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Abstract - The current airspace has limited resource, and the 

widespread use of Unmanned Aircraft System (UAS) is increasing 

the density of civilian aircraft that is already crowded with 

manned aerial vehicles. This increased density in airspace 

demands to improve the safety, efficiency and capacity of airspace 

while considering all uncertain parameters that may cause 

hinderance in aircraft movement like weather and dynamic 

fluctuations. A systematic analysis of correlations between events 

and their impacts in air traffic network is a considerable challenge. 

This paper proposes a methodology that characterizes and 

identifies the patterns of Unmanned Traffic Management (UTM) 

airspace based on the analysis of simulated data to improve the 

performance of UTM network as well as ensuring its safety and 

capacity. Some sets of metrics are defined to identify the airspace 

characteristics that include airspace density, capacity and 

efficiency. The data analysis carried out here, will support risk 

analysis and improve trajectory planning in different airspace 

regions considering all dynamic parameters such as extreme 

weather conditions, loss of safe distances, UAVs’ performance, 

emergency services and airspace structures that may cause 

deviations from  their standard paths. 

 

Keywords— UAV, traffic flows patterns, trajectory deviation, 

simulation, UTM. 

I.INTRODUCTION  

Unmanned Aaerial Vehicle (UAV) presents an immense 
opportunity to commercial and industrial activities due to its 
robustness and flexibility. The global market for UAVs is 
predicted to expand at a rate of 15.88% till 2026 [1] and it is 
anticipated that demand for different services such as delivery, 
surveillance, and aerial photography will be increased. With its 
increasing demand, it  has become necessary to develop such an 
adroit traffic management system for UAV operations in urban 
areas that would be smart and optimized.  
The concepts of Unmanned Traffic Management (UTM) [2] and 
Urban Air Mobility (UAM) [3] have been proposed in above 
studies to carry out a safe and efficient aerial vehicle operations. 
It is emphasized in the above studies that UTM and UAM 
systems have changed the paradigm of existing air traffic 
systems and posed challenges to aircraft safety and efficiency  
due to a variety of factors including various vehicle 
characteristics; increased in density of vehicles’ operations, 
urban terrain environments, and complex atmospheric 

conditions in lower airspace. A question thus arises; How to 
handle high density operations safely and efficiently under these 
challenging situations?  
Also, the demand for UAM is also gaining interest due to 
increased road traffic in metropolitan areas where the 
requirement to transport passengers and cargo safely and 
efficiently in the urban areas [3] is increasing. This will also pose 
more challenges on safety and efficiency of these UAV systems, 
and capacity of the UTM. Also, for large scale urban operations, 
safety and efficiency are always a top priority. 
Although, a number of studies on the complexity and capacity 
of conventional Air Traffic Management (ATM) systems have 
been conducted [4] and some initial studies on small UAS 
operations have been done[5], yet the understanding of key 
factors that affect the high density of  UAM and UTM operations 
is still limited. Thus, there is a need to understand the provision 
of safe and efficient high-density air traffic operations under 
extreme weather conditions analytically.  
Since, efficiency and safety of airspace dictate the capacity 
which is also influenced by traffic flow behaviour, several 
studies have applied advance analytical methods to use flight 
trajectory data in order to characterize the air traffic behaviour 
towards supporting performance assessment, airspace 
monitoring, airspace design and traffic flow management [6]. A 
study in [7] focussed on detection and identification of 
significant events where a large data is produced every day by 
stake holders of ATM systems using data analytics. These 
techniques may help pointing out capacity indicators, extracting 
safety models, risk identification and decision support for better 
ATM systems. Although, ATM domain is rich in such studies, 
limited studies have been made in the UTM context. The reason 
behind this, is a lack of research publications and more focus is 
on implementation and control approaches of UAVs [8]. 
Moreover, a considerable barrier in data analysis of UTM is the 
absence of a common and shared database collecting real-time 
UAV flight operation data. One possible development direction 
is to use simulation data [9]. 
The rest of the paper is organized as follows: Section II presents 
related work and it provides some background on the techniques 
used in this paper. Section III presents the proposed 
methodology  of this work . Section IV presents the simulation 
scenarios and result .Section V shows the airspace performance 
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analysis. Lastly, Section VI draws the conclusions of this paper 
and provides some guidelines for future work. 

II. RELATED WORK 

The significant increase in air vehicle traffic results in 
congestion in the airspace. This congestion is a critical issue to 
be dealt with, in the development of new and improved air traffic 
management systems such as UTM [10]. UAV autonomous 
operations are currently vital for the development of several 
civilian and military applications enabling safe navigation with 
little or no human supervision [11]. UTM is imagined as a subset 
of ATM  that enables safe and efficient low-altitude airspace 
operations by providing services such as airspace design and 
dynamic configuration, dynamic geo-fencing, severe weather 
and wind avoidance, congestion management, terrain 
avoidance, route planning and re-routing, separation 
management, sequencing and spacing, and contingency 
management [12]. 
The primary issue in such mission-oriented UAVs, is to 
maintain path plans and minimum separation distance among 
UAVs and other static and dynamic obstacles [13]. 
The work in [14] highlighted the importance of addressing the 
weather conditions that may pose uncertain situations to UTM 
such as potential delay in UAVs, UAV conflicts, etc. According 
to them most common issues that may need to be handled 
includes predicting UAV stability and adapting it to weather 
conditions such as crosswinds, unpredicted rains, avoiding 
collisions, and solving conflicts that may arise during flight. 
Similarly, the study in [15] enlighten the significance of 
disruptions in schedules and flight plans caused by bad weather  
that is a challenge for air traffic management systems, due to  
uncertain behaviour of weather systems.  
It is well understood that the uncertainty in weather and conflict 
resolution strategies incorporate the deviation in planned 
trajectory patterns thus, threatening  airspace capacity, it is also 
needed to visualize the capacity of UTM airspace in this context. 
A significant research area of knowledge discovery and 
information extraction involves detection and identification of 
events present in historical aircraft trajectory system. This 
research area focuses on extraction of valuable information from  
air traffic management system. The extracted event-related 
information can help stakeholders in different respects such as 
capacity indicators, extracting safety models and risk estimation 
[7]. Such knowledge discovery systems are valuable in 
detecting, identifying and characterizing air traffic flows as 
narrated in [16]. 
The recent success of data-analytic techniques in the areas of 
perception, planning, and control make it suitable for conflict 
detection and resolution in the UAV network. Moreover, ATM  
generates vast amounts of flight data from routine monitoring on 
daily basis. However, the concept of extracting safety 
knowledge from this data is still based on detecting the 
boundaries of expert-defined thresholds[17]. The volume of data 
generated by a multi-UAV mission grows and may exceed the 
attention capability of the operator[18]. Data analytical 
techniques present the theories, technologies and processes of 
acquiring in-depth knowledge from the historical data. 

The work in[19] narrated the applications of data analytics in 
different aspects of air traffic management that include conflict 
detection, delay reduction, environmental impact mitigation, 
flight efficiency and safety enhancement. Büsing et al. [20] 
employed statistical data analysis methods to the data of 
Lufthansa German Airlines revenue management system. They 
examined revenue management models and algorithms in 
airlines considering the capacity uncertainty caused by fleet-
assignment-optimizations. 
They concluded that 40% of their flights fleets assignment is 
updated once in the booking horizon. The findings of their work 
demonstrate that flight results can be improved by ignoring 
traditional fixed capacity assumption. Similarly, Chung et al. 
[21] also analysed flight delays data of an airline in Hong Kong. 
They observed that there is a direct correlation between flight 
arrival delays and departure delays. Therefore, they proposed a 
new cascading neural network for extracting the identified 
characteristics. In the light of above literature review, the aim of 
this paper is to address the UTM airspace capacity in two folds: 
Firstly, the efficiency and safety of the UTM airspace is 
measured in the presence of abnormal events specifically during 
weather uncertainties. Secondly, the traffic flow behaviours 
have been observed in weather hazards by studying spatial and 
temporal recurrent and concurrent traffic flow patterns due to 
trajectory deviations and their impacts on the capacity of UTM 
airspace. To that end, this paper contributes in the following 
ways: 

1. Developed a simulating based experimental 
framework for trajectory data generation for both 
fixed-wing and rotary-wing type UAVs under varying 
weather and dynamical constraints and priority levels. 

2.  Studied the effects of weather conditions and 
emergency operations on the safety, capacity and 
efficiency of UTM airspace airspace using proposed 
metrics of safety,  density, capacity, time and energy 
efficiencies. 

3. Visualized different types of traffic flow patterns and 
studied trajectory deviations and their role in reducing 
the safety, capacity and efficiency of the UTM 
airspace. 

III. METHODLOGY 

A. Simualtion Setting and Consideration  

The proposed method is assessed and validated through 
simulations that simulate the airspace over Bedfordshire and 
Buckinghamshire in the UK. It defines seven areas where flights 
may be restricted such as airfields, recreational areas and a 
prison as illustrated in Fig. 1. These ares are: 

1. Two airfields, including Luton and Cranfield (Orange); 

2. Four recreational areas, including Dunstable, Sandy, 
Cardington and Graveley (Yellow); 

3. Milton Keynes Prison (Blue). 



 

Fig. 1.Simulation environment created by Air Map 

The following simulation settings are considered that set the 
limitations, requirements, and make things more realistic and 
closer to a real-life scenario:  

• 2D airspace: Due to the current limitation of our simulation 
framework of not simulating ascend and descend 
manoeuvres, the current work is visualizing the cruise phase 
of UAVs in 2D (x, y) only. 

• Hybrid fixed and random start and end locations: The 

simulation parameters have been set in order to make the 
UAV flight start and finish locations fixed as well as 
random to simulate normal daily services as well as 
emergency services.  

• Random departure times: To make the system more 
realistic, the exact time at which each agent departs is set 
randomly between 1-10 minutes in 1 hour of simulation 
scenario period. 

• Priority levels: Each flight has been set with a priority level 
of service i.e.; from level 1 (highest priority) to level 5 
(lowest priority). based on urgency. The description of each 
priority level is as follows:(1): lifesaving activities, (2): 
national security, (3) life Support, (4) All other activities. 

•  UAV types: this simulation considers two basic type of 
UAVs mainly: fixed wing and rotary to consider the effects 
of their structural dynamics.  
 

B. Weather Factors Implementation 

Weather hazards considered for UAVs operations are classified 
as moderate, adverse and severe [15]. Here, moderate hazards 
are those that result from phenomena that reduce visibility but 
do not harm the aircraft. Adverse hazards are those weather 
conditions that have potential to cause loss of control, loss of 
communication, diminish aerodynamic performance and may 
negatively affect the operator. Lastly, severe hazards are those 
which would result in severe damage or loss control of an 
aircraft. 

• Wind impact on UAVs operation:  

This is a widespread phenomenon that wind causes a change in 
the direction of UAV when its direction is normal to the 
direction of UAV [22]. Strong winds have capability to affect 
the ground speed and flight path of an unmanned aircraft. 
Similar to larger manned aircraft, headwinds and tailwinds, 
decrease or increase the ground speeds. Unlike typical manned 
aircraft, wind speeds can easily surpass the maximum speeds of 
the UAVs. Generally, rotary-wing aircrafts have slower 
maximum speeds than those of fixed-wing aircrafts. The aero 
dynamical structure of fixed wing UAVs helps the aircraft to 
maneuver through air streamlines whereas rotary-wing  UAVs 
are more likely to struggle even at lower wind speed [15].  
Wind impact on UAV operations can be presented 
mathematically as following: 
 

�� = �an��                                                                                             (1) 
 

�� =  
(��)�
(�)
�(��)��(�)                                                                                      (2) 

����� =   (�����)
(�(��)(��) )                                                                               (3) 

x =  cos φ�                                                                                                 (4) 
 

� =  sin ��                                                                                                         (5) 
In the above set of equations used �� represents the direction of 

wind and ��  represents the direction of deviations in UAVs 
caused by wind. Discretized steps of the simulation are 
represented by k. As it is known, when UAVs interact with  wind 
direction at every step, a vertical line is formed at that instant.  

The �1 and �� are slopes of these two vertical line equations. The 
x and y give the change in direction along x-axis and y-axis. 

• Rain Impact on UAVs Operation: 

The deviations caused in UAVs waypoints from planned 
trajectory due to rainfall can be considered by looking into the 
weight of water on the UAVs wings due to rain, with rotary 
UAVs like on a quadcopter, this effect is not that strong [15] . 
When UAVs fly through moderate rain the value of precipitation 

at each ��� area is low. This less amount of water flows down 
from the UAVs wings without causing any weight addition in 
the accumulative weight of the UAVs body and rain water. 
Whereas if the rain precipitation is high, the amount of rain 

coming onto the UAVs wings ��� area cause unbalance in the 
left side’s wing weight and right side’s wing weight. The 
unbalance of weight can be expressed as given (6 ) below: 

 !"#$ =   %&' +  ')"#                                                       (6) 

 

 !"#$ is representing the accumulative weight of UAVs wing  

 %&'    structure weight and   ')"# weight of water on the wings 
due to rain. The weight of water on each UAVs wing can be 
modelled as given in (7) below: 

 ')"# =   *'+ −   -.                                                         (7) 

In the above equation  *'+ represents the total weight of water 

on each wing of the UAV and  -.  represents the weight of 

water flows down from the UAVs wings due to curve and 
slippery structure of UAVs’ wings.  



The deviations of waypoints from the planned trajectory caused 
by rain precipitation is directly proportional to the wings area of 
the UAVs. This is why rotary-wing UAVs show more resistance 
to the deviations as compared to fixed wing UAVs when 
subjected to same amount of rain precipitation. 
 
The Table 1 shows all three-different weather classification 
compared to Beaufort wind scale and rainfall precipitation.  
As the map has been scaled with a ratio of 1:4.3 km that can be 
written as: 

0.006 units as the large impact = 0.006 × 4.3= 0.0258 km = 25.8 
m 

0.004 units as the small impact = 0.004 X 4.3= 0.0172 km = 17.2 
m 

Weather type Moderate Adverse Severe 
Wind (m/s) Below 13  14-24  Above 34  

Rainfall (mm) 0-2.5   2.5 - 7.5  Above 7.5  

Table 1:Scale of weather classification used in this study 

C. Types of UAVs 

Current UAVs or drones may be generally classified as fixed-
wing or rotary-wing aircrafts. Fixed-wing UAVs are more 
efficient, have longer ranges and greater payloads however, 
rotary-wing drones take off and land vertically with the ability 
to hover during flight [23]. These two basic types of UAVs are 
considered in this simulation. The properties for fixed-wing and 
rotary-wing are slightly different as shown in Table 2. 
 

Item Delair UX11 Phantom 4 Pro 

UAV type Fixed wing Rotary-wing 

Aircraft weight 1.6 kg 1.375 kg 

Flight time 52 minutes 30 minutes 

Cruise Speed 54 km/h 50 km/h 

Wind resistance 45 km/h 10 m/s 

Table 2:Comparison of two UAV’s types 
 

D. Path Planning and Optimization  

In this paper, the trajectory optimization is investigated using 
PSO algorithm. PSO is a population-based stochastic 
optimization method inspired by the behaviour of wildlife in 
groups such as flocks of birds or schools of fish [24]. The main 
advantages of PSO are that it is simple to understand, easy to 
implement and converges rapidly as compare to other traditional 
global optimization methods such as genetic algorithms and 
simulated annealing [25]. In addition, PSO can be leveraged to 
count and determine the optimal values of trajectories from A to 
B. In doing so, PSO identifies the best possible trajectory which 
is cost-effective and efficient against any challenge. The PSO 
algorithm is used for anticipating and planning drone path and 
is helpful particularly to identify the solution that requires the 
minimum movement between starting and end-points while 
avoiding any obstacle. 

E. Deconflicting Strategy  

A conflict is defined when two or more UAVs are in the same 
point at the same time. To resolved any UAV conflict that 
appears in the scenarios, some strategies of deconfliction have 
been discussed in the literature [26]. Ground delay  and slow 
speed have been used as deconflicting strategies in our 
simulation setting.  

F. Metrics used to Characterize Airspace Traffic 

• Safety 

Safety metrics focus on the ability of an airspace to affirm the 
safe separation among aircrafts. In traffic management, safety 
can be defined in terms of Loss of Separation (LoS) [27]. 
Separation among aircrafts is measured in terms of number of 
conflicts and intrusions of  aircraft into other aircraft domain. In  
context of trajectories, Euclidean distance is used to define the 
closeness between two trajectories belonging to two different 
UAVs [28] by comparing it with a minimum separation 
distances. The value of the minimum safe separation distance 
may depend on the density of air traffic in particular region of 
the airspace. However, there is no pre-defined standard 
separation distance for UAVs, although 50 m is a value 
commonly used in research [29].  The main goal of safety 
metrics is to acquire Euclidean distances that violate different 
loss of separation levels thus deterring the safety of the UTM 
airspace.  
 Following are the details of this metrics:Let us assume two 

different trajectories �"  ��1 �2: 

�" = (3"�, �"� , 3"�, �"� , … … … , 3"# , �"# , )                                  (8) 
 

�2 = 632�, �2�, 32�, �2�, … … … , 32# , �2# , 7                                 (9) 

where 3"# is value of feature n for trajectory 8 and 32# is value 

of feature n for trajectory 9 . Euclidean distance is used to 
determine the closeness  between flight trajectories as follows: 

:.(;<, ;=) = >;< − ;=>? =
@∑ 6B<C − B=C7?DCEF +  6�<C − �=C7?

                                    (10) 

 

In order to deal a practical scenario, the trajectory of each UAV 

is discretized in small steps on spatial-temporal scale for 

measuring the Euclidean distance discussed as follows. The 

Euclidean distance between any two UAVs out of n umber of 

UAVs flying in a region within a specified time slot is calculated 

by taking a convolution between a cuboid window of x-y-t axis 

having dimensions ( 1G�8H × 1G�8H × 4 �8� ) and UAVs 

distribution on the whole x-y-t airspace. By incorporating the 

time window as the third axis helps to realize the actual 

concurrence of UAVs in a region during flight time. The 

detected regions of UAVs trajectories within the sampling 

window are recorded and discretized into small steps. Euclidean 

distances are thus calculated by using discretized x and y 

coordinates of the detected trajectories. 

• Density 

Density of airspace is measured as the number of UAVs per unit 
area (kmSq). This metric is defined as the number of UAVs in a 
W×W region across the airspace. It is calculated by using all-
pass filter by convolving a W×W window with in the entire 
airspace. 



J(3, �) =  ∑ 1(3 ∗ L + 8, � ∗ L + 9)M��",2EN                          (11) 

Where 1(3, �) gives the number of UAS at the location (x,y) 
and S is the stride size of the convolution. We refer to the matrix 

J(3, �) as the density map and the matrix 1(3, �)  as the 
distribution map [30]. 

• Capacity 

The capacity of airspace is defined by Krozel et al. as “the 
maximum numbers of aircrafts per unit time that can be 
accommodated safely by airspace, when airspace constraints 
alongwith controller and pilot workload constraints are given” 
(e.g., special use airspace, convective weather constraints, etc.) 
[31]. If the air space density reaches at its maximum, there will 
be no space for adding new routes therefore, it can be stated that 
air space capacity is maximum. Minimum distance between 
UAVs’ trajectories should be recommended as safe distance. 
 Total area can be calculated by taking a product of longitudnal 
and lateral lengths of the airspace and can be presented as: 

 
�O =  P(QR)� − QR"#)�  × (SR)� −  SR"#)�                 (12) 

 

QR)�  and SR)� are the highest where as QR"# and SR"# are the 
lowest points of air space dimentions in longitudnal and lateral 
axis of cartisian coordinates. 

OTUV = ∑ ∑ 6WB<(CF) − B<CW × W�<(CF) − �<CW7%���E�#"E�    (13) 
 

The area of the airspace occupied by all UAVs with in a 
specified duration of scenario’s flight time which can be written 
as in (13). Here x and y represents the cordinates of UAVs, s 
represents the total number of discretised steps of the UAV 
trajectory and n represents the number of UAVs in the airspace. 

OXYZ[ =  ∑ O\X\=1                                                                  (14) 
OXYZ[  represents the area covered by the dynamic and static 
obstacles during a specific scenario flights. N is the number of 
total NFZs in the airspace happened during that interval of time 

and O] represent the area of respective NFZ which include static 
and dynamic obstacles.                                                                    
 O�^ = �O − O_O` − OXYZ[                                                 (15) 
 
By using (12), (13) and (14) the available airspace can be 
presented as in (15). The number of UAVs which can be catered 
in the available area are strictly based on the waypoints of 
UAVs. 

 
 

• Efficiency 

Efficiency is defined with respect to time or energy. The 
alternatives leading to good energy efficiency may not lead to 
good time efficiency[27]. For example, energy efficiency is 
always maximized by flying through shortest path, but this can 
result in long ground delays for the vehicle. At other instances, 
neither time nor energy can be minimized, directly. The ground 
delay is minimized by selecting first available path found by  
shortest path algorithm even though it might result in longer path 
that might arrive late due to delayed start. 

Time efficiency is evaluated by calculating the ratio of time 
taken by UAV during ideal flight to the total time that has been 
taken by UAV to reach at its destination. 

a&"R+ =  ∆&cdefg
∆&fhhcifg

                                                                        (16) 

In the above equation, an ideal scenario is considered with no 

weather constraints in airspace. ∆H".+)j  is ideal time taken by 

any UAV in air during its flight, ∆H)''"k)j represents the time 
taken by  UAV to reach at its destination which include ground 
delays and slow speed.  
Energy efficiency is calculated as a ratio of ideal time to the 
actual time taken by any UAV during its flight in airspace. 
Mathematically, energy efficiency can be presented as: 

a+#+'$
 =  ∆&cdefg
∆&clmnefch

                                                                   (17) 

∆H"#&o+)"'  is time taken by any UAV in a respective scenario 
with different weather constraints. Time has been evaluated by 
considering total distance travelled by UAV at a particular speed 
(as assumed to be 90 km/h.) Mathematical definition to find 
distance travelled by any UAV through all waypoints can be 
presented as: 

J8[p���q�q�H =  P(3� − 3�)� + (�� − ��)�                  (18) 

Where 3�, �� refer to the position coordinates of the 2nd step of 

UAV, and 3�, �� are the values of the previous step. 
 
Total distance is calculated by summing all the displacements at 
each step of the UAV. Total time taken by any UAV is  
represented as: 

∆H"#&o+)"' =  r"%&)#s+
t*++.                                                      (19) 

More efficient paths will lead to efficiency metrics values close 
to 1. As paths become less optimal, their efficiency metrics 
values will tend toward 0. The time efficiency is inferior or equal 

to  energy efficiency because, ∆ H)''"k+)j > ∆H"# vo+ U"'  by 
definition. 

IV. SIMULATION SCENARIOS AND RESULTS  

A set of different scenarios are constructed for both type of 
UAVs by considering different weather conditions, different 
number of UAVs per scenario, fixed and random start and end  
locations. Figures of each considered scenario against different 
parameters are presented below. 

A. First scenario of simulations  

During first day scenario, between (9-10 am), 39 rotary-wing 
UAVs and from (10-11 am), 39 fixed-wing UAVs were  not 
allowed to fly over the seven defined obstacles.This scenario 
also incorporated the effects of dynamic environment obstacles: 
adverse rain and winds, and extreme weather conditions. The 
minimum safe separation distance of 50 m is used to study the 
effects on safety of airspace. One of these simulated scenarios 
is presented in Fig. 2.  This scenario is used to evaluate airspace 
density, capacity and time-energy efficiency. Also, the 
performance of both type of UAVs are also compared in this 
scenario. 
 



B. Second scenario of simulations 

A 29 fixed-wing UAVs and 29 rotary-wing UAVs in airspace 
are considered without any dynamic environment constraint in 
this scenario. One of the simulated scenarios is presented in Fig. 
3 . This scenario is used as an ideal airspace behavior and is set 
as a benchmark to evaluate energy and time efficiency. 

 

Fig. 2. 39 Rotary-wing UAVs with extreme weather and adverse rain and wind 

 

 
Fig. 3.29 Fixed-wing UAVs without any weather constraints 

C. Third scenario of simulations 

In this scenario 29 fixed wing and 29 rotary-wing  UAVs with 
different weather conditions are used to evaluate UAV safety, 
density and airspace capacity. One of the simulated scenarios 
has been presented in Fig. 4.  
 

D. Fourth scenario of simulation 

In this scenario 29 rotary-wing UAVs are simulated. The 
waypoints are also prioritized in this scenario with the addition 
of dummy rows for emergency UAVs in the fixed flight plan. 
For any emergency UAV service, the high priority levels (1-2) 
are assigned that results in random way points for emergency 
UAVs. There were four emergency service UAVS and 25 
general purposes fixed location UAVS in this scenario.  Also, 

the dynamic recreational areas are opened in different hourly 
time zones for more better realistic picture. Different weather 
constraints are also incorporate to evaluate airspace safety. The 
simulated scenario with open recreational areas is presented in 
Fig. 5. 

 
 

Fig. 4 29 Rotary-wing UAVs with extreme weather and adverse rain and wind 

 

 
Fig. 5. 29 Rotary-wing UAVs Random emergency with high priority & open 

recreational areas 

V. AIRSPACE PERFORMANCE ANALYSIS  

A. Airspace safety 

Airspace safety is evaluated using safety metrics discussed in 
section F-I. A convolution between a sampling cuboid window 

1G�8H × 1G�8H × 4 �8�  and whole airspace distribution is 
conducted to detect the UAVs trajectories in these regions. The 
detected UAVs trajectories are then discretized into ten equally 
spaced points. The closeness between trajectories is then 
calculated by measuring the Euclidian distances and is evaluated 
among all the possible combinations of trajectories in the 
sampling window. The measured Euclidian distances are 
presented as 2D circles in three-dimensional x-y-t plots as 
shown in Fig. 6 and Fig. 7 . The radius of these Euclidean 
distance circles present safety of the airspace. The larger the 



radius of a circle or Euclidian distance in the sampling window, 
the safer the airspace will be. Three different categories of 
congestion are designated in green, amber and red colours as in 
Fig. 6 and Fig. 7 that represent safe, warning and dangerous 
zones depending upon the radius of the circles. 
The results of safety metrics are presented in this section. In 
order to keep the simulated scenario more realistic, deviations 
due to weather conditions based on UAVs performance are also 
considered. The scenarios simulated here incorporate the worst 
case (with extreme weather, adverse rain, and adverse wind).  
 

The airspace safety analysis of 39 fixed wing UAVs in an 

airspace environment without weather constraints is presented 

in Fig. 6. It is observed that the separation distance between 

UAV trajectories lies in safe zone for most of the congestion 

points in the airspace. some congestion points are observed at 

warning level while only a few of the congestion points is 

designated within the dangerous zone when there is no weather 

ambiguity.it is also evaluated that about 70% of the separation 

distances lie in the safe zone followed by about 25% at the 

warning level and only 5% at the dangerous level. 

Analysis of a worst-case scenario with adverse wind, adverse 
rain and extreme weather ambiguity with 39 UAVs in the 
airspace is presented in Fig. 7. It has been observed that more 
dangerous level of congestions is observed in the worst-case 
scenario as compared to the scenario without dynamic obstacle 
because UAVs are more deviating under adverse rain, adverse 
wind and extreme weather conditions that result in a significant 
loss of separation. It is also evaluated that about 60% of the 
separation distances lie in the safe zone followed by about 30% 
at the warning level and only 10% at the dangerous level. 
 
Extreme weather conditions drastically affect the airspace 
characteristics by making a NFZ for UAVs. Rerouting and 
congestion are observed in UAVs trajectories that use airspace 
now occupied by the extreme weather conditions. It is observed 
that traffic flow patterns are highly influenced by the airborne 
weather ambiguities, such as adverse wind and adverse rain due 
to deviation of UAVs from planned trajectories that result in 
loss of separation distance and cause more dangerous and 
warning level congestion in airspace.  
 
We also analysed the safety of the airspace in high priority 
emergencies and open recreational areas scenario in Fig. 8 .It is 
evaluated in this scenario about 44% of the Euclidean distance-
based circles lie in the danger zone followed by about 29% at 
the warning level and only 27% in the safe zone. This means 
that random start and finish locations in case of emergencies 
and opened recreational areas have negatively impact the safety 
of the airspace. 
 
 

 

Fig. 6.Safety analysis without weather constraints 

 

 

 
 

Fig. 7.Safety analysis with adverse wind, adverse rain and extreme weather 

 

 
Fig. 8.Safety analysis with random emergencies and open recreational areas 

B. Airspace density 
The third scenario of 39 UAVs in airspace has been used to 
evaluate density metrices. Airspace density has been evaluated 
by taking a convolution between of UAVs distribution in 
airspace d (x,y) and an all pass filter having a sampling window. 

0.5 w�� window of the filter is considered. The whole airspace 
has been analyzed to measure the density of the UAV 
trajectories at each square km area. Low to high density of 
UAVs per square km is represented by black to white colors 
respectively that marks crowded areas. A simulated scenario of 
29 rotary-wing UAVs with and without weather constraints as 
dynamic obstacle has been presented in Fig. 9. Similarly, 
heatmap of a density for the scenario with extreme weather and 
adverse rain has been presented in Fig. 10. 
 



 
Fig. 9.The heatmap of 29 UAVs airspace density without weather constraints 

 
Fig. 10.The heatmap of 29 UAVs airspace density with extreme weather and 

adverse rain 

By the comparison of heatmaps for different scenarios 
presented in two figures above, it has been observed that the 
airspace traffic flow patterns are highly influenced by the 
scenario dynamic parameters. Due to the extreme weather 
conditions, a large region of airspace has been occupied by the 
weather that forces the UAVs to avoid the affected region for a 
safe UTM airspace operation. This result into large deviations 
in the UAVs waypoints that cause congestion in different 
regions of an airspace. Airspace density against first simulated 
scenario of 39 rotary-wing UAVs with extreme weather, 
adverse wind and rain have been presented in Fig. 11

 
Fig. 11.The heatmap of 39 UAVs airspace density with extreme weather and 

adverse rain 

It has been observed that as the number of UAVs are increased, 

the density also increases due to large variations in the observed 

traffic patterns. Moreover, the dynamic weather constraints also 

play a major role in increasing the density as UAVs trajectory 

deviates to avoid the weather fronts thus causing variations in 

air traffic patterns. 

C. Airspace capacity 
To understand airspace capacity with different scenario 
parameters, the simulation results have been presented in this 
section. We have used the available area in the airspace to 
estimate the capacity. The airspace area already occupied is 
calculated by adding the area of all NFZs (14) and the area used 
by the UAVs trajectories (13) during flight under different 
weather conditions. Airspace structure with all the discussed 
scenarios is presented in Fig. 12. 
 

 
Fig. 12. a) 29 fixed wing UAVs with extreme weather, adverse rain and adverse 
wind. b) 39 fixed wing UAVs with extreme weather adverse rain and adverse 
wind. c) 39 fixed wing UAVs without dynamic constraints. d) 29 rotary-wing 
UAVs with extreme weather adverse wind and adverse rain. e) 39 rotary-wing 
UAVs with extreme weather adverse wind and adverse rain. f) 29 rotary-wing 
UAVs without any dynamic constraint. 

 

It is observed in Fig. 12 that in the absence of dynamic weather 
conditions least area is occupied. Thus, there is less congestion 
in the airspace. A small increase in the occupied area has been 
observed with adverse wind and adverse rain because of the 
deviation in the UAVs trajectories which are passing through 
these regions. Whereas a significant amount of increase in the 
occupied area has been observed with extreme weather as an 
environmental constraint because UAVs are not allowed to pass 
through extreme weather conditions to avoid any conflict 
creating weather fronts. The available airspace region has been 
evaluated by subtracting the occupied area from the total area 
of current airspace. 
Fig. 12 has been scaled with a ratio of 1:4.3 km. If UTM is 
required to accommodate more UAVs in airspace and cater 
increased density, a proper estimation of airspace capacity is 
required. The available area in the airspace is the best way to 
estimate the room for new coming emergency or planned 
UAVs. The presented available area shows the variation of 
available airspace with respect to different scenario parameters. 
It has been observed from the different scenarios that traffic 
flow patterns are highly affected by different weather 
conditions due to rerouting in case of extreme weather. There 
is more congestion in airspace as less areas are available due to 
extreme weather conditions. Thus, the UAVs are taking larger 
turns to reach the destination by avoiding any airborne extreme 
weather constraint. It is observed that as the number of UAVs 
are increased the occupied airspace is also increased slightly by 
3-4% under extreme weather conditions. this increase is due to 



large variations in the airspace traffic patterns as seen in Fig. 12 

b and e. 

D. Airspace energy and time efficency 

The time efficiency of each UAV flight has been evaluated by 
using its ideal time. The time efficiency of both scenarios has 
been presented in Fig. 13 and Fig. 14 given below: 

 
Fig. 13.Time efficiency of UAV with extreme weather and adverse wind 

The decrease in the time efficiency of the UAVs with a low 
priority that are subjected to ground delay. Similar to energy 
efficiency, extreme weather has an impact on time efficiency 
due to the unavailability of airspace regions and the changes in 
traffic flow patterns, forcing low priority UAVs to ground 
delay. 

 
Fig. 14.Time efficiency in extreme weather, adverse wind and adverse rain 

The evaluated energy efficiency of each UAV with a certain 
scenario has been presented in  Table 3. The energy efficiency 
of the airspace is evaluated by comparing battery usage and thus 
cost incurred by UAVs during the flight time in comparison 
with the ideal case scenario when there are no weather 
constraints. In this context, it is observed from Fig. 2 above that 
as large number of UAVs are flying in the adverse wind 
scenario, there observed a slightly higher loss of energy 
efficiency in rotary-wing UAVs due to their dynamic 
constraints. 

Scenario description UAV type Number 

of UAV 

Energy 

efficiency 

 
Eextreme weather, 
adverse rain and 
adverse wind 
 

Rotary-wing 29 96% 

Fixed-wing 29 98% 

Rotary-wing 39 89% 

Fixed-wing 39 91% 

Table 3:The evaluated efficiency of airspace for different scenarios 

 

E. Characterization of traffic flow patterns  

The characterization of the UAVs traffic flows in Bedfordshire 
has been done by conducting safety, density, capacity and 
efficiency analysis for both time and energy as presented in 
above sections. Historical patterns were taken from different 
time intervals of the day to capture the variability in weather 
conditions considered as weather constraints. It is observed 
from safety analysis that traffic flow patterns in Bedfordshire 
airspace have been changed due to trajectory deviations that are 
caused by weather constraints such as adverse winds, rain and 
extreme weather conditions thus threating the safety of 
airspace. 
The density map reveals that adverse weather conditions and 
specifically extreme weather conditions result in congestion 
patterns and also create some void holes resulting in reduced 
capacities as discussed in section V- B above. It can be seen 
from the heat map that yellow highlighted trends show the 
congested areas. The North-West and South-West regions in 
15x15 (1:4.3 km) area of Bedfordshire are denser due to 
increased density of trajectory points spatially. The capacity 
analysis reveals that there is almost 8% reduction (Fig. 12(b and 
e) in available airspace area in case of extreme weather as 
compared to absence of any dynamic obstacle. This reduction 
in the airspace is due to trajectory deviations because of weather 
front causing void holes to be created as trajectory patterns and 
the UAVs are taking larger turns to reach the destination by 
avoiding such dynamic weather constraints. The energy 
efficiency analysis reveals that accumulated airspace energy 
efficiency shows almost 7% reduction when extreme weather 
conditions are met. Also, the time efficiencies have been 
disrupted in such adverse conditions due to either rerouting or 
ground delay implementations. It has been observed that time 
delay of the order of 1.8 to 2.5 minutes are experienced in this 
deconfliction process thus affecting the time efficiencies This 
may adversely affect the customer satisfaction and increase the 
operational costs. The extreme weather dynamic obstacle cloud 
has completely deviated the paths of both type of UAVs that is 
evident in comparison of Fig. 2 and Fig. 4. The void area 
between Cardington, Luton and Dunstable is accommodating a 
number of trajectory points that became unusable due to 
evolution of extreme weather cloud in this region resulting in 
congestion due to rerouting. All emergency services UAVs 
have been assigned with level 1 priority. These emergency 
UAVs leads to ground delays and rerouting for some low 
priority UAVs causing reduction in their time and energy 
efficiency, as presented in Fig. 13 and Fig. 14. It has also been 
observed that random trajectories of these emergency UAVs 
and removal of restriction by weather constraints such as 
recreational areas have adversely affect the safety of the 
airspace. It has been observed from analysis that traffic flow 
patterns in Bedfordshire airspace changed due to variability in 
weather constraints causing a change in airspace characteristics 
and patterns. It is thus concluded that dynamic weather and 
UAVs emergency constraints play a significant role in defining 
various traffic flow behaviors such as unusable closed spaces 
and congestion. 



VI. CONCLUSION & FUTURE RECOMMENDATIONS 

The current work has formulated a customized simulation 
framework to characterize traffic flow behaviors using safety, 
capacity, and efficiency related metrics. The safety analysis that 
was conducted by evaluating the separation distance of UAVs 
in spatial-temporal scale. This separation distance can be 
executed at the planning stage while designing the UAV 
trajectories and later adopting see and avoid philosophy in real-
time to enforce this safety envelope using on-board sensors. 
Moreover, the path optimization of the UAV’s can be useful in 
minimizing the flying cost and efficiency of UAVs. The ML 
algorithms are highly supportive and efficient in solving 
optimization problems where there are many variable factors 
and enormous amount of information is involved. In addition to 
that, path optimization of the UAVs through ML algorithms 
also considers other factors such as authorized airspace 
restrictions, other aircraft paths in the planning operations to 
maintain the safety of the UAV, other aircrafts, ground 
pedestrians and properties [32]. We therefore suggest a deep 
learning model by integrating Reinforcement learning (RL) and 
A deep neural network (DNN) algorithms for optimizing the 
path policy in-order to maximize the energy efficiency of 
UAVs.   
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