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Abstract—With the increased use of intelligent Decision 

Support Tools in Air Traffic Management 

(ATM) and inclusion of non-traditional entities, regulators and 

end users need assurance that new technologies such as 

Artificial Intelligence (AI) and Machine Learning (ML) are 

trustworthy and safe. Although there is a wide amount of 

research on the technologies themselves, there seem to be a gap 

between research projects and practical implementation due to 

different regulatory and practical challenges including the 

need for transparency and explainability of solutions. In order 

to help address these challenges, a novel framework to enable 

trust on AI-based automated solutions is presented based on 

current guidelines and end user feedback. Finally, 

recommendations are provided to bridge the gap between 

research and implementation of AI and ML-based solutions 

using our framework as a mechanism to aid advances of AI 

technology within ATM.    

Keywords— Air Traffic Management, Artificial Intelligence, 

Machine Learning, Trust Framework 

I. INTRODUCTION  

The aviation industry is currently facing challenges such as 

the need for improved profitability, fuel efficiency, 

environmental sustainability, airspace utilisation and safety. 

In addition, there is the urgent requirement to enable 

digitalization and automation to support the seamless and 

safe integration of new entrants such as Uncrewed Aerial 

Systems (UAS) and operations such as Urban Air Mobility 

(UAM).  
 
These challenges are also set in context of the overall 

transition towards Performance-Based Regulations (PBR) 

and Performance-Based Operations (PBOs) [1] [2], which 

aim to enable integration of more automated, autonomous 

and intelligent systems into an industry that has historically 

been based on deterministic systems with known risks. PBR 

is being introduced to allow regulatory approval of novel 

solutions (that may include Artificial Intelligence (AI) and 

Machine Learning Techniques (MLT) that may have 

unknown hazards and unproven controls, by measuring 

performance with and without the use of traditional 

standards [3].  Within this context, clear guidelines on 

acceptable levels of performance and trustworthiness for 

increasingly automated and autonomous systems that use AI 

or ML techniques, particularly in safety-critical operations, 

are extremely important.  

 
In order to make AI and ML solutions implementation 

successful, we have to focus on trust assurance frameworks 

encompassing many different elements that range from 

technical robustness to transparency to security and safety 

[41]. A recent review of existing literature on Machine 

Learning Techniques (MLT) in aviation indicates clear 

advances in this area of research in various Air Traffic 

Management (ATM) applications. However, due to recent 

developments on guidelines needed to ensure the 

trustworthiness of an AI solution such as those of EASA [4], 

more consideration to these upcoming regulations is needed 

in research projects henceforth. 

 

This paper explores all the above as part of Fly2Plan 

project. Fly2Plan is part of the Innovate UK's Future Flight 

Challenge, a research and development programme aiming 

to encourage development of new and sustainable modes of 

air travel and to support the airspace and aviation systems of 

the future. The challenge brings together established leaders 

in aviation, academics and SMEs to research Air Traffic 

Management (ATM) and Uncrewed Traffic Management 

(UTM) integration as well as advance automation 

innovation.   

 

A component of this project is a novel framework for Trust 

Assurance of automated solutions in ATM powered by AI. 

The framework is developed taking into account a variety of 

guidelines from regulators and feedback from industry 

experts through an AI Trust Assurance survey that was 

conducted as part of the Fly2Plan project. It aims to bridge 

the gap between AI research projects and the assurance 

needed for the implementation of these AI solutions within 

ATM. 

 

II. AI AND ML IN AVIATION AND AIR TRAFFIC 

MANAGEMENT 

Over the years, the aviation ecosystem has evolved into an 

environment of trust underpinned by stakeholders 

communicating mainly by voice. Trust in based on the 

knowledge that competent and certified agents are on the 
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other side of that link and utilizing mostly deterministic 

automated decision support tools. With the increased use of 

intelligent automation, tending towards full-autonomy and 

inclusion of non-traditional entities such as new UAS and 

UAS Traffic Management (UTM) service providers, 

stakeholders need assurance that collaborating entities in the 

airspace are trustworthy. Therefore, there is a need to 

develop robust solutions to manage, measure and assure 

trust between humans and automated entities. The solutions 

also need to fulfil the same safety levels as currently 

experienced in aviation.  

 

In this context, the European Union Aviation Safety Agency 

(EASA) is working very actively towards the understanding 

of challenges and creation of guidelines to facilitate the safe 

implementation of AI solutions in the near future. In order 

to start preparing for all the changes in the Aviation 

ecosystem, EASA [4] has released guidelines for Trust 

Assurance to orient choices in the development of AI and 

ML solutions. This does not however constitute either 

definitive or detailed means of compliance. These guidelines 

apply to any system developed using AI and ML techniques 

and are intended for use in safety-related applications. 

 

At the same time, interest in research of the applications of 

AI and ML in ATM has soared in recent years, as 

stakeholders realise the potential of leveraging the data they 

collect to optimise their processes [5] [6]. 

 

Conducting a search in Google Scholar and Scopus with the 

keywords “Machine Learning” and “Aviation” showed an 

increasing number of publications related to these topics in 

the last five years. Papers that were not specifically related 

to ATM were discarded (i.e. engine fault detection, aircraft 

maintenance, passenger demand). Although this does not 

represent an exhaustive search in terms of detailed 

algorithms or areas of application, the general trend shows 

that significant body of work is added every year to 

literature, averaging over 200 publications in the last two 

 years only.  
 

 
Figure 1 Google Scholar and Scopus publications for MLT in Aviation 

 

 

Some of recent ATM areas where ML algorithms have been 

the focused of research are represented in the table below: 

 

 

 

Machine 

Learning 

Algorithms 

ATM Applications  Example of 

References  

Support vector 

machines  

Data mining, Forensics of a 

flight Aviation accident 
research, Accident Risk 

,Conflict detection ,Hazard 

identification  

[7],[8][9]  

     

Random forests, 

X-boosting, 
LightGBM 

Departure Delay, Arrival 

Delay, Fuel consumption 
estimation, Trajectory 

prediction, Scheduling, Feature 

importance  

 [10][11][12][13]   

     

Bayesian 

regression  

Delay propagation, Fuel 

efficiency, Predicting airport 
acceptance rates  

[14] [15] 

      

Clustering  Cluster aircraft trajectories 
before landing, insights on 

aircraft approach phase, 

Anomaly detection on flight 
events  

[16][17][18][26]  

    

Ensembles and 
hybrid models 

(parallel or 

sequential 
combinations of 

different 

algorithms)  

They are more suitable for 
real-time data and non-linear 

problems, Risk prediction in 

Aviation safety  

 [19][20][21][22] 

     

Reinforcement 

learning  

Process control, Operational 

decision making, Traffic 
optimization, Demand capacity 

balance  

[23][24][25]  

      

Common neural 

networks 

algorithms  

ATM Applications  Example of 

References 

     

Long short-term 

memory (LSTM)  

Forecasting traffic flow 

Forecasting aircraft trajectory, 
Fuel consumption, Aircraft 

landing speed prediction, 

Visibility prediction at airports, 
Delay forecasting  

 [27][28][22] 

     

Convolutional 
neural network 

(CNN)  

Anomaly detection, 
CyberSecurity, Audio 

processing, Runway 
occupancy prediction  

[29][30][31]  

      

Feed forwards 
neural networks 

(FFNN)  

Predicting and forecasting, 
Fuel estimation, Trajectory 

prediction, Flight-delay 

prediction  

[32][33][34] 

      

Extreme learning 

machine (ELM)  

Anomaly detection, Boarding 

time prediction, Multi-aircraft 
conflict resolution, Forecasting 

weather and visibility  

[35][32]  

Table 1 Review of recent ML applications in ATM 

 

Despite the abundance of research in recent years, our 

review revealed that there is a gap between the increase on 

research papers and the actual implementation of these 

solutions in an operational environment. This is due to 

several challenges.  

 

The first challenge is that aviation is a very conservative 

field with a focus on deterministic systems that continuously 

builds on known risks and often on lessons learnt from 

recorded incidents, near-misses and always from accidents. 



This means that currently, available aviation design and 

development assurance methods using safety assurance 

standards are not fully suited for regulatory assurance of 

autonomous systems or AI or ML applications. 

Furthermore, the potential growth UAS and Urban Air 

Mobility (UAM) technology is prompting new questions 

about the level of automation of existing systems to be able 

to incorporate ATM and UTM operations and flexibility to 

integrate new entrants and new types of data. The challenge 

for applicants and regulators is to assure system safety and 

trustworthiness of new solutions using AI [36]. Current 

work by regulators and a roadmap for future standards for 

AI solutions are being addressed by working groups such as 

SAE/EUROCAE WG114 [37] which objectives are to 

establish industrial best practices for the development and 

the certification of AI embedded into aerial vehicles and 

ground equipment, providing standards for Qualification of 

Aeronautical Systems embedding AI. 

 

Generalisation is another challenge that might impede the 

implementation of AI and ML research solutions within 

ATM. For example, many of the research papers that we 

reviewed focused on specific operational scenarios and 

datasets such as using a limited set of routes, time of year, 

aircraft types and meteorological conditions. This means 

that the predicted results will only be acceptable for 

scenarios for which the timeseries, aircrafts or route 

characteristics are similar to the training data making their 

generalisation difficult. There can be very valid reasons for 

this, such as specific weather patterns, location and structure 

of airports runways, flight and trajectory mix complexity. 

However, this makes the wider applicability and scalability 

of the methods and algorithms described extremely 

challenging and thus so as their full deployment in order to 

advance automation within ATM.  

 

There are papers that recognise this challenge and have 

focused on areas where a methodology can be developed 

and potentially generalised and scaled-up. For example, [38] 

evaluated feature identification for flight risk and they 

proposed a step-by-step methodology to down-select a 

reduced set of parameters that can be used for safety 

analysis. As millions of flights are flown every year and as 

the size of the data grows, knowing which parameters 

analysts need to pay attention to is becoming very critical. 

They de-identified Flight Operational Quality Assurance 

(FOQA) data obtained from commercial airline routine 

operations and used clustering algorithms in order to 

identify common characteristics of safety events during the 

approach phase. After different clustering algorithms were 

applied and evaluated, the one-way analysis of variance 

(ANOVA) was performed on selected clustering results to 

identify parameter significance. Their methodology helps 

focus similar research in the parameters that are of 

importance, aiding the computational efficiency and 

facilitating the generalisation and comparison of results in 

different applications. 

 

In [11] the authors proposed a framework leveraging flight 

data from the approach phase between certain approach 

altitudes in order to train an offline model to predict the 

landing true airspeed and ground speed using a Random 

Forest regression algorithm. This model developed offline 

was then used to predict landing performance metrics 

online. They used data obtained from commercial airline 

operations that contained thousands of flight records from 

the FOQA datasets.  They concluded that their model had 

the ability to predict the true airspeed and ground speed at 

300 feet above touchdown to within a few knots providing 

the basis for decision making by the Air Traffic Controller 

to decide about stability in a potentially hazardous situation, 

regardless of location specific data. 

 

Finally, another important challenge is interpreting AI and 

ML algorithms, especially those that use deep learning 

techniques, as this has become one of the main obstacles 

with regards to their practical implementation. The inability 

to explain or to fully understand the reasons why AI and ML 

algorithms perform as they do is a real issue for trust 

assurance in aviation, as such high safety environment 

requires full traceability between system outputs and their 

input parameters. According to the Dependable and 

Explainable Learning project (DEEL) [39], there is a wide 

consensus in the AI scientific and industrial community on 

the need to have the capability to explain the behaviour of a 

model produced by these technologies in order to be 

certified and implemented in safety critical operational 

systems. Recent research in explainability such as 

explainable AI (xAI) techniques, user-centric explanations 

and auditability of algorithms are trying to address this gap 

[40] and increase trust in the solutions.  

This paper focuses on two of the above described 

challenges: addressing trustworthiness and assurance. 

III. MEETING THE CHALLENGES OF AI IMPLEMENTATION 

In order to accelerate the validation and implementation of 

all the promising research that is being developed, there are 

a number of initiatives that aim to improve trustworthiness 

and drive the development of AI-based solutions.  

According to the EU High Level Group of Experts on AI 

(AI HLGE) [41] there are three components which should 

be met throughout the system's entire life cycle to create a 

trustworthy AI solution: it should be lawful, ethical and 

robust.  

 

The above translate into a series of areas that should be 

considered when building trust in an AI solution. Not all of 

them might be considered in all cases, depending on the area 

of development and the solution itself.  These areas include: 

(i) Technical Robustness and Safety (ii) Privacy and Data 

Governance (iii) Transparency (iv) Diversity, non-

discrimination and fairness (v) Societal and Environmental 

wellbeing (vi) Accountability (vii) Human Agency and 

Oversight [41]. 

 

Furthermore, the EU AI Act proposal [50] lists a series of 

more concrete points that would need to be fulfilled for 

high-risk AI implementations (which includes critical 

infrastructure such as aviation):  

 

1. Using high-quality training, validation, and testing data 

2. Using documentation and design logging feature that 

ensure continuous documentation 



3. Ensuring transparency and informing the user about the 

application of AI systems 

4. Ensuring human oversight throughout the process 

5. Ensuring accuracy, robustness, and cybersecurity of the 

system 

 

Finally, the European Union Aviation Safety Agency 

(EASA) strategy which is in the Policy and Regulation side 

of ATM, embraces this approach from an aviation 

perspective and has committed to participate in the testing 

and improvement of these guidelines [4]. For that it has 

developed a high-level AI Trust Framework for Aviation 

that takes into account the AI HLEG guidelines and 

translated them into three main blocks: 

 

• Learning Assurance 

• Safety Risk Mitigation 

• Explainability 

 

In order to attain our goal and bridge the gap between 

research projects and future implementation, we have taken 

into account all the above guidelines as a baseline, so we are 

sure that we future proof our solution by incorporating the 

fundamental requirements of potential future regulatory and 

safety standards. In addition to this, we considered 

necessary to emphasize the importance of experts’ views 

within the field of ATM and assess specific areas that are 

most relevant to an aviation safety driven environment. In 

order to do this, we carried out an AI Trust Survey as part of 

the Fly2Plan project. The results of this survey will be 

discussed in detail in the following section. 

 

IV. AI TRUST ASSURANCE SURVEY 

The aim of our AI Trust Assurance survey was to engage 

with stakeholders and experts within the Fly2Plan project 

both in ATM and UTM operational environments, in order 

to assess the level of trust in solutions and automation 

provided by Artificial Intelligence within decision support 

tools. The questions were based on: 

 

• The taxonomy developed by SESAR on Levels Of 

Automation (LOAT) [42] to assess what level of 

automation the stakeholders were comfortable with 

and whether having a solution provided by an AI-

based system would make any difference in the 

level of trust they have in it 

• Based on EASA [4] and the AI HLEG guidelines 

[41] for trust assurance, we formulated questions to 

assess what elements involved in the design, 

development and implementation of a solution 

were more important to the potential end user 

• Based on literature review, we explored what 

components of explainability and communication 

with an AI were more relevant for the end user 

• Finally, we assessed if the area of operation 

(planning, pre-tactical or tactical) had any 

influence in the level of trust on an AI solution 

 

The results are based on responses from a total of 34 

experts. The spread of expertise was quite wide including air 

traffic controllers, airport operations specialists, air traffic 

management consultants and software developers as the 

main groups.  

 

Key findings included: 

 

• Trust tends to decrease as the level of automation 

increases  

• Trust is lower when the automation is provided by 

an AI in areas such as action selection and action 

execution as opposed to information acquisition 

and information analysis where trust seems to be 

higher. 

• Safety and security are the most important 

elements of an AI solution in ATM, followed by 

accuracy and reliability 

• Within the area of safety and increasing trust in the 

solution, alerts and safety nets are of upmost 

importance 

• False positives or negatives have a high influence 

on lower trust in the solution. Knowing the reason 

why they happen would help increase trust but 

operationally might still be an issue to deal with, so 

it is preferable not to have them  

• Loss of trust is difficult to solve and requires time 

to rebuild, providing explicit evidence that the 

issues that caused the loss of trust have been 

address is very important in order to start regaining 

trust 

• Explanations are preferable based on main factors 

that influence the solution, specific examples and 

visuals 

• Explanations are important around why the 

solution performs well or badly and understand 

when (in what situations or point in time) it is 

likely to perform badly  

• There is a willingness to work with the AI in an 

“human augmentation” manner, and learning and 

complementing each other (AI-Human 

cooperation) 

• The area of operation where the solution might be 

implemented (planning, pre-tactical, tactical) does 

not influence the trust in the solution. 

 

For example, the SESAR LOAT taxonomy [42] is grouped 

by the four cognitive functions: 

 

• Information Acquisition 

• Information Analysis 

• Decision and Action Selection 

• Action Implementation 

 

In the case of the area of action implementation which 

implies that the AI could execute an action, experts were 

asked to choose the level of automation they felt more 

comfortable with. The results based on the automation 

classification by SESAR LOAT [42] were: 



 

Figure 2 Action implementation levels of trust with AI and without AI 
(with D0 being manual solutions and D8 being fully automated solutions) 

 

Option D6 was the level of automation most voted by over a 

third of respondents and depicts a medium level action 

sequence automation (the system initiates and executes 

automatically a sequence of actions and a human can 

monitor all the sequence and can interrupt it during its 

execution). This highlighted that human oversight is still 

key for trust assurance in automation, independently of the 

use of AI (and concurs with the suggested guidelines by the 

EU AI Act proposal, AIHLG and EASA mentioned earlier). 

This is to be expected as levels of automation are still low in 

ATM and thus we would still expect humans to be 

overseeing the increasing levels of automation as confidence 

is gained of the correct and safe implementation and 

operation of more intelligent and AI-based systems. This is 

particularly evident in safety-critical decision making, such 

as executive decisions to be made by Air Traffic Control 

(ATC) and pilots, that has direct and immediate impact on 

safety. 

 

We also asked the participants to rank, in order of 

importance (1 being the most important), what would be the 

main elements to have trust in an automated solution 

provided by AI/ML. The ranking that resulted from the 

votes is as follows: 

 
Ranking Options 

1 The safety and security of the solution 

2 The accuracy of the solution 

3 The reliability of the solution 

4 The resilience of the solution 

5 The reproducibility of the solution 

6 The auditability of the solution 

7 The fairness of the solution 

Table 2  Ranking of elements of trust on AI in ATM 

 

Safety and security of the solution got 58% of the votes as 

first in importance, followed by accuracy (26.5% votes as 

first choice) and reliability (8% as first choice) which once 

more reflects the upmost importance of safety and security 

within the aviation industry. Furthermore, as part of national 

critical infrastructure, ATM and UTM solutions will be 

classified as High Risk for AI implementations by the new 

EU AI Act and as such a high level of auditing and 

compliance will be needed to assure safety.  

 

When asked specifically about safety and what knowledge 

would help increase trust in an AI automated solution, the 

answers in order of importance were as follows: 

  

Ranking Options 

1 Knowing that there is an alert and safety net 

when there is an anomaly in the data 

2 Knowing that there is an alert and safety net 

when there is a change in performance 

3 Knowing that the data quality is monitored 

4 Knowing that there is a human in the loop 

5 Knowing that the performance of the algorithm 

is monitored 
Table 3 Ranking of safety measures and trust 

 

Safety nets came on top of the reassurance on the solution 

when there is an anomaly or change or performance with 

47% of respondents voting for it as first in the ranking. 

 

In terms of explainability methods in order to increase trust 

in the solution, the resultant raking in order of importance 

was as follows: 

 
Ranking Options 

1 Explanation of the main factors influencing the 

algorithms decisions 

2 Explanations through specific examples to 

understand the reasons for an algorithm 

decision 

3 Explanation through visuals that represent the 

functioning of the algorithm and the solution 

4 Causal explanations. What can be changed 

about an AI/ML algorithm or its input that 

results in an impactful change in the output 

5 Explanation of the overall life cycle and design 

of the AI/ML solution 

6 Counterfactual explanations. Why the answer is 

A instead of B 
Table 4 Ranking of explainability techniques 

 

Explanations are fundamental in order to gain the trust of 

the end user, especially those that can demonstrate factors 

that influence the final decisions, and this will resonate with 

end users mental processes. The level of detail and the way 

the explanation is delivered has been the subject of research 

for years [52] but it has become even more relevant as AI 

and ML lack of traditional transparency become a cause of 

distrust.  

 

Finally, in terms of area of operation and automation, we 

asked the level of trust on an AI solutions in planning, pre-

tactical and tactical operations. Tactical operations are the 

ones that pertain more risk and therefore have more 

stringent safety assurance requirements. In this case, the 

“somewhat likely” and “likely” options were voted by the 

majority of respondents but their accompanied comments 

indicated that this trust would be conditioned by trust 

assurance methods that should include explainability, 

extensive tests, validation, guaranteed technical robustness 



and safety performance. Nevertheless, this demonstrated a 

positive attitude towards automation and AI solutions within 

this high safety risk operational environment. 
 

Figure 3 Trust on an AI solutions in tactical operations 

 

V. ATM XAI TRUST FRAMEWORK 

Based on all our research indicated above, we designed an 

xAI Trust Assurance framework that encompasses all the 

necessary elements in order to bridge the gap between ATM 

AI research projects and capture the basic elements for 

future regulatory approval and operational deployment. Our 

proposed building blocks are: 

 

1. Purpose of the AI Solution 

2. Technical Robustness and Learning Assurance  

3. Safety and Security Assurance 

4. Transparency and Explainability  
 

Figure 4  AI Trust Assurance Framework for ATM solutions with the 

different blocks and sub blocks of the framework. Colours depict different 
areas of focus. 

 

A. Purpose of the AI Solution 

In an industry with high safety standards, it is extremely 

important to understand what challenge the solution is trying 

to solve and the reason why a particular solution was chosen 

instead of another (i.e. why an ML algorithm was chosen to 

solve this issue). Many research papers focus on a 

comparison with current practices to highlight the 

advantages of their proposed solution using ML [48] [27] 

[32] and others concentrate on the novelty of the algorithm 

itself [46] [47]. The results and advantages of these 

algorithms are mainly focus on a specific performance 

metric (i.e. accuracy, RMSE) [55] [56]. Although the 

challenge addressed is normally mentioned in the 

introduction of many papers, such as improving operational 

efficiency, experts and end users feedback emphasize the 

need for a more thorough description of the purpose and 

advantages of these algorithms within current practices.  

 

Secondly, our AI Trust Assurance survey highlighted that 

the level of automation the solution will operate in, is also 

very important. Trust seems to decline greatly the more the 

solution approaches full automation. As mentioned earlier, 

this is to be expected as there are low automation levels 

currently in ATM and thus need to have a gradual change 

and evolution to higher automation and more intelligent 

systems Researchers need to consider that the higher the 

level of automation they propose, the lower the trust of the 

end user might be and the need for more trust assurance 

mechanisms such as evidence of traceability of inputs and 

outputs. For example [49] suggested some uses of their 

research could be providing a preferred runway assignment 

in a multiple runway configuration when aircraft enter the 

terminal airspace, which will make the solution a decision 

and action selection automation level of SESAR LOAT. 

This is an important piece of information for an end user 

and implementation perspective.  

 

Finally, from an end user point of view, the expected 

benefits of the solution need to be clear from the start 

whether these are operational, financial or environmental. In 

the SESAR ATM Masterplan [72] some of the targets for 

improvements by 2050 are for example, up to 30% 

reduction in departure delays, up to 10% more flights 

landing in congested airports or up to 10% reduction in fuel 

burn. The adoption of more AI solutions would benefit 

greatly if research projects could relate their results to 

achieving performance targets.  

 

B. Technical Robustness and Learning Assurance 

These two equally important elements of a solution are a 

combination of guidelines from HLEG [41], EU AI Act 

proposal [50] and EASA [4]. Based on these and the results 

of our survey, the elements that we consider most relevant 

for our Trust Assurance framework are: 

 

• Data sources (quality, access, integrity, protection 

and security) (Learning Assurance/Technical 

Robustness) 

• Algorithm Life cycle (Learning Assurance) 

• Resilience, Reliability and Reproducibility 

(Technical Robustness) 

• Algorithm Interpretability/Explainability (Learning 

Assurance/Technical Robustness) 

 

 



Our AI Trust Assurance survey verified that both technical 

robustness and learning assurance are extremely important 

factors for trust and for future implementation. 

Example of papers that we found that explored technical 

robustness of an AI algorithm in an ATM operational 

environment were [11] and [12]. The authors used Gradient 

Boosting Decision Trees to predict if an aircraft will miss its 

optimum runway exit (called its procedural exit) by building 

a model based on historical data at Vienna airport in order to 

alert the operator accordingly. The tool was subsequently 

assessed through Real-Time Simulations (RTS) in order to 

further validate its potential in a real operational scenario. 

Although presenting interesting benefits, as the predicted 

information was not 100% reliable, controllers stated that 

they would use the information presented to check and 

monitor a situation more closely, as opposed to issuing an 

executive decision which highlights the need to involve end 

users, if possible, during research development to refine the 

algorithms and assess practical challenges. 

 

Another aspect of AI technical robustness that has been the 

focus of recent research is the field of adversarial attacks. A 

comprehensive review of these methods can be found in 

[60] [61] [62] [63] [64]. The aim of the researchers is to 

introduce in their models’ layers of robustness such that the 

models are not misled by out of distribution examples, 

known or unknown attacks and targeted or untargeted 

attacks. This is of upmost importance because it guarantees 

the accuracy of such models while safety is taken into 

consideration. A very good example in an ATM application 

is [73]. Here the authors tested adversarial data in different 

machine learning algorithms for trajectory prediction. This 

was done by producing samples similar to the original ones 

but which led to significant mistakes in the models. They 

gained a valuable amount of evidence on how the 

algorithms behaved in these situations and explored how to 

make them more robust by introducing adversarial data in 

training. They concluded that although there was a tradeoff 

between accuracy of predictions using adversarial examples 

as part of the training and robustness of the solution the 

results were extremely insightful. In a data-driven and safety 

critical operational environment, this type of research is 

fundamental and we are sure there will be more of it to 

come to understand robustness and resilience of the different 

AI solutions. 

 

Regarding learning assurance of the algorithm life cycle, 

this is becoming a fundamental requirement for future 

regulations as per EASA´s guidelines [4] and recently also 

an important part of the EU Proposal for AI Act [50]. In this 

sense, data quality assurance is the first step of the learning 

assurance process and should be fundamental to all research 

projects. It covers the identification of the various datasets 

used for training and evaluation and the dataset preparation 

(including collection, labeling and processing). These 

aspects are normally well represented in research papers 

[54]. But it should also address considerations on the 

representativeness of the datasets. This includes for example 

acknowledgement of “known unknowns”, this is, situations 

that might occur in operations that are not reflected in the 

datasets used for training, testing and validation and how 

this might affect the performance of the algorithm (i.e. rare 

events, system failures, emergency landings or unusual 

weather hazards). Finally, it should cover objectives on the 

independence between datasets and an evaluation of the bias 

and variance inherent to the data (for example the data 

might include an unusual travel season due to restrictions or 

weather events).  In this sense, many of the papers reviewed 

describe in detail the datasets used in training and testing 

[49] [51] [53] [57] but some have chosen not include 

variables such as weather data or patterns that could affect 

greatly prediction results, generalization and scalability and 

this is acknowledge by the authors. 

 

The actual tuning of the algorithm is something that is 

normally mentioned in many of the research papers 

reviewed, with [58] being a particularly good example that 

explores and specifies the selection and validation of key 

elements such as the activation function, the loss function, 

the initialization strategy, and the training hyperparameters 

of different algorithms, which all have the potential to 

influence the result of the training in terms of performance. 

The learning life cycle of the algorithm is of upmost 

importance and one of the key blocks of the EASA 

trustworthiness guidelines [4]. Furthermore, the EU AI Act 

proposal [50] suggests that an immutable log of algorithm 

training and life cycle should exist, in a similar way that 

deterministic ATM systems’ design assurance is currently 

being documented to support their end-user acceptance, 

regulatory approval and subsequent operational deployment. 

These are all new considerations to be taken into account in 

future research projects.  

 

Concerning learning assurance, xAI techniques are a key 

element to address the explainability challenge and they 

have been the subject of many research papers in recent 

years. Of the papers that we reviewed, [43] [12] and [44] 

used model-agnostic techniques for feature importance, and 

others such as [45] used tree-ensemble post-hoc explanation 

for simplification and feature relevance. [40] have done a 

really extensive and comprehensive review of xAI methods 

and many ATM research papers reviewed are starting to 

incorporate such techniques in order to explain the 

performance of their chosen algorithms. 
 

C. Safety Assurance 

According to the results of our AI Trust Survey, Safety and 

Security of the AI solution where the most important factors 

in order to trust any results and implementation of new AI-

based solutions. From the perspective of trust assurance of 

the algorithms we consider safety as the main element of our 

framework as elements of security such as cybersecurity are 

not different from those already covered by current software 

design and security standards. Considering guidelines and 

feedback, three main elements of safety should be 

considered: 

 

• Human Oversight 

• Performance monitoring 

• Safety Nets 

 

The answers and additional comments from our survey 

highlighted that one of the most important means of 



assuring trust and monitoring performance of AI solutions is 

human oversight. From an end user point of view, this helps 

ensuring that an AI system does not undermine human 

autonomy or causes other adverse effects. Oversight may be 

achieved through governance mechanisms such as a human-

in-the-loop (HITL), human-on-the-loop (HOTL), or human-

in-command (HIC) approach. This aspect has also been 

introduced as necessary for high-risk AI implementations 

such as those in critical infrastructure by the EU AI Act 

proposal [50]. 

 

The element of performance monitoring with respect to the 

safety requirements of safety critical systems was presented 

in [75] where they discussed a novel set of measures that 

can be used for the evaluation of the safe performance of 

ML algorithms. They argued that the challenge of safety 

performance using ML algorithms can be solved following a 

commonly used safety principle, namely safety reserves 

[74], which can be used to define safety margins where the 

predictions of the algorithm are guaranteed to be correct. 

These are a Safe True Positive (TP) threshold and a Safe 

True Negative (TN) threshold, where the first specifies a 

threshold that any observation with scores higher than it, is 

sufficiently guaranteed to be TP, and the last specifies a 

threshold that any observation with scores lower than it, is 

sufficiently guaranteed to be TN. Accordingly, observations 

outside these thresholds cannot be guaranteed to be correct. 

They referred to such observations as No Prediction (NP) 

and can not be used for safety critical decisions. Another 

approach is [75] where the authors described four types of 

monitoring: (1) input monitoring, for checking whether 

inputs are within acceptable bounds before they are given to 

the ML model; (2) environment monitoring, for checking 

that the observed environment matches any assumptions 

made during the ML workflow; (3) model internal 

monitoring, to protect against the effects of single event 

upsets; (4) output monitoring, by replicating a traditional 

system safety approach in which a high-integrity monitor is 

used alongside a lower-integrity item. These research papers 

are extremely important going forwards within the context 

of ATM as any changes in performance of an algorithm 

could result in a safety event.  

 

During our survey, safety nets came as the most important 

safety measure within an ATM environment. In the 

examples above, if there were to be any changes in any of 

the monitoring measures that indicated a drop in 

performance or an anomaly in the output, a safety net would 

need to be in place. Depending on the area of operation and 

the role of the AI or ML solution, the safety net should 

consist of a warning or alert and time available to the 

operator to either override the system or ignore the outputs 

of the algorithm until the situation is investigated. Current 

examples of safety nets are for instance, Short Term 

Conflict Alert (STCA), which assists the controller in 

preventing collision between aircraft by generating a timely 

alert of a potential or actual infringement of separation 

minima or Area Proximity Warning (APW), which warns 

the controller about an unauthorised intrusion of an airspace 

volume by generating a timely alert of a potential or actual 

infringement of the required spacing to that airspace 

volume. Going forwards, we anticipate the research and 

development of safety nets for AI solutions will be an 

important focus their implementation in operations.  

 

D. Transparency and Explainability Assurance 

 

Finally, an exceptionally important assurance block in our 

framework that joins together all the others is the one that 

addresses the transparency and explainability of the 

solution. This is crucial from the point of view of regulators 

and end users. As we have mentioned previously, it is 

critical to understand the solution, its advantages and its 

limitations in order to trust it and to use it. In this sense, it 

also needs to be auditable so it can satisfy regulators and 

potential investigations as well as provide in detailed 

explanations to experts end users.  

 

In terms of explainability, the work done on xAI techniques, 

as mentioned earlier, are primarily looking at global or local 

explanations selecting which features in the model are 

important to understand an outcome. However, even though 

the research on xAI techniques is currently abundant and 

feature exploration is being investigated by many authors 

([65][68][69]), a major limitation of existing work is that the 

explanations are designed based on the intuition of 

researchers rather than focusing on the demands and 

understanding of end-users. From an end user’s point of 

view, the goal of a good explanation is to understand and 

trust the functioning and outcome of an algorithm. 

Therefore, for researchers it is of upmost importance to 

evaluate what makes an explanation user-oriented and user-

friendly and present results in a way that is clearly 

understandable [67].   

 

Finally, auditability of the model is also an area that is 

gaining importance. This is especially true with current 

proposals and guidelines for regulations and possible safety 

certification of systems that embed an AI algorithm [4] [37] 

[50]. Auditing of AI is shaping itself as an imperative tool as 

AI may bring unprecedented and unpredictable 

consequences [70]. Auditability entails the enablement of 

the assessment of algorithms, data and design processes and 

as such, it depends greatly on the learning assurance and 

technical assurance processes as well as the safety assurance 

methods in our framework. As more progress is made in 

these areas the research projects would need to tune in their 

design and development to make sure all the elements of 

auditability and trust are present. We believe that our 

framework presents a very good baseline to do so. 

 

VI. SUMMARY AND RECOMMENDATIONS 

In this paper we have set up the basis of an xAI Trust 

framework in order to address the gap between research and 

implementation solutions within an ATM environment. We 

have highlighted current guidelines and recommendations 

by regulators for trustworthy AI and we have addressed 

what constitute trust on AI automated solutions in ATM for 

end users through an AI Trust Survey answered by 

stakeholders of the Fly2Plan project. Through a literature 

review we have identified the areas that need more research 



on elements of AI trustworthiness in ATM such as those 

reflected in our framework.  

 

Due to recent developments on guidelines and to truly 

bridge the gap between research and operational 

implementation, we consider that, from now on, there 

should be more consideration on demonstrating the 

trustworthiness of research project outcomes in a more 

holistic way. 

 

We believe that our framework provides a strong basis to do 

so and recommend its use in setting up future ATM research 

projects. The framework would also provide a base for 

comparison of different techniques and applications in 

similar scenarios in order to assess advantages and 

disadvantages of each in an operational environment. As 

next steps, we will be applying our framework to a practical 

case scenario in AI research to test its efficacy and 

subsequently evaluating it and obtaining end user feedback 

to improve it further.  
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