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DISSERTATION ABSTRACT

Kewen Meng

Doctor of Philosophy

Department of Computer and Information Science

September 2021

Title: Compiler-Assisted Program Modeling for Performance Tuning of Scientific
Applications

Application performance models are important for both software and

hardware development. They can be used to understand and improve application

performance, to determine what architectural features are important to a particular

program component, or to guide the design of new architectures. Creating accurate

performance models of most computations typically requires significant expertise,

human effort, and computational resources. Moreover, even when performed by

experts, it is necessarily limited in scope, accuracy, or both. This research considers

a number of novel static program analysis techniques to create performance-

related program representations of high-performance computations. These program

representations can be used to model performance or to support efficient and

accurate matching of computational kernels. We develop two different tools for

static analysis-based program representation and demonstrate how they can be

used for the optimization of scientific applications.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Performance models are a type of reduced representation of the behavior of

programs. They can be used to describe and predict the behavior of an application

to provide software developers and researchers with insightful information

about the execution status to help them identify the potential bottlenecks to

further optimize the performance. Performance modeling techniques fall into

three categories by the method of generation and data collection: analytical,

empirical, and simulation-based approaches. Analytical modeling involves creating

parameterized expressions by abstracting static or dynamic characterizations of

an application. Empirical modeling methods rely on performance data obtained

during the actual execution of programs on the target architecture. Simulation-

based approaches provide a software environment that mimics a computer, on

which the program can be “executed”. Software performance models obtained by

any combination of these approaches are an essential tool for designing and using

current and future architectures.

1.1 Motivation

As the development of new architectures accelerates, the computing

capability of high-performance computing (HPC) systems continues to increase

dramatically. However, many applications cannot fully use the available computing

potential, wasting a considerable amount of resources and human effort spent

on non-portable optimization. Missed opportunities are partially due to the

inability to fully utilize available computing resources or take advantage of

specific capabilities of architectures during application development that mainly
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relies on high-level languages and compiler optimizations. Hence, modeling

program behavior at a fine granularity is an essential component of understanding

performance bottlenecks and potential of implementations.

Performance models are helpful not only during the implementation of the

program but also for the entire software life-cycle. For example, a performance

model is able to provide guidance to the application developers in choosing

the most suitable algorithm to reach some performance goal. In the phase of

application testing, it offers direct feedback of the performance and resource

consumption of an application by adjusting parameters. In addition to software

development, performance modeling also plays an important role in system design

and tuning. Specifically, performance models are capable of describing non-existent

hardware, which helps researches to explore the hypotheses when designing new

systems. For example, models can help select the best network topology to connect

nodes in order to be more efficient for a large-scale parallel system. A performance

model can be used to indicate the expected design performance of a platform with

a given configuration, which, when compared with the measurement performance

by benchmarking, would reveal tuning opportunities. However, performance models

are still difficult to create and maintain as software evolves. Hence, automating the

generation of performance models would increase their use in practice and can have

significant impact on both software and hardware development.

1.2 Research Questions

In this thesis, our goal is to address the following high-level research

question through the three sub-questions that focus on specific approach strategies.

2



What program representations enable the static performance modeling and

accurate matching of key computational kernels to support manual or compiler

optimizations?

RQ1 Can we use static binary analysis to construct representations of programs for

performance modeling?

RQ2 Can we use compiler-generated intermediate representations to create

program embeddings that allow accurate matching of loop-based

computations?

RQ3 Can we optimize GPU computations based on language and architecture-

independent program representation matching?

1.3 Research Approach

In this work, we present novel program representations and performance

modeling methods to aid in the optimization of scientific applications. In existing

performance modeling tools, a considerable amount of research focuses on

dynamic approaches, which rely on runtime information to optimize the target

applications, whereas static performance modeling receives significantly less

attention. Although performance models based on runtime data are potentially

more accurate, descriptive, and easier to generate compared to static methods,

their high runtime cost and inability to capture all possible program behavior are

significant limitations. In contrast, static performance modeling is preferable when

a complete (covering all execution paths) model is needed quickly, or when wishing

to model performance on non-existent architectures.
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In this thesis, we introduce new program representations and develop

methodologies for the generation of performance models and program optimization

suggestions through primarily static code analysis. As the input to our analysis,

we consider both binaries and compiler-generated intermediate program

representations. The novelty of our approach is that in the performance tuning

cycle we focus on kernel identification and reuse of existing optimal tuning

parameters. Thus the static code analysis in our approach plays a critical role. It

extracts metrics and generates reasonable representation to accurately describe

the target kernel. Moreover, we leverage machine learning technique on code

identification to further reduce the computation costs.

1.4 Dissertation Outline

This remainder of this dissertation is organized as follows.

– Chapter II Background. We categorize the existing modeling approaches

into three groups: analytical, empirical, and simulation-based modeling

methods based on the performance data collection techniques and the

approach for model generation. This chapter provides insightful details

about each category and the comparisons among the different approaches.

By understanding the development of performance modeling approaches and

the advantages and disadvantages of each category, we find the space where

we can improve in this area.

– Chapter III Mira. We present Mira [91] framework as our efforts to solve the

first research question. In this work, we leverage the static analysis on the

combination of the source and the binary code to overcome the problems

caused by solely relying on one type of code. The parameterized model

4



achieves the good accuracy compared to the results from dynamic analysis

in its estimates of floating-point operations.

– Chapter IV Meliora. We propose the Meliora [92] framework for solving

the second research question. Meliora can accurately match loop-based

computations based on the graph representation derived from a compiler-

generated intermediate representation. By using the matching results, we are

able to guide the CPU optimization while greatly reducing the cost of the

process for empirically searching the performance tuning space.

– Chapter V Meliora-based Optimization of CUDA Computations. In this

chapter we apply the approach described in Chapter IV to improving the

efficiency and performance of GPU optimization. We show that the set

of program features and control-flow-based graph representation can also

capture parallelism-relevant characteristics. We demonstrate significant

improvement in autotuning performance for CUDA versions of the SPAPT

autotuning benchmark.

– Chapter VI Conclusions and Future Work. We summarize our contributions

of this dissertation in the context of our research questions and discuss future

research directions.

1.5 Co-Authored Material

This dissertation includes work from previously published co-authored

material. This section lists the chapters with the publications and their authors.

– Chapter III is based on the collaboration research [91] between Boyana Norris

(UO) and myself.
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– Chapter IV is based on the collaboration research [92] between Boyana Norris

(UO) and myself.

– Chapter V is based on the unpublished research between Boyana Norris (UO)

and myself.
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CHAPTER II

BACKGROUND

2.1 Introduction

Performance models are structural representations of program behavior

which are descriptive and predictive. Models can. provide software developers with

useful information about potential bottlenecks and help them identify optimization

opportunities.

Although performance models may emphasize different performance

metrics according to specific requirements, they aim to answer several questions in

general: What is the estimated execution time of an application? What is the best

execution time that an application can achieve? What is the expected execution

time if one (or more) application parameter changes, for instance the number of

processors? How much memory is required to run the program and achieve the best

runtime?

In this chapter, we categorize the performance modeling approaches into

three groups, analytical, empirical and simulation-based. We accomplish this by

considering the method of collecting performance metrics, the data representation,

and the techniques used to process the data in model generation.

2.2 Analytical Modeling Approaches

Analytical modeling seeks to abstract both static and dynamic

characterizations of applications by parameterized expressions. It has been

widely used in the high-performance computing area to predict system and

application performance, provide guidelines for optimization and automatic tuning

performance. Importantly, researchers can take advantage of analytical modeling

7



to explore future directions and verify new ideas as it is able to describe theoretical

systems or architectures which do not yet exist. Moreover, developers also benefit

from applying analytical modeling in each phase of the software development

process. Specifically, analytical modeling offers trade-off decisions, such as the

CPU computing power, memory bandwidth, and network topology for setting a

super-computing system during the requirement analysis, which help with system

tuning for target applications in the testing period, and provide valuable feedback

for maintenance. In this section, we describe several analytical modeling approaches

aimed at improving application performance. In the following paragraphs, we

describe manual and automatic analytical modeling, respectively.

Manual analytical modeling is a technique which does not require

performance data obtained from the execution of applications. It is built by the

analysis of intrinsic characteristics of the target programs, such as the problem

size, the algorithm and communication pattern. In addition, the features of the

platform which include architectural metrics such as latency, size of cache line,

FLOPS rate, and network bandwidth for running the programs are taken into

consideration. Then, the analytical model is built by analyzing the relations among

all the potential factors which could impact performance.

Analytical models can be constructed through source code analysis. The

understanding of the code and experience of the modeler may determine the

representativeness and the accuracy of the model.

Clement and Quinn [33] introduced an analytical model for predicting the

performance as speedup of parallel scientific applications running on multiple

nodes. The goal of this analytical model is to provide performance information

for the compiler to assist the program optimization. This modeling method started

8



Figure 1. The LogP model. From [34]

from analysis of the previous analytical model [45, 100] for estimating the execution

time of parallel applications, which uses the following expression to describe the

execution time of an parallel application in general:

τ(p) = Ts +
Tp
p

+ σ(p, topology)

The term Ts + Tp

p
is the ideal execution time of a parallel application.

In addition to the ideal execution time, a function of processes and topology is

used to represent the communication overhead related to the specific topology

of the system. Clement and Quinn focused on startup cost as the major

performance impact in the communication overhead, since previous research [57, 39]

demonstrated that startup cost is the predominant factor in the overall cost of

communication. Therefore, the cost of communication can be expressed as the

number of communication times the startup cost: Ncomm ∗Cstartup. For instance, the

overall communication overhead is: σ(p, topology) = Ncomm ∗ Cstartup ∗ (1 + log(p))

for broadcasting a message on a hypercube topology. Moreover, this model

also introduced memory parameter Nm and Cm for representing the number of

uncached memory access and the number of necessary cycles for finishing the access

9



operations to the uncached memory. Thus the model is able to estimate the waiting

time for uncached memory accessing.

LogP [34] and the extensive work LogGP [2] are two analytical models

created for describing an abstract machine configuration revealing the behavior

of a shared-memory multiprocessor system. They focus on the characteristics of

the interconnection network which is responsible for transmitting point-to-point

messages for the communication among all the processors. Figure 1 shows the four

parameters used for building the model:

1. L(latency): The upper bound of the communication latency/delay which

happens during the message delivery from the source processor to the target

processor.

2. o(overhead): The overhead represents the time that a processor spends for

sending or receiving the message. During this time, the processor is not able

to process any other task.

3. g(gap): The gap indicates the minimum interval in time between two

consecutive message sending or receiving for the processor.

4. P (processor): The number of processor/memory modules communicating

with each other by messages.

The LogP model is designed for modeling the interconnection communication by

the fixed-sized short messages, and it demonstrated its capability of accurately

predicting the performance of an algorithm running on the particular architecture.

However, with the fast development of the hardware, many architectures (IBM

SP2, Paragon, Meiko CS-2) at that time had much higher bandwidth and started

supporting long messages in order to further increase the performance. In such

10



scenario, researchers proposed LogGP as the extension of LogP with a linear model

specialized for long messages. As a consequence of adding the new component,

LogGP introduced a new parameter for the model G(gap per byte), which quantifies

the time each gap consumes per byte for long messages. The reciprocal of G

indicates the communication bandwidth for the long message. To validate the

LogGP model, authors implemented three long-message scatter algorithms (Simple

Long-Message, Binomial Tree, and optimal), and demonstrated good results,

comparing prediction with measurement. With appropriate inputs, the logGP

model can be used for predicting the performance of parallel algorithms and helping

hardware developers explore the impact of the hardware-related parameters on the

programs running on a particular architecture. The prediction result can be used to

aid the optimization of the existing architecture and design future hardware.

Kerybyson et al. [69] presented an analytical model based method to guide

performance and scalability analysis. The goal of this work is to create a predictive

analytical model to analyze the performance and scaling behavior of an ASCI [62]

application SAGE (SAIC’s Adaptive Grid Eulerian Hydrocode). SAGE is a

multidimensional (1D, 2D, 3D) hydrodynamics code with adaptive mesh refinement

using second order accurate numerical methods. The authors created the model by

studying four different aspects of SAGE: The parallel spatial decomposition, the

scaling of sub-grid, the common operations in a code cycle, and adaptive mesh

refinement. The authors proposed equations to represent each aspect in detail

and refined the equations when more factors come into play to ensure that the

model is able to reflect the behavior of the application running on the particular

architecture. To build the parameterized expressions of the application, two types

of data are required. The data indicates the basic metric of the machine, such as
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latency, MFLOPS rate, and characteristics of the application. The analytical model

showed good accuracy for the validation on large-scale architectures: IBM SP3

and SGI Origin 2000, even for future architecture with appropriate machine and

application metrics as input.

2.2.1 Manual Analytical Modeling

Manual analytical model parameters described the hardware of a target

architecture for running programs and the intrinsic features of applications, which

has non-negligible impact on performance. Such parameters are frequently obtained

by measurement or from system specification.

In [33], the parameterized model used to estimate application speedup

(S(p) = Ts/Tp) can be expressed as:

Ts = (Ccompile ∗ (Ns +Np) + Cm ∗Nm) ∗ Tfp

Tp = Ccompile ∗Ns +
(Ccompile ∗Np + Cm ∗Nm) ∗ Tfp)

p

+ σ
′
(p, topology) ∗ Tfp + Ccompile ∗No ∗ Tfp

The compiler factor Ccompiler is the metric for the number of instructions

generated after compiler optimization, which indicates the quality of the compiler.

Ccompiler is treated as a constant per compiler, which can be determined by

benchmarking the compiler. Similarly, Cstartup can also be treated as a machine-

dependent constant obtained from sampling a program. Cm, which indicates the

number of cycles to access an uncached memory location, is obtained from the

system specification. The rest of the parameters in the expression are all static
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parameters which account for the features of the application. The values of those

parameters are available for the compiler by parsing the abstract syntax tree of the

target program. Researchers can utilize this modeling method during compile-time

for prediction-based optimization.

Kerybyson et al. [69] derived the mathematical model by understanding the

four components mentioned previously and their underlying relations. Therefore,

the performance-related parameters are derived from code analysis about the

algorithm, the data structure, communication pattern and operations. On the other

hand, the architectural hardware metrics of the machine used in the model, such as

the number of the CPU cores can be obtained from the manufacture manual. The

complete performance model for the SAGE code can be created by combination of

the parameters from software and hardware.

In LogP [34] and LogGP [2], the authors studied the major components

in distributed processing, the characteristics of messages transmission, and the

nature of interconnection network as the carrier for delivering messages among

processors in order to understand the roles of each part and their correlations.

LogP and LogGP models simplified the message passing procedures into the

parameterized expressions with only four or five machine-dependent parameters. As

the author mentioned, the parameters are not equally important in all situations.

Therefore, it is possible to ignore one or more parameters depending on the

situation. For instance, when the overhead dominates the gap in particular

machines, it is reasonable to eliminate the parameter g to simplify the model. All

of the parameters used in the model can be obtained by measurement. Thus, it

must re-measure the parameters in order to apply the model to evaluate different

architectures.
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In Tudor and Teo’s paper [131, 132], they discussed their work on leveraging

analytical modeling technique for analyzing the speedup of shared-memory

programs running on multi-core architecture. To understand the behavior of

shared-memory, authors divided the entire life span of a running program into

useful work and overhead, and mainly focused on modeling issues that caused the

speedup loss. The speedup model abstracts the performance loss into two parts:

speedup loss due to data dependency and memory contention. Data dependency

represents the number of inactive threads due to synchronizations, imbalanced

workload, or lack of work to utilize all threads. To evaluate the data dependency

model, the parameters are inferred by a baseline run in which it executes the

program with larger number of threads than processors cores. The outnumbered

threads would cause the extra threads to queue in the run-queue. By sampling the

number of active threads (executing ones and those in the run-queue) in a constant

time interval and the service time of the threads, the time weighted average is

obtained. The memory contention model focuses on the growth of stall cycles due

to memory contention considering UMA (unified memory access) and NUMA (non-

unified memory access) policies respectively. The key parameter in the memory

contention model, C(n) the number of cycles, is obtained by measurement. The

limits in the memory model is that it only predicts the contention for the memory

nodes local to active CPU nodes.

2.2.2 Automatic Analytical Modeling

Manual analytical modeling requires analysis of the application and the

interaction with hardware, resulting in a heavy burden of time and human efforts.
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Figure 2. Program annotation used in Palm framework [126].

To alleviate the burden, several researchers made efforts to automate the modeling

procedure through static program analysis.

Narayanan et al. proposed PBound [102], a framework for automatically

estimating best case performance bounds of C/C++ applications through static

compiler analysis. PBound collects information and generates parameterized

expressions for memory and floating-point operations combined with user-provided

architectural information to compute machine-specific performance estimates.

PBound solely relies on source code analysis, and ignores the effects of compiler

transformation, frequently resulting in bound estimates that are not realistically

achievable.

Kerncraft, created by Hammer et al., is a static performance modeling tool

with the concentration on memory hierarchy. Kerncraft characterizes performance

and scaling loop behavior based on Roofline [139] or Execution-Cache-Memory

(ECM) [61] model. It uses Intel Architecture Code Analyzer (IACA) [63] to operate

on binaries in order to gather loop-relevant information. However, the reliance
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Figure 3. Workflow of the COMPASS framework. From [79]

on IACA limits the applicability of the tool. As a result, the binary analysis is

restricted by Intel architecture and compiler.

ExaSAT [30, 133] automates the procedure of performance model generation

by employing static code analysis. ExaSAT is built on top of ROSE compiler

framework [112] to generate AST (abstract syntax tree) which is consumed by

the compiler analysis component to produce loop attributes, and analyze data

access. The compiler analysis outputs an XML format intermediate representation

which enables the framework to model the hypothetical code by the given XML-IR.

However, ExaSAT uses an ideal model to simplify the memory hierarchy and the

analysis only works for specific source code pattern (loop type).

To reduce the difficulty of analytical performance modeling, Palm [126]

leverages static code analysis to build performance models in Ruby automatically.

The resulting model can be evaluated by providing various values. However, it is

not a fully automatic framework since it requires users to annotate in order to

describe the application (Figure 2). The source code annotation can be a time-

consuming task and demands the users to understand the code. Moreover, the
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model parameters are obtained by measurement from running the instrumented

code on specific architectures. Figure 3 presents the COMPASS [79] framework,

which shares the similar design ideas of performing the static code analysis to

generate performance model. OpenARC [80] is used to examine the source code,

including interpretation of the OpenMP and OpenACC directives to identify

parallelism. The Aspen IR processor accepts the output of OpenARC to generate

the Aspen performance model [122]. Comparing to Palm, COMPASS achieves

better automation by using light-weight annotation and the static data enables it

to be able to apply to considerably arbitrary code.

2.2.3 Advantages and Disadvantages

Analytical modeling techniques do not rely on performance data from

execution to generate models. It summarizes the features of the applications,

such as data structure, data distribution, data dependence, and considers static

performance-related metrics of hardware such as the cost for message passing,

memory access, initialization overhead, CPU cycle. In addition, it abstracts the

behavior of the software and the interaction between the software and hardware.

The software/hardware metrics are combined, which generates parameterized

expressions for performance prediction or diagnosis.

Since analytical modeling requires no performance data from the multiple

runs of the target program, it avoids the time-consuming work of designing the

inputs, configuring the experiment environment and waiting for performance

data, which could take a long time. The properties of analytical modeling enables

integration in a compiler as a plugin for guiding optimization. If an analytical

model consists of the parameters which compiler is able to obtain statically, then
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the parameters can be used by the compiler during the compilation of a program

to predict the performance and provide feedback to compiler so it can decide the

optimization type and targets while maintaining a reasonable compilation time. In

addition to the time efficiency, analytical modeling is applicable in every phase

of software/hardware development because it is data-independent. Analytical

models can help make decisions in design, implementation, and testing. Moreover,

comparing with other modeling methods, analytical modeling is more resilient to

the changes of the application. Researchers can adjust the parameters and the

logical relations regarding the changes in a timely manner, which improves the

efficiency of performance evaluation and optimization significantly.

However, to model an application and its underlying communication

behavior with the lower-level hardware, one needs expertise in order to obtain

a deeper understanding about algorithms used in the application, as well as the

technical details of the target architecture. For example, in order to model an

application using message passing for communicating among the distributed-

memory, it is required to understand the mechanism of message passing, the

involved hardware, data organization and partition at a higher-level. The user

needs to identify which factors may affect the performance and in what manner,

so that they can be correctly placed in the parameterized expression. Furthermore,

building the analytical model also involves making trade-off between the model

accuracy and the number of model parameters. A great number of parameters

indicate that the model considers more factors that will impact the performance,

leading to a more accurate result. On the other hand, a model containing fewer

parameters at a higher abstract level provides less comprehensive results yet is

easier to build. Therefore, the analytical model should be designed carefully to
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make the balance between complexity of model construction and accuracy of the

results. In general, the simple analytical model is suitable for the fast study of an

algorithm while a more sophisticated model satisfies the need of deep optimization

and tuning of an application.

Although static code analysis based methods automate the analytical

modeling to some extent, it may still require human efforts for manually processing

the worst case entire source code. This constraint worsens the cost of modeling for

complex and large-scale applications.

2.3 Empirical Modeling Approaches

Empirical modeling methods rely on the performance data from actual

execution of programs on the target architecture. Therefore, the procedure

of empirical modeling can be divided into two phases. First, the program is

executed on the target platform to generate performance metrics. The data for

characterizing the dynamic behavior of the program is then processed. In this

section, we will discuss the empirical modeling approaches according to the two

phases: data collection and model generation.

2.3.1 Performance Data Collection

To study the performance of an application, the first step in empirical

methods is to run the target program on a particular platform and obtain the data

so that we can learn what is happening at runtime. Performance data collection is

defined as the methods used to extract necessary performance information. If we

consider an execution of the program as a series of various types of events occurring

at certain point of time, the goal is to obtain the insight about such events, such

19



as time, duration, and interactions. In the following section, we describe two major

techniques for data collection.

1) Code instrumentation. The target executable used for generating data is

expected to provide more information for each run given the fact that it could be

costly, especially on supercomputers. Most importantly, the unmodified program

is only able to provide coarse-grained information such as the execution time

or results. Extracting lower-level data about the underlying hardware, such as

instruction count, to study the performance is necessary to understand application

behavior. Code instrumentation provides an opportunity to probe the application

during runtime. Instrumentation modifies the source code by inserting annotations

at interesting spots such as the entry/exit point of a function, inside a loop,

or around branch statement. When the modified program is executed at the

annotation points, the additional function calls are triggered to record the events

and related metrics, such as how many time this block has been visited and how

long a loop takes to complete.

However, considering the scenario that source code may not be accessible,

one can perform runtime instrumentation on the binary executable to modify

the binary using dynamic instrumentation tools [121, 85, 20, 103] or performance

analysis tools [117, 1] which includes a binary component. Importantly binary

instrumentation separates the target program from the platform, offering an

opportunity for understanding the code in an architecture-independent manner.

Information in the DWARF section helps map binary code back to the source

so that users could locate the blocks or the particular functions. However, the

compiler optimization would complicate binary instrumentation and makes the

implementation of that more challenging.
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In addition, there are several tools [101, 134, 46] provided runtime library-

level instrumentation other than application-level. Such tools are implemented

as libraries between the application and the runtime library. They employ the

standard profiling interfaces (PMPI, OMPI) to intercept and record the events and

forwards them to the runtime library. Applications are required only to re-link with

the instrumentation library.

2) Performance hardware counter sampling. Code instrumentation is

able to provide detailed dynamic information about an application. Yet code

instrumentation is intrusive and time-consuming. Sampling tools, for example [19],

offer an alternative for collecting the performance data without modification of the

code. They rely on hardware performance counters which are a part of modern

processor performance monitoring units. The performance counters work as a set

of registers to record the occurrences of specific signals. When a given interval

is reached or the counters overflow, the sampling tool interrupts the running

application in order to collect the addresses of the events. It is able to provide

information at a fine level of detail, such as operation count, cache misses, pipeline

stall. Sampling provides the users with flexibility to make trade-offs between

overhead and resolution of the events. By reducing the length of the observation

interval, more details about an event can be inferred yet with higher overhead.

On the contrary, sampling at a low rate by increasing the number of observation

intervals may lead to overlook infrequent events.

Before applying the performance analysis tool, the collected instrumented

and sampled data need to be processed to generate either a profile or event

trace [96] for data analysis. In a profile, measured events are aggregated together

which represents a mapping from events to source code at the statement, loop,
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Figure 4. A fully connected feed-forward ANN. From [65]

or function-level. A callpath profile [52], which contains information about the

costs and function calling context, is frequently used in performance analysis

tools [117, 1, 71]. Traces comprise time-stamped events, which is able to provide

more detailed information about the application behavior and suitable for

examination of timing-related issues in the program. A profile can be reconstructed

from a trace, however constructing a trace from a profile is difficult since sampling

may miss events occurring outside of samples. However, the size of tracing data

increases with the runtime. Thus, tracing-based analysis may take a large amount

of storage.
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2.3.2 Model Generation

Once performance data is obtained, the correlations between the input

parameters need to be understood. In the follow paragraphs we will cover the

approaches for building models.

1) Artificial neural networks. An artificial neural network (ANN) is

a machine-learning technique for discovering the correlations between input

parameters and results. An ANN comprises a set of nodes and weighted edges

connecting the nodes. A node representing a neuron is called a unit in ANN that

communicates with other connected nodes by receiving and passing values. There

are three types of units in an ANN architecture located in distinct layers along the

information flow. Input units are responsible for accepting the input and passing

the weights to according units pointed by the outgoing edges. The output unit

receives the value and presents the prediction results. Among all the units, the

hidden units are of great importance as they carry all the computation tasks, which

receive input from incoming edges to process the new output and then passes to

either hidden units or output unit. Specifically, after a new training sample is

accepted and distributed by the input layer, every hidden unit takes the sum of

all values from the previous layer and the weights on the incoming edges, and

computes the new sum by the activation function as its output is passed to next

layer. Figure 4 demonstrates a fully connected feed-forward neutral network with

only one hidden layer in which each unit is connected by every unit in the previous

layer. The data flows from the bottom to the top.

In [65] authors employ fully connected feed-forward neural network to build

the model in order to predict the program performance. In the feed-forward ANN

(as shown in figure 4) the sigmoid function is used as the activation function to
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Figure 5. The workflow for parallelism mapping. From [137]

calculate the new output on each hidden unit. By monopolistic executions to

reduce the noise in the generate performance data and the applying the appropriate

sampling technique and learning mechanism to minimize the percentage error

during training, the neural network achieved 5%-7% error on performance

prediction of SMG2000 [43].

Li et al. [81] proposed ASpR framework for predicting the performance

of runtime parallelization and task scheduling. The Stuttgart Neural Network

Simulator [144] is used to build the neural network and make predictions. As

an on-line system, ASpR continuously collects runtime information to generate

training data including function name, parameter sizes, and measured execution

time. In the implementation, authors used a two-hidden-unit (single hidden layer)

neural network with sigmoid function as the activation function and update the

edge weights by back-propagation algorithm. In addition, to adapt the continuous

new available data points, it limits the training data in a sliding window range with

reasonable size. And ASpR incrementally retrains the ANN with data from the

growing sliding window to improve the prediction accuracy.
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Figure 5 presents Wang and O’Boyle’s research [137] in which they adopt

ANN to build model for predicting the performance of a mapping of program

parallelism to multi-core processors to guide the selection of the best thread

number for a parallel program. In the proposed approach, the authors profile

the instrumented serial version of the program and compiler-parallelized version

respectively to obtain code features and runtime feature. Code features covers the

characteristics of the target program including cycles per instruction, the number

of branches, load and store operations, while the runtime feature mainly refers

to the parallel execution time. An ANN with 2 hidden layers (each has 3 hidden

units) using Bayesian regularization back-propagation as the training algorithm is

constructed to predict the speedup. Moreover, authors use a mutli-class support

vector machine (SVM) to predict the best scheduling policy with different number

of threads. The combined results can reveal the correlation between program

scalability and the number of threads.

2) Regression. In [67], Joseph et al. proposed a method for processor

performance analysis based on the linear regression model. The goal of the research

is to model the relationship between processor performance and architectural

parameters. In the development of their model, they assumed no prior knowledge

and understanding about the architecture and the workflow of the processor.

Their modeling technique quantifies the significance of architecture-related

parameters and the interaction among them. To identify the performance impact

of the parameters, they adjusted the value of a parameter, then monitored the

performance changes in the simulation results. For example, the measured average

instruction issued per cycle can demonstrate the changes in out-of-order issue would

cause more performance loss than an in-order issue in terms of performance effect
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on the L1 data cache. The authors used 26 key micro-architectural parameters,

such as pipeline depth, issue queue size, L2 cache size and issue order, to construct

the model. To obtain the best model, the authors performed an iterative procedure

to refine the initial model, which starts from a small set of execution results, and

then apply the model to guide further data until it reaches the designed error

bounds. The model is constructed by following Akaike’s Information Criteria [116]

to fit the data while maintaining a minimum number of parameters. However

Harrell [54] stated in his research that such stepwise regression has several

significant biases, which motivates researchers to apply other regression methods

statistical modeling.

Lee et al. [78] presented several methods for exploring the parameter domain

of larger applications and building predictive models. In this research, the authors

demonstrated the effectiveness of applying statistical methods for studying the

relationship between the parameters and the performance impact. Hierarchical

clustering provides information about the correlations of the parameters. Clustering

also filters the redundant predictors for regression model by selecting the most

representative predictor that could reflect the cluster’s impact on the result if

multiple predictors are correlated and clustered into the same group. Association

analysis and correlation analysis are used for investigating and quantifying the

association between the predictors and the response. It provides the researchers

a high-level perspective to understand the parameter domain. The authors

compared the prediction between a piece-wise polynomial regression model and

the artificial neutral network, and offered suggestions for the selection of the two

method. The performance data for building the model is obtained by sampling the

performance measurement. To reduce the high costs of exhaustive measurement,
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authors applied several sampling technique to data collecting. Sampling Uniform at

Random (UAR) approach has a full range of parameter values and could ensure the

sampled data unbiased and representative for the parameter domain. Stratification

minimizes the divergence in relative error for the small performance value with

large relative but small absolute errors. It mitigates the bias of the sample data

caused by the optimization to reduce the sum of square errors in regression and

neutral networks. Regional sampling combined with regression generates per-query

regression model according to the similarity (Euclidean distance) of the points to

the query.

In Lee’s other researches [76, 77], they utilized the same data analysis

techniques for the exploration of the correlations among parameters in a larger

design space of one billion points for performing the polynomial regression modeling

accurately and efficiently for predicting the performance and power. Turandot [98],

a parametric, out-of-order, super-scalar processor simulation framework is

used to obtain power estimates. Turandot is able to accurately estimates the

power consumption by the circuit-level power analysis and resource utilization

statistics [18]. Similarly, they applied sampling uniformly at random to collect the

number of data points needed for constructing the model in order to reduce the

expensive experiment runs.

Barnes et al. [7] described a regression-based modeling method for

performance prediction. The modeling technique [7] predicts the execution time

of an application on p processors by the execution time collected for the same

application running on the architecture with a smaller number (q) of processors,

where q ∈ {2, ...p0} and p0 < p. Instrumentation is used for collecting the execution

time of an application. Specifically, it varies the configuration of the inputs and
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then applies them to the instrumented code to obtain the data for multiple runs.

With the performance data, the method then performs a regression to fit the

data into a linear prediction model. Three techniques are demonstrated in their

work for prediction. The most straightforward one is to simply fit the data from

execution by regression and then extrapolate to a larger problem size. It results in

a reasonable prediction with a second-order polynomial function for fitting. The

second technique separates the regressions of computation and communication

by selecting the most representative pair from the per-processor data. The third

method constrains the communication time to include no blocking using the global

critical path.

Both neural network and regression can provide reasonable accuracy.

Regression-based methods offer a statistical perspective on the parameter space.

In the above research, authors statistically analyze parameters to explore the

correlation among them and such analyses also help to identify the significance of

the parameters that contributing majorly to the performance. On the contrary, the

neural network presented in previous paragraph did not demonstrate the feature

selection of the input data, which may result redundancy in the generated model.

However, neural network based approaches achieve better automation than the

regression based ones. Users could choose depending on their requirement.

2.3.3 Advantages and Disadvantages

Empirical modeling techniques rely on the performance data from running of

the program on the target hardware. One significant improvement for empirical

modeling, compared with those do not require actual data, is accuracy. The

continuous introduction of new technologies into hardware manufacture and
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software design enhance the computing capability and efficiency, yet also make

it difficult for one to understand the whole system. In this scenario, without

vast expertise and rich experience one may fail to consider every detail in code-

analysis-based modeling procedure which consequently results in the inaccurate

output. Performance metrics collected from actual runs undoubtedly are the

most representative data for demonstrating the runtime behavior of a program.

Such data enables empirical modeling approaches to reflect the characteristics

when running on the real hardware. Profiling by either instrumentation or

sampling offers users the different granularity of the program representation to

make trade-offs between overhead and accuracy. Furthermore, when the source

code is not available, alternatively binary can be instrumented to generate data,

which increases applicability of the modeling. The reduced requirement for the

expertise on the program enables people with other backgrounds to be involved

in the process of model building. For instance, statisticians and machine-learning

professionals could focus on the how to construct models based on the given data.

Moreover, with the appropriate design it is able to automate the whole procedure of

modeling to reduce the laborious work and increase the efficiency.

However, actual execution on the real architecture also has limitations.

First, the target hardware have to be available at the time of experiment, which

could be a problem for those who cannot afford such machines (e.g large-scale

parallel system) or have no access to the particular architecture. Moreover, it is

possible that such machine does not exist if the modeling serves as the preliminary

study of performance for a program on the hypothetical machine. In addition to

hardware accessibility, model portability should also be considered in choosing

the modeling approach. Since the empirical methods construct model is based on
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the application-specific and architecture-specific data, the model may not apply to

other programs or hardware which demands duplicated work for re-modeling. Even

if the target hardware were available, execution of the program is time consuming,

especially for scientific applications that are computation-intensive.

2.4 Simulation-based Modeling Approaches

Performance modeling could be extremely difficult in a real-world scenario

for the parallel applications running on the large-scale supercomputers. Due

to the large problem size, many factors and the effects among them, such as

the implementation of the applications, compiler optimization, interconnect

communication pattern, have to be considered for accurate modeling. Moreover,

applications may exhibit completely different behaviors in run-time from what

was assumed theoretically. Such reasons complicate the performance modeling of

parallel application.

2.4.1 Data Representation for Simulation

In this section, we mainly discuss the types of data collected and used in

simulation in terms of modeling and analysis. The design of the simulator decides

the type of data to collect and process.

1) Application trace from execution. Application tracing is a performance

information acquisition approach widely used in HPC domain in order to

characterize the application. The application traces is comprised of a sequence

of events of computation and communication operations captured during the

execution on the real hardware. The events are labeled by time so that the
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simulator is able to ”replay” the execution to perform the analysis afterwards with

various configurations.

PSINS [129] is a typical example of trace-driven simulator for performance

modeling and prediction of MPI applications. PSINS consists of two major

components: tracer and simulator. The tracer collects detailed information about

MPI calls based on MPI’s profiling interface (PMPI). In addition to MPI function

calls, it also traces the communication and computation time for events. To reduce

the resource consumption, PSINS generates a separate event tracing file for each

MPI task and only dumps the tracing information when the buffer located for the

task is full. Then the separate tracing file will be combined into a compact tracing

file after the execution phase is done. After a tracing file is generated, the simulator

takes the event tracing file as input along with a set of parameters for modeling the

target architecture. The simulator considers the entire architecture as computation

nodes connected by global buses. According to the simulation setup, the required

parameters come from two different perspectives. The system level parameters

include the number of computation nodes, the bandwidth and latency of the bus

for the communication between two nodes. The node level parameters are the

number of processing units, the number of incoming/outgoing links connected to

the buses, bandwidth and latency for the node and the CPU ratio for describing

the computation workload.

Carrington et al. [28, 27] proposed a framework for predicting the

performance of scientific applications and verified its capability on LINPACK [38],

POP (Parallel Ocean Program) [119], NLOM (Navy Layered Ocean Model) [136].

The authors designed the model based on the hypothesis that a single processor

performance and the inner-connected network are the predominate factors affecting

31



Figure 6. The Performance modeling and prediction framework. From [27]

the overall performance of the system. The two factors are sufficient to build the

performance model to make a prediction with a reasonable error rate (∼10%) [120].

Therefore, the authors divided the modeling problem into two sub-models

representing the two major factors, single-processor model and communication

model (Figure 6). Both models are built on the application signatures and machine

profiles. Application signatures generated from tracing characterizes the application

performance as the potential workload on the processor and the network, such as

the memory and network operations. A measurement-based machine profile reflects

the ability of the hardware, which includes the rates of message passing, memory

load/store operations, and FLOPS.

With extrapolation, researchers utilize an application trace to model and

predict [26, 59] the the application performance on large-scale systems. Hoefler

et al. [59] presented the LogGOPSim, a simulation framework, for studying the

scalibility of the large-scale MPI algorithm. The design of of this framework is to

simulate large-scale applications with more than 8 million cores. It focuses on two

major parts: the communication and the LogGOPS model. The framework uses
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a dialect of the Group Operation Assembly Language (GOAL) [60] to efficiently

express the collective communication in parallel applications, and a tuple with

message tag and source combined with order to match the messages to simulate

the message passing semantic. LogGOPS model extends the LogGPS model with

minor modification as the authors argued that the LogGPS model only consider a

constant overhead per message send, which is not applicable for some architectures.

LogGOPS model introduces a new parameter O to model the message transmission

overhead per byte. In addition, LogGOPSim provides an extrapolation scheme to

study the scalibility of the application from a small set of traces.

2) Application specification. An application trace is able to provide

considerable detailed information about the dynamic behavior of an application.

However the large size of the event log may consume too much memory and

storage, which could be a limitation of scalibility. In addition to application trace,

the application specification is also utilized to describe the target program for

simulation.

Instead of executing the application, researchers describe the applications

by the high-level abstractions [127, 42]. Taufer et al. proposed SimBA [127] which

is a sequential, discrete event simulator simulating the generation and distribution

of tasks running on highly distributed environment. SimBA mimics the BONIC [4]

framework for studying the performance of volunteer computing projects. SimBA

models the applications as entities, events and resources, and uses finite-state

automata to describe the events among the entities in the entire processing to

simulate the behavior of tasks. For example, the event represents the condition

and the occurrence of an event and results in change of the simulated state.
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While formal and compact representation of an application improves the

scalibility, the formalism limits the applicability for complex code as it could

be too difficult to describe the application logic in an abstraction. To tackle

with this problem, some simulators allow users to describe the application in a

programmatic way [22, 29, 106, 21]. GridSim [21] is a simulation framework for

studying distributed resource management and scheduling for the grid computing

environment. It focuses on creating an repeatable and controllable environment

for simulation and modeling the performance of the resource management and

scheduling algorithms under various user scenarios. GridSim provides an interface,

Gridlet, for specifying the application-related parameters including length,

disk I/O operations and input/output files. This configuration would help the

simulator to determine the execution information in order to communicate with

other components of the framework. Calheiros et al. [22] proposed CloudSim, a

framework for simulating and modeling the infrastructures and the services for

cloud computing. CloudSim is built on top of GridSim, and entirely inherits the its

user-interface. Therefore CloudSim also supports application description by user-

defined specification. SimGrid [29] proposed by Casanova et al. is a simulation

toolkit for distributed applications that consumes both application trace and

specification for simulation. Specifically, SimGrid provides the interface to utilize

the similar but simpler representation of the simulated target which describes an

distributed application as a series of communicating concurrent processes.
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Figure 7. Workflow for performance data collection. From [26]

2.4.2 Performance Data Collection

Two major methods employed by simulators for conducting the experiments

and collecting the performance metrics are off-line simulation and on-line

simulation.

1) Offline simulation. For performing offline simulation, the application is

first executed on the real platform. The computation and communication events

during the execution will be logged and the configured simulator replays the

sequence of events as running the application on the target architecture.

The performance prediction framework [28] consists of two sub-models, the

single-processor model and the communication model. It requires the application

signatures and machine profiles as the data to generate the both models.

Application signatures are collected by tracing. The single-process model needs

memory traces collected by MetaSim Tracer [93] while MPIDtrace [99] collects

MPI traces for the communication model. The authors use a sampling technique

to reduce the trace time, where the tracer samples the memory addresses by a
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user-defined interval. The sampling results in a partial (percentage depends on

the interval) trace. However, it is noted that the total number of memory references

estimated for one basic block depends on the sampling percentage. This issue is

solved by using two traces. One counts the necessary metric (instructions, floating-

point operations) for each basic block. The other one samples the trace of memory

access in detail. The two traces technique makes a balance between tracing time

and the accuracy of the collected data. Once data is obtained, the last step to

build the model is to map the application signatures to the machine profiles of

the target architecture by convolution methods [51] implemented in MetaSim

Convolver [90] and Dimemas [99] for a single-processor model and communication

model respectively. The convolution results show the predicted runtime for an

application running on the target machine.

As a trace-based simulator, PSINS [129] requires the execution of the

application for collecting the detailed information about MPI events. PSINS

utilizes PMPI to enable developers to insert instrumentation code to replace

MPI routines at link time for probing the interesting parts. In addition, running

the simulation requires parameters to represent the target architecture. Such

parameters are available by system measurement and simple obtaining from

manufacturers. By configuration of different architectures, PSINS is capable of

simulating a wide range of system types, from computational grids to shared-

memory multiprocessor architecture.

In [59], the parameters used for the LogGOP model are architecture-related,

such as the metric for a per-byte cost of message transmission O, which is collected

by precise measurement. Furthermore, the proposed simulator also intercepts all

MPI calls to generate the trace information for extrapolation to a larger number of
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communicators. The data needed for LogGOPSim include architectural parameters

and application parameters. Architectural parameters are obtained by measurement

which are consumed by the model. Application traces for performing extrapolation

is generated by executing the application. By simulating a smaller problem size,

LogGOPSim is able to collect and extrapolate the trace information to demonstrate

the scaling of the applications.

In 2013, Carrington et al. [26, 25] presented a methodology for

characterizing the computation behavior of large-scale application by inferring

from the extrapolated results based on the data collected from the executions on

a smaller number of core counts. This method avoids the expensive procedure

of data collection directly from executions on large number of cores. Instead, it

utilizes a smaller number of cores to run the program to obtains data at a lower

cost, and extrapolates the data collected for predicting the execution time at large

scale. The performance data for modeling the memory behavior falls into two

major categories: arithmetic operation and memory operations. The arithmetic

operations refer to the floating-point and math operations; and memory operations

include load and store references. In order to capture the memory metrics required

for modeling, the authors applied PEBIL binary instrumentation platform [73]

to instrument every memory access of the application to generate a tracing file

which includes the location of the block, the number of floating-point operation,

load/store reference counts, size of the memory references and the expected

cache hit rates. Then the instrumented binary is executed on a base system to

produce the address stream which is then processed by a cache simulator configured

according to the memory structures of the target system (Figure 7). The following
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equation [128] is used for modeling the memory time which accounts for the major

time consumption.

memory time =

allBBs∑
(
memory refi,j × size of ref

memory BWi
)

Another contribution of their work is to extrapolate the data collected

from a small number of cores to predict the runtime of a large-scale execution. It

provides four canonical functions (constant, linear, exponential and logarithmic)

and is used to select the best one which fits the tracing data.

2) Online simulation. In online simulation (direct execution simulation),

the applications are directly executed in a controlled environment on the host

architecture to obtain dynamic information. The simulator monitors and interacts

with the running applications to perform evaluation or other operations, such as

intercepting MPI calls.

The LAPSE (Large Application Parallel Simulation Environment)

toolkit [35, 36] is a parallel on-line simulator for modeling and predicting the

performance of the message-passing parallel program. The inputs for LAPSE

includes a descriptive file for building the program, the source code and a LAPSE

initialization file for configuring the simulating environment. LAPSE automatically

builds the target program and executes it normally. When a communication event

is triggered during the execution, it simulates a corresponding communication delay

using a simple, pure delay model which ignores the network contention.

Prakash et al. proposed MPI-SIM [110, 5] which is a direct execution-

driven parallel simulator for predicting the performance of MPI applications.

MPI-SIM predicts the performance of an MPI application as a function of
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Figure 8. The architecture of BigSim. From [145]

architectural parameters including the number of processors, the underlying

network characteristics, and the communication latency. In MPI-SIM, an

application thread is divided into two parts depending on whether it requires

communication: local code, communication and I/O commands. The local code

is directly executed on the host architecture, whereas the communication and I/O

operations are intercepted by the simulator to evaluate communication latency and

time for I/O operations. To model the communication, MPI-SIM employs both a

null message protocol [95] and a conditional event protocol [31]. Compared to the

null message protocol, the conditional event protocol is slower, and is only used

when the null message protocol fails. The authors also demonstrated that it is safe

to completely bypass the simulation protocol for the deterministic code section of

the application.
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BigSim [145, 146] is another example of execution-driven simulator for

predicting the performance of applications on extremely large-scale parallel

machines. As an on-line simulator, BigSim shares the similar design ideas as

the simulations mentioned above which executes the target program directly.

Meanwhile, a parallel algorithm running concurrently interacts with the target to

assign the time-stamps for each message. In BigSim, a target program runs on the

Charm++ [68] runtime (Figure 8), which makes it easy for the interaction between

the target program and the simulation kernel. Charm++ is a parallel programming

model which includes parallel objects and object arrays. BigSim is able to evaluate

the delay for both sequential (computation) code sections and communication

sections. To predict the execution time of the sequential section, it supports three

methods: User-supplied description indicates the estimate execution time for

each code block on the target machine; the mapping of measured wallclock time

from host machine to the target machine by a scale factor; and utilize hardware

performance counters for each types of operation on the host architecture and then

apply the time measurement of each operation to estimate the total computation

time. In addition, the authors introduce POSE to BigSim as a component to

perform postmortem simulation. POSE accepts the trace of computation blocks,

the messages between them and the dependency information as inputs to replay the

computation behavior. POSE aims to address the problem that it has to re-conduct

the entire simulation due to the modification of the parameters in the model.

xSim (Extreme-scale Simulator) [15, 41, 40] is an on-line application

performance investigation toolkit which was developed in Oak Ridge National

Laboratory. xSim is designed as the mid-layer between the MPI application and

MPI library. xSim runs the target program directly and intercepts the MPI calls
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by using the MPI performance tool interface (PMPI). xSim virtualizes the target

MPI program as virtual processes which are executed as user-level thread in order

to differentiate from native MPI process used for running the simulation itself.

This design enables xSim to be enable to achieve a high scalability (134,217,728

simulated MPI ranks [40]).

2.4.3 Advantages and Disadvantages

With the fast development of hardware design and production technology,

HPC system become more powerful in computing ability and more efficient in

energy consumption and resource management, which brings new opportunities

as well as challenges. The increasing complexity of the whole HPC system makes

it more difficult to understand behavior and model the performance of arbitrary

programs. Simulation-based approaches provide researchers several benefits for

accommodating the demand of performance modeling under exascale and complex

systems.

Compared with other modeling approaches, simulation-based modeling

require less expertise and experience on the architecture and the algorithms. For

conducting experiments for arbitrary applications, researchers are not required

to master the implementation details of the target application running on

particular hardware in order to recognize the abstract relations among the various

components describes application behavior. Instead, the experiment procedure can

be considered as a ”black box” which is transparent to the researchers. Researchers

provide the appropriate inputs and collect the necessary data for further processing.

This approach saves a huge amount of time for understanding the applications and

isolates the performance modeling from development which enables performance
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modelers to leverage skills on modeling task, and frees developers from analyzing

the performance-related data. For occasional cases where the source code of

the application is not available for analysis, simulation-based modeling may be

an appropriate option. Moreover, simulation-based approaches are resilient to

various experiment requirements as the experiment environment is fully controlled

by different configurations. Specifically, different types of HPC systems can be

simulated in terms of scale, computing power, network topology to satisfy the needs

of a particular algorithms. With the appropriate setup, performance of applications

on hypothetical architecture can be simulated and studied, which makes it unique

to other modeling methods. Another important property of simulation-based

approaches is that it is able to provide the precise run-time information of an

application. It is possible that an application exhibits different behaviors from

the theory because of the running environment. Therefore, the most accurate

performance data we could obtain is those collected from actual executions which

represent the real CPU load, the memory traffic or the communication pattern, etc.

From the perspective of modeling data accuracy, simulation-based approaches stand

on top of others.

Simulation-based modeling is able to provide extremely accurate data

about the run-time behavior of application, which researchers could use to gain

deep insight of the target application. However, to fully understand this modeling

technique one should also realize the weaknesses of it. The most critical part

of simulation that researchers made efforts to improve is the time and resource

efficiency. For example, the full system simulators [88, 16, 113, 142, 84, 114] with

complete microprocessor pipeline in software could be able to simulate the flow of

instructions through the pipeline and provide accurate information about every
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cycle. However, the speed of such simulators are much slower than execution of the

target program on real platforms due to the complexity of whole system simulation.

Therefore, in some scenarios, simulation may not be the best option for exploration

of those algorithms running on large-scale system. Because the time consumption

of multiple executions for collecting the performance data is not affordable for the

researchers and developers who expect the analysis results in a timely fashion in

the production environment.

Moreover, resource efficiency is another problem simulation-based modeling

approaches cannot ignore. As the scale of the system becomes larger and more

complex, the resources required to simulate such system rise up accordingly. It

may not a good idea to run simulation-base modeling approaches with limited

resource access, which includes the number of CPU, the memory space, the

network bandwidth, and the even the power supply. Besides, as other dynamic

modeling approaches simulator users may encounter the same problem that the

experiment results are inadequate to reflect the intrinsic characteristics of the

target applications. It occurs due to the design of inputs that are not able to

completely cover all possible code paths which inevitably affect the run-time

behavior of applications.

2.5 Summary

In this chapter, we studied several approaches for performance modeling.

Analytical methods rely on the human efforts to understand the source code and

the interactions between applications and underlying hardware; empirical methods

require execution of the target program on the specific architecture to obtain

performance metrics and then utilize mathematical approaches to discover the
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correlation between the input parameters and results; simulation-based methods

run the application on the simulator to mimic the behavior of target architecture

regardless of its existence to collect performance data.

The criteria we used to distinguish each modeling approach is whether it

depends on dynamic collected data and whether the data collection has to be done

on the target platform. However, it is noted that the boundaries that separate the

approaches are not absolute.

We consider a modeling method as a two-phase procedure: front-end and

back-end. The front end collects the dynamically available data while the back

end processes them to construct the model. Then we may find that the back-ends

of empirical methods such as neural networks and regression also works with the

data generated by simulation or compiler. For instance, in [24, 58, 23], the authors

proposed semi-empirical modeling approach. It combines analytical modeling with

empirical data. To be specific, semi-empirical modeling approach initially builds an

analytical model to represent the application and then using empirical data to find

the best value for the coefficients to complete the model.

Among the three type of modeling approaches, analytical modeling

requires the most human efforts and expertise for analyzing the code. Even for

the automatic analytical modeling, human intervention is not avoidable as the

annotation is performed manually. However, it is resilient to the changes of the

program that the parameters and expressions can be adjusted in a timely fashion,

in contrast with empirical and simulation-based methods which require the program

to be re-run. Empirical data is the most representative of the behavior of an

application, which is likely to improve the accuracy of the modeling. Simulation-

based modeling provides more architectural portability and capability of exploring
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the hypothetical architectures. Both empirical and the simulation-base approaches

are able to achieve reasonable automation to arbitrary code.
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CHAPTER III

MIRA

This chapter is based on work by Boyana Norris and myself [91]. In this

project, Boyana Norris helped with the generalization of the research idea and

direction and also provided support for organizing the experiment data and

comparison between the results of TAU [117]. I designed and implemented the

Mira framework on top of the ROSE [111] compiler framework. Boyana Norris

provided insights on selecting the target applications and helped with deriving the

results. I prepared the experiment environment for Mira and TAU, performed the

experiments, collected the experiment data, and evaluating the results for various

inputs.

This chapter describes a fast, accurate, flexible, and user-friendly tool,

Mira, for generating performance models by applying static program analysis,

targeting scientific applications running on supercomputers. We parse both the

source code and binary to estimate performance attributes with better accuracy

than considering just source or just binary code. Because our analysis is static,

the target program does not need to be executed on the target architecture, which

enables users to perform analysis on available machines instead of conducting

expensive experiments on potentially expensive resources. Moreover, statically

generated models enable performance prediction on nonexistent or unavailable

architectures. In addition to flexibility, because model generation time is

significantly reduced compared to dynamic analysis approaches, our method is

suitable for rapid application performance analysis and improvement. We present

empirical validation results to demonstrate the current capabilities of our approach

on small benchmarks and a mini-application.
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3.1 Motivation

A detailed understanding of application and system performance is critical

for effective high-performance software and architecture design. Performance

models can provide software developers with useful information about potential

bottlenecks and help guide them in identifying optimization opportunities.

As the development of new hardware and architectures progresses, the

computing capability of high-performance computing (HPC) systems continues to

increase dramatically. However, many applications cannot use the full available

computing potential, which wastes a considerable amount of computing power

and human effort spent on non-portable optimizations. The inability to fully

utilize available computing resources or specific advantages of architectures during

application development partially accounts for this waste. Hence, it is important

to be able to understand and model program behavior at a fine granularity to gain

more information about its bottlenecks and performance potential. Analyzing the

instruction mixes of programs at function or loop granularity can provide insight

into CPU and memory characteristics, enabling further optimization of a program.

Figure 9. Workflow of Mira for generation of performance model and analysis.
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In this chapter, we introduce a new approach for analyzing and modeling

programs using primarily static analysis techniques combining both source and

binary program information. Our tool, Mira, generates parameterized performance

models that can be used to estimate instruction mixes at different granularity (from

function to statement level) for different inputs and architectural features without

requiring execution of the application.

Current program performance analysis tools can be categorized into static

and dynamic. Dynamic (runtime) analysis is performed by executing the target

program and measuring metrics of interest, e.g., time or hardware performance

counters. By contrast, static analysis operates on the source or binary code

without actually executing it. PBound [102] is an example static analysis tool for

automatically modeling program performance based on source code analysis of C

applications. Because PBound considers only the source code, it cannot capture

compiler optimizations and hence produces less accurate estimates of performance

metrics.

While some past research efforts mix static and dynamic analysis to create a

performance model, relatively little effort has been put into pure static performance

analysis and increasing its accuracy. Our approach starts from object code because

the code transformations performed by optimizing compilers would cause non-

negligible effects on the analysis accuracy. Furthermore, object code is language-

independent and more directly reflects runtime behavior. Although object code

could provide instruction-level information, it is difficult to manually relate it to

the original implementation in a way that enables performance insight directly.

For instance, it is difficult or impossible to obtain detailed information about high-

level code structures (user-defined types, classes, loops) from just the object code.
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Therefore, we also analyze source code to extract this high-level information and

combine it with the object code data.

By combining source and object code representations, we can obtain a more

precise description of the program and its possible behavior when running on a

particular architecture, which results in improved modeling accuracy. The output

of our tool can be used to rapidly explore program behavior for different inputs

without requiring actual application execution. Moreover, because the analysis is

parameterized with respect to the architecture, Mira provides users valuable insight

into how programs may run on a particular architecture without requiring access

to the actual hardware. Furthermore, the output of Mira can also be applied to

create performance models to optimize performance, for example, by enabling static

Roofline arithmetic intensity estimates [139].

3.2 Background

This section provides background for the techniques we utilized for the

implementation. Mira is built on top of the ROSE [111] framework to support

the source and binary code analysis. In addition, we use the polyhedral model to

statically describe the loop iteration space.

ROSE Compiler Framework. ROSE [111] is an open-source compiler

framework developed at Lawrence Livermore National Laboratory (LLNL). It

supports the development of source-to-source program transformation and analysis

tools for large-scale Fortran, C, C++, OpenMP and UPC (Unified Parallel C)

applications. ROSE uses the EDG (Edison Design Group) parser and OPF (Open

Fortran Parser) as the front-ends to parse C/C++ and Fortran. The front-end
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produces ROSE intermediate representation (IR) that is then converted into

an abstract syntax tree (AST). It provides users APIs for program analysis and

transformation, such as call graph analysis, control flow analysis, and data flow

analysis. The wealth of available analyses makes ROSE an ideal tool both for

experienced compiler researchers and tool developers with the minimal background

to build custom tools for static analysis, program optimization, and performance

analysis.

Polyhedral Model. We rely on the polyhedral model to characterize the

iteration spaces of certain types of loops. The polyhedral model is an intuitive

parameterized algebraic representation [109] that treats each loop iteration as a

lattice point inside the polyhedral space produced by loop bounds and conditions.

Nested loops can be translated into a polyhedral representation if and only if they

have affine bounds and conditional expressions, and the polyhedral space generated

from them forms a convex set. Moreover, the polyhedral model can be used to

generate generic representation depending on loop parameters to describe the

loop iteration domain. In addition to program transformation [109], the polyhedral

model is broadly used for automating optimization and parallelization in compilers

(e.g., GLooG [8]) and other tools [47, 17, 49].

3.3 Approach

Mira is built on top of the ROSE compiler framework [111], which provides

several useful APIs for parsing source files and disassembling ELF binary files. Mira

is implemented in C++ and can process C/C++ source code as input. Figure 9
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illustrates the entire workflow of Mira for performance model generation and

analysis, which consists of the following three major components:

– Input Processor: Input parsing and disassembling;

– Metric Generator: AST traversal, metric generation;

– Model Generator: Output Python code for models.

Mira provides the architecture description files, although they can be optionally

modified by users to allow evaluation on arbitrary architectures of user interest.

3.3.1 Processing Input Files

In this section, we describe in detail our approach to processing the source

and corresponding binary source files.

Source code and binary representations. The Input Processor is the

front end of Mira; its primary goal is to process source code and ELF object file

inputs and build the corresponding abstract syntax trees (ASTs). Mira analyzes

these ASTs to locate critical structures such as function bodies, loops, and

branches. Furthermore, because the source AST also preserves high-level source

information, such as variable names, types, the order of statements, and the right-

and left-hand side of the assignment, Mira incorporates this high-level information

into the generated model. For instance, one can query all information about the

static control part (SCoP) of a loop, including loop initialization, loop condition,

and increment (these are not explicit in the binary code). In addition, because

variable names are preserved, the identification of loop indices is easier, and the

resulting models are more readable and user-friendly.
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Figure 10. Loop structure from a C++ source code AST fragment (ROSE-
generated graph).

Bridge between source and binary. After processing the inputs,

two separate ASTs are generated from the source and compiled binary codes

representing the structures of the two inputs. Mira uses information retrieved

from these trees to improve the accuracy of the generated models. To accomplish

this, we build connections between the two ASTs, so that for each structure in the

source AST, we can locate corresponding nodes in the binary AST during later

traversals.

Although both ASTs are representations of the inputs, they have

different shapes, node organizations, and meanings of nodes. A partial binary

AST (representing a function) is shown in Figure 11. Each node of the binary

AST describes the syntax element of assembly code, such as SgAsmFunction,

SgAsmX86Instruction. As shown in Figure 11, a function in the binary AST is

composed of multiple instructions, while in the source AST, a function is composed
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of statements. Hence, one source AST node typically corresponds to several nodes

in the binary AST, which complicates the building of connections between them.

Because the differences between the two AST structures make it difficult to

connect the source to binary, an alternative way is needed to make the connection

between ASTs more precise. Inspired by debuggers, line numbers are used in our

tool as the bridge to associate the source to binary. When we are debugging a

program, the debugger knows exactly the source line and column of the error

location. By using the -g option during program compilation, the compiler will

insert debug-related information into the object file for future reference. Most

compilers and debuggers use DWARF (debugging with attributed record format)

as the debugging file format to organize the information for source-level debugging.

DWARF categorizes data into several sections, such as .debug info, .debug frame,

etc. The .debug line section stores the line number information.

Figure 11. Partial binary AST (ROSE-generated graph).
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We use the line number debugging information to decode the specific

DWARF section and map the line number to the corresponding instruction address.

Because line number information in the source AST is stored by ROSE in each

node, unlike in the binary AST, it can be retrieved directly. After line numbers

are obtained from both source and binary, connections are built in each direction

between the two ASTs. As mentioned in the previous section, a source AST node

normally links to several binary AST nodes due to the different meanings of nodes.

Specifically, a statement contains several instructions, but an instruction only has

one connected source location. Once the node in the binary AST is associated with

the source location, further analysis can be performed. For instance, it is possible

to narrow the analysis to a small scope and collect data such as the instruction

count and type in a particular code fragment, such as function body, loop body,

and even a single statement.

3.3.2 Generating Metrics

The metric generator is an important part of the entire framework, which

has a significant impact on the accuracy of the generated model. It receives the

ASTs as inputs from the Input Processor to produce metrics for model generation.

An AST traversal is needed to collect and propagate necessary information about

the specific structures in the program for appropriate organization of the program

representation to precisely guide model generation. During the AST traversal,

additional information is attached to the particular tree node as attributes and

later used for analysis and modeling. For example, if a statement is very long, it is

probably split across several lines. In this case, all the line numbers are collected

together and stored as extra information attached to the statement node.
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In order to gather instruction statistics, the metric generator traverses the

source AST twice: first bottom-up and then top-down. The upward traversal

propagates detailed information about specific structures up to the head node of

the subtree. For instance, as shown in Figure 10, SgForStatement is the head node

of the loop subtree; however, this node itself does not store any information about

the loop. Instead, the loop information such as loop initialization, loop condition

and step are stored in SgForInitStatement, SgExprStatement and SgPlusPlusOp

separately as child nodes. In this case, the bottom-up traversal recursively collects

information from leaves to root and organizes it as extra data attached to the head

node for the loop. The attached information will serve as the context in modeling.

After bottom-up traversal, top-down traversal is applied to the AST.

Because information about the subtree structure has been collected and attached,

the downward traversal primarily focuses on the head node of the subtree and

other nodes of interest, for example, the loop head node, if head node, function

head node, and assignment node, etc. Moreover, the top-down traversal must pass

down necessary information from the parent to the child node in order to model

complicated structures correctly. For example, when a loop contains a branch or

a nested loop, the inner structure requires the information from the parent node

as the outer context to produce the parameterized metric expressions. Finally,

instruction information from the ELF AST is connected and associated with

corresponding structures in the source AST during the top-down traversal.

3.3.3 Generating Models

The model generator consumes the intermediate analysis result produced

by the metric generator and generates an easy-to-use model. For the greatest
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flexibility, the generated model is in Python so that the result of the model can

be applied to various scientific libraries for further analysis and visualization. Note

that generating models in a different language can be accomplished by creating a

different Model Generator implementation while the other Mira components remain

unchanged. In some cases, the model is in ready-to-execute condition for which

users can run it directly without providing any input. However, users are required

to provide extra input to run the model when the model contains parametric

expressions that depend on values, which are not known at compile time. For

example, when user input is expected in the source code, or the value of a variable

is returned in a virtual function call, the variable names are preserved in the model

as parameters that will be specified by the users before running the model.

Figure 12. Polyhedral representation of a nested loop.
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Figure 13. Polyhedral representation with the if constraint.

Figure 14. The if constraint causing holes in the polytope.
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Figure 15. Exceptions in polyhedral modeling.

Loop modeling. Loops are common in HPC codes and are typically at

the heart of the most time-consuming computations. A loop executes a block of

code repeatedly until certain conditions are satisfied. Bastoul et al. [9] surveyed

multiple high-performance applications and summarized the results in Table 1. The

first column shows the number of loops contained in the application. The second

column lists the total number of statements in the applications, and the third

column counts the number of statements covered by loop scope. The ratio of in-

loop statements to the total number of statements is calculated in the last column.

In the data shown in the table, the lowest loop coverage is 77% for quake, and the

coverage rates for the rest of the applications are above 80%. This survey data also

indicates that the in-loop statements make up a large majority portion of the total

statements in the selected high-performance applications.

Using the polyhedral model. Whether loops can be precisely described

and modeled or not has a direct impact on the accuracy of the generated model

because the information about loops will be provided as context for the analysis
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Table 1. Loop coverage in high-performance applications.

Num. of Num. of Statements Percen-
Application loops statements in loops tage

applu 19 757 633 84%
apsi 80 2192 1839 84%
mdg 17 530 464 88%
lucas 4 2070 2050 99%
mgrid 12 369 369 100%
quake 20 639 489 77%
swim 6 123 123 100%
adm 80 2260 1899 84%
dyfesm 75 1497 1280 86%
mg3d 39 1442 1242 86%

of statements inside the loops. The term “loop modeling” refers to the analysis

of the static control parts (SCoP) of a loop to obtain the information about the

loop iteration domain, which includes the understanding of the initialization,

termination condition, and step. Unlike dynamic analysis tools that collect runtime

information during execution, our static approach primarily relies on SCoP parsing

and analyzing for loop modeling. To model a loop, we take several factors into

consideration, such as depth, data dependencies, bounds, etc. Listing 3.1 shows

a basic loop structure, the SCoP is complete and simple without any unknown

variables.

Listing 3.1 Basic loop example.

for (i = 0; i < 10; i++) {

statements;

}

For this case, it is possible to retrieve the initial value, upper bound, and

increment expression from the AST, then calculate the number of iterations. The
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iteration count is used as context when analyzing the loop body. For example, if

corresponding instructions are obtained from the binary AST for the statements in

Listing 3.1, the actual count of these instructions is expected to be multiplied by

the iteration count to describe the real situation during runtime.

Listing 3.2 Double-nested loop example.

for(i = 1; i <= 4; i++)

for(j = i + 1; j <= 6; j++) {

statements;

}

Loops in applications are usually more complicated than the simple example

above, and we must handle as many special cases as possible. In Mira, first, we use

the polyhedral model to accurately model loops whenever they fit the constraints of

the polyhedral approach. In some cases, the index of inner loop has a dependency

on the outer loop index. As shown in Listing 3.2, the initial value of the inner index

j is based on the value of the outer index i. For this case, it is possible to derive a

formula as the mathematical model to represent this loop, but it would be difficult

and timeconsuming. Most importantly, it is not general; the derived formula may

not fit for other scenarios. To use the polyhedral model for this loop, the first step

is to represent loop bounds in affine functions. The bounds for the outer and inner

loop are 1 ≤ i ≤ 4 and i + 1 ≤ j ≤ 6, which can be written as two equations

separately:  1 0

−1 0

×
 i

j

 +

 −1

4

 ≥ 0
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−1 1

0 −1

×
 i

j

 +

 −1

6

 ≥ 0

In Figure 12, the two-dimensional polyhedral area representing the loop

iteration domain is created based on the two linear equations. Each dot in the

figure represents a pair of loop indexes (i, j ), which corresponds to one iteration

of the loop. Therefore, by counting the integers in the polyhedral space, we can

parse the loop iteration domain and obtain the iteration times. For loops with

more complicated SCoP, such as the ones that contain variables instead of concrete

numerical values, the polyhedral model is also applicable. When modeling loops

with unknown variables, Mira uses the polyhedral model to generate a parametric

expression representing the iteration domain, which can be changed by specifying

different values to the input. Mira maintains the generated parametric expressions

and uses them as the context in the following analysis. In addition, the unknown

variables in loop SCoP are preserved as parameters until the parametric model

is generated. With the parametric model, it is not necessary for the users to

regenerate the model for different values of the parameters. Instead, they just have

to adjust the inputs for the model and run the Python code to produce a concrete

value.

Listing 3.3 Exception in polyhedral modeling.

for (i = 1; i <= 5; i++)

for (j = min(6 - i, 3);

j <= max(8 - i, i); j++) {

statements;

}
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There are exceptions where the polyhedral analysis cannot be applied.

For the code snippet in Listing 3.3, the SCoP of the loop forms a non-convex set

(Figure 15), which is not handled by the polyhedral model. Another problem

in this code is that the loop initial value and loop bound depend on the return

values of function calls. For static analysis to track and obtain such values, a more

complex interprocedural analysis is required, which we plan to do in future work.

Listing 3.4 Loop with if constraint

for (i = 1; i <= 4; i++)

for (j = i + 1; j <= 6; j++) {

if (j > 4) {

statements;

}

}

Branches. In scientific applications, branch statements are frequently

used in loops, for example, to handle boundary conditions or detect convergence.

In Listing 3.4, the if constraint j > 4 is introduced into the previous code

snippet. The number of execution times of the statement inside the if depends

on the branch condition. In our analysis, the polyhedral model of a loop is kept

and passed down to the inner scope. Thus the if node has the information of its

outer scope. Because the loop conditions combined with branch conditions form

a polyhedral space as well, shown in Figure 13, the polyhedral representation is

still able to model this scenario by adding the branch constraint and regenerate

a new polyhedral model for the if node. Comparing Figure 13 with Figure 12, it

is obvious that the iteration domain becomes smaller and the number of integers
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decreases after introducing the constraint, which indicates the execution times of

statements in the branch is limited by the if condition.

Listing 3.5 if constraint breaks polyhedral space

for (i = 1; i <= 4; i++)

for (j = i + 1; j <= 6; j++) {

if (j % 4 != 0) {

statements;

}

}

However, some branch constraints might break the definition of a convex set

so that the polyhedral model is not applicable. For the code in Listing 3.5, the if

condition excludes several integers in the polyhedral space causing “holes” in the

iteration space as shown in Figure 14. The excluded integers in the true branch

break the integrity of the space so that it no longer satisfies the definition of the

convex set; hence the polyhedral method cannot be used. Nevertheless, the false

branch still satisfies the polyhedral model, so we can solve the following equation to

determine the true branch values:

Counttrue branch = Countloop total − Countfalse branch

The generality of the polyhedral model makes it suitable for most common cases

in real applications; however, there are some cases that cannot be handled by the

polyhedral model or any static analysis. For such circumstances, we provide users

an option to annotate branches or the loops which Mira cannot handle statically.

Annotation. There are loop and branch cases that we are not able to

process statically, such as conditionals involving loop index-unrelated variables

or external function calls used for computing loop initial values or loop/branch
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conditions. Mira accepts user annotations to address such problems. We

designed three types of annotation: an estimated percentage or a numerical value

representing the proportion of iterations branch may take place inside the loop or

the number of iterations, which simplifies the loop/branch modeling; a variable

used as initial value or condition to complete the polyhedral model, or a flag to

indicate that a structure or a scope should be skipped. To annotate the code,

users just need to put the information in a “#pragma” directive in this format:

#pragma @Annotation information. Mira processes the annotations during metric

generation.

Listing 3.6 User annotation for if statement.

for (i = 1; i <= 4; i++)

for (j = a[i]; j <= a[i+6]; j++) {

#pragma @Annotation \

{lp_init:x,lp_cond:y}

if (foo(i) > 10) {

#pragma @Annotation {skip:yes}

statements;

}

}

As the example shown in Listing 3.6, the if has a function call as a

condition that causes a failure when Mira tries to generate the model fully

automatically. To solve this problem, we specify an annotation in the pragma to

provide the missing information and enable Mira to generate a complete model.

In the given example, the whole branch scope will be skipped when generating

metrics. Besides, we also annotate the initial value and condition of the inner loop

using variable x and y because, as a static tool, Mira is not able to obtain values
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from those arrays. Mira will use the two variables to complete the polyhedral

model; these variables will be treated as parameters expecting sample values from

the user at model evaluation time.

Functions. Mira organizes the generated model in functions, which

correspond to functions in the source code. In the generated model, the function

header is modified for two reasons: flexibility and usability. Specifically, each

user-defined function in the source code is modeled into a corresponding Python

function with a different function signature, which only includes the arguments

that are used by the model. In addition, the generated model function has a

slightly different name in order to avoid potential conflict due to different calling

contexts or function overloading. For instance, the Python function with name

foo 2 represents the original C++ function foo, but with a reduced number of

arguments. In the body of foo 2, the original C++ statements are replaced with

corresponding instruction counter metrics retrieved from binary. These data

are stored in Python dictionaries and updated in the same order as the original

statements. Each function, when called, returns the aggregate counts within its

scope. This design enables users to (optionally) separate and obtain the overview of

particular functions with only minor changes to the model.

Correct handling of function calls involves two aspects: locating the

corresponding function and combining the metrics into the caller function. To

combine the metrics, we designed a Python helper function handle function call,

which takes three arguments: caller metrics, callee metrics, and loop iterations. It

enables Mira to model the function call in the loop, in which each metric of the

callee is multiplied by the number of loop iterations. Mira retrieves the name of

the callee function from the source AST node and then generates a function call
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statement in Python and takes the return values that representing the metrics

in the callee function. After that, Mira calls the handle function call to combine

metrics of the caller and the callee.

Figure 16. Original source code.

Figure 17. Python model code excerpt for the foo function.
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Figure 18. Python model code for the main program.

Architecture description file. To enable the evaluation of the generated

performance model in the context of specific architectural features, we provide an

architecture description file where users define architecture-related parameters,

such as the number of CPU cores, cache line size, and vector length. Moreover,

this user-customizable1 file can be extended to include the information which does

not exist in the source or binary file to enable Mira to generate a complete model.

For example, we divided the x86 instruction set into 64 different categories in the

description file, which Mira uses to estimate the number of instructions in each

category for each function in the source file. This representation strikes a balance

between fine and coarse-grained approaches, providing category-based cumulative

instruction counts at fine code granularity (down to statement-level) and enabling

a better understanding of local behavior. Based on the metrics Mira generated

in Table 2, Figure 19 illustrates the distribution of categorized instructions from

function cg solve from the miniFE application [56]. The separated piece represents

the SSE2 vector instructions, which are the source of the floating-point instruction

in this function.

1Note that users are not required to read or modify this file at all to use Mira effectively.
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Table 2. Categorized instruction counts of function cg solve.

Category Count
Integer arithmetic instruction 6.8E8

Integer control transfer instruction 2.26E8
Integer data transfer instruction 2.42E9
SSE2 data movement instruction 3.67E8

SSE2 packed arithmetic instruction 1.93E8
Misc Instruction 2.77E8

64-bit mode instruction 2.59E8

Figure 19. Instruction distribution of function cg solve.

Generated model. We describe the model generated (output) by Mira

with an example that shows the source code (input) and generated Python model

separately. The source code (Figure 16) includes a class A defining a member

function foo with two array variables as the parameters. The member function

foo is composed of a nested loop in which we annotate the upper bound of the

inner loop with variable y. In the main function, Mira creates an instance of class

A and call function foo. Figure 17 shows part of the generated Python function

foo in which the new function name is replaced with the combination of its class

name, original function name, and the number of arguments in the original function

definition. The body of the generated function A foo 2 consists of the Python

statements for keeping track of performance metrics. Mira uses the annotation

variable y to complete the polyhedral model and preserves y as the argument.
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Table 3. FPI counts in the STREAM benchmark.

Array size / Tool TAU Mira Error

2M 8.239E7 8.20E7 0.47%
50M 4.108E9 4.100E9 0.19%
100M 2.055E10 2.050E10 0.24%

Table 4. FPI counts in DGEMM benchmark.

Matrix size / Tool TAU Mira Error

256 1.013E9 1.0125E9 0.05%
512 8.077E9 8.0769E9 0.0012%
1024 6.452E10 6.4519E10 0.0015%

Similarly, the generated function main is shown in Figure 18. It calls the A foo 2

function and then updates its metrics by invoking handle function call. The

parameter y 16 indicates that the function call associates the source code at line

16. At present, the value of y 16 is specified by users during model evaluation.

Different values can be supplied as function parameters in different function call

contexts.

3.4 Evaluation

In this section, we evaluate the correctness of the model derived by Mira

with TAU in the instrumentation mode. Two benchmarks are separately executed

statically and dynamically on two different machines. While Mira counts all types

of instructions, we focus on floating-point instructions (FPI) in this section because

it is an important metric for HPC code analysis, which is not obtainable through

measurement on some recent Intel processors. The validation is performed by

comparing the floating-point instruction counts produced by Mira with empirical

instrumentation-based TAU/PAPI measurements.
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3.4.1 Experiment Environment

We conducted the validation on two machines:

– Arya: two Intel Xeon E5-2699v3 2.30GHz 18-core Haswell CPUs and 256GB

of memory.

– Frankenstein: two Intel Xeon E5620 2.40GHz 4-core Nehalem CPUs and

22GB of memory.

3.4.2 Benchmarks

First, we validate Mira-generated models with two simple benchmarks:

STREAM [89] and DGEMM [87]. STREAM is designed for the measurement

of sustainable memory bandwidth and corresponded computation rate for

simple vector kernels. DEGMM is a widely used benchmark for measuring the

floating-point rate on a single CPU. It uses double-precision real matrix-matrix

multiplication to calculate the floating-point rate. For both benchmarks, the non-

OpenMP version is selected and executed serially with one thread.

Table 5. FPI Counts in miniFE

size Function / Tool TAU Mira Error

waxpby 8.95E4 8.94E4 0.011%
30x30x30 matvec std::operator() 1.54E6 1.52E6 1.3%

cg solve 1.966E8 1.925E8 2.09%
waxpby 2.039E5 2.037E5 0.098%

35x40x45 matvec std::operator() 3.57E6 3.46E6 3.08%
cg solve 7.621E8 7.386E8 3.08%
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(a) FP instruction counts in STREAM
benchmark

(b) FP instruction counts in DGEMM
benchmark

(c) FP instruction counts in miniFE (d) FP instruction counts in miniFE

Figure 20. Validation of floating-point instruction counts.
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3.4.3 Mini Application

In addition to the STREAM and DGEMM benchmarks, we also use the

miniFE mini-application [56] to verify the result of Mira. MiniFE is composed

of several finite-element kernels, including computation of element operators,

assembly, sparse matrix-vector product, and vector operations. It assembles a

sparse linear system and then solves it using a simple unpreconditioned conjugate-

gradient algorithm. Unlike STREAM and DGEMM, in which the main function

takes the majority part of the code, miniFE contains several functions and includes

function calls which, challenge the capability of Mira to handle a long chain of

function calls.

3.4.4 Results

In this section, we present empirical validation results and illustrate the

tradeoffs between static and dynamic methods for performance analysis and

modeling. We also show a use case for the generated instruction metrics to compute

an instruction-based arithmetic intensity derived metric, which can be used to

identify loops that are good candidates for different types of optimizations (e.g.,

parallelization or memory-related tuning).

1) Discussion. Tables 3, 4 and 5 show floating-point instruction counts in

two benchmarks and mini application separately. The metrics are gathered by

evaluating the model generated by Mira and comparing it to the empirical results

obtained through instrumentation-based measurement using TAU and PAPI.

In Figure a, the X-axis is the size of the input array, and we choose 20

million, 50 million, and 100 million, respectively. The logarithmic Y-axis shows

floating-point instruction counts. Similarly, in Figure b, the X-axis is for input
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size and the Y for FPI counts. Figure c and Figure d show FPI counts for three

functions for the different problem sizes. We show details for the cg solve function,

which solves the sparse linear system because it accounts for the bulk of the

floating-point computations in this mini-app. The function waxpby and the

operator overloading function matvec std::operator() are in cg solve’s call tree

and are invoked in the loop. Our results show that the floating-point instruction

counts produced by Mira are close to the TAU measurements (of the PAPI FP INS

values), with an error of up to 3.08%. The difference between static estimates

and measured quantities increases with problem size, which means that there are

discrepancies within some of the loops. This is not unexpected—static analysis

cannot capture dynamic behavior with complete accuracy. The measured values

capture samples based on all instructions, including those in external library

function calls, which at present are not visible and hence not analyzed by Mira. For

such scenarios, Mira can only track the function call statements that just contain

several stack manipulation instructions while the content of the invoked function is

skipped. In the future, we plan to provide different mechanisms for handling these

cases, including limited binary analysis of the corresponding library supplemented

by user annotations.

In addition to correctness, we compare the execution time of the static

and empirical approaches. In empirical approaches, the experiment has to be

repeated for different input values, and in some cases, multiple runs for each input

value are required (e.g., when collecting performance hardware counter data).

Instrumentation approaches can focus on specific code regions, but most sampling-

based approaches collect information for all instructions; hence they potentially

incur runtime and memory cost for collecting data on uninteresting instructions.
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By contrast, our model only needs to be generated once and then can be evaluated

(at low computational cost) for different user inputs and specific portions of the

computation. Most important, the performance analysis by a parametric model can

be used to achieve broad coverage without incurring the costs of many application

executions.

Another challenge in dynamic approaches is the differences in hardware

performance counters, including the lack of availability of some types of

measurements. For example, in modern Intel Haswell servers, there is no support

for FLOP or FPI performance hardware counters. Hence, static performance

analysis may be the only way to produce floating-point-based metrics in such cases.

2) Prediction. Next, we demonstrate how one can use the Mira-generated

metrics to model the estimated instruction-based floating-point arithmetic intensity

of the cg solve function. The general definition of arithmetic intensity is the ratio

of arithmetic operation to memory traffic. With an appropriate setting in the

architecture description file, we can enable Mira to generate various metrics. As

the data shown in Table 2, Mira categorizes the instructions in cg solve into seven

categories. In the listed categories, “SSE2 packed arithmetic instruction” represents

the packed and scalar double-precision floating-point instructions and “SSE2

data movement instruction” describes the movement of double-precision floating-

point data between XMM registers and memory. Therefore the instruction-based

floating-point arithmetic intensity of function cg solve can be simply calculated as

1.93E8/3.67E8 = 0.53. This is a simple example to demonstrate the usage of our

model. With more complex architecture description files, Mira is able to perform

more complicated predictions.
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3.5 Summary

This chapter presents the Mira framework. It combines the binary and

source code static analysis to automatically construct performance models, which

affirmatively answers RQ1 (“Can we use static binary analysis to construct

representations of programs for performance modeling?”). The parameterized

representation of the program generated from the combination of binary and source

code improves the accuracy and the readability of the model comparing to solely

relying on either binary or source code. With our evaluation with the state-of-

the-art performance analysis tool (TAU) using floating-point operations hardware

counters, we demonstrated that the Mira-generated model accuracy is excellent.

The error in the model predictions is below 0.5% for the benchmarks and 3% for

the MiniFE application.
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CHAPTER IV

MELIORA

This chapter is based on the work [92] by Boyana Norris and myself. In

this research, Boyana Norris helped with the generalization of the research idea

and direction and also provided support for organizing the experiment data and

comparison between the results of autotuning. I designed and implemented the

Meliora framework. Boyana Norris provided insights on refining the model and

helped with deriving the results.

4.1 Motivation

Performance models are useful not only in the initial implementation of

algorithms but for the entire software life-cycle. For example, a performance model

can guide the application developers in choosing the most suitable algorithm to

reach the design goal. In the phase of application testing, it offers direct feedback

on the performance and resource consumption of an application by adjusting

parameters. In addition to software development, performance modeling also plays

an important role in system design and tuning. Specifically, performance models

are capable of describing non-existent hardware, which helps researchers to explore

their options when designing new systems. For example, the researchers may model

several potential network topologies to select the most efficient way to connect

nodes in a large-scale parallel system. A performance model can be used to predict

the expected design performance of a platform with a given configuration. The

expectation can be compared with the benchmarked performance to reveal tuning

opportunities. Thus, performance modeling is significantly useful for both software

and hardware development.
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Traditional approaches to model-based performance code optimization

employ a variety of techniques to represent the behavior of existing

implementations. Analytical models are more difficult to create but can also be

used to represent the performance of potential implementations that cannot be

measured directly. Increasingly, machine learning (ML) methods are being used for

performance modeling to identify patterns in the code feature space and identify

optimal parameters. They are an attractive option because of the potential to

capture complex patterns mostly automatically.

The main goal of our research is to provide a novel, scalable ML-based

code matching methodology, and tool that enables the accurate identification of

loop-based computations. At present, when faced with a new code to optimize,

most humans, compilers, and autotuners start from scratch or, at best, apply some

general heuristics when deciding on what code transformations to pursue. What we

propose in this paper is a methodology to provide a high-quality starting point for

the optimization of any computation. When used by humans, this can save hours,

days, or weeks of effort. When used in conjunction with compilers or autotuners,

this approach can result in performance that is competitive with that of empirically

tuned codes but at a small fraction of the cost.

Our primary objective is to accelerate the code optimization process by

using a deep learning technique to match a target code to similar computations

that have been optimized previously. To accomplish this, we define a new graph-

based code representation and combine it with a code generation framework to

enable the automated creation of a deep learning model for matching loop-based

computations. We name this approach Meliora, which translated from Latin means

“ever better”. The approach is based on learning accurate graph embeddings of a
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set of computational kernels K0, K1, ..., KN that have been autotuned or manually

optimized on the target architecture. When a new code Cnew must be considered,

we apply the model to identify which optimized kernel, Ki, is the closest match.

Based on that information and the autotuning results, we can select the best-

performing version of Ki, Kiopt , from our training set. This information can then be

used by a human developer to manually optimize their implementation (which may

involve significant refactoring), or it can be used by a compiler or an autotuner to

automatically apply a small set of optimizations. The Meliora framework can thus

greatly reduce or eliminate the exponential search space of potential optimizations.

 Application LLVM-based
Code Analyzer

 1. Extract kernel
characterics

2. Trained
graph model

3. Graph
embedding

4. Prediction
results

Guided
code tuning

5. Select
tuning parameters 

Knowledge
database

(optional) Opt to
update

Optimized
executable

(optional) Re-train

6. Compile

Figure 21. Meliora’s workflow for code representation-based model generation and
optimization.

The two principal components of the Meliora approach are an LLVM-

based frontend for extracting code features and an ML-based graph embedding

component for learning efficient code representations. The overall workflow

of feature extraction, model generation, and subsequent code optimization is

illustrated in Figure 21.

The research contributions in this chapter aim to answer RQ2 and can be

summarized as follows.
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– Definition of a graph-based code representation that extends the traditional

control flow graph with computationally relevant features, such as instruction

mix and reuse-distance data.

– A deep-learning framework for learning code graph embeddings for efficient

and accurate matching of computational kernels composed of code that does

not contain non-standard function calls.

– Integration with an autotuner to enable fully automated construction of the

training dataset for a supervised machine learning model used for matching

the code graph embeddings.

– Evaluation of the accuracy and effectiveness of this approach on a set of

computational kernels from the SPAPT benchmark suite.

This chapter is organized as follows: Section 4.2 briefly describes the

graph representation learning techniques, the LLVM compiler framework, and the

background of performance optimization approaches. In Sections 4.3, we discuss

the details of our methodology and the implementation. Section 4.4 evaluates

the efficiency of Meliora in metric retrieval and the accuracy of the generated

models on several scientific kernels. In Section 4.5, we introduce related work about

performance optimization and graph representation learning. Section 4.6 concludes

with a summary and future work discussion.

4.2 Background

Before discussing Meliora in detail, we briefly overview the concepts and

tools on which we have based our approach.
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LLVM Meliora’s static analysis component is based on the LLVM compiler

framework [72], which contains a set of open-source tools and libraries for writing

code analysis and transformation tools for several languages and most HPC

architectures. For example, the Clang compiler frontend provides several useful

static analyses and APIs to manipulate the Abstract Syntax Trees (ASTs)

generated from C and C++ source code. LLDB is the LLVM version of GDB

for efficient debugging. Polly applies the polyhedral model [109], an intuitive

parameterized algebraic representation, to optimize the memory access pattern

within loops. The middle layer, LLVM intermediate representation (IR), connects

the frontend and the backend of a program and, at the same time, offers a

language-independent environment for developing new, portable tools, thereby

reducing frontend development efforts. The metric generation components of

Meliora (Sections 4.3.2 and 4.3.3) are hence built on top of the LLVM IR for

compatibility with code written in different programming languages.

Graph Representation Learning Graph representation learning (or graph

embedding) is a type of machine learning that focuses on creating compact

vector representations of graphs. To be specific, for a given graph G its goal

is to find a mapping f : vi → xi ∈ Rd, such that the embedded vector

Xi = x1, x2, ..., xd can represent the properties of the original graph. There

are four general types of embeddings: node, edge, hybrid, and whole-graph

embedding. Algorithms that operate on embeddings rather than graphs can greatly

reduce the cost of computation and storage; hence embeddings are widely used in

various types of applications, such as link prediction, node classification in social

networks, and DNA analysis in computational biology. The challenge is to balance

the compactness with the preservation of key properties. Methods for graph
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representation learning include those based on dimensionality reduction, which

employs mathematical analysis techniques, such as principal component analysis

(PCA) [66], linear discriminant analysis (LDA) [141], and locally linear embedding

(LLE) [115]. Techniques include matrix-factorization [118, 11] are also used for

graph learning. Random walk is utilized by graph embedding approaches like

DeepWalk [108] and Node2Vec [50], which samples a graph with many paths to find

the context of the connected vertices. More recently, researchers have also employed

convolutional neural networks (CNNs) [75, 74] and recurrent neural networks

(RNNs) [94] to learn graph representations, for example, in GraphSAGE [53]. We

take a CNN-based approach to support code graph embedding because it is less

limited than earlier approaches (e.g., we must handle directed graphs with node

and edge labels).

Performance Optimization One of the common approaches to optimizing

performance is automatic performance tuning (autotuning). Here we consider

autotuning that not only explores simple parameters but rather considers

significantly different code variants (e.g., through transformations such as tiling

or automatic parallelization). Orio [55], the autotuning framework we used to

build the training dataset is based on annotated C or Fortran code, coupled with

a tuning specification containing various transformations and their parameters. In

general, Meliora does not require the use of an autotuner; however, it enables the

relatively easy generation of a sizeable training dataset for our model.
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4.3 Approach

Meliora is a novel framework for characterizing computational kernels

whose goal is to dramatically reduce the time and effort required for optimizing

performance. The primary objective is to accelerate the process of searching the

space of optimizations by using a CNN-based technique to identify previously

optimized similar codes. When used in conjunction with an autotuner, Meliora

can greatly reduce or eliminate the exponential search space of parameterized

code versions. Here we refer to a kernel as any small to medium-sized computation

consisting primarily of loops. The performance of many HPC applications is heavily

dependent on the performance of a few key kernels, which would be the target for

our analysis and optimization efforts. Unlike a library, Meliora does not aim to

create a repository of ready-to-use functions optimized for particular architectures;

rather, it provides a mechanism to discover successful optimization of similar (but

rarely identical) computations. Also, unlike library approaches, there is no specific

limitation to the types of computation that can be considered.

The Meliora framework consists of two major components: front end for

data collection and back end for data analysis. Figure 21 shows the overall process

of performing the front-end analysis to extract the code representation (step 1,

Sec. 4.3.1) and the data analysis (steps 2–4, Sec. 4.3.4–4.3.5) in the backend.

4.3.1 The Hybrid Control Flow Graph

The first step in extracting a code representation in Meliora is based on

the traditional control-flow graph analysis. A control flow graph (CFG) consists

of nodes and edges describing all the possible execution paths of a program.

The traditional CFG only contains nodes and edges that can provide limited
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information, such as the number of basic blocks and their connectivity. We can

easily envision two codes with identical CFGs, but vastly different computations

within basic blocks. For the purpose of precisely describing the structure and

potential runtime behavior of a kernel, we require more information; hence, we

introduce the hybrid CFG.

Definition 1 (hybrid Control Flow Graph (hCFG)). A directed graph denoted

as G = 〈V,E, δ, ε〉 where vertex V and edge set E ⊆ V × V stand for basic blocks

and directed edges which connect them. In feature sets δ and ε, δi(vn) represents the

information attached to node vn and εj(emn) indicates the features attached to the

edge from node vm to node vn.

The node and edge attributes are used for learning a representative model

in the data analysis phase, which differentiates hCFG from regular CFG. Figure 22

shows the generated hCFG for a matrix-matrix multiplication kernel as Listing 4.1.

Listing 4.1 Matrix-matrix multiplication

void multiply (double mat1[][N],

double mat2[][N],

double res[][N]) {

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

res[i][j] = 0.0;

for (k = 0; k < N; k++)

res[i][j] += mat1[i][k] *

mat2[k][j];

}

}

}
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Figure 22. hCFG for the code fragment in List 4.1 (Meliora-generated graph).

The graph structure of the hCFG is the same as that of the regular CFG,

in which each vertex represents a basic block including a sequence of operations

and each edge indicates the direction of execution flow. In addition, hCFG node

attributes include a vector with instruction mix information. Edges are also

annotated with attributes described later in more detail. To describe each node,

we employ an instruction mix that consists of aggregated instruction counts of four
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major groups: floating-point, integer, memory access, and control operations. The

node attributes categorize every node into different functional clusters by their

dominating operation. For example, a floating-point-intensive node is one that

contains a large portion of floating-point instructions. Similarly, a node with a

majority of memory access instruction would tend to be memory-bound at runtime.

Next, we compute the transition probabilities of each node (by using the

method described in [82]) and attach the probability as an edge attribute. Dynamic

graph attributes distinguish our hCFG from the attributed CFGs used in security

research [44]. They characterize the dynamic behavior of a kernel by lightweight

runtime profiling, which offers insightful information about the propagation of

values of interest but is not concerned with performance-relevant attributes.

In Table 6 we list the selected node attributes (shown as LLVM IR type) and

edge attributes, and we describe the process of extracting these attributes in the

following sections.

Table 6. Graph attributes in hCFG

Type Attach to Source

Floating-point: FAdd, FMul, FDiv, FSub

Integer: Add, Mul, UDiv, SDiv, Sub

Static Node Memory: Store, Load, Fence, GetElementPtr

Control: Ret, Br, Switch, Resume

Memory Access estimation

Loop Depth

Dynamic / Edge Transition probability: runtime profiling /

Static Statically derived from IR
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4.3.2 hCFG Metrics

The metrics added to the hCFG directly affect the performance of the entire

Meliora workflow and the accuracy of the generated model reflecting over the

prediction results. For the selection of appropriate metrics as model features, we

consider three aspects:

1. Representability: The metrics should be representative to describe and

differentiate a program (or part of a program) which is of importance for

feature learning. Moreover, a small number of representative metrics can

greatly reduce the costs of model optimization.

2. Generation complexity: As a lightweight modeling tool, one goal of Meliora

is to provide efficient tuning guidance. Therefore on top of the above

requirement, we also consider the complexity of metrics generation in terms

of time and resource consumption.

3. Integration compatibility: Meliora can work with autotuners such as

Orio [105, 55] in postmortem mode and also can behave as a standalone

compiler. Thus, it requires the availability of all the metrics during compile

time so that Meliora can extract the metrics without requiring application

execution.

Table 6 lists all the metrics required for building the hCFG and generating

models based on the previous criteria. The rest of this section will discuss the

metrics in detail.

Instruction mix is the collection of instructions counters which fall into

four categories: Floating-point, Integer, Memory, and Control instructions. The
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instructions represent both high-level application information and the architecture

on which the code will run. If we are looking for ways to accurately characterize

each basic block, instructions are a natural choice. The Mira framework [91],

for example, demonstrated the applicability and precision of the collection of

instructions by static analysis.

The type of a basic block is dominated by the majority category of its

instructions. Accordingly, the nodes in hCFG exhibit different behaviors; for

instance, some nodes are memory-intensive (e.g., a data structure initialization

loop), while others are dominated by computation (e.g., matrix-matrix product).

Therefore, instead of storing all instructions, we can compress the data attached

to each node to capture just the four categories of instructions and thus further

optimize the performance of model generation. Besides, by counting instructions,

we are able to derive other valuable metrics, for example, the arithmetic intensity of

floating-point operations, to help researchers gain a deeper understanding of their

code. All the stated reasons make the instruction mix an ideal metric for Meliora to

extract and use to generate models.

Loop depth is used as a metric for the more complicated loop scenarios,

for example, nested loops. Since the most computation-intensive kernels consist of

one or multiple nested loops, loop depth plays a critical role in providing precise

information about the relative location of each basic block. Moreover, loop depth

well balances between the complexity of retrieval and representability, which makes

it a good candidate for hCFG.

The base level of loop depth is decided by the location of the entry block

of the loop. In the program analysis performed in a top-down manner, such
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information is passed down and carried by each basic block and propagated

accordingly (increased by one when a new loop header is encountered).

Memory access estimation. In addition to the instruction mix and loop

depth, Meliora also generates reuse distance histograms to abstract the pattern

of memory access within a basic block. Previous research [37, 13] shows that the

reuse distance is an effective representation of data access locality and for further

understanding of the behavior of memory hierarchy. This metric can be seen as

a supplement to the instruction mix. This increases the dimension of the node

attributes in the hCFG by the size of the reuse distance histogram (customizable,

with default size 5), but it enables better differentiation between basic blocks than

a simple instruction mix attribute.

The generation of the memory access estimation, however, is challenging for

static tools. Most previous research on reuse distance analysis relies on the program

instrumentation techniques as they are able to obtain the dynamic information

from executions, such as memory references and instruction tracing, etc. Although

such data may not be available in compile time, we can offer the reasonably

estimated metrics derived from static program analysis, for instance, the range,

upper (lower) bounds. In Meliora, the memory access pattern is represented by a

histogram vector whose number and size of bins are fully customizable by users.

We describe the details of the implementation in the next section.

Transition probabilit. Besides vertex-attached metrics, the transition

probability is used as the edge weight, which indicates the probability of the

execution flow from one basic block to another [82]. In real environments, it is not

usually possible for a program to traverse the execution paths equally, especially

for multiple or deeply-nested branches. For example, in the code shown in List 4.1
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certain basic blocks are executed more often than others depending on the loop

static control part (SCoP). Consequently, it would affect the accuracy of the model

if all execution paths were treated as equally likely. Therefore transition probability

can be utilized to enhance the structural representability of the hCFG in which the

frequent paths carry larger values than the infrequent ones.

In Meliora, the transition probability is the only metric that can be

extracted through either static or dynamic analysis. As the unique edge attribute

for the graph, it is of great importance; thus, the data obtained from runtime

profiling can describe the structure with emphasis on precision. However, in many

cases generating the transition probability at compile time is sufficiently accurate

and enables the entire Meliora workflow to run in pure static mode, which reduces

the time for both creating and using the models.

4.3.3 Metric Extraction

As we mentioned in Sec. 4.3.1, all graph features can be computed statically,

and some (transition probabilities) can be optionally computed dynamically. In

this section, we describe the static and dynamic techniques used in Meliora for

obtaining the features and building the hCFG.

Loops are common and significant code structures in high-performance

computing applications. Most computationally intensive code is expressed in

loops, and they account for the majority of application performance hotspots. In

the paper by Bastoul et al. [9], the authors surveyed several high-performance

applications. Their work shows that the average loop coverage, calculated as the

ratio of in-loop statements to the total number of statements, ranges from 77% to

100% with an average above 80% for the surveyed applications.
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The critical role and the characteristics of a loop make it the ideal target

for code optimization. For instance, an optimizer (human, compiler, or autotuner)

can apply several techniques such as loop fusion, loop unrolling, and loop tilting to

reduce the cache miss rate by the enhancement of locality of the memory system

in order to improve the overall performance of the generated code. Hence, Meliora

focuses on the loops within kernels for extracting metrics and metrics and assisting

in discovering code optimizations.

Analysis granularity. Kernels frequently contain more than one same-

level loop. Each of these loops may have unique characteristics that would require

a different approach to optimization. In other words, a single optimization strategy

for the whole multi-loop kernel is unlikely to yield the best results. Hence, Meliora

supports model generation based on metrics obtained from each top-level loop

(or nested loops) so that later Meliora can generate the model and guide the

optimization matching the same granularity in new kernels. In addition to the

loop-basis analysis, we also provide users with the option for performing the static

analysis in a coarser-grained manner, for example, running on the function level

with all loops combined. The goal of offering a high-level perspective is to further

help the users to gain an understanding of the functionality of the kernels as a

whole. If a kernel-level match is found, for example, that can help optimize larger

portions of the code at once, thereby saving time and effort.

Static analysis for metric extraction. In the design of the analyzer,

we focus on efficiency and usability. Therefore, users are able to obtain all the

hCFG features during compile time, while dynamic profiling is an available option

to choose in case more precise data is needed. In the pure static mode, the static

analyzer is utilized for collecting both the node and edge features. We build
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Algorithm 1: Memory access estimation generation.

Data: hCFG G
Result: vector v as the histogram
current byte tracker bt = 0;
while G has basic block BBk not visited do

initialize local storage lst;
while BBk has instruction Im not visited do

if Im is store/load instruction then
update bt;
obtain operand opd from Im;
if opd is GEPOperator then

parse opd;
end
update lst;

end

end
update v;

end

the static analyzer on top of the LLVM intermediate representation (IR), which

is the bridge between lexer, parser (frontend), and code generation (backend).

In addition to better usability, when performing analysis on the IR level, it is

possible for us to isolate the design of the processing logic from the types of

source code to make Meliora a language-independent framework. Furthermore, it

also reduces the complexity of the analysis compared to working directly on the

binary code. Moreover, LLVM provides a large number of handy functions for

developers to leverage. Technically, Meliora is expected to work compatibly with

any programming language as long as it can be transformed into the LLVM IR. In

the rest of this section, we discuss the details of the implementation of Meliora for

metric extraction.

Independent of the types of the target metrics, we must inevitably traverse

the abstract syntax tree (AST) or similar wrapped structure in LLVM IR one
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or more times while keeping track of several values in order to summarize the

corresponding metrics correctly. However, we can minimize the repeated process by

adjusting the entry point of the analysis and also by aligning it with the analysis

granularity. Specifically, we consider loops, especially nested loops, as a whole

graph so that we can flatten them from the outermost loop. After locating the

top-level loop, we treat each basic block equally independent of its type (e.g.,

loop SCoP) and traverse once to collect necessary data from basic blocks. Each

basic block is examined to retrieve and categorize the parsed instructions. For

coarser-grained results, we want to collect kernel-level information, which might

comprise several loops at the same level. To address this problem, we first identify

and locate the first and last loops then generate a fake loop body to enclose them.

After that, we can reuse the same method to process the fake loop and generate a

kernel graph. This approach also allows finer control over granularity within each

kernel that falls between kernel-level and single-loop.

The edge features can be extracted either statically or dynamically. The

dynamic method requires program instrumentation. Then the instrumented code

is compiled and run to generate the hCFG transition probability edge attributes.

Before Meliora comes into play, the profiled data must be merged back with the

source code to create the LLVM bitcode. By contrast, in the pure static approach,

we provide an LLVM component for obtaining the edge data statically, which uses

heuristics to compute the edge probability based on the weights produced by the

DAG analysis. We note that both the static and dynamic approaches occur before

the loop traversal pass, and the edge data are collected at the same time as node

attributes. However, due to the extra steps of instrumentation and execution, the

time consumption for the dynamic approach is substantially higher than that of the
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static method. In section 4.4 we compare the two approaches in terms of time cost

and accuracy.

Describing the memory access pattern without profiling data is never a

trivial task. Moreover, the enforcement of the static single-assignment (SSA) form

in LLVM IR complicates the implementation at the symbolic level. To address

the challenges, Meliora employs the symbols extracted from the IR to estimate

the bounds of the reuse distance in bytes. This is to say that we might not be

able to obtain the precise memory references of an array, yet we can deduce the

maximum and the minimum number of access of the same array by appropriate

assumptions to compute reuse distance bounds. In the implementation, we iterate

the instructions and three LLVM instruction types involve: StoreInst, LoadInst and

GetElementPtrInst. As shown in algorithm 6, we start by testing the instruction

type, and then for the qualified instructions, the operand of the instruction is

visited. Again the operand is tested because the instruction might manipulate

the scalar values. Generally, if the operand is an LLVM GEPOperator, the

algorithm considers the instruction as a memory access operation. Subsequently,

the instruction operand is parsed to retrieve information about the array. We might

need to recursively parse the operand if the target is a multi-dimensional array.

The memory access estimation is generated at the same time as other metrics; no

additional graph traversal is required.

4.3.4 Graph Representation Learning

Graph representation learning is at the heart of the Meliora workflow. The

framework relies on machine learning techniques to train the model for unseen

graph prediction in order to assist the selection of the tuning parameters for code
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optimization. In addition to the model, it converts the raw hCFGs generated in the

front end into a vector while preserving significant graph properties. The embedded

form reduces the costs of storage and computation on the original graphs, which is

crucial for scaling up this approach to a large number of computational patterns.

A number of graph embedding options exist, as briefly discussed in Sec. 4.2.

To choose the method most suitable to our needs, we consider both the current

demand and extensibility potential. We have four requirements for any potential

approach: 1) It must work for arbitrary graphs; 2) It can process auxiliary data

besides the topological information of the graph; 3) It can handle both directed

and undirected graphs; and 4) It can handle both vertex and edge attributes with

discrete and continuous values to generate a whole-graph embedding. Relatively

few approaches fulfill these requirements, leading us to the choice described below.

We build the component for graph representation learning on top of

PSCN [104] proposed by Niepert et al. This approach is based on convolutional

neural networks (CNNs) [75, 74], aiming to learn the arbitrary graph with node

and edge attributes for prediction. Because our ultimate goal is to compare and

match large numbers of computational kernels, we need an approach that is both

accurate and computationally efficient. If we were to use the graph representation

directly, e.g., to build a tree-based classification model, we would have to employ

an expensive graph comparison operation, such as graph isomorphism. This would

limit both the size and the number of codes that can be considered. Hence, we

choose to reduce the hCFG to a vector representation, a task for which CNNs

are one of the most suitable approaches. The vector representation also offers the

advantage of easy comparisons using a number of different distance techniques,

including cosine or Euclidean distances. In Fig. 24, for example, we show the cosine
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distances between the vector embeddings of test dataset loops and the embeddings

of the loops in the training kernels.

The whole procedure consists of three steps. Briefly, Node sequence selection

is to construct the sequence of nodes and create the corresponding receptive fields.

Followed by Neighborhood assembly it assembles a local neighborhood for the nodes

in the sequence as the candidate for the receptive field. The third step Graph

normalization is to normalize the neighborhood graph assembled in the previous

step by imposing an order on the graph in order to create the vector representation.

In order to minimize the overfitting of model training, dropout regularization [124]

is applied on the hidden layer of the CNN. The dropout rate is set to 50%. The

procedure also trains a model utilized by Meliora to predict unseen graphs.

4.3.5 Using the Model

After the model generation, users can apply Meliora to key loops in their

code to locate the best match for an arbitrary graph with the kernels in the model.

To achieve that, first, Meliora compiles the source code in any language supported

by LLVM into bitcode and then performs the static analysis described in Sec. 4.3.3

on the bitcode to collect the hCFGs representing the loops of the target kernel.

One graph is created for each loop in the loop-level mode; otherwise, a single

graph for the entire kernel is generated. Subsequently, Meliora uses the model to

make predictions consisting of the coefficient vector containing the probabilities

of the given graph being similar to kernels used in training. We then choose from

this vector the loop or kernel with the largest coefficient, i.e., the best match. At

present, this is where Meliora stops, but in the future, we plan to integrate it more

closely into the autotuning process. We note that this approach can be used for

95



different types of optimization workflows, not just autotuning. As our training

data grows, we anticipate that we would incorporate both manually optimized

and autotuned code versions, so depending on the specific match, the user may

embark on a manual optimization, code replacement (if a better implementation

of the same functionality was located), or enlist the help of an autotuner. We

include some specific examples of a possible autotuning integration workflow in

the evaluation Section 4.4.3.

4.4 Evaluation

In this section, we evaluate the accuracy of the model and the performance

of the process of model generation. The datasets we used to build the model are

from the SPAPT [6] benchmark.

4.4.1 Experiment Environment

The machine we used to build the model and validate it is an Intel® Xeon®

E5-2699v3 2.30GHz with two 18-core Haswell CPUs and 256GB of memory.

4.4.2 Dataset Generation

It is not easy to collect a sufficient amount of code as the input for

training. Hence we create our dataset from scratch for the selected kernels. As

we mentioned, Meliora is capable of running in a postmortem mode to work

in conjunction with the Orio autotuning framework [105, 55]. In that scenario,

Meliora serves as a post-processor invoked by the autotuner to perform the

static analysis on the various versions of the tuned code generated by Orio. No
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Listing 4.2 Annotated AXPY-4 kernel

// Tuning specification

/*@ begin PerfTuning (

// ...

def performance_counter {

arg method = 'basic timer';

arg repetitions = 60;

}

def performance_params {

param UF[] = range(1,33);

}

// ...omitted ...

def search {

arg algorithm = 'Randomsearch';

}

) @*/

/*@ begin Loop (

transform Unroll(ufactor=UF)

for (i=0; i<=N-1; i++)

y[i] = y[i] + a1*x1[i] + a2*x2[i]

+ a3*x3[i] + a4*x4[i];

) @*/

// original C code kernel

for (i=0; i<=N-1; i++)

y[i] = y[i] + a1*x1[i] + a2*x2[i]

+ a3*x3[i] + a4*x4[i];

/*@ end @*/

/*@ end @*/
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modifications to Orio were necessary; we believe integration with other autotuners

can be accomplished similarly.

The Orio autotuning framework parses the annotations in the source code

and generates different versions of the optimized code. Next, Orio empirically

evaluates all the generated versions to select the one with the best performance for

the production environment. Listing 4.2 shows a portion of the annotated AXPY-

4 kernel. In the example, the performance params defines only one performance

parameter, unroll factor (UF), ranging from 1 to 33. Orio employs a search strategy

(as specified in the tuning spec comment) to determine the optimal unrolling factor

for this loop on the platform of interest by executing several different code versions

corresponding to different unroll factors. input params defines two different problem

sizes that the entire tuning process will repeat for each value in order to search for

the best performance for each size.

Table 7. Selected kernels for dataset generation

Kernel Operation

Elementary linear algebra kernels

GEMVER scalar, vector, and matrix multiplication

MVT matrix vector product and transpose

Stencil code kernel

Stencil3d 3D stencil computation

Linear solver kernel

BiCG subkernel of BiCGStab linear solver

Elementary statistical computing kernel

COV covariance computation

The dataset we used for training is a portion of the SPAPT benchmark

suite [6, 123], which contains four types of selected kernels. Table 7 shows the

kernel name and major operations grouped by the categories.

98



1. Elementary linear algebra kernels focus on the mathematical computations on

scalars, vectors, and matrices.

2. The Stencil code kernel is frequently used for solving partial differential

equations. They follow a particular pattern to access and modify the array

elements.

3. The Linear solver kernels are used in solving systems of linear equations.

For instance, the BiCGStab linear solver kernel decomposes a matrix into a

product of lower and upper triangular matrices.

4. Elementary statistical computing kernels refer to the code that helps find

the statistical relationship among random variables. The dataset used in the

evaluation is listed as the following. Each of them is split into two groups for

training and validation, respectively.

The dataset containing loop versions is statically generated and is divided

into two subsets: 38,000 graphs for modeling and 11,000 graphs for validation. The

test graphs are versions of the same kernels and can be used to confirm that the

matching is able to identify such known similar codes correctly (Figures 23 shows

the self-validation loop-level granularity; in addition, we validated with codes not

used in training 24, as discussed later).

4.4.3 Results

In this section, we discuss the accuracy of Meliora in identifying the kernels,

which we split into two parts: (i) the accuracy for recognizing different versions

of kernels used in training and (ii) the effectiveness of using Meliora to optimize

completely arbitrary (unseen) code.
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1) Model Validation. As we described in Sec. 4.4.2, we split a subset of

the kernels (Table 7) in the SPAPT benchmark suite into two groups, using the

majority for the model training, while the rest of the code versions are reserved for

model validation. In this scenario, we are able to test the accuracy of the model for

recognizing different versions of the same kernels used in training.

Figure 23 shows the self-validation results on each loop from the dataset

used for training. By self-validation, we mean selecting a loop from a transformed

(by Orio) kernel version that was not used in training and computing its match;

for example, we expect that most versions of GEMVER would be matched with

other versions of GEMVER. This is not a completely trivial validation since many

of the transformations impact the hCFG and, to a lesser extent, the instruction

mix. The labels on the X-axis and Y-axis are the same as the kernel names, where

the X-axis represents all the available classes in the training set corresponding to

each of the selected kernels, and the Y-axis indicates the percentage of the graphs

in the validation set predicted as the existing kernels. The color of the tiles shows

the value of the percentage; the redder the tile is, the closer the value to 0, and

similarly, greener means the value is closer to 100.
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Figure 23. Model self-validation at loop-level granularity. BiCG@1 indicates the
first loop extracted from BiCG kernel in a top-down manner.

From Figure 23 we can see that most of the cells on the diagonal are colored

dark green, which shows that the majority of the graphs are correctly predicted.

In particular, the validation results are all above 98% ranging from 98.90% to

100%. On the other hand, the percentage of misclassified graphs is less than 1.1%.

Stencil3D shows the best accuracy with all the graphs correctly labeled as itself;

Graphs from MVT are the most misclassified results in the 1.1% of the graphs

classified as each of the other training classes. In practice, for a given graph, we

perform prediction and then choose the most likely matching result based on the

prediction vector, which includes the probability of a likely matching against each

class in the model. In other words, we always choose the kernel with the highest

value.

2) Evaluation of New Kernels. Most real-world use cases of Meliora would

utilize the model to find the best match between unknown, arbitrary kernels

and those in the model so that we can apply existing optimization knowledge

to avoid the time-consuming search on the large variant spaces of performance
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Table 8. Meliora’s matches for a set of new codes’ loops. The adi@132 notation
indicates the loop starting at line 132 of the adi code.

New code Matched kernel Coeff.
Name@LoopLoc. (<= 1)
adi@132 gemver 0.99
adi@137 gemver 0.99
correlation@166 covariance 0.99
correlation@172 mvt 0.99
correlation@180 mvt 0.85
correlation@185 covariance 1.00
fdtd@152 bicgkernel 0.99
fdtd@154 mvt 0.88
fdtd@157 mvt 0.88
fdtd@160 mvt 0.83
jacobi@76 gemver 0.99
tensor@130 stencil3d 1.00
trmm@124 covariance 0.99
trmm@130 stencil3d 1.00
dgemv@255 bicgkernel 0.83
dgemv@258 gemver 1.00
dgemv@260 bicgkernel 0.83
dgemv@263 gemver 1.00
dgemv@265 bicgkernel 0.91
dgemv@268 gemver 1.00
dgemv@270 bicgkernel 0.99
dgemv@276 gemver 1.00

optimizations. To demonstrate the application of Meliora to new codes, we present

results of using it on a subset of the SPAPT benchmarks that were not used at all

for building the model.

We performed the empirical evaluation on a slightly different Haswell system

than the server used in the model generation (for scaling and cost reasons); the

system we used was a cluster of Intel® Xeon® CPU E5-2690 v4 @ 2.60GHz nodes.

Each node has two 14-core CPUs and 128GB of memory.

The evaluation procedure consists of the following steps. First, we apply

Meliora as described in Sec. 4.3.5 to the subset of SPAPT codes shown in Table 8.

102



None of these computations were used for training. The codes typically contain

several loops with various nesting depths and range in size from tens to hundreds of

lines of C code.
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adi@132 0.24 0.96 0.2 0.32 0.28 0.98 0.3 0.9 0.81 0.07 0.04
adi@127 0.24 0.96 0.2 0.32 0.28 0.98 0.3 0.9 0.81 0.07 0.04
correlation@166 0.11 0.15 1 0.9 0.21 0.14 0.27 0.33 0.63 0.59 0.44
correlation@172 0.03 0.43 0.83 0.76 0.17 0.46 0.31 0.61 0.86 0.5 0.36
correlation@180 0.17 0.87 0.45 0.59 0.19 0.86 0.2 0.81 0.95 0.23 0.17
correlation@185 0.07 0.06 0.73 0.59 0.03 0.04 0.03 0.08 0.42 0.88 0.75
fdtd@152 0.98 0.35 0.13 0.26 0.73 0.29 0.35 0.25 0.07 0.11 0.24
fdtd@154 0.2 0.79 0.6 0.73 0.23 0.77 0.25 0.79 0.98 0.27 0.2
fdtd@157 0.2 0.79 0.6 0.73 0.23 0.77 0.25 0.79 0.98 0.27 0.2
fdtd@160 0.15 0.86 0.45 0.55 0.24 0.88 0.31 0.88 0.95 0.2 0.13
jacobi@76 0.34 0.91 0.39 0.51 0.44 0.93 0.45 0.94 0.86 0.12 0.06
tensor@130 0.09 0.04 0.47 0.36 0.04 0.03 0.05 0.04 0.27 0.67 0.81
trmm@124 0.02 0.08 0.74 0.55 0.08 0.06 0.14 0.12 0.45 0.88 0.67
trmm@130 0.1 0.03 0.63 0.5 0.07 0.02 0.08 0.06 0.34 0.97 0.9
dgemv@255 0.39 0.94 0.36 0.53 0.38 0.91 0.31 0.88 0.85 0.12 0.08
dgemv@258 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07
dgemv@260 0.39 0.94 0.36 0.53 0.38 0.91 0.31 0.88 0.85 0.12 0.08
dgemv@263 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07
dgemv@265 0.29 0.8 0.57 0.74 0.25 0.76 0.2 0.74 0.93 0.27 0.21
dgemv@268 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07
dgemv@270 0.28 0.98 0.18 0.32 0.29 0.97 0.26 0.87 0.79 0.06 0.04
dgemv@276 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07
dgemv@278 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07
dgemv@280 0.74 0.36 0.24 0.24 0.99 0.38 0.89 0.44 0.17 0.09 0.07

Figure 24. Similarity between test kernels and training dataset loops computed as
the cosine distance between their hCFG embeddings.
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Once the model returns a match, we compute the similarity score (cosine

similarity) between the loops in the new kernel and those in the matched kernel

to further refine the mapping. For example, the first loop in ADI (adi@132) is

matched with the GEMVER kernel, which has four loops. The cosine similarity

between the embeddings of the adi@132 and the gemver@134 loops is the highest;

hence we finalize the match to be adi@132-gemver@134. For small datasets,

one could just compute similarities instead of employing the kernel-level model;

however, as the number of kernels in the training dataset grows, this approach

would not scale.

Next, for each of the target loops (indicated by their line number in the left

column of the table), we manually transfer the optimal tuning parameters from the

corresponding loop in the matched kernel (middle column). Because we used Orio

to create our training data set, we also simultaneously produced autotuned versions

of these kernels. Given the kernel name, problem sizes, and architecture, we can

then easily look up the set of transformations that produced the best version of

that kernel for that problem size and architecture. Figure 24 shows the cosine

similarity between the vector representations of the training and test datasets.

We show similarities between the original code versions for each training and test

kernel.

The next step in our evaluation is to manually copy the tuning spec from

the autotuned version of the matched kernel into the new code, adjusting variable

names as needed. For example, the correlation code has four loops, two of which

were matched with covariance, and two with mvt. In the future, we plan to

significantly automate this step while still allowing the user to customize the

inserted tuning annotations.

104



Because the matched kernels often have more than one potential loop, the

user either must select the loop from which to copy the tuning options or combine

all possible parameters. The first choice eliminates empirical autotuning altogether

and is often possible through quick inspection of both codes; code similarities

are often obvious to a human once presented with such limited choices. In a few

cases, it is difficult to choose just one loop; in these situations, parameters from

multiple loops can be combined, and the new code can be empirically autotuned.

While this does not completely avoid the cost of empirical tuning, it does reduce

it dramatically (we give some more details later in this section). Individual loop

matching can potentially be fully automated, although it is not clear yet whether

the explosion in complexity is warranted to save some fairly light manual effort—

all the results in this section were produced in a few hours, including creating

the tuning specs for the new codes and performing the autotuning for some of the

kernels.

Table 9. Search speedup for the unseen kernels.

Kernel Search speedup
adi 19
correlation 1126
dgemv 2
fdtd 19
jacobi 10
tensor 14
trmm 17

Kernel performance The speedups obtained by modifying the new codes as

described above are shown in Fig. 25. The baseline is the original, unoptimized

version, compiled with a recent GCC compiler using the -O3 optimization level. All

optimization options in the matched kernels can be seen in the SPAPT benchmark
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repository [6, 123] and include loop unrolling, cache tiling, register tiling, SIMD

pragma insertion, OpenMP parallelization, and scalar replacement. While we used

an autotuner to enable rapid application of these optimizations, one could also

apply them manually, albeit at a dramatically increased effort (the size of the tuned

code is typically much larger than the original, especially when combining multiple

transformations).
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Figure 25. Speedup over the unoptimized (base) versions: bars for Meliora-matched
optimizations, black triangles for empirical autotuning results, and a red line for
the baseline performance.

We completely eliminated the empirical search and produced a better-

performing version for some of the new codes (adi(1.78x1), correlation(4.2x),

and trmm(1.12x)). In addition, we were able to improve performance further by

applying limited autotuning for adi (3.7x), dgemv (1.1x), fdtd (1.8x), jacobi

(1.6x) and correlation (4.8x); this required minimal extra effort to modify the

1Speedup with respect to the original code version.
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parameter space to include the default options. In general, as Table 9 shows, we

reduced the search time by 2x to 1,126x for the test kernels, with identical search

method configurations.
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Figure 26. Comparison with empirically tuned performance. Values greater
than one indicate that Meliora-based optimizations outperformed the empirical
autotuner.

Figure 26 shows a comparison between Meliora-based optimized codes and

empirically autotuned versions using a machine-learning-based search strategy

capped at 1000 runs (the same as was used to generate the model, although in

most cases, fewer than 100 runs were performed per kernel by the search method).

Such capping is necessary because the size of the parameter search spaces (ranging

from 104 to 1024 for these codes) is too large to allow exhaustive search. The

only code for which the autotuner significantly outperformed the Meliora-based

version is trmm. For correlation, using the tuning specification from the matched

kernels significantly outperformed the result from autotuning the original by
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providing a better starting point for the search, as well as a slightly different set

of optimizations.

Autotuning search performance We evaluated performance both on a single

set of parameters and with limited autotuning on a small parameter space based on

the matched loops. The post-match autotuning also benefits from the use of local

optimization methods because we know that the starting point is likely near the

optimum.

For the correlation benchmark, the Meliora-based optimization through

a match with loops from the autotuned covariance and mvt kernels), we were

able to actually outperform previous empirical tuning without any autotuning.

The results for tensor indicate that this specific benchmark is not optimizable

via the kinds of optimizations we attempted (as indicated by the fact that both

the Meliora and autotune results are close to the original performance). In part,

this is due to the fact that it contains a five-level loop; there is nothing similar

among the other kernels in SPAPT. In order to use Meliora for such cases, a model

should be trained with a greater number of representative kernels, including tensor

contractions.

Performance of metric extraction In addition to the model validation,

we time the process of loop-level metric extraction illustrated in Figure 27. The

timed process is one component in the workflow of Meliora to generate hCFGs. The

plot shows the average time spent on source code compilation (to LLVM IR) and

conducting the information retrieval.
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Figure 27. Comparison between the static and dynamic strategies for metric
extraction. The X-axis lists the kernels and the Y-axis is the time in seconds.

The metric extraction time varies from kernel to kernel depending on the

size of the generated code, which is determined by both the kernel and the input

parameters set by Orio annotations. Since the dynamic method demands additional

steps to prepare and run the instrumented code, it is not surprising that it takes

longer to collect the metrics. Among the kernels, COV (covariance) is the most

time-consuming, and it needs approximately 5 seconds on average, even for the

static processing of the graphs, which is mainly spent on the compilation and I/O

operations for the relatively large graphs.

4.5 Related Work

In this section, we briefly survey some works on the application of graph

representation learning to performance modeling and model-based performance

optimization.

Compiler optimization and autotuning overlap significantly. For instance,

iterative compilation [14, 70] exhaustively searches the parameter space for the
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best-performing combinations. However, compilers apply optimization techniques

that can be generally applied to all codes, while autotuners usually focus on specific

types of computations and apply more aggressive optimizations. Analytical models

derived manually are used at the early stage of compiler optimization. Wagner et

al. [135], and Tiwari et al. [130] hand-tuned the analytical model to estimate the

execution frequency of code regions and the energy consumption. Nevertheless,

creating the model by hand requires expertise and significant effort, and the

accuracy and the portability of the model completely depend on human factors.

Machine learning alleviates the complexity of analytical model creation

and has been a technique widely used in compiler optimization. Wen et al. [138]

and Luk [86] leverages the regression on predicting the application speedup and

running time. Classification is also used for locating the optimal optimization

parameters [125, 143, 10]. In addition, clustering as an unsupervised learning

method is used to select the optimal execution point for program simulation [107].

Compared to the surveyed works, our proposed method concentrates on the

intrinsic features of the code as the complementary attributes to the topology

information and also emphasizes the automatic feature extraction in order to

further reduce the human efforts involved and improve the framework efficiency.

Although our research goals are different, we conduct research motivated

by the same ideas, which leverages graph representation learning for similarity

detection. Thus it is valuable to mention other such works in this section. For

example, Xu et al. [140] and Liu [83] utilize learned the embedded format of the

control-flow graph extracted in binary functions to compute the distance in order to

measure the binary similarity. They consider only the structure and do not include

instruction mix information. Lim et al. [82] define CFG-based similarity metrics for
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matching GPU kernel computations that also include instruction mix information;

that approach is limited to NVIDIA codes, but integration with our CPU approach

is a feasible future direction.

4.6 Summary

In this chapter, we introduced Meliora, a framework for extracting code

representations that can be used to find potential optimizations for new codes more

easily and eventually automatically.

By defining hCFG-based program representations and using them to match

computations with previously-optimized kernels, we provide an affirmative answer

to our second research question (“Can we use compiler-generated intermediate

representations to create program embeddings that allow accurate matching of

loop-based computations?”). Moreover, we demonstrated how a language- and

architecture-independent approach to code matching can be used to eliminate or

dramatically reduce the search space of optimizations during autotuning while

achieving significant speedup for most kernels in the SPAPT benchmark suite.

In future work, we plan to consider additional code features and automate

the use of Meliora in Orio to guide the search without requiring manual interfacing

between the two tools.
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CHAPTER V

MELIORA-BASED OPTIMIZATION OF CUDA COMPUTATIONS

This chapter is based on the ongoing work by Boyana Norris and myself. In

this research, Boyana Norris helped with the generalization of the research idea and

direction and provided guidance for organizing the experiment and analysis of the

results. I extended the framework with new metrics for modeling the GPU code.

I created annotated kernels for generating the dataset, performed model training,

and generated matching results. Boyana Norris performed the evaluation of the

Meliora-based vs. the Orio-autotuned SPAPT benchmarks.

In this chapter, we apply the Meliora approach described in Chapter 4.3 to

the problem of optimizing GPU computations.

5.1 Motivation

In the past decade, we have witnessed a rapid growth in the use of GPUs

(Graphics Processing Units) in high-performance computing as they have become

ubiquitous in the computing environments available to scientific and engineering

applications.

It is the architectural design that differentiates the GPU from the CPU

and makes the GPU more suitable for handling parallel code. The reason lies

in the fact that the part of the capability of a CPU is diverged to handle the

non-computational tasks (e.g., caching). Therefore historically, CPUs have been

optimized for processing sequential code. In contrast, the GPU concentrates

on computations and has more compute units. To approximately compare the

difference in the computation, we use the CPU and the GPU of the similar model

year and price range, for example. The 10th generation of Intel Core i9-10900K
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(3.7GHz, ten cores, MSRP $429) processor can achieve 592 GFLOPS [64]; While

the AMD Radeon RX 5700XT GPU (1.6GHz, 40 compute units, MSRP $399) is

able to sustain 9.75 TFLOPS [3]. We can see that although each computational

unit in a GPU has less computing capability, the overall performance for the GPU

is roughly 16x that of the CPU. Hence, for both the performance and the budget-

wise, the GPU is more suitable for parallel code.

Along with the increasing efforts for transiting to GPU-based computing,

the demands for application optimization and tuning in order to accommodate

the architecture rise dramatically. For sparse linear algebra, researchers focus on

the presentations of the sparse matrices to optimize the code generation. Bell et

al. [12] mix the use of ELL (ELLPACK/ITPACK [48]) and COO (coordinate)

format. The ELL format is used to store most of the matrix elements while the

rest of the elements are stored in COO format to reduce the number of zeros in

ELL in the scenario that the number of non-zero elements varies significantly for

each row. Monakov et al. [97] divide the matrix into smaller slices stored separately

in ELL format. This method can greatly reduce the number of zeros in the storage

with row reordering. Similarly, Choi et al. [32] modify the ELL format to store

the smaller dense blocks of the matrix. Besides the modification of ELL format,

both [97] and [32] utilize autotuning to find the optimal parameters for the data

structures.

5.2 Approach

In this section, we describe the design and implementation in detail of

how we generate and apply the graph-based model to improve the GPU code

optimization and generation. Our unified performance optimization framework
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comprises three major parts: the component for guiding CPU code optimization,

the component for assisting GPU code performance optimization, and the

autotuner for generating the code for target platforms. Meliora is used for

generating code representations in both our earlier work presented in Chapter IV

and the work described in this chapter. The goal of the work described in this

chapter is to extend our graph-based machine-learning model to greatly reduce

the search space during the optimization of GPU codes by identifying and reusing

prior GPU optimization knowledge.

With this work, we target small to medium-sized (10s-100s of lines)

computation-intensive kernels, which usually are the fundamental parts of the

HPC applications, and directly decides the overall performance. The output of

this GPU component is not the optimized code; instead, it generates the best-

matched optimization parameters from the previously optimized code to guide

Orio to narrow down the search space exponentially to generate the optimized

code. The output of this GPU component is not the optimized code; instead, it

generates the best-matched optimization parameters from the previously optimized

code to guide Orio to narrow down the search space exponentially to generate the

optimized code. When used in the unified model, the GPU component is able to

utilize the model trained with Meliora to skip the training process. However, it

still requires to analyze the target GPU code for extracting related metrics to use

the model for identification. When it runs in standalone mode, the workflow of the

GPU component is similar to Meliora. It runs the front-end analyzer for inspecting

the target code and obtain necessary metrics and then constructs the graph model

using convolution neural networks.
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5.2.1 Data Dependency Metrics

In Chapter IV, we introduced several metrics used for representing

computational kernels, which are extracted from source code statically, including

instruction mix, loop depth, memory access estimation, and transition probability.

To capture additional features that reflect available parallelism in the code, we

introduce additional dependency metrics for memory accesses. These metrics are

considered as supplements to the memory access estimation for the in-loop data

dependencies. Having these metrics is essential to provide more accurate matching

results for optimizing parallel computations, such as GPU codes.

In this work, we extend Meliora’s features with counts for Read-After-Read

(RAR), Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-

Write (WAW) dependencies. Obtaining these counters statically is a non-trivial

task given that our static analyzer works on the LLVM IR level, which limits the

ability to access some data, for example, symbol information. Hence, the analyzer

is configured with the preset rules for processing the dependency metrics efficiently.

The rules for collecting the dependency metrics include the following.

1. To limit the scope of the analysis, we only consider the statements in the

innermost loop when encountering a multi-level nested loop.

2. We count each pair of the read and the write operations as one by checking

the load and store instructions. So we skip counting any single remaining read

or write operations; and

3. For the load and store instructions, we check whether it accesses the array

variables and the indexes of the array are loop-dependent.
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In the process of the dependency metric extraction, the analyzer runs in a

top-down manner for two reasons. First, it is required for the static analyzer to

parse the information at a higher level of the AST and then pass it down to the

innermost loops to help with the identification of the dependency metrics. For

instance, the loop index variables are parsed at each level of the nested loop and

passed down to the innermost loop so that it can determine whether read or write

operations to an array should be handled; Second, it aligns with the behaviors for

collecting other metrics in order to minimize the number of traverse through the

AST. After the target loops are processed, the static analyzer attaches the data to

the hCFG. It is worth noting that we have to insert zeros to the attribute vector

attached to each node to keep the consistency of the representations for the vertices

because only the basic blocks that belong to the innermost loops are analyzed for

generating the metrics.

5.2.2 Delivering Loop-to-Loop Matching

As we mentioned in our description of Meliora in Chapter IV, the framework

is capable of performing analysis at different granularities, not only for CPU codes

but also for GPU codes. It can process and generate the metrics at the function

(or kernel) level. This means that the static analyzer will traverse the computation

starting from the outermost loop and will treat every structure inside as normal

hCFG nodes. The benefit of this coarse-grained process is that it provides a high-

level view for understanding the behaviors of the entire kernel, and the metrics

obtained at the kernel level can be used to match larger-sized code segments. For

example, the gemver kernel contains several loops that often occur in a similar

sequence in algorithms, such as iterative Krylov methods for solving linear systems.
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Being able to match them as a single unit enables the simultaneous optimization of

these multiple loops.

Listing 5.1 Bicgkernel from SPAPT benchmark

for (i = 0; i <= ny-1; i++)

s[i] = 0;

for (i = 0; i <= nx-1; i++) {

q[i] = 0;

for (j = 0; j <= ny-1; j++) {

s[j] = s[j] + r[i]*A[i*ny+j];

q[i] = q[i] + A[i*ny+j]*p[j];

}

}

However, such coarse-grained kernel-level analysis is not always the best

option for all applications. When a kernel contains several loops at the same level,

one could miss optimization opportunities in certain inner loops or the ability

to apply different parameters to tune the inner loops separately from others in

the kernel. Similarly, for the kernel with multiple sub-loops, it is not necessary

to optimize each loop. For example, Listing 5.1 shows the bicgkernel from the

SPAPT benchmark [123], which is a sub-kernel of the BiCGStab linear solver. We

can see that the first loop in the kernel is used for the initialization of the array

preparing for the next step. It is not worth the efforts to optimize the first loop

because it has no potential to improve the performance. Instead, we should focus

on the optimization of the second nested loop to achieve better overall performance

for the bicgkernel. Therefore, considering the scenarios that the kernel-level

analysis is not able to provide the flexibility for users to select the tuning target,

we offer the loop-level analysis and deliver the loop-to-loop results. To be specific,
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in the code preparation stage, users can specify which loops are of interest to

investigate with the annotations. Next, during the metric generation stage, the

static analyzer parses the code into AST and then traverses top-down to obtain

the necessary data and graph topology for training the model. After that, data is

preprocessed and reformatted to accommodate the input requirement of the graph

neural networks. Accordingly, users are required to annotate the code sections in

the new kernels (unseen ones) as the input for the analyzer to locate and process.

After modeling training completes, the model is able to provide the optimal tuning

parameters for the best matching code structures against the input for guiding the

code generation.

5.2.3 Static Analysis for GPUs

The analyzer runs on the LLVM IR level to provide users a language-

independent capability, which theoretically enables our method to be applicable

to all the languages that the LLVM front end supports. The static analysis can

be performed standalone and in conjunction with Orio. We run static analysis on

the unseen kernel for generating the input for the model to match or using as new

training data; on the other hand, the static analyzer runs with Orio to perform on

the Orio-generated code variants to automatically generate the large dataset for the

model construction.

From the viewpoint of the static analyzer, the source code used for the

model training is the same. For example, in Listing 4.1, it shows the original

kernel for matrix multiplication, which contains a three-level nested loop and

a statement for array accesses. For obtaining the code metrics for modeling or

matching, the listed code contains sufficient information for performing the static
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Listing 5.2 Part of the CPU annotations for matrix multiplication

/*@ begin Loop(

transform Composite(

tile = [('i',T1_I,'ii'),('j',T1_J,'jj'),('k',T1_K,'kk'),

(('ii','i'),T1_Ia,'iii'),(('jj','j'),T1_Ja,'jjj'),

(('kk','k'),T1_Ka,'kkk')],

unrolljam = (['i','j','k'],[U_I,U_J,U_K]),

scalarreplace = (SCREP, 'double', 'scv_'),

vector = (VEC, ['ivdep','vector always']),

openmp = (OMP, 'omp parallel for private(iii,jjj,kkk,ii,jj,kk,i,j,k)')

)

for(i=0; i<=M-1; i++)

for(j=0; j<=N-1; j++)

for(k=0; k<=K-1; k++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

) @*/

analysis. Therefore, we can use the same code for constructing the model to guide

both CPU and GPU code performance optimization. The benefit of this design lies

in the fact that we can significantly reuse the components in our implementation,

and also it reduces the tedious and time-consuming work for the users to prepare

the inputs. Besides, by unifying the input, we are able to utilize the same graph

across different platforms. It is worth noting that to accommodate this unified

optimization workflow, the metrics generated by the static analyzer for model

training are general and language-independent, which should be available in both

CPU and GPU codes. In this section, in addition to the hCFG approach presented

in Chapter IV, we also describe the metrics we use to target the representation of

the parallelism-relevant features. All the metrics are available to the static analysis

tools described earlier.
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Listing 5.3 Part of the GPU annotations for matrix multiplication

/*@ begin Loop(

transform CUDA(threadCount=thread_count,

blockCount=block_count,

preferL1Size=preferred_L1_cache,

unrollInner=inner_loop_unroll_fact,

streamCount=stream_count)

for(i=0; i<=M-1; i++)

for(j=0; j<=N-1; j++)

for(k=0; k<=K-1; k++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

}

) @*/

Although there are no extra steps for the users to modify the code in order

to apply the model to the unseen kernel, it is necessary to annotate the source

code with minimal effort for generating the dataset for training and performing

the autotuning with Orio. These annotations used for CPU and GPU code are

slightly different1. Listing 5.2 and Listing 5.3 shows the part of the annotations

used for CPU and GPU code respectively. We can see that the differences are

in the performance tuning parameters, such as tile size, unroll factor, OpenMP

parallelization for generating optimized CPU code, while in generating CUDA,

the tuning parameters include block, thread, and stream counts, and preferred

cache sizes. With the exception of the performance tuning parameters, the C

implementations of the kernels, which serve as the input for the Meliora static

analysis, are the same for CPUs and GPUs.

1Efforts are underway to automate the Orio tuning spec generation based on a simpler one-line
annotation, eliminating these differences and further minimizing the need for user input.
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Figure 28. Unified workflow for CPU/GPU code optimization.

5.2.4 Unifying the Workflow for CPU/GPU Code Optimization

As described in Sec. 5.2.3, the use of the same input source code for CPU

and GPU autotuning enables us to unify the workflow for CPU and GPU code

generation. When matching a new kernel, the framework performs static analysis

to obtain the graph representation regardless of the type of the input. Next,

the optimal tuning parameters are selected based on the matching results. For

each category used for training the model, we can store the tuning parameters

for both CPU and GPU code generation and apply them to guiding the code

optimization and generation according to the user’s choice, either CPU, GPU, or

both. The advantage of the unified workflow is that we are able to reuse the trained

model for code optimization across platforms, which further reduces the cost of

generating the optimized new kernels. Figure 28 shows the unified workflow for

CPU and GPU code optimization. The figure demonstrates a typical use case of

the unified framework in which we generate a dataset and train the model with

Orio [55] for CPU code optimization (highlighted by blue) and then later the
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process of GPU optimization can directly utilize the model for guiding the code

generation. Furthermore, any unmatched input codes are added to the dataset for

future retraining of the model to improve its accuracy. It is worth noting that the

framework is symmetric, meaning we can reuse or retrain the model from either the

CPU or the GPU side.

5.3 Evaluation

In this section, we evaluate the effectiveness of the Meliora-obtained

optimization suggestions for GPU code optimizations by using the matching

methodology described in Section 4.3 of Chapter IV to SPAPT [6] benchmark.

5.3.1 Experiment Methodology

We used annotated C implementations of the SPAPT kernels, as illustrated

in Figure 5.3 for the matrix-matrix product computation. These annotations serve

as input to the Orio autotuning framework [105, 55], which is used in two ways for

this evaluation.

First, we autotuned the set of training benchmarks, e.g., those from which

we wish to “learn” how to optimize other codes. They are in the right-most

column of Table 8. Because of the large search space dimensions (ranging from

1.23E + 05 to 2.85E + 19 depending on the complexity of the kernel), an exhaustive

empirical search is prohibitive. Hence, we used the Mlsearch Orio search method

in conjunction with the z3 option, which provides several feasible random initial

points. Mlsearch is based on sklearn.ensemble.ExtraTreesRegressor, an

extra-tree regressor method, implements a meta estimator that fits a number of
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randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset

and uses averaging to improve the predictive accuracy and control over-fitting.

Then, we considered the set of test benchmarks (assuming no prior

optimization knowledge) and applied the optimization parameters that resulted

in the best performance in the corresponding training set benchmark. Note that

each loop in the new codes was matched separately, resulting in matching a single

new code to one or more training kernels.

We also separately autotuned the test benchmarks to assess how the

Meliora-produced optimizations compare with regular autotuning (with the best

search method available in Orio).

5.3.2 Results

Mirroring the evaluation approach described in Section 4.4.3, we use the

matching results from Table 8 (in Chapter IV) obtained with Meliora to generate

and tune CUDA implementations of the test SPAPT kernels.

The baseline performance was obtained for the Orio-generated CUDA code

with the parameters in Table 10, which are targeting the NVIDIA A100 SXM4 40

GB GPU used for these experiments. For example, since the A100 can execute 108

blocks simultaneously, we chose 108 as the block count default value.
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Table 10. The default parameters in the Orio-generated CUDA implementations
of the test SPAPT kernels and their autotuning (AT) ranges in the tuning
specifications (using Python syntax).

Parameter Baseline AT Values

Thread count 32 range(32,1025,32)
Block count 108 range(108,1081,108)
Inner loop unroll factor False range(1, 33)
Cache blocks False [False, True]
Preferred L1 cache size 16MB [16,32,48]
Stream count 1 range(1,33)
Compiler flags -O3 [’-O3’,’-use fast math’]

Figure 29 shows the speedup resulting from applying the Meliora matching

to either eliminate or greatly reduce the empirical search space. For example,

the column labeled correlation used the matched benchmark’s (covariance)

parameters used for obtaining the best performance when covariance was

autotuned and achieved 30.3x speedup over the default compiled-optimized CUDA

version without performing any empirical autotuning. The columns labeled

with kernels with plus signs indicate that very limited (fewer than ten runs)

autotuning was performed around the matched kernel’s parameters. For example,

correlation+ with limited, targeted autotuning achieved 53.9x speedup over the

base version.

We also compared the execution times of the benchmarks optimized with

Meliora with those resulting from autotuning with the Mlsearch+z3 Orio search

method (the best among approximately ten different available search strategies).

Figure 30 shows that, while Meliora is able to deliver good speedups in most

cases, there is still room for improvement with traditional autotuning. In three

cases, correlation+, tensor, and lu, the Meliora-based optimization actually

outperformed the search. Of course, if we could afford to perform an exhaustive
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Figure 29. Speedup of Meliora-matched optimizations w.r.t. a baseline version
using default parameters and compiler optimizations. In all cases except for
jacobi, the Meliora versions were at least as fast as the base version, which uses
the default optimization parameters in Table 10.
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search, this would not happen, but in practice, exhaustive search is typically

infeasible. In half the test benchmark, Meliora delivered performance comparable

to that of autotuning.

The final part of the evaluation considers the search speedup resulting from

using Meliora, compared with Mlsearch+z3-based Orio autotuning. We present the

no-tuning results separately in the left plot of Figure 31 since the elimination of the

empirical search means that now the cost is 0; however, we did measure the time it

took to evaluate the performance of the single version and used the total Orio time

for generating, compiling, and testing the single version as the denominator for

computing the search speedup. In the right plot of Figure 31, we show the search

speedup when we use the Meliora-provided parameters to reduce the search space
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parameters.

and provide a good starting point. In all cases, the search time was reduced from

the regular autotuning time, which represents the fastest available search method

(in Orio, but also in any autotuner, to our knowledge).

5.4 Summary

In this chapter, we demonstrate the effectiveness of our proposed graph-

based program representation, and the derived model can achieve the competitive

results for guiding the optimization of GPU codes, which provides a positive answer

to RQ3. By the model-guided matching, we greatly reduced the search space for

GPU optimization resulting in up to 75x speedup without empirical search for

the computation kernels from SPAPT [123] benchmark. In addition to the search

speedup, the Meliora-guided optimized CUDA version outperforms all the baseline

implementations of SPAPT [123], except for JACOBI, with default optimization

parameters. The largest speedup is 643x for the TRMM kernel comparing to the

base CUDA version.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We started this work with the question: What program representations

enable the static performance modeling and accurate matching of key

computational kernels to support manual or compiler optimizations?

In this thesis, we explored two different approaches to using static program

analysis to answer this question and implemented the corresponding techniques

in the Mira and Meliora tools. With Mira (Chapter III), we combined static

analysis of binaries and source code to produce accurate characterizations of the

performance of iterative computations. We based our implementation on the

ROSE compiler framework, which provides high-level interfaces to both high-

level and binary program information. We demonstrated the accuracy of the

performance models by comparing their prediction with hardware counter data

obtained with the TAU performance framework. With Meliora (Chapter IV),

we created a new control flow graph-based program representations that enable

programmers and autotuners to reuse optimization knowledge to greatly speed up

the optimization process and produce efficient implementations of key numerical

computations. We demonstrated that this approach is indeed both language- and

architecture-independent by applying an existing model to a new problem—CUDA

code optimizations (Chapter V), resulting in completely eliminating the search or

reducing it significantly.
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6.2 Future Work

While we believe that we have successfully demonstrated that it is indeed

possible to devise static analysis techniques to model performance and generate

compact program representations, both of which can be used to guide performance

optimization, the work presented in this thesis is only the beginning. In future

work, we will explore additional features that can improve the accuracy of the

hCFG-based matching methodology. We are also investigating using attention and

other machine learning techniques to enable the correct matching of computations

of larger and more complex codes. Automating the use of Meliora in existing

autotuners would enable us to apply this approach more broadly and demonstrate a

path forward to adapting it for mainstream compilers.
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