1

kD(s)

η̂1 = φ(s)η̂

kg
r u x

x̂

x̃

Figure 2.1: Block diagram of the L1 adaptive control system with proportional adaptation
law.

bounds on ω.

The control objective is to design a full-state feedback adaptive controller with a general-

ized proportional adaptation law that will ensure that y(t) tracks a given bounded piecewise-

continuous reference signal r(t) with quantifiable performance bound according to the ideal

system defined as

ẋid(t) = Amxid(t) + bmkgr(t) ,

yid(t) = c⊤xid(t) , xid(0) = x0 ,

(2.2)

where kg , −1/(c⊤A−1
m bm), while allowing for the consideration of external factors such

as time CPU performance, initialization errors, or other situations requiring time varying

performance bounds.

2.2 L1 Adaptive Control Architecture

The L1 adaptive controller presented in this paper, similar to all other L1 architectures, is

comprised of a state predictor, adaptive law, and control law, arranged as shown in Figure 2.1.
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2.2.1 State Predictor

We consider the following state predictor:

˙̂x(t) = Amx̂(t) + bmω0u(t) + η̂(t) ,

ŷ(t) = c⊤x̂(t) , x̂(0) = x0 ,

(2.3)

which has a similar structure as (2.1), except ω is replaced by its best available guess ω0 ∈ Ω,

and the unknown estimates of ω and f (t, x(t)) are grouped together to form the estimated

parameter η̂(t).

2.2.2 Adaptation Laws

The adaptive process is governed by the following generalized adaptation law:

η̂ (t) = −Γ(t)x̃ (t) , (2.4)

where x̃(t) , x̂(t)− x(t), and Γ(t) is diagonal n x n matrix with the only requirement being

that λmin (Γ(t)) > 0 for all t ≥ 0. This loose condition on the adaptive gain provides a

generalized framework for the analysis of stability and performance, under which several

adaptive gain generating methods are presented.

2.2.3 Control Law

The L1 adaptive control law is generated as the output of the following feedback system:

u(s) = −kD(s) (ω0u(s) + η̂1(s)− kgr(s)) , (2.5)
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with η̂1(s) defined as

η̂1(s) , φ(s)η̂(s) , φ(s) ,
c⊤ (sI− Am)

−1

c⊤ (sI− Am)
−1 bm

where r(s) and η̂(s) are the Laplace transforms of r(t) and η̂(t) respectively; and k > 0 and

D(s) are a feedback gain and a strictly proper transfer function respectively, which lead to

a strictly proper stable transfer function

C(s) ,
ωkD(s)

1 + ωkD(s)
, ∀ω ∈ Ω , (2.6)

with DC gain C(0) = 1 and relative degree at least dr.

The L1 adaptive controller is defined via (2.3), (2.4) and (2.5), subject to the following

L1-norm condition:

‖G(s)‖L1
L < 1 , (2.7)

given the following definitions:

G(s) , (In −Hxm(s)C(s)H
−1
m c⊤)Hxum ,

Hxum(s) , (sI− Am)
−1, Hxm(s) , (sI− Am)

−1bm,

Hm(s) , c⊤(sI− Am)
−1bm .

In [21], a filtered integral adaptation law is presented. Here a filtered proportional adap-

tation law is presented that adds ninety degrees of phase margin to the adaptation loop by

avoiding integration. This extra margin can be used to perform structural modifications

of the estimation loop of the L1 adaptive controller. More specifically, first order sensor

dynamics may be added to the state predictor which can help to improve the performance of

the closed–loop control system as illustrated later in the paper in Fig. 2.8. Theoretical anal-
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ysis of such modification can be pursued similar to the prior proofs in L1 adaptive control

theory [9].

2.3 Analysis of the L1 Adaptive Controller

2.3.1 Closed–loop Reference System

Similar to all L1 adaptive controllers, we consider the following closed–loop reference system

ẋref(t) = Amxref(t) + bmωuref(t) + ηref(t), xref(0) = x0, (2.8)

yref(t) = c⊤xref(t) , (2.9)

ηref(t) , f(t, xref(t)) , (2.10)

uref(s) = −C(s)
ω

(φ(s)ηref(s)− kgr(s)) . (2.11)

The stability of the closed–loop system in (2.8)-(2.11) is provided by the following lemma.

Lemma 1. If k and D(s) verify the L1-norm condition in (2.7), then the closed-loop refer-

ence system in (2.8)-(2.11) is BIBS stable with respect to r(t) and x0.

Proof : It follows from (2.8)–(2.11) that

xref (s) = G (s) ηref (s) +Hxm (s)C (s) kgr (s) + xin (s) ,

where xin(s) , Hxumx0. Since Am is Hurwitz, xin(t) is uniformly bounded. Next, given that

the system is BIBO-stable and LTI and that ηref(t) and r(t) are uniformly bounded, the

following bound may be obtained

‖xrefτ‖L∞

≤‖G (s)‖L1
‖ηrefτ‖L∞

+ ‖Hxm (s)C (s) kg‖L1
‖r‖L∞

+ ‖xin‖L∞

.
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Applying bounds to Assumption 1 we have ‖ηrefτ‖L∞

≤ L ‖xrefτ‖L∞

+B for some 0 ≤ τ ≤ t.

Substituting and solving for ‖xrefτ‖L∞

, one obtains

‖xrefτ‖L∞

≤ ρr , (2.12)

where ρr is defined as follows

ρr ,
‖Hxm (s)C (s) kg‖L1

‖r‖L∞

+ ‖G (s)‖L1
B + ‖xin‖L∞

1− L ‖G (s)‖L1

. (2.13)

Then, because k and D(s) are chosen to verify the condition in (2.7), ‖xrefτ‖L∞

is uniformly

bounded for all τ ≥ 0. Hence, the closed-loop reference system in (2.8) is BIBS stable.

Similarly, uref can be bounded as follows

‖urefτ‖L∞

≤ ρur , (2.14)

ρur ,

∥

∥

∥

∥

LC(s)φ(s)

ω

∥

∥

∥

∥

L1

ρr +

∥

∥

∥

∥

BC(s)φ(s)

ω

∥

∥

∥

∥

L1

+

∥

∥

∥

∥

C(s)kg
ω

∥

∥

∥

∥

L1

‖r‖L∞

. (2.15)

�

It is important to note that the closed–loop reference system assumes partial compensation

of uncertainties within the bandwidth of the control channel. It therefore depends on the

unknown system parameters and disturbances and cannot be implemented directly. The

closed–loop reference system is used solely for the purpose of analysis.

2.3.2 Error Dynamics

The system dynamics in (2.1) and the state predictor in (2.3) lead to the following prediction-

error dynamics:

˙̃x(t) =Amx̃(t)+bm(ω0 − ω)u(t) + η̂(t)− η(t) , (2.16)

10



with x̃(0) = 0, where η(t) = f(t, x(t)). Rewriting the error dynamics (2.16) in frequency

domain, we obtain

c⊤x̃(s) = Hm(s)η̃(s) , (2.17)

where

η̃(s) , (ω0 − ω)u(s) + η̂1(s)− η1(s) , (2.18)

and η1(s) = φ(s)η(s).

Lemma 2. Given the system in (2.1) and the L1 adaptive controller defined via (2.3), (2.4),

and (2.5), if ‖xτ‖L∞

≤ ρ and ‖uτ‖L∞

≤ ρu we have:

‖x̃τ‖L∞

≤ γ0 ,
1

ν
‖P‖2 ∆η

√

λmax(P )

λ3min(P )
,

where P = P⊤ > 0 is the solution of the algebraic Lyapunov equation A⊤
mP + PAm = −Q

for arbitrary Q = Q⊤ > 0, ∆η and ν defined as

∆η , (ωu − ωl)‖bm‖ρu +
√
n(Lρ+B)

ν , inf
t≥0

λminΓ(t) ,

and ρ and ρu are defined as

ρ , ρr + γ̄1 , ρu , ρur + γ2 ,

where

ρr ,
‖Hxm(s)C(s)kg‖L1

‖r‖L∞

+ ‖G(s)‖L1
B + ‖xin‖L∞

1− L ‖G(s)‖L1

, (2.19)
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ρur ,

∥

∥

∥

∥

LC(s)φ(s)

ω

∥

∥

∥

∥

L1

ρr +

∥

∥

∥

∥

BC(s)φ(s)

ω

∥

∥

∥

∥

L1

+

∥

∥

∥

∥

C(s)kg
ω

∥

∥

∥

∥

L1

‖r‖L∞

, (2.20)

γ1 ,

∥

∥Hxm (s)C (s)H−1
m (s) c⊤

∥

∥

L1

1− L ‖G (s)‖L1

γ0 + β , (2.21)

γ2 ,

∥

∥

∥

∥

C (s)

ω
φ(s)

∥

∥

∥

∥

L1

Lγ1 +

∥

∥

∥

∥

C (s)H−1
m (s)c⊤

ω

∥

∥

∥

∥

L1

γ0 , (2.22)

with β being some arbitrary (small) constant and γ̄1 defined such that γ1 ≤ γ̄1 and xin(s) ,

(sI− Am)
−1x0.

Proof :

Consider the Lyapunov function candidate:

V (t) =
1

2
x̃⊤(t)Px̃(t). (2.23)

Since x̃(0) = 0, we have V (0) = 0. Taking the time derivative of (2.23), we obtain

V̇ (t) =
1

2

(

−x̃⊤(t)Qx̃(t)− 2x̃⊤(t)P (bm(ω0 − ω)u(t)− η(t)) + 2x̃⊤(t)P η̂(t)
)

.

Substituting the adaptation law (2.4) in for η̂ we get

V̇ (t) = −1

2
x̃⊤(t)Qx̃(t)− x̃⊤(t)P (bm(ω0 − ω)u(t)− η(t))− x̃⊤(t)PΓ(t)x̃(t) ,

which can be upper bounded for t ∈ [0, τ ] to achieve the following

V̇ (t) ≤ −x̃⊤(t)PΓ(t)x̃(t) + ‖x̃(t)‖ ‖P‖2 ∆η

12



where the value ∆η is the following bound:

‖(bm(ω0 − ω)u(t)− η(t))‖ ≤ (ωu − ωl)‖bm‖ ‖uτ‖L∞

+
√
n(L ‖xτ‖L∞

+ B)

≤ (ωu − ωl)‖bm‖ρu +
√
n(Lρ+ B) = ∆η.

Given that Γ(t) is diagonal and P is a positive definite and symmetric we obtain

λmin(PΓ(t)) = λmin(P )λmin(Γ(t)) ≥ λmin(P )ν .

Then, since ν and λmin(P ) are greater than zero, for all t ∈ [0, τ ] we have

‖x̃(t)‖ > ‖P‖2 ∆η

λmin (P ) ν
⇒ V̇ (t) < 0.

If at any time t1 ∈ [0, τ ], one has

V (t1) >
1

2
λmax(P )

( ‖P‖2 ∆η

λmin(P )ν

)2

,

then

1

2
λmax(P )

( ‖P‖2 ∆η

λmin(P )ν

)2

< V (t1) =
1

2
x̃(t)⊤Px̃(t) ≤ 1

2
λmax(P ) ‖x̃(t)‖2 ,

which results in ‖x̃(t)‖ > ‖P‖
2
∆η

λmin(P )ν
, causing V̇ (t1) < 0. Then it follows that

V (t) ≤ 1

2
λmax(P )

( ‖P‖2 ∆η

λmin(P )ν

)2

, ∀t ∈ [0, τ ].

13



Since 1
2
λmin(P ) ‖x̃(t)‖2 ≤ V (t), it follows that

‖x̃τ‖L∞

≤ 1

ν
‖P‖2 ∆η

√

λmax(P )

λ3min(P )
,

and the proof is complete. �

2.3.3 Performance Bounds of Closed–Loop Adaptive System

The error bounds between the system’s states and the reference states and the system’s input

and the reference input are given in the next theorem.

Theorem 1. Given the system in (2.1) and the L1 adaptive controller defined via (2.3),

(2.4), and (2.5), subject to the L1-norm condition in (2.7), if we have ‖x0‖∞ ≤ ρ0, then

‖x‖L∞

≤ ρ , ‖u‖L∞

≤ ρu , ‖x̃‖L∞

≤ γ0 , (2.24)

‖xref − x‖L∞

≤ γ1 , ‖uref − u‖L∞

≤ γ2 . (2.25)

Proof :

Assume that the bounds in (2.25) do not hold. Then, since ‖xref(0)− x(0)‖∞ = 0 ≤ γ1,

‖uref(0)− u(0)‖∞ = 0 ≤ γ2, and x(t), xref(t), u(t), and uref(t) are continuous, there exists

τ > 0 such that

‖xref(τ)− x(τ)‖∞ = γ1 or ‖uref(τ)− u(τ)‖∞ = γ2 ,

while

‖xref(t)− x(t)‖∞ < γ1 , ‖uref(t)− u(t)‖∞ < γ2 ,
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for all t ∈ [0, τ). This implies that at least one of the following equalities holds:

‖(xref − x)τ‖L∞

= γ1 , ‖(uref − u)τ‖L∞

= γ2. (2.26)

Then, using the fact that ‖xref‖L∞

≤ ρr and ‖uref‖L∞

≤ ρur from Lemma 1, along with

definitions of ρ and ρu, it follows from the bounds in (2.26) that

‖xτ‖L∞

≤ ρr + γ1 ≤ ρ ,

‖uτ‖L∞

≤ ρur + γ2 ≤ ρu.

This validates the assumptions used in Lemma 2, which in turn implies that ‖x̃τ‖L∞

< γ0.

Next, it follows from (2.5) that

u (s) = −KD(s) (ωu(s) + η1(s)− kgr(s)− η̃(s)) ,

where η̃ (s) is defined in (2.18). Solving for u(s) gives

u (s) =
−KD (s)

1 + ωKD (s)
(η1(s)− kgr (s)− η̃ (s)) .

Using the definition of C(s) from (2.6), we can write:

u (s) =
−C (s)

ω
(η1(s)− kgr (s)− η̃ (s)) , (2.27)

and the system in (2.1) takes the form

x(s) = G(s)η(s) +Hxm(s)C(s)kgr(s) +Hxm(s)C(s)η̃(s) + xin(s).
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Similarly, it follows from (2.8) that

xref(s) = G(s)ηref(s) +Hxm(s)C(s)kgr(s) + xin(s).

Then

xref(s)− x(s) = G(s)(ηref(s)− η(s))−Hxm(s)C(s)η̃(s) . (2.28)

Pre-multiplying both sides of (2.17) by H−1
m (s) leads to the following equation:

η̃(s) = H−1
m (s)c⊤x̃(s). (2.29)

Substituting (2.29) into (2.28) leads to

xref(s)− x(s) = G(s)(ηref(s)− η(s))−Hxm(s)C(s)H
−1
m (s)c⊤x̃(s) ,

from which, with the use of Assumption 1, we obtain the following bound

‖(xref − x)τ‖L∞

≤L ‖G(s)‖L1
‖(xref − x)τ‖L∞

+
∥

∥Hxm(s)C(s)H
−1
m (s)c⊤

∥

∥

L1

‖x̃τ‖L∞

.

Then, solving for ‖(xref − x)τ‖L∞

, we obtain

‖(xref − x)τ‖L∞

≤
∥

∥Hxm (s)C (s)H−1
m (s) c⊤

∥

∥

L1

1− L ‖G (s)‖L1

γ0 ,

which along with the definition of γ1 in (2.21) leads to

‖(xref − x)τ‖L∞

≤ γ1 − β < γ1. (2.30)
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On the other hand, from (2.11) and (2.27) one can derive

uref(s)− u(s) = −C(s)
ω

φ(s)(ηref(s)− η(s))− C(s)

ω
η̃(s).

Substituting (2.29) into the previous we obtain the following bound

‖(uref − u)τ‖L∞

≤
∥

∥

∥

∥

C(s)

ω
φ(s)

∥

∥

∥

∥

L1

L ‖(xref − x)τ‖L∞

+

∥

∥

∥

∥

C(s)H−1
m (s)c⊤

ω

∥

∥

∥

∥

L1

‖x̃τ‖L∞

.

Substituting the bounds for ‖(xref − x)τ‖L∞

and ‖x̃τ‖L∞

leads to

‖(uref − u)τ‖L∞

≤
∥

∥

∥

∥

C(s)

ω
φ(s)

∥

∥

∥

∥

L1

L(γ1 − β) +

∥

∥

∥

∥

C(s)H−1
m (s)c⊤

ω

∥

∥

∥

∥

L1

γ0 < γ2. (2.31)

Finally, we note that the upper bounds in (2.30) and (2.31) contradict the equalities in (2.26),

which proves the bounds in (2.25). The results in (2.24) follow directly from combining the

bounds derived in Lemma 1 with the results from Lemma 2. �

Notice that one can achieve arbitrarily small performance bounds γ0, γ1, and γ2 by in-

creasing the value of ν. Also notice that the performance bounds are inverse proportional to

ν itself, whereas for the integral (gradient descent) adaptation laws, the performance bounds

are inverse proportional to
√
ν. Therefore the adaptation law presented here requires smaller

adaptation gain to achieve similar performance bounds as the previous integral controller.

Finally, the structure of the performance bounds (2.24)–(2.25) is identical to the performance

bounds of the L1 adaptive controller given in Section 2.2.1 of [9]. This similarity is a conse-

quence of the decoupling of the estimation loop from the control loop, which is achieved by

the L1 adaptive control architectures [29].
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Figure 2.2: Closed–loop system with L1 adaptive controller

2.4 Analysis of Performance and Stability Margins

In [29], the authors compare the performance and the robustness of several linear adaptive

controllers using a linear system with time–varying disturbance in the presence of measure-

ment noise. In order to make the closed loop adaptive system linear in [29], the integral

adaptation laws were used while omitting the projection operator. The proportional adap-

tive system is linear as presented. For fair comparison, we consider a first order system of the

same structure, namely we use (2.1) with Am = −am, ω = 1, f(t, x(t)) = 0, and use a static

adaptation gain Γ. In the absence of input uncertainty, the control law can be rewritten as

follows

u(s) = C(s)η̂1(t)− kgr(s) ,

noting that the reference signal is not multiplied by the filter C(s) in order to mimic [29].

The resulting block diagram of the system described above is given in Figure 2.2.

2.4.1 Performance Analysis

The Gang of Six for the closed–loop system with proportional L1 adaptive controller is given

in Table 2.1. Similar to MRAC and conventional L1 adaptive control, in the absence of the
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Hxr(s) = Hzr(s) =
bkg

s+am

Hxσ(s) = Hzσ(s) =
b

s+am

(

1− ΓC(s)
s+am+Γ

)

Hxn(s) = Huσ(s) = − Γ
s+am+Γ

C(s)

Hur(s) = Hµr(s) = kg

Hzn(s) = Hµσ(s) = 1− ΓC(s)
s+am+Γ

Hun(s) = Hµn(s) =
−Γ(s+am)
b(s+am+Γ)

C(s)

Table 2.1: Gang of Six for the system with proportional L1 adaptive controller

disturbance (σ) and the measurement noise (n), the closed loop system is identical to the

ideal system in (2.2). Similar to [29], the remaining transfer functions contain the filter C(s).

Next we investigate the performance and robustness of this closed–loop control system and

compare it to the conventional L1 adaptive controller with gradient descent adaptation laws.

We do so by considering a simple, first order filter of the following form:

C(s) =
ωc

s+ ωc

, ωc = 5 ,

where ωc ∈ R
+ is a filter parameter. Figures 2.3 shows the Bode plots for the closed–loop

system with the proportional L1 controller for different values of the adaptation gain. Notice

that increasing the adaptation gain leads to better attenuation of the input disturbances.

However, unlike in [29], the high frequency content of the measurement noise does not get

amplified in the control channel with large adaptation gains and the system exhibits no

resonance peaks, similar to the results obtained by modifying the state predictor or using

high order filters with conventional L1 adaptive control.

Also, unlike the L1 adaptive controller with gradient descent adaptation laws, the the

magnitudes of Hxσ(s), Hzσ(s), Hzn(s), and Hµσ(s) at low frequencies are dependent on the

adaptation gain and do not become arbitrarily small. Therefore the adaptation gain value
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Figure 2.3: Bode plots for teh system with proportional L1 adaptive controller for different
values of the adaptation gain

can be easily chosen to obtain desired disturbance rejection at low frequencies for a given

filter C(s).

2.4.2 Analysis of Stability Margins

Using Figure 2.2 we compute the input loop transfer function:

Lu1u2
= − Γ

s+ am + (1− C(s))Γ
C(s)

= − Γwc

s2 + (Γ + am + wc) s+ wcam
.
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The Nyquist plot in Figure 2.4, computed with the same values as earlier (am = 2 and

wc = 5), shows that the phase and gain margins of the proportional L1 adaptive controller

are not affected by large values of Γ. The figure shows that the proportional L1 adaptive

controller has guaranteed bounded–away–from–zero phase and gain margins in the presence

of fast adaptation.

Standard L1 adaptation laws with a first order filter exhibit resonance peaks in the input

loop transfer function that increase in magnitude and frequency with increase in adaptation

gain [29]. These resonance peaks can cause amplification of noise which reduces robustness

and can lead to implementation problems in the control channel. The peaks can be re-

moved using higher order filter or state predictor modifications. However, with the proposed

proportional adaptation law, the Bode plot of the transfer function in Figure 2.4 does not

exhibit resonance peaks, thus improving stability margins of the system without the need

for any modification or high order filter.

This result can be explained by calculating the damping coefficient for each type of adap-

tation law. The values are as follows

ξc =
wc + am

2
√
amwc + Γb

, ξp =
Γ + am + wc

2
√
amwc

,

where ξc and ξp are the damping coefficients for the conventional and proportional adaptation

laws, respectively. As shown, an increase in the adaptation gain reduces the damping for

the conventional adaptation law and increases damping for the proportional adaptation

law. These results display the stability margin benefits gained by the use of the proposed

proportional adaptation law.

21



−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

 

 

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

γ = 10
γ = 103

γ = 105

(a) Bode plots

−1 0 1 2 3 4 5 6

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

4

 

 

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

γ = 10
γ = 103

γ = 105

(b) Nyquist Plots

Figure 2.4: Loop transfer function of of system with Proportional Adaptation Law
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2.5 Adaptation Gain Generation Methods

This section examines three specific methods for adaptive gain generation that fall under

the generalized proportional L1 adaptive controller.

2.5.1 Switching Adaptation Law

We begin by presenting the switching–adaptation law presented in [12], which is given by

η̂ (t) = −Gsgn(dz
[

(Pb)⊤x̃(t)
]

) ,

where dz[·] is the dead zone function, the size of which is set arbitrarily small. The adaptive

architecture presented in [12] has the same performance bounds structure standard for the L1

adaptive control architecture. The above adaptation law can be presented as a time–varying

adaptive gain proposed above by approximating it as

Γi,i(t) = ǫ+

[

(Pb)⊤
]

i

ǫ+ |x̃i(t)|
,

where ǫ is an arbitrarily small positive constant used to avoid singularity and [ · ]i denotes

the ith component of the vector while i, i denotes the ith component of the diagonal gain

matrix.

In the subsequent sections we now consider examples of adaptive gain generation tech-

niques which fit the architecture presented in this paper, but have not been considered for

L1 adaptive control thus far.
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2.5.2 Funnel Adaptation Law

One specific application of time–varying proportional gain is funnel control. In funnel control,

the time varying gain is defined as follows

Γ(t) =
I

F(t)− ‖x̃(t)‖p
, (2.32)

where p can be any vector norm, x̃(t) ∈ R
n is the prediction error and F(t) ∈ R is a

continuous function of time such that ‖x̃(0)‖ < F(0) and mint>0F(t) ≥ F∞ > 0, and

represents a time varying funnel in which the error remains as shown in Figure 2.5. For

example, the Exponential Funnel Boundary is given by

Fexp(t) = F0 exp

(

− t

T

)

+ F∞; (2.33)

where T is the time constant and F0 and F∞ are positive constants such that F(0) = F0+F∞

and limt→∞Fexp(t) = F∞.

Notice that ‖x̃(t)‖ must be less than F(0) in order for the initial gain to be positive, which

corresponds to the requirement that the error must be initialized within the funnel. Then, as

the value of the error approaches the funnel boundary, the denominator in (2.32) decreases

resulting in an increased gain and forces the error towards zero. Infinite gain occurs as

the error approaches the funnel boundary. Therefore, funnel control can exhibit very large

adaptation gains which can lead to robustness issues, such as small time delay margins.

The funnel control concept can be applied to the adaptive gain in the proportional L1 adap-

tive control theory mentioned above. The key difference is that the adaptive gain in the L1

architecture considers the error between the plant states and the state predictor instead of

the error between the output and the reference signal. However, due to the decoupling of

robustness and adaptation in L1 theory [11], the high gain resulting from the funnel control
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Time (s)

‖x̃(0)‖

F(0)

‖x̃(t)‖
F(τ)− ‖x̃(τ)‖

τ

F(t)

Figure 2.5: Basic Concept of Funnel Control

acts to improve performance without decreasing robustness. The trade off between robust-

ness and performance instead manifests itself in the choice of the low pass filter. Funnel

control is used to prescribe a bound on the error between the actual system and reference

system, while the choice of filter determines how close the reference system matches the ideal

system, with the cost of performance being the reduction in robustness.

2.5.3 Variable Adaptation Law

Finally, we present an adaptive gain generating method dependent on a vector ψ(t) ∈ R
q,

with q being finite, of variables by which the value of the adaptation gain is adjusted. The

gain adjustment equation is given as

Γ(t) =

(

GL +
GU

1 + α ‖ψ(t)‖p

)

I . (2.34)
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with GL, GU , α ∈ R
+ and p representing any vector norm. The adaptation gain has a lower

bound GL and upper bound GU +GL, while the rate of variation is dependent on the design

parameter α. Thus, as the norm of the vector ψ(t) increases, the adaptation gain decreases.

Note that the lower bound can be set to ensure given performance bounds. Next, we suggest

two variables that can be used to vary the adaptation gain.

First, the variable adaptation law may use the error x̃(t) for ψ(t) in (2.34) as a method

to reduce the effects of the peaking phenomenon experienced in adaptive controls [17–19].

Peaking refers to the large spike, or peak, in control effort that occurs as a result of an

error between the initial conditions of the plant and state predictor. When using the above

equation, the adaptation gain is reduced when there is a large error between the state

predictor and plant, reducing the magnitude of peaking.

The second variable considered is CPU rate. The main limiting factor for achieving fast

adaptation is the availability of the CPU since it requires a high CPU demand. Varying the

adaptation gain according to CPU demand can be used to regulate the CPU usage, and may

lead to improved performance, since in many cases the adaptation gain is selected based on

conservative CPU demand estimations.

We illustrate some of the results presented in this section in the simulations below.

2.6 Simulations

Consider the system in (2.1) with the following values

Am =







0 1

−1 −1.4






, bm =







0

1






, c⊤ = [1, 0] . (2.35)
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Consider the following three cases of parametric uncertainties,

ω1 =1 , ω2 = 1.5 , ω3 = 0.8 ,

f1(t) =







0.5 cos(πt) sin(x2(t))

2 + 0.3 sin(πt)x1(t) + 0.2 cos(πt)x2






,

f2(t) =







sin(0.5πt) + 2 sin(x1(t))− .1

0.1 cos(3πt)x2(t) + sin(x2(t)) + 2 sin(πt)






,

f3(t) =







0.5x2(t) + sin(x1(t)) + sin
(

16π
5
t
)

3x1(t)− sin(t) + 3 cos(x1(t)) + 2 sin(2πt)






.

We implement the L1 adaptive controller according to (2.3), (2.4), and (2.5), subject

to the L1-norm condition in (2.7). Since the system has a relative degree 2, we select

D(s) = 200
s(s+200)

. We set k = 60 and let Γ = 100, 000.

Figure 2.6 depicts the response of the system to a reference trajectory r(t) = cos(2t/π)

for three sets of nonlinear disturbances and input uncertainties above. The three output

responses are nearly identical although the control responses are different. This implies that

to achieve uniform performance, the compensation for the different time varying disturbances

requires different control signals to cancel their effects. Figure 2.7 shows the response of the

system to step reference inputs of 1, 5, and 10 with f1(t, x(t)) and ω1 uncertainties. As

shown, both the system response and the control input scale uniformly.

In [30] it was shown that the fast estimation loop of L1 adaptive controller can be system-

atically modified to improve the performance of the closed–loop system by accommodating

different types of real world system components such as actuator and sensor dynamics. Pre-

vious work has illustrated the benefits of modifying the control signal of the state predictor

to take into account the saturation magnitudes and the known input delays [30]. Without

going into technical details and providing theoretical analysis, here we show that the sensor
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Figure 2.6: Closed–loop system response for the three sets of parametric uncertainties and
disturbances.

dynamics cannot be compensated for by modifications of the state predictor when using

gradient descent adaptation laws, while the proposed proportional adaptive law allows us

to address this problem. Toward this end, consider the same plant given in (2.35) with the

sensor dynamics given by

S(s) =
20

s+ 20
.

Since the sensor dynamics are assumed to be known, we modify the output of the state

predictor according to the sensor dynamics. The simulation results for both gradient descent

and proportional adaption laws are given in Figure 2.8. One can see that the gradient descent

adaptation law becomes unstable, while the proportional adaptation law is able to track the

step reference command.

Next, consider the funnel control algorithm in (2.32) for the time–varying adaptive gain

with the use of the infinity norm. The Exponential Funnel Boundary from (2.33) is used with

F0 = 0.3, F∞ = 0.05, and T = 2. The plant states are initialized as x0 = [0.1, 0.2]⊤, while

the state predictor is initialized with x̂0 = [0, 0]⊤. A small initialization error is presented
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Figure 2.7: Closed–loop system response to step signals of various amplitudes showing scal-
able response.

so that the initial error does not start at the orginin. Figure 2.9 shows the state response

and the control input. There is an initial error between the output of the system and the

reference system, which eventually converges as the funnel narrows. The adaptive gain varies

in order to keep the error within the funnel as shown in Figure 2.10.

Next, simulation results are shown that demonstrate the use of the variable adaptation

gain to decrease the peaking phenomenon. The results are compared to the results of two

other methods commonly used to reduce peaking: funnel control and input saturation. We

also show the case where a large static gain is used to depict the severity of peaking in the

absence of any peaking reduction method. The plant model is initialized to x0 = [3,−1]⊤,

while the state predictor is initialized with x̂0 = [0, 0]⊤. For the constant adaptive gain, a

value of Γ = 10, 000I is used. The funnel boundary parameters are set to F0 = 5, F∞ = 0.001,

and T = 2, while the parameters GL = 10, GU = 10, 000, and α = 2, 000 are used for the

state dependent gain described in (2.34). Control saturation is set to ±15. The infinity norm

was used for both the funnel control and variable gain laws.

Figure 2.11 shows the output response and the control input value for the four different

29



0 5 10 15
0

0.5

1

1.5

2

2.5

time [s]

x 1(t
)

 

 

Gradient Decent
Proportional

(a) Transient performance

0 5 10 15
−80

−60

−40

−20

0

20

40

60

80

time [s]

 

 

Gradient Decent
Proportional

(b) Control history

Figure 2.8: Comparison of performance to step reference command in the presence of known
sensor dynamics.

methods. The control input uc(t) for the constant gain exhibits the peaking phenomenon,

discussed in Section 2.5.3. The funnel control, variable gain, and saturation control inputs,

denoted as uf (t), uv(t), and us(t) respectively, avoid large peaks due to initialization. How-

ever, the output using the funnel control significantly deviates from the desired reference

value before eventually converging. This is due to the fact that the gain remains small as

shown in Figure 2.12. The output of the state dependent gain closely matches the output

achieved using the constant gain but avoids peaking in the control channel. The saturation

and variable methods avoid high gains and do not provide any significant change in response,

although both methods have some downsides. For saturation, the saturation level must be

chosen carefully in order to ensure no loss of stability or performance. In the variable gain

generation method, stability is guaranteed with by choice of positive GL, however, the value

of α is a design parameter that must be tuned to achieve desired performance.
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Figure 2.9: Performance of proportional L1 adaptive controller using funnel control gain.
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Figure 2.10: Funnel control performance for proportional L1 adaptive controller.
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Figure 2.11: Comparison of performance of proportional L1 adaptive controller using con-
stant, funnel control, and state dependent gains.
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CHAPTER 3

LINEAR TIME VARYING OUTPUT FEEDBACK

Please note that the variable names used in this chapter are independent from the previous

chapter; that is the variable names may be reused and redefined in without any connection

to Chapter 2.

3.1 Problem Formulation

Consider the following class of nonlinear systems:

ẋ(t) = A(t)x(t) + b(t)u(t) + f(t, x(t)) , x(0) = x0 ,

y(t) = c⊤m(t)x(t) ,

(3.1)

where x(t) ∈ R
n and y(t) ∈ R are unmeasured system state and the measured system output,

respectively; A(t) ∈ R
n×n and b(t) ∈ R

n are unknown time–varying matrix and a vector,

respectively; cm(t) ∈ R
n is a known time–varying vector; u(t) ∈ R is the control input. The

initial condition x0 is unknown, however it is assumed to belong to a known set such that

‖x0‖∞ ≤ ρ0 <∞, for a given ρ0 ∈ R
+; and f : R×R

n → R
n is an unknown map subject to

the following assumption:

Assumption 3 (Semi–global Lipschitz continuity and boundedness). For all δ ∈ R
+ there

exist constants L0(δ) ∈ R
+ and B(δ) ∈ R

+, such that for all x, x1 and x2 with ‖x‖∞ ≤ δ,
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‖x1‖∞ ≤ δ, ‖x2‖∞ ≤ δ the following bounds

‖f(t, x1)− f(t, x2)‖∞ ≤ L0(δ)‖x1 − x2‖∞ ,

‖f(t, x)‖∞ ≤ L0(δ)‖x‖∞ + B(δ)

hold uniformly for t ≥ 0.

Let r(t) ∈ R be a given bounded reference input signal. The control objective is to design

an adaptive output–feedback controller, which ensures that the system output y(t) tracks

the reference input r(t) according to a desired model given by

ẋid(t) = Am(t)xid(t) + bm(t)rg(t) , xid(0) = x0 ,

yid(t) = c⊤m(t)xid(t) ,

where Am(t) ∈ R
n×n is a known Hurwitz time–varying matrix; bm(t) ∈ R

n is a known time–

varying vector such that the relative degree of the desired model is less or equal to dr ≥ 1

for all t ≥ 0; and

rg(t) , kg(t)r(t) , kg(t) , −1/
(

c⊤m(t)A
−1
m (t)bm(t)

)

.

Let the systems above verify the following assumptions:

Assumption 4. There exit constants ∆1 and ∆2 such that

‖(A(t)− Am(t))‖∞ < ∆1 , ‖(b(t)− bm(t))‖1 < ∆2 ∀t ≥ 0 .

Assumption 5. There exist constants µb, µbm, µc∈ R
+ such that ‖b(t)‖∞ ≤ µb, ‖bm(t)‖∞ ≤

µbm, and ‖cm(t)‖1 ≤ µc.

Assumption 6. Am(t), bm(t), and cm(t) are at least dr times continuously differentiable.
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Assumption 7. The pairs (Am(t), bm(t)) and (A(t), b(t)) are strongly controllable, and the

pairs (Am(t), c
⊤
m(t)) and (A(t), c⊤m(t)) are strongly observable.

Assumption 8 (Stability of the desired system). The matrix Am(t) is continuously differ-

entiable and there exist positive constants µA > 0, dA > 0, and µλ > 0, such that for all

t ≥ 0, ‖Am(t)‖∞ ≤ µA, ‖Ȧm(t)‖∞ ≤ dA, and Re[λi(Am(t))] ≤ −µλ, ∀ i = 1, . . . , n, where

λi(Am(t)) is a pointwise eigenvalue of Am(t). Further, for all t ≥ 0, the equilibrium of the

state equation

ẋ = Am(t)x(t) ,

is exponentially stable, and the solution of

A⊤
m(t)P (t) + P (t)Am(t) = −I

satisfies P (t) = P⊤(t) > 0 and ‖Ṗ (t)‖∞ ≤ ǫP < 1.

Assumption 8 is standard for LTV control theory. Sometimes it is referred as stability of

slowly varying systems [17].

3.2 L1 Adaptive Control Architecture

3.2.1 Definitions and L1–norm Sufficient Condition for Stability

We can rewrite the system in (3.1) as

ẋ(t) = Am(t)x(t) + bm(t)u(t) + σ(t) , x(0) = x0 ,

y(t) = c⊤m(t)x(t) ,

(3.2)

where

σ(t) , (A(t)− Am(t))x(t) + (b(t)− bm(t))u(t) + f(t, x(t)) . (3.3)
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Let xin(t) and ỹin(t) be the initial condition response of the systems

ẋin(t) = Am(t)xin(t) , xin(0) = x0 ,

˙̃xin(t) = Am(t)x̃in(t) , x̃in(0) = x̂0 − x0 ,

ỹin(t) = c⊤m(t)x̃in(t) ,

where x̂0 is our guess of the initial condition x0 such that c⊤m(0)x̂0 = y(0). Then let ρin and

ρ̃in be defined as

ρin , max
‖x0‖∞∈ρ0

‖xin‖L∞
, ρ̃in , max

‖x0‖∞∈ρ0, ‖x̂0‖∞∈ρ0
‖ỹin‖L∞

.

Next, let Hm and Hxm be the maps from u(t) to y(t) and u(t) to x(t), respectively, and

Hxum be a map from σ(t) to x(t), of the system in (3.2) with initial conditions equal to

zero. Also, let Hyum be the map from σ(t) to y(t) in (3.2) with initial conditions set to zero

as well. The design of the L1 adaptive controller proceeds by considering a strictly proper

system C(s) with relative degree greater or equal to dr and C(0) = 1. Further, the selection

of C(s) must ensure that there exists a constant ρr ∈ R
+ such that the following L1–norm

condition is satisfied:

‖Gum‖L1
<

ρr − ‖HxmCH−1
m F‖L1

ρ̃in − ‖HxmC‖L1
‖rg‖L∞

− ρin
Lρρr +∆2‖C‖L1

‖rg‖L∞
+∆2‖CH−1

m F‖L1
ρ̃in + B(ρr)

, (3.4)

where C is the input–output map of the lowpass filter transfer function C(s), F is the input–

output map of

F (s) =
1

∑dr
i=0 ais

(i)
, a0 = 1 , (3.5)
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which has real poles, and

Gum ,
(

I−HxmCH−1
m c⊤m

)

Hxum

(

I+ (b− bm)CH−1
m Hyum

)−1
, (3.6)

and Lρ is defined as

Lρ , ∆1 + L0(ρ) , (3.7)

where

ρ , ρr + γ̄1 , (3.8)

with γ̄1 an arbitrary (small) positive constant. The definition and the procedure of computing

the L1–norms for LTV systems can be found in [9].

In many state feedback architectures the L1–norm condition can always be satisfied by

choosing the filter with sufficiently large bandwidth. However we notice that the L1-norm

stability condition (3.4) cannot be satisfied simply by increasing the bandwidth of the lowpass

filter C(s), since ‖Gum‖L1
does not necessarily decrease if the bandwidth of the filter is

increased. Similar to [22], the condition (3.4) requires appropriate filter tuning. Filter

design can be done using some of the methods presented in [31].

Next, define

ρur , ‖C‖L1
‖rg‖L∞

+ ‖CH−1
m ‖L1

(

‖HyumHω‖L1

(

∆2(‖C‖L1
‖rg‖L∞

+ ‖CH−1
m F‖L1

ρ̃in) + Lρρr + B(ρr)
)

+ ‖F‖L1
ρ̃in

)

,

(3.9)

where

Hω ,
(

I+ (b− bm)CH−1
m Hyum

)−1
, (3.10)

and let

ρu , ρur + γ̄2 , (3.11)
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where γ̄2 ∈ R
+ is an arbitrary (small) constant. Further, define ∆ as

∆ , Lρρ+∆2ρu + B(ρ) . (3.12)

Further, let

γ1 ,
1

1− ‖Gum‖L1
Lρ

(

‖Gum(b− bm)CH−1
m ‖L1

(‖F‖L1
γ̄0

+ ‖(1−F)Hyum‖L1
∆) + ‖HxmCH−1

m F‖L1
γ̄0

+ ‖HxmCH−1
m (1−F)Hyum‖L1

∆

)

+ β ,

(3.13)

where the values of γ̄0 ∈ R
+ and β ∈ R

+ are arbitrarily small positive constants. Note that

the denominators in (3.13) are nonsingular due to (3.4). We also define

γ2 , ‖CH−1
m HyumHω‖L1

(

Lργ1 + ‖(b− bm)CH−1
m ‖L1

· (‖F‖L1
γ̄0 + ‖(1−F)Hyum‖L1

∆)
)

+ ‖CH−1
m F‖L1

γ̄0 + ‖CH−1
m (1−F)Hyum‖L1

∆+ β .

(3.14)

The choice of γ̄0, β, and F (s) must ensure that

γ1 < γ̄1 , γ2 < γ̄2 .

The L1–norm given by ‖HxmCH−1
m (1−F)Hyum‖L1

exists since Hxm and Hyum are stable

maps and the relative degree of C(s) is greater than or equal to the relative degree of Hm.

Further, the value of this L1–norm can be made arbitrarily small by increasing the bandwidth

of F (s) in a similar manner as in Lemma 2.1.5 in [9].

Using Assumption 8 and the properties of P (t), it follows that there exits a nonsingular
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√

P (t) for all t ≥ 0 such that

P (t) =
(

√

P (t)
)⊤√

P (t) .

Let D(t) ∈ R
n−1×n contain the basis of the null–space of c⊤m(t)

(

√

P (t)
)−1

, that is

D(t)

(

c⊤m(t)
(

√

P (t)
)−1
)⊤

= 0 , (3.15)

for all t ≥ 0; and further let

Λ(t) ,







c⊤m(t)

D(t)
√

P (t)






. (3.16)

Notice that

Λ(t)
(

√

P (t)
)−1

=







c⊤m(t)
(

√

P (t)
)−1

D(t)







is full rank, and hence Λ−1(t) exists ∀t ∈ [0,∞).

Lemma 3. For arbitrary ξ(t) , [y(t) z(t)]⊤ ∈ R
n, where y(t) ∈ R and z(t) ∈ R

n−1, there

exist p1(t) ∈ R
+ and a positive definite P2(t) ∈ R

n−1×n−1 such that

ξ⊤(t)Λ−⊤(t)P (t)Λ−1(t)ξ(t) = p1(t)y
2(t) + z⊤(t)P2(t)z(t)

for all t ≥ 0.

The proof of the lemma is similar to the proof of Lemma 4.2.1 in [9] and therefore is omitted.

Further, let Ts ∈ R
+ be an arbitrary constant that can be associated with the sampling

rate of the available CPU, and let φξ̃(i, Ts) ∈ R
n×n be given by

φξ̃(i, Ts) ,

∫ (i+1)Ts

iTs

Φξ̃((i+ 1)Ts, τ)Λ(τ)dτ , (3.17)
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where Φξ̃(·, ·) represents the state transition matrix for the autonomous system with state

matrix given by
(

Λ(t)Am(t)− d
dt
Λ(t)

)

Λ−1(t).

Next, define 11 = [1, 0, . . . , 0]⊤ ∈ R
n, and let

1⊤
1 Φξ̃(iTs + t, iTs) = [η1(i, Ts, t), η

⊤
2 (i, Ts, t)] , (3.18)

where η1(i, Ts, t) ∈ R and η2(i, Ts, t) ∈ R
n−1 contain the first and the 2–to–n elements of the

row vector 1⊤
1 Φξ̃(iTs + t, iTs). Next let

κ(i, Ts) ,

∫ (i+1)Ts

iTs

‖1⊤
1 Φξ̃((i+ 1)Ts, τ)Λ(τ)‖1dτ . (3.19)

Also, let ς(i, Ts) and α be defined as ς(0, Ts) , 0, and for i ∈ N:

ς(i, Ts) , ‖η2(i− 1, Ts, Ts)‖
√

α

λP2max

+ κ(i− 1, Ts)∆ , (3.20)

α , max

{

λPmax

(

2λPmax
∆µP

√
n

λPmin
(1− ǫP )

)2

, 4nλmax(P2(0))‖Λ(0)‖2∞ρ20

}

, (3.21)

where

λP2max
, sup

t ∈ [0,∞),

i = 1 . . . n− 1

λi(P2(t)) , λPmax
, sup

t ∈ [0,∞),

i = 1 . . . n

λi (P (t)) , λPmin
, inf

t ∈ [0,∞),

i = 1 . . . n

λi (P (t)) ,

and

µP , sup
t∈[0,∞)

‖P (t)‖∞ . (3.22)
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Next, we introduce the following constants

β1(i, Ts) , max
t∈[iTs, (i+1)Ts]

|η1(i, Ts, t)| , β2(i, Ts) , max
t∈[iTs, (i+1)Ts]

‖η2(i, Ts, t)‖ , (3.23)

β3(i, Ts) , max
t∈[iTs, (i+1)Ts]

η3(i, Ts, t) , β4(i, Ts) , max
t∈[iTs, (i+1)Ts]

η4(i, Ts, t) , (3.24)

where

η3(i, Ts, t) ,

∫ iTs+t

iTs

|1⊤
1 Φξ̃(iTs + t, τ)Λ(τ)φ−1

ξ̃
(i, Ts)Φξ̃((i+ 1)Ts, iTs)11|dτ ,

η4(i, Ts, t) ,

∫ iTs+t

iTs

‖1⊤
1 Φξ̃(iTs + t, τ)Λ(τ)‖1dτ .

Finally, let

γ0(i, Ts) , β1(i, Ts)ς(i, Ts) + β2(i, Ts)

√

α

λP2max

+ β3(i, Ts)ς(i, Ts) + β4(i, Ts)∆ , (3.25)

and

γx̃(Ts) , sup
i∈N∪{0}

γ0(i, Ts) . (3.26)

The following lemma shows that the value of γx̃(Ts) can be made arbitrarily small by reducing

the value of Ts.

Lemma 4. The following limiting relationship is true:

lim
Ts→0

γx̃(Ts) = 0 .

The proof of the lemma follows from the proof of Lemma 4.2.2 in [9], given the property

Φξ̃(iTs, iTs) = 0.

41



3.2.2 L1 Adaptive Control Architecture

The L1 adaptive controller is comprised of the following elements:

Output Predictor:

˙̂x(t) = Am(t)x̂(t) + bm(t)u(t) + σ̂(t) , x̂(0) = x̂0 ,

ŷ(t) = c⊤m(t)x̂(t) ,

(3.27)

where σ̂(t) ∈ R
n is the vector of adaptive parameters updated by the following piecewise–

constant adaptation laws:

Adaptation Laws:

σ̂(t) = −µ(i, Ts)ỹ(iTs) , t ∈ [iTs, (i+ 1)Ts) , i = 0, 1, 2, . . . , (3.28)

where ỹ(t) , ŷ(t)− y(t), and

µ(i, Ts) = φ−1

ξ̃
(i, Ts)Φξ̃((i+ 1)Ts, iTs)11 ,

with φξ̃(i, Ts) and Φξ̃((i+1)Ts, iTs) are defined in (3.17). The matrix µ(i, Ts) consists of time

dependent gains that may be computed off–line. For the numerical computation of the state

transition matrix for time varying systems can one can use the Peano–Baker Series [32].

Control Law:

u = Crg − CH−1
m FHyumσ̂ . (3.29)

Next we present an algorithm for on–line computation of H−1
m F .

42



3.2.3 Computation of H−1
m F

Let

νout = H−1
m Fνin ,

where νout(t) ∈ R and νin(t) ∈ R are the output and the input of H−1
m F in (3.29) respectively.

The mapping for Hm may be represented in Byrnes–Isidori form [33] through a coordinate

transformation U(t) ∈ R
n×n leading to

ψ̇(t) =

























0 1 0 · · · 0

0 0 1

...
. . . . . .

...

0 0 · · · 0 1

R1(t) R2(t) · · · Rdr−1(t) Rdr(t)

























ψ(t) +

























0

0

...

0

S(t)

























θ(t) +

























0

0

...

0

J(t)

























νout(t) ,

θ̇(t) =

[

E(t) 0 · · · 0

]

ψ(t) +G(t)θ(t) , (3.30)

νinF (t) =

[

1 0 · · · 0

]







ψ(t)

θ(t)






,

where ψ(t) ∈ R
dr is the system state, θ(t) ∈ R

n−dr are the zero dynamics state, νinF = Fνin,

and R(t) ∈ R
dr×dr , S(t) ∈ R

1×n−dr , J(t) ∈ R, E(t) ∈ R
n−dr×1, and G(t) ∈ R

n−dr×n−dr are

defined in [33]. Notice that

ψ(t) ,



















ψ1(t)

ψ2(t)

...

ψdr(t)



















=



















νinF (t)

ν
(1)
inF (t)

...

ν
(dr−1)
inF (t)



















.
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This implies that

ν
(dr)
inF (t) = S(t)θ(t) + J(t)νout(t) +R1(t)νinF (t) +R2(t)ν̇inF (t) + . . .+Rdr(t)ν

(dr−1)
inF (t) .

Therefore, νout(t) may be computed as follows

νout(t) =
ν
(dr)
inF (t)− S(t)θ(t)−R1(t)νinF (t)−R2(t)ν̇inF (t)− . . .−Rdr(t)ν

(dr−1)
inF (t)

J(t)
,

where J(t) 6= 0 due to Assumption 7. The derivatives ν̇inF to ν
(dr)
inF can be computed using a

fast filter F (s) defined in (3.5), which gives us

ν
(i)
inF (s) =

si

adrs
dr + . . .+ a1s+ 1

νin(s) = F (s)siνin(s) , i = 1 . . . dr ,

where the relative degree of F (s) is dr. The value of θ(t) can be computed by (3.30). Notice

that the lowpass filter C in (3.29) cuts out high–frequency content produced by differentiation.

3.3 Analysis of the L1 Adaptive Controller

3.3.1 L1 Reference System

The L1 reference system is given by

ẋref(t) = Am(t)xref(t) + bm(t)uref(t) + σref(t) , xref(0) = x0 , (3.31)

yref(t) = c⊤m(t)xref(t) , (3.32)

uref = Crg − CH−1
m (Hyumσref −F ỹin) , (3.33)

σref(t) , (A(t)− Am(t)) xref(t) + (b(t)− bm(t))uref(t) + f(t, xref(t)) , (3.34)
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where ỹin(t) is the output of the following system

˙̃xin(t) = Am(t)x̃in(t) , xin(0) = x̂0 − x0 ,

ỹin(t) = c⊤m(t)x̃in(t) .

We notice that the L1 reference system contains the system uncertainties and the unknown

initial condition x0. Therefore it is not implementable and is used only for the analysis

purposes.

Lemma 5. For the L1 reference system in (3.31)–(3.33), subject to the L1–norm condi-

tion (3.4), we have

‖xref‖L∞
< ρr , (3.35)

‖uref‖L∞
≤ ρur , (3.36)

‖yref‖L∞
< µcρr . (3.37)

Proof :

Let

ϑref(t) , (A(t)− Am(t)) xref(t) + f(t, xref(t)) , (3.38)

then from (3.34) it follows that σref(t) = (b(t) − bm(t))uref(t) + ϑref(t). Substituting the

reference control law (3.33) and taking into account the definition in (3.10), we obtain

σref = (b− bm)
(

Crg − CH−1
m (Hyumσref −F ỹin)

)

+ ϑref

= −(b− bm)CH−1
m Hyumσref + (b− bm)

(

Crg + CH−1
m F ỹin

)

+ ϑref

=
(

I+ (b− bm)CH−1
m Hyum

)−1 (
(b− bm)

(

Crg + CH−1
m F ỹin

)

+ ϑref

)

= Hω

(

(b− bm)
(

Crg + CH−1
m F ỹin

)

+ ϑref

)

.

(3.39)
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The system in (3.31) can be written as

xref = Hxmuref +Hxumσref + xin .

Then, by substituting uref(t) (3.33), we obtain

xref = Hxm

(

Crg − CH−1
m (Hyumσref −F ỹin)

)

+Hxumσref + xin .

The above equation can be rearranged to obtain the following

xref =
(

Hxum −HxmCH−1
m Hyum

)

σref +HxmCH−1
m F ỹin +HxmCrg + xin .

Next, using the fact that Hyum = c⊤mHxum, (3.39), and the definition in (3.6), we obtain

xref =
(

I−HxmCH−1
m c⊤m

)

Hxumσref +HxmCH−1
m F ỹin +HxmCrg + xin

= Gum

(

(b− bm)
(

Crg + CH−1
m F ỹin

)

+ ϑref

)

+HxmCH−1
m F ỹin +HxmCrg + xin .

(3.40)

Next, we use a contradictive argument to prove the bound in (3.35). For this we assume

that (3.35) does not hold. Since xref(t) is continuous and ‖xref(0)‖∞ = ‖x0‖∞ ≤ ρ0 < ρr,

then there exists time τ > 0 such that

‖xref(t)‖∞ < ρr , ∀t ∈ [0, τ) , (3.41)

‖xref(τ)‖∞ = ρr , (3.42)
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which implies ‖xrefτ‖L∞
= ρr. Using Assumptions 3 and 4 and (3.7), we obtain the following

bound from (3.38):

‖ϑrefτ‖L∞
≤ ∆1ρr + L0(ρr)ρr + B(ρr) ≤ Lρρr + B(ρr) , (3.43)

where we use the fact that Lρ ≥ Lρr . This allows us, using (3.40) and Assumption 4, obtain

the following bound:

‖xrefτ‖L∞
≤ ‖Gum‖L1

(

∆2‖C‖L1
‖rg‖L∞

+∆2‖CH−1
m F‖L1

‖ỹin‖L∞
+ ‖ϑrefτ‖L∞

)

+ ‖HxmCH−1
m F‖L1

‖ỹin‖L∞
+ ‖HxmC‖L1

‖rg‖L∞
+ ρin

≤ ‖Gum‖L1

(

∆2‖C‖L1
‖rg‖L∞

+∆2‖CH−1
m F‖L1

‖ỹin‖L∞
+ Lρρr

+ B(ρr)
)

+ ‖HxmCH−1
m F‖L1

‖ỹin‖L∞
+ ‖HxmC‖L1

‖rg‖L∞
+ ρin .

(3.44)

Notice that (3.4) can be rewritten as

‖Gum‖L1

(

Lρρr +∆2‖C‖L1
‖rg‖L∞

+∆2‖CH−1
m F‖L1

ρ̃in + B(ρr)
)

+‖HxmCH−1
m F‖L1

ρ̃in + ‖HxmC‖L1
‖rg‖L∞

+ ρin < ρr

which along with (3.44), implies

‖xrefτ‖L∞
< ρr .

This fact contradicts to (3.42), and hence the bound in (3.35) is proven. The bound in (3.37)

follows immediately from the Assumption 5.

To prove the bound in (3.36), we substitute (3.39) in (3.33) to obtain

uref = Crg − CH−1
m

(

HyumHω

(

(b− bm)
(

Crg + CH−1
m F ỹin

)

+ ϑref

)

−F ỹin
)

,
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which using the bound in (3.43), results in

‖uref‖L∞
≤ ‖C‖L1

‖rg‖L∞
+ ‖CH−1

m ‖L1

(

‖HyumHω‖L1

(

∆2(‖C‖L1
‖rg‖L∞

+ ‖CH−1
m F‖L1

‖ỹin‖L∞
) + Lρρr + B(ρr)

)

+ ‖F‖L1
‖ỹin‖L∞

)

.

Taking into account the definition of ρur in (3.9), we conclude that

‖uref‖L∞
≤ ρur ,

which completes the proof. �

3.3.2 Transient and Steady–State Performance

We will now proceed with the derivation of the performance bounds. Towards this end, let

x̃(t) , x̂(t)−x(t) and σ̃(t) , σ̂(t)−σ(t). Then, the error dynamics between (3.27) and (3.2)

are given by

˙̃x(t) = Am(t)x̃(t) + σ̃(t), x̃(0) = x̂0 − x0 ,

ỹ(t) = c⊤m(t)x̃(t) .

(3.45)

Notice that due to initialization of the output predictor, we have ỹ(0) = 0.

Next, consider the state transformation

ξ̃(t) = Λ(t)x̃(t) .
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It follows from (3.45) and the definition of Λ(t) in (3.16) that

˙̃ξ(t) =

(

Λ(t)Am(t)Λ
−1(t)− d

dt
(Λ(t)) Λ−1(t)

)

ξ̃(t) + Λ(t)σ̃(t) ,

ỹ(t) = ξ̃1(t) , ξ̃(0) = Λ(0)x̃0 ,

(3.46)

where ξ̃1(t) is the first element of ξ̃(t) and ξ̃1(0) = 0. The next lemma derives the bound on

the output prediction error.

Lemma 6. Consider the system in (3.1) and the L1 adaptive controller in (3.27), (3.28),

and (3.29) subject to the L1–norm condition in (3.4). If we choose Ts to ensure

γx̃(Ts) < γ̄0 , (3.47)

where γ̄0 is an arbitrary positive constant introduced in (3.13), and if for an arbitrary τ ≥ 0

the following bounds hold:

‖xτ‖L∞
< ρ , ‖uτ‖L∞

< ρu ,

then

‖ỹτ‖L∞
< γ̄0 . (3.48)

Proof :

We prove the bound in (3.48) by a contradiction argument. Since ỹ(0) = 0 and ỹ(t) is

continuous, then assuming that (3.48) does not hold, implies that there exists t′ ∈ (0, τ ]

such that

|ỹ(t)| < γ̄0 , ∀ t ∈ [0, t′) , (3.49)

|ỹ(t′)| = γ̄0 , (3.50)
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which leads to

‖ỹt′‖L∞
= γ̄0 . (3.51)

The following bound can be produced from (3.3) using Assumptions 3, 4 and definition (3.12):

‖σt′‖L∞
≤ ∆1ρ+∆2ρu + L0(ρ)ρ+ B(ρ)

= Lρρ+∆2ρu +B(ρ) = ∆ .

(3.52)

It follows from (3.46) that

ξ̃(iTs + t) = Φξ̃(iTs + t, iTs)ξ̃(iTs) +

∫ iTs+t

iTs

Φξ̃(iTs + t, τ)Λ(τ)σ̂(iTs)dτ

−
∫ iTs+t

iTs

Φ(iTs + t, τ)Λ(τ)σ(τ)dτ .

(3.53)

Since

ξ̃(iTs + t) =







ỹ(iTs + t)

0






+







0

z̃(iTs + t)






, (3.54)

where z̃(t) , [ξ̃2(t), ξ̃3(t), . . . , ξ̃n(t)]
⊤, it follows from (3.53) that ξ̃(iTs + t) can be decom-

posed as

ξ̃(iTs + t) = χ(iTs + t) + ζ(iTs + t) , (3.55)

where

χ(iTs + t) , Φξ̃(iTs + t, iTs)







ỹ(iTs)

0






+

∫ iTs+t

iTs

Φξ̃(iTs + t, τ)Λ(τ)σ̂(iTs)dτ ,

ζ(iTs + t) , Φξ̃(iTs + t, iTs)







0

z̃(iTs)






−
∫ iTs+t

iTs

Φξ̃(iTs + t, τ)Λ(τ)σ(τ)dτ . (3.56)
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Next we prove by induction that for all i such that iTs ≤ t′ one has

|ỹ(iTs)| ≤ ς(i, Ts) , (3.57)

z̃⊤(iTs)P2(iTs)z̃(iTs) ≤ α , (3.58)

where ς(i, Ts) and α were defined in (3.20)–(3.21).

We start by noting that, since ỹ(0) = 0, we have |ỹ(0)| ≤ ς(0, Ts). We can also show the

following, given the definition of α in (3.21) we have

z̃⊤(0)P2(0)z̃(0) ≤ λmax(P2(0))‖z̃(0)‖2 = λmax(P2(0))‖ξ̃(0)‖2

≤ λmax(P2(0))‖Λ(0)x̃0‖2 ≤ 4nλmax(P2(0))‖Λ(0)‖2∞ρ20 ≤ α .

Next, we prove that if (3.57)–(3.58) hold for arbitrary i such that (i+ 1)Ts ≤ t′, then

|ỹ((i+ 1)Ts)| ≤ ς(i+ 1, Ts) , (3.59)

z̃⊤((i+ 1)Ts)P2((i+ 1)Ts)z̃((i+ 1)Ts) ≤ α , (3.60)

hold as well. To this end, assume that (3.57)–(3.58) hold for i, and in addition, that (i +

1)Ts ≤ t′. Then, it follows from (3.55) that

ξ̃((i+ 1)Ts) = χ((i+ 1)Ts) + ζ((i+ 1)Ts) , (3.61)
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where

χ((i+ 1)Ts) = Φξ̃((i+ 1)Ts, iTs)







ỹ(iTs)

0






+

∫ (i+1)Ts

iTs

Φξ̃((i+ 1)Ts, τ)Λ(τ)σ̂(iTs)dτ ,

(3.62)

ζ((i+ 1)Ts) = Φξ̃((i+ 1)Ts, iTs)







0

z̃(iTs)






−
∫ (i+1)Ts

iTs

Φξ̃((i+ 1)Ts, τ)Λ(τ)σ(τ)dτ . (3.63)

Substituting the adaptive law from (3.28) in (3.62), we have

χ((i+ 1)Ts) = 0 . (3.64)

On the other hand, it follows from (3.56) that ζ(t) is the solution to the following dynamics:

ζ̇(t) =

(

Λ(t)Am(t)−
d

dt
Λ(t)

)

Λ−1(t)ζ(t)− Λ(t)σ(t) ,

ζ(iTs) =







0

z̃(iTs)






, t ∈ [iTs, (i+ 1)Ts] .

(3.65)

Consider now the following function

V (ζ(t)) = ζ⊤(t)Λ−⊤(t)P (t)Λ−1(t)ζ(t) , (3.66)

over t ∈ [iTs, (i + 1)Ts]. Lemma 3 implies that Λ−⊤(t)P (t)Λ−1(t) is positive definite and,

hence, V (ζ) is a positive definite function. Further, it follows from (3.56), Lemma 3 and the

fact (3.64) that

V (ζ(iTs)) = z̃⊤(iTs)P2(iTs)z̃(iTs) ,

52



which, along with the upper bound in (3.58), leads to

V (ζ(iTs)) ≤ α . (3.67)

Next we perform a reverse state transformation for the system in (3.65) with the state

transition matrix ζ̄(t) , Λ−1(t)ζ(t) to obtain the following system

˙̄ζ(t) = Am(t)ζ̄(t)− σ(t) . (3.68)

The function V (ζ) in (3.66) now takes the form

V (ζ̄(t)) = ζ̄⊤(t)P (t)ζ̄(t) . (3.69)

Taking the time derivative of (3.69) along the trajectories (3.68) over t ∈ [iTs, (i + 1)Ts],

and using Assumption 8, we obtain

V̇ (t) = ˙̄ζ⊤(t)P (t)ζ̄(t) + ζ̄⊤(t)Ṗ (t)ζ̄(t) + ζ̄⊤(t)P (t) ˙̄ζ(t)

=
(

ζ̄⊤(t)A⊤
m(t)− σ⊤(t)

)

P (t)ζ̄(t) + ζ̄⊤(t)Ṗ (t)ζ̄(t) + ζ̄⊤(t)P (t)
(

Am(t)ζ̄(t)− σ(t)
)

= ζ̄⊤(t)
(

A⊤
m(t)P (t) + P (t)Am(t) + Ṗ (t)

)

ζ̄(t)− σ⊤(t)P (t)ζ̄(t)− ζ̄⊤(t)P (t)σ(t)

= −ζ̄⊤(t)
(

I− Ṗ (t)
)

ζ̄(t)− 2ζ̄⊤(t)P (t)σ(t) ,

which, using the the facts that ‖σ(t)‖∞ ≤ ‖σt′‖L∞
, ‖ · ‖1 ≤

√
n‖ · ‖2, the definition (3.22),
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and the bound in (3.52), can be bounded as follows

V̇ (t) ≤ −ζ̄⊤(t)
(

I− Ṗ (t)
)

ζ̄(t) + 2‖ζ̄⊤(t)P (t)σ(t)‖∞

≤ −ζ̄⊤(t)
(

I− Ṗ (t)
)

ζ̄(t) + 2‖ζ̄(t)‖1‖P (t)‖∞‖σ(t)‖∞

≤ −ζ̄⊤(t)
(

I− Ṗ (t)
)

ζ̄(t) + 2
√
n‖ζ̄(t)‖µP∆ .

Assumption 8 along with the fact that |ζ̄⊤(t)Ṗ (t)ζ̄(t)| ≤ ‖ζ̄(t)‖2ρ(Ṗ (t)) ≤ ‖ζ̄(t)‖2‖Ṗ (t)‖∞
implies

ζ̄⊤(t)
(

I− Ṗ (t)
)

ζ̄(t) ≥ 1− ǫP
λPmax

ζ̄⊤(t)P (t)ζ̄(t) ≥ 1− ǫP
λPmax

λPmin
‖ζ̄(t)‖2 .

This results in

V̇ (t) ≤ −1− ǫP
λPmax

λPmin
‖ζ̄(t)‖2 + 2

√
n‖ζ̄(t)‖µP∆ . (3.70)

Notice that for any t ∈ [iTs, (i+ 1)Ts], if

V (t) > α ,

we have

‖ζ̄(t)‖ >
√

α

λPmax

≥ 2λPmax
∆µP

√
n

λPmin
(1− ǫP )

,

and the upper bound in (3.70) yields

V̇ (t) < 0 . (3.71)

Thust, it follows from (3.67) that

V (t) ≤ α , ∀ t ∈ [iTs, (i+ 1)Ts] .
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Taking into account the relationship (3.61) along with (3.64), we can rewrite (3.66) as

V ((i+ 1)Ts) = ξ̃⊤((i+ 1)Ts)(Λ
−⊤((i+ 1)Ts)P ((i+ 1)Ts)Λ

−1((i+ 1)Ts))ξ̃((i+ 1)Ts) ≤ α .

Using the result of Lemma 3, one can derive

z̃⊤((i+ 1)Ts)P2(t)z̃((i+ 1)Ts) ≤

ξ̃⊤((i+ 1)Ts)(Λ
−⊤((i+ 1)Ts)P ((i+ 1)Ts)Λ

−1((i+ 1)Ts))ξ̃((i+ 1)Ts) ≤ α ,

which implies that the upper bound in (3.60) holds. Next, it follows from (3.61), (3.64),

and (3.54) that

ỹ((i+ 1)Ts) = 1⊤
1 ζ((i+ 1)Ts) ,

and (3.63) leads to the following expression:

ỹ((i+ 1)Ts) = 1⊤
1 Φξ̃((i+ 1)Ts, iTs)







0

z̃(iTs)







− 1⊤
1

∫ (i+1)Ts

iTs

Φξ̃((i+ 1)Ts, τ)Λ(τ)σ(τ)dτ .

The upper bounds in (3.60) and (3.52) yield the following upper bound:

|ỹ((i+ 1)Ts)| ≤ ‖η2(i, Ts, Ts)‖‖z̃(iTs)‖+
∫ (i+1)Ts

iTs

‖1⊤
1 Φξ̃((i+ 1)Ts, τ)Λ(τ)‖1‖σ(τ)‖∞dτ

≤ ‖η2(i, Ts, Ts)‖
√

α

λP2max

+ κ(i, Ts)∆ = ς(i+ 1, Ts) ,

where η2(i, Ts) and κ(i, Ts) were defined in (3.18) and (3.19), while ς(i, Ts) was defined

in (3.20). This confirms the upper bound in (3.59). Hence, (3.57)–(3.58) hold for all i such

that iTs ≤ t′.
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For all iTs + t ≤ t′, where 0 ≤ t ≤ Ts, using the expression from (3.53), we can write that

ỹ(iTs + t) = 1⊤
1 Φξ̃(iTs + t, iTs)ξ̃(iTs) + 1⊤

1

∫ iTs+t

iTs

Φξ̃(iTs + t, τ)Λ(τ)σ̂(iTs)dτ

− 1⊤
1

∫ iTs+t

iTs

Φξ̃(iTs + t, τ)Λ(τ)σ(τ)dτ .

The upper bound in (3.52) and the definitions of η1(t), η2(t), η3(t) and η4(t) lead to the

following upper bound:

|ỹ(iTs + t)| ≤ |η1(i, Ts, t)||ỹ(iTs)|+ ‖η2(i, Ts, t)‖‖z̃(iTs)‖+ η3(i, Ts, t)|ỹ(iTs)|+ η4(i, Ts, t)∆ .

Taking into consideration (3.57)–(3.58), and recalling the definitions of β1(i, Ts), β2(i, Ts),

β3(i, Ts), β4(i, Ts) in (3.23)–(3.24), for all 0 ≤ t ≤ Ts and for arbitrary non–negative integer i

subject to iTs + t ≤ t′, we have

|ỹ(iTs + t)| ≤ β1(i, Ts)ς(i, Ts) + β2(i, Ts)

√

α

λP2max

+ β3(i, Ts)ς(i, Ts) + β4(i, Ts)∆ .

Since the right hand side coincides with the definition of γ0(i, Ts) in (3.25), for all t ∈ [0, t′]

we have the following bound

|ỹ(t)| ≤ γ0(i, Ts) , ∀i ∈ N ∪ {0} ,

which along with (3.47) yields

‖ỹt′‖L∞
≤ γx̃(Ts) < γ̄0 .

This clearly contradicts the statement in (3.50). Therefore (3.48) holds and the proof is

completed. �
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The next theorem states the main result of the extension presented in this chapter.

Theorem 2. Given the closed–loop system with the L1 adaptive controller defined via (3.1),

(3.27), (3.28), (3.29), subject to the L1–norm condition in (3.4), and the closed–loop reference

system in (3.31)–(3.33), if we choose Ts to ensure

γx̃(Ts) < γ̄0 ,

where γ̄0 is an arbitrary positive constant introduced in (3.13), we have

‖x‖L∞
≤ ρ , (3.72)

‖u‖L∞
≤ ρu , (3.73)

‖xref − x‖L∞
< γ1 , (3.74)

‖yref − y‖L∞
< µcγ1 , (3.75)

‖uref − u‖L∞
< γ2 , (3.76)

where γ1 and γ2 are defined in (3.13) and (3.14) respectively.

Proof :

To accomplish the proof, we use contradictory argument. Assume that the bounds in (3.74)

and (3.76) do not hold (either one of them or both simultaneously). Then, since

‖xref(0)− x(0)‖∞ = 0 < γ1 , ‖uref(0)− u(0)‖∞ = 0 < γ2 ,

and x(t), xref(t), u(t), and uref(t) are continuous, there exists time τ ∈ R
+ such that

‖xref(τ)− x(τ)‖∞ = γ1 , or ‖uref(τ)− u(τ)‖∞ = γ2 , (3.77)
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while

‖xref(t)− x(t)‖∞ < γ1 , and ‖uref(t)− u(t)‖∞ < γ2 ,

for all t ∈ [0, τ). This implies that that the following equalities hold

‖(xref − x)τ‖L∞
≤ γ1 , ‖(uref − u)τ‖L∞

≤ γ2 . (3.78)

From Lemma 5 we obtain

‖xref‖L∞
≤ ρr , ‖uref‖L∞

≤ ρur , (3.79)

which along with the definitions of ρ and ρu in (3.8) and (3.11) allows us to derive from (3.78)

that

‖xτ‖L∞
≤ ρr + γ1 < ρ , and ‖uτ‖L∞

≤ ρur + γ2 < ρu . (3.80)

Let

ϑ(t) , (A(t)− Am(t)) x(t) + f(t, x(t)) ,

ϑref(t) , (A(t)− Am(t)) xref(t) + f(t, xref(t)) ,

then using Assumptions 3, 4 and the bounds (3.78)–(3.80) we obtain

‖(ϑref − ϑ)τ‖L∞
≤ ∆1‖(xref − x)τ‖L∞

+ L0(ρ)‖(xref − x)τ‖L∞
= Lρ‖(xref − x)τ‖L∞

, (3.81)

‖στ‖L∞
≤ ∆1ρ+∆2ρu + L(ρ)ρ+ B(ρ) = Lρρ+∆2ρu + B(ρ) = ∆ , (3.82)

where Lρ was defined in (3.7). Notice that from (3.3) and (3.34) it follows that

σref(t)− σ(t) = ϑref(t)− ϑ(t) + (b(t)− bm(t))(uref(t)− u(t)) . (3.83)
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Adding and subtracting CH−1
m FHyumσ and CH−1

m Hyumσ from (3.29) results in

u = Crg − CH−1
m FHyumσ̃ + CH−1

m (1−F)Hyumσ − CH−1
m Hyumσ .

Next, subtracting this result from (3.33) yields

uref − u = −CH−1
m Hyum(σref − σ) + CH−1

m F ỹin + CH−1
m FHyumσ̃ − CH−1

m (1−F)Hyumσ .

Further we rewrite (3.45) as ỹ = Hyumσ̃ + ỹin, which leads to

uref − u = −CH−1
m Hyum(σref − σ) + CH−1

m F ỹ − CH−1
m (1−F)Hyumσ . (3.84)

Substituting this in (3.83) and using the definition (3.10) we obtain

σref − σ = ϑref − ϑ+ (b− bm)(−CH−1
m Hyum(σref − σ)

+ CH−1
m F ỹ − CH−1

m (1−F)Hyumσ)

= Hω(ϑref − ϑ) +Hω(b− bm)CH−1
m

· (F ỹ − (1−F)Hyumσ) .

(3.85)

The systems in (3.2) and (3.31) can be written as

x = Hxmu+Hxumσ + xin ,

xref = Hxmuref +Hxumσref + xin ,

which leads to

xref − x = Hxm(uref − u) +Hxum(σref − σ) .
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Substituting (3.84) yields

xref − x = Hxm(−CH−1
m Hyum(σref − σ) + CH−1

m F ỹ − CH−1
m (1−F)Hyumσ) +Hxum(σref − σ)

= (Hxum −HxmCH−1
m Hyum)(σref − σ) +HxmCH−1

m F ỹ −HxmCH−1
m (1−F)Hyumσ ,

which after substituting (3.85) and using the definition (3.6) takes the following form

xref − x = Gum(ϑref − ϑ) + Gum(b− bm)CH−1
m (F ỹ − (1−F)Hyumσ)

+HxmCH−1
m F ỹ −HxmCH−1

m (1−F)Hyumσ .

Notice that due to (3.80), the assumptions of Lemma 6 are satisfyed. Therefore, taking into

account (3.81) and (3.82), we obtain the following bound

‖(xref − x)τ‖L∞
≤ ‖Gum‖L1

‖(ϑref − ϑ)τ‖L∞
+ ‖Gum(b− bm)CH−1

m ‖L1
(‖F‖L1

‖ỹτ‖L∞

+ ‖(1−F)Hyum‖L1
‖στ‖L∞

) + ‖HxmCH−1
m F‖L1

‖ỹτ‖L∞

+ ‖HxmCH−1
m (1−F)Hyum‖L1

‖στ‖L∞

≤ ‖Gum‖L1
Lρ‖(xref − x)τ‖L∞

+ ‖Gum(b− bm)CH−1
m ‖L1

(‖F‖L1
γ̄0

+ ‖(1−F)Hyum‖L1
∆) + ‖HxmCH−1

m F‖L1
γ̄0

+ ‖HxmCH−1
m (1−F)Hyum‖L1

∆

≤ 1

1− ‖Gum‖L1
Lρ

(

‖Gum(b− bm)CH−1
m ‖L1

(‖F‖L1
γ̄0

+ ‖(1−F)Hyum‖L1
∆) + ‖HxmCH−1

m F‖L1
γ̄0

+ ‖HxmCH−1
m (1−F)Hyum‖L1

∆

)

< γ1 .

This contradicts to the first equality in (3.77). It remains to show that the second equality

also is no true. Towards this end we substitute (3.85) into (3.84), and taking into account
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the bounds in (3.81), (3.82), and Lemma 6, we obtain

‖(uref − u)τ‖L∞
≤ ‖CH−1

m HyumHω‖L1

(

Lργ1 + ‖(b− bm)CH−1
m ‖L1

· (‖F‖L1
γ̄0 + ‖(1−F)Hyum‖L1

∆)
)

+ ‖CH−1
m F‖L1

γ̄0 + ‖CH−1
m (1−F)Hyum‖L1

∆ < γ2 ,

which contradicts to the second equation in (3.77). Thus the bounds in (3.74), (3.76) hold.

The bound in (3.75) follows from the fact that yref(t) − y(t) = c⊤m(t) (xref(t)− x(t)). The

results (3.72) and (3.73) follow directly from the bounds in (3.80). �

Notice that from the definitions of γ1 and γ2 are defined in (3.13) and (3.14) and Lemmas 4

and 6, it follows that by reducing the sampling time Ts and the bandwidth of the lowpass

filter F (s) one can achieve arbitrarily small performance bounds (3.74)–(3.76).

3.4 Simulations

To verify numerically the results proven, we consider the system in (3.1) with the following

values

A(t) =







sin(t) 1

−ω2
m(t) −4






, b(t) =







1

ω2
m(t)






,

cm(t) =







ωc(t)

0







⊤

,

where ωm(t) = 1 + 0.4 sin((π/40)t) and ωc(t) = 3 − 1.5 cos((π/30)t). Let the desired state

matrix be

Am(t) =







0 1

−ω2
m(t) −2ζωm(t)






,
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with ζ = 0.7, such that (A(t)− Am(t)) is as follows

A(t)− Am(t) =







sin(t) 0

0 −4 + 2ζωm(t)






,

which results in unmatched uncertainties and a bound ∆1 = 3.16. For the simulation, we

assume b(t) = bm(t) and consider the following nonlinear disturbances:

f1(t, x(t)) = 2x(t) + 2 +







sin (0.3t)

sin (0.3t)






, f2(t, x(t)) = 0.5x(t) +







cos (0.5t)

cos (0.5t)






,

so that Assumption 3 holds with L0 = 2 and B = 3 for all values of δ.

We implement the L1 adaptive controller according to (3.27), (3.28), and (3.29). In the

implementation of the control law we use the filter C(s) = 100/(s+100), F (s) = 1000s/(s+

1000), and sample rate Ts = 0.001s.

One can easily see that Assumptions 5 and 7 are satisfied for the class of uncertainties

and disturbances introduced above. Also, Assumption 8 is verified as shown in Section 5.1.4

of [9] with ǫP = .55 < 1. To better show the the disturbance rejection and scaling properties

of the L1 adaptive controller, we first consider the initial conditions: x0 = x̂0 = [0, 0]⊤.

Figures 3.1 and 3.2 show the simulation results for both f1(t, x(t)) and f2(t, x(t)) respec-

tively. From these results one can see that the fast adaptation ability of the L1 adaptive

controller ensures uniform transient performance for different uncertainties and disturbances.

We notice that while the system’s output remains close to the desired reference signal in the

presence of different uncertainties and disturbances, the control signal changes significantly

to ensure adequate compensation for the uncertainties and the disturbances.

Figure 3.3 shows the simulation results for step reference signals of different amplitudes.

We observe that the system response is close to scaled response, similar to linear systems.
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Figure 3.1: Performance of the L1 adaptive controller for f1(t, x(t))

0 5 10 15 20
−0.5

0

0.5

1

1.5

time [s]

 

 

r(t)
y(t)
yid(t)

(a) r(t), y(t), and yid(t)

0 5 10 15 20
−2

−1

0

1

2

time [s]

(b) Time–history of u(t)

Figure 3.2: Performance of the L1 adaptive controller for f2(t, x(t))

Next, we test the tracking performance of the closed–loop adaptive system. We set the

reference signal to r(t) = sin
(

π
5
t
)

and use the disturbance f1(t, x(t)). We now consider ini-

tialization error such that x0 = [1, 1]⊤ while we set the state predictor to x̂0 = [1, 0]⊤. Notice

that y(0) = c(0)x0 = c(0)x̂0. The simulation results are shown in Figure 3.4. One can see

that the closed–loop adaptive system has satisfactory tracking performance. It compensates

for the uncertainties in the system and rejects the disturbance within the bandwidth of the

control channel specified via C(s).

It is important to emphasize that in the simulations above there is no retuning of the

L1 adaptive controller from one scenario to another, and the same constant control parame-
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Figure 3.3: Performance of the L1 adaptive controller for step reference signals

0 5 10 15 20
−2

−1

0

1

2

time [s]

 

 

r(t)
y(t)

(a) r(t), y(t)

0 5 10 15 20
−5

−4

−3

−2

−1

0

time [s]

(b) Time–history of u(t)

Figure 3.4: Performance of the L1 adaptive controller for r(t) = sin(π
5
t)

ters are used for every simulation. The time–varying nature of the desired reference system

is reflected in the state–predictor, which uses Am(t), bm(t), and c
⊤
m(t).
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CHAPTER 4

CONCLUSIONS

Two new extensions to L1 adaptive control theory have presented. The first being an

L1 adaptive feedback control architecture using a generalized proportional adaptation law

which leads to uniform performance bounds for the system’s output and control signal both

in transient and steady–state in the presence of fast adaptation, while reducing the compu-

tational requirement needed to achieve similar bounds as compared to the projection based

adaptation methods. The addition of phase margin in the estimation loop allows for model-

ing of known first order sensor dynamics at the output of the state predictor. The linearity

of the proposed L1 adaptive architecture helped to compute the performance and stability

margins of the closed–loop adaptive system. Three particular cases of the generalized law

were presented: an adaptive switching law, an L1 adaptive funnel–control, and a variable

dependent adaptation law. Finally, the variable dependent law was suggested as a method to

help reduce peaking or to improve performance by adjusting the adaptive gain the according

to CPU demand.

Also presented was an extension of the L1 adaptive control architecture for the class of

systems with time-varying reference systems in the presence of unmatched nonlinear distur-

bances with unknown input matrix using output feedback. This extension inherits and inte-

grates the performance and robustness properties from the architectures derived in [20–22].

Both extensions follow the standard L1 adaptive control theory: separation of robustness

and adaptation through the use of a low pass filter. In both cases, the bound between the

actual system and reference system can be arbitrarily reduced by increasing the adaptation
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rate, while the bound between the reference system and ideal system depends on the choice

of a low pass filter, subject to an L1 norm condition, with robustness as a trade off.
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[29] E. Kharisov, N. Hovakimyan, and K. J. Åström, “Comparison of several adaptive con-
trollers according to their robustness metrics,” in AIAA Guidance, Navigation and Con-

trol Conference, Toronto, Canada, August 2010.

[30] E. Kharisov, K. K. K. Kim, X. Wang, and N. Hovakimyan, “Limiting behavior of
L1 adaptive controllers,” in AIAA Guidance, Navigation and Control Conference, Port-
land, OR, August 2011, AIAA-2011-6441.

[31] D. Li, V. V. Patel, C. Cao, N. Hovakimyan, and K. A. Wise, “Optimization of the
time-delay margin of L1 adaptive controller via the design of the underlying filter,” in
AIAA Guidance, Navigation and Control Conference, Hilton Head, SC, August 2007,
AIAA-2007-6646.

[32] J. P. Hespanha, Linear Systems Theory. Princeton, NJ: Princeton University Press,
2009.

[33] T. Berger, and A. Ilchmann, “Zero dynamics of time-varying linear systems,” Ilmenau
University of Technology, Tech. Rep.

69


