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ABSTRACT

This thesis introduces two new extensions to L£; adaptive control theory. The first is an
L1 adaptive state feedback controller with generalized proportional adaptation law for a
class of linear systems with input—gain uncertainties and unmatched nonlinear disturbances.
The proportional adaptation law provides an adaptive estimate that is directly proportional
to the error between the output of the system and the state predictor. One advantage of
the new adaptive law is the additional phase margin in the estimation loop, allowing for
accommodation of first order sensor dynamics in the state predictor. An additional benefit
is the reduction of the required computational resources, since the error bounds reduce at
a rate directly proportional to the adaptation gain as compared to the square root of the
adaptation gain achieved by the L£; adaptive controllers using gradient descent adaptation
laws. In addition, an £, adaptive funnel controller and variable dependent adaptation law
are provided as particular cases for the generalized proportional framework. Also presented is
the connection between the generalized proportional feedback law and previous £; switching
controller. The second extension is an £; adaptive controller for a class of uncertain systems
in the presence of time and output dependent unknown nonlinearities and uncertain input
matrix with performance specifications defined via a time—varying reference system using
output feedback. It is shown that both extensions exhibit the standard characteristics of the
L1 adaptive control theory: scaling of transient responses, a guaranteed time—delay margin at
high adaptation rates, and the trade off between robustness and performance is determined

by the design of a low pass filter.
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CHAPTER 1

INTRODUCTION

Control systems are often developed with the use of a system model; however, model er-
rors are inevitable due to several factors such as imprecise parameter values, linearization,
unmodeled disturbances, and more. From this fundamental problem, the idea of adaptive
controllers arose. Adaptive controls is the concept of estimating the system’s uncertainty
through monitoring the system’s behavior, then using the acquired information to produce
a control input that can better achieve the desired performance. Examples of such adap-
tive controllers are presented in [1] and [2]. In order to adapt quickly to parameters and
disturbances, fast estimation is required. Fast estimation, on the other hand, can lead to
high frequencies in the control channel, ultimately reducing the robustness of the system.
Investigation into robustness and proposed modifications to prevent instability are given by
Toannou and Kokotovié [3-5], Peterson and Narendra [6], Kresselmeier and Narendra [7], and
Narendra and Annaswamy [8]. However, these modifications lack analytical quantification
of how robustness margins, adaptation rate, and transient response are related. The result
was a need within the adaptive controls community to find a new adaptive architecture with
quantifiable decoupling of adaptation from robustness.

The £, adaptive controller, first developed by Cao and Hovakimyan [9], describes such
an architecture. The core concept is to have the adaptive controller attempt to control the
plant only within the bandwidth of the control channel. By doing so, the system can achieve
fast adaptation without allowing high frequencies to enter the control channel, resulting in a

more robust system. In [9], multiple £; adaptive controllers are presented for various classes



of uncertain systems. For all £; adaptive architectures, the transient performance of the
closed—loop adaptive system is quantified both for the system input and output by uniform
performance bounds with respect to an L£; reference system, which incorporates a lowpass
filter. The performance bounds can be arbitrarily improved by increasing the adaptation
gain. The analytical lower bound on the stability margins of the £, adaptive controller is
derived in [10], where it is proven that in the presence of arbitrarily large adaptation gains,
the £, adaptive controller preserves robustness and has guaranteed, bounded away from
zero stability margins. For applications of the £, adaptive control theory we refer the reader
to [11] and references therein. This thesis presents two new extensions to the £; adaptive
control theory.

Chapter 2 presents the first extension which generalizes the adaptive estimation laws to
a proportional type with time—varying gain. In [9], two different estimation laws have been
considered in Chapter 3 (Sections 3.2 and 3.3), leading to performance bounds of identical
structure. In [12], switching estimation laws are considered, leading to identical bounds.
The proportional estimation law presented in this thesis again leads to bounds of the same
structure, and it is shown that the switching law falls within the generalized proportional
framework. As compared to the gradient minimization type adaptation laws for which the
performance bounds were inverse proportional to the square root of the adaptation gain,
the performance bounds derived here are inverse proportional to the adaptation gain itself
and therefore require less computational effort to achieve similar bounds. Three examples of
specific adaptation laws that fall under the generalized time—varying proportional adaptive
framework are also presented. These examples include a switching adaptation law [12,13],
funnel—control-law [14-16], and a variable dependent adaptation law.

In section 2.4, an analysis of the performance and stability margins is conducted. The
proposed L£; adaptive control architecture results in a linear closed—loop adaptive system

which allows for the use of standard frequency domain analysis tools. The results of the



proportional controller are compared to the performance and robustness results obtained by
L, adaptive controllers with gradient minimization type adaptive laws [10].

In section 2.5.3, the variable dependent control law is proposed as method to adjust the
proportional adaptation gain between a minimum and maximum value based on the value of
a provided variable. We present two examples that benefit from this type of variable based
adaptive gain structure. First, we investigate the peaking phenomenon [17-19], which occurs
in adaptive control systems due to the initialization errors. The variable dependent control
law uses the value of the error to adjust the gain in effort to reduce peaking. We compare
this method with other methods used to reduce peaking. Secondly, as mentioned earlier, the
L1 adaptation schemes involve a fast estimation loop that demands a high CPU rate. The
proposed variable dependent adaptation gain allows for the system to change adaptation
rate in response to CPU processing availability.

Chapter 3 presents the second extension of the thesis. This extension considers the class of
uncertain systems with time and output dependent unknown nonlinearities and uncertainty
in the input matrix. The presented L£; adaptive control architecture achieves performance
specifications defined by a linear time-varying (LTV) reference system, which is critical in
applications covering a wide range of operating conditions. A typical example of time-varying
reference system would be the one resulting from a gain-scheduled baseline controller over
an entire flight envelope. This extension integrates and extends the results from [20-22] to
perform using output feedback for LTV reference systems. It is important to emphasize the
relevance of robust output feedback control since full state measurement of a system is often
unavailable. Several solutions for this problem have been proposed in [23-28].

The extension presented in this thesis expands upon the £; adaptive controller for time-
varying reference systems proposed in [20], which yields semiglobal performance results for
the original uncertain time-varying system with state feedback. The piecewise constant

adaptation law for output-feedback systems, presented in [22], is modified to preform with



LTV reference systems. Like all other £; adaptive controllers, the proposed controller retains
the property that the £ norms for the error signals between the reference system and the
closed-loop adaptive system can be systematically reduced by increasing the adaptation rate.

Chapter 4 concludes the thesis by providing a summary of the two new £, adaptive control
theory extensions presented. Please note that the variable names in Chapter 2 may be reused

and redefined in Chapter 3 due to limitation of available variable names.



CHAPTER 2

PROPORTIONAL ADAPTATION LAW

2.1 Problem Formulation

Consider the system given by

(t) = Apx(t) + bpwu(t) + f (¢, x(t)) ,
(2.1)

y(t) =c'a(t), 2(0)=um,

where z(t) € R” is the system state vector; u(t) € R is the control signal; b,, € R" is a
known constant vector; A,, is a known Hurwitz n x n matrix specifying the desired poles of
the closed-loop dynamics; w € R is an unknown constant with known sign; f : R x R* — R"
is an unknown map; and the initial condition xq is inside an arbitrarily large known set, i.e.,
|zoll,, < po < oo with known py > 0. Let d, € R* be the relative degree of the system. The

system above is subject to the following assumptions:

Assumption 1 (Lipschitz continuity). There exist constants L > 0 and B > 0, such that

[f(t,21) —f(t, 22|l < Lo — 22|, ,

(o)l < Lzl + B,

hold uniformly for ¢ > 0, where the numbers L and B can be arbitrarily large.

Assumption 2. Let w € Q £ [w;, w,], where 0 < w; < w, are given known upper and lower
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Figure 2.1: Block diagram of the £; adaptive control system with proportional adaptation
law.

bounds on w.

The control objective is to design a full-state feedback adaptive controller with a general-
ized proportional adaptation law that will ensure that y(t) tracks a given bounded piecewise-
continuous reference signal r(t) with quantifiable performance bound according to the ideal
system defined as

i"id(t) = Am$id(t) + bmk‘gr(t) s
(2.2)

Yia(t) = c'mig(t),  x4(0) = a0,

where k, £ —1/(c" A, 1b,,), while allowing for the consideration of external factors such
as time CPU performance, initialization errors, or other situations requiring time varying

performance bounds.

2.2 L1 Adaptive Control Architecture

The £, adaptive controller presented in this paper, similar to all other £; architectures, is

comprised of a state predictor, adaptive law, and control law, arranged as shown in Figure 2.1.



2.2.1 State Predictor

We consider the following state predictor:

(2.3)

which has a similar structure as (2.1), except w is replaced by its best available guess wy € €2,
and the unknown estimates of w and f (¢, x(¢)) are grouped together to form the estimated

parameter 7)(t).

2.2.2 Adaptation Laws

The adaptive process is governed by the following generalized adaptation law:

0 (1) = T (1) | (2.4)

where 7 (t) = #(t) — z(t), and ['(¢) is diagonal n x n matrix with the only requirement being
that Amin (I'(¢)) > 0 for all ¢ > 0. This loose condition on the adaptive gain provides a
generalized framework for the analysis of stability and performance, under which several

adaptive gain generating methods are presented.

2.2.3 Control Law

The £, adaptive control law is generated as the output of the following feedback system:

u(s) = —kD(s) (wou(s) +m(s) — kyr(s)) , (2.5)



with 71 (s) defined as

¢ (sl — A"
cT (s —Ap) by

(s) £ o(s)i(s),  o(s) £

where 7(s) and 7(s) are the Laplace transforms of r(t) and 7(t) respectively; and k& > 0 and
D(s) are a feedback gain and a strictly proper transfer function respectively, which lead to

a strictly proper stable transfer function

C(s) 2 wkD(s)

a WPV oy eq 2.6
I+ wkD(s) 0% (2.6)

with DC gain C'(0) = 1 and relative degree at least d,.
The £, adaptive controller is defined via (2.3), (2.4) and (2.5), subject to the following

Li-norm condition:

IG(s)p L <1, @7

given the following definitions:

G(s) 2 (I, — Hom(5)C(s)H ' ¢ ") H oo
Heyum(5) 2 (sT — Ap) ™Y, Hym(s) 2 (sT— Ap) o,

H,(s) 2 ¢ (s1— Ap) by .

In [21], a filtered integral adaptation law is presented. Here a filtered proportional adap-
tation law is presented that adds ninety degrees of phase margin to the adaptation loop by
avoiding integration. This extra margin can be used to perform structural modifications
of the estimation loop of the £; adaptive controller. More specifically, first order sensor
dynamics may be added to the state predictor which can help to improve the performance of

the closed—loop control system as illustrated later in the paper in Fig. 2.8. Theoretical anal-



ysis of such modification can be pursued similar to the prior proofs in £; adaptive control

theory [9].

2.3 Analysis of the £; Adaptive Controller

2.3.1 Closed—-loop Reference System

Similar to all £; adaptive controllers, we consider the following closed—loop reference system

Trof (1) = AmZref(t) + bmwiiref (1) + Meet(t),  Trer(0) = o, (2.8)
Yret (1) = ¢ Trer(t) (2.9)
erlt) £ (. ur(t). (210
e(5) = = (6o () — yr(s)). 2.11)

The stability of the closed—loop system in (2.8)-(2.11) is provided by the following lemma.

Lemma 1. If k and D(s) verify the £;-norm condition in (2.7), then the closed-loop refer-

ence system in (2.8)-(2.11) is BIBS stable with respect to r(¢) and zo.

Proof : It follows from (2.8)—(2.11) that

Lyef (3) =G (3) Tref (3) + Hym (5) C (S) kgr (5) + Tin (3) )

where 2;,(8) & HyumTo. Since A, is Hurwitz, z;,(¢) is uniformly bounded. Next, given that
the system is BIBO-stable and LTI and that n.¢(¢) and r(t) are uniformly bounded, the

following bound may be obtained

et | oy <NG ), Nrer Nl 2oy + 1 Ham () C (s) kgl 171l + il -



Applying bounds to Assumption 1 we have ||nt. ||, < L ||, ||, + B for some 0 < 7 < t.

Substituting and solving for ||ay, ||, one obtains

[Tret |2, < prs (2.12)

where p, is defined as follows

o Ham () C(8) kgll, Tl g + G ()l B+ @il

b AT (2.13)

Then, because k and D(s) are chosen to verify the condition in (2.7), ||Zyf, ||, is uniformly
bounded for all 7 > 0. Hence, the closed-loop reference system in (2.8) is BIBS stable.

Similarly, u..s can be bounded as follows

”urefT”Loo < Pur (2.14)
LC(s)o(s BC(s)o(s C(s)k
Pur = LO()éls) pr + H—< )o(s) +H (5)k, 7]l - (2.15)
w o w o w ‘.
O

It is important to note that the closed—loop reference system assumes partial compensation
of uncertainties within the bandwidth of the control channel. It therefore depends on the
unknown system parameters and disturbances and cannot be implemented directly. The

closed—loop reference system is used solely for the purpose of analysis.

2.3.2  Error Dynamics

The system dynamics in (2.1) and the state predictor in (2.3) lead to the following prediction-

error dynamics:

T(t) =A@ (t)+bm (wo — w)u(t) +7(t) —n(t), (2.16)



with 2(0) = 0, where n(t) = f(t,x(t)). Rewriting the error dynamics (2.16) in frequency

domain, we obtain
c'i(s) = Hu(s)i(s), (2.17)
where
0(s) £ (wo — w)uls) +(s) = m(s), (2.18)
and 71(s) = ¢(s)n(s).
Lemma 2. Given the system in (2.1) and the £, adaptive controller defined via (2.3), (2.4),

and (2.5), if ||z, < pand [|ur]|,_ < p, we have:

5 Al AmaX(P)
12, <= » 1Plly Ay ¥ (P’

min

where P = PT > 0 is the solution of the algebraic Lyapunov equation A P + PA,, = —Q

for arbitrary @ = Q" > 0, A, and v defined as

Ay = (wu = @) ||bmllpu + v/n(Lp + B)

v 2 inf ApinI(2)

t>0

and p and p, are defined as
pépr-i—%, puépur+’727

where
5 2 [ Hem($)C(8)kgll o, (1Tl os + 1G]l 2, B+ [[@imll 2,
' 1= L|G(s)ll,, ’

(2.19)

11
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with 8 being some arbitrary (small) constant and 7; defined such that v; < 4; and i, (s)

(sT — A,,) L.

Proof :

Consider the Lyapunov function candidate:

which can be upper bounded for ¢ € [0, 7] to achieve the following

V(t) < =z (OPT(OZ() + 2@ |1Pll, A,

12

(2.20)

(2.21)

(2.22)

A

(2.23)



where the value A, is the following bound:

1o (wo — w)u(t) = nO) < (wu = w)bm]l lucll., +vVn(L -]l + B)

< (wu = @) [[bm [l pu + Vn(Lp + B) = Ay.
Given that I'(¢) is diagonal and P is a positive definite and symmetric we obtain
Amin (PT(%)) = Amin (P)Amin(T'(1)) > Anin(P)v .

Then, since v and Ayin(P) are greater than zero, for all ¢ € [0, 7] we have

1P[l; Ay

1Z(t)]| > N (P = V(t) < 0.

If at any time ¢; € [0, 7], one has

Vi) > ghanP) (1250 )

then

T(t) Px(t) <

S (P) (M) < V() = A (P) |1F0)]

1
/\min(P)V 2

N —

which results in [|Z(t)]| > i'é”%ﬁfy, causing V (t;) < 0. Then it follows that

[P]l; Ay

)\min(P>V) , Vtelo,7].

1
V(t) S 5)\max(P) (

13



Since 3 Amin(P) |Z(t)||* < V (1), it follows that

- 1 Amax (P)
I#le.. < 5 1Pl Aoy | 5205

min

and the proof is complete. 0

2.3.3 Performance Bounds of Closed-Loop Adaptive System

The error bounds between the system’s states and the reference states and the system’s input

and the reference input are given in the next theorem.

Theorem 1. Given the system in (2.1) and the £; adaptive controller defined via (2.3),

(2.4), and (2.5), subject to the £i-norm condition in (2.7), if we have ||zo|| < po, then

l2lle. <ps Mz, < pus N7, <0, (2.24)
[res = @l oy <7y Nurer —ull, <72 (2.25)

Proof :
Assume that the bounds in (2.25) do not hold. Then, since ||z,(0) — 2(0)]|,, = 0 < 7,
et (0) — u(0)|| . = 0 < 72, and z(t), Tve(t), u(t), and wuwer(t) are continuous, there exists

7 > 0 such that

[rer(7) = 2(T)loo =m0 01 et (7) = u(7) ]| oo = 72

while

[ e (8) = 2 ()]l <15 [t (t) = u(t)] o <2,

14



for all ¢ € [0, 7). This implies that at least one of the following equalities holds:

(et = 2)rll oy =705 (e = )]l = 72 (2.26)

Then, using the fact that ||zl < pr and |Juret]| ;. < pur from Lemma 1, along with

definitions of p and p,, it follows from the bounds in (2.26) that

ol <pr+m < p,

HUTHﬁw < Pur T 72 < Pu-

This validates the assumptions used in Lemma 2, which in turn implies that |||, < 7.

Next, it follows from (2.5) that

u(s) = =K D(s) (wu(s) + m(s) = kgr(s) —ii(s)) ,

where 7] (s) is defined in (2.18). Solving for u(s) gives

—KD (s)

uls) = 1+ wKD (s)

(m(s) = kgr (s) =71 (s)) -

Using the definition of C(s) from (2.6), we can write:

u(s) =~ () kyr (5) ~ 251 (227
and the system in (2.1) takes the form

[E(S) = G(3)77<3) + Hzm(8>0<8)kgr(s) + Hzm(S)C(S)ﬁ(S) + xin(s)'

15



Similarly, it follows from (2.8) that
Tret(5) = G(8)het (8) + Hum(8)C(8)kyr(s) + zin(s).
Then
et () — 2(5) = G(8) (et (s) = 1(5)) — Ham(s)C(s)7)(5) - (2.28)
Pre-multiplying both sides of (2.17) by H,.'(s) leads to the following equation:

ii(s) = H ' (s)c' Z(s). (2.29)

from which, with the use of Assumption 1, we obtain the following bound
(eet = 2)ellz, LG, Mot = 2)rll oy + ([ Hom(5)C(s) Hpy (s)e || o, Nl -

Then, solving for ||(@wt — )| ,_, we obtain

m

[ Ham (5) C (s) Hy' (s) 7| ..
= LG, o

et = 2)e . <

which along with the definition of 7 in (2.21) leads to

[(@ret = @)rll 0 <11 =B <M. (2.30)

16



On the other hand, from (2.11) and (2.27) one can derive

) o) (er(s) — m(s)) — C

w w

Urer(8) — u(s) = — ().

Substituting (2.29) into the previous we obtain the following bound

C(s C(s)H  (s)c" .
N P ) A L P e L
[:1 ['1
Substituting the bounds for |[(z,f — )., and ||Z][,_ leads to
C(s C(s)H 1 (s)c"
lume = ) e, <[ Do) 20— )+ [ LI a2y
[:1 »Cl

Finally, we note that the upper bounds in (2.30) and (2.31) contradict the equalities in (2.26),
which proves the bounds in (2.25). The results in (2.24) follow directly from combining the
bounds derived in Lemma 1 with the results from Lemma 2. 0

Notice that one can achieve arbitrarily small performance bounds 7y, 71, and 2 by in-
creasing the value of v. Also notice that the performance bounds are inverse proportional to
v itself, whereas for the integral (gradient descent) adaptation laws, the performance bounds
are inverse proportional to \/v. Therefore the adaptation law presented here requires smaller
adaptation gain to achieve similar performance bounds as the previous integral controller.
Finally, the structure of the performance bounds (2.24)—(2.25) is identical to the performance
bounds of the £; adaptive controller given in Section 2.2.1 of [9]. This similarity is a conse-
quence of the decoupling of the estimation loop from the control loop, which is achieved by

the £, adaptive control architectures [29].

17
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Figure 2.2: Closed—loop system with £; adaptive controller
2.4 Analysis of Performance and Stability Margins

In [29], the authors compare the performance and the robustness of several linear adaptive
controllers using a linear system with time—varying disturbance in the presence of measure-
ment noise. In order to make the closed loop adaptive system linear in [29], the integral
adaptation laws were used while omitting the projection operator. The proportional adap-
tive system is linear as presented. For fair comparison, we consider a first order system of the
same structure, namely we use (2.1) with A4,, = —a,,, w =1, f(¢,z(t)) = 0, and use a static
adaptation gain I'. In the absence of input uncertainty, the control law can be rewritten as

follows

u(s) = C(s)in(t) — kgr(s),

noting that the reference signal is not multiplied by the filter C'(s) in order to mimic [29].

The resulting block diagram of the system described above is given in Figure 2.2.

2.4.1 Performance Analysis

The Gang of Siz for the closed—loop system with proportional £; adaptive controller is given

in Table 2.1. Similar to MRAC and conventional £; adaptive control, in the absence of the

18



Ss+am

_ _b (1 _ _ICs) )
s+am stam+IT

) (s)

) = Huo(s) = =72 57C(s)
) (

)

Hyp(s) = H,,(s) = ko
H

o st+am~+TI"

(s)
Hun(s) = Hun(s) = stk C(s)

Table 2.1: Gang of Siz for the system with proportional £, adaptive controller

disturbance (o) and the measurement noise (n), the closed loop system is identical to the
ideal system in (2.2). Similar to [29], the remaining transfer functions contain the filter C'(s).
Next we investigate the performance and robustness of this closed—loop control system and
compare it to the conventional £, adaptive controller with gradient descent adaptation laws.

We do so by considering a simple, first order filter of the following form:

Cls)= -2 . =5,
S + we

where w. € R is a filter parameter. Figures 2.3 shows the Bode plots for the closed-loop
system with the proportional £; controller for different values of the adaptation gain. Notice
that increasing the adaptation gain leads to better attenuation of the input disturbances.
However, unlike in [29], the high frequency content of the measurement noise does not get
amplified in the control channel with large adaptation gains and the system exhibits no
resonance peaks, similar to the results obtained by modifying the state predictor or using
high order filters with conventional £, adaptive control.

Also, unlike the £; adaptive controller with gradient descent adaptation laws, the the
magnitudes of Hy,(s), H.;(s), H.n(s), and H,,(s) at low frequencies are dependent on the

adaptation gain and do not become arbitrarily small. Therefore the adaptation gain value

19
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Figure 2.3: Bode plots for teh system with proportional £; adaptive controller for different
values of the adaptation gain

can be easily chosen to obtain desired disturbance rejection at low frequencies for a given

filter C(s).

2.4.2 Analysis of Stability Margins

Using Figure 2.2 we compute the input loop transfer function:

r
L - _
ULU2 S+ a, + (1 . C(S))FC(S)
T'w,

C 2+ (T4 G 4 We) S + Welt,

20



The Nyquist plot in Figure 2.4, computed with the same values as earlier (a,, = 2 and
w, = 5), shows that the phase and gain margins of the proportional £; adaptive controller
are not affected by large values of I'. The figure shows that the proportional £, adaptive
controller has guaranteed bounded—-away—from—zero phase and gain margins in the presence
of fast adaptation.

Standard £, adaptation laws with a first order filter exhibit resonance peaks in the input
loop transfer function that increase in magnitude and frequency with increase in adaptation
gain [29]. These resonance peaks can cause amplification of noise which reduces robustness
and can lead to implementation problems in the control channel. The peaks can be re-
moved using higher order filter or state predictor modifications. However, with the proposed
proportional adaptation law, the Bode plot of the transfer function in Figure 2.4 does not
exhibit resonance peaks, thus improving stability margins of the system without the need
for any modification or high order filter.

This result can be explained by calculating the damping coefficient for each type of adap-

tation law. The values are as follows

We + Gy

- 2V amw. + b’

I+ apm+w,

£, &=

where £, and &, are the damping coefficients for the conventional and proportional adaptation
laws, respectively. As shown, an increase in the adaptation gain reduces the damping for
the conventional adaptation law and increases damping for the proportional adaptation
law. These results display the stability margin benefits gained by the use of the proposed

proportional adaptation law.
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Figure 2.4: Loop transfer function of of system with Proportional Adaptation Law
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2.5 Adaptation Gain Generation Methods

This section examines three specific methods for adaptive gain generation that fall under

the generalized proportional £; adaptive controller.

2.5.1 Switching Adaptation Law

We begin by presenting the switching—adaptation law presented in [12], which is given by
i (t) = —Gsgn(dz [(P) 5 (1)),

where dz[-] is the dead zone function, the size of which is set arbitrarily small. The adaptive
architecture presented in [12] has the same performance bounds structure standard for the £4
adaptive control architecture. The above adaptation law can be presented as a time-varying

adaptive gain proposed above by approximating it as

(PD)'],

Lii(t) = e+ = ;
=t TR

where € is an arbitrarily small positive constant used to avoid singularity and [-]; denotes
the i*" component of the vector while 4,7 denotes the i component of the diagonal gain
matrix.

In the subsequent sections we now consider examples of adaptive gain generation tech-
niques which fit the architecture presented in this paper, but have not been considered for

L, adaptive control thus far.
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2.5.2  Funnel Adaptation Law

One specific application of time—varying proportional gain is funnel control. In funnel control,

the time varying gain is defined as follows

I
F(t) = 2@l

p

I(t) =

(2.32)

where p can be any vector norm, #(t) € R" is the prediction error and F(t) € R is a
continuous function of time such that ||Z(0)|| < F(0) and mingo F(t) > Fy > 0, and
represents a time varying funnel in which the error remains as shown in Figure 2.5. For

example, the Exponential Funnel Boundary is given by

t
Fezp<t) = FO exXp <_f) + Fom (233>

where T is the time constant and F and F, are positive constants such that F(0) = Fy+ F.
and limy_,o Feap(t) = Fio.

Notice that ||Z(¢)|| must be less than F(0) in order for the initial gain to be positive, which
corresponds to the requirement that the error must be initialized within the funnel. Then, as
the value of the error approaches the funnel boundary, the denominator in (2.32) decreases
resulting in an increased gain and forces the error towards zero. Infinite gain occurs as
the error approaches the funnel boundary. Therefore, funnel control can exhibit very large
adaptation gains which can lead to robustness issues, such as small time delay margins.

The funnel control concept can be applied to the adaptive gain in the proportional £, adap-
tive control theory mentioned above. The key difference is that the adaptive gain in the £,
architecture considers the error between the plant states and the state predictor instead of
the error between the output and the reference signal. However, due to the decoupling of

robustness and adaptation in £; theory [11], the high gain resulting from the funnel control
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Figure 2.5: Basic Concept of Funnel Control

acts to improve performance without decreasing robustness. The trade off between robust-
ness and performance instead manifests itself in the choice of the low pass filter. Funnel
control is used to prescribe a bound on the error between the actual system and reference
system, while the choice of filter determines how close the reference system matches the ideal

system, with the cost of performance being the reduction in robustness.

2.5.3 Variable Adaptation Law

Finally, we present an adaptive gain generating method dependent on a vector i(t) € RY,
with q being finite, of variables by which the value of the adaptation gain is adjusted. The

gain adjustment equation is given as

0= (60 e ) (20
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with G, Gy, a € Rt and p representing any vector norm. The adaptation gain has a lower
bound G, and upper bound Gy + G, while the rate of variation is dependent on the design
parameter . Thus, as the norm of the vector 1 (t) increases, the adaptation gain decreases.
Note that the lower bound can be set to ensure given performance bounds. Next, we suggest
two variables that can be used to vary the adaptation gain.

First, the variable adaptation law may use the error Z(¢) for ¥ (¢) in (2.34) as a method
to reduce the effects of the peaking phenomenon experienced in adaptive controls [17-19].
Peaking refers to the large spike, or peak, in control effort that occurs as a result of an
error between the initial conditions of the plant and state predictor. When using the above
equation, the adaptation gain is reduced when there is a large error between the state
predictor and plant, reducing the magnitude of peaking.

The second variable considered is CPU rate. The main limiting factor for achieving fast
adaptation is the availability of the CPU since it requires a high CPU demand. Varying the
adaptation gain according to CPU demand can be used to regulate the CPU usage, and may
lead to improved performance, since in many cases the adaptation gain is selected based on
conservative CPU demand estimations.

We illustrate some of the results presented in this section in the simulations below.

2.6  Simulations

Consider the system in (2.1) with the following values

Ay = ;b= , ¢ =[1,0]. (2.35)
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Consider the following three cases of parametric uncertainties,

() = - 0.5 cos(mt) sin(za(t)) |
2 + 0.3sin(7t)z1(t) + 0.2 cos(mt) o
i) = - sin(0.57t) + 2sin(z(t)) — .1 |
0.1 cos(3mt)za(t) + sin(za(t)) + 2sin(nt)
fut) = - 0.522(t) + sin(z(t)) + sin (1&¢)
3x1(t) — sin(t) + 3 cos(z1(t)) + 2sin(2mt)

We implement the £; adaptive controller according to (2.3), (2.4), and (2.5), subject
to the £y-norm condition in (2.7). Since the system has a relative degree 2, we select

D(s) = %. We set k = 60 and let I" = 100, 000.

Figure 2.6 depicts the response of the system to a reference trajectory r(t) = cos(2t/7)
for three sets of nonlinear disturbances and input uncertainties above. The three output
responses are nearly identical although the control responses are different. This implies that
to achieve uniform performance, the compensation for the different time varying disturbances
requires different control signals to cancel their effects. Figure 2.7 shows the response of the
system to step reference inputs of 1, 5, and 10 with fi(¢,2(¢)) and w; uncertainties. As
shown, both the system response and the control input scale uniformly.

In [30] it was shown that the fast estimation loop of £; adaptive controller can be system-
atically modified to improve the performance of the closed—loop system by accommodating
different types of real world system components such as actuator and sensor dynamics. Pre-
vious work has illustrated the benefits of modifying the control signal of the state predictor

to take into account the saturation magnitudes and the known input delays [30]. Without

going into technical details and providing theoretical analysis, here we show that the sensor
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Figure 2.6: Closed—loop system response for the three sets of parametric uncertainties and
disturbances.

dynamics cannot be compensated for by modifications of the state predictor when using
gradient descent adaptation laws, while the proposed proportional adaptive law allows us
to address this problem. Toward this end, consider the same plant given in (2.35) with the

sensor dynamics given by
20
s+20

S(s) =

Since the sensor dynamics are assumed to be known, we modify the output of the state
predictor according to the sensor dynamics. The simulation results for both gradient descent
and proportional adaption laws are given in Figure 2.8. One can see that the gradient descent
adaptation law becomes unstable, while the proportional adaptation law is able to track the
step reference command.

Next, consider the funnel control algorithm in (2.32) for the time-varying adaptive gain
with the use of the infinity norm. The Exponential Funnel Boundary from (2.33) is used with
Fy = 0.3, Fy, = 0.05, and T = 2. The plant states are initialized as xo = [0.1,0.2]", while

the state predictor is initialized with #o = [0,0]". A small initialization error is presented
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Figure 2.7: Closed-loop system response to step signals of various amplitudes showing scal-
able response.

so that the initial error does not start at the orginin. Figure 2.9 shows the state response
and the control input. There is an initial error between the output of the system and the
reference system, which eventually converges as the funnel narrows. The adaptive gain varies
in order to keep the error within the funnel as shown in Figure 2.10.

Next, simulation results are shown that demonstrate the use of the variable adaptation
gain to decrease the peaking phenomenon. The results are compared to the results of two
other methods commonly used to reduce peaking: funnel control and input saturation. We
also show the case where a large static gain is used to depict the severity of peaking in the
absence of any peaking reduction method. The plant model is initialized to zy = [3, —1]7,
while the state predictor is initialized with 2o = [0,0]". For the constant adaptive gain, a
value of I' = 10, 0001 is used. The funnel boundary parameters are set to Fy = 5, F,,, = 0.001,
and T" = 2, while the parameters G, = 10, Gy = 10,000, and o = 2,000 are used for the
state dependent gain described in (2.34). Control saturation is set to £15. The infinity norm
was used for both the funnel control and variable gain laws.

Figure 2.11 shows the output response and the control input value for the four different
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Figure 2.8: Comparison of performance to step reference command in the presence of known
sensor dynamics.

methods. The control input wu.(t) for the constant gain exhibits the peaking phenomenon,
discussed in Section 2.5.3. The funnel control, variable gain, and saturation control inputs,
denoted as ug(t), u,(t), and us(t) respectively, avoid large peaks due to initialization. How-
ever, the output using the funnel control significantly deviates from the desired reference
value before eventually converging. This is due to the fact that the gain remains small as
shown in Figure 2.12. The output of the state dependent gain closely matches the output
achieved using the constant gain but avoids peaking in the control channel. The saturation
and variable methods avoid high gains and do not provide any significant change in response,
although both methods have some downsides. For saturation, the saturation level must be
chosen carefully in order to ensure no loss of stability or performance. In the variable gain
generation method, stability is guaranteed with by choice of positive G, however, the value

of a is a design parameter that must be tuned to achieve desired performance.
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Figure 2.9: Performance of proportional £; adaptive controller using funnel control gain.
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CHAPTER 3

LINEAR TIME VARYING OUTPUT FEEDBACK

Please note that the variable names used in this chapter are independent from the previous
chapter; that is the variable names may be reused and redefined in without any connection

to Chapter 2.

3.1 Problem Formulation

Consider the following class of nonlinear systems:

@(t) = A()x(t) + b(t)u(t) + f(t,z(t), 2(0) = o,
(3.1)

where z(t) € R" and y(t) € R are unmeasured system state and the measured system output,
respectively; A(t) € R™™ and b(t) € R™ are unknown time-varying matrix and a vector,
respectively; ¢, (t) € R™ is a known time-varying vector; u(t) € R is the control input. The
initial condition x( is unknown, however it is assumed to belong to a known set such that
|70]|co < po < 00, for a given py € RT; and f: R x R" — R™ is an unknown map subject to

the following assumption:

Assumption 3 (Semi—global Lipschitz continuity and boundedness). For all 6 € RT there

exist constants Ly(d) € RT and B(d) € R, such that for all z, z; and x5 with ||z]« < 0,
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|171]|co <0, [|22]]oc < d the following bounds

[f(t21) = f(t 22)lloo < Lo(O)[21 = 22loo ,

17t 2)llo0 < Lo(9)]]lec + B(9)

hold uniformly for ¢t > 0.

Let r(t) € R be a given bounded reference input signal. The control objective is to design
an adaptive output—feedback controller, which ensures that the system output y(t) tracks

the reference input r(t) according to a desired model given by
jfid(t) = Am(t)ﬂ?ld(t) + bm(t)rg(t) y Iid(O) = Xo,
yia(t) = cp(t)zia(t)

where A,,(t) € R™" is a known Hurwitz time—varying matrix; b,,(t) € R™ is a known time—
varying vector such that the relative degree of the desired model is less or equal to d, > 1

for all t > 0; and

rg(t) £ kg(t)r(t), k() £ =1/ (cn(t) AL (Dbn(1)) -

Let the systems above verify the following assumptions:

Assumption 4. There exit constants A; and A, such that
[(A() = Am() oo <A1, [[(b(E) = bu(t))]1 < A2 VE=>0.

Assumption 5. There exist constants pp, fiom, € RT such that ||b(t)]|ce < s [|[0m () |leo <

toms and. [|leq, (E)[l1 < pre-
Assumption 6. A,,(t), b, (t), and ¢, (t) are at least d, times continuously differentiable.
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Assumption 7. The pairs (A4,,(t), b,,(t)) and (A(t), b(t)) are strongly controllable, and the

pairs (A, (1), ¢ (t)) and (A(t), ¢} (t)) are strongly observable.

’ m 7 m

Assumption 8 (Stability of the desired system). The matrix A,,(t) is continuously differ-
entiable and there exist positive constants us > 0, d4 > 0, and uy > 0, such that for all
t >0, [[Am®)loe < f1a, |Am(®)|lso < da, and Re[N(An(t)] < —pr, Y i =1, ..., n, where
Ai(An(t)) is a pointwise eigenvalue of A,,(t). Further, for all ¢ > 0, the equilibrium of the
state equation

&= An(t)z(t),

is exponentially stable, and the solution of
Al (OP(t) + P(t)Ap(t) = -1

satisfies P(t) = PT(t) > 0 and ||P(t)||cc < €p < 1.

Assumption 8 is standard for LTV control theory. Sometimes it is referred as stability of

slowly varying systems [17].

3.2 L1 Adaptive Control Architecture

3.2.1 Definitions and £;—norm Sufficient Condition for Stability

We can rewrite the system in (3.1) as

(3.2)

where



Let x;,(t) and @;,(¢) be the initial condition response of the systems

Tin(t) = An(t)zin(t), zw(0) = ¢,
l;‘in(t) = Am(t)fm(t) s Zi‘m(O) = Zi‘() — X,

Uin(t) = C;lr—l,(t)jin(t) )

where 7 is our guess of the initial condition zg such that ¢, (0)Zo = y(0). Then let p;, and

pin be defined as

A ~ A ~
Pin = Max ||xinH£oo P Pin = ||yiHH£oo .

max
llzoloc €p0 lzollo€po, [IZolloc €po

Next, let H,, and H,,, be the maps from u(t) to y(¢) and u(t) to z(t), respectively, and
Hazwm be a map from o(t) to x(t), of the system in (3.2) with initial conditions equal to
zero. Also, let H,y, be the map from o(t) to y(t) in (3.2) with initial conditions set to zero
as well. The design of the £, adaptive controller proceeds by considering a strictly proper
system C'(s) with relative degree greater or equal to d, and C(0) = 1. Further, the selection
of C(s) must ensure that there exists a constant p, € R™ such that the following £;—norm

condition is satisfied:

Pr — ”H:r:mCH;zl}—H&ﬁin - HmeC”hHrgHEoo — Pin

gum L < D ’
1Gumller < 7 RalCle. rallon + DellCH Fllesfm + Blpr)

(3.4)

where C is the input—output map of the lowpass filter transfer function C(s), F is the input—

output map of
1

F(s)= ———,
( ) Z?Loais(i)

ag = ]_, (35)
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which has real poles, and

Gum 2 (1= HomCH ) s (T4 (b — b )CH M) (3.6)
and L, is defined as
Lp é Al + Lo(p) 3 (37)
where
PE P +7, (3.8)

with 4; an arbitrary (small) positive constant. The definition and the procedure of computing
the £;—norms for LTV systems can be found in [9].

In many state feedback architectures the £;-norm condition can always be satisfied by
choosing the filter with sufficiently large bandwidth. However we notice that the £;-norm
stability condition (3.4) cannot be satisfied simply by increasing the bandwidth of the lowpass
filter C'(s), since ||Guml||z, does not necessarily decrease if the bandwidth of the filter is
increased. Similar to [22], the condition (3.4) requires appropriate filter tuning. Filter
design can be done using some of the methods presented in [31].

Next, define

pur 2 11, gl + 1CH ey (I HyunHosl L2, (A€

3.9)
+ICH Flleipn) + Lope + Blpr)) + 1Fll2sm)
where
Ho 2 (T4 (b—bp)CH Hyum) (3.10)
and let
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where 99 € RT is an arbitrary (small) constant. Further, define A as

A2 Lyp+ Nap,+ Blp). (3.12)
Further, let
12 e (19m( = b)CH e (1eo
1- ||gum||£1Lp o " " ' '
+ H(l - F)HyumHQA) + ”meCH;zlfHE{% (3‘13)

+ | HamCH, (1 — f)HyumHLlA) + 8,

where the values of 5 € RT and 5 € RT are arbitrarily small positive constants. Note that

the denominators in (3.13) are nonsingular due to (3.4). We also define

Y2 2 (CH Hyum Mool 2, (Lo + 10 = b )CH | 2,
(I F M ev0 + (1 = F)Hyumll 2, A)) (3.14)

+HICH ) Flle, Yo + ICH,, (1 = F)Hyumllc A+ 5.

The choice of 7y, #, and F(s) must ensure that

<7, Y2<72-

The £;-norm given by ||HemCH,, (1 — F)Hyum||c, exists since Hyp, and Hyy,y, are stable
maps and the relative degree of C(s) is greater than or equal to the relative degree of H,,.
Further, the value of this £;—norm can be made arbitrarily small by increasing the bandwidth
of F(s) in a similar manner as in Lemma 2.1.5 in [9].

Using Assumption 8 and the properties of P(t), it follows that there exits a nonsingular
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/ P(t) for all t > 0 such that

Pt = (VPB) VP

-1
Let D(t) € R" " contain the basis of the null-space of ¢ () < P(t)) , that is

D(®) (c;@) ( P(t))l) —0, (3.15)
for all t > 0; and further let
CT
At) £ (! : (3.16)
D(t)\/P(t)

Notice that

is full rank, and hence A7 () exists Vt € [0, 00).

Lemma 3. For arbitrary £(¢) £ [y(t) 2(t)]" € R", where y(t) € R and z(t) € R*!, there

exist py(t) € RT and a positive definite P(t) € R* "1 such that
ETMATTMPOAT () = pi(t)y*(t) + 2 (1) Pa(t)2(t)

for all ¢ > 0.

The proof of the lemma is similar to the proof of Lemma 4.2.1 in [9] and therefore is omitted.
Further, let Ty € RT be an arbitrary constant that can be associated with the sampling
rate of the available CPU, and let (;Sg(z', T;) € R™ ™ be given by
(i+1)Ts
be(i T.) 2 / De((i + V)T, 7)A(r)dr (3.17)

T
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where ®;(-,-) represents the state transition matrix for the autonomous system with state
matrix given by (A(t)A,(t) — LA(t)) A71(¢).
Next, define 1, = [1, 0, ..., 0] € R", and let

1] @ (iT, + t,4T3) = [m (i, Ts, 1), ny (i, Ts, 1)), (3.18)

where 7, (, Ty, t) € R and 1,(4, Ty, t) € R"™! contain the first and the 2-to-n elements of the

row vector 1 ®z(iT +t,4T). Next let
L [ET
W(i, T, 2 / 117 @¢((i + )T, 7)A(T) 17 (3.19)

Also, let ¢(i,T,) and « be defined as ¢(0,T,) = 0, and for i € N:

«

s(i,Ty) = ||no(i — 1, Ty, Ty) || + k(i —1,Ty)A, (3.20)
P2max
2p A 2
o 2 max Ap,m( ’Wﬁ) A (PO)AO) R 321)
)\Pmin(]' - EP)

where

)\szax é sup )\Z(Pz(t)) s )\pmax é sup )\z (P(t)) s )\pmin é mf )\7, (P(t)) s

t € [0, 00), t € [0,00), t € [0, 00),
i=1...n—1 i=1...n 1=1...n
and
pp = sup [[P(t)]oo - (3.22)
t€[0,00)
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Next, we introduce the following constants

Bl(ia TS) £ max ] |n1(i7Ts7t)| ) ﬁQ(i7T8> £ max ] ||772(i’ Tsa t)” 5

teliTs, (i4+1)Ts teliTs, (i+1)Ts
T = Tt T & Tt
/83(27 S) tE[iTSI}’l(alfil)Ts] 7]3(Z7 ER) )7 64(27 s) te[iT:,ngil)Ts] 774(7'7 S )7

where

iTs+t
ns(i, Ty, t) = / 1) (T, + t, T)A(T)oz ' (4, To) (i + 1) Ty, iT3) Luldr

1T+t
(i Tort) 2 / |11 BT, + £, 7)A(T) 1dr

Finally, let

«

’YO(iv Ts) é Bl (Z, TS)C(i, Ts) + 62(7:7 Ts) + /BS(ia TS)C(i, Ts) + /84(7:7 TS)A )

)\PQ max

and

’yi(Ts) £ sup ’YO(iaTs) .
1€NU{0}

(3.23)

(3.24)

(3.25)

(3.26)

The following lemma shows that the value of vz(7}) can be made arbitrarily small by reducing

the value of T5.

Lemma 4. The following limiting relationship is true:

lim vz(Ts) = 0.

Ts—0

The proof of the lemma follows from the proof of Lemma 4.2.2 in [9], given the property

O (i, iTy) = 0.
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3.2.2 L Adaptive Control Architecture

The L adaptive controller is comprised of the following elements:

Output Predictor:

(3.27)

where 6(t) € R™ is the vector of adaptive parameters updated by the following piecewise—
constant adaptation laws:

Adaptation Laws:

6(t) = —u(i, T,)§(T,), telily, (i+1)T,), i=0,1,2,..., (3.28)

A

where g(t) = g(t) — y(t), and

w(i, Ty) = ¢£f1(¢, To)®e((i +1)Ty,iT) 1y,

with ¢z(4, T) and @¢((i+1)T},iT;) are defined in (3.17). The matrix (i, T}) consists of time
dependent gains that may be computed off-line. For the numerical computation of the state
transition matrix for time varying systems can one can use the Peano—Baker Series [32].

Control Law:

u=Cry— CH,;' FHyum0 . (3.29)

Next we present an algorithm for on-line computation of H_'F.
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3.2.3 Computation of H 1F

Let

—1
Vout = Hm «FVinv

where vy () € R and v, () € R are the output and the input of H,,,' F in (3.29) respectively.
The mapping for H,, may be represented in Byrnes-Isidori form [33] through a coordinate

transformation U(t) € R"*" leading to

0 10 0 | [ 0 | [ 0 |
0o 0 1 0 0
U(t) = : : U(t) + Lo 6(t) + D Voue(t)
0 0 0 | 0 0
R R o Rea) Rat) | [s®] L]
o0 = £ 0 - ou G, (3.30)
Vinr (t) = _1 0 0} v ) :
- a(t)

where ¥(t) € R% is the system state, 6(t) € R" % are the zero dynamics state, vi,p = F 4y,
and R(t) € R¥>d S(t) € R4 J(t) € R, E(t) € R"%*1 and G(t) € R4~ are

defined in [33]. Notice that

o | ] )|
L0
b(t) (1) _ 1nF.‘(t)
EZXON I RZSaON
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This implies that
v (1) = S)O(t) + T () Vous(t) + Ri(t)vinr(t) + Ro(t)immp(t) + ... + Ra ()i V(1) .

Therefore, vy (t) may be computed as follows

Vot (1) = I (1) — S(6(t) — Ry ()i (t) — Ro()imp(t) — ... — R, ()X D (1) |

J(t)

where J(t) # 0 due to Assumption 7. The derivatives j,r to Vi(j}) can be computed using a

fast filter F'(s) defined in (3.5), which gives us

r(s) = :

Vinp\S8) =

in =F Z'in ) .:]-”-dra
adrsdr+...+a13—|—1y (5) (s)s'vin(s), 0

where the relative degree of F'(s) is d,.. The value of §(t) can be computed by (3.30). Notice

that the lowpass filter C in (3.29) cuts out high—frequency content produced by differentiation.

3.3 Analysis of the £ Adaptive Controller

3.3.1 L; Reference System

The L, reference system is given by

Tret(t) = A (t) Tre(t) 4 b (D) Uret (1) + Oret (), Tret(0) = T, (3.31)
Yret(t) = () Tret(t) (3.32)

tret = Crg = CHop (HyumOret = Fifin) (333)
Oret (t) = (A(t) = A (t)) et (t) + (0() — by (8) Jtret (t) + f (¢, 2ret (), (3.34)
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where g;,(t) is the output of the following system

f%in<t) = Am<t)'i‘1n(t) ) xin(0> - j:(] — Zo,
Gin(t) = € (t)Tua(t)
We notice that the £, reference system contains the system uncertainties and the unknown

initial condition zy. Therefore it is not implementable and is used only for the analysis

purposes.

Lemma 5. For the £; reference system in (3.31)—(3.33), subject to the £;—norm condi-

tion (3.4), we have

[ Tret] £ < Pr s (3.35)
et | 00 < Pur (3.36)
[Yret | oo < Hepr - (3.37)
Proof :
Let
ret(t) 2 (A(t) = A () rer (t) + f(t, Trer(t)) (3.38)

then from (3.34) it follows that ouef(t) = (b(t) — by (t))trer (t) + Vrer(t). Substituting the

reference control law (3.33) and taking into account the definition in (3.10), we obtain

Oret = (b — ) (Cry — CHt (HyumOret — Fiiin)) + Vret
= —(b— bn)CH, HyumOret + (b — byn) (Crg + CHL Fiiin) + Vret
(3.39)
= (T4 (b — b)) CH Hyum) (0= bn) (Cry + CH Fiin) + Drer)

= Ho (b= by) (Cry + CHy Fijin) + Dret) -
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The system in (3.31) can be written as
Tref = HamUret + HaumOret + Tin -
Then, by substituting u.et(t) (3.33), we obtain
Tret = Ham (Crg — CHp (HyumOret — Flin)) + HowmOret + Tin -
The above equation can be rearranged to obtain the following
Tyef = (%xum — meCH;Ll"Hyum) Oret + HamCH ., Fijin + HamCry + Tin -
Next, using the fact that Hyum = ¢, Heum, (3.39), and the definition in (3.6), we obtain

Lref = (]I - ,meC/H;fC;) qumaref + %meanl}-ij + mecrg + Zin
= gum ((b - bm) (C'rg + CH;;-/T?Jm) + ﬁref) (340)

+ HmmC%;nlf/gm + Hmmcrg + T, -

Next, we use a contradictive argument to prove the bound in (3.35). For this we assume
that (3.35) does not hold. Since ,(t) is continuous and ||Zyef(0)]lco = [|Zolloe < pPo < pry

then there exists time 7 > 0 such that

[Tret ()]0 < o, VEE[O, 7), (3.41)

[Zret (T) || = pr (3.42)
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which implies ||Zyetr ||z, = pr- Using Assumptions 3 and 4 and (3.7), we obtain the following

bound from (3.38):
Hﬂrefﬂ—Hl:oo S Alpr + LO(;OT)IOT + B(pr) S Lppr + B(pr) ) (343>

where we use the fact that L, > L, . This allows us, using (3.40) and Assumption 4, obtain

the following bound:

refr || Loo um || L1 2 L11Tgl|Loo 2 %l‘F"EluginHEm + Hﬂreffuﬁoo)
[2retrll 2o < N|Gumlley (D2llCllzy Irgllza + A2l|CH

+ [ HomCH o Flle inll e + [HamCllzy gz + pin
(3.44)

< [1Guml 2, (AQHCHLIH%HLOO + Ao ||CH Flley inllene + Lo

+ B(M)) [ HamCH o Fllea linll o + HamCly gl + pin-
Notice that (3.4) can be rewritten as
[Gamllzs (Lope + DellCleiliryllen + Do CHL Flleupin + Blr))
_’_H%meH;leHElﬁin + ||mecl|£1||rg||£oo + pin < Pr

which along with (3.44), implies

| Tretr|loe < pr-

This fact contradicts to (3.42), and hence the bound in (3.35) is proven. The bound in (3.37)
follows immediately from the Assumption 5.

To prove the bound in (3.36), we substitute (3.39) in (3.33) to obtain

Uref = CTg - CH;II (Hyume ((b - bm) (Crg + CH;@I‘/—-?m) + 19ref) - ngn) )
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which using the bound in (3.43), results in

[tretl| 2o < MICll2y (179l 2o + ||CH;11||£1(||Hyume||£1 (A2([Cllellrgll .

+ICH,, Flle,1Finllco) + Loor + Blpr)) + Hf||£1||ﬂm||zoo> :
Taking into account the definition of p,, in (3.9), we conclude that
”urefHEoo S Pur

which completes the proof. O

3.3.2 Transient and Steady—State Performance

We will now proceed with the derivation of the performance bounds. Towards this end, let
#(t) = 2(t) — x(t) and 5(t) = 6(t) — o(t). Then, the error dynamics between (3.27) and (3.2)
are given by

(3.45)

Notice that due to initialization of the output predictor, we have 3(0) = 0.

Next, consider the state transformation
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It follows from (3.45) and the definition of A(¢) in (3.16) that

(3.46)

where £, (t) is the first element of £(¢) and & (0) = 0. The next lemma derives the bound on

the output prediction error.

Lemma 6. Consider the system in (3.1) and the £; adaptive controller in (3.27), (3.28),

and (3.29) subject to the £;—norm condition in (3.4). If we choose T to ensure

’Yiz(Ts> <%0, (347)

where 7, is an arbitrary positive constant introduced in (3.13), and if for an arbitrary 7 > 0
the following bounds hold:

HxTHLoc <p, “u‘r”ﬁoo < Pu

then

19120 <o (3.48)

Proof :
We prove the bound in (3.48) by a contradiction argument. Since §(0) = 0 and g(t) is
continuous, then assuming that (3.48) does not hold, implies that there exists ¢ € (0, 7]

such that

9] <30, Vtel[0,t), (3.49)

9] = o, (3.50)
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which leads to

19 |20 =0 (3.51)

The following bound can be produced from (3.3) using Assumptions 3, 4 and definition (3.12):

lovllcoe < Aip+ Dopy + Lo(p)p + B(p)

(3.52)
= L,p+ DNop,+ B(p) =A.
It follows from (3.46) that
- By T+t
E(iTs + 1) = Qe(iT + t,4T6)E(iTs) + / (i1 + t, 7)A(7)o (iTs)dr
iTo+t o (3.53)
- / O(iTs +t, 7)A(T)o(T)dT .
iT,
Since
- g(iTs +t) 0
(T, +1) = + , (3.54)
0 2T, + 1)
where 2(t) £ [&(t), &(t), ..., &.(t)]T, it follows from (3.53) that £(iT% +t) can be decom-
posed as
EGT, +t) = x(iTy + ) + C(iT, + 1), (3.55)
where
A y(iTy) et
X(iTs + 1) = ©g(iTs + t,47T5) + / e (iTs +t, 7)A(7)o (iTs)dT
0 i,
0 T+t
CUT, +1) 2 @(iT, +1,iT.) - / De(iT, + t,1)A(P)o(r)dr . (3.50)
Z(iTy) iTs
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Next we prove by induction that for all ¢ such that i7T, < ¢’ one has

9(iTs)| < <(i, Ty) (3.57)

F(IT,) Py(iT) 2(iTy) < a, (3.58)

where <(i,7s) and « were defined in (3.20)—(3.21).
We start by noting that, since g(0) = 0, we have |g(0)| < ¢(0,7). We can also show the

following, given the definition of « in (3.21) we have

2T (0)P2(0)2(0) < Aunax(P2(0))1Z(0) 1 = Aumax (P2 (0)) 1€ (0) 1
< Amax(P2(0) [A(0)Zo|* < 4nAmax (P2(0) [A(0) 5005 < .

Next, we prove that if (3.57)—(3.58) hold for arbitrary i such that (i + 1)Ty < ¢/, then

[9((+ DT <<(i+ LT, (3.59)

G+ DT Po((i 4+ )T+ 1)Ty) < a, (3.60)

hold as well. To this end, assume that (3.57)—(3.58) hold for i, and in addition, that (i +
1)Ts < t'. Then, it follows from (3.55) that

E((i+DT,) = x((i + DT,) +¢((i + DTL) (3.61)
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where

5(iT, (i4+1)Ts
(i + 1)T3) = Be((i + 1)1, i) JeTs) +/ e((i + 1)Ts, T)A(T)6 (iTL)dr

0 T,
(3.62)
0 (i+1)T,
C((+1)Ty) = (i + )T, 4T5) — / s((i + 1)Ts, 7)A(7)o(7)dT . (3.63)
2(iTy) i,
Substituting the adaptive law from (3.28) in (3.62), we have
x((1+1)T5) =0. (3.64)

On the other hand, it follows from (3.56) that ((¢) is the solution to the following dynamics:

0 = (MO0 = FAO) A7 (060 - Ao,
0 (3.65)
C(iTy) = , te [Ty, (14 1)T.
5T,)
Consider now the following function
V(¢(1) = ¢ AT () POAT()C(), (3.66)

over t € [iTy, (i + 1)T,]. Lemma 3 implies that A=T(¢)P(t)A~1(¢) is positive definite and,
hence, V(¢) is a positive definite function. Further, it follows from (3.56), Lemma 3 and the
fact (3.64) that

V(C(T.)) = 27 (iT) Po(iT) 3T
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which, along with the upper bound in (3.58), leads to
V(C(iTy)) < a. (3.67)

Next we perform a reverse state transformation for the system in (3.65) with the state

transition matrix ((t) £ A71(#)((t) to obtain the following system

C(t) = Am(t)C(8) — o(t) . (3.68)

V() = ¢ (OP)C(1). (3.69)

Taking the time derivative of (3.69) along the trajectories (3.68) over t € [iTs, (i + 1)T}],

and using Assumption 8, we obtain

which, using the the facts that ||o(t)|le < llovllce, || - [l1 < V7 - |2, the definition (3.22),
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and the bound in (3.52), can be bounded as follows

V() < =CT0) (1= P(1) <L) + 2T () P (1)
< =C"(1) (1= P®) <) + 2O L IPEOlcllo @)
=T (1= PW) ) + 2vmlC0) l1pA

IA

Assumption 8 along with the fact that [T (£)P(t)C(t)| < ICEPp(P () < ICEIPIP )| 0o

implies
1-— €Ep

T (1-P) <0 = LT OPOD >

Pmax max

YN [46] e

This results in

. 1—€p
‘/ < —
() < A

A ICON* + 2v/nlIC () lnpA . (3.70)

max

Notice that for any t € [iTs, (i + 1)T], if
V(t) > «a,

we have
[0 S 2)\pmaxA,up\/ﬁ
)\Pmax N AIjmin(]' - EP) 7

IS >

and the upper bound in (3.70) yields

V(t) <0. (3.71)

Thust, it follows from (3.67) that

V) <o, YteliT, (i+1)T.
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Taking into account the relationship (3.61) along with (3.64), we can rewrite (3.66) as
V(i+1DT) = (G4 DT)A (G + DT)P((i + DTHA (@ + DT)E((i + DT < a.
Using the result of Lemma 3, one can derive

i+ DT P00+ 1)T) <

EN((i+ DT (AT ((i + V)T P((i + DT)AT (i + DT))E(( + DT) < a,

which implies that the upper bound in (3.60) holds. Next, it follows from (3.61), (3.64),
and (3.54) that

g((i + DT =1, ¢((1 + 1)Ty)

and (3.63) leads to the following expression:

0
J((i+1)T;) = 1] Dz((i 4+ 1)Ts, iT,)
z(iT5)

a7 / o (i + 1)Ty, 7)A ()0 (7)dr

iTs

The upper bounds in (3.60) and (3.52) yield the following upper bound:

(i+1)Ts
9((0 + DT)| < (1028, Ts, T NNZET)|] +/ 11 @:((i + DT, 7)A(T) 1|0 (7)]| T

«

Ap

2 max

< ||772(i7 T57 TS)H

+ k(i, TH))A =<(i+ 1,Ty),

where 79(,7s) and x(i,T;) were defined in (3.18) and (3.19), while <(i,7;) was defined
in (3.20). This confirms the upper bound in (3.59). Hence, (3.57)-(3.58) hold for all ¢ such

that T, <t'.
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For all Ty +t < ', where 0 < ¢t < Ty, using the expression from (3.53), we can write that

~ T+t
T, + ) = 1 DT, + t,iT)E(T,) + 1] / Be(iT, + t, 7)A(r)5(iT,)dr

T+t
— 11T/ e(iTs +t,7)A(T)o(7)dT .

The upper bound in (3.52) and the definitions of 1 (), m2(t), n3(t) and n4(t) lead to the

following upper bound:
90T + O] < [mu (@, T, ONGET)] + 2@, T, ONNZCT) |+ m3 (@, T, )G ET) |+ mali, T, A

Taking into consideration (3.57)—(3.58), and recalling the definitions of (,(i,T%), fa(i, Ts),
Bs(i,Ts), Ba(i, Ts) in (3.23)—(3.24), for all 0 < ¢t < T and for arbitrary non—negative integer i

subject to iTy +t < t/, we have

(67

|g(ZTs + t)| < 51 <Z7 Ts)g(i> Ts) + 62(2.’ Ts) + ﬁ3(i, Ts)§<i7 Ts) + 54(2.’ TS)A .

>\P2 max

Since the right hand side coincides with the definition of (i, 7s) in (3.25), for all t € [0, ¢/

we have the following bound

()] < (i, Ts), Vie NU{0},

which along with (3.47) yields

11| 20 < 72(T5) <70

This clearly contradicts the statement in (3.50). Therefore (3.48) holds and the proof is

completed. O]
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The next theorem states the main result of the extension presented in this chapter.

Theorem 2. Given the closed-loop system with the £; adaptive controller defined via (3.1),
(3.27), (3.28), (3.29), subject to the £;—norm condition in (3.4), and the closed-loop reference

system in (3.31)—(3.33), if we choose Ty to ensure

Wi(Ts> < Yo,

where 7 is an arbitrary positive constant introduced in (3.13), we have

2]l o < ) (3.72)
lullze < pu,s (3.73)
[@ret — @[ 2o <715 (3.74)
[Yret = Yll£oe < M1 s (3.75)
et — ull e <2 (3.76)

where 7, and v, are defined in (3.13) and (3.14) respectively.

Proof :
To accomplish the proof, we use contradictory argument. Assume that the bounds in (3.74)

and (3.76) do not hold (either one of them or both simultaneously). Then, since

[rer (0) = 2(0)loo = 0 <71, [ltrer (0) = u(0) ][ = 0 <72,

and (1), xer(t), u(t), and ugf(t) are continuous, there exists time 7 € Rt such that

[2rer(7) = 2(T)lloo = 1, O Jltrer (T) = w(7)[loc = 72, (3.77)

o7



while

[rer(t) = () ]loo <715 and et (t) = u(t)lloo <72,

for all ¢ € [0, 7). This implies that that the following equalities hold

[(@ret = )7 llcee <71y (tret — )7l 2o < 72 (3.78)

From Lemma 5 we obtain

||5L‘ref||£Oo S Pr ||uref||£oo S Pur (379)

which along with the definitions of p and p,, in (3.8) and (3.11) allows us to derive from (3.78)
that

HwT“[:oo S Pr + <P, and HUTH‘COO S Pur + Y2 < Py - (380)

Let

O(t) = (A(t) — An(t) 2(t) + f(t, 2(t))
Vet (1) = (A) — An(t)) Tres(t) + f(E, Trer(t))

then using Assumptions 3, 4 and the bounds (3.78)—(3.80) we obtain

[(res = D)zl < Aall(@rer = @)zl 2o + Lo(0)[(Zres = )l 2o = Loll(rer — 2)rll e s (3:81)

o7l < A1p+ Dopy + L(p)p+ B(p) = Lyp + Dopy + Bp) = A, (3.82)

where L, was defined in (3.7). Notice that from (3.3) and (3.34) it follows that

Oret(t) = 0(t) = Vret (t) = O(1) + (b(t) = b (1)) (ures (1) — u(2)) - (3.83)
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Adding and subtracting CH,,' FHyumo and CH, ' Hyymo from (3.29) results in

u=Cry— CH, ' FHyum& + CH (1 — F)Hyumo — CHy Hypumo -

Next, subtracting this result from (3.33) yields

Upef — U = —C’H;f?—lyum(aref —0)+ CH;l]:ﬂin + C”H;zl}"’;'-lyum5 — C’H;l(l — F)Hyumo -

Further we rewrite (3.45) as § = Hyum + ¥, which leads to

Uret — U = —CH Hyum (0t — ) + CHLIFG — CHLH 1 — F) Hyumo - (3.84)

Substituting this in (3.83) and using the definition (3.10) we obtain

Oref — 0 = ﬁref - + (b - bm)(_CHalHyum(Uref - 0->
+ CHFG — CHH 1L — F)Hyumo)
(3.85)
= Ho(Oret — ) + Ho (b — b,y)CH, !

(Fy— (1= F)Hyumo) .

The systems in (3.2) and (3.31) can be written as

xr = meu + Hﬂcumo_ + Tin ,

Tref = Hzmuref + %xumo_ref + Tin ,

which leads to

Lref — T = Hmm(uref - U) + kum(aref - U) .
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Substituting (3.84) yields

Lpref — T = H$m(_CH;q,1Hyum(o-ref - U) + CH;zl"T_.g - CH;LI(]- - f>Hyum0-) + kum<0-ref - U)

= (Houwn — HemCH, Hoyum) (0ret — 0) + HamCH Fi — HamCH,, (1 — F)Hyumo
which after substituting (3.85) and using the definition (3.6) takes the following form

Lref — T = gum(/l?ref - 19) + gum(b - bm)CH;ql (fg - (1 - 'F)%yuma)

+ HomCH Fij — HomCH, (1 — F)Hyumo -

Notice that due to (3.80), the assumptions of Lemma 6 are satisfyed. Therefore, taking into

account (3.81) and (3.82), we obtain the following bound

[(@et = @)l 2o < NGumllzy | (Oret = )rll 2w + [Gum (b = b )CHL 23 (IF Ly 1971 -
11 = F)Hyumllzulorll o) + 1 HemCHe Flle, 13-l 2.
+ [ HamCHy (1= F)Hyumll . ozl
<N Gumlley Loll(@ret = @)r | 2oc + 1Gum (b = b )CH 1 (1 F | 2470
+ 11 = F)Hyumlle, A) + [ HamCHey Fller%o

+ HH:cmCHr_nl(l - ‘F)HWMHQA
1
<
I ngmHC1Lp

11 = F)Hyumll 2, A) + | HemCH,y Fll, 5o

(ngum(b ) CH s (1 F s

o CHL (1 f)HyumuclA) <.

This contradicts to the first equality in (3.77). It remains to show that the second equality

also is no true. Towards this end we substitute (3.85) into (3.84), and taking into account
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the bounds in (3.81), (3.82), and Lemma 6, we obtain

(user = wrllzo < NCH HyumHolle, (Lo + (b = bin)CH e,
(IF e + 1L = F)Hyumll 2, D))

HICH, Flle, Ao + ICH (1 = F)Hyum 2, A < 72,

which contradicts to the second equation in (3.77). Thus the bounds in (3.74), (3.76) hold.
The bound in (3.75) follows from the fact that y.f(t) — y(t) = ¢} (t) (2r(t) — x(t)). The
results (3.72) and (3.73) follow directly from the bounds in (3.80). O

Notice that from the definitions of v, and -, are defined in (3.13) and (3.14) and Lemmas 4
and 6, it follows that by reducing the sampling time 7, and the bandwidth of the lowpass

filter F'(s) one can achieve arbitrarily small performance bounds (3.74)—(3.76).

3.4  Simulations

To verify numerically the results proven, we consider the system in (3.1) with the following

values
Alt) - sin(t) 1 = 1 |
i —w2 (t) —4 w2 (t)
em(t) = we(t) 7
0

where w,,(t) = 1 + 0.4sin((7/40)t) and w.(t) = 3 — 1.5cos((7/30)t). Let the desired state

matrix be



with ¢ = 0.7, such that (A(t) — A,.(t)) is as follows

0 —4+ 2Cwm(t)

which results in unmatched uncertainties and a bound A; = 3.16. For the simulation, we

assume b(t) = b,,(t) and consider the following nonlinear disturbances:

sin (0.3t) cos (0.5¢t)
filt,x(t)) =2z(t) + 2 + , fa(t,x(t)) = 0.52(t) + ,
sin (0.3t) cos (0.5t)
so that Assumption 3 holds with Ly = 2 and B = 3 for all values of 4.

We implement the £; adaptive controller according to (3.27), (3.28), and (3.29). In the
implementation of the control law we use the filter C(s) = 100/(s+100), F(s) = 1000s/(s+
1000), and sample rate T's = 0.001s.

One can easily see that Assumptions 5 and 7 are satisfied for the class of uncertainties
and disturbances introduced above. Also, Assumption 8 is verified as shown in Section 5.1.4
of [9] with ep = .55 < 1. To better show the the disturbance rejection and scaling properties
of the £, adaptive controller, we first consider the initial conditions: zy = ¢ = [0,0]".

Figures 3.1 and 3.2 show the simulation results for both f;(¢,z(t)) and fo(t, x(t)) respec-
tively. From these results one can see that the fast adaptation ability of the £, adaptive
controller ensures uniform transient performance for different uncertainties and disturbances.
We notice that while the system’s output remains close to the desired reference signal in the
presence of different uncertainties and disturbances, the control signal changes significantly
to ensure adequate compensation for the uncertainties and the disturbances.

Figure 3.3 shows the simulation results for step reference signals of different amplitudes.

We observe that the system response is close to scaled response, similar to linear systems.
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(a) r(t), y(t), and yia(?) (b) Time-history of u(t)

Figure 3.1: Performance of the £, adaptive controller for fi(t,z(t))

““““ sssmimd 7 (t)
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Yid (¢
0% 5 10 15 20 K 5 10 15 20
time [s] time [s]
(a) r(t), y(t), and yia(t) (b) Time-history of u(t)

Figure 3.2: Performance of the £, adaptive controller for fo(t, z(t))

Next, we test the tracking performance of the closed—loop adaptive system. We set the
reference signal to r(t) = sin (£t) and use the disturbance f;(t, z(t)). We now consider ini-
tialization error such that zo = [1,1]" while we set the state predictor to 2o = [1,0]". Notice
that y(0) = ¢(0)xg = ¢(0)Zy. The simulation results are shown in Figure 3.4. One can see
that the closed—loop adaptive system has satisfactory tracking performance. It compensates
for the uncertainties in the system and rejects the disturbance within the bandwidth of the
control channel specified via C(s).

It is important to emphasize that in the simulations above there is no retuning of the

L1 adaptive controller from one scenario to another, and the same constant control parame-
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Figure 3.3: Performance of the £, adaptive controller for step reference signals
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(a) r(t), y(¢) (b) Time-history of u(t)

Figure 3.4: Performance of the £, adaptive controller for r(t) = sin(%t)

ters are used for every simulation. The time—varying nature of the desired reference system

is reflected in the state—predictor, which uses A,,(t), b,,(t), and ¢, (¢).

64



CHAPTER 4

CONCLUSIONS

Two new extensions to £; adaptive control theory have presented. The first being an
L, adaptive feedback control architecture using a generalized proportional adaptation law
which leads to uniform performance bounds for the system’s output and control signal both
in transient and steady—state in the presence of fast adaptation, while reducing the compu-
tational requirement needed to achieve similar bounds as compared to the projection based
adaptation methods. The addition of phase margin in the estimation loop allows for model-
ing of known first order sensor dynamics at the output of the state predictor. The linearity
of the proposed L, adaptive architecture helped to compute the performance and stability
margins of the closed—loop adaptive system. Three particular cases of the generalized law
were presented: an adaptive switching law, an £; adaptive funnel-control, and a variable
dependent adaptation law. Finally, the variable dependent law was suggested as a method to
help reduce peaking or to improve performance by adjusting the adaptive gain the according
to CPU demand.

Also presented was an extension of the £, adaptive control architecture for the class of
systems with time-varying reference systems in the presence of unmatched nonlinear distur-
bances with unknown input matrix using output feedback. This extension inherits and inte-
grates the performance and robustness properties from the architectures derived in [20-22].

Both extensions follow the standard £; adaptive control theory: separation of robustness
and adaptation through the use of a low pass filter. In both cases, the bound between the

actual system and reference system can be arbitrarily reduced by increasing the adaptation
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rate, while the bound between the reference system and ideal system depends on the choice

of a low pass filter, subject to an £; norm condition, with robustness as a trade off.
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