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Abstract-A simple method is developed which allows the calculation of the minimum energy 
of direct initiation of unconfined detonations with cylindrical and spherical symmetry. The method 
uses the detonability limit data for planar detonations, and the data on reaction zone length 
for computation of the critical energy of initiation. The results are verified by comparison with 
available experimental data and by numerical simulation of the full governing equations. 

1 INTRODUCTION 

The lack of well-founded closed theory led to experimental studies for the wide range 
of the initiation conditions (Matsui and Lee, 1979; Lee and Matsui, 1977) and to 
full-scale experiments, to study the threshold for the direct spherical (Bull rt a/., 1976, 
1978; Atkinson er nl., 1980) and planar (Benedick, 1979) detonations in gaseous 
mixtures. 

First research to define the limits of detonation phenomena was conducted using 
shock tube technique. In this case the initiating shock and the detonation wave had 
the planar symmetry (Schelkin and Troshin, 1964). The shock tube technique is a 
well-established experimental technique, where the initial condition of the mixture, 
the initiating energy and the detonation wave parameters could be measured with high 
accuracy relatively easily. But the initiation limits obtained in shock tubes are not 
applicable to the more interesting cases of unconfined spherical and cylindrical 
detonations. 

The present work, on the basis of the developed model of direct initiation of 
unconfined detonations, explores the method of calculation of the critical energy of 
direct initiation. The developed method allows the calculation of the critical energy 
of direct initiation of unconfined spherical detonation in combustible mixture using 
the shock tube data of the detonability limits for the same mixture. 

I I  T H E  MATHEMATICAL MODEL 

The direct initiation of an unconfined, self-sustained detonation wave can occur 
under certain specific conditions. One of the main conditions is the generation of a 
supersonic compression front of sufficient strength to initiate fast exothermal reactions 
in the medium. The energy released in these exothermal reactions must be sufficient 
to compensate for the energy density lost through hydrodynamic expansion and for 
the work done on the surrounding medium. 

Let us assume that both these conditions have been met at a great distance from the 
initiation region and that the self-sustained detonation wave is propagating with a 
constant velocity through the combustible medium. I t  is obvious that if the detonation 
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wave is distant enough from the initiation region, its parameters are not dependent on 
the symmetry of the wave or on the reaction zone length.. Moreover, its parameters 
could be found with very good accuracy using Chapman-Jouguet's theory, which 
does not consider any one of these factors. On the other hand, if the initiation source 
produces in its vicinity a supersonic compression front of sufficient strength to 
initiate fast exothermal reactions, this is not a sufficient condition for direct initiation 
of the self-sustained detonation wave. The experimentally determined, minimum 
critical energy needed for direct initiation varies by three o r  more orders of magnitude 
for different fuels and for initiation sources of different geometry. The initiation 
energy is larger than that tequired to produce the supersonic compression front 
necessary fob initiation of fast chemical reactions in the medium. 

Why, in most cases, is the achievement of the necessary conditions for initiation not 
sufficient for the formation of the self-sustained detonation wave? This question leads 
to the concept that in most cases the energy of combustion required for self-sustained 
detonation waves is a function of the distance from the initiation source. 

Figure I shows the pressure distribution behind the front of a typical detonation 
wave. The region behind the wave front is divided into two zones. Zone I lies from 
the radius r=O up to the Chapman-Jouguet point. Zone 11 is beteeen the Chapman- 
Jouguet point and the front of the detonation wave. Let us estimate the energy which 

~ ~ 

is contained in each of these zones. 

DISTANCE 

FIGURE 1 
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We now consider the self-sustained detonation wave. Its parameters and the struc- 
ture of the wave shown in Figure I do  not change over time. If the kinetic energy of 
Zone I is neglected (because the mass velocity of the gas is very low in this region) and 
the average pressure is taken equal to 1 .25xP (see Figure I), then the energy of 
Zone I : 

where v =  1, 2, 3 for planar, cylindrical and spherical symmetries. 

0, = 2 (v- 1)a +(v-2) (v-3) 

S = l [m(3-"']-dimensional coefficient 

The kinetic energy o fzone  11 should be considered. Let us assume it to  be the average 
between the kinetic energy a t  the shock front and the kinetic energy a t  the Chapman- 
Jouguet plane. Let us also assume that the pressure in Zone 11 is equal to  the average 
of the pressure immediately behind the shock front and a t  the Chapman-Jouguet 
plane. These assumptions yield an approximate value of 2 .5xP .  Zone I1 energy 
then will be: 

w h e r e p c ~ ,  VCJ-density and the mass velocity ofthegas at the Chapman-Jouguet point. 
psh, Vsh-density and the mass velocity of the gas immediately behind the 

shock front. 

The accurate calculation of the energy of Zones I and I1 using the numerical code 
simulating the full governing equation (Eidelman and Rurcat, l981), shows that 
Eqs. (I) and (2) approximate these values with 10-15 percent accuracy. 

Let us now calculate the energy increment of Zone I,  when the wave radius increases 
by Ar: 

1.25 P 
AEI = 2 S  - Ar, for v = l 

(Y-1) 
1.25 P 

AEI = aS- (2Arrl+Arz), for v = 2 
(Y-1) 

4 1.25 P 
BE1 = -a- (3rl ZAr+3rlAr2+Ar3), for v = 3 

3 (v-l) 
( 3 4  

The energy increment of Zone I I  when the detonation wave radius increases by Ar 
will be: 

AEII = aSA(2Arrz-2Arrl), for v = 2 (4b) 
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where 

At the large distance from the initiation source the reaction zone length is negligible 
comparative to  the detonation wave radius. This means that the energy of Zone IT is 
negligible compared to  the energy of Zone I, which leads to the conclusion that if the 
detonation wave is distant enough from the initiation region, its parameters are not 
dependent on the symmetry of the wave or on the reaction zone length, and its par- 
ameters could be found with very good accuracy using the Chapman-Jouguet theory. 

On the other hand, in the vicinity of the initiating source, the energy of Zone 11 and 
Zone I is of the same order of magnitude. This means that the energy of Zone I1 and 
the peculiarities of the flow in Zone :I[ should affect the evolution of the detonation 
wave in the vicinity of the initiating source. 

T o  be able to compare the energy required for a self-sustained detonation wave at 
the large and small distances from the initiation source, let us now calculate the limit 
of the ratio between the total energy behind the detonation wave and the energy of the 
Zone I, when Ari.0: 

Fl(r1, L) = lim 
AEr + AErr 

= I ,  f o r v = I  
0 AEI 

where L=rz-rl ,  the reaction zone length. 
We conclude from Eqs. (54,  (5b) and (5c) that a t  the large distance from the 

initiating source ( r l e w ) ,  the energy requirement for self-sustained detonation wave 
is not dependent on the symmetry of the flow nor on the peculiarities of the flow in 
Zone 11. 

On the other hand, in the vicinity of the initiation source or during the initiation 
process, the energy and the peculiarities of the flow in Zone I1 are very important. 
Equations (5a), (5b) and (5c) show that in the vicinity of the initiation source the 
energy requirements for the self-sustained detonation wave vary according to  the 
symmetry of initiation. 

In the case of planar symmetry, the energy requirement is not dependent on the 
distance from the initiating source and the length of the reaction zone. For  this 
reason the direct initiation of the planar detonation must be the easiest to attain. 
We will use this peculiarity of the planar detonation in calculation of the critical 
energy of initiation for spherical case. 

In  the cases of cylindrical and spherical symmetry, as Eqs. (5b) and (5c) show, the 
energy required for self-sustained detonation is a function of the radius rl  and the 
reaction zone length L. In these cases, according to Eqs. (5b) and (Sc), in the region 
close to the initiation source the values of FZ and Fa can be considerably larger than 1. 
For example, if L= 1 cm, r l=  10 cm and [A(y+ I)/P 1.25]=2 (which is a minimum 
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estimate not taking into account the kinetic energy of the gas), then F3= I .42. This 
means that to support the self-sustained detonation wave a t  the constant level; the 
energy released from the medium a t  the radius 10 cm must be 42 per cent larger than 
what is required a t  a very large distance from the source. If the density of the chemical 
energy, which can be released in the detonation process, is constant, the propagating 
detonation wave will have an energetic deficit which decreases when the radius of the 
wave increases. For this reason, when the detonation wave ishitiated by a spherical 
or cylindrical source with the energy close to critical, it has a region of decay. If this 
decay does not bring to an end rapid combustion in the reaction zone, the detonation 
wave, after reaching its minimum value, is gradually accelerated towards the Chapman- 
Jouguet detonation velocity of the mixture. This behavior of the detonation wave 
was observed experimentally by Bar-Or et al. (1980) for cylindrical symmetry and by 
Bull et al. (1978) for spherical symmetry. 

Mitrofanovet al. (1979), Eidelmanand Burcat (l980), and Eidelmanand Sichel(198l) 
all have simulated detonation wave decay and acceleration in two-phase medium. 
In these works (Eidelman and Burcat, 1980; Eidelman and Sichel, 1981) the value of 
the detonation wave parameters of the minimum point were found to be inversely 
dependent on the reaction zone length, which is in qualitative agreement with Eq. ( k ) ,  
where increase of the reaction zone length leads to increase of the energetic deficit; in 
other words decrease of the detonation wave. 

111 TEST O F  THE MODEL O F  ENERGETIC DEFICIT 

When a detonation wave is initiated in a two-phase medium the energetic deficit 
should be greater than that of the gaseous phase detonation, because the reaction zone 
length is usually larger in the former than in the latter. Numerical modeling of spheri- 
cal two-phase detonation, initiation, and propagation shows decay of the detonation 
wave to the minimum value point. In some cases the pressure immediately behind the 
shock front during the initiation period is half that of the Chapman-Jouguet deton- 
ation wave (Eidelman and Burcat, 1980; Eidelman and Sichel, 1981). 

A series of numerical simulations were carried out to test qualitatively and quanti- 
tatively the model of energetic deficit. The detailed exposition of the direct initiation 
problem including the basic assumptions and the mathematical model has been 
presented previously (Eidelman and Burcat, 1980). The details of the numerical 
solution and the algorithm for the calculations are also published (Eidelman and 
Burcat, 1981). The mathematical model and method of numerical solution, therefore, 
are only described briefly below. The conservation equations governing the flow are 
written separately in Eulerian form for the solid o r  liquid fuel and the gaseous oxidizer. 
In this study the equations for the one-dimensional case with spherical symmetry 
were used. The conservation equations of the gaseous and condensed phases are inter- 
connected through source terms on the right-hand side of the equations, which 
describe the mass, momentum, and energy exchange between phases. The fuel 
particles or droplets are considered to behave as a continuous medium composed of 
noninteracting spheres whose size is equal to the average size of the particles or 
droplets in the cloud. I t  is assumed that chemical reactions occur only in the gas phase, 
and that the burning rate of the condensed phase fuel is determined by the rate of 
evaporation. A combined evaporation and shattering model was used to reproduce 
the reaction zone lengths observed in experiments. The initial distribution of gas 
dynamic parameters behind the shock wave was calculated using the similar 
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solution for the deposition of a finite amount of explosive energy as described pre- 
viously (Burcat et a/., 1978). This "starting solution" introduces the initiating charge 
into the model. 

The Flux Corrected Transport (FCT) method was used for numerical solution of the 
problem (Eidelman and Burcat, 1981). This method is particularly well suited to 
problcms with complex shock waves since the numerical diffusion generated by this 
method is the lowcst among presently known algorithms. 

The general error of the code was determined by applying it to the model problem 
of the propagation of a blast wave from a strong point explosion without counter- 
pressure. Comparing the numerical to the exact analytical solution it was found that 
the phase error was less than 2 percent and the amplitude error was less than 3 percent. 

For the numerical simulation two kinds of combustible media were chosen: 
a) Stoichiometric mixture of oxygen and decane droplets with diameter 120 p. 
b) Stoichiometric mixture of oxygen and decane droplets with diameter 300 p.  
The reaction zone length for these mixtures differs by approximately one order of 

magnitude during the initiation process. This difference allows us to  evaluate the 
influence of this parameter on the model of energetic deficit. 

For each of these mixtures, three kinds of the numerical simulations were performed: 

I) Initiation and propagation of a planar detonation wave. 
I I) Initiation and propagation of a spherical detonation wave. 
Ill) Initiation and propagation of a spherical detonation wave with compensation 
for energetic deficit. 

In this case the energy released behind the shock front was assumed to follow 
Eq. (5c). That means that compensation for the energetic deficit in the initiation 
region was done by artificially increasing the thermal effect of the chemical reaction 
per unit mass of fuel according to  Eq. (5.2). 

Thc rcsults of these simulations are presented in Figure 2, which plots detonation 
wave velocity versus shock radius. In cases of spherical symmetry the energy of the 
igniting explosion was equal to 156,000 J, while in cases of planar symmetry the 
corresponding value was 3 x 106 J/m2. The velocity of the Chapman-Jouguet deton- 
ation was calculated for a stoichiometric gaseous mixture of decane and oxygen using 
thc Gordon and McBride (1971) program. The calculated Chapman-Jouguet value 
is notcd on the velocity scale of Figure 2. 

Figure 2 reveals quite clearly that, in cases of planar detonation, the initiation 
process proceeds without a significant region of decay. Beyond 0.6 m graphs I and 2 
coincide. regardless of differences in the reaction zone length (2 cm for Case I and 
6 cm for Case 2). The velocity of the detonation wave for Case I is equal to the 
Chapman-Jouguet detonation velocity of the mixture at a distance of 0.2 m from the 
initiating source. In Case 2 the C-J velocity is reached at a distance of 0.6 m. After 
initiation the wave decay is up to 5 percent below the C-J velocity value. This can be 
explained by the energetic deficit causedby changes in the detonation wave structure, 
which are not considered in Eqs. (5a), (5b) and (5c) and which are larger in Case 2 
because of the greater reaction zone length. 

In Cases 5 and 6 spherical detonation was initiated in mixtures "a" and "b". In 
accordance with the significant energetic deficit predicted by Eq. (5c), the detonation 
wave decayed far below the C-J velocity. After reaching its minimum value the 
detonation wave accelerated slowly. 
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FIGURE 2

The decay is much greater inCase 6, because the reaction zone length is larger. This
is in accordance with Eq. (5c), which holds that reaction zone length and energetic
deficit are directly proportional to one another.
In Cases 3 and 4 the energetic deficit of the spherical detonation initiation process

was compensated for in accordance with Eq. (5c). Figure 2 reveals that the energy
released in accordance to Eq. (5c) completely compensated for the energetic deficit
of the initiation process. The detonation wave in these cases does not decay below
5 percent of the C-J velocity and steady-state detonation with the velocities close to
the C-J velocity value are achieved at a distance of 0.3-0.4 m from the initiation source.
In the process of testing the energetic deficit model, the energy of Zones I and I[ was

calculated, In the case of planar detonation, the energy of Zone I [ is constant beyond
radius 0,25 m for Case I, and 0.5 m for Case 2, which is consistent with Eq. (5a).
In Cases 3 and 4, when the energetic deficit was artificially compensated for, the

actual ratio of the energies of Zone II and I differed by only 5-/3 percent from those
predicted by Eq. (5c).
Thus, Eq. (5c) gives a very good approximation of the energetic deficit of the

initiation process in cases of spherical detonation.
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IV CALCULATION O F  T H E  ENERGY FOR DIRECT INITIATtON, 
USlNG T H E  ENERGETIC DEFICIT MODEL 

For direct initiation of the self-sustained detonation wave, the energetic deficit of the 
initiation process of spherical and cylindrical detonations is usually compensated for 
by increasing the igniting source energy. The increase in the energy released by the 
igniting source, increases the radius of the region of the overdriven detonation wave. 
This permits initiation of a self-sustained detonation wave beyond the radius where 
the energetic deficit given by Eqs. (5b) and (5c) is small and does not result in the 
complete decay of the detonation wave. 

The determination of the threshold for the direct initiation of the self-sustained 
detonation is of significant applied interest. Equations (5a), (5b) and (5c) allow the 
calculation of the critical energy for direct initiation of the spherical and cylindrical 
detonations if the detonation thresholds for planar case are known. As we noted 
bcfore, Eqs. (54 ,  (5b) and (5c) show that the planar detonation is easiest to obtain, 
bccause in planar case the propagating detonation wave does not have the energetic 
deficit in the region of the initiation source. For this reason the case of the planar 
detonation could serve as a reference for cylindrical and spherical detonations. 

In order to calculate the minimum initiation energy using the energetic deficit 
model one needs to define how much energy should be released by the source of the 
initiation to compensate for the energetic deficit. Therefore, a new concept-Minimum 
Conipensalion Energy-should be introduced. Here we will define this concept in 
order to present an unambiguous method of calculation of the minimum energy for 
direct initiation of the unconfined spherical o r  cylindrical detonations. 

Minimum compensation energy is the minimum additional energy needed to be 
released in the process of direct initiation of spherical or cylindrical detonations in 
order to compensate for the energetic deficit up to the level of the planar detonation 
wave a t  the detonation limits. This energy extends the radius of the overdriven 
detonation to the point where the energetic deficit given by Eqs. (5b) and 5c) will be a t  
least equal to the deficit of the energy a t  the lean detonability limit, determined 
experimentally by the shock tube technique, comparing with the stoichiometric 
concentration for the same combustible mixture. In this instance the energetic deficit 
in the cases of cylindrical or spherical detonations will not lead to the complete decay 
of the detonation wave. The detonation wave after reaching its minimum in the 
vicinity of the initiation source will reinforce itself up to the steady-state detonation. 

The minimum compensation energy can be calculated using Eqs. (5a), (5b) and (5c). 
For cylindrical symmetry it is given by: 

& = Zn ( ;F2(n,  L) 
lo 

For spherical symmetry it will be: 
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where Ecz, Eta-minimum compensation energy for cylindrical and spherical symmetry 
respectively; 

ro -initiating source radius; 
rc -minimum compensation radius; 

Q -heat release per unit volume for the stoichiometric mixture. 

It is assumed that the detonation wave parameters do  not change during the 
initiation process the minimum compensation energy can be simply calculated: 

The minimum energy of the direct initiation can be determined from: 

where i = 2, 3 for cylindrical and spherical symmetry respectively; 
Eo - energy release behind the radius ro. 

The value of ro must be larger than the reaction zone length L. The energy Eo must 
be of sufficient magnitude to generate a supersonic compression front sufficiently strong 
to initiate fast exothermal reactions in the medium. Shock tube data on the initiation 
of the detonation waves obtained by the bursting diaphragm or  other planar initiation 
source could be used to determine this condition. With this information the minimum 
value of Eo in Eq. (8) can be found. 

The value of Ecf can be determined if the minimum compensation radius rc is known. 
According to our definition, the energetic deficit radius rc from the initiation source is 
small and a self-sustained detonation wave can propagate in the mixture beginning 
from the radius rc regardless of the energetic deficit. 

V RESULTS 

In order to calculate the minimum energy of initiation using the method presented 
in this article, one needs to know the detonability limits of the combustible mixture. 
We will use the data obtained recently by Borisov and Loban (1977) for different 
hydrocarbon-air mixtures. 

For example, let us calculate the minimum energy required for direct initiation of 
the spherical detonation wave in a propanelair mixture. T o  calculate the value of 
Ec3 from the Eq. (6b) we should know the minimum compensation radius rc for this 
mixture. According to our definition of the minimum compensation energy, at the 
radius rc the energetic deficit given by Eq. (5c) should be equal to the deficit of the 
energy at the lean detonability limit of propanelair comparing with the stoichiometric 
propanelair mixture. For the propanelair, the lean detonability limit is h=0.64 
(Borisov and Loban, 1977) [where A=(fueltair)/(fuel+air) stoichiometric]. The 
energetic deficit of this mixture, compared with the stoichiometric propane/air 



mixture, will be 1 -h=0.36. Now the rc val;e can be calculated from Eq. (5c): 

[A(y+ 1 ) l P  1.2512.2, if we neglect the kinetic energy of the gas in Zone 11 (see Figure 
I). The reaction zone length of this mixture for the Chapman-Jouguet detonation, 
according to Burcat et a / .  (1971) ignition delay data is L-0.03 m. Then, solving 
Eq. (91, we arrive a t :  

rc = 0.354m. 

If ro=L=O.O3 m, E c ~  can be calculated from Eq. (7b): 

T o  generate a supersonic compression front which will have a velocity of 2000 m/sec 
(maximum velocity of the detonation wave in this mixture is 1815 m/sec; see Borisov 
and Loban, 1977) a t  the distance of ro=0.03 m from the point initiation source one 
will need: 

E,=0.351 x lo3 j 

Now the minimum energy of the initiation can be calculated using the Eq. (8): 

The experimentally found minimum of the initiation energy in the propanelair mixture 
is E,,=0.388 x loe j (Bull r /  a / . ,  1978), which is very close to the calculated value. 

In Table I we presented the values of the minimum energy ofthe initiationcalculated 
for the conditions of spherical and cylindrical detonations using the model of energetic 
deficit along with the data experimentally obtained by Bull et al., 1978. Because of 
the lack of the experimental data required for calculation we were able to calculate the 
minimum energy of the initiation for only four fuellair mixtures. The theoretically 
obtained values of the Emin in spherical cases are very close to  the values determined 
by Bull et a/ .  (1978). Unfortunately, we did not find the experimental data to compare 
with calculated minimum energy of initiation for cylindrical detonations. 

V I  DISCUSSION A N D  CONCLUSIONS 

The model developed here verifies that the process of direct initiation of the deton- 
ation wave differs significantly for planar, spherical, or cylindrical detonations. The 
energy requirements for the self-sustained detonation wave in the planar case does not 
change in the medium surrounding the initiator. In spherical and cylindrical deton- 
ation the energy requirement for the self-sustained detonation wave is a function of the 
distance from the initiator and reaction zone length. 

In this study the mathematical expressions representing the energetic deficit of the 
initiation process were found. By a series of numerical experiments it was shown that 
compensation for the energetic deficit in accordance with the analytically determined 
function resulted in the spherical and planar initiation processes to  evolve similarly. 
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TABLE 1 

Fuel Spherical Cylindrical Experimental values for Reaction 
stoichiometry detonation detonation spherical detonation zone length 

Mixtures A Emin (J)  Emin (J/m) E e x  (J) L ( M )  

Tn this study the method of calculation of the minimum energy of direct initiation 
of detonation wave is presented. This method is based on the model of the energetic 
deficit of the initiation process and allows one to  apply the shock-tube data on the 
detonability limits for calculation of the minimum energy of initiation of the spherical 
and cylindrical detonations. The calculated values of the detonation threshold in 
Table 1 are in good agreement with the experiment. More experimental shock-tube 
data is required for calculation of the detonation threshold for the wider range of the 
combustible mixtures. Shock-tube experiments directed on the evaluation of the 
detonability limits and reaction zone length should be performed in order to improve 
the accuracy of the calculation. 

On the base of the model developed here a qualitative conclusion can be made: 
If, for the planar case in a particular combustible mixture, the detonation cannot be 

obtained, according to the Eqs. (5b) and (5c) in the cases of cylindrical and spherical 
symmetry to initiate the detonation process should be even harder. This fact alone 
leads to a very valuable conclusion for the estimation of the detonation hazard: 
The detonability limits and the critical initiation energy data obtained for the planar case 
could serve as a safe lower limit Jor the cases of cylindrical and spherical detonations. 

The fact that it is much easier to initiate the detonation waves in the case of planar 
symmetry than cylindrical or spherical was noted by a number of experimentalists 
(Benedick, 1979), but lack of systematic theoretical explanation did not allow the 
formulation of a general conclusion about the greater sensitivity to  detonation of the 
cases with planar symmetry. 

In addition it should be noted that for the same reasons, the direct initiation by 
planar source should be easier than by cylindrical or spherical. That means that an 
accidental explosion of the planar source in a combustible medium should be more 
hazardous than the explosion of spherical or cylindrical source. 
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