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Abstract—Along with the growth of communication and satel-
lite industry, the importance of satellite antenna evaluation is
increasing. Particularly Communication On The Move (COTM)
terminal antenna, including the communication between new
types of constellations on LEO and MEO, requires tracking
accuracy test for the communication on moving vehicles. The
conventional test facilities are locally fixed and lack flexibility.
To make the antenna measurement more accessible, we are
developing a methodology for in-situ measurement by intro-
ducing multiple Unmanned-Aerial-Vehicles (UAVs) system with
RF payload. Thanks to the dynamic flexibility of UAVs, this
system can flexibly change the test configuration on site and
make new test scenarios available, such as emulating the orbit
of non-GEO satellites during the measurement. However, one
of the challenges of the proposed system is the additional
uncertainties during the measurement due to the mobility of
UAVs. To overcome this challenge, we design recursive stochastic
filtering and fusion approaches, and evaluate their estimation
performance via numerical simulations. By introducing stochastic
filter and fusion algorithms, the effect of error is mitigated,
and better accuracy can be achieved compared to an existing
method. This project is performed in collaboration with Cranfield
University in the UK and QuadSAT in Denmark.

I. INTRODUCTION

Communication is one of the key technology nowadays and

satellite communication is one of them. The number of the

satellite in the orbit keep increasing and the number of the

terrestrial terminal antennas is also growing. The communica-

tion between LEO and MEO satellites is also emerging. The

satellite communication is getting more congested and this

environment contains more risk of communication interfer-

ence. To mitigate the risk to keep the secure communication,

it is certainly beneficial to evaluate the terminal antennas and

their system before and/or after their implementation. COTM

is a communication when the terminal antenna is mounted

on the moving vehicles such as a car, an airplane, a train

and a ship. One of the important requirements of COTM

terminal antenna is the tracking capability to keep pointing

towards the intended satellite when it is operated on the

vehicle. For the tracking evaluation test, it has been requiring

a huge facility or involvement of the satellite in operation.

Fraunhofer IIS in collaboration with Ilmenau University of

Technology has established Facility for Over-the-air Research

and Testing (FORTE) which can evaluate the tracking accuracy

[1]. This facility was authorized by a antenna testing entity of

Global VSAT Forum (GVF) [2]. It can provide the terminal

evaluation very precisely. However the facility is locally fixed

and cannot adjust the location of the sensors during the mea-

surement. These characteristics could limit the accessibility

and flexibility of the antenna measurement and may not be

efficient enough to measure all coming antennas in short time.

To overcome these limitation and accelerate the measurement

process in this current trend, we have been proposing in-

situ measurement using a multi-UAV system [3]. With this

system, the antenna can be tested on-site by delivering the

testing equipment and also it adds more flexibility for test

scenarios, thanks to the mobility of the UAVs. For instance,

it can emulate the trajectory of the non-GEO satellite during

the measurement.

On the other hand, RF measurement by UAVs is attracting a

lot of attention recently because of the improvement of RF and

UAV technologies [4], [5]. However the focus of these works

is on the creation of radiation pattern, and it is not targeting

the tracking accuracy of COTM.

Depointing measurement is an evaluation which assumes that

the radiation pattern of Antenna Under the Test (AUT) is

known and can be used as a reference. In the existing

approach, the depointing is estimated from the correlation

between the known reference radiation pattern and the received

signal strength during the measurement [1]. This is referred as

table matching method in this work. However when the UAV

system is involved in the measurement, additional uncertainties

will be introduced. So, it would be beneficial to have a

methodology to reduce the effect of noise and improve the

accuracy of the estimation. Also, to keep the test setup as

simple and low-cost as possible, it is preferable to keep the

required number of the UAVs with RF sensors. To overcome

these challenges, stochastic filtering approaches are formulated

in a unique way in this work.
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II. THE STOCHASTIC FILTERING TECHNIQUE

A. Overview of Kalman Filter

To estimate the existing depointing angle, estimation theory

is considered in this work. Estimation theory is a branch of

statistics to deal with the estimation of the values of the pa-

rameters of interest based on measured data. The knowledge of

the state of interest is described by probability density function

(pdf) and it is described as p(x) where x is the parameter

vector of interest. It can be possible to improve the estimation

accuracy when some information related to the value of the

parameters of interest. The available information could be

the measurement and system models, measurement data and

knowledge about initial condition. Given a measurement z,

the state of knowledge can be changed (possibly improved) to

conditional pdf as p(x|z) as the posterior distribution.

Kalman filter is one of the most popular algorithms for state

prediction in linear system. Given the process model which

represents the propagation of the state from time k − 1 to

k, it recursively provides the statistically optimal estimate

x̂k which minimises E[(xk − x̂k)(xk − x̂k)
T ] where xk is

the true value and E[·] denotes an expectation operator. The

popularity of Kalman filter is based on the fact that it can

incorporate measurement and modelling noise effects in a

relatively simple form. Also, it includes the statistical measure

of the uncertainty which allows to evaluate the system and

each sensor’s performance with error covariance matrix P .

B. Kalman filter algorithm

The dynamic model of the target is generally described as

Linear Time Invariant (LTI) Model [6].

Xk+1 = FXk +Guk + Γwk (1)

where F is the state transition matrix, G is control-input matrix

to the control vector uk, Γ is a noise matrix and wk is the

process noise which is assumed to be zero-mean Gaussian

with covariance Q, i.e. wk ∼ N (0, Q).
For the measurement model which describes the relationship

between the current state and measurement follows;

zk+1 = HXk+1 + vk+1 (2)

where H is the measurement matrix and vk+1 is the mea-

surement noise vector which is also assumed to be zero-mean

Gaussian with covariance R, i.e. vk+1 ∼ N (0, R).
Kalman filter algorithm consists of two stages, which are

prediction and correction, and is described as below. Also,

Fig. 1 visualises the procedure.

Prediction (model update):

X̂k+1|k = FX̂k|k +Guk (3)

Pk+1|k = FPk|kF
T + ΓQΓT (4)

Correction (measurement update):

vk+1 = zk+1 −Hx̂k+1|k (5)

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +Rk+1)
−1 (6)

x̂k+1|k+1 = x̂k+1|k +Kk+1vk+1 (7)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (8)

Fig. 1. Kalman Filter Procedure

C. Extended Kalman Filter

The assumption of linear state transition and linear mea-

surement transition may not be applicable for some cases. To

overcome this assumption and to deal with nonlinear models,

Extended Kalman filter (EKF) can be used [7]. In EKF, the

process and measurement model can be represented as

Xk+1 = f(Xk, uk) + Γwk (9)

zk+1 = h(Xk+1) + vk+1 (10)

and Fk and Hk in Kalman filter algorithm can be obtained by

linearization from first order Taylor expansion.

∇fX =
∂f(Xk, uk)

∂Xk

|Xk=Xk+1|k
(11)

∇hX =
∂h(Xk, uk)

∂Xk

|xk=Xk+1|k
(12)

Then, (3-8) are reformulated to Prediction (model update):

X̂k+1|k = f(X̂, uk) (13)

Pk+1|k = ∇fXPk|k∇f
T
X + ΓQΓT (14)

Correction (measurement update):

vk+1 = zk+1 − h(X̂k+1|k) (15)

Kk+1 = Pk+1|k∇h
T
X(∇hXPk+1|k∇h

T
X +Rk+1)

−1 (16)

X̂k+1|k+1 = X̂k+1|k +Kk+1vk+1 (17)

Pk+1|k+1 = (I −Kk+1∇hx)Pk+1|k (18)



D. Multisensor Fusion

Multisensor fusion techniques allow us to combine informa-

tion and measurement data from different sources to identify

a united picture [8]. The advantages of multisensor fusion

are mainly the enhanced data authenticity and availability.

It can improve the reliability and robustness, and increase

the confidence. Also, it can extend the spacial and temporal

coverage.

In this work, the three types of fusion architecture are tested.

Measurement level fusion directly fuses the collected data

from the sensors as illustrated by Fig. 2. The measurement data

from each sensor are combined and the state of the target is

estimated from the fused measurement data [9]. In this method,

the dimension of the vector in the algorithm becomes larger. It

can be realized by considering the matrices z,H,R in (5)-(8)

as

Z =







z1
...

zN






(19)

H =







H1

...

HN






(20)

R = diag(R1, . . . , RN ). (21)

State-vector fusion is another approach which uses a group

of Kalman filters and local state estimations are obtained as

shown in Fig. 3 . These estimated states are then centrally

fused using a weighted sum of the state estimates [10]. The

fusion algorithm for state and covariance matrix are described

as below.

X̂k|k = X̂1(k|k)+P1(k|k)[P1(k|k)+P2(k|k)]
−1[X̂2(k|k)−X̂1(k|k)]

(22)

P(k|k) = P1(k|k) − P1(k|k)[P1(k|k) + P2(k|k)]
−1PT

1(k|k) (23)

for sensor 1 and sensor 2. It is also possible to use the

fused estimation for the prediction as illustrated in Fig.4.

This method would improve the prediction with uncertain

estimation but it requires more communication.

Fig. 2. Measurement level fusion

Fig. 3. State vector fusion1

Fig. 4. State vector fusion2

III. METHOD

The contribution of this work is the uniqueness of the

formulation of Kalman filter for depointing measurement. In

this section, how it can be implemented is explained.

A. Objective

For the tracking accuracy evaluation, depointing angle dω of

Antenna under the Test (AUT) is the parameter of interest and

it can be estimated by receiving signal from multiple UAVs

(Fig. 5). Depointing measurement is the numerical angular

measurement between target angle and the actual heading

angle of the AUT. When the AUT is COTM terminal, it

needs to keep compensating the motion of the vehicle and

keep its line of sight (LOS) at the target satellite. Hence,

the state to estimate is the heading angle in this evaluation

test. In the considered test setup, the motion of the vehicle is

emulated by the motion table underneath of the AUT during

the measurement and RF receivers mounted on the UAVs are

placed around the target LOS of the AUT.

B. Process Model

Target dynamics are represented as

Xk+1 = FXk +Guk + Γwk (24)

, where transformation matrix F is identity matrix and state

vector Xk is

Xk =

[

ωazAUT

ωelAUT

]

, (25)



Fig. 5. Depointing measurement

Gk =

[

∆t 0
0 ∆t

]

, (26)

uk =

[

vaz(k)
vel(k)

]

. (27)

Xk is the state vector of the AUT which represent the heading

angle in azimuth and elevation direction. Guk is implemented

to consider the predefined target satellite velocity (vaz, vel) to

follow the known target satellite trajectory. This is the vector

representing the displacement of the target satellite during the

time step ∆t. Input matrix related to system noise Γ is

Γ =

[

1 0
0 1

]

(28)

and process noise coveriance Q is defined as

Q = σ2
w. (29)

When the terminal antenna is operated with non-GEO satellite,

the terminal antenna is required to follow the target satellite

trajectory while they are also compensating the motion from

the vehicle. When the state of the target is not stationary, the

target dynamics model should consider angular velocity of

the AUT. However because of the available measurement is

limited to signal strength in this case, the state of the system

including the velocity is unobservable. On the other hand, the

satellite orbit is available information. Therefore, in this work,

by assuming that the AUT has capability to approximately

follow the defined target satellite trajectory including some

error, the system can be formulated as (24).

C. Sensor Observation Model

To apply Kalman filter, the measurement equation needs

to be described with respect to the parameter of interest.

The observation zk is described with a non-linear function

h(Xk+1)
zk+1 = h(Xk+1) + v(k) (30)

Measurement noise coveriance matrix R is

R = diag(σ2
v1, ..., σ

2
vN ) (31)

where N is the number of the sensors. Measurement equation

h(x) can be obtained as approximation based on the known

radiation pattern in the form of h(ωaz, ωel). For this approxi-

mation, the method called spline interpolation was used.

The Jacobian of the observation model with respect to the

targets states.

Hk =
∂h

∂X
|X=Xk|k−1

(32)

∂h

∂X
=

[

− ∂h
∂ωaz

|ωaz=ωazUAV
−ωazAUT

− ∂h
∂ωel

|ωel=ωelUAV
−ωelAUT

]T

(33)

IV. NUMERICAL SIMULATION

The following simulation is considered to examine the

performance of the Kalman filter based depointing estimation

and compare the performance between conventional table

matching approach.

In this experiment, random heading angular acceleration is

added to the AUT model and generate the pseudo depointing

angle. UAVs are positioned with some noise with respect to

the LOS toward the intended satellite direction. Since the

UAVs’ positions are not mechanically fixed during the mea-

surement, it would encounter some disturbances which could

generate unwanted displacement of the sensors as illustrated

as dψ, dθ, dφ and dR in Fig. 6. When non-GEO scenario is

used, the intended satellite direction becomes time variant and

UAVs could have larger positioning error. In this simulation,

Fig. 6. Uncertainty of depointing measurement

these noise are taken into account as potential noise elements.

A. Link Budget

Based on Friis’ transmission equation, the received power

at each sensor is simulated as (34) in dB [11].



Pr = Gr +Gt + Pt + 20 log10
λ

4πR
− Lpol (34)

where Lpol is loss coming from the polarization error and

Lloss. By eliminating the constant values, the relative received

signal power is

Pr = Gr(θ, dθ) +Gt(ω, dω, ψ, dψ)− L (35)

where L consists of polarization error loss and range error

(dR) loss;

L = 20 log10
R+ dR

R
− 20 log10 cos(dφ) (36)

where R is the target distance from the AUT. In the simula-

tion, the random error for dψ, dθ, dφ and dR are generated

as Gaussian noise and random Gaussian noise is added to

the simulated signal power based on the defined maximum

possible Signal to Noise Ratio (SNR).

B. Antenna Model

The AUT model and the probe antenna mounted on the UAV

are simulated to have 3.8 degree and 45 degree. To reduce the

affect of dθ, the probe antenna is selected to have a large

beamwidth.

C. Uncertainty

Depointig measurement is numerically simulated in GEO

and non-GEO scenario. It is assumed that the trajectory of the

intended satellite is known and based on this information, the

UAVs move as the time elapses to keep the formation around

the LOS toward the target satellite. Because of the additional

movement, non-GEO scenario contains more uncertainties in

the positioning of the UAVs. These uncertainties are added as

zero-mean normal distribution with the standard deviation in

Table I

TABLE I
STANDARD DEVIATIONS FOR THE UAV POSITIONING UNCERTAINTY

Scenario dR [m] dθ [deg] dψ [deg] dω [deg]

GEO 0.01 0.01 2 1

Non-GEO 0.02 0.02 4 2

V. RESULT AND ANALYSIS

The performance of the Kalman filter based depointing

estimations and table matching estimation are compared by

changing the condition parameters such as the number of

UAVs, SNR and the orbit of the target satellite.

Fig. 7 - Fig. 9 show the performance of each filters. The aver-

age error, after iterating the episode consists of 100 steps for

200 times, is shown by changing the number of the UAVs in

the figures. EIF, SV, SV2 and TM represent the measurement

level fusion, the first state-vector fusion, the second state-

vector fusion and table matching method respectively. Fig. 7

and Fig. 8 are for the scenario of GEO with SNR 40 dB and 50
dB. Fig. 9 is for non-GEO scenario. Also, Table II shows the

numerical result about mean error and error standard deviation.

In any cases, Kalman filtering approach exceed the per-

formance of table matching approach. When estimation is

performed based on the measurement from a single UAV, the

table matching approach has no capability to select a single

estimation with reasoning behind. This is because all of the

points which has the same reference value have equal amount

of possibility to be the state of AUT. On the other hand,

Kalman filter algorithm can take the sequential estimation into

account and eliminate the fantom state estimation.

The performance of measurement level fusion and the second

vector fusion shows the best accuracy and standard deviation

and their performance does not change so much if more than

3 UAVs are involved. On the other hand, the table matching

method showed more improvement when more sensors are

available.

Fig. 7. SNR = 40dB, GEO

Fig. 8. SNR = 50dB, GEO

VI. CONCLUSION

In this work, stochastic filter for depointing measurement

was formulated and its performance was analyzed. The devel-

oped approach showed the better accuracy and it requires less

number of the sensors in the numerical simulation compared

to the conventional table matching approach. Considering the



Fig. 9. SNR = 50dB, Non-GEO

TABLE II
NUMERICAL RESULT OF NON-GEO, SNR=50DB EXAMPLE

UAV Number method mean error error covariance

1 EKF 0.2960 0.3124
TM 1.7701 0.8980

ML 0.0462 0.0492
2 SV1 0.0720 0.0878

SV2 0.0413 0.0441
TM 0.1519 0.5341

ML 0.0158 0.0148
3 SV1 0.0360 0.0477

SV2 0.0086 0.0078
TM 0.0507 0.0477

ML 0.0147 0.0137
4 SV1 0.0289 0.0331

SV2 0.0075 0.0067
TM 0.0423 0.0403

ML 0.0140 0.0128
5 SV1 0.0281 0.0289

SV2 0.0070 0.0064
TM 0.0327 0.0307

additional uncertainty due to the dynamic sensors on the UAVs

and the benefit to keeping the system simple and low cost, the

developed methodology would be suitable for this application.

In the future work, it would be beneficial to work on the

optimization of the positioning of the UAVs with this approach

and review the approximation method of the radiation pattern

method.
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