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DISSERTATION ABSTRACT

Eric Beyerle

Doctor of Philosophy

Department of Chemistry and Biochemistry

September 2021

Title: Extensions of the Langevin Equation for Protein Dynamics for Modelling
Equilibrium Fluctuations of Proteins

Proteins are not static structures; they must undergo conformational fluctuations

about their folded state to function. Typically, the slow, near-equilibrium

conformational dynamics of proteins encode the functional motions; an accurate

description of these dynamics is useful for elucidating the functional motions of

proteins. Use of molecular dynamics (MD) simulations gives a physical model

of proteins’ motions, but the dynamics are too high dimensional and coupled to

determine the functional motions purely from observation of the MD trajectory;

thus, methods to efficiently extract the slow conformational dynamics of proteins

from atomistic models are valuable.

This dissertation advances the Langevin equation for protein dynamics (LE4PD),

a diffusive, coarse-grained equation of motion for modeling protein dynamics adapted

from the field of polymer physics. The LE4PD is solved by an eigenvalue

decomposition into a set of normal mode coordinates, each of which encodes dynamics

on a specific time- and lengthscale. A discrete-state master equation approach,

Markov state modeling, is used to precisely determine the dynamics and kinetics
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of conformational dynamics described by the slow LE4PD modes by analyzing a 1-

microsecond, folded simulation of the protein ubiquitin. The approach is able to

extract slow dynamics in important binding regions of ubiquitin. In chapter III,

Markov state models are used to determine the contributions of metastable states to

the circular dichroism spectrum of a dinucleotide system.

Because protein dynamics is inherently anisotropic, we develop an anisotropic

version of the LE4PD. When both hydrodynamic effects and free-energy barriers are

neglected, the model reduces to a principal component analysis of the alpha-carbon

coordinates; including both these effects are important for quantitatively modelling

the decay of simulated autocorrelation functions.

Finally, we compare the LE4PD predictions from the ubiquitin simulation to

the slow modes extracted by a time-lagged independent component analysis of the

trajectory. We find both methods are able to extract the slow dynamics of the protein,

but the tICA compresses the information into a smaller number of modes; however,

for ubiquitin, the tICA modes cannot model the simulated autocorrelation functions

as effectively as the anisotropic LE4PD model.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Proteins are linear chains of amino acids that carry out many activities crucial to

sustaining biological life [6]. While techniques for determining the three-dimensional

structure of proteins have been known and used for many years [7, 8], with the

advent of various models for describing the conformational dynamics of proteins,

such as the induced fit [9] and the Monod-Wyman-Changeaux allosteric model [10],

which would eventually be developed into the conformational selection model [11–

13], it has become recognized that not only a protein’s primary sequence and tertiary

structure, but also the protein’s ability to sample different conformational states, or

its dynamics, is important to describing the protein’s function.

A technique known as molecular dynamics (MD), which evolves the atomistic

coordinates of a physical system in time using a variant of Newton’s equations of

motion according to a defined energy function [14], is frequently used to model

protein motions at the atomistic level of resolution. First applied to the bovine

pancreatic trypsin inhibitor protein at the picosecond timescale, [15] state-of-the-

art MD simulations of proteins have reached the millisecond and longer timescales.

[16–19] However, even with this impressive increase in performance, there is still a

gap between the time- and lengthscales accessible through MD and those accessible

through experiment; furthermore, even with long simulations, there can still be a lack

of statistics for the slowest dynamic motions observed in the ‘long’ simulations (e.g.

in a 1-millisecond simulation, an event lasting 0.5 milliseconds is only sampled twice,

once in the forward direction and once in the reverse direction, meaning an estimation

of the kinetics of this event is plagued by statistical uncertainty). However, MD has

1



the advantage of resolving the motions of the entire protein and surrounding solvent

at an atomistic level, which is not possible experimentally.

The output of the MD simulation, the phase space trajectory of all the atoms in

the system, can be challenging to process and interpret. For example, in a modestly

sized protein containing N = 1000 atoms, the phase space trajectory output from the

simulation contains 6×N = 6000 degrees of freedom. Simply observing the trajectory

using computational tools [20, 21] is useful to see what is actually occurring over the

course of the simulation, but given thousands or more degrees of freedom, it is nearly

impossible to sort out what motions are important ‘by eye.’ For example, if one is

interested in the long timescale structural rearrangements of the protein, then the

fast, femto- to picosecond vibrations of the protein’s hydrogen atoms are of little

interest, and the interested party should find a way to safely discard these and other

fast motions irrelevant to describing the protein’s functional dynamics, which tend to

be controlled by its slowest degrees of freedom.[22]

Thus, there is a need to extract the collective motions or ‘leading fluctuations’ of

proteins that are observed on the time- and lengthscales probed by MD simulations.

These slow dynamics involve barrier crossing on the protein’s free-energy surface, and

thus describe conformational changes between two folded states of the protein. [23]

These motions can serve as a ‘bridge’ to connect the motions in the MD simulation

and those observed experimentally by combining the extracted collective coordinates

with an advanced sampling technique such as metadynamics. [24, 25] Furthermore,

due to the intrinsic high dimensionality of a protein’s conformational space, there is

also great value in discovering a low-dimensional, interpretable, and tractable set of

collective coordinates that captures all the essential dynamics of the protein.
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So, a major, current goal in the field of protein dynamics is discovering methods

that greatly simplify the observed dynamics while still capturing the important,

functional dynamics of the protein. Many techniques have been developed previously

to determine the most important conformational dynamics of proteins: principal

component analysis (PCA) or essential dynamics [26], network models [27–29],

independent component analysis [30–32], discrete master equations [33, 34], and,

more recently, deep learning approaches [35, 36]. These methods ideally provide the

desired low-dimensional set of collective coordinates encoding the important dynamics

of the protein, and estimates of the localization, amplitude, and timescales of these

important motions.

This dissertation advances a method for accurately describing protein dynamics

around the folded state. The Langevin equation for protein dynamics (LE4PD)

[37, 38] is a coarse-grained, diffusive, Langevin approach for extracting a set of

Langevin modes describing the collective motions of proteins over a range of time-

and lengthscales. The LE4PD is itself an extension of the optimized Rouse-Zimm

approach for describing the dynamics of unstructured polymers [39], with the coarse

grained sites selected as the alpha-carbons of each amino acid in the protein chain.

Solving the LE4PD via diagonalization yields a set of modes [40] or collective

coordinates that order the dynamics described by the modes according to their

diffusive timescales, with the slowest modes being accorded the lowest mode index.

The first few modes should describe high-amplitude, slow collective motions encoding

the functional dynamics of the protein.

In the LE4PD, the friction coefficients are found by calculating the solvent

accessible surface area of each amino acid in the protein using an extension of Stokes’

law that accounts for dissipation of energy through both the hydrophobic interior
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(‘internal friction’ or ‘internal viscosity’ [41, 42]) of the protein and the surrounding

solvent, where it is assumed the internal friction is coupled to the solvent viscosity.

[38, 43, 44] Because the LE4PD is a coarse-grained approach, the timescales described

by each mode are accelerated due to the effective reduction of the friction coefficient

along each mode coordinate due to the coarse graining. [45, 46] To account for

this smoothing effect, the LE4PD calculates a free-energy surface for each mode, and

finds the average barrier to transport along each mode by finding the median absolute

deviation [47] from the energetic minimum of each mode. [48]

The main theme of this dissertation is extending the previously developed

LE4PD theory by more precisely accounting for barriers along each LE4PD mode

and accounting explicitly for the anisotropy in protein dynamics. To more precisely

account for the mode-dependent barriers, a discrete master equation approach known

as Markov state modeling[49] is used to find the transfer operator[33, 50] on the

slow LE4PD free-energy surfaces and use its spectral decomposition to estimate the

location of the barrier on the surface as well as the timescale required to move between

the wells on either side of the barrier. The anisotropy in the dynamics of the protein

is taken into account by to switching the basis of the residue fluctuations, which also

allows for a direct comparison to the results generated by PCA. These two extensions

can be combined to determine the timescales, lengthscales, and localization along

the primary sequence of the protein’s slow fluctuations, which should encode the

functional dynamics of the protein. When the approach is compared to a tICA of

the same set of input features, the fluctuations of the alpha-carbons in each residue

of ubiquitin, we find that the two approaches predict similar slow dynamics over

timescales that are within an order of magnitude of each other. Combined with the

LE4PD’s ability to reproduce time correlation functions from the base simulation,
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[51] the extended LE4PD appears to be a acceptable method for determining the

slow, ‘essential’ dynamics [26] of proteins, based on the results found from thoroughly

analyzing molecular dynamics simulations of a small, regulatory protein: ubiquitin.

[52]

Ubiquitin is used as a model system to test the extensions to the LE4PD approach

because it is a small, but biologically important, well-folded protein possessing a

variety of secondary structures with regions of β-sheets, α-helices, and flexible,

intrinsically disordered regions. [53] Furthermore, there is a wealth of experimental

data available for ubiquitin, especially NMR data,[54–56] so that the predictions

of observables predicted from the theory can be compared to their experimentally

measured values. [37, 38, 48, 57] Since ubiquitin is highly stable protein with a

suspected unfolding temperature at or above 100◦ C at neutral pH [58], it is often

referred to as ‘a rock’ due to this stability. However, despite a high-proportion

of stable secondary structure, ubiquitin also contains several flexible loops and

intrinsically disordered regions, most notably the C-terminal tail [52], whose dynamics

occurs over timescales of the order of 10 ns. As will elucidated in detail throughout

the dissertation, we postulate the slow dynamics in these flexible loops are related

to ubiquitin sampling binding conformations, since these loops are known to bind

to multiple proteins [52, 59–64]. So, although it is true that ubiquitin is highly

stable and most of its structure fluctuates little from its equilibrium, folded state,

ubiquitin possesses several flexible regions that undergo large amplitude fluctuations,

sampling the many local minima at the bottom of the global energetic minimum

corresponding to the folded state. These sampled conformations should overlap with

the observed binding configurations of ubiquitin, [55] supporting the conformational

selection hypothesis. [10, 11]

5



The dissertation is organized as follows: in Chapter II another, more rigorous

method for determining the timescales of the slowest LE4PD modes using Markov

state models (MSMs) [4]; in Chapter IV an extension of the original, isotropic

LE4PD approach to an anisotropic Langevin equation for protein dynamics called the

LE4PD-XYZ model, [51] which describes the anisotropic fluctuations of the protein

and completely eliminates the global motions of translation and rotation from the

analysis, allowing for a comparison to the analogous PCA of the same set of coarse-

grained sites; in Chapter V, the MSM approach is applied to the LE4PD-XYZ model,

and the results are compared to the analogous time-lagged independent component

analysis (tICA) for the same trajectory of the protein ubiquitin [65], where it is

seen that the LE4PD-XYZ and tICA predict similar slow motions in the protein;

and, for completion, Chapter III is an aside illustrating another application of MSMs

to describing the conformational dynamics of a simple single-stranded DNA model,

deoxyadenine dinucleotide (dApdA). [66]

The research presented in Chapters II and IV is co-authored with Dr. Marina

Guenza, have been published in peer-reviewed journals [4, 51] while the research

presented in Chapter V is currently undergoing peer-review. [65] Finally, the research

presented in Chapter III is co-authored with Hadi Dinpajooh, Huying Ji, Dr. Pete

von Hippel, Dr. Andy Marcus, and Dr. Marina Guenza and was also published in a

peer-reviewed journal. [66]
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CHAPTER II

DESCRIBING THE KINETICS AND DYNAMICS OF THE SLOW LE4PD

MODES OF UBIQUITIN WITH MARKOV STATE MODELS

From Beyerle, E. R. and Guenza, M. G. Kinetic Analysis of Ubiquitin Local

Fluctuations with Markov State Modeling of the LE4PD Normal Modes. J. Chem.

Phys., 151(16):164119, 2019.

Fluctuation dynamics allow proteins to modify their shape and efficiently

sample conformational states that are potentially useful to perform their biological

function.[11] Large scale fluctuations can be precursors to unfolding [67] because

these fluctuations involve slow cooperative rearrangements of large portions of the

protein; these cooperative motions are thought to guide and define the most relevant

kinetic pathways of a protein, identifying reaction coordinates that can be important,

for example, in substrate binding,[11, 55, 68] product release,[69] regulation,[11] and

allostery.[70–72]

Local fluctuations, occurring at a precise lengthscale, are supposed to be relevant

in identifying regions of the protein likely involved in molecular recognition.[55, 73]

Following the hypothesis of the conformation-selection model by Monod-Wyman-

Changeux (or MWC model),[10] local fluctuations along the primary sequence of a

protein provide information on the propensity to bind other molecules at the given

segment of the protein’s primary sequence.

This hypothesized correlation between local fluctuations and binding lies at the

foundation of the MWC model, where a substrate selects among a large ensemble

of conformations the one that is geometrically and energetically most favorable to
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binding.[12] Thus, spontaneous fluctuations are expected to occur even in the absence

of a binding partner,[55, 74] so that the modeling of spontaneous local fluctuations

of an isolated protein may provide essential information on the kinetic mechanisms

of protein binding.

These local fluctuations involve internal deformations of the protein, which

require surmounting a free-energy barrier. A dynamical study of spontaneous

fluctuations will likely uncover the length- and timescales over which these

fluctuations occur, thus potentially highlighting the characteristic spatial and

temporal parameters that set the limits for the binding process. Sometimes, internal

fluctuations occur on a timescale that is comparable in magnitude with the slowest

timescale of protein relaxation (for example rotational diffusion),[38] indicating that

those internal motions can be important participants in the mechanisms of molecular

recognition.

This chapter shows a study of the emergence of local fluctuations along a protein’s

primary sequence, and the length- and timescales associated with them, starting from

the coarse-grained Langevin Equation for Protein Dynamics (LE4PD). The protein

investigated is a regulatory protein in eukaryotic cells, ubiquitin, which is most notable

for its ability of post-translationally modifying other proteins through the process of

mono- or poly-ubiquitination,[75, 76] a necessary event for a number of important

biological functions.[60, 61, 64, 75, 77]

In the process of ubiquitination two ubiquitin molecules bind by forming an

amide bond between the carboxyl group at the C-terminus and the ε-amino group of a

lysine amino acid. The reaction is catalyzed by a number of enzymes called ubiquitin

ligases.[78] Ubiquitin has seven lysines, and the length and shape of the chain of

ubiquitins depend on which lysine in the protein participates to the binding of the
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C-terminus of another ubiquitin. Other parts of ubiquitin are also involved in other

binding processes.[52, 61, 75] Following the hypothesis of the MWC model of binding,

local fluctuations along the primary sequence of ubiquitin provide information on the

propensity of the protein to form bonds at a specific amino acid site; the height of

the barriers and the kinetics of crossing these barriers will provide information on the

timescale of binding. The different time- and length scales related to fluctuations in

different parts of the protein may be useful in the reaction mechanism to discriminate

among the different binding sites. Because ubiquitin has a highly conserved primary

sequence in the family of proteins that have similar functions (for example, the

primary sequence of ubiquitin has only a few residues that are different in animals,

yeasts, and plants), we expect the mechanisms that guide these processes to be

kinetically and thermodynamically robust.

The LE4PD approach effectively projects the dynamics of a protein onto a

coarse-grained (CG) description where the protein is represented by a collection of

vectors connecting pairs of α-carbons (Cα). The method starts with a molecular

dynamics (MD) simulation of a protein in physiological conditions in the canonical

(NVT) ensemble, where data were collected from a 1-µs equilibrium simulation.

Then, it decomposes the MD dynamics by projecting the trajectory, which represents

the complex dynamics of a protein with motion coupled across multiple length-

and timescales, onto quasi-linearly-independent LE4PD normal mode coordinates

derived from the CG description. While here we use MD simulations in the

canonical ensemble, the LE4PD equation is equally useful when starting from other

ensembles, statistical averages derived experimentally (e.g. NMR conformational

ensembles[48, 57] or a set of X-ray crystal structures), or by Monte Carlo simulations.

The conversion into normal mode coordinates yields a description of the local
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fluctuations that is largely uncoupled, and can be analyzed independently: each

normal-mode trajectory encapsulates the dynamics occurring at a selected length-

and timescale in the simulation. The real-space dynamics can be reconstructed a

posteriori from a linear combination of the normal modes.

When the simulated dynamics is projected onto the LE4PD normal modes, a

free-energy map of the conformational space is generated for each mode. The mode-

dependent free-energy maps display complex landscapes with energy barriers and

unique pathways between minima on the surface. To calculate the timescale of

transition between minima in the Free-energy Surfaces (FES), we combine, here for

the first time, the LE4PD normal mode description with a mode-dependent Markov

State Model (MSM) analysis of the dynamics. MSMs have been applied to the

study of the kinetics of a wide range of biologically relevant systems, providing a

reliable analysis of the dynamical pathways.[33, 79–83] Here we propose a refined

MSM method for the determination of the slow kinetic transitions between minima

in each free-energy map. Using this approach we evaluate the characteristic time of

transition between two well-defined energy minima in LE4PD mode-dependent FES

of ubiquitin.

Decoupling the real dynamics by decomposition into independent normal modes

is similar in purpose to the Principal Component Analysis (PCA) and the time-lagged

Independent Component Analysis (tICA) approaches, which have been previously

used in conjunction with MSM.[84–86] Interestingly, because of their direct connection

with the physical picture of the system, the LE4PD modes identify the contributions

that arise from the type of amino acids and their local flexibility, hydrodynamics,

and friction within the protein.[38, 48, 57, 67] Thus the projection onto the LE4PD

diffusive normal modes provides a detailed physical interpretation of the dynamics of
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the protein: in a given time window and at a given spatial scale, fluctuations occur on

well-defined fragments of the protein primary sequence, or, equivalently, one can see

how different parts of the protein become dynamically active (fluctuate) on different

time scales. This study shows that the newly proposed LE4PD-MSM method allows

for the careful and accurate evaluation of mode-dependent local fluctuations and

kinetic pathways.

From Molecular Dynamics Simulations to a LE4PD Normal Mode

description

The LE4PD is a linear Langevin equation of motion for a set of coarse-grained

units (or beads) located at the position of the alpha-carbon along the primary

sequence of a protein.[37, 38, 48, 57, 67] The LE4PD is expressed as a function of

the time-dependent Cα-Cα bond coordinates, ~li(t), which allows one to discard the

center-of-mass diffusion, irrelevant in the study of the internal dynamics of a protein.

The LE4PD equation of motion for the bond vector i is

ζ
∂~li(t)

∂t
= −3kBT

l2

N−1∑
j,k

Li,jUj,k~lk(t) + ~Fi(t), (2.1)

where kB is the Boltzmann constant, T the temperature in Kelvin, and l2 the mean-

square bond length, which in this model is the mean-square peptide bond length.

~Fi(t) is the stochastic force acting on bond i at time t, which is governed by a

white-noise fluctuation-dissipation relation

〈Fα
i (t)F β

j (t′)〉 = 2ζkBTδα,βδ(t− t′)
N−1∑
k,m=1

ai,kδk,mam,j (2.2)
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with 〈~Fi(t)〉 = 0 and where 〈〉 defines the statistical average of a quantity .

Here α, β denote Cartesian indices; δij and δ(t − t′) are the Kronecker delta and

Dirac delta function, respectively. The matrix a is the matrix that transforms

from bead coordinates to bond coordinates, while L is the matrix that contains

the hydrodynamic interaction and U is the inverse of the bond correlation matrix

(U−1)i,j = 〈~li(t) · ~lj(t)〉/(〈|~li(t)|〉〈|~lj(t)|〉), which provides information on the protein

local flexibility along its primary sequence. For convenience we define σ = 3kBT/(ζl
2).

The statistical averages that enter the LE4PD hydrodynamic and structural

matrices, as well as the amino acid friction coefficient, are calculated from trajectories

of atomistic MD simulations of the protein in aqueous solvent at physiological

conditions. More details on the LE4PD and on the MD simulations of ubiquitin

analyzed in this and succeeding chapters are reported in Appendix A.

The LE4PD equation of motion is solved by matrix diagonalization to recover

the linearly independent mode representation of the dynamics. The eigenvalues of

the diffusive matrix for mode a are defined as λLE4PD
a , while the normal modes are

~ξa(t) =
∑N−1

i=1 Q−1
a,i
~li(t), with Q the matrix of the eigenvectors that diagonalize the

LE4PD equation (Eq. 2.1). The modes span the same space as the bond vectors with

near linearity, as 〈~ξa(t) · ~ξb(t)〉 ∼= δa,bl
2/µa with µa =

∑
i,j Q−1

a,iU
−1
i,j Qj,a. Starting from

the normal mode solution of Eq. 2.1, one can calculate any structural and dynamical

property of interest. A comparison of real-space structural properties predicted by

the LE4PD to those calculated directly from the simulation trajectory demonstrates

the accuracy of the Langevin mode description.[38]

The LE4PD normal modes, ~ξa(t), describe the dynamics of a protein over a given

length scale. For a protein possessing N CG sites, the LE4PD gives N − 1 coupled

equation of motion in the bond coordinates and N−1 uncoupled equations of motion
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in normal modes. The modes are ordered by descending diffusive timescale, with the

low index modes describing the slowest, and generally highest-amplitude motions,

while the highest index modes describe the fastest, lowest-amplitude motions. For a

well-folded protein, the first three modes describe the rotational diffusion tensor of

the protein [38]; these are the global modes of motion. The remaining N − 4 modes

describe internal deformations of the protein and will be referred to as internal modes.

We then project the MD trajectory for each bond vector onto the LE4PD mode

coordinates as ~ξa(t)[trajectory] =
∑N−1

i=1 Q−1
a,i
~li(t)[trajectory], thus yielding a new trajectory

in the mode coordinates. Then an energy map for each mode is built by calculating

the histogram of the trajectory projected onto the mode coordinates expressed in real

space.[38] The map of the free-energy is reported as a function of the two spherical

angles in polar coordinates: θ (describing the inclination relative to the z-axis of

the simulation box) and φ (describing the azimuthal angle into the xy-plane of the

simulation box). Note that the contour plot of the energy as a function of the modulus

of the polar vector does not show relevant features and is not reported, even if its

contribution enters in the normalization of the probability and thus in the evaluation

of the mode-dependent free energy. The latter is given by the logarithm of the

normalized probability of each molecular configuration in mode coordinates. This

procedure yields N − 1 mode-dependent FES.

As an example, Figure 1 displays the free-energy surface of mode seven for

ubiquitin. The contour map of the free-energy surface displays interesting features

with localized, deep minima and distinct reaction pathways between them. By

applying a version of the string method[87, 88] two possible pathways emerge between

the two minima, given the circular symmetry of the angle φ. The transitions between

two minima in the free-energy landscape represent mode dependent local fluctuations,
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associated with a timescale for crossing the related energy barrier, or transition time.

A more in-depth description of these local fluctuations are presented in the following

section.
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FIGURE 1. An example of the contour plot for the free-energy surface of a LE4PD
mode; the example here shows data for mode seven. The red-white-blue circles show
two possible low-energy pathways between the minima.

Localized Fluctuations in ubiquitin LE4PD Modes

Ubiquitin is a regulatory protein present in eukaryotic cells, whose post-

translational modification is involved in multiple biological functions.[75, 89] An

important function of ubiquitin is to tag misfolded proteins and to signal them for

degradation via the proteasome. For this reason ubiquitin is called the “molecular

kiss of death”. Degradation happens through a number of steps where first ubiquitin
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binds to the misfolded protein by a reaction that is catalyzed by ubiquitin ligases,

and once the first ubiquitin binds, this signals the ligase for further binding of the

ubiquitin proteins to form a polyubiquitin chain. The polyubiquitin chain finally binds

to the proteasome, which ultimately degrades the misfolded protein: thus ubiquitin

molecules form a chain that connects the misfolded protein to the proteasome.[90]

The length and shape of polyubiquitin are important for the successful protein

degradation.[52]

Binding of ubiquitin to a second protein by mono- or poly-ubiquitination occurs

by formation of an amide bond between the carboxyl group of the last amino acid

in the C-terminal tail and either the ε amino group in the side chain of a lysine

residue or, alternatively, the amino group in the N-terminus. Ubiquitin itself has

seven different Lys groups that can bind to the C-terminus of another ubiquitin:

Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63 (see Figure 2). The selection

of the different Lys groups for binding yields different three-dimensional structures

for the resultant polyubiquitin and supports different biological processes.[52, 91]

For example, the formation of polyubiquitin that leads to protein degradation is

initiated by the binding of the C-terminus of the second ubiquitin to either Lys48

or Lys29 in the first ubiquitin, i.e. the one directly bound to the protein that is

being degraded. Binding of ubiquitin to Lys63, instead, leads to polyubiquitin chains

that are important for other functions generally related to crossing of a membrane,

including for example endocytosis, membrane trafficking, and signal transduction.[64,

75]

Furthermore, it has been shown that ubiquitin may interact with other proteins

through non-covalent binding, and that this non-covalent binding involves conserved

regions of the protein: the hydrophobic Ile44 patch on the surface of ubiquitin binds
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non-covalently to a number of ubiquitin binding domains, for example the ubiquitin

interacting motif (UIM) and motif interacting with ubiquitin (MIU).[91]

Thus, given the complexity of the possible kinetic pathways involved in

its binding, an accurate evaluation of the dynamics of ubiquitin is potentially

enlightening in determining how this protein carries out its biological function:

fluctuations may be important in characterizing the binding propensity of

different regions of ubiquitin’s primary sequence in agreement with the theory of

conformational selection, which postulates that a protein will sample all its relevant

binding conformations even in the absence of any binding partners.[11, 92] As

demonstrated below, the LE4PD coupled with the MSM is effective at describing

dynamics at localized sites of ubiquitin involved in both covalent and non-covalent

binding.

Lys6

Lys11

Lys63

Lys27

Lys48

C-terminus

N-terminus

FIGURE 2. Cartoon representation of ubiquitin, with the lysine residues plus the
N- and C-termini labeled. The lysines’ side chains are drawn explicitly and colored
orange. Two of the seven lysine residues are obscured and not labeled.

For a given LE4PD mode, the transition between two minima in the FES

corresponds to well-defined local fluctuations. For each bond and a specified mode, a,

the amplitude of the bond fluctuations is calculated as the Local Mode Length scale

16



(LML):

LML =
√
L2
i,a =

√
Q2
i,al

2

µa
. (2.3)

L2
i,a is the mean-squared projection of mode a onto the ith Cα-Cα bond.

Examples of Li,a are reported in Figures 3 and 4 for a LE4PD analysis applied

to a 1-µs equilibrium simulation of ubiquitin. Figure 3 displays the LML for the first

ten LE4PD internal modes: those are the slowest modes that contain crossing of high

energy barriers and possibly rare events. For the high-amplitude, slow global modes

in Figure 3 fluctuations are located mostly in the C-terminal tail (residues 71-76) of

ubiquitin, which is involved in poly-ubiquitination.[75] In the slower modes smaller

amplitude fluctuations are also located in the Lys11 loop (residues 6-11), while those

fluctuations become dominant only for the faster and more local LE4PD modes 7, 11,

and 13.

An interesting exception to the observed trend is LE4PD mode 9, which shows

a large amplitude fluctuation in the stretch between residues 51 and 63; this segment

is known as the 50 s loop and has been shown to be a binding site for the A20

zinc-finger binding motif.[59, 60, 63] The specific behavior of this LE4PD mode will

be elaborated more below because it is an example of the LE4PD’s ability to predict

dynamics in binding regions of ubiquitin and the MSM’s ability to describe accurately

the slow kinetics along the LE4PD mode’s FES.

Figure 4 shows the LML for a number of high index modes. The LML for

these internal modes display delocalized low-amplitude fluctuations across ubiquitin’s

primary sequence. Dynamics on these local energy maps does not involve transition

between deep wells on the free-energy landscape but rather diffusion over a rough

landscape. Interestingly, this is not observed for the very last modes (modes 73-75),

which describe highly-localized fluctuations along the backbone that are sensitive to
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FIGURE 3. Local mode length scale (LML), a measure of mode-dependent
fluctuations along the protein ubiquitin’s primary alpha-carbon sequence, for the
first 10 internal modes predicted by the LE4PD; these are the modes amenable to
Markov state modeling.

the chemical specificity of ubiquitin’s primary sequence (more details are available in

the Supplementary Material of [4]).

The analysis of the LML suggests that fluctuations do not appear uniformly in

all the modes, but that their localization along the primary sequence of the protein

is specific of the mode number. Low index modes show fluctuations that are local

in space and that occur by transition along a pathway between well-defined energy

wells. Intermediate-index modes, instead, show an almost stochastic spreading of the

fluctuations and delocalization along the primary sequence of the protein. The FES

of high-index modes show a well-defined, highly-conserved, localization corresponding

to crossing of local energy barriers of order kBT .
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FIGURE 4. Local mode length scale (LML), a measure of mode-dependent
fluctuations along the protein ubiquitin’s primary alpha-carbon sequence, for a
sampling of the higher-index, faster internal modes predicted by the LE4PD.

Each mode-dependent FES is associated with a timescale characterizing the

fluctuations described by that mode. Thus, it appears that the different binding

regions, including different lysine residues, on the surface of ubiquitin are kinetically

non-equivalent: this suggests preferential binding depending on the timescale of the

kinetic processes involved. To calculate the timescale associated with the crossing of

the free-energy barrier for a given fluctuation we apply an MSM analysis as illustrated

in the following sections.

Markovian and Non-Markovian Kinetics of the Mode-Dependent

LE4PD Fluctuations

The trend observed in the mode-dependent fluctuations of Figures 3 and 4

is indicative of the structure of the related FES. Thus, one observes that low-

index LE4PD modes correspond to large wavelength processes, and identify slow,

cooperative dynamics of the amino acids along the primary sequence. For those slow,

cooperative motions, free-energy barriers are large enough and crossing is often a
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rare event. Thus, for the low-index modes kinetic transitions are uncorrelated and a

Markovian statistic applies, and the mode-dependent dynamics can be analyzed by

MSMs.

As one moves to consider higher-index LE4PD modes the dynamics becomes

faster and the height of the free-energy barrier decreases.[57, 67] It was previously

shown that the overall scaling behavior of the height of the average energy barrier

scales with the mode number as E†a ∝ (a − 3)−0.5, and with the characteristic

mode length, L2
a = l2/µa, as E†a ∝ (L(a−3))

0.93.[67] These characteristic scaling

exponents are consistent with a dynamical process where the constant fluctuations in

hydrogen bonding is a source of energetic disorder in the Hamiltonian of a protein,

thus supporting the mapping of protein dynamics onto the Kardar-Parisi-Zhang

model.[57, 67]

Thus, the Markovian nature of the kinetics for each LE4PD mode depends on

the mode that is under study. The decrease of the height of the energy barriers with

increasing locality of the dynamics renders progressively more problematic the MSM

analysis of the FES. For high index mode the free-energy barriers are not large enough

and the trajectory cannot sample low free-energy regions for a sufficient length of time

to completely lose memory of the previous transitions. For those modes the dynamics

is not Markovian independent of the lag time that is selected, and the MSM approach

does not apply. For these high-index modes where the roughness of the landscape

dominates the dynamics, it is appropriate to adopt Kramers’ diffusive renormalization

of the friction coefficient, where the energy barrier is calculated through the Median

Absolute Deviation (MAD) measure of the average energy roughness.[57, 93]
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In the MAD measure, the free-energy barrier is calculated as

E†a = median (Ea(θ, φ)− Emin,a) , (2.4)

with E†a the free-energy barrier predicted for mode a using the MAD and Emin,a the

global free-energy minimum of mode a.

Using the measured MAD barrier we defined an effective friction coefficient that

yielded a slowing down of the dynamics calculated with Kramer’s theory of diffusive

barrier crossing.[38, 48, 67] By assuming that the modes diffuse along their respective

FES, and that barrier crossing is a thermally-activated process, the friction coefficient

can be rescaled as ζ → ζ exp
[
E†a/kBT

]
, leading to a slowed down decay time for

each mode: τa → l2ζ exp
[
E†a/kBT

]
/(3kBTλ

[LE4PD]
a ) = τ 0

a exp
[
E†a/kBT

]
, with τ 0

a =(
σλ

[LE4PD]
a

)−1

.

The use of this rescaling procedure for the mode-dependent time improves

the agreement between the bond time autocorrelation function, calculated from

the LE4PD theory, and the same function directly calculated from the MD

simulations.[38, 48, 67] The criterion that we adopt to establish the range of LE4PD

modes where the MSM applies, i.e. the Markovian nature of the kinetic transition,

is a standard procedure based on indirectly measuring the Chapman-Kolmogorov

condition through the implied timescales test, as illustrated in Appendix B. For the

protein ubiquitin studied here, we observe that for the tenth LE4PD internal mode

and higher a MSM analysis becomes impossible, and transition times are calculated

by simple Kramers’ rescaling of the LE4PD mode-dependent time using the MAD

determination of the average energy barrier. This procedure appears to be accurate,

also because the weight of each mode in the calculation of any time correlation

function decreases with increasing LE4PD mode number: the possible error due to
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a less accurate evaluation of the high-index modes (by MAD instead of MSM) plays

a less significant rôle in the calculation of the dynamical properties of the protein in

the form of time correlation functions.

A Markov State Model for the Analysis of the Mode-Dependent

free-energy Surface

The MSM method models the kinetics of a molecular process as a Markov chain

of uncorrelated jumps among conformational states; some additional details on MSMs

are available in Appendix B. The mode-dependent trajectory is first partitioned into

a finite number of discrete states, W , using the k-means++ clustering algorithm,

as implemented in PyEMMA[85]. Once a lag time τ is selected, the probability of

transition between different microstates is calculated and stored in the transition

matrix, T(τ). Thus, the evolution of the probability for the system to occupy a

discrete state at a given time t, p(t), follows the equation[33]

pj(t+ τ) =
W∑
i=1

Tij(τ)pi(t), (2.5)

where the matrix T (τ) is calculated from the simulation trajectory using the reversible

maximum-likelihood estimate,[94]

Tij(τ) =
(cij + cji)πj
ciπj + cjπi

, (2.6)

with cij = cij(τ) the ijth element of the count matrix, which keeps track of all the

transitions from state i to j in the trajectory at a lag time τ . We define ci =
∑

j cij

the ith row sum of the count matrix, giving the total number of observed transitions
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from i, while πi is the stationary (equilibrium) probability of state i. This definition

of T (τ) satisfies detailed balance and implies reversibility of the kinetic process.

The right eigenvectors of T(τ) are solutions to the eigenvalue equation

T(τ)ψi(τ) = λi(τ)[MSM ]ψi(τ). (2.7)

Since T(τ) is a regular, stochastic matrix, the Perron-Frobenius theorem guarantees

λ1(τ)[MSM ] = 1 is the maximum eigenvalue of T(τ), and its corresponding eigenvector,

ψ1, has only positive entries.[95] The other eigenvalues obey the condition that for

i > 1 one has 0 < λi(τ)[MSM ] < 1. Given the definition of the implied timescales, ti,

ti = − τ

ln[λi(τ)[MSM ]]
, (2.8)

one observes that all the processes decay in time, excepting the one corresponding

to the first eigenvalue (t1 = ∞). The first left eigenvector describes the stationary

distribution of the configurational states, while the eigenvectors with index higher

than one describe kinetic transitions occurring at increasingly smaller timescales. The

second eigenvalue, λ2(τ)[MSM ]], gives the timescale, t2, associated with the slowest

internal motion of the protein from the given LE4PD dynamical mode. It is precisely

this timescale t2 that is of interest here because it describes the slowest kinetic process

occurring on a FES. Following the procedure presented in the next section, the time

t2 is selected to correspond to the kinetic transition between the two minima in the

FES of the slow LE4PD modes.
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A Kinetically Informed Determination of the Mode-dependent LE4PD

transition time

We calculated the mode-dependent transition time for crossing a free-energy

barrier, τ , starting from the spectrum of the second right eigenvector, ψ2, of

T(τ).[96] This eigenvector has been called an ‘ideal reaction coordinate’, because

i) it corresponds to the slowest, non-stationary process of the Markov state model,

where the slowest dynamics is supposed to be representative of rare events and ii) it

has been shown to be a good approximation to the discrete committor function[34]

(see Equation 2.9), which gives the probability of the trajectory to visit the product

state before the reactant state, when initiated at any of the discrete states outside of

the reactant and product regions[96, 97] (as an example of ψ2 acting as a committor

function, compare Figures 6 and 8).

To identify the relevant well-to-well transition time, we performed a series of

calculations at increasing lag time, τ , and inspected the structure of the second

eigenvector (ψ2) projected onto the free-energy surface. The transition time was

selected such that the discrete states with the most positive projection along ψ2 were

located in the deepest well in the free-energy surface (the ‘product’ state), while

the discrete states with the most negative projection were located in a second, well-

defined free-energy well (the ‘reactant’ state). This selection criterion was adopted

because the goal is to construct kinetic models for each LE4PD mode describing the

barrier-crossing events between the two most highly-populated regions of the free-

energy surface for each LE4PD mode. An example of the resulting ψ2 spectra are

reported in Figures 5 and 6, where the free-energy maps for modes 4, 5, 7, and 9 are

presented on the left panels and the discrete states for the second eigenvectors are

superimposed to the FES on the right panels.
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FIGURE 5. Second right eigenvector, ψ2, of the transition probability matrix
projected onto the discrete states of the kinetic models for LE4PD modes 4 (top) and
5 (bottom). For clarity of visualization and ease of comparison, a scaled version of ψ2

is plotted: ψ2−min(ψ2)
max(ψ2)−min(ψ2)

. The scaling of the contour levels of the free-energy surface
is given by the colorbar on the left-hand subplot and the scaling of the eigenvector
projection is given by the colorbar of the right-hand subplot.

Figure 7 reports the kinetic parameters measured using the MSM method

combined with the ‘kinetically informed’ procedure, and a comparison of these times

with the results of the Kramers rescaling procedure with the MAD determination of

the energy barrier, henceforth referred to as the ‘LE4PD-MAD’ approach. Note that

while the transition time of the slowest modes, which have pronounced and localized

energy barriers, are calculated with the kinetically informed MSM procedure, for

modes larger than 13 (the eleventh internal mode and higher) MSM can not be applied

and the LE4PD-MAD procedure is used. Using the proposed method to construct

the MSM for each LE4PD mode, the kinetics predicted by the discrete model, which

corresponds to the transition time between wells on the surface, can be seen to have

a similar trend in the timescales to the LE4PD-MAD approach, while the LE4PD

with the kinetically informed MSM generally predicts slightly larger timescales. For
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FIGURE 6. Second right eigenvector, ψ2, of the transition probability matrix
projected onto the discrete states of the kinetic models for LE4PD modes 7 (top)
and 9 (bottom). For clarity of visualization and ease of comparison, a scaled version

of ψ2 is plotted: ψ2−min(ψ2)
max(ψ2)−min(ψ2)

. The scaling of the eigenvector projection is given by
the colorbar of the left-hand subplot and the contour levels of the free-energy surface
are given by the colorbar on the right-hand subplot.

a given normal mode, the kinetically informed ‘LE4PD-MSM’ procedure appears to

provide a more accurate determination of the implied timescale.

It is worth noticing that, if too long a lag time is selected in the kinetically-

informed MSM method, the discrete states corresponding to the minimum and the

maximum projections along the second eigenvector are empirically found to no longer

lie within wells in the FES, as is shown for LE4PD mode 8 in Appendix B. Thus,

although long-time processes become naturally uncorrelated at large lag time, and

thus Markovian, the characteristic timescale of a given fluctuation has to correspond

to the transition between two well-defined energetic minima. Finally, we note that

the eigenvalues of the transition matrix, Equation B.2, are identically to those of the

corresponding, symmetrized matrix.[96] Then, the transition time for a dynamical

fluctuation is uniquely defined because its value is independent of which well is
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assumed to be the initial state and which is assumed to be the final state in the

free-energy barrier crossing.
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FIGURE 7. Comparison of the measured transition times as a function of mode
number calculated using the kinetically informed MSM approach (blue) and compared
with Kramers’ diffusive energy barrier LE4PD-MAD results (red), and the predictions
of LE4PD without including mode-dependent free-energy barriers (black).

Fluctuation Dynamics and Binding: the case of Mode 9

Interestingly the timescale of LE4PD mode 9 predicted from the MSM analysis

has a transition time that is comparable to the rotational dynamics of the protein

and the fluctuation time of the first internal mode. This indicates that important

slow dynamics occurs for this internal mode. This long transition time is due to the

structure of the free-energy surface for mode 9, which is shown in the left panel of

Figure 8. Visible in Figure 8 is a prominent, third minimum in the FES. Using a

committor analysis,[96] this minimum is shown to lie near a committor value of 0.5

and serves as a ‘trap state’ during transitions between the reactant and product states

on the FES of LE4PD mode 9. The aforementioned committor analysis is performed

using the standard approach of transition path theory.[98] The committor function

for a discrete state i, qi, is defined as [98]

− qi +
∑
k∈I

Tikqk = −
∑
k∈P

Tik (2.9)
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with I the set of intermediate states (all discrete states not belonging to the reactant

or product states) and P the product set. Conceptually, the committor function

describes the probability that a trajectory initiated from state i will visit (or commit)

next to the product state.[34, 96] That is, qi = 0 in the set of discrete states defined

as the ‘reactant’ states and qi = 1 in the set of discrete states defined as the ‘product

states.’ Discrete states with qi ≈ 0.5 are transitions states, with approximately equal

probability of visiting either the reactant or product state next.

The right panel of Figure 8 shows the committor function between the discrete

states with the most positive and most negative projections along ψ2; discrete states

with committor values near 0 are colored dark red and discrete states with committor

values near 1 are colored dark green. Since the trap state is located at an intermediate

committor value (∼0.5-0.6), transitions between reactant and product states get

trapped there. This trapping effect extends the transition time between regions of

high and low projections along ψ2, leading to longer predicted timescales relative to

the LE4PD-MAD procedure; the latter averages out these types of effects because it

accounts only for a single characteristic barrier height. Thus, this mode provides a

clear example of the extra information that may be afforded from adopting a more

precise method of analysis of the dynamics, by using MSMs to model the kinetics of

the slow LE4PD modes.

The fluctuations observed in the LML for LE4PD mode 9 are reproduced

qualitatively when the transition between the reactant and product wells on the FES

is modeled using a transition path found by a modified version of the zero-temperature

string method.[87, 88] The minimum free-energy path is shown in the top panel of

Figure 9 and the corresponding structural deformations of ubiquitin as the trajectory

moves along this pathway are shown in the bottom panel; additional details regarding
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FIGURE 8. Free-energy surface (left) and the discrete committor function, qi,
superimposed on the free-energy surface for mode 9. Dark red regions denote where
the committor is near 0 (reactant states), dark green regions denote where the
committor is near 1 (product states), and yellow regions denote intermediate values
of the committor, where the trajectory has a significant probability of visiting either
the reactant or product state next. The minimum at the lower, left-hand corner of
the free-energy surface is located at an intermediate committor value and serves as
a trap state, which imparts the long transition time (≈10 ns) to ψ2 for the MSM of
this LE4PD mode.

the string method parameterization for the LE4PD free-energy surfaces is available

in the Supplemental Material of [4]. Figure 9 demonstrates that the minimum free-

energy path between wells passes through the ‘trap state’ mentioned above, which

supports the slow timescale for this mode predicted by the MSM. The fluctuations

along the primary sequence of ubiquitin, given in the bottom panel, support the

localization of the fluctuations predicted by the LE4PD’s LML.

Biological Interpretation

As previously observed, the conformational selection model of protein binding

postulates that in the absence of its binding partner(s) a protein will still sample

all energetically available states, including those states responsible for binding to the

ligand(s) of interest.[11, 92] The conformational selection model implies that the Cα-

Cα bond fluctuations described by the dynamics along the LE4PD FES may identify

the timescales and length scales of relevant binding modes of, in the analysis shown

here, ubiquitin. Thus it is useful to summarize the results that we obtained in this
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FIGURE 9. Dynamical motion of ubiquitin along the minimum free-energy pathway
of LE4PD mode 9. Top: Free-energy surface for LE4PD mode 9. The colored circles
discretize the string between the reactant and product states. The dark blue circle
represents the reactant state; as the string moves toward the product state, the
coloration changes from blue to white to red, with the dark red corresponding to the
product state. Bottom: Structural deformation of ubiquitin due to movement along
the minimum free-energy path. Structure color in the bottom panel corresponds to
the circle color in the top panel.

study while trying to connect those data to a possible interpretation of the propensity

of ubiquitin to bind at specific time scales in well-defined regions of the protein three-

dimensional structure.

Re-examining the LML for LE4PD in Figure 3 we identify the slowest and more

relevant fluctuations of ubiquitin. First, we observe that LE4PD predicts large-

amplitude, slow dynamics in two prominent regions: the C-terminal tail (modes 4,

5, 6, 8, and 10) and the Lys11 loop, which is the flexible loop containing Lys11

(modes 7, 11, 13).[77] The C-terminal tail and the Lys11 loop regions are implicated

in covalent associations with other proteins, including other ubiquitin molecules; both

regions are involved in polyubiquitination events.[52, 75, 77] Due to their ability to

bind covalently to numerous other proteins, it is perhaps not surprising that the

LE4PD predicts motions in these two regions, which involve a relatively wide window

of length- and timescales (Figures 3 and 7). We speculate that perhaps the large
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variance of the size and kinetics of the fluctuations involving the C-terminal tail and

the Lys11 loop is due to the need for the protein to interact with a variety of other

proteins of different size and flexibility.

Different is the result for the fluctuations involving the 50 s loop.[59] In this

case, fluctuations appear in a specific LE4PD mode (mode 9). X-ray crystallography,

2D-NMR experiments, and immunoblot assays have shown this region of ubiquitin

is recognized by, and is bound non-covalently to, the A20 zinc-finger (ZnF) motif of

Ras guanine exchange factor Rabex-5.[59, 63] Perhaps more interestingly, the X-ray

structure of Rabex-5 bound to ubiquitin (PDB ID: 2C7N)[59] shows that Y25 on

Rabex-5 forms a hydrogen bond with residue E51 of ubiquitin,[59] while 2D-NMR

studies show that E51 on ubiquitin undergoes a large chemical shift perturbation

when Rabex-5 is added to a solution of ubiquitin.[63] Interestingly, LE4PD mode 9

shows a large, local fluctuation localized on at E51 residue of ubiquitin (see Figure

3).

Conclusions

Protein dynamics is hypothesized to play a central rôle in protein function.

Molecular recognition and substrate binding often occur by a conformational selection

mechanism, where protein conformations that are apt to binding a specific substrate

are already populated in the isolated protein.[11] Then, the binding of the substrate

occurs by a simple selection of the proper protein conformation. Thus, spontaneous

fluctuations in the isolated protein may provide useful information on the mechanism

of protein substrate interaction and binding, where both structural and kinetic

information are important to characterize the mechanisms of binding.
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We have presented a detailed study of the fluctuation dynamics of the protein

ubiquitin and propose a kinetically-informed method to analyze the protein motion.

The protein is simulated using an MD trajectory, and is analyzed following a two-step

procedure. In the first step the trajectory is projected onto diffusive normal-modes of

a coarse-grained Langevin representation, the LE4PD model. This step separates the

dynamics into quasi-linearly independent coordinates and allows for the identification

of local fluctuations as a function of their length scale: large, cooperative fluctuations

manifest themselves mostly in low-index LE4PD modes, but important exceptions

naturally emerge even in this study. Normal-mode LE4PD free-energy surfaces can be

constructed, which describe the energy landscape connected with the mode-dependent

fluctuations. The kinetic pathways of the mode-dependent fluctuations are analyzed

by Markov State Modeling, which provides the transition time for the crossing of the

energy barrier for the LE4PD mode-dependent fluctuations.

To analyze the kinetics of transitions between energy wells in the free-energy

surfaces of the slow, high-amplitude LE4PD modes we identify the proper timescale

of transition between two energy minima using the committor function. Since we

seek to analyze the slow kinetic processes predicted by the MSM, we focus mostly on

the dynamic process modeled by the first non-trivial eigenmode of the MSM, which

is described by the spectrum of the second right eigenvector of the transition matrix,

ψ2, and its corresponding timescale, t2 = −τ/[ln(λ
[MSM ]
2 )]. For low-amplitude, local

modes, where the energy barriers are not high and the dynamics is not Markovian,

we adopt instead a rescaling of the local friction in agreement with Kramers theory.

This method of combining the LE4PD normal modes to predict the dynamics

over a specific length scale, measured using the local mode length scale (LML), and

the MSM to predict the kinetics (timescales) of each LE4PD mode is applied to a 1-
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µs, equilibrium simulation of the protein ubiquitin, a small, globular protein involved

in the post-translational modification of many eukaryotic proteins [52, 64, 75]. The

LE4PD-MSM analysis reveals slow dynamics in three flexible regions of ubiquitin:

the C-terminal tail, the Lys11 loop, and the 50 s loop (residues 51-63); these three

regions all play prominent rôles in ubiquitination pathways, especially in binding by

ubiquitin-binding proteins.[52, 59, 63, 64] We find that a single, slow mode is dedicated

to describing fluctuations in the 50 s loop while multiple slow LE4PD modes describe

motions in the C-terminal tail and the Lys11 loop. This disparity could potentially

be due to the small number of proteins that bind to the 50 s loop (which all contain

the same ubiquitin-recognition motif, the A20 zinc finger domain[64]) while many

proteins bind to the Lys11 loop and C-terminal tail, since these two regions are

involved in both ubiquitin recognition and covalent binding to proteins targeted for

degradation.[52, 75] Finally, the minimum free-energy pathways along the FES for the

slow LE4PD modes reproduce the fluctuations predicted by the barrier-free LE4PD

equation of motion, which indicates that the motion between wells of the FES of the

LE4PD modes represent well the equilibrium fluctuations of ubiquitin, with the MSM

analysis giving an accurate estimate of the timescales of those fluctuations.

Because MD atomistic simulations of proteins display dynamics that is coupled

on multiple length scales their interpretation is not easy. The LE4PD method of

characterizing mode-dependent fluctuations, starting from atomistic MD simulations,

may have some advantages with respect to other approaches commonly used, such

as Principal Component Analysis (PCA) or time Independent Component Analysis

(tICA). The LE4PD conveniently separates the complex dynamics of a protein into

linearly independent normal modes, which can be analyzed individually. With

respect to PCA and tICA, LE4PD brings a straightforward physical interpretation
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to the dynamics measured, and directly connects the results of the analysis to the

primary and secondary structures of the protein, and to the free-energy barriers and

hydrodynamics, which affect protein fluctuations.

Furthermore, we have shown here how the LE4PD can be conveniently used as

a first step in a MSM analysis. Although the MSM analysis can be mathematically

performed in multiple dimensions, it is useful to identify a set of coordinates allowing

for a reduction of the multidimensional space into a projected, low-dimensional space

where the free-energy landscape is represented as a function of two coordinates. The

coordinates may be selected to be the first two principal components or time-lagged

independent components, which are the two collective coordinates that maximize the

variance and maximize the autocorrelation time, respectively. However, selecting

the first two coordinates involves tracing the dynamics along a pair of collective

coordinates that have different timescales. In the LE4PD case, one can perform an

analysis of the dynamics along a single coordinate at a time, characterized by one

time- and one length-scale, which is one of the main advantages of decomposing the

protein’s dynamics into a set of normal modes.

In conclusion, the mode-dependent LE4PD description presented here appears

to be an ideal framework for the analysis of protein dynamics through MSM because

it decouples the dynamics into linearly independent modes, thus representing these

modes in a low dimensional space that can be easily visualized and conveniently

analyzed by MSM. The decomposition in LE4PD normal modes naturally separates

the dynamics in independent contributions, where fluctuations occur at a given length

scale, while the MSM analysis provides a precise evaluation of the timescale and the

kinetic pathway associated with the local fluctuations. Finally, this mode-dependent

MSM analysis can reconstruct the dynamics of the specific protein by an inverse
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transformation, ~li(t) =
∑

aQi,a
~ξa(t), to reveal the real-space dynamics by LE4PD

modes, as shown in Figure 9.

Bridge

This chapter has interfaced the LE4PD and MSM techniques to give a precise

description of the timescales, lengthscales, amplitudes, and localization of the slowest

LE4PD modes calculated from an MD simulation of the protein ubiquitin. Since,

at least for highly metastable systems, the second right eigenfunction of the MSM

transitions matrix, ψ2, approximates the committor function,[96] inspection of ψ2 on

the free-energy surfaces of the slow LE4PD modes gives an approximate location of

the relevant barrier to the dynamics described by that LE4PD mode. Furthermore,

since the spectrum of ψ2 determines what the slowest process from T (τ) is,[33, 34, 99]

by aligning the highest and lowest projections of ψ2 into the energetic minima of the

LE4PD free-energy surfaces, we guarantee that ψ2 describes transitions between these

minima.

Thus, the MSM is used to 1) define the slowest process on the LE4PD surface

and 2) give that process’ kinetics. Since the MSM estimates the eigenfunctions of

T (τ) using a non-linear approximation,[30, 50] it is able to account for barriers on

the surface in a more precise manner than the MAD approach, which still uses the

linear transformation of the eigenvectors from the LE4PD LU matrix, but rescales the

friction coefficient to give an approximate first-order correction to the barriers that are

removed by performing the analysis in a coarse-grained set of coordinates.[38, 45, 46]

While the timescales predicted by the MSM for the slow LE4PD modes of ubiquitin

tend to be slightly slower than those given by the MAD approach, the results are in
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qualitative agreement, in that both methods agree on the relative order of the slowest

modes.

The major biological result from this study is the extraction of the slow dynamics

in the 50 s loop of ubiquitin, a region of the protein previously shown to unfold first

in a long folding-unfolding simulation of the protein performed by the D. E. Shaw

group.[16] This observation tentatively indicates that the slow LE4PD modes can

identify the ‘leading fluctuations’ for the unfolding of proteins and that these modes

could be good collective coordinates for performing advanced sampling techniques

such as metadynamics [24] to explore more thoroughly the complete conformational

space of proteins. This point is elucidated further in chapter V.

The eigenspectrum of the slow processes from the MSM transition matrix T (τ)

can also be used to coarse grain a free-energy surface into the set of metastable

states where the system residues for long periods of time before transitioning to

another state.[100, 101] In the next chapter, an MSM is applied to a reduced free-

energy surface for the simplest single-stranded nucleic acid system, deoxyadenine

dinucleotide (dApdA), to extract which conformations are important to a calculation

of the system’s circular dichroism (CD) spectrum. We also find that taking a single

representative structure from each metastable state, the average structure within

each state, the CD spectrum calculated using just the average structures is a good

approximation to the CD using all the structures from the underlying simulation.
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CHAPTER III

AN APPLICATION OF MARKOV STATE MODELS TO ELUCIDATE THE

CONFORMATIONAL DIVERSITY OF DEOXYADENINE DINUCLEOTIDE

From Beyerle, E.R.; Dinpajooh, M.; Ji, H.; von Hippel, P.; Marcus, A.H.;

and Guenza, M.G. Dinucleotides as simple models of the base stacking-unstacking

component of DNA ‘breathing’ mechanisms. NAR, 49, (2021), 1872 - 1885.

Deoxyriboadenine dinucleotide monophosphate as a simple model for structural and

dynamic aspects of DNA ‘breathing’ in duplex DNA

Introduction

Nucleic acids undergo a variety of local structural fluctuations in discharging their

biological functions. These fluctuations (collectively called ‘breathing’) include inter-

strand base-pair opening and closing, intra-strand base stacking and unstacking and

conformational rearrangements of the sugar-phosphate backbone.[6, 102–106] Such

thermally activated DNA ‘breathing’ fluctuations are thought to represent primary

steps in the process by which genome regulatory proteins gain access to the double-

stranded (ds) DNA interior.

Understanding thermally driven DNA fluctuations may provide a central key

to structural and dynamic interpretation of the interactions between functional and

regulatory proteins and their ss- and dsDNA targets during gene expression. However,

many of these ‘breathing’ processes, if considered only in duplex DNA, are likely to

represent a small fraction of the population of conformations present in duplex DNA

at physiological temperatures because of ‘structural cooperativity’ and may thus be

hard to resolve even by sensitive spectroscopic and computational techniques. One
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way of reducing this problem is to focus on elementary systems, such as dinucleotides.

These can be considered to represent the ‘fundamental fragments’ of duplex DNA,

but also provide a milieu in which the only relevant breathing process is likely to be

base stacking and unstacking. As a consequence, these processes can be studied

in isolation in these small model systems. In addition, because of the absence

of constraints imposed by neighboring and base-paired nucleotides, these stacking-

unstacking fluctuations are likely to be present at higher concentrations than in larger

duplex DNA molecules and thus also more amenable to study. These considerations

have motivated us to reinvestigate the structure and dynamics of dApdA as a model

dinucleotide fragment of duplex DNA using modern computational and molecular

modeling techniques.

The relative populations of stacked and unstacked bases present in DNA

molecules in solution under a variety of environmental conditions have traditionally

been studied by absorbance and circular dichroism (CD) experiments. [3, 107]

Initial studies of DNA stacking-unstacking fluctuations focused on dinucleotides in

solution.[1, 108–113] Dinucleotides, such as dApdA, have been considered to be

useful models for some of the basic interactions that control and stabilize local

base conformations of dsDNA because – as indicated above – stacking interactions

can be examined in these systems while avoiding the complicating features of ion

condensation, cooperative stacking and inter-base hydrogen-bonding that are also

present and involved in controlling the conformational behavior of long duplex

DNA. In addition, homo-dinucleotides, such as dApdA, are more useful than hetero-

dinucleotides as model systems for probing conformational rearrangements in these

structures because the CD signals from homo-dinucleotides are strengthened by the

presence of degenerate exciton coupling effects. Furthermore, dinucleotides may also
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serve as partial models for deciphering the structure and energetics of some of the

more complex elements of biologically important DNA structure, such as the single-

stranded (ss) DNA—dsDNA forks and junctions that are essential intermediates in

the pathways by which proteins that control genome expression find and interact with

their target sites, but in which cooperative interactions and hydrogen bonds between

strands are not significantly present.

Base and base-pair interaction free energies have typically been estimated from

thermal denaturation studies of DNA oligonucleotides,[114, 115] which showed that

among the contributions to the overall interaction free energies of these systems, the

free energy of hydrogen bonding between complementary bases and the energetics of

configurational and solvent entropy provide only small contributions to the stability

of the base paired structures.14 Furthermore, base-base stacking, which is the main

(enthalpic) contributor to the stability of dinucleotide conformations, appears also

to be the dominant component of the overall stability of more complex DNA

structures.[109, 116, 117]

Early studies of dApdA by Schellman, et al. [107, 109, 111–113, 116] suggested

that the CD spectrum of this dinucleotide in aqueous salt solutions could be

represented as the weighted sum of two conformations, one ‘stacked’ and the

other ‘unstacked’, with the stacked form likely resembling (in terms of base-base

overlap and helical pitch) the Watson- Crick B-form characteristic of duplex DNA.

Furthermore, these workers showed that the changes induced in the CD spectrum

of this dinucleotide by increasing concentrations of monovalent salt (NaCl) could be

attributed to shifts in the relative populations of these same two conformations.

However, these interpretations clearly represented over-simplifications of the

actual situation, since we now know that the CD spectrum of a given molecule
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of this sort must comprise a sum over myriad microstate configurations that exist

simultaneously in solution at equilibrium. As a consequence of this complex situation,

CD spectra cannot be ‘inverted’ to determine the conformations that contribute

uniquely to the overall spectrum. We here address this problem by means of

extensive Molecular Dynamics (MD) simulations and a Markov State Model (MSM)

analysis,[4, 49, 118] thus providing information on the major conformations that

participate in the stacking-unstacking equilibria of dApdA, and whose excitonic

transitions contribute to the overall CD spectrum.

To this end we performed a set of 2 µs MD simulations of the dApdA

dinucleotide in aqueous solvent at increasing monovalent salt concentrations,

using the same conditions employed for the initial spectroscopic measurements

on dApdA dinucleotide.15 From our MD trajectories, each consisting of ∼ 107

microstate configurations, we calculated the CD spectrum by averaging together

the contributions from each MD-generated conformation using the standard method

[110, 111, 119, 120] together with an extended dipole model (EDM).[120] The initial

predictions generated by this method are in good general agreement with experimental

spectra previously measured by others.

We next carried out an MSM analysis of our MD trajectories and identified

five kinetically stable regions in the free energy landscape, which we refer to

as ‘macrostates.’ Each macrostate contains a ‘family’ of conformationally-related

microstates, which rapidly interconvert. Transitions between macrostates are

kinetically uncoupled, because they are separated by high energy barriers and thus

follow Markovian statistics.[49] The ensemble of macrostates provides a structural

basis that can be used to interpret the experimental spectroscopic measurements. By

combining MSM analyses with transition path theory [81, 121–124] we investigated
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the kinetic pathways for base unstacking, thus revealing the roles that base ‘flipping’

appears to play in breathing fluctuations at the dinucleotide level. In addition, we

were able to identify one average configuration for each macrostate that served,

with sufficient accuracy, to represent the averaged properties of the macrostate.

This simplified, five- configuration model retains the important features of the CD

spectrum calculated using the full MD statistics and provides a useful minimalistic

ensemble for the calculation of CD and potentially also other optical spectra obtained

using more sophisticated experimental techniques.

Of the five macrostates, three are statistically the most populated, with the

CD spectrum being largely determined as the sum of contributions from only two

configurational states, consistent with early experimental observations.[109] While

the original studies interpreted those spectra in terms of a single stacked and

a single unstacked configuration of dApdA, our analysis shows that, of the two

conformational states that contribute significantly to the features of the CD spectra,

the most populated corresponds to an ensemble of hybrid dinucleotide conformations

that include one base that has flipped into a syn conformation, which in dsDNA

results in Hoogsteen base-pairing, [125–132] while the relatively less populated state

corresponds to an ensemble in which both bases of the dinucleotide remain in the

canonical anti conformation, compatible with right-handed B form (Watson-Crick)

base-pairing in dsDNA. The third highly populated dApdA conformation, which is

partially unstacked and contains one syn base, does not contribute significantly to the

CD signal. However, these results do indicate that conformations compatible with

the Hoogsten structure could well play an important role in some types of breathing

fluctuations—at least at the dinucleotide level – thus confirming its possible relevance
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to biologically important breathing fluctuations in larger DNA molecules as well.[125–

132]

Our studies of the orientations and distributions of counterions in aqueous

solutions of dApdA have revealed an abrupt structural transition in the positioning

and distribution of these ions around the dinucleotide at a NaCl concentration slightly

above 1 M, indicating that counterion concentrations are also involved in controlling

breathing fluctuations at the dinucleotide level,[117, 133] and thus likely to play a role

in the ‘breathing’ of larger DNA molecules as well. We show that the above abrupt

salt-concentration-dependent transition is correlated with a shift in the equilibria

between the three most populated macrostates of the dApdA dinucleotide, and is

consistent with early thermal studies of DNA stability at increasing monovalent

salt concentration.[134–136] We have shown that this transition is not seen in MD

simulations of the isolated phosphate anion in ionic solutions, suggesting that this

salt-dependent transition depends also on other (uncharged) components of the

dinucleotide structure.

Material and Methods

Molecular dynamics (MD) simulations.

MD simulations of the dApdA dinucleotide monophosphate molecule in aqueous

solution were performed at increasing salt concentrations ([NaCl]= 0.1, 0.5, 1.0, 1.05,

1.2 and 1.5 M) in the NPT ensemble using the GROMACS software program.[137]

The length of the simulation box was allowed to fluctuate, so that the average

distance between the box boundary and the dApdA molecule was approximately

20 Å. The initial configuration for the dApdA dinucleotide was selected as the B-

form conformation, for which we obtained atomic coordinates from the ambertools
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software package (http://casegroup.rutgers.edu/). Simulations were performed with

the Amber03 force-field [138] and the TIP3P water model [139] to model the

dApdA molecule and the water component of the solvent, respectively. While these

models were not specifically parameterized to achieve accurate CD calculations of

the dApdA dinucleotide, they have been used successfully for nucleic acid systems

in the past and represent present state-of-the-art for simulations of DNA in solution.

A sufficient number of sodium and chloride ions were included to achieve the target

salt concentration. The energy of the solvated structure was minimized using the

Steepest Descent algorithm for 500 steps. The system was then heated to 300 K and

equilibrated in the isothermal- isobaric (NPT) ensemble using a time step of 2 fs over

a period between 50 - 100 ns.

Production runs at each salt concentration were performed for a total duration of

2 µs in the NPT ensemble in order to ensure sufficient sampling of the conformational

landscape. These simulations used the stochastic velocity-rescaling thermostat [140]

with a time constant of 0.2 ps, and the Parrinello-Rahman barostat (using an isotropic

pressure coupling time constant of 1.0 ps). We implemented the Leap-Frog algorithm

to integrate Newton’s equations of motion using the LINCS constraints fourth order

in the expansion of the constraint coupling matrix, which included one iteration to

correct for rotational lengthening. [141] We set the time step to 2 fs, and truncated

the Lennard-Jones interactions using a cutoff distance of 10.0 Å. We additionally

used a particle mesh Ewald sum to handle long-range electrostatic interactions with

a real space cutoff of 10.0 Å and a grid spacing of 1.0 Å. The Verlet neighbor list

algorithm was applied with a frequency of 10 MD steps to enhance the computational

speed. Trajectory frames were stored every 0.2 ps. In Figure 10, we show a sample
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frame from one of our MD trajectories. At each salt concentration we included ∼ 10

million such frames in our CD calculations for the dApdA system.

FIGURE 10. A sample configuration frame taken from an MD simulation run of
dApdA dinucleotide monophosphate in TIP3P water with [NaCl] = 0.1 M. Sodium
ions are shown as yellow spheres, and chloride ions as green spheres. The atoms of
the dApdA and water are colored according to CPK rules, except for carbon, which
is colored light blue.

Theoretical modeling of circular dichroism (CD).

The CD spectra for the dApdA dinucleotide monophosphate were calculated from

the molecular coordinates of each simulation frame by summing over the contributions

from each individual k electronic transition, according to ∆ε(ν) =
ntot∑
k=1

∆ε(νk). For

the kth electronic transition, we approximate its contribution to the CD spectral line

shape as a Gaussian function ∆ε(νk) = ∆εk exp
{
−
[
(νk − νk)2 /2σ2

k

]}
, where σk is the

Gaussian standard deviation, νk (= Ek/h) is the mean transition frequency and ∆εk =

Rkνk/A
√
σk is the magnitude. A is a numerical constant; more details regarding the
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theory behind the CD calculations are given in Appendix C . For a given transition

k, the rotational strength, Rk, depends on the relative orientation of the monomer

electric dipole transition moments, and is calculated from the diagonalization of the

Hamiltonian that models the delocalized electronic states of the dApdA dinucleotide

as a function of base stacking conformation. The Hamiltonian was formalized using

the extended-dipole model (EDM). The parameters adopted in the EDM model are

discussed in Appendix C.

Markov State Model analysis.

The MD trajectories were analyzed using the Markov state model (MSM)

PyEMMA software program.[85] Briefly, we used the k-means++ algorithm[142, 143]

to construct a kinetically-relevant, balanced clustering of the trajectories (using the

Euclidean criterion) by partitioning the 107 conformations into 100 initial microstates.

A transition rate matrix was constructed for these microstates and then diagonalized

into eigenvalues and eigenvectors. From the eigen-spectra of the transition

probability matrix, we constructed five macrostates by implementing a minimum error

propagation version of the Perron-cluster cluster analysis (PCCA+). We justified our

choice for these five macrostates by considering the related conformational landscape

and the implied interconversion time scales (additional details are available in the

Supplementary information of [66]). Rapidly interconverting molecular conformations

were assigned to the same macrostate, while slowly interconverting conformations,

which are separated by large barriers, occur between conformations that lie

within different macrostates. By identifying and separating slowly interconverting

conformations from rapidly interconverting ones, the MSM ensures that the slow

processes obey Markovian statistics. To sample slow transitions, we adopted a lag-
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time of 500 ps, and confirmed that under these conditions Markovian behavior was

satisfied by checking that the Chapman-Kolmogorov condition applies[99, 144, 145]

(see Fig. S5 of the SI). We then calculated the CD spectrum for the configurations

of dApdA that are contained in each macrostate.

Results

Structural parameters of dinucleotides.

As pointed out above, it has long been known that under physiological salt

conditions the adjacent bases of each strand of duplex DNA in aqueous solution

adopt helical conformations close to the Watson-Crick B-form, with an average inter-

base separation ∼ 3.5 Å and a relative twist angle ∼ 36◦ (see Figure 11 for parameter

definitions). Spectroscopic studies of small oligonucleotides in solution have examined

the various contributions to base stacking stability in duplex and ssDNA – i.e., the

effects of hydrophobic bonding, backbone interactions, inter-base hydrogen bonding

and cooperativity.[107, 116]

FIGURE 11. Structural coordinates for the dApdA dinucleotide monophosphate used
in this chapter. (A) An atomic scale structure is shown with interbase roll angles β3′

and β5′ . (B) Virtual atoms are shown with blue and red spheres positioned within
the planes of the 5′ and 3′ bases, respectively, with inter-base separation R, tilt angles
α3′ and α5′ , and dihedral twist φ (see [66] for further details).
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Free energy landscapes as a function of structural parameters and varying salt

concentration.

Prior studies of the dApdA dinucleotide monophosphate used CD spectroscopy to

investigate changes in base conformation as a function of salt concentration, in order

to elucidate the roles of the solvent ions in controlling dinucleotide conformation.[107,

116][107, 116] These studies concluded that the predominant conformation for these

truncated ssDNA molecules at physiological salt conditions is a stacked form close

to the right-handed Watson-Crick B-form conformation, and that increasing the salt

concentration appeared to destabilize this B-form conformation. As we discuss further

below, the results of our analyses suggest that the dApdA system is, in fact, more

accurately described as an equilibrium distribution of primarily three distinct stacked

conformations.

We performed MD simulations of dApdA in aqueous solution at increasing

salt concentrations with [NaCl] = 0.1, 0.5, 1.0, 1.05, 1.2 and 1.5 M, as described

in the Materials and Methods (MM) section (see Figure 10 for a snapshot of

a sample configuration from the 0.1 M simulation). For each 2-µs simulation

run, we constructed a histogram representing the probability P (R, φ) of finding a

configuration at a given value of the structural parameters R and φ and the related

free energy values, G (R, φ) = −kBT ln (R, φ) (see also Figure S4, which reports the

parameters adopted to calculate the FES and perform the MSM analysis, and related

discussion in the SI). An example of such a free energy contour diagram plot is shown

in Figure 12A. To ensure that the FES represents the system at equilibrium, we show,

in Fig. S8 of the SI, the time autocorrelation function of the fluctuations in inter-base

separation. Because the function is found to decay in ∼ 10 ns, which compares well

with the 2 µs of simulation time, the system can be considered to be in equilibrium.
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Two additional sets of orientational coordinates per base – the base tilt angles, α3′

and α5′ , and the roll angles, β3′ and β3′ – are needed to fully specify the dinucleotide

conformation. However, our results indicate that the positions of the local minima

in the FES depend largely on the inter-base separation R and the dihedral twist

angle φ and are less sensitive to changes in the tilt and roll angles. While all of the

above structural parameters are specified in our calculations of the CD spectra and of

structural and dynamical distribution functions, the visual representation of the Free

Energy Surface (FES) is conveniently reported as a function of R and φ. The FES

G (R, φ) of the dApdA dinucleotide shown in Fig. 3A applies to [NaCl] = 0.1 M, which

is close to the monovalent salt concentration under physiological conditions. Using

the same procedure, we also determined G (R, φ) at increasing salt concentrations

(surfaces not shown). To test the validity of the FESs shown in Fig. 3A, we used

the molecular configurations obtained from our 2-µs MD trajectories to calculate the

CD spectra for dApdA. The results, as a function of salt concentration and using the

procedures described in the MM and Appendix C, are shown in Figure 12B.

For the lowest salt concentration, [NaCl] = 0.1 M, we compared our calculations

to the experimental CD spectrum of the dApdA dinucleotide obtained under these

same conditions (see Figure 12B).[1] We obtained good agreement between the

experimental and calculated CD in the long wavelength region of the spectrum

(240 – 300 nm). In principle one could achieve a quantitative agreement with the

experimental spectrum by optimizing some parameters in the calculation of the

theoretical spectra, and thus obtain a better fit of the theoretical predictions to the

experimental spectra. However, given the number of possible adjustable parameters,

such a procedure would not provide any new information. We prefer, instead,

to independently set the parameters in our calculations and then to discuss their
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predictions. We note that the agreement is less favorable in the short wavelength

region (200 – 240 nm) of the spectrum, where the peak features are slightly blue-

shifted and exhibit smaller amplitudes than the experiment. This latter disagreement

is not surprising, given that the CD spectra at shorter wavelengths are strongly

perturbed by the high density of nearly degenerate electronic states, which makes the

theoretical methods we employ in our calculations less accurate in this wavelength

range.

In general, we find that the positions of the local minima within the free energy

surfaces do not change with salt concentration, while their relative stabilities and

equilibrium distributions do depend on this variable. The FES in Figure 12A

shows that the dApdA dinucleotide exists primarily as a mixture of the two chiral

conformations with opposite handedness (φ = 40◦ and -80◦) and nearly stacked inter-

base separation R = 3.8 Å, together with an achiral conformation that shows no

stacking of the bases (φ = 0◦) and a significantly larger inter-base separation R =

4.7 Å. Henceforth, we will designate as ‘chiral’ a conformation that exhibits chiral

stacking of the bases, and as ‘achiral’ conformations with no stacking of the bases,

even though some components of the molecule, like the sugar, do of course retain

their ‘chemical chirality.’

To study the effects of increasing salt concentration on the population of

the chiral and achiral conformational states, we report in Figure 12C the local

probabilities calculated as the sum of the states contained within the areas of the

FES defined by the red and white squares (panel A), respectively, for the chiral state

with coordinates (3.8 Å, 40◦) and for the achiral state with coordinates (4.7 Å, 0◦)

as a function of the salt concentration. We note that as the salt concentration is

increased to [NaCl] = 0.5 M, the local probability of the chiral state with coordinates
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(3.8 Å, 40◦) increases, while the weight of the achiral state slightly decreases. A

further increase of the salt concentration to [NaCl] ∼ 1 M begins to destabilize both

of the stacked conformations in favor of the unstacked one, with the weight of the

achiral state with coordinates (4.7 Å, 0◦) increasing strongly. We observe a similar

dependence on the salt concentration for the CD spectrum, which depends on the

distribution of stacked bases. In Figure 12D, we plot the difference CD spectrum for

incremental changes of the salt concentration. For incremental increases of the salt

concentration below [NaCl] = 1 M (0.1 → 0.5 M, 0.5 → 1.0 M), the difference CD

spectrum shows little variation. However, for the incremental increase of 1.0 → 1.5

M, the difference CD spectrum undergoes a pronounced change. This change is also

reflected by the value of the peak-to-peak amplitude of the difference CD spectrum

(i.e., the difference between the positive peak value at 245 nm and the negative

peak value at 270 nm), which is shown in the inset of Figure 12D. Note that these

findings are in agreement with the salt-dependent changes in the CD amplitude of

this dinucleotide reported in the work of Johnson and Schleich.[116]

The above findings are in qualitative agreement with experiments involving

the thermal melting of duplex DNA structures in NaCl, where increases in the

concentration of monovalent ions tend to first stabilize the stacked conformation,

resulting in an increase in the melting temperature. Then, at higher salt concentration

(around [NaCl] = 1 M) this trend reverses, and the further addition of counterions

slightly decreases the stability of the dsDNA conformation.[134–136] For duplex DNA,

this behavior is generally explained by assuming that an increase in salt concentration

facilitates the screening of the negative charges situated on the phosphates in the

DNA backbone, rendering the backbone more stable. However, at monovalent

salt concentrations around 1 M, the concentration of ions in solutions becomes
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equivalent to the concentration of counterions closely bound to the phosphate

backbone under ion condensation conditions. As a consequence, additional increases

in salt concentration cannot further stabilize the double helix and other mechanisms

(presumably ‘Hofmeister effects’ [117, 146–149]) come into play. Mechanisms

involving the stabilization of long duplex DNA molecules by screening the repulsion

between backbone phosphates cannot apply to dApdA, since only one phosphate is

present. However, the counterions can alter the relative stabilities of the various

conformations available to the dApdA dinucleotide by effectively neutralizing the

negative charge of the single phosphate.

Distributions of ions and water molecules around dinucleotides.

To examine the roles of salt concentration on the observed structural transition

we used the results of our MD simulations to calculate the distributions of the ions

and water molecules of the solvent environment in the immediate vicinity of dApdA.

This study provides physical insights into the origins of the changes in equilibrium

base stacking conformations of this dinucleotide with increasing salt concentration.

[1, 6, 102–104] The radial distribution function (RDF) of species j around species i is

defined:

gi−−j =
〈ρj(r)〉
〈ρj〉

(3.1)

Figures 13A and 13B show the RDFs of the dApdA system at the lowest and

highest salt concentrations we examined; i.e., [NaCl] = 0.1 and 1.5 M, respectively.

The position-dependent oscillations of the RDFs reflect the local solvation shells of the

water hydrogen atoms and of the ionic species relative to the central phosphate. At

salt concentrations close to physiological conditions, ([NaCl] = 0.1 M Figure 13A), the

phosphate is coordinated with concentric ion shells, with the water hydrogen atoms
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forming interstitial layers between the shells. The RDF for water hydrogen atoms

appears to be independent of salt concentration, with its first peak centered at r =

2.8 Å and its second peak at r = 4.2 Å. The RDFs for sodium and chloride ions, on

the other hand, oscillate at half the spatial frequency of that of the water hydrogen

atoms. The RDF for sodium ions has its first peak at r = 3.6 Å, which coincides with

a trough for the water hydrogen atoms at this distance. Similarly, a trough for sodium

ions occurs at r = 4.2 Å, which coincides with the second hydration shell for the water

hydrogen atoms. The first ion shell for chloride ions occurs at r = 5.8 Å, which is the

same position as the second ion shell for sodium ions. In general, the nth chloride

ion shell occurs at approximately the same position as the (n+1)th sodium ion shell,

indicating that these ion shells have mixed compositions. As shown in Figure 13B,

the relatively well-defined boundaries between successive ion shells seen at the lowest

salt concentrations become diffuse at the highest salt concentration tested ([NaCl] =

1.5 M).

Our observation of a well-ordered structure of successive ion shells at low salt

concentration is largely consistent with simple models of counterion condensation,

which is an important contributing factor to the stability of larger nucleic acid

molecules.[150, 151] Figures 3.1C and 3.1D show, respectively, the RDFs of sodium

and chloride ions, each as a function of salt concentration. For both ions, the RDFs

appear to change little over salt concentrations between [NaCl] = 0.1 – 1.0 M, yet

exhibit an abrupt loss of ion shell structure at salt concentrations slightly greater

than 1.0 M.

To illuminate the role(s) of the adenine bases in this situation, we performed a set

of 400 ns simulations of H2PO−4 at increasing monovalent salt concentration ([NaCl]

= 0.1, 0.5, 1.0 and 1.5 M), and studied the ion distributions around a singly-charged
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phosphate ion, H2PO−4 , in aqueous solution (see Figures. 13E and 13F). In H2PO−4 we

observed an alternating structure of positive and negative ion shells consistent with

simple models of counterion condensation. However, we found no signature of the

abrupt disruption of the ion shell structure at salt concentrations greater than 1.0 M

that was observed with the dApdA dinucleotide. We next turned our attention to a

closer examination of the solvent orientation around dApdA. As mentioned previously,

the structure of the water, which is reported as the position-dependent RDF of the

water hydrogen atoms relative to P, gP−−H(r), does not change significantly with salt

concentration (see Figures 3.1A and 3.1B). More detailed behavior is observed in

the position-dependent orientational distribution function (ODF) of the water dipole

moment as a function of its separation from the central P atom. The ODF is defined

as the average cosine, 〈cos(θ)〉, of the angle θ that subtends the permanent dipole

moment of the water molecule, ~µH2O, and the vector connecting the P atom to the

water O atom, ~POH2O, as shown in Figures 14A.

Figure 14B shows the ODFs of water relative to the central phosphate of dApdA

as a function of salt concentration. It also shows the RDF of the water hydrogen

atoms. The position dependence of the ODFs shown in Fig. 5B exhibits damped

oscillations that vary across successive hydration layers for all salt concentrations,

similar to the behavior observed for the ion shell structures shown in Fig. 4. The

ODFs show a sharply pronounced feature centered at r = 2.8 Å, which is coincident

with the first peak of the RDF. The shapes of the underlying distributions of the

angle θ within a narrow range of distances r ensures that 〈cos(θ)〉 ≈ cos (〈θ〉) (orange

points in Figure 14B). The distributions of the angle θ for a given hydration shell,

with each distribution corresponding to one orange point in Figure 14B, are reported

in Fig. S7 of the SI. Thus, the narrow feature at r = 2.8 Å has an approximate
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peak value of cos (〈θ〉) = –0.8, which indicates that the water H atoms within this

first hydration shell are highly oriented with dipole moment ~µH2O directed toward

the central P. Furthermore, the presence of the broadened shoulder centered near the

second hydration layer (at r = 4.2 Å), with peak value approximately cos (〈θ〉) = –

0.6, indicates the preferential orientation of the O-H bond vectors of water molecules

within the second hydration shell towards the oxygens of water molecules within the

first hydration shell. We thus see that hydrogen bonding interactions between water

molecules of the first and second hydration shells are stronger than the Coulomb

interaction between the negatively charged phosphate and the water dipole moments

of the second hydration shell. We further note that the distribution of angles θ

over a given range of distances r broadens nonuniformly as the distance from the

central P increases, indicating the presence of hydrogen bonding between successive

hydration layers and the ensuing loss of orientational correlation between the water

dipoles and the central P. At the separation r = 5 Å, the values of the ODFs are

approximately zero, indicating the absence of orientational alignment. A recurrence

of partial orientational order occurs at separation r = 6 Å, which appears to coincide

approximately with the position of the first ion shell of the Cl- ions.

We note that the ODF exhibits a weak, but clear, dependence on the salt

concentration. For the case of [NaCl] = 0.1 M, the sharp feature at r = 2.8 Å

indicates a pronounced orientation, which becomes slightly less ordered for [NaCl] =

0.5 M. At the higher salt concentrations of [NaCl] = 1.0 M and 1.5 M, the orientation

of the water dipole moments become slightly more ordered. The changes in the

ODF of the water molecules as a function of increasing ion concentration are small.

Rather, the leading factor in determining the stabilities of the conformations of the

dinucleotide structure in solution appears to involve the distribution of monovalent
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ions, and the modification of this distribution with increasing ion concentrations (see

Figures 13A – D). Water, however, does appear to play a role through its orientation,

which is both distance and weakly salt- concentration-dependent. Interestingly, this

study also shows that the stabilization of dApdA stacking by increasing counterion

concentrations, and the observed sharp transition of the ion structure around 1 M

are dependent on the presence of the bases of the dApdA dinucleotide, and do not

occur when the ionized phosphate molecule is present alone (Figures 13E – F). The

consistency of the observed trend with the effects of increasing salt concentration on

the experimental melting curves of DNA suggests that this ion-related base stacking

mechanism of DNA stabilization is already present and operational, even at the level

of the isolated dinucleotide.

Markov state model analysis of the free energy landscapes of the dApdA dinucleotide

and comparison with CD spectral analysis.

The theoretical representation of the CD spectrum for a flexible molecule

in solution is the summation of contributions from the myriad microscopic

conformational states (i.e. microstates) that exist at equilibrium. Intuitively, we

expect the dApdA dinucleotide to fluctuate between various ‘open’ and ‘closed’ base

conformations, which in turn are stabilized (or destabilized) by the surrounding

hydration and ion shells. We first determined the CD spectrum by summing over

equally weighted contributions from the 10 million microstates that are sampled

from each of our MD simulations (see Figure 12B). Although the above ‘brute-

force’ approach is straightforward, it suffers from two significant limitations: (i) it

provides little insight into the interpretation of CD in terms of specific molecular

conformations; and (ii) it becomes computationally inefficient if one adopts more
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sophisticated quantum chemical models to calculate the CD spectrum beyond the

extended dipole model used here, because one would need to perform advanced

calculations for each of the 10 million microstates. In reality, only a relatively small

subset of the total number of possible conformational states is expected to contribute

significantly to the measured CD spectrum. The specific states that dominate the

CD are the stacked and chiral conformations of the dinucleotide, for which both the

electronic coupling between monomer electric dipole transition moments (or EDTMs)

and the rotational strengths resulting from these couplings are significant (see SI).

Conformational states that are unstacked, in addition to those that are stacked and

essentially achiral, contribute much less to the CD spectrum.

To determine the dApdA configurations that are most relevant for the

interpretation of the CD spectra, we used a Markov state model (MSM) analysis[4, 49,

118] to subdivide the 10 million microstates obtained from our MD simulations into

a relatively small number (five) of ‘macrostates’, each of which is associated with a

distinctive region of the free energy landscape (see Figure 15A). Each macrostate

represents a collection of conformationally related states, or ‘microstates’, which

rapidly interconvert during the simulation, while slow transitions between macrostates

require crossing large energy barriers. Starting from the MSM analysis, we calculated

the CD spectrum as the sum of those, unequally weighted, macrostates.

Thus, the kinetic processes that occur in the simulations are partitioned between

those that occur faster than the ‘lag time’ (in this study τ = 500 ps) and those

that occur more slowly than this time scale. Transitions between conformations

within a given macrostate occur frequently and are non-Markovian, while transitions

between conformations belonging to different macrostates occur less frequently and

are Markovian. The ‘lag time’ is defined as the time that fulfills the above-stated
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condition of Markovian transitions between conformations belonging to different

macrostates (for details see SI and, in particular, Fig. S5, which tests the Chapman-

Kolmogorov condition, thus ensuring the Markovian nature of our partitioning of the

FES into five states. Table S3 shows that the MSM analysis is insensitive to the

choice of the number of microstates).

To further reduce the computational requirements for the calculation of the CD

spectrum, we identified one averaged structure, together with its relative weight, for

each of the five key macrostates that are relevant to the CD observable. We found

that the total CD spectrum can be accurately represented by the weighted sum of

the contributions from these five averaged structures (see Figs. S6 A-F in the SI),

which could be used for modeling of the CD spectrum using more advanced quantum

chemical models.

In Fig. 15A, we show the free energy landscape for the dApdA dinucleotide

monophosphate in 0.1 M salt (NaCl), and its subdivision into five macrostates

(indicated by dark blue contour lines and labeled S1 – S5), which we established

using our MSM analysis approach. Each of the five macrostates exhibits qualitatively

different behavior in terms of the relative stabilities of the dinucleotide conformation.

The S1 macrostate includes 264,608 microstate configurations (2.6% of the total 10

million) and is dominated by a relatively shallow free energy basin with a narrow

range of values for the inter-base separation R < 6 Å and relative twist angle:

100◦ < φ < 180◦. The S2 macrostate, on the other hand, describes a relatively

broad and featureless region of the free energy landscape, which encompasses a wide

range of ‘open’ and ‘unstacked’ values for the inter-base separation (R < 10 Å)

and unrestricted twist angle: −180◦ < φ < 180◦. Like the S1 macrostate, the S2
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macrostate represents a minority of the total population, with just 276,786 microstates

(2.8% of the total 10 million).

The majority of the total conformation population is contained in the combined

S3, S4 and S5 macrostates, with the number of microstates in S3: 895,636 (9.0%); in

S4: 3,729,206 (37.3%); and in S5: 4,833,758 (48.3%). Moreover, the S3 macrostate

contains the free energy minimum with R = 3.8 Å and φ = 40◦, the S4 macrostate

contains a minimum with R = 3.8 Å and φ = -80◦, and the S5 macrostate contains

a minimum with R = 4.7 Å and φ = 0◦. We thus identify the S3 macrostate with an

ensemble of stacked right-handed chiral conformations that include the anti form; the

S4 macrostate with an ensemble of stacked left-handed chiral conformations, including

the precursor of the Hoogsteen structure; and the S5 macrostate with one slightly less

stacked and more achiral conformation, which also includes a syn structure.[125–132]

The borders between macrostates show a ‘fine structure’ that represents the maximum

of the energy at the top of the free energy barriers, where the states are less frequently

sampled by the simulation. Thus, the high energy regions in the free energy map may

display roughness, which can be smoothed to avoid overfitting.[101, 152] However this

step is not needed in our study because the results of our analysis depend largely on

the minima of the free energy maps, which are statistically well sampled. To confirm

the presence of Hoogsteen-like structures in the S4 and S5 regions, we present – in

Figs. 15B and 15C – a study of the roll angles β5′ and β3′ , for the 5′ and 3′ base,

respectively. It is known, for structures containing a Hoogsteen conformation, that

one of the two bases in the dApdA dinucleotide is ‘flipped’ relative to the ‘standard’

conformation characteristic of the Watson-Crick geometry. Figure 15B shows that in

the S3 macrostate the most stable structures have a positive roll angle β5′ for the 5′

base (green). Figure 15C shows, instead, that while the roll angle for the 3′ base is
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still positive in the microstate S3, the same 3′ base is flipped in microstates S4 and S5

(purple), confirming the presence of a syn Hoogsteen-like conformation in macrostates

S4 and S5, and the anti Watson-Crick-like form in macrostate S3.

In Figures 17A – E, we compare the experimental CD spectrum (dashed black

curve) to our CD calculations corresponding to each of the five macrostates (blue

curves), which are based on summing over the microstate configurations that lie

within the partitioned boundaries of the free energy landscape shown in Fig. 6A.

We also show the proportionately weighted contribution of each macrostate to the

CD spectrum (red). From Figures 17A and 17B, we see that the S1 and S2

macrostates, which represent minority fractions of the total population (2.6% and

2.8%, respectively), do not contribute significantly to the CD spectrum.

Similarly, the S3 macrostate (Fig. 7C), which contains the coordinates of the B-

form conformation, also represents a comparably small fraction of the total population

(9.0%). On the other hand, the S4 macrostate (Figure 17D) contains a significant

fraction of the total population (37.3%) and is largely composed of left-handed base-

stacked conformations, which gives rise to a strong CD signal. We note that the

calculated CD spectrum of the S4 macrostate has a similar ‘right-handed’ shape (in

the long wavelength regime) to that of the S3 macrostate, in spite of their apparent

opposite chiral symmetries. This is consistent with the syn structure (i.e., with roll

angles β3′ ≈ 180◦ and β5′ ≈ 0◦). The detailed calculation of the spectra for all five

macrostates is reported in Figure 16, which shows the spectral decomposition of the

degenerate CD spectrum for the average structure of each macrostate. From the

spectral decomposition it is straightforward to see that the flipping of one base is

responsible for a CD spectrum that is consistent in the Watson-Crick structure and

in the syn conformation of dApdA. We note that this behavior may not be observed
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in dinucleotides with different base compositions, because the transition dipoles are

different. Although the S5 macrostate (Fig. 7E) represents the highest fraction of the

total population (48.3%), it is dominated by an achiral and slightly unstacked syn

conformation which, because of its symmetry, results in a negligible CD contribution

to the total spectrum. In Fig. 17F, we show the individual weighted contributions for

the S3 (9.0%), S4 (37.3%) and S5 (48.3%) macrostates, in addition to the weighted

sum of all the macrostates (gray curve). We thus see that the favorable agreement we

observe between experiment and theory in the long wavelength regime is essentially

the result of two significant contributions, a minor contribution from macrostate S3

and a larger contribution from macrostate S4.

Having identified the key macrostates relevant to the CD observable, we used

this information to determine the smallest number of structural parameters necessary

to characterize these macrostates. We thus identified five averaged conformations,

one for each macrostate, which, properly weighted, were used to calculate the CD

spectrum. The comparison between the contribution to the CD spectrum from all

the conformational states in a macrostate and the contribution from the averaged

macrostate structure are shown in Fig. S6 of the SI, with structural parameters

listed in Table S6. The calculation of the CD spectrum with only five conformations

is in good agreement with the complete calculation, while it greatly speeds up the

computation time needed to calculate the CD spectrum. In principle, such structural

models can be used for the general interpretation of any spectroscopic measurement

performed on the dApdA system.

In reconsidering the previous interpretations of the CD spectrum by Lowe

and Schellman, and given that the signal from the un-stacked mono- nucleotide is

comparatively negligible, our study suggests that the stacked ‘native’ form of the
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dinucleotide is primarily given by the sum of the S3 and S4 states, because the S1 state

is less densely populated. Analogously, the unstacked ‘denaturate’ state corresponds

in this study to the S5 state, which is more populated than the unstacked S2 state.

The large degree of conformational disorder that characterizes macrostate S2

contrasts with the highly ordered macrostates S3 and S4. The stabilities of

macrostates S3 and S4, relative to macrostate S5, are reminiscent of the ‘solvophobic’

models for nucleic acid base stacking,[103, 110, 111] in which the ‘stacked’ macrostates

S3 and S4 are favored due to enthalpic base stacking interactions,[153] which

offsets the configurational entropy of the disordered S2 macrostate. Solvophobic

base stacking is known to be favored by a decrease in the enthalpy ∆H and

opposed by a decrease in the entropy ∆S. Solvophobic bonding, as defined here,

is ‘enthalpically driven’ and differs significantly from hydrophobic bonding, which is

generally thought to drive protein folding[154] by a positive change in the entropy

of the system. Such physical models are supported by studies that examine the

stabilizing and destabilizing effects on base stacking by various salts and other solvent

additives.[109, 116]

Mean first passage times (MFPTs) for dApdA macrostates and pathways of

macrostate interconversion.

While CD spectra provide a useful measure of the stationary (equilibrium)

properties of the dApdA system, they do not provide information about the dynamic

processes involved in state-to-state interconversion. In this section we apply the

results of our MSM analysis of MD trajectories to the investigation of the kinetic

pathways associated with the free energy landscape, and to identify pathways of

interconversion between the various stacked and unstacked macrostates.
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To characterize the kinetic properties of the dApdA system, we examined the

mean first passage times (MFPTs) of the five macrostates, which are assigned to

the regions of the free energy landscape shown in Figure 15A. The MFPT τi→f is

the average time for the system to undergo a transition to state f, provided that

it was initially in state [118, 155] We determined the MFPTs for the free energy

landscape of dApdA at salt concentration [NaCl] = 0.1 M (see full data set in Table

S4 of the SI. Also, Table S5 shows that the MFPTs are insensitive to the number of

microstates selected in the MSM analysis). Macrostate S2 represents the region of

the free energy landscape with the greatest degree of conformational disorder; thus,

it can be considered to serve as an end-state for base-unstacking.

Moreover, while macrostate S3 is approximately B-form in character, the relative

roll angles of macrostates S4 and S5 are greater than 90◦, which in each case

corresponds to a base configuration that has been flipped into the Hoogsteen-like

conformation. Thus, the process of ‘base-flipping’ may play an important role in the

dynamics of the dApdA system, although in longer strands of (especially) duplex

DNA, such flipping may be suppressed by the overall cooperativity that controls

the order-disorder transitions for these larger macromolecular species. Nevertheless,

these studies of the less cooperatively stabilized dinucleotide may provide insight into

structural rearrangements that in principle could, and likely – with some frequency –

do, occur in larger biologically relevant DNA macromolecules.

We use the transition path theory (TPT) method [81, 121–124] to determine

the frequency of events in which an initially base-stacked macrostate (e.g., S3 or S4)

undergoes successive conformational changes that permit entry into the region of the

free energy landscape characterized by the ‘final’ unstacked macrostate S2. When

the system initially occupies macrostate S3, which corresponds to the average base
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stacking of the Watson-Crick B-form, we found that the dominant pathway leading to

macrostate S2 (with 46% probability) was S3→ S5→ S2. Thus, base-unstacking from

the right- handed B-form conformation occurs predominantly by a two-step process

through the achiral S5 intermediate, in which one of the adenine bases has been

flipped. The remaining, less prevalent base-unstacking pathways were S3→ S4→ S2

(with 26% probability); S3 → S5 → S4 → S2 (with 15% probability); and S3 → S2

(with 10% probability). When the system occupied initially the left-handed and base-

flipped macrostate S4, which corresponds to a Hoogsteen base-stacking configuration,

the two most prevalent unstacking pathways were the one-step S4→ S2 pathway (with

47% probability) and the two-step S4 → S5 → S2 pathway (with 40% probability).

We see that, in general, transitions to the most sparsely populated macrostates

S1 and S2 occur relatively slowly (in ˜35 to 60 ns), while transitions to the most

highly populated macrostate S5 occur relatively quickly (in ˜2 to 5 ns), suggesting

that the macrostate S5 acts as a common intermediate for the pathways between the

other macrostates for the stacking-unstacking transition.

Because the energy barriers in dApdA are small, the height(s) of the barrier(s)

that the system has to overcome to transition between any two macrostates is close

to the difference in free energy between the two states. Thus, the kinetics of the

interconversion between macrostates are driven primarily by their relative stabilities.

It is reasonable to expect that cooperativity in base stacking will increase the heights

of the energy barriers between conformational states in both the ssDNA and the

dsDNA. Such information can provide new insights into the mechanisms of base

stacking-unstacking transitions in nucleic acids and the possible role of these processes

in biologically important protein-nucleic acid interactions.
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Discussion

Structural and dynamic characterization of ‘breathing’ fluctuations at the

dinucleotide level.

Thermally activated breathing fluctuations, in which flanking nucleic acid bases

spontaneously move away from their stacked and hydrogen-bonded conformations, are

thought to be important initial steps in the pathways that lead to DNA denaturation

and the specific binding of proteins to DNA.[6, 102–106] Despite their relevance,

the details of the interactions and kinetics that control breathing fluctuations are

still largely not understood. It is known, however, that the stacking interactions

of the bases within nucleic acids are the dominant stabilizing forces of the native

conformations that oppose the melting of DNA, while inter-strand base-base hydrogen

bonding and cooperativity play less important stabilizing roles.[109, 115, 153]

Traditionally the equilibrium between stacked and unstacked base conformations

has been studied by circular dichroism (CD) experiments, which are sensitive to

the conformational chirality of the base stacking.[1] Such measurements, however,

are limited in the amount of information that they can provide because CD spectra

cannot be directly inverted to determine the conformations that contribute to these

spectroscopic signals.

CD spectroscopy is an important biophysical tool for the analysis of nucleic

acid structure, in that the relationship between CD spectra and local nucleic acid

base conformation can be understood in terms of quantum chemical principles.

Nevertheless, for many of these systems the free energy landscape can favor the

simultaneous presence of multiple conformations at equilibrium, many of which may

interconvert due to thermal fluctuations. Thus, the complexity of the free energy
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landscapes of nucleic acid systems is a significant obstacle for achieving a meaningful

interpretation of CD spectra.

Solvophobic effects on the conformational stability of dinucleotides.

Early studies by Lowe and Schellman of the base stacking-unstacking equilibrium

focused on the CD spectrum of the dApdA dinucleotide monophosphate as a function

of increasing monovalent salt concentration, because the stacking interactions of

the elementary dinucleotide unit could be isolated and studied independently of

other stabilizing factors.[109] These studies concluded that the stacking-unstacking

equilibrium of dinucleotides can be modeled as a two state transition, where the

driving force for the stacking of the bases is ‘solvophobic’ in nature; i.e., driven

by a decrease in the enthalpy of the process (∆H ≈ −6.6 kcal mol−1 at T =

293 K), and opposed by a decrease in the entropy of the system (∆S = −23 e.u.

such that -T∆S ≈ 6.7 kcal mol−1 at T = 293 K).[1, 109, 113, 153] Thus, these

workers concluded that the transition as a whole was likely driven – to a major

extent – by rearrangements of the molecules of the solvent environment present (here

water molecules and ionic species). However, these studies could not exclude the

possibility that more than two states might contribute to the overall CD signal,

and thus could not define the precise nature of the underlying conformations.[109]

They did determine, however, that each of the two states of the dApdA dinucleotide

that contributed to the CD signal was most likely present as a number of similar

configurations, and that the state with highest disorder and entropy was likely to be

more stable at high temperatures and at higher monovalent salt concentrations.
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Conclusions and Overview.

In the present study we have established a methodology that can be used to

relate the CD spectrum to the underlying relevant molecular conformations. We

combined extensive MD simulations (µs in duration) with direct calculations of

the CD spectrum. Our CD calculations were based on standard methods[120]

and an extended-dipole model (EDM)[156] to estimate the exciton coupling

between the electric dipole transition moments (EDTMs) of the adenine bases of

dApdA. The EDM takes into account the finite length of the electronic transition

charge distribution across the adenine chromophore, and it correctly describes the

dependence of the electronic coupling on the inter-base twist angle φ and the relative

tilt angle α5′ - α3′ (coordinates defined in Figure 11). By calculating the CD

spectrum for each of the 10 million conformations in the MD simulations, we obtained

good agreement between our CD calculations and previously published experimental

spectra of the dApdA system at approximately physiological salt concentration [NaCl]

= 0.1 M.[1, 109] Nevertheless, the calculation of the CD spectrum by these procedures

provided little insight into the important conformational states contributing to the CD

spectrum, and can become computationally too expensive if sophisticated quantum

chemical calculations are adopted to calculate the exciton couplings from the detailed

electronic structure of the adenine bases.

To surmount this problem, we performed a Markov State Modeling (MSM)

analysis of the free energy landscape of the dApdA dinucleotide and identified five

kinetically separable macrostates, each containing conformational species that can

rapidly interconvert. We then calculated a single averaged conformation to represent

each of the five MSM macrostates, and we found that the total CD spectrum can be
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represented accurately by the weighted sum of the contributions from the averaged

structures of these macrostates.

We foind that only two states exhibit both stacked and chiral conformations,

which are necessary to provide significant exciton coupling between monomer

EDTMs and rotational strengths, thus contributing to the CD observable. The

two states are conformational ensembles with opposite chirality, which contain the

anti (Watson-Crick B) form (S3) and a syn (Hoogsteen) flipped-base conformation

(S4), respectively. A third highly populated state is an achiral syn state, with a

slightly unstacked conformation (S5) that does not contribute significantly to the

CD signal. We observed that both the S3 and the S4 states provide right-handed

CD features in the long wavelength region of the dApdA spectrum. These results are

qualitatively consistent with the early hypothesis that two leading states dominate the

CD spectrum, but now provide more detailed information about the nature of those

states.[109] We conclude that both the S3 and the S4 states contribute to the stacked

conformation detected by Lowe and Schellman, while their unstacked conformation

likely comprises the S5 state, which is the most populated, and to a lesser extent the

fully unstacked state S2. Furthermore, our study shows that the Hoogsteen structure

plays a key role in the mechanism of the stacking and unstacking pathways of the

bases in dApdA, and possibly in DNA as well, as it is present in the highly populated

stacked S4 and unstacked S5 conformations at all salt concentrations.

By connecting the CD spectrum of the dApdA dinucleotide to five leading

conformational states as a function of salt concentration, we were able to obtain

information about how the distribution of ion shell structures affects local base-

stacking interactions. In agreement with early experiments by Johnson and

Schleich,[116] we observed that the effect of increasing salt was to decrease the
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magnitude of the CD signal over the 240 – 300 nm regime. In the CD experiments

by Lowe and Schellman,[109] the decrease in CD signal was accompanied by a shift

in the equilibrium population of open (unstacked) achiral conformations relative to

closed chiral conformations. Our findings show an initial increase of the base stacking

stability with increasing monovalent salt concentration (NaCl or KCl), followed by

a decrease of stability at salt concentrations higher than 1.0 M. By analyzing radial

distribution functions and orientation distribution functions of the ions and water

solvent, respectively, we observed that the changes in local base stacking conformation

at high salt concentrations are correlated strongly with the disruption of the ion

shell boundaries, and weakly with a change in the orientations of the water dipole

moments. Over the full range of salt concentrations, the orientations of water

molecules within successive hydration shells are highly correlated, from layer to layer,

through hydrogen bonding. Thus, the relatively large negative change in solvent

entropy is attributed to the emergence of order of the ion shell structure upon base

stacking, rather than the restructuring of the water dipole moments. These findings

provide a more detailed picture in the context of the solvophobic bonding model, in

which the enthalpic base stacking interaction is closely balanced by the decrease in

entropy of the solvent environment. In contrast, this behavior is not observed for the

singly-charged phosphate anion in isolation, suggesting that the presence of the bases

in dApdA structure may be responsible for the disruption of the ion shell structure

upon base un- stacking.

We also find that the trend in base stacking stability with increasing monovalent

ion concentration for the dApdA dinucleotide is consistent with trends observed for

the more complex duplex DNA.[114, 125] Although other factors, such as H-bonding

and the cooperative stacking of multiple bases are known to play an important
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role in determining the stability of dsDNA structures, our results suggest that the

restructuring of the ion shells about the central phosphate ion with increasing salt

concentration, observed in dApdA, may also play a role in regulating the stability of

larger DNA macromolecules.

Bridge

In Chapter II, Markov state models (MSMs) were introduced and used to

define the timecsales and dynamics of the slowest collective near-equilibrium motions

of the protein ubiquitin. In this chapter, MSMs have been used to coarse-grain

the (reduced) conformational space sampled by a single-stranded deoxyadenine

dinucleotide (dApdA). We find that the coarse graining of the state space afforded

by the PCCA+ approach is effective in separating the major conformational

families contributing to the calculated CD spectrum of dApdA. That is, the CD

spectrum of dApdA is mainly composed of signal from the conformations populating

a right-handed minimum encapsulating the Watson-Crick B-form structure and

conformations populating a left-handed minimum encapsulating Hoogsteen-type

structures; the other three metastable states contribute little to the overall CD

spectrum of dApdA. Furthermore, it was found that coarse-graining to the level of

taking a single structure derived from each metastable state, the average intra-state

structure, the overall CD spectrum could be well reproduced using just these five

conformations of dApdA. These results support the results of [109] that two states

contribute to the CD spectrum, but we find that the two states are not a right-handed

and unstacked state, as postulated in [109], but rather a left- and right-handed pair

of states.
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This chapter also examined the salt dependence of the CD for dApdA. We find

that adding salt continuously decreases the amplitude of the CD spectrum of dApdA

because dApdA samples more frequently the achiral state near a twist angle of 0

degrees. This change in the CD spectrum coincides with a change in the salt structure

surrounding the dApdA, as measuring by calculating the radial distribution function

of the ions surrounding the phosphate group in the dApdA backbone; however, it

should be noted that artificial crystallization [157] of the Na+ and Cl− ions used

in the simulation was observed above salt concentrations of 1.0 M in the dApdA,

although the artificial crystallization is not observed in the simulations of dihydrogen

phosphate ion, likely due to the smaller box volume occupied by dihydrogen phosphate

compared to dApdA. This shortcoming of the parameterization of the ions used in the

simulation could contribute to the change in ion structure above 1.0 M concentration

of NaCl.

In the next chapter, we return to extending the LE4PD method to describe

the dynamics of proteins. The next chapter develops an anisotropic version of the

LE4PD, and this new toolkit is used to re-analyze the 1-microsecond simulation of

ubiquitin from Chapter II. This new LE4PD method maps directly onto a principal

component analysis of the alpha-carbon trajectory of the protein when hydrodynamic

effects, residue-specific friction coefficients, and free-energy barriers along each mode

are neglected. As with the isotropic LE4PD, this new, anisotropic version of the

LE4PD is also interfaced with Markov state models to desrcibes the kinetics and

dynamics of the protein’s slow collective motions.
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FIGURE 12. (A) Free energy landscape G (R, φ) as a function of the inter-base
separation R and the dihedral twist angle φ, as obtained from 2-µs MD simulations
of the dApdA dinucleotide at [NaCl] = 0.1 M. The coordinates corresponding to the
canonical (average) B-form conformation (R = 3.6 Å and φ = 36◦) are included
in the white (outlined) square, while the unstacked ‘achiral’ conformations are
included in the red (outlined) square. The five macrostate regions, labeled S1-S5,
were identified through the Markov State Modeling procedure described previously.
(B) CD spectra of dApdA were determined from 2-µs MD simulations at salt
concentrations [NaCl]=0.1 (black), 0.5 (red), 1.0 (blue) and 1.5 M (green). Differences
between the calculated spectra are greater than the error bars (shown as the width
of the colored lines), which were determined from the standard error of the mean
from five block averages. The experimental CD spectrum (dashed black curve)
was taken from ([1]). Roman numerals indicate the wavelengths of the electronic
transitions of the uncoupled adenine monomers, which are used as input for our
calculations. The experimental parameters used in the CD calculations are given in
Appendix C (C) The local probabilities of the B-like stacked conformation and the
unstacked ‘achiral’ conformation was calculated as the sum of states contained within
the boundaries defined by the white and red squares, respectively, shown in panel
(A). These probabilities are shown as a function of salt concentration [NaCl] = 0.1,
0.5, 1.0 and 1.5 M. The relative population of stacked and unstacked conformations
changes abruptly around 1 M concentration. (D) Differences between the CD spectra
at increasing salt concentration. The difference between calculated CD spectra
are shown for incremental increases of the salt concentration. The peak-to-peak
amplitude of the difference CD spectra decreases dramatically when the concentration
is raised above [NaCl] = 1 M. This is reflected by the abrupt change in the peak-to-
peak amplitude of the difference CD spectra shown in the inset.
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FIGURE 13. Radial distribution functions (RDFs) [Equation (3.1)] obtained from
MD simulations of dApdA between Na+, Cl−, and the H atoms of water and the
P atom of the anionic phosphate of the dApdA dinucleotide at salt concentrations
([NaCl]) of (A) 0.1 M and (B) 1.5 M. RDFs for (C) sodium ions and (D) chloride ions
over the range of salt concentrations [NaCl] = 0.1, 0.5, 1.0, 1.05, 1.2 and 1.5 M. RDFs
for sodium (E) and chloride (F) ions obtained from MD simulations of the phosphate
anion H2PO−4 - at the salt concentrations ([NaCl] = 0.1 (black), 0.5 (red), 1.0 (blue),
1.5 M (light blue)). Unlike the RDF plots for dApdA, the RDFs of H2PO−4 - in
aqueous solutions do not show the sharp change in the ion shell structure at [NaCl]
≈ 1.0 M (see also text).
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FIGURE 14. (A) Definition of the angle θ, which subtends the permanent dipole

moment of the water molecule ~µH2O and the vector ~POH2O connecting the phosphorous
atom to the oxygen atom of the water molecule. (B) Orientation distribution functions
(ODFs) for the dipole of the water molecule relative to the phosphate–oxygen (water)
bond and RDF of the hydrogen of water, gP−−H(r), of Figure 13A. (C) Superimposed
on the ODFs defined as 〈cos(θ)〉, are the orange points indicating the cosine of the
average angle, cos (〈θ〉).
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FIGURE 15. (A) The free energy landscape G (R, φ) of the dApdA dinucleotide
(shown in Figure 11A) is sub-divided by dark blue boundaries into five regions (labeled
S1 – S5), which are called ‘macrostates.’ The macrostate assignments were derived
by performing a Markov state model (MSM) analysis of MD simulation data for
[NaCl] = 0.1 M. The anti (Watson–Crick) form conformation is contained within
the boundaries of the S3 macrostate, while the syn (Hoogsteen) containing form is
included within the boundaries of the S4 macrostate. Superimposed on the free energy
landscape G (R, φ) of the dApdA dinucleotide we show the orientation of the 5′ base
(B) and of the 3′ base (C), respectively. The macrostate S3, which contains the anti
form conformation, correctly displays both bases with positive orientation (green free
energy minimum of S3 in both panels B and C), while macrostates S4 and S5, which
contain a syn base presents the 3′ base flipped with respect to the 5′ base (green in
panel B and purple in panel C).
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FIGURE 16. (A) – (E) Each panel shows, for each macrostate, the comparison
between the contribution to the CD spectrum from all the conformational states in the
macrostate (blue curve) and the contribution from the averaged macrostate structure
(red curve), with structural parameters listed in Table S6 from the Supplementary
Information of [66]. The molecular models representative of the averaged dApdA
structures are shown as insets in each panel. The 5′ nucleotide is shown in blue,
and the 3′ nucleotide and phosphate are shown in red. (F) The weighted sum of the
macrostate contributions to the total CD are shown in gray, and the weighted sum
from the averaged structures in red. The experimental CD spectrum13 is shown as a
dashed black curve.
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FIGURE 17. Macrostate decomposition of the CD spectrum of the dApdA
dinucleotide by Markov state model (MSM) analysis of MD simulation data for
[NaCl] = 0.1 M. The total CD spectrum is calculated from 10 million MD frames
(or microstates), and the component spectra for macrostates (A) S1, (B) S2, (C) S3,
(D) S4 and (E) S5 constitute 2.6, 2.8, 9.0, 37.3 and 48.3% of the total CD spectrum,
respectively. The component CD spectra for each macrostate are shown in blue, and
the number-fraction weighted contributions are shown in red. (F) The sum of number-
fraction weighted macrostate contributions to the total CD is shown in gray. Also
shown separately are the number-weighted contributions of macrostates S3, S4 and
S5 (green, blue and red, respectively). In all panels, the experimental CD spectrum
(from ([111])) is shown as dashed black curves.
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CHAPTER IV

AN ANISOTROPIC LANGEVIN EQUATION FOR PROTEIN DYNAMICS: THE

LE4PD-XYZ MODEL

From Beyerle, E. R. and Guenza, M.G. Comparison between slow, anisotropic

LE4PD fluctuations and the Principal Component Analysis modes of Ubiquitin. J.

Chem. Phys., 154, 12411 (2021).

Proteins are semi-flexible objects whose function is determined by the combined

effect of their three-dimensional structure and local fluctuations [158]. Large-scale,

slow motions relevant to the protein’s biological function typically involve crossing

high energy barriers and transitions between minima on the protein’s free energy

surface (FES). The complexity of the FES renders those large-scale fluctuations both

anharmonic and anisotropic [159–162]. A common technique used to determine the

slow, functional motions of proteins is the Principal Component Analysis (PCA)

[160, 162–165]. PCA is a dimensionality reduction procedure commonly used in signal

analysis to highlight important persistent features underlying noisy data. [166] When

used to process atomistically-detailed molecular dynamics (MD) simulations, PCA

reduces the dimensionality of the observed FES by identifying a few essential collective

fluctuations ordered by decreasing eigenvalues. [167] While PCA is computationally

convenient, conceptually simple, and widely used, it lacks a physical basis beyond the

empirical observations that it describes some slow, functional motions of a protein

[26, 164, 168].

In this study, we make a formal connection between the PCA expressed in the

cartesian coordinates of a protein’s alpha-carbons and an approach we have developed

to analyze the slow modes in protein dynamics, called the Langevin Equation for
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Protein Dynamics (LE4PD) [4, 37, 38, 48, 57, 67]. The LE4PD theory, initially

formalized as an isotropic equation of motion, is extended here to describe the

anisotropic dynamics of proteins in the LE4PD-XYZ method. Like the PCA, the

LE4PD-XYZ decomposes the protein’s motion into an orthogonal set of collective

coordinates or modes, and, it captures the anisotropic, slow fluctuations of the protein,

starting from the analysis of the atomistic MD trajectory. However, unlike the PCA,

the LE4PD-XYZ is based on a Langevin equation of motion, which directly connects

the large-scale fluctuations to the physical forces acting on the system. Because

of its formulation, the LE4PD-XYZ allows for a detailed examination of the mode-

dependent kinetics and fluctuation pathways.

Since the PCA is not directly related to an equation of motion, the amplitudes

and timescales of fluctuations may be calculated by different procedures. For example,

timescales have been calculated by integrating the autocorrelation function of the

principal components.[161, 169] The direction and magnitude of the anisotropic

fluctuations have been described using either the so-called ‘porcupine plots’ [169–

172] or a simple linear interpolation between the extreme structures in the simulation

trajectory[173]. In this manuscript, we compare the predictions of the PCA approach

for the fluctuations with the largest amplitude to the results of the LE4PD theory

applied to the same trajectory. By this analysis we quantify the importance of the

different physical contributions to the PCA fluctuations, starting from the LE4PD-

XYZ equation of motion.

The LE4PD-XYZ projects the simulation trajectory onto a mode-dependent

free-energy surface. For each Langevin diffusive mode, our theory determines the

three-dimensional energy landscape and the kinetic pathways of barrier crossing

using a variant of the string method.[87, 88] Originally, the LE4PD measured the
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related kinetic times of barrier crossing by a simple Kramer’s rescaling of the friction

coefficient, where we calculated the correction term from the height of the barrier,

defined by the median absolute deviation (MAD) [48]. More recently, we paired the

LE4PD with a Markov state model (MSM) analysis of the mode-dependent barrier

crossing events. We then evaluated the mode-dependent kinetic times using the

eigenspectrum of the slowest process predicted by the MSM analysis, and interpreted

the results using the associated committor function.[4, 33, 34, 174] A similar analysis

can be performed for the LE4PD-XYZ modes, and its comparison with the PCA

modes is one of this study’s primary goals.

This study illustrates the advantages and limitations of the PCA normal mode

decomposition compared with the Langevin formalism of the anisotropic LE4PD.

PCA does not provide information on the timescales of the fluctuations. However,

the LE4PD-XYZ equation, when hydrodynamic interactions are neglected, has forces

acting between the amino acids that are directly related to the covariance matrix,

and thus to PCA. The test system is a 1-µs MD trajectory of atomistic simulation

of ubiquitin in an aqueous solution and physiological salt concentration. From its

analysis we calculate the mode-dependent FES, its distinct pathways for protein

fluctuations, and the related timescales using both the LE4PD-XYZ with and without

hydrodynamics interactions. Then, we directly compare PCA’s linear fluctuations

to the non-linear fluctuation pathway of LE4PD-XYZ. This analysis identifies the

implications of neglecting hydrodynamic interactions and free energy barriers when

PCA is extended to treat protein dynamics, by mapping the covariance matrix into

the intramolecular matrix of the forces leading to the Langevin equation of motion.
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Theory: the LE4PD-XYZ Equation of Motion

In this section, we introduce the anisotropic Langevin equation for protein

dynamics, or LE4PD-XYZ. The LE4PD-XYZ is a coarse-grained Langevin equation

describing the fluctuations of the ith alpha-carbon in a protein composed ofN residues,

and hence N alpha-carbons, from its equilibrium position, ∆~Ri(t) = ~Ri(t) − 〈~Ri〉 =

[xi(t)− 〈xi〉, yi(t)− 〈yi 〉, zi(t)− 〈zi〉]T = [∆xi,∆yi,∆zi]
T . The equilibrium positions

are defined as the time average over an MD trajectory consisting of M configuration

points, 〈~Ri〉 = 1
M

M∑
k=1

~Ri(k), with xi(t), yi(t), zi(t) the distance of the ith alpha-carbon

from the origin of the simulation box at time t in the x-, y-, or z-direction, respectively.

For a protein with N alpha-carbons there are a total of 3N degrees of freedom in

the analysis, which is represented in the LE4PD-XYZ by the 3N -dimensional vector

∆~R(t):

∆R(t) = [x1(t)− 〈x1〉, y1(t)− 〈y1〉, z1(t)− 〈z1〉, x2(t)− 〈x2〉 ,

. . . , zN(t)− 〈zN〉]T .

In the LE4PD-XYZ model, the time-evolution of a ∆~Ri(t) along the α direction,

∆~Rα
i (t), is given by the Langevin equation of motion

d ~∆Rα
i (t)

dt
= −kBT

ζ

∑
β,γ∈{x,y,z}

N∑
i=1

N∑
j=1

Hαβ
ij A

βγ
jk

~∆Rγ
k(t) + ~∆v

α

i (t), (4.1)

with α, β, γ ∈ {x, y, z} the coordinates in the three spatial dimensions. The

equation is solved by applying the fluctuation-dissipation condition, as described in

the Supplementary Material of [51].
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Here kB is the Boltzmann constant, T is the temperature in Kelvin, ζ = 1
N

∑
i ζi

denotes the average residue friction coefficient, ~vi(t) is a stochastic velocity, Hαβ
ij

denotes the hydrodynamic interaction (HI) between the α component on bead i

and the β component on bead j and Aβγjk denotes the connectivity between the

β component on residue j and the γ component on residue k. In Eq. 4.1, the

hydrodynamic interaction matrix Hαβ
ij is given by

Hαβ
ij =

ζ

ζi
δijδαβ + (1− δij)δαβrw

〈
1

rij

〉
, (4.2)

where ζi the friction coefficient of residue i, 〈 1
rij
〉 is the average inverse distance

between residues i and j, and rw = 1
N

∑
i rw,i is the average residue radius exposed

to the solvent.

The structural matrix, related to the mean-force potential, Aβγjk is defined as

Aβγjk =

([
a⊗ Î

]T
U
[
a⊗ Î

])βγ
jk

, (4.3)

where U−1 = 〈∆~l(t) ∆~l(t)T 〉 is the matrix of bond-bond correlations in Cartesian

coordinates with ∆~l(t) =
(
a⊗ Î

)
∆~R(t), ∆~lαi (t) =

∑
j

(
a⊗ Î

)
ij
δαβ∆~Rβ

j (t), and a

the N − 1×N the incidence matrix that defines the connectivity between residues in

the protein,

aij =

 1, i = j − 1

0, i = j
.

Here, δαβ is the Kronecker delta, and the ‘⊗’ symbol denotes the Kronecker

product.[175] A detailed derivation of H as well as a formal connection of the U

matrix defined here to the U in the previously developed, isotropic version of the

LE4PD[37, 38, 48, 57] are given in Appendix C.
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It should be noted that the Langevin equation given in Eq.4.1 is identical in

form to the optimized Rouse-Zimm equation for describing polymer dynamics derived

by Zwanzig,[39] excepting the detailed form of the H and A matrices, which here

account for the chemical details of each residue and the semi-flexibility of the peptide

bonds connecting the alpha-carbons.[4, 37, 38, 48, 57, 176] The Rouse-Zimm equation,

without hydrodynamic interaction, can be derived from the Liouville equation, i.e.

from the Hamiltonian of the system, by projecting the dynamics of the whole system

onto the slow coordinates of the alpha carbons.[45, 177] The Rouse-Zimm equation is

equivalent to a Fokker-Planck-Smoluchowski for polymer dynamics.[40, 178] In this

respect, the LE4PD-XYZ equation presented here is founded on well-established first-

principles approaches.

Connecting the LE4PD-XYZ to PCA

The link between a PCA of the alpha-carbons and the LE4PD-XYZ method

outlined above is as follows. For a given protein, an element of the covariance matrix

in the Cartesian coordinates of the alpha-carbons is given by

Cαβ
ij = 〈∆~Rα

i ∆~Rβ
j 〉 (4.4)

where 〈· · · 〉 denotes, as above, an average over frames in the simulation trajectory.

Using the definition of A given in Eq. 4.3 and that of C given in Eq. 4.4 it follows

that

A = C−1, (4.5)
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Thus, A and C possess the same set of eigenvectors and their eigenvalues are inverses

of each other (provided C has full rank, which is always the case for a sufficiently

long MD simulation).

The set of coupled Langevin equations, in Eq. 4.1, is diagonalized by the

eigenvector Q, as Q−1HAQ = Λ, with Λ the diagonal matrix of eigenvalues of HA.

By applying the eigenvector transformation, Eq.4.1 can be written in terms of its

normal modes, ∆~ξa(t) =
∑

i (Q
−1)ai ∆

~Ri(t) as

d ~∆ξa(t)

dt
= −σa ~∆ξa(t) + ~∆va(t), (4.6)

where σa = kBTλa
ζ

is the characteristic diffusive rate of mode a,[41] with λa = (Λ)aa the

eigenvalue of mode a, and τa = σ−1
a = ζ

kBTλa
is the corresponding diffusive, barrier-

free timescale of mode a. Finally, ~va(t) =
∑

i (Q
−1)ai ~vi(t) is the random velocity

projected into mode coordinates. Note that < ~ξa(t) >= 0, so ~∆ξa(t) = ~ξa(t).

Because of Eq. 4.5, it is straightforward to see that, when the hydrodynamic

interaction matrix is approximated as an identity matrix, the PCA modes directly

map onto the LE4PD-XYZ modes. Approximating the hydrodynamic interaction

matrix in this way corresponds to assuming that i) the friction coefficient of each

residue is set equal to the average friction coefficient, i.e., ζi := ζ, and that ii) the

dynamical correlation due to hydrodynamics is neglected, i.e., H := I, with I a

3N×3N identity matrix. Under those approximations, the eigenvalues (Q−1AQ)aa =

µa where µa = λ−1
PCA,a and λPCA,a is the ath eigenvalue of the covariance matrix. In

this manuscript, we analyze the effect of these two approximations in the predicted

timescale and amplitude of PCA fluctuations.

Furthermore, the LE4PD-XYZ method, even when neglecting hydrodynamic

effects and simplifying the treatment of the residue-specific friction coefficients,
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accounts for the mode-dependent free energy barriers to transport in the mode

space. This step is essential for an accurate description of the kinetics and transition

mechanisms of the fluctuation dynamics in the mode coordinates,[4, 38, 48, 57] and

is not part of the conventional PCA.

Methods

Molecular Dynamics Simulations

We generated the MD simulation of ubiquitin using GROMACS version 5.0.4[137]

with the AMBER99SB-ILDN atomistic force field[179] on the Comet supercomputer

at the San Diego Supercomputing Center. The starting structure was selected from

the Protein Databank, PDB ID: 1UBQ.[53] We solvated the protein with spc/e water

and minimized the energy using the steepest descent algorithm. We added Na+

and Cl− ions until the ion concentration was 45 mM, with the concentration of

ions selected to match the one used in nuclear magnetic resonance experiments of

ubiquitin.[54] Previously, we used those experimental data to test the accuracy of the

LE4PD model against NMR data of T1, T2, and NOE relaxation experiments, with

which the LE4PD approach show quantitative agreement.[38, 48, 57] We subjected the

protein-solvent system to two rounds of equilibration: first, a 50-ps equilibration in the

NVT ensemble at 300 K, with a Nosé-Hoover thermostat controlling the temperature;

then, a 450-ps NPT equilibration at 300 K, with the same thermostat and a Berendsen

barostat set to 1 bar.

Following the NPT equilibration, we performed a 10-ns ‘burnout’ simulation

at 300 K with the Nosé-Hoover thermostat to maintain the temperature constant.

The last frame obtained in this procedure is adopted as initial configuration for the
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1-µs production run, which is performed using the same simulation parameters as

the burnout simulation. Based on a manual inspection of the root-mean-squared

deviation (RMSD) of the alpha-carbons from this first frame, we saw that the entire

trajectory was fluctuating around an equilibrium value, and we used the entire 1-

µs of trajectory for the simulation analysis. We used the LINCS algorithm[141] to

constrain all hydrogen-to-heavy-atom bonds in the system and adopted an integration

timestep of 2 fs during both the equilibration and the simulation run. The trajectory

was recorded to file every 100 integration steps (every 0.2 ps), yielding a total of

(106 ps)/(0.2 ps/frame) = 5× 106 frames for analysis.

Building the coarse-grained dynamical model of the anisoptropic Langevin equation,

the LE4PD-XYZ

The LE4PD equation is a coarse-grained (CG) model for the dynamics of

proteins. Each CG unit represents an entire amino acid in the protein’s primary

sequence, with the center located at the position of the residue’s center-of-mass. The

equilibrium configuration of the protein gives the equilibrium length of the connecting

bonds between CG sites, while the site-specific friction coefficient of each amino acid,

ζi in Eq.D.13, is calculated from an extended Stoke’s law as [37]

ζi = 6π(ηwr
w
i + ηpr

p
i ) . (4.7)

Here ηw is the solvent’s viscosity, and ηp is the viscosity in the hydrophobic core of

the protein; rwi is the hydrodynamic radius of the amino acid for the solvent-exposed

surface area, and rpi is the hydrodynamic radius calculated from the area exposed

to the hydrophobic core. The internal viscosity ηp is approximated as related to the
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water viscosity rescaled by the local energy barrier,[43] ηp = ηw exp[< Eint > /kBT ]

with < Eint >≈ kBT the minimal free energy barrier to the local internal motion of

the protein.

Before performing the LE4PD-XYZ analysis, we processed the ‘raw’ MD

trajectory to remove the rigid-body rotational and translational motions. This step

is performed by first selecting the first frame of the simulation as the reference frame

and then centering it at the simulation box’s origin. Concurrently, all the frames

where the protein is broken across the periodic boundaries are made whole. Finally,

all subsequent simulation frames are centered and superimposed to the reference

structure by minimizing the mean-square difference between atomic positions. This

procedure guarantees that six eigenvalues of C and A, which correspond to the rigid-

body translational and rotational dynamics, are numerically indistinguishable from

zero.

Because the spatial coordinates, which describe fluctuations around the mean

value, have zero-mean and because the rigid-body rotational and translational

motions of the protein are removed from the MD trajectory prior to analysis, the

dynamics in the mode space are decomposed into a set of 3N − 6 internal modes,

plus 6 rigid-body modes corresponding to the rigid-body rotational and translational

motions, which are associated with eigenvalues equal to zero.[180] Because the protein

conserves its globular shape during fluctuations, the removal of translation and

rotation is a reasonable approximation, given that the coupling between rotation

and fluctuations is minimized.[181] The eigenvalues of the 3N − 6 modes are ordered

by ascending magnitude, λ1 < λ2 < λ3 < . . . < λ3N−6, with the smallest eigenvalues

different from zero, corresponding to the largest amino acid fluctuation. Finally, since
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C is at least positive semi-definite, and H is also a positive definite matrix, both A

and HA are at least positive semi-definite,[182] which implies that µa, λa ≥ 0, ∀a.

Validation of the LE4PD-XYZ theory

In Section 4.1 we show how the eigenvalues of the PCA model relate to

the eigenvalues and eigenvectors of the LE4PD-XYZ equation when hydrodynamic

interactions and residue-specific friction coefficients are neglected and energy barriers

are not included. Under those approximations, Eq. D.13 is formally consistent

with a Fokker-Planck-Smoluchowski equation, where the dynamics are expressed

as a function of the probability density function.[40, 99] In reference [178], Hinsen

et al. analyze the anharmonicity of protein fluctuations starting from the Fokker-

Planck-Smoluchowski equation, and by modeling with this equation the time decay

of the density fluctuations as measured in neutron scattering experiments. The

theoretical predictions in that study are consistent with the time decay observed

in their simulations. The parameters entering the equation of motion were obtained

by direct comparison with the simulation trajectories. The length of the simulation

is limited to 1.5 ns, during which crossing of large energy barriers is unlikely to occur.

Figure 18 shows a direct comparison between the predictions of the LE4PD-

XYZ for the time decay of the residue fluctuations and the same properties

directly calculated from the trajectory. The parameters entering the LE4PD-XYZ

equation are the amino acid friction coefficients and the energy barriers in the mode

representation, which are calculated as described in Sections 4.2 and 4.3. The mode-

dependent timescale, which defines the decay of the local fluctuations, is simply

rescaled using Kramers’ theory of reaction kinetics and the height of the energy

barrier (see Section 4.3 for details).[183] The agreement is close to quantitative for the
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time correlation functions (tcfs) shown in Figure 18. The observed good agreement

between theory and simulations depends on including the mode-dependent energy

barriers and the hydrodynamic interactions. This observation may seem to be at

odds with the good agreement observed in reference [178] between simulations and

the Fokker-Planck-Smoluchowski equation, where hydrodynamics and energy barriers

are not included. However, in reference [178] the simulation is limited in length to 1.5

ns, while our study simulations are 1 µs long, and during that time several crossing

of high energy barriers may occur.

In Figure 18 we report as an example the decay of the fluctuations for six

individual amino acids along the protein primary structure. The figure shows the

LE4PD-XYZ predictions, with and without hydrodynamic interactions, while the

correction due to the internal energy barriers is included. The agreement between

theory and experiments is close to quantitative. It also shows the predictions of the

LE4PD-XYZ theory without hydrodynamic interactions and without the correction

due to the mode-dependent internal energy barriers; those are the predictions

obtained if one calculates the timescale directly from the eigenvalues of the covariance

matrix, i.e. from PCA. Including hydrodynamics interactions and energy barriers

when modeling the dynamics of polymers is important for the good agreement with

the data. The inclusion or exclusion of the HI contribution modifies the final decay of

the tcfs. In fact, hydrodynamic ensures the correct scaling exponent with time of the

polymer’s long-time dynamics as observed experimentally, for example, in neutron

scattering.[40]
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FIGURE 18. Time decay of the position fluctuation for different residues in the
ubiquitin. The predictions of the LE4PD-XYZ theory with hydrodynamic interactions
included (blue) are compared with the theoretical predictions without hydrodynamics
(red) and with simulations (black). The predictions of the LE4PD-XYZ theory
when hydrodynamic interactions and the mode-dependent internal energy barriers are
both excluded (cyan) correspond to the decay of the fluctuations given by the PCA
eigenvalues. The agreement between the LE4PD-XYZ data, when energy barriers
and hydrodynamic interactions are included, is close to quantitative.
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Contribution of the high energy barriers in the fluctuation dynamics of

proteins detected by the PCA and LE4PD-XYZ Methods

The Langevin equation expresses the time evolution of the protein’s motion by

identifying the forces that act on each amino acid. Those forces define how the

protein’s dynamics evolve in time and include forces between amino acids due to

the intramolecular potential of mean force and long-range interactions mediated by

the solvent. When the Langevin equation represents the dynamics of a protein in

solution, the solvent’s effect enters through a residue-dependent friction coefficient

and the hydrodynamic interaction matrix (see Eq. D.13).

When the hydrodynamic interaction matrix reduces to an identity matrix because

residue-specific friction coefficients and long-range forces mediated by the solvent

are neglected, the time evolution of the protein’s motion follows the covariance

matrix. The latter describes harmonic fluctuations of the amino acids away from their

equilibrium position. Under this approximation, the covariance matrix’s eigenvalues

are the inverse of the ones from the LE4PD-XYZ approach, and define identical

timescales of the dynamics. Thus one may conclude that the dynamics described

by the PCA’s eigenvalues follows a simplified protein’s equation of motion, which

neglects the specificity of the amino acid friction coefficient and the solvent-mediated

amino acid interactions.

The first approximation that one needs to enforce to recover the PCA dynamics

from the Langevin equation is the assumption that all the amino acids in the protein

have identical friction coefficients. The friction coefficient is proportional to the

hydrodynamic radius of the residue, as discussed in Section 4.2. This radius may

vary with the residue’s chemical nature and its location inside the protein’s three-

dimensional structure. It depends on the extent of the surface exposed to the solvent,
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which can change dramatically for different amino acids along the protein’s primary

sequence.[184, 185] Thus, there is no physical motivation to support the adoption of

an identical friction coefficient for all the amino acids in a protein. We show how this

approximation affects the dynamics in Section 4.4.

The second approximation assumes neglecting the hydrodynamic interaction.

The hydrodynamic interaction matrix represents the long-ranged interactions between

amino acids, mediated by the solvent described as a continuum medium.[186] When

describing the rotational and translational dynamics of proteins, it is common

practice to include hydrodynamics effects. However, hydrodynamic contributions

to proteins’ internal motion are, sometimes, neglected. While this may be a

reasonable approximation for very localized motion, such as local vibrations, in

general, hydrodynamic effects are not negligible. The non-local hydrodynamic

coupling of amino acids’ dynamics can alter the time scale of the large-amplitude

fluctuations. We will study in more detail the effect of hydrodynamic interactions on

ubiquitin’s mode fluctuations in Section 4.4.

Building Free Energy Surfaces

An important contribution to the timescale of protein’s fluctuations is the

crossing of high energy barriers in the FES. Note that this contribution is present

even when the hydrodynamic interaction is neglected. The Langevin equation, given

in Eq.4.1, is a diffusive approach that does not explicitly account for energy barriers

along the mode coordinates ~ξa(t) and, like PCA, describes harmonic fluctuations

away from the equilibrium structure. In the absence of hydrodynamics, where the

fluctuations in PCA and LE4PD-XYZ are driven by the same covariance matrix, our
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approach allows one to calculate for each mode, a, the associated free-energy map.

From the free energy surface it is possible to quantify the barriers to transport, thus

obtaining an accurate determination of the kinetics of the conformational fluctuations

in the mode coordinates[4, 48] (see Section 4.3 ).

We calculate the mode-dependent FES from the MD trajectory by projecting

the position vectors into the modes, using the LE4PD-XYZ eigenvectors. In the

absence of hydrodynamic interactions, these are also the PCA eigenvectors. In the

three-dimensional description, it is convenient to write each eigenvector as the sum

of its components along the x-, y-, and z-directions

Q−1
a = Q−1

a,x ⊗ x̂T +Q−1
a,y ⊗ ŷT +Q−1

a,z ⊗ ẑT , (4.8)

with Q−1
a the ath row of the Q−1, which is the matrix of the left eigenvectors of the

product HA. Here Q−1
a,α, with α ∈ {x, y, z} is an element of the 3N × N matrix

describing the projection of the x-, y-, and z-coordinates of each alpha-carbon onto

mode a, while x̂, ŷ, ẑ are the basis vectors in the x-, y-, and z-directions, respectively,

e.g., x̂ = (1, 0, 0)T . The projection of the simulation trajectory using the eigenvector

matrix defined above leads to the mode coordinates along the three spatial directions

ξa,x(t) = (Q−1
a,x ⊗ x̂T )∆~R(t) ,

ξa,y(t) = (Q−1
a,y ⊗ ŷT )∆~R(t) ,

ξa,z(t) = (Q−1
a,z ⊗ ẑT )∆~R(t) .

From these mode vectors, it is possible to build an FES and more easily visualize

the FES by calculating the probability in spherical coordinates. With the mode
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definition in hand, the polar and azimuthal angles of ~ξa are

θa(t) = arccos
(
ξa,z(t)/|~ξa(t)|

)

φa(t) = arctan (ξa,y(t)/ξa,x(t)) ,

with |~ξa| the magnitude of ~ξa. For each mode, we derive the FES by binning

into a 2D-histogram the probability of occupying a given value of θa and φa,

P (θa, φa) =
∫
P
(
|~ξa|, θa, φa

)
d|~ξa| and then performing a Boltzmann inversion of the

probability. The probability distribution in all theoretical calculations is a function

of the three spherical coordinates. However, the graphical representation of the free

energy surface is simplified when omitting the probability as a function of |~ξa|, as

the energy plot reduces to three dimensions. This step is possible because the free

energy as a function of |~ξa| does not present any remarkable feature. Thus, the

total probability can be averaged over the values of |~ξa| without losing important

information. Instead, distinct dynamical pathways are visible in the FES as a function

of the polar and azimuthal angles. Thus, the mode-dependent free energy surface is

conveniently described by the free energy as a function of the θa and φa angles, while

we average over the surface’s fourth dimension, |~ξa|. The free-energy for a given

(θa, φa) pair, as sampled by mode a, reduces to

F (θa, φa) = −kBT ln [P (θa, φa)] , (4.9)

averaged over all the values of |~ξa|. A further discussion of this step is presented in

the Supplementary Material of [51].
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To account for the effects of energy barriers in the decay of the correlations of the

residue fluctuations, such as those shown in Figure 18, the friction coefficient in eq. 4.6

is re-normalized using a Kramers-type approach [46, 67]: ζ → ζ exp [FMAD,a/KBT ],

where FMAD,a = median (|F (θa, φa)−min (F (θa, φa)) |) is an average free-energy

barrier calculated for LE4PD-XYZ mode a using the median absolute deviation

(MAD)[47, 187] from the minimum of energy on the surface. This approach rescales

the diffusive mode timescales as τa = ζ
kBTλa

→ ζ
kBTλa

exp [FMAD,a/KBT ]. Using the

MAD statistic removes any poorly sampled regions of the energy surface when the

calculating the barrier, and using the MAD to rescale the friction coefficients has

previously been shown to be effective in describing the slow-down in the decay of

the M1(t) time correlation function calculated from the LE4PD theory at the 2.5 ns

timescale for ubiquitin,[38] the same protein under study here.

We obtain a free energy map for each mode, which presents a complex landscape,

with minima, maxima, and complex dynamical pathways (see for example Figure

19). In the following, we will study the energetic pathways that emerge from the

LE4PD-XYZ when hydrodynamic interactions are neglected. As mentioned earlier,

the LE4PD-XYZ directly connects with PCA in the ‘free-draining’ limit, where Eq.4.1

is solved while assuming H := I. In that case, the mode solutions and the free energy

maps from both approaches are identical.

Comparing Pathways through the Free-Energy Surface

Figure 19 illustrates the free energy surface (FES) and the kinetic pathways of the

first LE4PD-XYZ/PCA mode, which corresponds to the first non-zero eigenvalue. In

the top two panels (a) and (b) the FES is identical, while the pathways are different.

The FES presents two well-defined minima in energy, one at θa ≈ 75 (deg) and
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φa ≈ 60 (deg) and the second at θa ≈ 100 (deg) and φa ≈ 270 (deg). Superimposed

to the FES are the kinetic pathways of crossing the free energy barriers. Because

the angular coordinate φa, is periodic, there are two possible pathways to connect

the two minima in the free energy surface. Those are calculated using a variant of

the string method,[4, 87] and are reported in the Figure 19a and Figure 19b, top

panels. For the PCA, instead, the path is defined as the linear interpolation between

the most extreme configurations sampled by the simulation[173] and is identical in

the two panels. Interestingly, these paths crossing the energy barriers and the PCA

linear interpolation do not coincide.

The PCA interpolation method gives a pathway that does not quite begin or end

in the minima of the free-energy surface. The path’s extrema capture some less-likely

configurations populated by the fluctuations of the mode around the most probable

configurations. We also observe that the PCA linear interpolation does not follow the

pathway of the energetically-favored barrier crossing. The intermediate states cross

through a low-probability region of the surface and do not travel through the ‘valley’

between the two minima.

Figure 19c presents the superimposed configurations that populate the three

kinetic paths just mentioned. The real-space structures that the molecule experiences

while moving along the two most probable paths of barrier crossing in the FES are

depicted in the left and right panels. The central panel, instead, shows the set of

conformations populating the interpolation path of PCA. The PCA structures, in the

central panel of Figure 19c, show large deformations along the entire alpha-carbon

sequence of ubiquitin. Instead, the two pathways predicted by the LE4PD-XYZ show

that the motion is concentrated in the tail region of ubiquitin.
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FIGURE 19. Free-energy surface for the first LE4PD-XYZ mode, solved for the case
where H := I, so that the LE4PD-XYZ mode solutions are identical to the calculated
PCA modes. The FES in the a) and b) panes are identical. a) The blue-white-red
path is a minimum energy pathway between the two minima, found using the string
method. The yellow-white-magenta path shows the PCA trajectory of the linear
interpolation between the two extreme structures. b) The cyan-white-magenta path
follows a second minimum energy pathway that crosses the periodic boundary at
φ = 0 (deg) = 360 (deg). The PCA linear-interpolation trajectory is identical to the
one in the a) panel. c) The real-space, 3D fluctuations corresponding to each of these
pathways are depicted by the superimposed ubiquitin structures. Each structure is
colored corresponding to the analogously colored image along the pathway.
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A reason for the inconsistency with LE4PD of the interpolation method is its

reliance on the extreme values of ξa(t) = (Q−1∆R)a (t) . Thus, it utilizes only two

samples of ξa(t) to generate a fictitious trajectory for visualization, while the pathway

method used in the LE4PD-XYZ utilizes the entire ξa(t) trajectory to create the FES

and hence the pathways between minima on the FES. And while minima on the

FES and extreme values of ξa(t) tend to be correlated, the extrema of ξa(t) are by

no means guaranteed to represent the configurations of the energetic minima. For

example, Figure 20 shows the projection of ξa(t) onto the FES’s for LE4PD-XYZ

modes 1 and 7 without HI. While the lowest and highest values of ξa(t) are situated

in the FES’s deepest minima, the absolute minimum and maximum of ξa(t) may

not be of the lowest energy. If they were, the locations marked by the colored stars

(maximum and minimum projections of ξa(t)) and triangles (minima of energy) would

superimpose in both cases. Figure 20 also shows that the most extreme projections

of ξa(t) tend to lie outside the deepest minima of the FES. The displacement can

be small, as in the extreme positive projection of ξa(t) for the first mode and in

both the extreme projections for mode 7, or it can be different by a more substantial

amount, as is the case for the extreme negative projection of mode 1. The minima

in the FES and the extrema of the PCA fluctuations may coincide. However, even in

this case, there is no guarantee that the intermediate states in PCA, found using the

interpolation procedure, define an energetically favorable pathway.
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FIGURE 20. a) FES for the first internal LE4PD-XYZ mode. b) Projection of ξa
(green-white-brown markers) onto the two-dimensional FES for a=1. c) FES for the
seventh internal LE4PD-XYZ mode. d) Projection of ξa (green-white-brown markers)
onto the two-dimensional FES for a=7. Green and red stars mark the locations with
the lowest and highest projection of ξa, respectively. Cyan and magenta triangles
mark the locations with the lowest free-energy, subject to the constraint of having
either a negative or positive projection along ξa, respectively.
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How Including hydrodynamics modifies eigenvalues, eigenvectors and

related quantities: a comparison of PCA and the diffusive Langevin

approach of the LE4PD-XYZ

The study reported in the previous section shows that the LE4PD-XYZ approach

identically maps onto the PCA formalism when the hydrodynamic interaction is

neglected because the LE4PD-XYZ eigenvalues and eigenvectors map directly onto

the PCA eigenvalues and eigenvectors. It also shows that the simple interpolation

procedure of PCA portrays an approximate representation of the slow motion, as

the path of the fluctuation may not follow the kinetic pathway of minimum energy

between two energetic minima. Thus, the PCA’s amplitude and pathway of slow

fluctuations can be somewhat inaccurate in representing the most-probable and, likely,

biologically-relevant fluctuations in the protein.

Modifying the forces acting on the protein by including hydrodynamics

interactions modifies the eigenvalues and eigenvectors of the HA matrix product.

This may change the timescale and amplitudes of the slow fluctuations around the

equilibrium configuration. As a first step, we focus on comparing eigenvalues and

eigenvectors with and without hydrodynamic interactions. Note that when we include

hydrodynamic interactions, we also assume residue-dependent friction coefficients,

which are calculated following the procedure described in the Methods section.

Figure 21 shows how the eigenvalues are modified by the inclusion of residue-

specific friction coefficients in the hydrodynamic interaction matrix, and by the

inclusion of the full HI matrix with long-ranged cross interactions and residue-specific

friction coefficients. Given that the mode-dependent timescales are defined as the

inverse of the eigenvalues of the matrix product HA, τa = ζ/(kBTλa), one can see that

including the HI ‘flattens’ the eigenvalues, decreasing the timescale of the lowest-index
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modes, making them faster, and increasing the timescale of the highest-index modes,

making them slower. The theory of polymer dynamics predicts a similar effect: the

scaling exponent of the Rouse modes is modified by the inclusion of the hydrodynamic

interaction leading to the Rouse-Zimm approach, from which the LE4PD is derived.

Including hydrodynamic effects ‘softens’ the eigenvalue spectrum by lowering the

magnitude of the dynamic scaling exponent .[40, 57]
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FIGURE 21. Comparison of the eigenvalue spectrum without hydrodynamic
interaction (black curve), with the ones where the reside-specific friction coefficients
are included, to account for the chemical specificity of each residue (red curve), and
with the eigenvalues resulting from the diagonalization of the product of matrices
containing the full hydrodynamic interaction matrix (blue curve).

Modifying the description of the hydrodynamic interaction is likely to affect the

values of the eigenvectors of the matrix product HA as well. Figure 22 compares

the eigenvector projections into the x-, y-, and z-coordinates, with and without HI,

for the five slowest LE4PD-XYZ modes. Note that the timescales of these modes are

given by the inverse of the LE4PD eigenvalues: including the energy barriers may

modify the modes’ order.
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For the three slowest modes, the eigenvectors are essentially indistinguishable

whether hydrodynamic interactions are included or not; however, differences become

more apparent for modes 4 and 5. Because for a given mode the eigenvector

determines the position and the amplitude of the fluctuations along the primary

sequence of the protein, we expect that the inclusion of hydrodynamics will not affect

the location of the slow fluctuations, but may modify their amplitude.

The direct comparison of the eigenvectors may be affected by the different

ordering of the eigenvalues in the complete (with HI) and approximated (without

HI) formalism, because the ordering of the eigenvectors depends on the ordering of

the eigenvalues. Including the HI can modify the frequency of some mode fluctuations,

thus changing the ordering of those modes. For example, the fluctuation of a

loop could become slower due to the presence of long-ranged interactions once the

hydrodynamics is included. To study possible cross-correlation between modes of

different number, we calculated the overlap matrix, Oab, between the eigenvector of

mode a calculated without hydrodynamics (i.e. in PCA, Qa), and the eigenvector of

mode b calculated with HI included,(i.e. in LE4PD-XYZ, Q′b), as

Oab = Qa ·Q′b . (4.10)

Since each eigenvector is normalized, the overlap matrix has the dimension of the

number of internal modes, squared. For ubiquitin, a protein composed of 76 residues,

3N - 6 = 222 and O is a 222 × 222 matrix. A more in-depth explanation of the

significance of O is given in the Supplementary Material of [51].

Figure 23 shows O, which, overall, has a weakly diagonal structure, indicating

that there is a similarity between the dynamical processes described by both types

of LE4PD-XYZ treatments. However, the trace of O is only 34.8, while a perfect
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a without (black, red, blue) and with

(grey, magenta, cyan) hydrodynamic interactions for the first 5 LE4PD-XYZ modes.
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correspondence between processes would yield a trace of 3N - 6 = 222. For the ten

slowest modes, which are represented by the insert in the up right corner of Figure

23, the overlap between eigenvectors from the two treatments is large, especially

for the three slowest modes and the fifth slowest mode, each of which possesses an

overlap greater than 0.91. Furthermore, from the trace of the overlap matrix we

can calculate the average overlap of the first ten modes, which is 0.75. Subtracting

this contribution from the total trace of 34.8, the remaining 212 internal modes

have an average overlap of 34.8−7.5
212

= 0.13, which is small, indicating little similarity

between the higher-index, fast modes from the two approaches. Thus, including the

hydrodynamic interactions in the equation of motion produces a significant alteration

of the highest index modes, which are fast and have small amplitude. The changes

of the eigenvectors corresponding to the slowest modes appear, instead, to be more

contained, at least for the protein ubiquitin, which is the focus of this study. These

results suggest that we should expect small changes in the FESs corresponding to the

slowest dynamical modes when hydrodynamic interactions are included.

Effect of Including Hydrodynamic Interactions on the position and

amplitude of slow mode fluctuations: a comparison of PCA versus the

diffusive Langevin approach of the LE4PD-XYZ

The previous section of this chapter has shown that there are small but

significant differences emerging in the eigenvalues and eigenvectors when one includes

hydrodynamic interactions in the equation of motion. Thus, the eigenvectors used to

map the simulation trajectory onto the normal modes and build the FES in the PCA

are different from the ones in the anisotropic LE4PD with hydrodynamic interaction.

So, it is likely that including the hydrodynamic interaction will lead to timescales and
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FIGURE 23. Overlap matrix O, defined in Eq. 4.10, between the right eigenvectors
of the LE4PD-XYZ without hydrodynamics and the right eigenvectors of the LE4PD-
XYZ with hydrodynamic interactions included. Overall, there is weak diagonal trend
in this matrix, indicating similarity between the analogous modes in both approaches.
Inset: Sub-matrix of O corresponding to the overlap between the first ten modes from
each LE4PD-XYZ treatment. Scale bar for the overlap between each mode is given
to the right of the plot.

location of fluctuations that are different from the ones measured in PCA. In general,

one may expect the timescales of processes that include hydrodynamic interactions to

be more realistic because their dynamics follow an equation of motion that properly

accounts for the effects of the solvent.

However, in the case of ubiquitin, the eigenvectors of the first two modes are

almost quantitatively identical (see Figure 22) while the corresponding eigenvalues

are modified by the presence of hydrodynamic interactions (see Figure 21). Thus,

we expect the free energy maps for those two modes to be very similar in PCA and

LE4PD-XYZ, while the timescale of fluctuations may be different.

The FES is calculated by mapping the mode ~ξa(t) in polar coordinates, where

~ξa(t) =
∑

iQ
−1
ai ∆~Ri(t) =

∑
i

(
Q−1

(a,x)i∆xi(t) +Q−1
(a,y)i∆yi(t) +Q−1

(a,z)i∆zi(t)
)

. The
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resulting free energy surfaces, F (θa, φa), of the first five LE4PD-XYZ modes are

displayed in Figures 24 and 25. The ordering of the modes in Figures 24 and 25 is

based on the eigenvalues of the HA matrix, which do not include the slow-down in

the mode-dependent dynamics due to the inclusion of free-energy surfaces.

Each mode with HI included is compared directly to the one without, considering

modes that have the highest overlap according to Eq. 4.10. In agreement with Figure

22, the first two modes and the fifth mode in both approaches have striking similar

free-energy surfaces. In contrast, modes 3, 4, and 6 or 7 are quite different, which is

also in agreement with the mode-mode overlap matrix O shown in Figure 23. Note

that mode 6 with HI (LE4PD-XYZ) has the maximum overlap with mode 7 without

HI (PCA), and they will be directly compared.

To analyze the position and amplitude of the local fluctuations along the primary

sequence of ubiquitin, we calculate the total mean-squared fluctuations of the alpha-

carbons, as follows: ∑
i

〈∆~Ri ·∆~Ri〉 =
∑
a

µ−1
a

∑
i

Q2
ia, (4.11)

By isolating the element in the first sum corresponding to mode a and the element

i in the second sum corresponding to residue i in the protein on the right-hand side

of Eq. 4.11 we obtain the definition of the mean-square fluctuations at residue i due

to the process described by mode a, which we will call the mean-squared local mode

lengthscale, LML2
ia:

LML2
ia = Q2

iaµ
−1
a . (4.12)

In the anisotropic formalism of LE4PD-XYZ, 〈∆~Ri ·∆~Ri〉 = 〈∆x2
i 〉+ 〈∆y2

i 〉+ 〈∆z2
i 〉,

and, by partitioning the Qa into its x−, y−, and z−components, the LML2
ia can be
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decomposed into x−, y−, and z−projections:

LML2
ia,x = (Qx

ia)
2 µ−1

a (4.13)

LML2
ia,y = (Qy

ia)
2 µ−1

a (4.14)

LML2
ia,z = (Qz

ia)
2 µ−1

a . (4.15)

The use of the anisotropic LML2
ia provides information on location, amplitude,

and directionality of the localized fluctuations. The LML for the six slowest LE4PD-

XYZ modes are shown in Figures 26 and 27; as previously, the modes with the

highest overlap in LE4PD and PCA are compared directly in each of the subplots

of the figures. Qualitatively, in most of the slowest modes, more specifically in the

first three modes, there is little difference between the mode-dependent location of

the fluctuations predicted whether hydrodynamic effects are included or neglected,

in agreement with what we observed in the eigenvectors (see Figure 22). For these

slow modes, the anisotropy of the fluctuations is not changed; the fluctuations in the

x−, y−, and z−coordinates are the same regardless of the level of theory chosen,

PCA or LE4PD-XYZ.

Note that some modes, such as mode 3, have a FES that is very different if

hydrodynamic interaction is included or not. However, the largest fluctuations are

localized in the same region of the protein’s primary sequence. Although these modes

describe fluctuations in a well-defined regions of ubiquitin (according to Figure 22),

the mechanism of these dynamics maybe quite different, as indicated by the change

in the free-energy landscape.

The situation is different for mode 5, where the anisotropic LML shows differences

in the localization of the fluctuations when the two theories are compared. When
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FIGURE 24. Comparing the three slowest modes without (left) and with (right)
hydrodynamics in the LE4PD-XYZ analysis. Red corresponds to low energy and
blue to high energy; all regions with a free-energy above 5 kBT are ‘masked’ as white.
The scaling of the free energy is the same as that in Figures 19 and 20.
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FIGURE 25. Comparing the three next slowest modes without (left) and with (right)
hydrodynamics in the LE4PD-XYZ analysis. Red corresponds to low energy and blue
to high energy; all regions with a free-energy above 5 kBT are ‘masked’ as white. Mode
7 is swapped with mode 6 in the hydrodynamics treatment because it overlaps more
strongly with mode 6 without hydrodynamics.
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FIGURE 26. Anisotropic LML, LMLαia for the first three LE4PD-XYZ modes, as
ordered by the λa eigenvalues, for the case where hydrodynamic effects are neglected
(black) and with hydrodynamic effects included (red).
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FIGURE 27. Anisotropic LML, LMLαia for the next four slowest LE4PD-XYZ modes,
as ordered by the λa eigenvalues, for the case where hydrodynamic effects are neglected
(black) and with hydrodynamic effects included (red).
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hydrodynamics are included, there are larger y-coordinate fluctuations predicted in

the 50 s loop of ubiquitin not seen when hydrodynamics are neglected. This situation

is seen as well in mode 6, although there including hydrodynamics also increase the

amplitude of the fluctuations in the C-terminal tail in the y- and z-coordinates, and

reduces fluctuations of the Lys11 loop region in the x- and y-coordinates.

Additional changes in the conformational fluctuations described by the two

approaches are observed when examining the transition pathways between minima

on the free-energy surfaces when hydrodynamic effects are either included or

neglected. Figure 28 demonstrates how hydrodynamic effects can alter the predicted

conformational changes along mode-dependent transition pathways. For the slowest

LE4PD-XYZ mode, shown in Figure 28a, there is little change in the free-energy

surface when hydrodynamic effects are included and hence little change in either the

predicted transition pathway between minima or the corresponding conformational

fluctuations undergone by the protein.

However, for higher order modes, where the eigenvectors show disagreement

between the two approaches, the free-energy landscape is strongly modified and we

observe corresponding alterations of the conformational pathways crossing the barriers

between energy minima, and related changes in conformational fluctuations along

those pathways. Figure 28b shows this effect for mode 7 without hydrodynamics

and mode 6 with hydrodynamics (which is the mode with the highest overlap with

mode 7 without hydrodynamics). While the free-energy surfaces look roughly the

same, there are significant differences in terms of barriers along the pathway between

minima and the number of ‘trap states’ along the pathway. Furthermore, mode 7

without hydrodynamics predicts large-scale fluctuations in the C-terminal tail, the

50 s loop, and the Lys11 loop of ubiquitin, while mode 6 with hydrodynamics only
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predicts motion in the C-terminal tail and lower magnitude fluctuations in the 50 s

loop. The motion of the C-terminal tail is quite different in the two modes.

Kinetics of Barrier Crossing in the Mode-Dependent Free Energy

Landscape, calculated by Markov State Models: a comparison of PCA

versus the diffusive Langevin approach of the LE4PD-XYZ

The examples illustrated in the previous section show how examining the

fluctuations predicted from the two different approaches provides important insights

on the relevance of hydrodynamic interaction in the mode decomposition of the

protein dynamics. Here we evaluate the quantitative timescale of the protein

fluctuations by analyzing the dynamics of barrier crossing with a Markov State Model

analysis.

Markov state models (MSMs) are discrete-state master equation used to

determine the kinetics of processes in multidimensional energy landscapes.[49] It

is convenient to simplify the analysis of the free energy surface by mapping the

multidimensional free energy landscape into a set of slow variables in the state space.

Those slow variables are extracted from a time-ordered set of configurations, usually

generated by an MD simulation, using a procedure of dimensionality reduction like

PCA[5, 33, 49]. In the MSM approach, the state space of slow variables from the

simulation is broken into a set of L discrete states. The conditional probability

of transitioning between two of the given states i and j is calculated from the

MD trajectory by sampling it at a properly-selected lagtime, τ . The transition

probability is stored in a transition matrix, T(τ), as Tij(τ). The transition matrix

is diagonalized to obtain a set of eigenvalues and eigenvectors; because T(τ) is

a stochastic matrix, its eigenvalues are bounded from above by 1 and all other
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eigenvalues are of modulus strictly less than 1, according to Perron’s theorem. [95]

Following the same theorem, the first right eigenvector, ψ1, of the transition matrix

is a vector of “1’s”, ψ1 = (1, 1, . . . , 1)T and the first left eigenvector, φ1, is equal to

the stationary distribution of the system, π; φ1 = π.[95, 99]

Using the relationship of T(τ) to the corresponding rate matrix, K(τ), T(τ) =

eK(τ)τ , the eigenvalues λMSM
i (τ) of the transition matrix can be used to find the

timescales, ti, of the dynamic processes described by the MSM[5, 33, 49]:

ti = − τ

ln
(
|λMSM(τ))
i |

) . (4.16)

This definition of the timescale of the transition relies on the Chapman-Kolmogorov

theorem of Markovian statistics.[49] Since the eigenvalues of T(τ) are sorted in

descending order, λ
MSM(τ)
1 = 1 > λ

MSM(τ)
2 > λ

MSM(τ)
3 > . . . > λ

MSM(τ)
L , and

λ
MSM(τ)
1 = 1 corresponds to the stationary distribution. The slowest non-stationary

process described by the MSM corresponds to ψ2 with a timescale t2 = − τ

ln
(
|λMSM(τ))

2 |
) .

Thus, the slowest MSM mode, t2, will give the timescale of barrier crossing in

the free energy landscape. However, as aforementioned, the MSM analysis is more

conveniently applied when the multidimensional free energy landscape is reduced into

three dimensional free energy maps. The dimensionality reduction is often performed

by using PCA normal modes. However, this study has shown that adopting an

anisotropic LE4PD normal mode analysis can give fluctuations that properly include

the effect of the solvent and, thus, are more physically sound.

The LE4PD formalism has the advantage of decomposing the complex dynamics

of a protein in modes that are quasi-linearly-independent. They provide free energy
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landscapes that are dimensionally reduced and whose linear combination reconstructs

the complete dynamics of the protein.

However, the application of the MSM requires the presence of high enough energy

barriers, so that it is possible to separate fast interconverting motions that occur in

the energy wells from the slow transitions due to crossing of barriers between states.

We have observed that while the slowest protein modes have high energy barriers,

and the most local modes have those as well, the intermediate LE4PD modes present

a less structured energy landscape, with not localized high energy barriers.[4] In this

study, the MSM analysis is applicable to the ten slowest dynamical modes. Higher

index modes show a rough free energy landscape, which is well approximated by a

diffusive approach to barrier crossing, such as Kramers equation.[183]

For the slowest LE4PD-XYZ modes, the effective kinetics is determined by

performing the MSM analysis in each mode’s FES in (θa(t), φa(t)) coordinate space.

The second MSM eigenvector, ψ2, separates the FES into macrostates where the

protein rapidly interconverts, while transitions between macrostates are slow. The

trajectories are sampled at a lag time, τ , that is consistent with the Markovian

statistics, as tested using the Chapman-Kolmogorov criteria. In particular, we

adopted a method that use the committor function to identify the top of the transition

barrier and that we proposed in a recent publication.[4] In our method the lagtime τ

in the MSM are selected based on the projection of ψ2 onto the (θa, φa) surface. The

longest lagtime τ for which the maximum and minimum projections of ψ2 were both

located in deep minima on the surface were chosen as the lagtimes for the MSM on

the slow LE4PD-XYZ modes, both with and without HI. This method of selecting

τ effectively places the node of ψ2 at the top of the largest barrier on the (θa, φa)

surface. So, the t2 of the MSM corresponds to the timescale it takes the system to
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move from one minimum on the surface to the other over the barrier. If the kinetics on

the surface follow two-state kinetics, then the locations where ψ2 has a node, discrete

states where ψ2 = 0, and there the committor will equal 0.5,[34, 174] which is the

value for a transition state on the surface.[34, 96] In that case, ψ2 and the committor

give the same information.

Furthermore, for all the MSMs presented here, the number of discrete states

L = 1000, which is selected based on cross-validation analyses[188–190] performed on

the presented MSMs. T(τ) is constructed using the reversible, maximum likelihood

estimator given in [94]. An in-depth example of how the MSM is constructed for

LE4PD-XYZ mode 7 is given in the Supplementary Material of [51].

Table 1 shows the timescales for the slowest-occurring processes in the

(θa(t), φa(t))-space for the ten slowest LE4PD-XYZ modes, when hydrodynamic

effects are included and when the HI contributions are neglected. For the LE4PD-

XYZ with HI, the two slowest modes, as predicted by the MSM, are modes 1 and 4,

which correspond to high-amplitude motions in the the C-terminal tail and the Lys11

loop of ubiquitin occurring over a timescale of 8.0 and 6.4 ns, respectively.

Table 1 also shows the lagtimes and the slowest timescales from a MSM

constructed on the two-dimensional FES of the ten slowest LE4PD-XYZ modes

without HI, which would correspond to PCA. Qualitatively, the timescales for the

slow modes without HI are similar to those with HI. One exception is mode 4, which

is predicted to occur on a much faster timescale when HI are neglected, likely due to

the lack of motion in the C-terminal tail compared with the same index mode when

HI is included. Also, mode 8 without HI occurs on a timescale that is too fast to

be modeled with an MSM. Finally, without HI, the LE4PD-XYZ method predicts

the slowest mode is mode 7 with a timescale of 7.4 ns. Mode 7 describes motion
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TABLE 1. Lagtimes, τ , and predicted timescales of the slowest process from the
MSM, t2, (both in ns) of the ten slowest LE4PD-XYZ modes with and without
hydrodynamic interaction included.

(w/ HI) (w/o HI)
Mode t2 (τ) , ns t2 (τ), ns

1 8.0(3.2) 6.5(2.8)
2 3.7(1.1) 4.6(1.5)
3 4.3(2.5) 4.3(2.0)
4 6.4(4.0) 1.0(0.3)
5 5.8(4.0) 5.5(4.9)
6 3.3(1.0) 3.1(2.0)
7 3.6(2.0) 7.4(3.0)
8 0.6(0.2) —(—)
9 0.3(0.1) 1.3(0.5)
10 0.4(0.1) 0.4(0.2)

almost exclusively in the 50 s loop of ubiquitin. Although slightly faster than the

10 ns timescale predicted for a similar dynamics in the isotropic LE4PD theory,[4]

nevertheless the qualitative result is the same, in that there is a single, slow mode

that isolates the slowest dynamics in the 50 s loop of ubiquitin. The LE4PD-XYZ

theory predicts that this characteristic motion of the 50 s loop is split between modes

6 and 7, which is why the approach with HI does not select this motion as the single

slowest mode (Figure 27).

Thus, it is interesting to notice how the inclusion of the hydrodynamic interaction

modifies both the energy maps and the timescales of fluctuations as measured

by Markov State Model analysis. Furthermore, the slow modes identified by the

anisotropic LE4PD and PCA display a dynamics in the 50 s loop of ubiquitin, which

is in agreement with the results of the isotropic LE4PD equation,[4] while the LE4PD-

XYZ with hydrodynamics identifies as the slowest fluctuation the dynamics in the
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C-terminal tail of ubiquitin, which is the second slowest motion, as identified by the

isotropic LE4PD. [4]

Comparing the timescales predicted by the decay of the mode time

correlation function

A common method used to calculate the timescales for the decay of the PCA

modes is the integration of the time correlation function for each mode,[167, 169]

defined as:

τautocorra =

∞∫
0

〈ξa (t) ξa (0)〉
〈ξa (0)2〉

dt. (4.17)

This approach gives the decorrelation time for any arbitrary stochastic

process.[191] In practicality, the upper limit of the integral is taken to be the lagtime

t where the autocorrelation function hits 0 for the first time.[167, 169] If the process

is characterized by a single exponential decay, then

〈ξa (t) ξa (0)〉
〈ξa (0)2〉

= e
− t

τautocorra .

However, in general, for PCA (or LE4PD) modes calculated from a long equilibrium

MD simulation of a folded protein, such as the 1-microsecond simulation analyzed

here, the relaxation spectrum of the mode autocorrelation function will be more

complicated than single exponential.[192, 193] Thus, τautocorra will give an averaged

value of the timescale, which includes many relaxation processes.

Using the slowest timescale from the MSM constructed on the (θa, φa) surfaces

also estimates the slowest timescale process of each ξa(t), but makes the assumption

that the kinetic process is Markovian. In general, we do not expect for the two

timescales to be identical.
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Here, the timescale τautocorra is compared to the previously estimated mode-

dependent timescales, namely the t2 from the MSM (along with the MSM lagtime,

τMSM, used to generate the associated MSM) and the diffusive τa timescale from

the LE4PD-XYZ equation of motion, for the ten slowest LE4PD-XYZ modes, either

without (Table 2) or with (Table 3) hydrodynamic interactions included. For all

the modes shown here, the τa calculated from the equation of motion 4.6 are lower

bounds to t2 and τautocorra , as expected since the τa do not account for free-energy

barriers along the mode coordinate. In general, for the slowest modes, the timescales

calculated using either the MSM or the autocorrelation function are in reasonable

agreement, especially for modes 1, 3, and 5 without HI and modes 1, 4, and 5 with

HI.

The main discrepancies arise for modes 8 through 10 in both cases, which are

the modes where the MSM starts to become less effective and the dynamics approach

a regime where the crossing of energy barriers in the (θa, φa) surfaces becomes more

diffusive due to the rough free-energy landscape.[4] For mode 7 without HI and modes

6 and 7 with HI, which all describe the slow motion in the 50 s loop of ubiquitin,

the autocorrelation function relaxes more slowly than the timescale predicted by the

MSM. In this case, the difference is likely due to the methodology used to parameterize

the MSMs, where the lagtime of the MSM τ is selected such that the slowest timescale

of the MSM describes transitions between the minima on the surface. In fact the mode

trajectory samples not only transitions between the minima but also rare dynamics in

the highest energy regions of the surface. These rare events may occur over even longer

timescales. Since the autocorrelation function of ξa accounts for all the processes

occurring, τauotcorra inherits this information and reports longer timescales than the

MSM, in general.
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TABLE 2. Timescales for the first ten LE4PD-XYZ mode without hydrodynamics.
Barrier-free timescales predicted from the LE4PD-XYZ equation, τa; the slowest
process of the Markov state model, t2 (with the lagtime of the Markov state model,
τ , given in parentheses next to t2); and the de-correlation timescale, τautocorra , from
intergrating the normalized autocorrelation function of the LE4PD-XYZ modes. All
timescales are in ns.

Mode τa, ns t2 (τ), ns τautocorra , ns

1 2.51 6.5(2.8) 9.2
2 1.17 4.6(1.5) 10.2
3 0.52 4.3(2.0) 9.0
4 0.24 1.0(0.3) 5.5
5 0.16 5.5(4.9) 8.5
6 0.15 3.1(2.0) 4.2
7 0.11 7.4(3.0) 44.9
8 0.09 –(–) 2.0
9 0.08 1.3(0.5) 5.5
10 0.06 0.4(0.2) 7.1

TABLE 3. Timescales for the first ten LE4PD-XYZ mode with hydrodynamics.
Barrier-free timescales predicted from the LE4PD-XYZ equation, τa; the slowest
process of the Markov state model, t2 (with the lagtime of the Markov state model,
τ , given in parentheses next to t2); and the de-correlation timescale, τautocorra , from
intergrating the normalized autocorrelation function of the LE4PD-XYZ modes. All
timescales are in ns.

Mode τa, ns t2 (τ), ns τautocorra , ns

1 0.92 8.0(3.2) 9.8
2 0.46 3.7(1.1) 13.8
3 0.20 4.3(2.5) 10.7
4 0.15 6.4(4.0) 6.0
5 0.11 5.8(4.0) 11.7
6 0.10 3.3(1.0) 31.1
7 0.096 3.6(2.0) 15.7
8 0.057 0.6(0.2) 3.1
9 0.054 0.3(0.1) 2.0
10 0.051 0.4(0.1) 8.4
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Discussion and Conclusions

Large-scale, anisotropic fluctuations in protein dynamics are important as they

lead to rare conformational transitions, which are deemed to be relevant for protein

folding, and, more generally, for the protein’s biological function.[92, 194] A popular

method to select these large fluctuations is a Principal Component Analysis or

PCA.[166] In an MD trajectory, PCA identifies collective fluctuations, which are

ordered by their decreasing amplitude, from the most extended to the smallest

amplitude. While PCA is both computationally convenient and conceptually simple,

it lacks a physical basis beyond the empirical observations that it describes some

large-scale, collective motions, functional for the protein.[26, 164, 168]

In this study, we revisit the PCA formalism and formally connect it to a Langevin

equation of motion, which was developed to identify slow dynamical modes and study

their kinetics in protein dynamics, called the Langevin equation for protein dynamics,

or LE4PD.[4, 37, 38, 48, 57, 67] Like the PCA, the LE4PD decomposes the protein’s

motion into an orthogonal set of collective coordinates or modes.

To make a formal connection with PCA, the original LE4PD was extended in this

study to describe the anisotropic fluctuations around an average structure. We call

this formalism the LE4PD-XYZ. This equation of motion, which is solved analytically

into eigenvalues and eigenvectors, captures the anisotropic slow fluctuations of a

protein’s alpha carbons, starting from the analysis of the atomistic MD trajectory.

The LE4PD-XYZ is a first-principles approach, which allows us to formally connect

fluctuations to the different force contributions that model proteins’ dynamics. In this

way, the LE4PD-XYZ can be viewed as a powerful equation of motion to accurately

describe the dynamics of proteins in solutions.
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The LE4PD-XYZ is a coarse-grained approach to protein dynamics and describes

the slow fluctuations of the alpha-carbons’ coordinates for each residue. All

the residues are modeled as interacting via a harmonic potential of mean force,

which is built using the covariances of each residue, as calculated from an MD

simulation. This anisotropic equation of motion for the fluctuations of the amino

acids’ positions (Eq.4.1) is diagonalized into a set of equations describing the

independent, uncorrelated LE4PD-XYZ normal modes (Eq. 4.6).

This study shows that the anisotropic Langevin equation for protein dynamics,

or LE4PD-XYZ, becomes formally equivalent to an equation of motion guided by

the forces in the covariance matrix. Thus the LE4PD-XYZ is equivalent to a

Principal Component Analysis approach, but only when two specific approximations

are adopted. The first approximation is that the equation-of-motion disregards the

hydrodynamic interaction, i.e. that there is no correlation in the dynamics of the

amino acids caused by the presence of long-ranged interactions mediated by the

solvent. This is the so-called “free-draining” limit. The second approximation

is that every amino acid in the protein has identical friction. Only when these

two approximations are enforced, the fluctuations identified by the PCA become

identical to the ones modeled by a diffusive equation of motion. Unfortunately,

these approximations are in general not justified, even if they are frequently

adopted. Including solvent-mediated interactions is important when one models

protein dynamics in an effective medium. And this study shows, specifically, that

hydrodynamic interactions modify the dynamics of the protein, and importantly the

timescales of the slow modes. Likewise, the degree of exposure to the solvent of

each amino acid, and their unique friction, affects the timescale of the amino acids’

dynamics and their fluctuations.
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While the dynamics of protein is anharmonic, the Langevin formalism and PCA

both rely on the harmonicity of the fluctuations, which is a valid approximation only in

the proximity of the folded state. This approximation is common in many structural

approaches such as the Gaussian Normal Modes method.[70, 71, 195] However, in

the LE4PD approach the anharmonic fluctuations are identified through a procedure

that maps the simulation trajectory onto its mode-dependent two-dimensional free

energy landscapes. This convenient procedure of variable reductions allows one to

study the dynamics of the protein in separated modes. For each mode, one can study

the position, amplitude, and timescale of the fluctuations that are important for the

biological function.[4]

The eigenvalues of the LE4PD-XYZ define an ‘original’ timescale, which is

corrected by the analysis of the mode-dependent FES to include the slowing down of

the dynamics due to the presence of high energy barriers. The corrected timescale

is then calculated either from a Markov State Model analysis of the FES, or from

the integral of the time-correlation function of the modes, which is a procedure often

used in the PCA.[169]

The study applies the LE4PD-XYZ method to a 1-µs simulation of ubiquitin

and compares the results with an analysis performed using the Principal Component

Analysis method. The comparison between the timescale from the eigenvalues, and

the more realistic timescales measured by applying a Markov state model analysis

to the mode-dependent free energy maps, after identifying the leading transition

pathways for these fluctuations, show the relevance of the energy barriers in measuring

the kinetic timescale of fluctuations (see for example Tables 1, 2, and 3).

Interestingly, the decay of the time-correlation function of the mode coordinates,

which is the procedure often used to calculate the timescale in PCA, is qualitatively
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consistent the more elaborate Markov state model analysis of the slow pathways

in the LE4PD-XYZ free energy maps. This result confirms the need to include both

barrier crossing and the hydrodynamic interaction in a Langevin description of protein

dynamics.

Furthermore, when we examined the effect including hydrodynamics on the

predicted mode-decomposition of the dynamics, we observed that some, but not all,

of the slowest modes are little changed. However, the introduction of hydrodynamic

interaction has important effects on the faster modes, which are involved in local-scale

processes of the proteins, for example in chemical reactions.

Specifically for ubiquitin, we observe that the slowest LE4PD-XYZ modes predict

timescales between 300 ps and 8 ns, roughly in-line with those predicted in an early

study of the same system using the isotropic LE4PD.[4] In contrast, the anisotropic

LE4PD-XYZ approach is not able to isolate the slow fluctuations of the 50 s loop

of ubiquitin, seen in mode 9 by the isotropic approach. The anisotropic description

separates into the directional contributions this slow dynamics. However, when the

HI is neglected one can again detect the unidirectional, slow fluctuation of the 50 s

loop.

For ubiquitin, both the LE4PD-XYZ and PCA identify slow fluctuations and

large-amplitude motion in the C-terminal tail region. It is known that the tail of

ubiquitin is involved in many of the protein’s binding events to substrates, both

covalent [52, 75] and non-covalent .[78] The wide range of possible conformations

that are available for the binding of the tail may be important for the protein to

discriminate among different possible reaction substrates. Thus, in line with the

conformational selection hypothesis,[10, 11] the large number of modes dedicated

to describing motion in the C-terminal tail may indicate the opportunity for the
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protein to follow different transition pathways in the mechanism of binding to different

substrates.

In conclusion, we have presented here the formalism for an anisotropic Langevin

equation, the LE4PD-XYZ, that describes the motions of a protein in terms of a set of

orthogonal normal modes and used it to analyze a 1-µs MD simulation of the protein

ubiquitin. This approach coarse-grains the dynamics of the protein at the level of the

protein’s amino acids and accounts for the hydrodynamic interaction (HI) between

amino acids as well as free-energy barriers along each of the LE4PD-XYZ modes.

When HI, the specificity of each amino acid’s friction coefficient, and free-energy

barriers are neglected, the LE4PD-XYZ approach maps exactly onto the analogous

PCA (in the sense that the dynamics is described by the same set of eigenvalues and

eigenvectors). The inability of PCA alone to describe the dynamics correctly (unless

hydrodynamics and energy barriers are included in the related equation of motion)

is highlighted in Figure 1, where the time correlation function calculated from the

simulation is compared with the mode-dependent decay of the PCA eigenvalues and

displays a clear disagreement, with the correlation functions predicted from the PCA

modes decaying too quickly relative to the correlation functions calculated from the

simulation trajectory.

This study shows that the inclusion of the HI modulates the location and

amplitude of the predicted fluctuations (Figures 22, 26, 27), eigenvalues (Figure 21),

free-energy surfaces (Figure 24, 25, 28), and timescales (Table 1). Finally, we have also

shown how including free-energy barriers causes the dynamics predicted by the slow

LE4PD-XYZ modes without HI to be different from those predicted by the analogous

PCA (Figures 19, 20). These results demonstrate the importance of considering

both hydrodynamic effects, with specific friction coefficients, and energetic barriers to
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transport when analyzing the equilibrium dynamics of ubiquitin about its folded state.

Only by including these effects the time correlation functions that define the decay

of local correlations quantitatively reproduce the decay measured in the atomistic

simulations.

Bridge

This chapter has developed an anisotropic extension of the original, isotropic

LE4PD method [37, 38] by writing the Langevin equation in terms of the body-

centered frame and using the deviations of each alpha-carbon in the protein as the

relevant variables. This approach, termed the LE4PD-XYZ method, generates a set

of collective coordinates identical to a principal component analysis (PCA) performed

on the alpha-carbon degrees of freedom when 1) long-ranged hydrodynamic effects

are neglected, 2) all the friction coefficients are assumed to be uniform and equal to

the average friction coefficient of each amino acid, and 3) energetic barriers along the

mode coordinates are ignored.

However, although the collective coordinates generated by the LE4PD-XYZ and

PCA are identical in the case where hydrodynamics effects and residue-specific friction

coefficients are neglected, PCA ignores energetic barriers along these collective modes,

which the LE4PD-XYZ takes into account by generating a mode-dependent free-

energy surface in a manner analogous to that done for the isotropic LE4PD, [38]

even when hydrodynamic effects and residue-specific friction coefficients are not input

to the model. These free-energy surfaces can significantly affect the interpretation

of the predicted dynamics for the slow LE4PD-XYZ modes compared to the linear

interpolation procedure [173] frequently used to interpret the motions described by

the principal components.

125



Furthermore, it was shown that inclusion of the hydrodynamic interactions is

necessary to model effectively the residue-residue autocorrelation functions calculated

directly from the simulation even though hydrodynamic effects do not significantly

alter the structure of the eignevectors of the slowest LE4PD-XYZ modes. We also

couple the LE4PD-XYZ and MSM approaches to model the kinetics and dynamics

of the slow LE4PD-XYZ modes in a manner analogous to that done for the isotropic

LE4PD method [4] and find that the LE4PD-XYZ is also able to extract the slow

motions of ubiquitin in the C-terminal tail, 50 s loop, and Lys11 loop. However, the

LE4PD-XYZ analysis splits the dynamics of the 50 s loop into two modes, so there

is no single, slow mode describing the conformational fluctuations of that loop.

Next, both the isotropic LE4PD and the anisotropic LE4PD-XYZ methods

are compared to the results generated by a time-lagged independent component

analysis (tICA) of the same 1-microsecond simulation of ubiquitin. tICA is a type

of independent component analysis that selects the most slowly decorrelating set of

collective motions from the input coordinates or ‘features.’ [30, 31] For the ubiquitin

trajectory, this approach compresses the slow dynamics from all three flexible regions

of ubiquitin into a single mode, but does not necessarily select any slow motions not

captured by either the LE4PD or LE4PD-XYZ analyses. Re-constructing the residue-

residue correlation function this chapter using the tICA modes also gives a poorer

comparison to the simulation compared to the reconstruction using the LE4PD-XYZ

modes.
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Mode 7 
50 s loop

Mode 7 Mode 6 

FIGURE 28. Comparing the mode-dependent fluctuations along a path in the free-
energy surface for the slow LE4PD-XYZ modes when hydrodynamics are neglected
(left), which is equivalent to PCA, or included (right) for a) LE4PD-XYZ mode
1 and b) LE4PD-XYZ mode 7 without HI (left) and mode 6 with HI (right).
Representative structures of ubiquitin for each image along the pathway are given
below the corresponding free-energy surface, with the colors of the structure identical
to the corresponding image along the pathway.
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CHAPTER V

COMPARING THE SLOW DYNAMICS IN UBIQUITIN PREDICTED BY THE

LE4PD, LE4PD-XYZ, AND TIME-LAGGED INDEPENDENT COMPONENT

ANALYSIS METHODS

From Beyerle, E. R. and Guenza, M.G. Identifying the leading dynamics of

ubiquitin: a comparison between the tICA and the LE4PD slow fluctuations in amino

acids’ position, submitted to J. Chem. Phys.

Large-scale fluctuations and global structural rearrangements play an essential

role in the biological functions of biopolymers. Processes such as DNA transcription

and replication involve the self-assembly of large multiprotein complexes that

spontaneously form through step-by-step processes where binding of proteins is

facilitated by the molecular flexibility and global scale rearrangements of the

macromolecules comprising the overall structure.[6] At the single molecule level,

folding of the proteins to their most probable conformation involves large-scale

molecular fluctuations and slow global structural rearrangements of the protein

conformation guided by cooperative dynamics.[196–199] These slow, large-scale,

dynamical transitions drive the global biological processes that are important for

the protein’s biological function. [22, 23, 26, 27, 29, 70, 200, 201]

Molecular dynamics (MD) simulations of proteins in solvent are a powerful

method to identify fluctuations and investigate the role that the chemical structure, or

primary sequence, of a protein play in multiscale dynamics. However, the information

contained in the simulation trajectory is difficult to analyze because dynamical

processes are often coupled on multiple lengthscales. Therefore, it is crucial to devise

statistical procedures that conveniently separate the multidimensional trajectory of a
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simulation into a set of independent dynamical processes that, when added together,

form the observed data. These different contributions should be as independent

as possible to be able to analyze and classify their dynamical response separately.

Traditionally, this issue has been addressed by adopting statistical tools from signal

processing to extract from a noisy response the most critical information, which is

usually a slowly fluctuating signal or a collection of slowly fluctuating signals.

A widely used analysis method for simulation trajectories is the principal

component analysis or PCA method, based on the definition of a covariance matrix

of the selected variables. [163] Correlation is a linear association measure, and

uncorrelated processes are defined as having the cross terms in the covariance matrix

equal to zero. However, independent processes and uncorrelated processes are

different from the mathematical point of view. Independent processes are defined

as having a joint probability distribution that can be separated into a product of

individual distributions.[202] In practice, linearly uncorrelated processes identified

using the covariance method are not always independent.

A recent study of ours on the analysis of proteins’ MD trajectories has shown that

slow processes identified by PCA often follow a pathway that is different from the most

probable path of barrier crossing for the dynamical process.[51] This is not surprising,

given that the kinetic paths of fluctuations in proteins are largely nonlinear, and it

is unlikely for the linear processes of PCA to capture them. Furthermore, PCA is

primarily based on the protein’s structure and does not explicitly provide information

on the time-dependent phenomena unless it relates to an equation of motion.[51, 203,

204]

To overcome the shortcomings of the PCA procedure in the study of the kinetics

of large-scale protein fluctuations, it was proposed to use the time-lagged independent
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component analysis or tICA. [30, 31, 205] In this time-dependent version of ICA, the

dynamics of proteins are separated into mode signals that are uncorrelated at both

zero lag time and a specific lag time of interest, τtICA, at which time the extracted

modes also possess their maximal autocorrelation.[50] These constraints on the tICA

substitute for the stringent independence criteria normally required from an ICA,

with the independence at τtICA substituting for independence of nonlinear zero-lag

correlations, [202] while allowing efficient temporal separation of the underlying

mode dynamics.[30, 31, 202, 206] When paired with Markov state modeling of

the kinetic of transition between modes, tICA accurately detects dominant slow

modes of motion[31, 84], the tICA modes has been used as variationally-optimal

collective coordinates for enhanced sampling in metadynamics.[207, 208] Interestingly,

while tICA remains a rigorous statistical analysis of the multidimensional simulation

trajectory, it still doesn’t provide a physical interpretation of the slow dynamics or the

connection between slow motions and protein’s atomistic structure and interactions.

That is, the degrees of freedom or ‘features’ input to the tICA are chosen based on

their ability to predict the slowest dynamics, but are not necessarily connected to an

equation of motion for describing the time evolution of the input coordinates.

A similar approach to tICA is the Relaxation Mode Analysis (RMA) by Takano

and coworkers.[32, 203, 209, 210] Both RMA and tICA maximize the time-dependent

correlation matrix of the fluctuations at a given lag time, τ , and at an initial time,

t0, while dynamics faster than t0 is averaged out.[32] The difference between the two

is that RMA calculates the covariance matrix at a time t0 6= 0, while tICA is a

particular case of RMA, where t0 = 0.[32] The RMA has also some similarities with

our LE4PD approach, described below, as both accurately model with a Langevin
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equation of motion the slow dynamics of the protein, even if the details of the two

dynamical equations are different.

In recent years, the Guenza group has developed a coarse-grained protein

dynamics representation called the Langevin Equation for Protein Dynamics or

LE4PD.[37, 38, 48, 51, 57] The LE4PD is a powerful method that identifies the slow

dynamical processes in a simulation trajectory of proteins in an aqueous solvent.

The LE4PD separates the dynamics sampled in a long MD simulation, or in a

set of short MD simulations, into a set of diffusive normal modes that are largely

independent. The LE4PD approximately accounts a posteriori for the nonlinearities

in the dynamics through the construction of free-energy landscapes for each mode and

the rescaling of the timescale of barrier crossing via Kramers’ theory.[4, 38, 51] These

modes directly depend on real-space information, as the dynamical picture relates

to each aminoacid’s local friction, the water’s viscosity, the potential of mean force,

and the internal energy barriers. For each mode, the LE4PD provides a free energy

landscape where one can identify the pathways of local fluctuations. Relaxation

dynamics predicted by LE4PD have been shown to be accurate when compared with

experimental data of T1, T2, and NOE NMR relaxation,[38, 57] as well as to short-

time Debye-Waller factors from X-ray scattering experiments.[37]

While the LE4PD formalism is based on the physical representation of the

dynamics of a polymer in solution, as defined in the famous Rouse-Zimm dynamical

equation,[40, 46, 211] to describe the dynamics of a protein in solution the

Rouse-Zimm approach has been modified in the LE4PD, which includes physical

characteristics that are specific of folded proteins: typically i) inside the hydrophobic

core of a protein, where atoms are not exposed to the solvent, the hydrodynamic

interaction is screened, but atoms still experience friction, and ii) molecular
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rearrangements of the protein during fluctuations involve the crossing of energy

barriers that play a major role in protein dynamics and folding.

Recently, the LE4PD has been extended to treat anisotropic fluctuations of the

alpha-carbon sequence, in the so-called LE4PD-XYZ approach. Beyerle et al.[51]

have shown that LE4PD-XYZ directly maps on the PCA model and thus it provides

PCA with a related equation of motion when hydrodynamic interactions and residue-

dependent friction coefficients are neglected. For each slow mode, the LE4PD-XYZ

identifies a mode-dependent free-energy barrier and the pathway of the non-linear

fluctuations, indicating that those barriers are important in defining the correct

timescale of the PCA slow modes.

In this study we move another step forward and compare the timescale of

fluctuations for the slow modes measured by tICA and the ones described by the

LE4PD-XYZ. With this goal in mind, we analyze several possible procedures to

identify an “optimal” tICA lag time, and directly compare the predictions of tICA’s

slow-modes fluctuations (i.e. location along the primary sequence, amplitude, and

timescale) with the ones predicted by the LE4PD. The question we aim to address is

if a Langevin-mode decomposition can be effective in isolating the leading dynamical

processes from a protein trajectory. While the tICA modes are designed for this

purpose, contrary to the LE4PD modes, they do not have associated a formal

equation of motion, which could be used to perform simulations of the protein

in a reduced ensemble. We observe that both methods identify the same slow

relevant motions when analyzing an extensive, 1-µs long MD simulation of the protein

ubiquitin in a solution of sodium chloride at physiological conditions, albeit the

two methods partition the dynamics into different quasi-independent modes from

the decomposition of the trajectory. When directly compared, the time correlation
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functions (tcfs) described by the LE4PD-XYZ are in almost quantitative agreement

with the simulations, while the tcfs calculated using the optimal tICA description

appear to be in less quantitative agreement.

The Langevin Equation for Protein Dynamics (LE4PD)

Isotropic LE4PD

We start by briefly reviewing the LE4PD approach in its isotropic and anisotropic

versions. In recent years we have developed a coarse-grained model to describe

protein fluctuations in the amino acid positions, called the Langevin Equation for

Protein Dynamics (LE4PD). The approach has been extensively presented in several

publications, so that we only briefly discuss it here.[4, 37, 38, 48, 57, 67] LE4PD

projects the MD trajectory of a protein onto the slow coordinates of the alpha-carbon

of each residue represented by the vector ~R(t). It models the time evolution of these

coordinates using an overdamped Langevin equation, where the residues interact

through the potential of mean force, defined by the matrix Ujk = 〈~li · ~lj〉/〈|~li|〉〈|~lj|〉.

Here ~li = ~Ri+1 − ~Ri is the bond vector between residue i and residue i+ 1 along the

protein’s primary sequence and the bracket defines the statistical average over all the

trajectory’s conformations. The dynamics is guided by the intramolecular potential

of mean force (matrix A, which defines the potential of mean force in the set of ~R

coordinates) and hydrodynamic interactions, as well as the random forces generated

by the collisions with the surrounding solvent. Thus, the propagation in time of

the protein’s dynamics follows a Langevin equation that in the α-carbon coordinates

reads:

d ~Ri(t)

dt
= −3kBT

l2ζ

N∑
j=1

N∑
k=1

HijAjk ~Rk(t) +
~Fi(t)

ζ
, (5.1)
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where kB is the Boltzmann constant, T is the temperature of the protein-solvent

system, l2 is the mean-square bond length between alpha-carbons, ζ is the average

amino-acid friction coefficient, and Hij describes the hydrodynamic interaction

between residues i and j. ~Fi(t) is a random force modelling the effect of solvent

collisions with the protein, and obeys the following fluctuation-dissipation theorem:

〈~Fi(t) · ~Fj(t)〉 = 6ζkBTδij. The transformation from bead to bond coordinates

effectively removes the global center-of-mass translation.

The LE4PD takes into account hydrodynamic effects and the chemical specificity

of each residue in semiflexibility and friction coefficient. Diagonalizing the LE4PD

leads to a Langevin equation of motion in a set of quasi-linearly independent, diffusive

normal modes. Eq. (5.1) is solved using the eigenvalue decomposition of the HA

matrix product, Q−1HAQ = Λ,

d~ξa(t)

dt
= −3kBT

l2ζ
λa~ξa(t) +

~Fa(t)

ζ
, (5.2)

with ~ξa(t) =
∑

i (Q
−1)ai

~Ri(t) the ath LE4PD mode, and ~Fa(t) the random force vector

transformed into the normal mode coordinates. The equation of motion, Eq. 5.1, can

be written as a function of the bond vector coordinates, ~l, thus uncoupling the center-

of-mass translation from the internal dynamics of proteins. The two approaches

yield equivalent information; however, for all the isotropic LE4PD results presented

here, our analysis starts from the bond vector basis, ~l. In the LE4PD formalism

in bond coordinates, the first three modes represents the rotational dynamics of the

protein, while modes with index higher than three describe the internal dynamics of

the protein.[38] Since, in this study, we are interested only in describing the internal

dynamics of a protein, we ignore the three isotropic LE4PD rotational modes, and,
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when referring to isotropic LE4PD mode a, we implicitly mean isotropic LE4PD

internal mode a.

Free-energy maps in isotropic coordinates and measuring fluctuation timescales

Each mode is associated with a free energy map describing mode-dependent

local fluctuations of the aminoacids at specific locations along the protein’s primary

sequence (see Figure 29). The maps are constructed as follows: each isotropic LE4PD

mode is a linear transformation of the amino acid position vectors,

~Ri(t) = (Ri,x(t), Ri,y(t), Ri,z(t))
T ,

through the eigenvector matrix Q−1, giving a mode vector with x−, y−, and

z−components:

~ξa(t) = (ξa,x(t), ξa,y(t), ξa,z(t))
T .

For each LE4PD mode one can construct a free-energy surface in spherical

coordinates, using the x−, y−, and z−components of ~ξa(t) as

θa(t) = arccos

(
ξa,z(t)

|~ξa(t)|

)
(5.3)

φa(t) = arctan

(
ξa,y(t)

|ξa,x|

)
(5.4)

F (θa, φa) = −kBT ln [P (θa, φa)] . (5.5)

In Eq. (5.5), the dependence on the radial coordinate |~ξa(t)| is averaged over to obtain

the joint probability used in the definition of F (θa, φa):

P (θa, φa) =

∫
P
(
|~ξa|, θa, φa

)
d|~ξa|.
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To each mode is associated an energy map with a complex energy landscape where

fluctuations have defined pathways, with characteristic amplitudes and timescales.

From the linear combination of all the modes one can reconstruct the overall dynamics

of the protein and its time correlation functions.[4, 38, 48, 57, 67, 212] Among these

LE4PD modes one can identify and separate the slow, important motions of the

protein based on their timescale. However the information of each mode is retained

during the whole process.

Anisotropic LE4PD or LE4PD-XYZ

The isotropic LE4PD model has recently been extended to the related

anisotropic formalism, called the LE4PD-XYZ method or anisotropic LE4PD. When

hydrodynamic interactions are neglected, the friction coefficient is assumed to be

identical for all aminoacids, and the internal energy barriers are neglected, the

LE4PD-XYZ directly maps onto the PCA. Under these approximations, the force

matrix in the Langevin equation is the inverse of the covariance matrix for the alpha

carbon coordinates (special care needs to be taken when taking the inverse of the

covariance matrix, as six eigenvalues are equal to zero after translation and rotation

have been removed). Thus, we have shown that the LE4PD-XYZ and the PCA have

identical eigenvectors and inverse eigenvalues when the above conditions are satisfied.

The first step in developing the anisotropic LE4PD is to define as the leading

variables the deviations of the position of the protein’s alpha-carbons from their

average values, ∆~Ri(t) = ~Ri(t)− 〈~Ri(t)〉.[51] Each component of the position vector

fluctuation follows the anisotropic LE4PD equation of motion

d∆Rα
i (t)

dt
= −kBT

ζ

∑
β,γ∈{x,y,z}

N∑
j=1

N∑
k=1

H
′αβ
ij A

′βγ
jk ∆Rγ

k(t) + ∆vαi (t), (5.6)
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where α, β, γ ∈ {x, y, z}. In this equation, the dynamics is defined in a body-

fixed system of coordinates, where both translation and rotation dynamics have been

eliminated. The trajectory of the protein, analyzed to build the H′ and A′ matrices

for example, is also in a body-fixed reference system, where translation and rotation

are absent. This is important, because the transformation of a trajectory directly

from lab-system to body-fixed system of coordinates can lead to coupling terms that,

in principle, cannot be ignored.[181, 213]

The matrix H
′αβ
ij describes the hydrodynamic interaction between the α

component of residue i and the β component of residue j, while the matrix A
′βγ
jk

describes the covariance between the β component of residue j and the γ component

of residue k. More details on the anisotropic LE4PD model, and how it is formally

related to the isotropic LE4PD, are given in [51]. As with the isotropic LE4PD,

Eq. (5.6) is solved using the eigenvalue decomposition of the H′A′ matrix product,

Q′−1H′A′Q′ = Λ′, which gives the equation of motion for the evolution of the LE4PD-

XYZ modes:

d∆~ξ′a(t)

dt
= −kBT

ζ
λ′a∆

~ξ′a(t) + ∆~v′a(t). (5.7)

Free-energy maps in anisotropic coordinates and measuring fluctuation timescales

Using the decomposition of Q′ for the anisotropic H′A′ matrix, the mode

coordinate ξ′a(t) of the anisotropic LE4PD can be separated into its x−, y−, and
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z− components as

~ξ′a(t) =
3N∑
i=1

Q′−1
ai ∆~Ri(t)

=
3N∑
i=1

[(
Q′−1
a,x ⊗ x̂T

)
i
+
(
Q′−1
a,y ⊗ ŷT

)
i
+
(
Q′−1
a,z ⊗ ẑT

)
i

]
∆~Ri(t)

=
N∑
i′=1

Q′−1
ai′,x∆xi′(t) +Q′−1

ai′,y∆yi′(t) +Q′−1
ai′,z∆zi′(t)

= ξ′a,x(t) + ξ′a,y(t) + ξ′a,z(t) , (5.8)

and the spherical mode coordinates and free-energy surfaces can be defined

analogously to the isotropic case as

θ′a(t) = arccos
(
ξ′a,z(t)/|ξ′a(t)|

)
φ′a(t) = arctan

(
ξ′a,y(t)/ξ

′
a,x(t)

)
,

F ′(θ′a, φ
′
a) = −kBT ln [P ′(θ′a, φ

′
a)] , (5.9)

where

P ′(θ′a, φ
′
a) =

∫
P ′
(
|~ξ′a|θ′a, φ′a

)
d|~ξ′a|.

As with the isotropic LE4PD modes, the linear combination of all the anisotropic

modes leads to the structural and time-dependent properties, which can be directly

compared with simulations or experimental data. These anisotropic free-energy

surfaces are used to calculate fluctuations in the three spatial directions. The analysis

of the mode-dependent free energy landscapes identifies the location of the protein

fluctuations (i.e. loops, tails etc.), as well as it provides the pathways and the energy

barriers related to those fluctuations. As an example, Figure 29 shows in panel a) the
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FES in the mode coordinates for the first LE4PD-XYZ mode. The FES displays two

minima separated by a small energy barrier. The protein’s conformations along the

pathway of transition between these two minima are displayed in panel b). Panels

c) and d) report data from a Markov State Model analysis (see Section 5.7) of the

mode trajectory, which shows the projection of the second MSM eigenvector, ψ2.

The second eigenvector of the MSM transition matrix identifies the top of the energy

barrier and the transition state between the two minima (panel c)). Panel d) shows

the calculation of the transition time that corresponds to the crossing between the two

minima defined by the second MSM eigenvector. Note that Figure 29 displays results

for the LE4PD-XYZ theory without hydrodynamic interactions (see for a discussion

Section 5.4), and that identical calculations performed for the LE4PD-XYZ theory

with hydrodynamic interactions are reported in the Supplemental Material document

of [65]. The two calculations give free-energy maps and MSM analyses for the first

mode that are quite similar.

When comparing the data from the LE4PD-XYZ analysis and the similar analysis

of the tICA modes, one needs to account for the fact that in the simulation trajectory

both translation and rotation have been eliminated. Thus, the first six modes in the

diagonalization have zero eigenvalues. From the free energy surfaces we calculate the

average energy barrier for each mode, and, using an extension of Kramers’ kinetic

theory, we calculate the slowing down of the dynamics due to the presence of barrier-

crossing trajectories. Once this mode-dependent slowing down is accounted for, we

build from the linear combination of the rescaled modes all the dynamical quantities,

such as time correlation functions, reported in this manuscript. More details on this

procedure are reported in our previous publications.[4, 51]
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Time-lagged independent component analysis or tICA

The time-lagged independent component analysis is a method extensively used

in the field of signal processing, information theory, artificial neural networks to

identify hidden factors that are shared and underlie the observed multivariate

data.[206] This technique has been applied in several fields, including the analysis

of protein dynamics to identify the prevalent large-scale motion inside a simulation

trajectory. With Independent Component Analysis (ICA), it is possible to identify

collective slow dynamical components that are as statistically independent as possible.

By introducing a time lag in the sampling of the data, one effectively includes

the temporal dimension in the analysis of the leading fluctuations making it

possible to model kinetic processes. The time-lagged ICA is an extension of the

principal component analysis (PCA) method, where one takes care of isolating

the most slowly decorrelating dynamics while including the time dependence of the

data as an explicit variable in the analysis. The tICA method has been reviewed in

several recent publications and will be only summarized here.[84, 85, 169, 214, 215]

While tICA is a general approach that applies to any set of coordinates, here, we

are interested in performing a tICA of the alpha-carbon trajectory of a protein with

N residues. We define as tICA coordinates the ∆R(t)T = ~R1(t) − 〈~R1(t)〉, ~R2(t) −

〈~R2(t)〉, . . . , ~Rn(t)−〈~Rn(t)〉, where ∆~Ri(t) = ~Ri(t)−〈~Ri(t)〉 represents the fluctuations

out of the equilibrium structure of the position of the space coordinates ~Ri(t), with

~Ri(t) = xi(t), yi(t), zi(t) and i = 1, . . . , N with N the number of amino acids in

the protein. The time dependent covariance matrix is defined, for a lag time τ , as

Cr(τ) = 〈∆R(t + τ)T∆R(t)〉τ , and for τ = 0 the covariance matrix recovers the

static, structural matrix that is used in PCA, as Cr(0) = 〈∆R(t)T∆R(t)〉.
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The tICA modes, or tICs, are found by solving the following generalized

eigenvalue equation[30, 202]:

Cr(τ)Ω = Cr(0)ΩΛIC(τ), (5.10)

where Ω is the matrix of right eigenvectors of Cr(τ), and ΛIC(τ) is the diagonal

matrix of the related eigenvalues. In addition, 〈a(t)〉 = 1
M

M∑
t=1

a(t) denotes the usual

static average calculated over a trajectory of length M frames and 〈a(t + τ)b(t)〉τ =

1
M−τ

M−τ∑
t=1

a(t+ τ)b(t) denotes an average over the time-lagged trajectory.

From the solution of the generalized eigenvalue problem, one has that the

eigenvector matrix, Ω, diagonalizes both Cr(τ) and Cr(0):

ΩTCr(τ)Ω = ΛIC(τ)

ΩTCr(0)Ω = Λ′IC(0) = I, (5.11)

where I is an identity matrix of the same dimensions as Cr(τ) and Cr(0). The

tICA modes, z(t), are determined by transforming the input coordinates ∆R(t) by

z(t) = ΩT∆R(t).

The second line of Eq.5.11 gives a method to interpret the meaning of the

transformation above as follows. We start by decomposing I into two orthogonal

matrices V as I = VTV and give the eigenvalue decomposition of the zero-lag

time covariance matrix as Cr(0) = WΛIC(0)WT = WΛIC(0)
1
2 ΛIC(0)

1
2 WT . The
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eigenvector matrix Ω can be expressed as a function of the eigenvectors W as follows:

ΩTWΛ
1
2 (0)Λ

1
2 (0)WTΩ = VTV

⇒
[
Λ

1
2 (0)WTΩ

]T
Λ

1
2 (0)WTΩ = VTV. (5.12)

Equating the sides of Eq. 5.12 gives

V = Λ
1
2 (0)WTΩ

⇒ Ω = WΛ−
1
2 (0)V

⇒ ΩT = VTΛ−
1
2 (0)WT , (5.13)

which agrees with the result given in [30]. Since the principal component modes

(PCs), Ξ(t), of ∆R are defined as Ξ(t) = WT∆R, the tICA modes,z(t) = ΩT∆R,

can be written in terms of the PCs as

z(t) = VTΛ−
1
2 (0)Ξ(t) = VT Ξ̂(t), (5.14)

where Ξ̂(t) = Λ−
1
2 (0)Ξ(t) are the whitened (unit variance and zero-mean) PCs. Thus,

the tICA modes have a straightforward interpretation: since VT is an orthogonal

matrix, it defines a rotation in 3N -dimensional space, and the tICs are just rotations

of a linear combination of the whitened PCs, Ξ̂(t). For example, the ith tICA mode,

zi(t), can be written in terms of the whitened PC modes as

zi(t) =
∑
j

V T
ij Ξ̂j(t).
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Furthermore, since Ω is just a rotation of the (scaled) eigenvectors of the zero-

lag covariance matrix, its elements can be decomposed into their x−, y−, and

z−projections, as is the case for the eigenvectors of the zero-lag covariance matrix:[51]

Ω = Ωx ⊗ x̂+ Ωy ⊗ ŷ + Ωz ⊗ ẑ, (5.15)

where x̂, ŷ, and ẑ are the unit vectors in the x-, y-, and z-directions, and ⊗ denotes the

Kronecker product.[175] This decomposition is useful as it allows for the creation of

tIC-dependent free-energy surfaces, which can be compared directly with the LE4PD

free energy surfaces (see Sections 5.1 and 5.2).

Converting to spherical coordinates creates a free-energy surface for each tICA mode

To define a Free-Energy Surface (FES) for each of the tICA mode coordinates,

we start by projecting the space coordinates of the fluctuations onto tICA modes

using the tICA eigenvectors. For the tICA modes, the eigenvector matrix ΩT , which

transforms the ∆~R(t) into the z(t) tIC coordinate system, can be decomposed into

its contributions from the x−, y−, and z−components of ∆~R(t),

ΩT = ΩT,x ⊗ x̂T + ΩT,y ⊗ ŷT + ΩT,z ⊗ ẑT , (5.16)
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which allows for the decomposition of each tIC za(t) into its contributions from the

x−, y−, and z−components of the input coordinates ∆~R(t):

za,x(t) =
N∑
i=1

(Ωx)Tai ∆xi(t) (5.17)

za,y(t) =
N∑
i=1

(Ωy)Tai ∆yi(t) (5.18)

za,z(t) =
N∑
i=1

(Ωz)Tai ∆zi(t). (5.19)

This decomposition can be used to describe each tIC in a new spherical coordinate

system:

Ra(t) = za,r(t) =
√
za,x(t)2 + za,y(t)2 + za,z(t)2 (5.20)

θa(t) = za,θ(t) = arccos

(
za,z(t)

|za(t)|

)
(5.21)

φa(t) = za,φ(t) = arctan

(
za,y(t)

za,x(t)

)
. (5.22)

This decomposition of the tICs into the contributions from the x−, y−, and

z−components of ∆~R(t) is completely analogous to that given for the principal

components and LE4PD-XYZ modes in [51]. In this way, an analysis of the slow

tICs in the coordinate system defined by Eqs. (5.20), (5.21), (5.22) can be seen as

an extension of the analysis preformed for the principal components in [51] to the

domain where the covariance matrix contains a time-lag.

With the definitions of θa(t), φa(t) and Ra(t), two-dimensional free-energy

surfaces in (θa, φa) can be created analogously to that done for the anisotropic LE4PD
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modes by averaging over the radial coordinate Ra(t):

F (θa, φa) = −kBT ln [P (θa, φa)] = −kBT ln

[∫
P (Ra, θa, φa) dRa

]
, (5.23)

which is used to determine tIC-specific dynamics, free-energy barriers, and timescales.

The main advantages of constructing the free-energy surfaces in this manner are

1) each surface is tIC-specific, so the dynamics among tICs are decoupled, and 2)

energetic pathways and fluctuations along this surfaces are facile to visualize for each

tIC. As with previous LE4PD analyses, a variant of the string method is utilized to

find minimum free-energy pathways between energy wells on the surface.[4, 51, 87]

Selection of the tICA lag time using the free-energy surfaces

The tICA approach is general and applies to any time-dependent set of

coordinates. After selecting the input coordinates to the tICA, which in this study are

the coordinates of the fluctuations away from the average structure calculated over

the MD trajectory, ∆R, there remains a single adjustable parameter: the observation

lag time, τtICA. This time parameter is used to construct the time-lagged covariance

matrix (see Eq. 5.10). Identifying an appropriate lag time for the system of interest is

vital to obtaining relevant results from the tICA.[30, 31, 169] In general, one selects

the τtICA that captures the relevant dynamical fluctuations: the tICs identify the

dynamics taking place over a timescale longer than τtICA, while dynamical phenomena

that are faster than the selected lag time are averaged out and cannot be detected.

Thus, only selecting the proper lag time can lead to the correct sampling of the

dynamical phenomena that one desires to study. Here, we select the optimum τtICA

from the mode-dependent free energy surface. Figure 30 shows that by increasing the
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lag time, the system samples a rising barrier with slow fluctuations that move from

the C-terminal tail and Lys11 loop into the 50 s loop. The barrier height (see Figure

31) increases until τtICA = 2.0 ns, when it starts decreasing, thus identifying as an

optimal tICA lag time the two nanosecond time interval for sampling. Figure 31 also

reports the calculated Markov State Model (MSM)time, t2, which is related to the

second MSM eigenvector (more details on the MSM method are in Section 5.7). t2 is

the time needed by the system to cross the barrier and shows a nice correlation with

the barrier height for long tICA lag times.

Note that this procedure to find the optimal time lag doesn’t show a sharp

transition in the shape of the FES at the selected τtICA = 2.0 ns. At the same time,

a more evident change of behavior is visible in the correlation of the time with the

barrier’s height. One can find similar qualitative results for the FES by selecting

lag times of one order of magnitude below or above the two nanosecond threshold.

Still, both these choices (Figures 30 and 31) result in surfaces where the barriers are

lower and where the tICA is less able to model the overall dynamics observed in the

simulation (Section 5.5).

The non-homogeneity of ubiquitin’s dynamics when changing the tICA lag time

is likely associated with the well-known hierarchical energy landscape of proteins in

the folded state.[23, 197] At short lag times the tICA is selecting faster dynamics,

which crosses small barriers within a single well on the folded energy landscape. As

the tICA lag time is increased, the analysis picks up inter-basin correlations, with a

corresponding increase in predicted timescales and barrier heights. The saturation

observed in t2 between tICA lag times of 0.2 and 2.0 ns likely indicates that, over these

timescales, ubiquitin is able to sample almost completely the energy wells within its

native basin. The fall-off in t2 (and in barrier heights) at longer tICA lag times is likely
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due to a loss of statistics as the lag time is made large and the system makes direct

‘hops’ between deep minima, thus avoiding the sampling of the barriers. That is, since

the t2 from the MSM is being reported as the timescale of the slowest processes found

by the tICA and at both long and short τtICA there are no large barriers sampled, the

tICA coordinates, which are unit-free and do not encode lengthscales, return a similar

quadratic or barrier-free surface to the MSM analysis, although in the latter case, the

width of the effective energy well is larger, leading to the larger value of t2. The

inhomogeneity of the slow tICA dynamics is elaborated further in the Supplemental

Material of [65], where the self-self overlap or stability of the eigenvectors of the

slowest tICA modes is calculated as a function of tICA lag time.

Other procedures may be adopted to select the optimal tICA lag time, as

discussed in the Supplemental Material of [65]. For example, Section 5.5 identifies

the optimal lag time by optimizing the decay of the tICA time correlation functions

(tcfs) of the local fluctuations in comparison with simulations. In that case as well

the lag time of τtICA = 2.0 ns appears to give a slightly better agreement with the

decay of the tcfs measured directly from the simulation trajectory than other values

of the lag time.

Free energy surface for a tICA mode at the selected lag time

Once the tICA lag time is defined, here τtICA = 2.0 ns, we can compare the slow

tICA modes with the slow LE4PD-XYZ modes. With the goal of determining if the

LE4PD-XYZ approach provides an analysis that is comparable to the tICA, we build a

procedure for the tICA modes that follows the steps of the LE4PD procedure, starting

from the calculation of the tICs’ free-energy surfaces. We define a Free Energy Surface

(FES) for each of the tICA mode coordinates, starting from the space coordinates of
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the fluctuations, projected into tICA modes using the tICA eigenvectors. Then, we

compare the fluctuations and the time of barrier-crossing for each tICA mode to the

results of the similar analysis performed using the LE4PD-XYZ mode coordinates

(as defined in Section 5.1). Because the tICA coordinates are commonly identified

as the coordinates defining the order parameters for the slow fluctuations, comparing

the slow LE4PD-XYZ modes with the tICA predictions is of great interest. In the

LE4PD-XYZ, slow diffusive modes emerge from the natural decomposition in normal

modes of the dynamics of a protein starting from its equation of motion. Thus,

the LE4PD-XYZ has the advantage over tICA of associating to each set of slow

coordinates a specific equation of motion, providing a precise representation in time

of the slow dynamics of interest. The question is if these slow LE4PD modes are able

to reproduce with accuracy the slow dynamics dominating the protein trajectory, as

identified by tICA.

As an example of the information inherent in F (θa, φa) for the tICs, Figure 32

shows the results of the analysis in the (θa, φa) coordinate space for the slowest tIC

extracted from the 1-µs simulation of ubiquitin. Figure 32a shows the free energy

map, F (θ1, φ1), for the first tICA mode, z1(t), with a pathway drawn between the

two prominent minima on the surface. Figure 32b displays the fluctuations along the

alpha-carbon backbone of ubiquitin when moving along the pathway given in Figure

32a; the colors of the structures in Figure 32b correspond to the colors of the images

along the pathway in Figure 32a. Movement along the minimum energy pathway

for z1(t) shows concerted fluctuations in the 50 s loop (blue arrow), the C-terminal

tail (black arrow), and the Lys11 loop (red arrow), each of which is a known binding

region of ubiquitin to other proteins.[52, 59, 75] Figure 32c shows the projection of the

most slowly decaying eigenfunction, ψ2, from the MSM transition matrix constructed
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on this surface starting from the MD trajectory; the most positive projection of ψ2

lies in the minimum in the bottom half of the surface, and the maximum projection

of ψ2 lies in the minimum in the top half of the surface. This spectrum indicates

that the slowest process described by the MSM corresponds to transitions between

the two minima on the surface, whose fluctuations should be described well by the

extracted structures from the pathway given in Figure 32b. Finally, Figure 32d shows

the implied timescale of t2, the timescale of the process described by ψ2, as a function

of MSM lag time τMSM . The vertical dashed line marks the lag time used in the

construction of the MSM shown in Figure 32c. Thus, for the ψ2 shown in Figure 32c,

the MSM transition matrix, T, is constructed at a lag time τMSM = 4.0 ns, and the

predicted timescale is t2 (τMSM = 4.0 ns) = 52.6 ns. In summary, combining the tIC

free-energy surface in (θa, φa) with the Markov state modeling analysis predicts that

the timescale of movement between the two minima in Figure 32a is approximately 53

ns. The corresponding dynamics along the alpha-carbon backbone during this event

are illustrated in Figure 32b.

Figure 33 illustrates the analogous analysis for the (θa, φa) surface spanned by

the second-slowest tIC. Drawing a transition pathway between the two minima on

the surface (Figure 33a) and extracting the structures along that pathway from the

MD simulation shows that this tIC describes fluctuations in the Lys11 loop and C-

terminal tail regions of ubiquitin (Figure 33b).[52, 75] Again, using the decomposition

of ψ2 from the MSM on this surface to choose the lag time of the MSM (Figure 33c),

the process of transitioning between the minima on the surface is predicted to occur

over a timescale of 6.7 ns (Figure 33d). Thus, the (θa, φa) surface for the slowest tIC

predicts concerted motions in the C-terminal tail, 50 s loop, and Lys11 loop occurring
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over a timescale of 52.6 ns while the (θa, φa) surface for the second-slowest tIC predicts

mainly motion in the tail and Lys11 loop, occurring over a timescale of 6.7 ns.

Mapping the tICA modes onto the slow fluctuations predicted by the

LE4PD-XYZ

The direct comparison of the free energy maps and fluctuation transitions for

the first LE4PD-XYZ mode (Figure 29) and for the first (Figure 32) and the second

(Figure 33) tICA modes show that the dynamics of these modes are different, even if

the fluctuations involve comparable segments of the protein. It is, thus, interesting

to understand how an identical trajectory analyzed by different methods can lead to

different slow fluctuations. One wonders how the LE4PD and tICA methods differ

and which method may be most useful in identifying the modes of proteins’ slow

dynamics.

An important detail that we have overlooked so far is the following: because

each internal mode displays energy barriers that slow down the dynamics with respect

to the harmonic fluctuations represented by the Langevin equation, the timescale of

fluctuations of each Langevin mode is in practice slower than what is predicted by the

straightforward diagonalization of the Langevin equation.[4, 38, 51] Different modes

are slowed down differently, and some more internal modes may have larger energy

barriers than the first mode so that it is possible that the slowest Langevin fluctuation

in LE4PD is not the one predicted by the first Langevin mode but is the fluctuation

belonging to some other internal mode. This is, in fact, the case for ubiquitin.

To calculate the transition times, we construct the MSM for each mode and

estimate the timescales via the MSM’s most slowly decaying timescale, t2, either

using the mapping of the second MSM eigenvector onto the FES,[4] or using the

150



markovian criterion of the transition (i.e. the Chapman-Kolmogorov [CK] condition)

for the mode trajectories; the results from both approaches are reported in Tables 4

and 5, respectively. All dashed entries in the table denote surfaces where the extreme

projections of ψ2 are never located in minima on the surface and are thus not suited

for Markov state modeling in the manner desired here.

From the timescales listed in Table 4, all the LE4PD methods give roughly the

same timescales for the slowest motions of the system. The first tICA mode, however,

displays dynamics that is one order of magnitude slower than LE4PD. The first tIC

corresponds to the concerted motions in the three flexible binding regions of ubiquitin,

as shown in Figure 32, and predicts this motion occurs almost ten times slower than

the roughly analogous motion predicted by the isotropic LE4PD mode 6 and LE4PD-

XYZ mode 7 with hydrodynamics, respectively. However, when the MSM lag time

is selected using the CK condition, which does not always coincide with the lag time

selected by optimizing the projection of ψ2 from the MSM,[4] the gap between the

predicted timescales of the slow LE4PD and tICA modes is reduced, as shown in

Table 5.

These data indicate that the tICA procedure can group the slowest dynamics in

a smaller number of modes than the LE4PD, which, instead, partitions the protein’s

slow dynamics into a number of leading modes with different time and length scales.

When the goal is identifying the slowest fluctuations in one mode, tICA appears to

be more efficient than the LE4PD in isolating the slow fluctuations. However, if the

ultimate goal is the accurate analysis of the protein’s slow dynamics, the LE4PD

approach has a more desirable outcome. As shown in Section 5.5, the LE4PD can

predict the dynamics as measured by time correlation functions with higher accuracy

than the tICA modes.
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TABLE 4. Comparing the slowest timescales from the isotropic LE4PD, the LE4PD-
XYZ (ansiotropic LE4PD), and tICA for the 1-µs simulation of ubiquitin at the
MSM lag time where the spectrum of ψ2 on the free-energy surface is optimized.[4]
The isotropic LE4PD modes are indexed by internal mode number.

LE4PD LE4PD-XYZ tICA
w/ HI w/o HI

Mode t2 (τ) , ns t2 (τ), ns t2 (τ) , ns t2 (τ) , ns

1 3.9(1.05) 8.0(3.2) 6.5(2.8) 52.6 (4.0)
2 0.7(0.1) 3.7(1.1) 4.6(1.5) 6.7 (1.6)
3 0.9(0.35) 4.3(2.5) 4.3(2.0) 4.8(1.6)
4 2.4(0.5) 6.4(4.0) 1.0(0.3) —(—)
5 0.1(0.01) 4.8(4.0) 5.5(4.9) 2.5(1.0)
6 11.0(0.9) 3.3(1.0) 3.1(2.0) —(—)
7 0.5(0.25) 3.6(2.0) 7.4(3.0) 2.5(1.6)
8 0.4(0.11) 0.6(0.2) —(—) 6.1(5.0)
9 0.24(0.1) 0.3(0.1) 1.3(0.5) 0.8(0.3)
10 0.35(0.3) 0.4(0.1) 0.4(0.2) 7.0(5.0)

TABLE 5. Comparing the slowest timescales from the isotropic LE4PD, the LE4PD-
XYZ (ansiotropic LE4PD), and tICA for the 1-µs simulation of ubiquitin in the
long-lag time regime where the dynamics best satisfy the Chapman-Kolmogorov
condition.[5] The isotropic LE4PD modes are indexed by internal mode number.

LE4PD LE4PD-XYZ tICA
w/ HI w/o HI

Mode t2 (τ) , ns t2 (τ), ns t2 (τ) , ns t2 (τ) , ns

1 5.3(1.8) 14.6(12.0) 16.2(12.0) 54.0 (5.0)
2 3.3(1.6) 14.4(10.0) 16.6(12.0) 12.6 (5.0)
3 1.9(1.2) 9.6(8.0) 9.2(8.0) 10.5 (5.0)
4 4.7(1.6) 7.2(6.0) 9.5(8.0) 9.1 (5.0)
5 3.6(1.6) 4.8(4.0) 7.7(6.0) 9.3(5.0)
6 33.7(25.0) 4.6(4.0) 21.5(12.0) 6.6(5.0)
7 1.2(1.0) 19.9(12.0) 12.6(10.0) 5.7(5.0)
8 3.0(1.6) 2.4(2.0) 4.6(4.0) 6.1(5.0)
9 0.5(0.4) 4.0(3.5) 1.8(1.5) 6.4(5.0)
10 0.35(0.3) 1.3(1.0) 3.7(3.0) 7.0(5.0)

One detail to note from Table 4 is that even though the tICs are sorted in

descending order of decorrelation time (i.e., in the order of the tICA eigenvalues)
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when the barriers or anharmonicity along the tICA coordinates are accounted through

the Markov state modeling, the relative timescales of the tICs change, as they do for

the LE4PD modes.[4, 38, 51] An inspection of the internal mode-dependent energy

barriers and related transition times (see Table 4) identifies as the slowest LE4PD-

XYZ fluctuations those of modes 6 and 7. Thus, we compare the predictions of those

slow LE4PD-XYZ modes with the ones emerging from tICA.

Similarities between the tICA predictions and the predictions of the

isotropic and anisotropic LE4PD

The main point of this section is the comparison between the slowest tICs and

the slowest modes of the anisotropic LE4PD model without hydrodynamic interaction

included. In chapter IV we show how the covariance matrix in the PCA is equivalent

to the matrix of forces that lead the dynamics in the anisotropic LE4PD-XYZ model

when the effect of hydrodynamic interactions is neglected, which is equivalent to setting

the H matrix in Eq.5.6 equal to the identity matrix.

Other approximations needed for the two approaches to be consistent are the

assumption of a uniform friction coefficient for all amino acids and the approximation

of neglecting internal energy barriers. Our study showed that hydrodynamics modifies

the dynamics predicted by the equation of motion. We also observed an almost

quantitative agreement between the time correlation functions directly calculated

from the simulation and the ones obtained by solving the anisotropic Langevin

equation when hydrodynamics is included.[51] This result confirms the importance

of hydrodynamics in the Langevin dynamics of proteins in solution, which is not

surprising given that the Langevin is an equation of motion in the protein’s reduced

coordinates, where the effect of the solvent enters through friction, random forces, and
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hydrodynamic interactions. Thus, the hydrodynamic forces that enter the LE4PD

equations result from the projection of the forces due to the solvent and the protein’s

atomistic fast degrees of freedom onto the reduced coordinates of the alpha carbons.

Nevertheless, the formal connection between LE4PD-XYZ and the PCA is

obtained when hydrodynamic interactions are not included.[51] Because PCA is, in

effect, the zero lag time limit of the tICA formalism, in this section, we compare

modes from tICA and from LE4PD-XYZ where hydrodynamics is discarded. We also

include data from the full isotropic LE4PD-XYZ (with hydrodynamics) and compare

them to tICA.

Comparing the tICA, the isotropic LE4PD (with hydrodynamics), and the

LE4PD-XYZ (without hydrodynamics) free energy surfaces

Figure 34 displays in each row the comparison between the LE4PD slowest modes

and the tICA slowest mode for the two LE4PD models we study, namely the isotropic

and the anisotropic LE4PD theory. In the first column, Figure 34 shows the FES of the

LE4PD projected trajectory, which displays energy minima for the most populated

conformations of the protein. For this FES, the second column of Figure 34 presents

the second eigenvector obtained from the Markov State Model (MSM) analysis of the

FES. The second MSM eigenvector, ψ2, provides information on the slowest kinetic

transition occurring on the FES. The node in the MSM second eigenfunction identifies

the position of the maximum of the energy barrier, while the maximum and minimum

values of the second eigenvector defines the two most important energetic basins in

the FES.[33, 99, 144] The superposition of the second MSM eigenvector to the LE4PD

energy map indicates which transition represents the slowest fluctuation for the given

LE4PD mode.
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Finally, the third column in Figure 34 shows the comparison between a tICA

mode and the LE4PD mode. The superposition is accomplished by projecting the

first tIC onto the LE4PD free energy map and testing if the most extreme tICA

conformations are the ones that correspond to the minima in the LE4PD FES. To

perform this comparison, we assign each conformation in the tICA mode trajectory

to the closest MSM microstate in the LE4PD-mode FES surface, using the root

mean square distance from each MSM microstate as the assignment metric. Then

the tICA mode trajectory populates the FES, giving a projection of the tICA mode

that is completely analogous, in both meaning and interpretation, to the projection

of an eigenvector ψi from the MSM onto the LE4PD FES (see the second column of

Figure 34). The approach of projecting a tICA mode onto a free-energy surface has

been previously applied by Sultan and Pande[207] to verify the interpretation for the

slowest tIC from a simulation of alanine dipeptide.

When projecting the tICs, z(t), onto the (θa, φa) surfaces, the average of z(t)

within each MSM LE4PD microstate i, Si, is calculated as

〈z(t)〉i =
1

Mi

Mi∑
k=1

z(k), ∀ (θa(k), φa(k)) ∈ Si,

with Mi the total number of frames the z(t) trajectory resides in the Si LE4PD

microstate over the course of the simulation. This local average of z(t) within each

of the discrete states is what is reported in Figure 34.

Since the slowest tIC is the optimal linear approximation to the full-space Markov

propagator of the system [30]. The ψ2 from the MSM on the slowest LE4PD modes

are also estimators of the slowest processes of the system; a high similarity between

the projected spectra of the slow tICs and ψ2 indicate high similarity between the

predicted dynamics from the two models. That is, if the slow dynamics predicted
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in each approach are consistent with each other, then the spectra of both the slow

tICs and ψ2 should predict probability flow between the deep minima on the (θa, φa)

surfaces of the slowest LE4PD modes. The ψ2 are already parameterized to do so, [4]

but the slow tICs are, in principle, ignorant of the LE4PD (θa, φa) surface. We use

this technique to confirm that the slow LE4PD modes can extract the slow dynamics

compatible with tICA modes.[22]

Let’s analyze Figure 34 by looking at one row at a time. We see that the first

row shows the slowest tICA mode (mode 1) in comparison with the slowest mode

of the isotropic LE4PD (mode 6) with hydrodynamics, as reported in Table 4. We

observe that the extrema of the tICA mode correspond to the two most populated

regions of the isotropic LE4PD mode. This indicates that movement along the tICA’s

slowest collective coordinate corresponds to movement between the minima on the

LE4PD FES or that the fluctuations selected by the two modes are strongly related.

Similar behavior is observed for the slowest modes in the isotropic LE4PD without

hydrodynamic interactions (which is not reported here).

The second row compares the slowest tICA mode (mode 1) with the slowest mode

(mode 7) of the anisotropic LE4PD without hydrodynamics, as reported in Table 4.

Again the agreement between the two methods is compelling.

In the third row, instead, Figure 34 shows a comparison between the third tICA

mode (mode 3) and the fifth mode of the anisotropic LE4PD without hydrodynamics.

It is clear from these results that the slow dynamics detected by tICA and LE4PD-

XYZ are similar.

The technique used here of projecting the tICs onto the (θa, φa) surfaces of the

LE4PD modes is analogous to the technique used in [216–219] to model experimental

observables using Markov state models. Like an experimental observable, the
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separation of two minima of the (θa, φa) surfaces into ‘high z’ and ‘low z’ states

indicates that transitions on the (θa, φa) surface correspond to transitions between a

high z state and a low z state, similar to how fluorescence experiments on a protein

search for transitions between a high fluorescence state, indicating the protein is

sampling conformations where the fluorophores are far apart, and a low fluorescence

state, where the protein is sampling conformations where the fluorophors are close

together.[220, 221]

In conclusion, Figure 34 shows that the slowest tICA mode is representing well

the slowest isotropic LE4PD mode, which is mode 6, and the slowest anisotropic

LE4PD without hydrodynamics, which is mode 7.

Note that no anisotropic LE4PD mode with hydrodynamics included shows the

extreme values of z1 projected into the minima of the free-energy surface, despite

the high correlation between z1(t) and the seventh anisotropic LE4PD mode with

hydrodynamics, as shown in the Supplementary Material of of [65]. This absence is

likely related to the anisotropic LE4PD with hydrodynamics failing to isolated into

a single mode the slow deformations of the 50 s loop of ubiquitin,[51] which is the

dynamics described by z1(t), as seen in Figure 32.

In conclusion, Figure 34 demonstrates that both LE4PD approaches are able

to capture the same slow motion as the tICA, and, furthermore, they both funnel

the dynamics into the slowest modes. The correlation between the time series of

z1 and ψ2 from the MSM of the slowest isotropic LE4PD mode is high (ρ = 0.92),

indicating that both z1 and ψ2 are predictive of the slow dynamics in ubiquitin. The

correlation coefficient between the time series of z1 and ψ2 from the MSM of the

slowest anisotropic LE4PD mode is ρ = 0.73, which is still acceptable.
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Comparing tICA’s and LE4PD’s local fluctuations

Next, we compare the dynamics predicted by the slow tICs and LE4PD modes

by calculating the mode-dependent fluctuation profiles as a function of amino acid

sequence along the backbone of the protein. Local fluctuations are well represented

by the local mode lengthscale (LML). The definition of the LML for the isotropic[4,

48] and the anisotropic[51] LE4PD models have been described previously. For the

isotropic LE4PD, the local mode lengthscale (LML) is defined as a function of the

mode, a, and the aminoacid position, i, as:

LML2
ia = Q2

ial
2µ−1

a,LE4PD , (5.24)

where µa,LE4PD determines the mean-square amplitude of LE4PD mode a (see Figure

35).[37, 38] In the anisotropic formalism of LE4PD-XYZ, where 〈∆~Ri·∆~Ri〉 = 〈∆x2
i 〉+

〈∆y2
i 〉+〈∆z2

i 〉, the eigenvectors are partitioned into their x−, y−, and z−components,

thus isolating the x−, y−, and z−projections of LML2
ia as:

LML2
ia,x = (Qx

ia)
2 µ−1

a,LE4PD-XYZ (5.25)

LML2
ia,y = (Qy

ia)
2 µ−1

a,LE4PD-XYZ (5.26)

LML2
ia,z = (Qz

ia)
2 µ−1

a,LE4PD-XYZ, (5.27)

where µa,LE4PD-XYZ are the eigenvalues of A′ [51]. These three isotropic terms can be

summed to generate an isotropic LML profile analogous to eq. 5.24, the square root

of which is what is shown in Figure 36.
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For the tICA, fluctuations are derived from the definition of the modes, za(t) =∑
i Ω

T
ai∆Ri(t), and the Moore-Penrose generalized inverse[95] of ΩT ,Ω−1T as

∆Ri(t) =
∑
a

Ω−1T
ia za(t).

The mean-square fluctuations of residue i, given by 〈∆xi(t)∆xi(t)〉+〈∆yi(t)∆yi(t)〉+

〈∆zi(t)∆zi(t)〉, can be written in terms of the tICs as

〈∆xi(t)∆xi(t)〉+ 〈∆yi(t)∆yi(t)〉+ 〈∆zi(t)∆zi(t)〉

=
∑
a

∑
b

(
Ω−1T
ia,x Ω−1T

ib,x + Ω−1T
ia,y Ω−1T

ib,y + Ω−1T
ia,z Ω−1T

ib,z

)
〈za(t)zb(t)〉

=
∑
a

(
Ω−1T
ia,x

)2
+
(
Ω−1T
ia,y

)2
+
(
Ω−1T
ia,z

)2
, (5.28)

where the definition 〈za(t)zb(t)〉 = δab is used to obtain Eq. (5.28). The tICA LMLs

are reported in Figure 37

Thus, Figures 35, 36, 37 show the mode-dependent fluctuations calculated from

the one-microsecond ubiquitin simulation using the isotropic LE4PD, anisotropic

LE4PD without hydrodynamics, and the tICA, respectively, for the first ten processes

of each method. For both the isotropic with hydrodynamics and the anisotropic

without hydrodynamics LE4PD approaches, most of the slow modes describe

fluctuations in the C-terminal tail of the protein. For tICA, the slowest tIC describes

concerted fluctuations in the Lys11 and 50 s loops of the protein, while neither of the

LE4PD approaches gives a single mode describing simultaneous motion in these two

regions of the protein.

The isotropic LE4PD approach shows in Figure 35 that the tail and the loop

around Lys 11 have slow fluctuations that involve multiple modes, and thus multiple
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length scales. From the analysis of the FES we know that the slowest fluctuations

appear in the internal mode 6 where the dynamics take place mostly around residue

50. Slow dynamics in these three regions show in the modes of the anisotropic LE4PD-

XYZ without hydrodynamics (see Figure 36), but the fluctuations are partitioned in

multiple modes. These findings agree with the identification of the slowest fluctuations

in the tICA modes (see Figure 37). We observe that there is good correspondence

between the slowest tIC and the isotropic LE4PD mode 6 and anisotropic LE4PD

mode 7, when hydrodynamic effects are neglected.

These conclusions are in agreement with the analysis of the energy maps in

Section 5.4, where we found that the fluctuations of ubiquitin predicted from the slow

LE4PD modes and the tICs agree. This finding also shows how the tICA method

is most efficient in isolating the slow protein dynamics in a small number of modes.

However, tICA doesn’t allow one to distinguish the different timescales of the slowest

fluctuations.

Testing the tICA and LE4PD predictions of time correlation functions

against simulations.

While all three methods agree in identifying the regions in the protein where slow

fluctuations occur, the ultimate test of the tICA’s and LE4PD’s ability to predict slow

time dynamics is to directly compare the time correlation functions (tcfs) predicted

from both approaches to the tcfs calculated from the simulation trajectory. In this

case, we compare the tICA predictions with the anisotropic LE4PD model.

The normalized autocorrelation function for the fluctuations of each residue is

defined as C(t) = 〈∆~R(t)·∆~R(0)〉
〈∆~R(0)·∆~R(0)〉

. For the LE4PD approaches, the autocorrelation

function is calculated by including for each mode the slowing down of the dynamics
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due to the presence of an energy barrier in the FES. This energy barrier is

included by rescaling the mode-dependent timescale using Kramers’ theory of reaction

kinetics.[4, 51] Recently, we have shown that neglecting the hydrodynamic interaction

modifies the LE4PD-XYZ curves, leading to a (moderately) worse agreement with

the simulation data.[51] Figure 38 shows the fluctuation decay of the tcfs for residues

sampled along the primary sequence of ubiquitin. The figure compares the LE4PD-

XYZ results with hydrodynamic included to the tcfs from the simulations: the

agreement is remarkable. It also shows the tcfs for the LE4PD-XYZ without

hydrodynamic interactions, which are less in agreement, at least for the residues

presented in the figure.

At a given lag time, C(t) can be written in terms of the tICA eigenspectra

by inverting the relationship za(t) =
∑

i Ω
T
ai∆Ri(t) as ∆Ri(t) =

∑
a Ω−1T

ia za(t), and

using the (near) independence of the tICs 〈za(t)zb(0)〉 ≈ 〈za(0)zb(0)〉exp [−t/τa] =

δabexp [−t/τa] as

C(t) =
〈∆~R(t) ·∆~R(0)〉
〈∆~R(0) ·∆~R(0)〉

=

∑
a,b

[(
Ω−1T
ia,x Ω−1T

ib,x

)
+
(
Ω−1T
ia,y Ω−1T

ib,y

)
+
(
Ω−1T
ia,z Ω−1T

ib,z

)]
〈za(t)zb(0)〉∑

a,b

[(
Ω−1T
ia,x Ω−1T

ib,x

)
+
(
Ω−1T
ia,y Ω−1T

ib,y

)
+
(
Ω−1T
ia,z Ω−1T

ib,z

)]
〈za(0)zb(0)〉

=

∑
a

[(
Ω−1T
ia,x

)2
+
(
Ω−1T
ia,y

)2
+
(
Ω−1T
ia,z

)2
]
e−t/τa∑

a

[(
Ω−1T
ia,x

)2
+
(
Ω−1T
ia,y

)2
+
(
Ω−1T
ia,z

)2
] . (5.29)

The decay timescales for each tICA mode, τa, are calculated empirically by the

integration of the autocorrelation function 〈za(t)zb(0)〉/〈za(0)zb(0)〉 obtained from the

simulations,[169] and assuming that each mode is represented by a single exponential

decay. This procedure should account for the barriers present along each tICA

coordinate in, at least, a coarse manner.[51, 161] This time, τa, is in general different
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from the inverse of the eigenvalues λIC (Eq. 5.11) because that time does not include

the mode-dependent energy barrier (represented in Figure 39). If one adopted the

inverse of the eigenvalues λIC as the timescale of decay, the tcfs calculated from tICA

would display an even faster and more unphysical decay than the one observed when

including mode-dependent energy barrier for tICA (see Fig. 38). Once a lag time is

selected, we build the matrix C(τ) and, by diagonalization, we derive the eigenvectors

and eigenvalues that enter Eq. 5.29.

The time correlation functions calculated from the tICs (Eq. 5.29) are directly

compared to the one from the simulation trajectory in Figure 38. For each residue

shown, and for most residues across the primary sequence of ubiquitin, the tcfs

predicted from the LE4PD-XYZ with hydrodynamics are in better agreement with

the simulated tcfs than those predicted from the tICA or the LE4PD-XYZ without

hydrodynamics. One may assume that this disagreement is due to the selection of the

lag time and that it may be possible to improve the quality of the tICA predictions by

adjusting the tICA lag time. However, Figure 39 shows that, on average, changing the

lag time cannot make the tICA predictions superior with reference to the LE4PD-XYZ

tcfs. This suggests that the separation of the dynamics afforded by the LE4PD-XYZ

is more optimal for modeling the tcfs than the tICA mode description.

Confirming the tICA lag time using the time correlation functions

Figure 39 shows the C(t) calculated both from the simulation trajectory and the

tICA theory, using a range of tICA lag times from 2.0 ps to 20.0 ns, for six residues

spaced along the primary sequence of ubiquitin. Even if the tICA decomposition

of the dynamics offers a more efficient separation of the slow fluctuations into a

few modes,[30] based on the tcf agreement, the LE4PD-XYZ with hydrodynamics
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provides a more accurate representation of the general collective dynamics at all

timescales sampled in the trajectory. This is observed at all the lag times and for all

the residues along the entire primary sequence of ubiquitin as shown in Figure 38. In

general, the decays predicted by tICA at any lag time tend to be too fast. However,

at short observation times (0− 10 ns; subfigure insets in Figure 39), and for the very

long time scale, the tICA predictions can be quite good.

Interestingly, although the range of lag times spans five orders of magnitude,

the decay is similar when adopting any lag time between 2 ps and 2 ns. To select

the optimum lag time, we average the results of the tcfs at a given lag time across

all residues in the primary sequence of ubiquitin. By comparing with the simulated

tcfs, we identify an optimal lag time of 2.0 ns. Note that this optimal lag time is

consistent with the one identified in Section 5.2 from the analysis of the free energy

surfaces performed at increasing lag time.

While using a tICA lag time of 2 ns globally optimizes the agreement between

the simulated tcfs and those predicted by tICA, choosing either a longer or shorter

tICA lag time may give a better agreement in the tcf of specific bonds. For example,

Figure 40 shows how using a shorter lag time (2 ps) when calculating the tICA time-

lagged covariance matrix yields tcfs in good agreement with some residues’ tcfs in the

highly flexible Lys11 loop, especially at timescales less than 10 ns. Similarly, using a

longer lag time (20 ns) gives tICs that agree well with the simulated tcfs of several

residues in the 50s loop, where the slowest fluctuations of the protein occur (Figures

39 and 32). This analysis supports the heterogeneity of ubiquitin dynamics since one

can locally optimize the residues’ relaxation in different regions by varying the tICA

lag time.
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2D Maps with tICA slow coordinates

In what has become a fairly typical workflow for the analysis of MD simulations

of biomolecules using Markov State Models, the MD trajectory is projected onto not

just one mode but a number n of the slowest tICA modes. [22, 30, 31, 36, 86, 222, 223]

This procedure reduces the high dimensionality of the original free energy landscape

by identifying the slowest dominant modes. One then performs an MSM analysis on

the reduced subspace to parse the slowest dynamics and corresponding timescales of

the system.[30, 31, 50, 85, 86, 188, 224] Usually, the two slowest modes are selected,

but in some cases, more than two tICA modes are considered, which can lead to even

slower measured kinetic timescales. [31] This is because the transitions among the

selected modes can become even less probable, while statistical insufficiencies in the

necessarily finite simulation data can also play a role.

This approach allows for the improvement of the original, linear, input

coordinates provided by tICA by using the eigenvectors of the transition matrix

calculated on the reduced tICA-space to account for non-linearities along each tICA

coordinate and correlations among the tICA coordinates. Thus, transitions of the

trajectory among different slow modes represent the slowest dynamics in the MD

trajectory between the intra-lobe minima on the left-hand lobe (Figure 42). The MSM

predicts that this transition occurs over a timescale of ∼70 ns and that the transition

causes motions in the Lys11 of ubiquitin. Note that the same slow fluctuations are

identified by the LE4PD models.

Thus, although the timescales predicted using the space spanned by the first

two tICs are slightly slower than using the (θa, φa) surfaces for the first two tICs

individually (∼40 versus 24.0 and ∼20 versus 10.7, respectively) the timescales are
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still within a factor of 2 in both cases. The qualitative dynamics are predicted to be

similar from both methods (comparing Figures 32 and 33 with Figures 41 and 42).

Here, we report the results of this type of ‘traditional’ tICA-MSM approach for

the 1-µs ubiquitin simulation, and we compare the results to the analogous analysis

performed in the (θa, φa) space of a tIC of index a, thus considering projections onto

the single mode.

To maintain the same dimensionality as the MSM on the (θa, φa) surfaces, we

build here the MSMs on the space spanned by the first two tICs calculated from

the ubiquitin simulation at a tICA lag time of τtICA = 2 ns, the same as that used

in the (θa, φa) surfaces presented in Section5.2. Figure 41 shows the free-energy

surface spanned by the first two tICs, which has two ‘lobes’ having two minima each.

When a MSM is constructed on this surface, it predicts that the slowest motion

spanned by this two-dimensional space is a transition between the two lobes, i.e. the

transition between the two tICA modes, as can be seen by an examination of the

spectrum of ψ2 projected onto the free-energy surface (Figure 41, top left panel).

The MSM predicts that the transition between the two lobes occurs over a timescale

of approximately 200 ns. Tracing a pathway between the two deepest minima in

each lobe using the same method as utilized for the (θa, φa) surfaces shows that inter-

lobe transitions correspond to dynamics in the 50 s loop of ubiquitin. The second-

slowest relaxation processes on the surface spanned by the first two tICs correspond to

movement between the intra-lobe minima on the left-hand lobe (Figure 42). The MSM

predicts that this transition occurs over a timescale of ∼70 ns and that the transition

causes motions in the Lys11 of ubiquitin. Note that the same slow fluctuations are

identified by the LE4PD models.
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Thus, although the timescales predicted using the space spanned by the first 2

tICs are slightly slower than using the (θa, φa) surfaces for the first 2 tICs individually

(∼40 versus 24.0 and ∼20 versus 10.7, respectively) the timescales are still within a

factor of 2 in both cases, and the qualitative dynamics are predicted to be similar

from both methods (comparing Figures 32 and 33 with Figures 41 and 42).

Observation of non-homogeneous dynamics as tICA lag time is adjusted

To confirm the tICA lag time selection, we started from the 2D tICA FES, and

we explored the dynamics on the tIC 1 - tIC 2 energy surface while varying the

lag time and examining the trajectories between minima. This analysis is analogous

to the one we completed of the FES for one tICA mode (see Figure 30). Such an

analysis of the 2D FES shows how both the FESs and the associated mode-dependent

dynamics change as the lag time of the tICA is adjusted. Figure 43 compares the

FESs and dynamics along the pathways between minima on these surfaces when the

tICA lag time is adjusted from τtICA = 0.2 ps to τtICA = 20.0 ns. When τtICA ≤

20.0 ps, the two slowest tICs describe mainly dynamics in the C-terminal tail of the

protein (Figure 36). However, once τtICA rises above 0.2 ns, the motion shifts to

a combination of fluctuations in the Lys11 and 50s loops. This shift in the foci of

the dynamics coincides with an increase in the barrier between the two minima on

the surface and the attainment of Markovian dynamics for the transitions between

minima (Figure 43). Once the lag time rises above 2.0 ns, the barriers between minima

begin to decrease, and the dynamics on the surface become again non-Markovian, as

described in Figure 44. This behavior is consistent with that observed in Figure 31.

This result suggests two conclusions. First, the barrier to conformational change

in the Lys11 and 50 s loops are larger than those in the C-terminal tail, because the
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free-energy barrier rises when the dynamics of the two slowest tICs shifts from short

lag times (where the tICs describe the dynamics in the protein’s tail) to longer lag

times (where the tICs describe dynamics in the Lys11 and 50 s loops). That the

energy barriers in the tails are smaller than in the loop is not surprising, given the

intrinsically disordered nature of the tail region. Second, at least for these surfaces,

there is a strong correlation between the observed barrier height and how Markovian is

the dynamics (see Figure 44). Again, this result is probably not surprising since large

barriers between conformational states are required to ‘erase’ the intra-state memory

and generate Markovian dynamics among states.[100, 225] Similar qualitative results

were seen when the analysis is performed on the (θ, φ) surfaces (Figures 30 and

31). The conformational transitions predicted in ubiquitin’s structure when moving

between minima on the surface are similar between the tIC 1- tIC 2 and (θ, φ) at

each given tICA lag time: in both approaches, at faster lag times the C-terminal

tail dominates the dynamics, while at slower lag times the 50 s loop and Lys11 loop

dominate.

The only significant difference is a lower correlation between the barrier height

along the pathway between minima and the t2 timescale from the MSM on the surface

(see Figure 31), especially for short (≤ 20.0 ps) tICA lag times. The lower correlation

coefficient likely indicates that the transitions between minima on the (θ, φ) surface

are more heterogeneous than those on the tIC 1 - tIC 2 surface, where the high

correlation between the barriers and MSM timescale indicates that the pathway picks

out the bottleneck in the transition pathway between minima. That is, on the (θ, φ)

surface, there are likely more pathways than just the one over the saddle point between

minima carrying significant flux between the two minima, at least for the surface made

with τtICA ≤ 20.0 ps, where the correlation between the MSM t2 and the barrier along
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the lowest energy transition pathway is poor, while the transitions become Markovian

at longer MSM time lag.

Methods: Computer simulations and Markov State Modeling

Equilibrium Molecular Dynamics Simulation of Ubiquitin

The MD simulations of ubiquitin were generated using GROMACS version

5.0.4,[137] and the AMBER99SB-ILDN atomistic force field,[179] on the Comet

supercomputer at the San Diego Supercomputing Center. The starting structure was

taken from the Protein Databank, PDB ID: 1UBQ.[53] We solvated the protein with

spc/e water and minimized the energy using the steepest descent algorithm. We added

Na+ and Cl− ions until the ion concentration was 45 mM, with the concentration

of ions selected to match that used in nuclear magnetic resonance experiments of

ubiquitin.[54] We subjected the protein-solvent system to two rounds of equilibration:

first, a 50-ps equilibration in the NVT ensemble at 300 K, with the temperature-

controlled using a Nosé-Hoover thermostat; then, a 450-ps NPT equilibration at 300

K, with the same thermostat and a Berendsen barostat set to 1 bar.

Following the NPT equilibration, we performed a 10-ns ‘burnout’ simulation at

300 K with the Nosé-Hoover thermostat again used to maintain the temperature.

We used the last frame of this burnout run as the initial configuration for the 1

µs production run, which utilized the same simulation parameters as the burnout

simulation. Based on a manual inspection of the root-mean-squared deviation

(RMSD) of the alpha-carbons from this first frame, the entire trajectory was deemed

to fluctuate around an equilibrium value,[4] and the entire 1-µs of trajectory was used

for the subsequent LE4PD and MSM analysis. We used the LINCS algorithm[141] to

constrain all hydrogen-to-heavy-atom bonds in the system and adopted an integration
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timestep of 2 fs during both the equilibration and MD simulation. We saved the

trajectory to file every 100 integration steps (every 0.2 ps), obtaining a total of

106 ps
0.2 ps/frame

= 5× 106 frames for analysis.

The MD simulation protocol is the same as that given in Appendix A. However,

the post-processing steps are different. Before performing the tICA, the ‘raw’ MD

trajectory is processed to remove the rigid-body rotational and translational motions.

First, the reference frame, the first frame in the MD simulation, is centered at the

origin of the simulation box. Then, all subsequent frames are centered on this

reference structure, and all frames where the protein is broken across the periodic

boundaries are made whole. Finally, the rotational motion is removed by fitting each

frame in the trajectory to the first, centered frame of the trajectory.

Markov State Modeling

This study adopts the Markov State Model approach to evaluate each normal

mode’s fluctuations’ timescale for both the LE4PD and the tICA. Given the number

of resources available describing the theory and application of Markov state models

(MSMs) to the analysis of protein dynamics,[31, 33, 49, 81, 85, 226–228] we only

present a brief review of the method. To construct an MSM from an MD simulation,

one first identifies a subset of the degrees of freedom or important coordinates. Then

one constructs MSM in the state space of these essential collective coordinates. Here,

these collective coordinates are the isotropic or anisotropic LE4PD modes or the

tICs. Second, a sample space of a small number of these important coordinates is

discretized by assigning frames from the trajectory to an appropriate volume of the

sample space. Third, the transitions among these discrete volumes of the sample
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space are counted to build a transition matrix T, with the elements Tij defining the

conditional probability of transitioning from discrete state i to discrete state j.

The MSM transition matrix is parameterized by a lag time τMSM , such that the

eigenvalues and eigenvectors of T = T (τMSM) are generally functions of the MSM

lag time; for truly Markovian dynamics, the eigenvalue decomposition of T (τMSM)

is independent of τMSM .[99, 229] The eigenvalues of the MSM transition matrix are

ordering by descending value of its eigenvalues ΛMSM (τMSM), with the first eigenvalue

λMSM
1 (τMSM) = 1 and all other eigenvalues of modulus strictly less than 1. The first

eigenprocess from the transition operator describes the stationary distribution, and all

other eigenprocesses describe dynamic (i.e. decaying) processes of varying timescale.

The timescale for the ith process, ti, is given by

ti = − τMSM

ln (λMSM
i )

.

Furthermore, the spectrum of the corresponding right eigenfunction of T((τMSM),

ψi, details the dynamics described on the sample space over the timescale given by

ti.[34, 96, 174]

For the MSMs presented here, all steps are performed using the PyEMMA

package (http://emma-project.org).[230] For all free-energy surfaces, the state space

was broken into 1000 discrete states using the k-means++ algorithm,[142] which we

found previously to be acceptably optimal for ubiquitin.[4] The transition matrix

between discrete states is estimated using the reversible estimator given in [94]. lag

times for the MSMs on the (θa, φa) surfaces are selected using the spectrum of ψ2,

as described in the following section. Lag times for the MSMs constructed on the

surface spanned by the two slowest tICs are selected using the implied timescales

test,[49, 231] as shown in the Supplemental Material of [65].
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For the MSMs constructed on the (θ, φ) surfaces, the lag time, τMSM , is identified

using the same procedure as in [4, 51]. Briefly, the spectrum of the second right

eigenfunction ψ2 of the MSM transition matrix is examined, and the largest MSM lag

time such that the maximum and minimum projection of ψ2 reside in the minima on

the given free-energy surface is selected for construction of the MSM to be analyzed.

Discussion and conclusions

Atomistic MD simulations of proteins have been shown to describe with accuracy

relevant biological processes. However, the leading behavior that guides the properties

in biological systems, including the slow cooperative dynamics involved in protein

binding and function, is often hidden by the broad spectrum of phenomena and the

multitude of atomistic details displayed in simulations. Many studies have begun to

rely on machine learning techniques to distill the essential leading kinetic information.

Two of the most straightforward analytical tools in ML are the principal component

analysis (PCA) or the time-lagged independent analysis (tICA).

The difference between the two methods is that PCA identifies large uncorrelated

fluctuations but maps these fluctuations into linearly-interpolated processes.[173]

Because protein fluctuations are intrinsically not linear, the PCA method provides an

approximated and often unrealistic picture of the protein’s fluctuation pathways.[51]

One can obtain a more realistic representation of the anharmonic protein fluctuations

by combining the tICA, where the covariance matrix samples fluctuations at a

given lag time, with the MSM analysis of the trajectory projected onto the slowest

tICA modes. [30, 31] Similarly to tICA, the LE4PD and LE4PD-XYZ approaches

accurately model nonlinear protein motions by including the mode-dependent free-

energy surfaces obtained by analyzing the protein’s MD trajectory. [4, 4, 38, 48, 57, 67]
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Among deep learning methods, more sophisticated approaches than tICA have

been proposed to model nonlinear effects in protein motions, such as kernel tICA

[232], state-free reversible VAMPnets [233], and time-lagged autoencoders (TAEs).[36,

234] However, the use of such deep learning approaches to modeling nonlinearities in

dynamics often comes with an increased computational cost, paired with a loss of

physical intuition for the system under study. The tICA coordinates are considered,

in general, the optimal linear approximation to the order parameters for relevant slow

processes in proteins’ dynamics.[84, 85, 169, 214, 215] Unfortunately, the tICA modes

have no a priori physical basis or any associated equation of motion. Nevertheless,

the tICA modes can be seen as the limiting case of the more general relaxation

mode analysis technique where the initial covariance matrix is calculated at time

t0 → 0.[32, 203, 209]

In a previous publication of ours,[51] we compared the slow diffusive dynamics

from the LE4PD with the slowest PCA modes. That study shows that the effects of

hydrodynamics, residue-dependent friction coefficients, and mode-dependent energy

barriers, which are explicit components of the LE4PD equation but are not part of

the PCA, are essential to describe with precision the decay of protein fluctuations

over the whole range of timescales involved.

Here, we compare the predictions of the tICA method to the isotropic and

anisotropic LE4PD models. To do so, we associate to each tICA mode a free energy

landscape obtained by the eigenvector projection of the simulation trajectory onto

the tIC modes. This representation is convenient because it allows one to analyze

the tICA’s predictions based on the time evolution of fluctuations onto the mode-

dependent free energy landscape.

172



Both tICA and LE4PD consistently identify the leading slow modes in the

dynamics of the proteins. However, while tICA tends to collect all the slow processes

in the first or a few modes, the LE4PD provides a more detailed picture of the time-

and length-dependence of the slow dynamics, which are partitioned into a larger

number of modes.

In general, the tICA captures the slow fluctuations that occur at a timescale

longer than the given lag time, while faster dynamics are averaged out. The LE4PD

method, instead, which is based on the solution of a “bead-and-spring” model of

macromolecular dynamics, provides detailed information on the dynamics at the

different length scales. It follows that the LE4PD is accurate in reproducing the time

decay of aminoacid fluctuations at all timescales when the dynamics is represented

by the time correlation functions calculated from the simulation trajectory (Figures

38 and 39). The similar calculation performed using tICA modes is, with a few

exceptions, much less accurate (Figures 39 and 40).

The tICA’s lack of accuracy in the description of the time dependence of the

decay of the slow fluctuations as described by the simulated tcfs is not surprising

because the tICA averages out the information at times shorter than the lag time.

Setting a lag time for tICA affects the modality of sampling the dynamics in the free

energy landscape. For example, if the lag time is too short or too long, the tICA

cannot properly sample the free energy barriers.

In the meantime, the tICA is convenient because it can isolate in a small number

of modes the slowest protein motions. When one performs a Markov State Model

analysis of the kinetic transitions associated with the first few tICA modes, the

method provides realistic values for the timescale associated with the slow, leading

processes. On the contrary, the LE4PD approach, which accurately represents the
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time correlation functions, requires information from many slow modes to recover the

correct transition times.

In conclusion, if a rapid identification of the leading slow dynamics is required,

the tICA analysis is a practical and valuable strategy to collect that information.

However, suppose the time propagation of the slow leading dynamics is of interest.

In that case, the LE4PD provides a more accurate representation of the slow processes

based on its superior ability to reproduce the protein’s dynamics at all times.
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FIGURE 29. Analysis of the free energy map of the first LE4PD-XYZ mode without
hydrodynamics (the map of the first LE4PD-XYZ mode with hydrodynamics is
reported in the Supplemental Material of [65]. Panel a) shows the free energy
landscape of the first LE4PD-XYZ mode in the two spherical coordinate reference
system. The pathway of crossing the energy barrier between the two minima is
identified with a rubber band, using a variant of the string method.[4] Panel b) shows
ubiquitin’s conformations that correspond to the pathway shown in panel a) with
the red conformation referring to the energy minimum at the top of the map, and
the blue conformation corresponding to the energy minimum at the bottom of the
map. Arrows point to the two regions of ubiquitin showing the largest amplitude
fluctuations: the C-terminal tail (black arrow), and the Lys11 loop (red arrow).
The second eigenvector resulting from the diagonalization of the transition matrix
defined in the Markov State Model (MSM) procedure for this mode identifies the two
minima in the FES. The projection of ψ2 onto the discrete states of the MSM has
colors that correspond to the scaled-and-shifted value of ψ2 at that discrete state,
ψ2 = ψ2−min(ψ2)

max(ψ2)−min(ψ2)
− 0.5. Panel d) shows how the transition time for the second

MSM eigenvector changes when we select a different lag time in the calculation of the
MSM transition matrix (see Section 5.7). The black, vertical line demarcates the lag
time corresponding to the second eigenvector mapping the two minima, as reported
in panel c).
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FIGURE 30. Effect of changing the tICA lag time on the first tICA mode free energy
surface (FES) and the associated fluctuations. Note that each FES has two possible
pathways to transition between the two energy minima, depicted in the panels above
and below the protein fluctuations pictures. As one increases the lag time, the FES
detects an increasing internal energy barrier. When the system crosses the barrier, it
samples fluctuations in the tail and in the important loops. As the lag time increases,
the predicted motion moves from the C-terminal tail and Lys11 loop into the 50 s
loop. Concurrently, the barrier between the two minima on the surface rises until
τtICA = 2.0 ns, when the barrier starts to decrease. This decrease in the barrier
height coincides with the loss of Markovian behavior at lag times above τtICA = 2.0
ns, as seen in the plot of the implied timescales reported in the Supplemental Material
of [65].
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FIGURE 31. Correlation between the barrier surmounted by the red-white-blue
pathway between minima in Figure 30 (red markers) and the t2 timescale of the
MSM constructed on the surface (black markers), as a function of tICA lag time.
The correlation coefficient between the two sets of data, ρ, is 0.56. Dotted lines
between markers are a guide to the eye.
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FIGURE 32. Results for the MSM in the two-dimensional (θa, φa) coordinate space
for the slowest tIC. a): Free-energy surface along the (θa, φa) coordinates for the
slowest tIC. b): Structures of ubiquitin from the trajectory along the free-energy
surface given in a). The colors of the structures correspond to the given colored
marker along the transition pathway. Arrows point to the three regions of ubiquitin
showing the largest amplitude fluctuations: the C-terminal tail (black arrow), the 50
s loop (blue arrow), and the Lys11 loop (red arrow). c): projection of ψ2 onto the
discrete states of the MSM; colors correspond to the scaled-and-shifted value of ψ2 at
that discrete state, ψ2 = ψ2−min(ψ2)

max(ψ2)−min(ψ2)
− 0.5. d): implied timescales of the MSM as

a function of MSM lag time. The black vertical line demarcates the lag time selected
when constructing the MSM, 4 ns.
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FIGURE 33. Results for the MSM in the two-dimensional (θa, φa) coordinate space
for the second slowest tIC. a): Free-energy surface along the (θa, φa) coordinates
for the slowest tIC. b): Structures of ubiquitin from the trajectory along the free-
energy surface given in a). The colors of the structures correspond to the given
colored marker along the transition pathway. Movement along the pathway in a)
correspond to fluctuations mostly in the Lys11 loop (blue arrow) and C-terminal tail
(black arrow) of ubiquitin, as well as smaller amplitude motions in the 50 s loop (blue
arrow) c): projection of ψ2 onto the discrete states of the MSM; colors correspond to

the scaled-and-shifted value of ψ2 at that discrete state, ψ2 = ψ2−min(ψ2)
max(ψ2)−min(ψ2)

− 0.5.

d): implied timescales of the MSM as a function of MSM lag time. The black vertical
line demarcates the lag time selected when constructing the MSM, 1.6 ns.
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FIGURE 34. a) From left to right: Free-energy surface of isotropic LE4PD
internal mode 6 with hydrodynamics from the one-microsecond ubiquitin simulation;
projection of ψ2 from the MSM of the trajectory on the (θ, φ) surface; and projection
of the first tIC z1(t) onto the (θ, φ) surface. b) Same as a), but the displayed free-
energy surface is for anisotropic LE4PD mode 7 without hydrodynamics. c) Same as
a) and b), except for anisotropic LE4PD mode 5 without hydrodynamics, with the
projection in the right-most panel being the third tIC z3(t) onto the surface.
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FIGURE 35. Mode-dependent fluctuations or local mode lengthscale (LML) for
the ten slowest internal modes captured from the isotropic LE4PD analysis, with
hydrodynamics, of the 1-µs simulation of ubiquitin.
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FIGURE 36. Mode-dependent fluctuations or local mode lengthscale (LML) for
the ten slowest modes captured from the anisotropic LE4PD analysis, without
hydrodynamics, of the 1-µs simulation of ubiquitin.
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FIGURE 37. Mode-dependent fluctuations or local mode lengthscale (LML) for the
ten slowest modes captured from the tICA of the 1-µs simulation of ubiquitin, with
a tICA lag time of 2 ns.
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FIGURE 38. Comparison of the residue-residue time correlation functions (tcfs) for
a sampling of residues along the primary sequence of ubiquitin. The black curves in
each subplot show the tcf calculated from the simulation trajectory; the blue curves
show the tcfs predicted from the LE4PD-XYZ theory with HI, the red curves the
tcfs predicted from the LE4PD-XYZ without HI, and the yellow curves show the tcfs
predicted from the tICA with a lag time of 2000 ps.
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FIGURE 39. Comparison of the time correlation function (tcf) C(t) calculated
directly from the simulation trajectory (black) and calculated from the tICA using
Eq. (5.29) for tICA lag times ranging from 20.0 to 20000.0 ps for six residues spaced
along the primary sequence of ubiquitin. Using a tICA lag time of 2.0 ns gives
the best agreement between the simulation and the theory for calculating the tcfs.
Also reported are the time correlation functions calculated using the LE4PD-XYZ
approach with hydrodynamics. The agreement between LE4PD-XYZ tcfs and the
simulations is remarkable.
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FIGURE 40. Left column: two residues in the Lys11 loop of ubiquitin whose tcfs
from the simulation (black) are well approximated at timescales less than 10 ns by
the tICs predicted using a lag time of 2 ps (cyan). Right column: two residues in the
50 s loop of ubiquitin whose tcfs from the simulation (black) are well approximated
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FIGURE 41. Results for the MSM of the two slowest tICs. a) Free-energy surface
for the first two tICs. b) Structures of ubiquitin from the trajectory along the free-
energy surface given in a). The colors of the structures correspond to the given
colored marker along the transition pathway. c) projection of ψ2 onto the discrete
states of the MSM; colors correspond to the scaled-and-shifted value of ψ2 at that
discrete state, ψ2 = ψ2−min(ψ2)

max(ψ2)−min(ψ2)
− 0.5. d): the two slowest implied timescales, t2

(blue curve) and t3 (red curve), of the MSM as a function of MSM lag time, which is
completely unrelated to the lag time used in the prior tICA step. The black vertical
line demarcates the lag time selected when constructing the MSM, 7.5 ns.
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FIGURE 42. Same as Figure 41, except examining the second slowest process of the
MSM, which is described by ψ3 in c), where ψ3 is scaled and shifted in the same
manner as ψ2 is in Figure 41.
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FIGURE 43. Effect of changing the tICA lag time on the resulting tIC 1 - tIC 2
FESs and associated dynamics. As the lag time is increased, the predicted motion
of the slowest tIC moves from the C-terminal tail and Lys11 loop into the 50 s loop.
Concurrently, the barrier between the two minima on the surface rises until τ = 2.0
ns, when the barrier between minima starts to decrease. This decrease in the barrier
between minima coincides with the loss of Markovian behavior at lag times above 2.0
ns seen in Figure S8 in the Supplementary Material of of [65]. Only a single pathway
for τ ≤ 20.0 ps is drawn because there is no second minimum on the surface.
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FIGURE 44. Correlation between the barrier surmounted by the red-white-blue
pathway between minima in Figure 43 (red markers) and the t2 timescale of the
MSM constructed on the surface (black markers), as a function of tICA lag time.
The correlation coefficient ρ is 0.99. Dotted lines between markers are a guide to the
eye.
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CHAPTER VI

DISCUSSION

Accurately identifying the slow, collective dynamics of proteins is important

because they encode the functional dynamics of the folded state. [22, 23, 26] However,

due to the intrinsic high dimensionality of biomolecular systems, efficient and effective

methods for describing dynamics in a low-dimensional representation is necessary for

understanding the functional behavior of biomolecules, but is challenging to perform

in practice. Recently, techniques such as principal component analysis (PCA),

time-lagged independent component analysis (tICA), and methods borrowed from

the field of machine learning have become popular for discovering low-dimensional

representations of biomolecular systems.[22] The main goal of these approaches is to

find a set of collective coordinates that efficiently filter the most important motions of

a biomolecular system into a few dimensions, where the data can be interpreted more

easily. When coupled with a statistical ensemble from a molecular dynamics (MD)

trajectory of an appropriate length, dimensionality reduction methods such as PCA

or tICA can ‘filter’ the relevant dynamics from the fast motions largely irrelevant to

the slow, functional dynamics in the underlying trajectory.

Another approach for discovering the slow, collective motions encoding the

functional conformational dynamics of folded proteins is the Langevin equation for

protein dynamics (LE4PD) [37, 38], which models the dynamics seen in the underlying

MD simulation using a Langevin equation that projects the slow dynamics onto

the residues of the protein, with the alpha-carbon chosen as the coarse-grained site.

Unlike a PCA or tICA, the LE4PD, and its associated equation of motion, accounts

for the chemical specificity of each residue, inter-residue hydrodynamic interactions,
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and free-energy barriers along each of the collective coordinates or modes generated

by solving the LE4PD equation of motion via diagonalization.

This approach breaks the coupled, intrinsically high-dimensional motions of a

protein into a set of quasi-linearly independent normal modes, each with its own

characteristic time- and lengthscale of motion. The set of slow LE4PD modes can

be used to isolate and quantify the important collective motions of a protein. Thus,

like the other dimensionality reduction methods mentioned previously, the LE4PD

efficiently extracts and separates the ‘essential’ [26] motions of the protein into its

slow modes. However, the LE4PD also has the advantage of an associated equation

of motion, allowing for a direct determination of the decay times of each mode and a

theoretical estimation of autocorrelation functions directly from the physical model

provided by the theory. [38, 51] The LE4PD has previously been shown to give

quantitative agreement between its predictions of B-factors [37] and T1, T2, and

NOE values from NMR relaxation [38, 48, 57] and the experimental values of those

quantities; also, its prediction of autocorrelation functions [38] and those calculated

from the MD simulation have been shown to be in good agreement for a wide range

of alpha-carbon bond vectors along the primary sequence of ubiquitin. [38]

The main theme presented in this dissertation is the extraction and analysis of

slow coordinates from a long MD simulation of ubiquitin performed in its folded state

using the LE4PD and LE4PD-XYZ methods. We postulate that the slowest LE4PD

modes describe sampling of binding conformations, in-line with the conformational

selection model of protein dynamics, [10, 11, 13] which states that free, un-bound

proteins sample their binding conformations, even in the absence of ligand. When

the LE4PD and LE4PD-XYZ modes are combined with Markov state models (MSMs),

a detailed model of the kinetics and barrier-crossing dynamics of these slow LE4PD
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modes is obtained, allowing for a precise description of the apo binding fluctuations

of ubiquitin. Thus, combining MD simulations with the LE4PD and kinetic modeling

tools such as MSMs, we can give significant insight regarding the functional motions

of folded proteins such as ubiquitin.

In Chapter II, the slow LE4PD modes were coupled to the discrete master

equation approach known as a Markov state model in order to precisely determine

the timescales, amplitude, and localization of the dynamics of the regulatory protein

ubiquitin. We found that the LE4PD-MSM approach was able to extract the slow

dynamics in the binding regions of ubiquitin, in line with the conformational selection

hypothesis that postulates an isolated protein will fluctuate about its folded structure

to sample potential binding states.

In Chapter IV, the original, isotropic LE4PD was extended to account for the

anistropic fluctuations of proteins, and the limit where this model maps onto the

analogous PCA was described. We showed that this anisotropic model for protein

dynamics, the LE4PD-XYZ model, is able to nearly quantitatively model the decay

of the residue-residue autocorrelation function for a wide variety of residues across

the primary sequence of ubiquitin because it takes into account hydrodynamic effects

and free-energy barriers along each of the normal mode coordinates, which are both

ignored by PCA.

In Chapter V, we performed a tICA on the same set of input coordinates (the

configurational degrees of freedom of the alpha-carbons of each residue in ubiquitin)

used in the LE4PD and LE4PD-XYZ analyses for the 1-microsecond simulation of

ubiquitin studied extensively in this dissertation. We found that, while the tICA is

superior at compressing the slow, high-amplitude fluctuations of the protein into a

smaller number of modes, all three methods predict similar slow fluctuations in the
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important binding regions of ubiquitin, even though the specific decomposition of the

dynamics given by each method is different. Thus, the tICA, which has become a

useful standard measure for the ‘goodness’ of a set of collective coordinates derived for

biomolecular systems,[22] was used to verify that both the LE4PD and LE4PD-XYZ

methods are able to select the directions of the ‘leading fluctuations’ or the slowest

collective motions in the protein that are important for its function.

In addition to proteins, Chapter III used a reduced description for modeling

the ‘breathing’ fluctuations of the simplest DNA system, the single-stranded

deoxyadenine dinucleotide (dApdA). Using MSMs constructed on the two-

dimensional, reduced space of dApdA, we were able to decompose the circular

dichroism (CD) spectrum of dApdA into the contributions from the metastable states

occupying the free-energy minima in the reduced space. The calculated CD was

found to be in good agreement with the experimental spectrum in the low-wavelength

region, without fitting by adjusting any input parameters, This result indicates that

the coarse-graining plus MSM approach is adequate for modeling a spectroscopic

observable of this simple nucleic acid system.

The studies presented here are necessarily limited in scope and are themselves

capable of extension. First, the LE4PD-XYZ approach developed here has only

been applied to unbound ubiquitin. By performing simulations and LE4PD-XYZ

analysis of ubiquitin bound to one or more of its biological binding partners, such

as another ubiquitin molecule or a ubiquitin ligase, we can observe directly how the

postulated binding fluctuations are altered by binding to another protein or ligand,

directly testing the conformational selection hypothesis. With the comparison of

the LE4PD and LE4PD-XYZ coordinates to the tICA coordinates extracted for the

same trajectory, we have postulated that the slow LE4PD and LE4PD-XYZ modes
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select the leading dynamics of the protein; again, this hypothesis can be verified

by running coarse-grained Langevin simulations along these coordinates or using

enhanced sampling techniques, such as metadynamics,[24, 208] to extend the time-

and lengthscales of the dynamics explored along these slow coordinates.

Finally, for the dApdA studies, we have postulated that this system is a model

of the breathing dynamics found in more complex DNA systems. This hypothesis can

be tested by gradually building up longer and longer single-stranded DNA constructs

to see whether the observed breathing dynamics in dApdA are actually representative

of larger DNA systems and how the addition of ‘flanking’ nucleotides on either

end of the dApdA construct perturbs the observed conformational dynamics and

thermodynamics.
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APPENDIX A

MD SIMULATION OF UBIQUITIN

Simulation Details and Analysis

In chapters II, IV, and V, we study the fluctuation dynamics of ubiquitin. The

first step is to perform MD simulations of the protein. We performed MD simulations

using GROMACS version 5.0.4,[137] and the AMBER99SB-ILDN atomistic force

field,[179] on the Comet supercomputer at the San Diego Supercomputing Center.

The starting structure was taken from the Protein Databank, PDB ID: 1UBQ,[53].

We solvated the protein with spc/e water, and minimized the energy using a steepest

descent algorithm. We added Na+ and Cl− ions until the ion concentration was 45

mM, with the concentration of ions selected to match that used in nuclear magnetic

resonance experiments of ubiquitin.[54] We subjected the protein-solvent system to

two rounds of equilibration: first, a 50-ps equilibration in the NVT ensemble at 300

K, with the temperature controlled using a Nosé-Hoover thermostat; then, a 450-ps

NPT equilibration at 300 K, with the same thermostat and a Berendsen barostat set

to 1 bar.

Following the NPT equilibration, we performed a 10-ns ‘burnout’ simulation at

300 K with the Nosé-Hoover thermostat again used to maintain the temperature.

We used the last frame of this burnout run as the initial configuration for the 1

µs production run, which utilized the same simulation parameters as the burnout

simulation. Based on a manual inspection of the root-mean-squared deviation

(RMSD) of the alpha-carbons from this first frame, given in the Supplementary

Material, the entire trajectory was deemed to fluctuate around an equilibrium value,
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and the entire 1-µs of trajectory was used for the subsequent LE4PD and MSM

analysis. We used the LINCS algorithm[141] to constrain all hydrogen-to-heavy-

atom bonds in the system, and adopted an integration timestep of 2 fs during both

the equilibration and MD simulation. We saved the trajectory to file every 100

integration steps (every 0.2 ps), obtaining a total of 106 ps
0.2 ps/frame

= 5x106 frames for

analysis.

Before performing the LE4PD and MSM analysis, we processed the ‘raw’ MD

trajectory to remove jumps across periodic boundaries in the simulation box, and we

removed global translational and rotational motions of the protein using the least-

squares fitting procedure available in GROMACS.

Figure A.1 reports the root-mean-squared deviation (RMSD) of the alpha-

carbons of ubiquitin, from the first frame of the trajectory, over the course of the

MD trajectory. While there are many local extrema in the instantaneous trace,

the running average shows that the RMSD is relatively constant throughout the

simulation, allowing us to use the statistics from the entire simulation to build the

structural matrices in the LE4PD and the transition matrix in the MSM for the

slowest LE4PD internal modes.

Figure A.2 shows the convergence of the first LE4PD internal mode, calculated

individually for time windows inside the 1-µs equilibrium MD simulation trajectory of

ubiquitin. Here, we use the shape of the free energy surface (FES) of the first LE4PD

internal mode to define the simulation convergence: the FES remains qualitatively

the same as the length of the simulation is extended. This implies that increasing

the length of the simulation increases the sampling of the configurational landscape

without exploring new free energy regions. We confirmed the convergence of the first

internal mode, and higher internal modes, by calculating the inner product of the
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left (Q−1) eigenvector for ten variable length time slices of the simulation with the

right eigenvector (Q) from the entire 1-µs simulation. The overlap matrix calculated

by taking these inner products is shown for three time slices and compared with the

1-µs self-overlap matrix in Figure A.3. It can be seen that the overlap between the

left and right eigenvectors becomes becomes more strongly diagonal as the amount

of sampling is increased, but by 700 ns the overlap with the eigenvectors calculated

using the full simulation trajectory is nearly the identity matrix, indicating that from

700 ns on the dynamics appears well-converged.
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FIGURE A.1. Root-mean-squared deviation (RMSD) of the alpha-carbons of
ubiquitin from the first frame of the MD trajectory over the course of the 1 µs MD
trajectory analyzed in this study. The black trace gives the instantaneous RMSD at
each frame of the simulation while the cyan trace gives the running average, calculated
using 500000 frames at a time.

A final check of convergence of the LE4PD modes is calculating the predicted

‘bare’ timescales of each mode, τ 0
a = (σλa)

−1, which are the LE4PD times without
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FIGURE A.2. Convergence of the free-energy landscape for the first LE4PD internal
mode for a 1-µs equilibrium MD simulation of ubiquitin.

including mode-dependent free energy barriers, as the amount of simulation time

used in the calculation is increased. Since τ 0
a ∝ λ−1

a and σ ≈ const., the top panel

of Figure A.4 shows the convergence of the eigenvalues of LU, much as Figure A.3

shows the convergence of the eigenvectors, as the simulation time is extended. The

bottom panel of Figure A.4 elucidates how the scaled timescales of each LE4PD mode,

τa = τ 0
a exp

[
E†a/kBT

]
change as the amount of simulation time used to construct the

LU matrix is increased. Excepting mode 9 and the 100 ns slice of simulation time,
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even the τa across simulation slices is approximately the same, again indicating good

convergence of the simulation and the LE4PD modes predicted from the statistics

collected from these simulation slices.
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FIGURE A.3. Convergence of the eigenvectors of the LU matrix as the simulation
time is extended. The overlap is calculated between the left eigenvectors of the LU
matrix using the statistics harvested up to the time slice given above the plot with
the right eigenvectors of the LU matrix calculated using the full statistics of the 1 µs
simulation.
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FIGURE A.4. Convergence of the timescales of the LE4PD modes as the amount
of simulation time used in the analysis is extended. Top: bare timescales predicted
directly from the LE4PD as τ 0

a = (σλa)
−1 using 100 (black), 300 (red), 500 (green),

700 (blue), 900 (cyan), or 1000 (magenta) ns of simulation time. Bottom: same as
the top subplot, except the timescales given for each LE4PD mode have been rescaled
by the characteristic free-energy barrier, E†a, predicted by the median absolute
deviation (MAD) of the mode’s free-energy surface: τa = (σλa)

−1 exp
[
E†a/kBT

]
=

τ 0
a exp

[
E†a/kBT

]
.
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APPENDIX B

MARKOV STATE MODELS FOR THE LE4PD MODES

Markov State Model Details

Succinctly, a Markov state model or MSM is a discrete master equation approach

[99] to modelling the flow of probability density in a defined state space. That is,

it is a numerical approach to discretize and model the Fokker-Planck equation for

the transfer of probability density on a surface. [191] In this appendix the basics

of Markov state modelling and its application to the two-dimensional surfaces of the

slow LE4PD modes will be described briefly; mutatis mutandis, the same formalism is

applied to model the transition of probability density on the surfaces of the LE4PD-

XYZ modes, as described in chapter IV. For more detailed views regarding the theory

and applications of MSMs, the reader is advised to consult the literature; several good

resources, with applications to biomolecular systems, are [30, 33, 34, 49, 50, 85, 96,

100, 144, 216], among others.

When building a MSM, first a set of input coordinates or features are selected;

this steps amounts to a coarse-graining of the available, high-dimensional state

space sampled by the system. Generally a few (less than 10, roughly) ‘important’

coordinates are kept from the original trajectory and used as the state space of

interest; in this dissertation, all MSMs are constructed on two-dimensional state

spaces of the LE4PD (θ, φ) (chapter II), (R, φ) (chapter III), LE4PD-XYZ (θ, φ)

(chapter IV), tICA (θ, φ), or the two slowest tICA modes (chapter V). Next, using the

trajectory in this reduced state space, x(t), is discretized[144] into a set of microstates,

which are small volumes of state space among which transition are approximately
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Markovian, meaning that the conditional probability of transitioning from microstate

i to microstate j over a lagtime τ depends only on the indices i and j and not where

the trajectory was previously, which results in the conditional transition probability,

p (x(t+ τ) ∈ j|x(0), x(τ), x(2τ), . . . , x(t) ∈ i) having only a ‘one-step memory’:

p (x(t+ τ) ∈ j|x(0), x(τ), x(2τ), . . . , x(t) ∈ i) = p (x(t+ τ) ∈ j|x(t) ∈ i) := Tij(τ);

that is, the conditional probability of transitioning between states i and j over a

lagtime τ , which is stored in the matrix element Tij(τ) of the transition matrix T(τ),

depends only on the state occupied at time t and the time between observations of

the trajectory, which is given by the lagtime τ .

The elements of T(τ) are estimated empirically using the statistics from the input

trajectory; some details on this process are given in [94]. Once T(τ) is calculated, it is

diagonalized to obtain a set of eigenmodes describing the collective kinetic processes

occurring over the state space. The spectral radius of T(τ) is bounded from above

by 1, which is a consequence of the Perron-Frobenius theorem for stochastic matrices

[95], The first (left) eigenvector of T(τ), φ1, gives the stationary distribution of the

system over the state space, and the eigenvalues of T(τ), λMSM(τ), are related to

the timescales of the eigenmodes as described in chapter II. Thus, the second (right)

eigenvector, ψ2, describes the slowest process on the state space, and the timescale

of this process is given by a combination of the lagtime of the MSM and the second

eigenvalue, λMSM
2 , of T(τ), as given in chapter II. For the LE4PD, LE4PD-XYZ, and

tICA modes, this slowest process is the one of interest, since it should describe the

kinetics of transitioning between wells on the mode-dependent free-energy surface of

these models.
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The (θa(t), φa(t)) coordinates are used to generate a two-dimensional MSM for

LE4PD mode a. To make a MSM of the trajectory, the state space must split into a

finite number of discrete states; then the probability of transitions between the states

is calculated. We split the trajectory of the (θa(t), φa(t)) coordinates into W discrete

states using the k-means++ clustering algorithm [142], as implemented in PyEMMA

[85]. Given the discrete trajectory, we find a lag time τ using the criterion defined in

chapter II and construct a MSM by determining the transition matrix of the system,

T(τ), which models the evolution of the probability vector, p(t), of occupying the

discrete states as a Markov chain [33]. T(τ) causes the system’s probability to evolve

as follows:

pT (t+ τ) = pT (t)T(τ)

pj(t+ τ) =
W∑
i=1

Tij(τ)pi(t), (B.1)

i.e., the probability of occupying state j at time t + τ is completely determined by

summing the probability of transition from all other states i to state j at time t,

given by Tij, weighted by their probability of occupation. There are several ways to

construct T (τ) from the simulation trajectory; here, we use the following reversible

maximum-likelihood estimate of the transition matrix,[94] as described in the chapter

II:

Tij(τ) =
(cij + cji)πj
ciπj + cjπi

, (B.2)

with cij = cij(τ) the ijth element of the count matrix, which counts all the transitions

from states i to j in the trajectory at a lag time τ ; ci =
∑

j cij the ith row sum of

the count matrix, giving the total number of transitions from i; and πi the stationary

(equilibrium) probability of state i.
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For each LE4PD mode analyzed with a MSM, we partitioned the free-energy

surface into W = 1000 discrete states (microstates). We based this choice on a

saturation of the t2 as the discretization was made finer; we found that after using

∼500 microstates, the t2 predicted as a function of lag time became approximately

constant, independent of the number of microstates in the model (data not shown).

Since the coordinates used in the construction of the free-energy surface, (θ, φ),

represent the polar and azimuthal angle, respectively, of the given LE4PD mode

in real space, we assigned each frame in the trajectory to a microstate based on that

frame’s great-circle distance from the nearest microstate center.[235]

Figure B.1 shows the implied timescale of the most slowly decaying MSM mode,

t2, for the MSMs of the first five LE4PD internal modes as a function of lag time

for the MSM. Figure B.2 shows the analogous plot for LE4PD internal modes six

through ten. The vertical, dashed lines show the lag time selected for the MSM of

the corresponding LE4PD mode, with the color key given in each figure’s legend.

These lag times are the ones used for the MSMs described and analyzed in the main

text. We selected those lag times based on the spectrum of ψ2, the second right

eigenvector of the transition matrix of the MSM, for each LE4PD mode (see the

following section for further details).

Effect of Changing Lag Time on the Spectrum of ψ2

As stated in the main text, the lag time of the MSM for each of the slow LE4PD

modes is selected based on the spectrum of ψ2; that is, the lag time is selected such

that ψ2 is a minimum in one well of the FES and a maximum in another well of the

FES and approximately null-valued at saddle points or transition states on the FES.

If the lag time is made too long, the discrete states with the maximum and minimum
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FIGURE B.1. Implied timescales versus lag time plot for the first five LE4PD
internal modes. Vertical, dashed lines demarcate the lag time selected to parameterize
the MSM for the corresponding LE4PD mode; e.g. the black, dashed, vertical
line indicates the lag time at which the MSM for the fourth LE4PD mode was
parameterized.

projection along ψ2 will ‘drift’ from minima into higher free-energy regions on the

FES as the lag time is increased. Figure B.3 shows an example of this phenomenon.

The colored stars indicate the ten discrete states with the maximum (yellow) and

minimum (cyan) projections along ψ2 at a certain lag time, which is reported above

the respective plot. The plot on the top right of Figure B.3 refers to the lag time for

this mode reported in the chapter II. We observe that as the lag time is made longer,

the states with the minimum and maximum projection along ψ2 begin to drift out of

their respective free-energy wells, meaning that the slowest process described by the

MSM is no longer a transition between minima, but rather a transition from a well to

a low-populated, high free-energy region or a transition between two high free-energy
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FIGURE B.2. Implied timescales versus lag time plot for the LE4PD internal
modes six through ten. Vertical, dashed lines demarcate the lag time selected to
parameterize the MSM for the corresponding LE4PD mode; e.g. the black, dashed,
vertical line indicates the lag time at which the MSM for the ninth LE4PD mode was
parameterized.

regions. The sign of ψ2 also flips between 10 ps and 25 ps lag time, but this effect is

irrelevant to the calculation of kinetic properties and the interpretation of the MSM.
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FIGURE B.3. FES of LE4PD mode 8 with the ten discrete states with the maximum
(yellow) and minimum (cyan) projections along ψ2 at the lag time specified above the
plot.
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APPENDIX C

CD CALCULATION DETAILS

Calculations of Circular Dichroism (CD) Spectra from Molecular

Confirgurations

We applied the standard methods developed by Schellman and others to model

the delocalized electronic states of the dApdA dinucleotide as a function of base

stacking conformations.[110, 119, 120] In the formalism that follows, we consider

only the contribution to the CD spectrum that emerges from the exciton interactions

between the component adenine bases of the dApdA dinucleotide, and we neglect

the minor contribution to the CD from the non-interacting adenine monomer, which

provides a relatively weak signal for the fully unstacked conformation. When light

of frequency ν interacts with a solution of optically active molecular chromophores,

the left and right circularly polarized components are absorbed to different extents.

The frequency (or wavelength) dependence of the differential extinction between left

and right circular polarizations, ∆ε(ν) = εL(ν) − εR(ν), is called the CD spectrum.

The CD spectrum can be understood in terms of the rotational strength Rif of an

electronic transition from an initial state |Ψi〉 to a final state |Ψf〉, which is defined

by the Rosenfeld equation

Rif = Im [〈Ψi|µ̂|〉 · 〈Ψf |m̂|Ψi〉] (C.1)

Here û and m̂ are the electric and magnetic dipole transition moment operators,

respectively. The states |Ψi〉 and |Ψf〉 are electronic eigenstates resulting from a chiral

arrangement of coupled electric dipole transition moments (or EDTMs), which are
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each localized to a nucleic acid base residue. Equation C.1 shows that the rotational

strength depends on the chirality of the coupled EDTMs, and its sign indicates the

handedness (left versus right) of the chiral arrangement.

The Hamiltonian of the coupled system is given by

Ĥ = Ĥ1 + Ĥ2 + V̂12 (C.2)

where Ĥ1 and Ĥ2 are the Hamiltonian operators of monomers 1 and 2,

respectively and V̂12 is the coupling between electronic transitions localized to each

monomer as defined in the chapter III. The matrix element Va1b2 = 〈ψa1|V̂12|ψb2〉

defines the coupling between monomer excited electronic states 〈ψa1| (labeled a on

monomer 1) and 〈ψb2| (labeled b on monomer 2). The electronic coupling is calculated

using the extended-dipole model (EDM),[236] which has been applied previously

to cyanine dyes in self- assembled tubular J-aggregates,[237] to cyanine dimers in

DNA,[238, 239] and to canonical nucleic acid bases in short segments of DNA.[156]

In our current studies, the EDM accounts for the physical length of the adenine base

by including for each monomer electronic transition a one-dimensional displacement

vector, l, that is oriented parallel to the EDTM direction. Each transition dipole

moment is represented as two-point charges of equal magnitude and opposite sign

(±q) separated by distance l. The coupling matrix element is given by

Va1b2 =
|µa1||µb2|

4πεε0la1lb2

[
1

ra+b+
12

− 1

ra−b+12

− 1

ra+b−
12

+
1

ra−b−12

]
(C.3)

In Eq. C.3, µa1 = qa1la1 and µb2 = qb2lb2 are the EDTMs of the transitions

a and b on monomers 1 and 2, respectively, and the four distances ra±b±12 are those

between the positive and negative point charges on monomers 1 and 2. The vacuum
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permittivity of free space is given by ε0, and ε is the local dielectric constant. For all

of our calculations we used the value of the dielectric constant, ε = 2, in accordance

with prior conventions.[240]

In principle, further improvements to the accuracy of our calculations could be

achieved by using more detailed, quantum chemical calculations of the electronic

transition charge densities. Nevertheless, the favorable comparison between our

calculations and experimental data presented below suggests that the EDM provides

a reliable estimate of the electronic couplings between adjacent bases for present

purposes.

We write the Hamiltonian on a monomer-site basis, such that singly-excited state

wave functions are given by tensor products according to

|Φa1〉 = |φa1〉|φg2〉 and |Φa2〉 = |φa2〉|φg1〉 (C.4)

In Eq. C.4, |φa1〉 and |φa2〉 denote the ath electronic excited states of monomers 1

and 2, respectively, and |φg1〉 and |φg2〉 are the electronic ground states. The number

of distinct electronic transitions local to monomer 1 (2) is given by n1(2), such that

the total number of site- localized transitions is ntot = n1 + n2. The Hamiltonian of

Eq. C.2 may thus be written on this site basis as a ntot × ntot matrix with diagonal

elements representing the single site excitations (with energies Ea1 and Eb2) and off-

diagonal elements representing the couplings Va1b2 between monomer sites. Note that

our formalism neglects the contribution from the isolated adenine monomer, which

provides a signal for the fully unstacked conformation. In our calculations, however,

this contribution is much smaller than the contribution due to the degenerate coupling

of the adenine transitions.
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Diagonalization of the Hamiltonian provides the eigen-states |Ψk〉 and eigen-

energies Ek of the electronically coupled dinucleotide. In the so- called ‘exciton’

basis, the kth singly-excited state |Ψk〉 may be written

|Ψk〉 =
2∑

m=1

∑
a

Ck
ma|Φma〉, (C.5)

where Ck
ma is the expansion coefficient corresponding to transition a local to

monomer m. In the exciton basis, the ground state of the dinucleotide is given by

|Ψg〉 = |φg1〉|φg2〉. Using Eq. C.1, we may calculate the rotational strength Rgk(= Rk)

for the kth electronic transition, where we assign the initial and final states to |Ψg〉

and |Ψk〉, respectively, and the total electric and magnetic dipole transition moment

operators are given by vector sums µ̂ = µ̂a1 + µ̂b2 and m̂ = m̂a1 + m̂b2. For a

given transition k, the rotational strength depends on the relative orientation of the

monomer EDTMs. For the case of coupled degenerate transitions (i.e. Ea1 = Eb2 and

Ek = Ea1 + Va1b2), the rotational strength is given by

Rk =
Ek
4~

[r12 · (µb2 × µa1)] (C.6)

For the case of non-degenerate coupled transitions (i.e.Ea1 6= Eb2 and Ek ≈ Ea1),

the rotational strength is given by

Rk =
Ea1Eb2

~ (E2
b2 − E2

a1)
[r12 · (µb2 × µa1)] (C.7)

We note that Eq. C.7 is written such that Ea1 > Eb2.

To calculate the CD spectrum, we consider the relationship between the

rotational strength and the integrated area of the CD spectrum within a finite spectral
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range ν ′ → ν ′′:

R = A

ν′′∫
ν′

dν
∆ε(ν)

ν
(C.8)

where A = 7.659× 10−54 C2 m3 s−1. The CD spectral line shape is obtained by

summing over all contributions from individual transitions according to

∆ε(ν) =
ntot∑
k=1

∆ε(νk) (C.9)

For each of the k electronic transitions, we approximate the CD spectral line

shape as a Gaussian function ∆ε(νk) = ∆εk exp
{
−
[
(νk − νk)2 /2σ2

k

]}
, where σk is

the Gaussian standard deviation, νk (= Ek/h) is the mean transition frequency, and

∆εk is the magnitude. Upon substitution of the above Gaussian function, Eq.C.9 is

approximated by considering the frequency in the denominator to be constant over the

width of the k spectral line, ν ≈ νk, and by extending the limits of the integral, ν ′ ≈

νk−∆νk and ν ′′ ≈ νk+∆νk with ∆νk � 0. This is a standard approximation used in

the calculations of the CD spectra.[241] Solving the Gaussian integral, it follows that

we may write the magnitude in this approximation as ∆εk = Rkνk/A
√

2πσk. The

whole spectrum is then calculated from Eq. C.9 by including the extended dipole

modeling of the rotation strength for each k spectral line.

Selecting the Parameters for the Calculation of the CD Spectrum

For the majority of our CD calculations, we used as input parameters to Eqs. C.6

and C.7 the EDTM data for 9-methyladenine obtained by Holmén et al. (Table C.1)

[2] and the dielectric constant ε = 2. In Table C.1 we list for each transition the values

we have used for the EDTM magnitude |µ|, orientation δ, transition frequency ν, and

extended transition dipole charge q and displacement l (see Fig. C.1). Furthermore,
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FIGURE C.1. The angle δ defines the direction of the electric dipole transition
moment (EDTM) used in the CD calculations for the adenine bases of the dApdA
dinucleotide monophosphate.

all transitions are in-plane π → π∗, and are listed in order of increasing transition

frequency. The angle δ specifies the counter-clockwise rotation of the EDTM vector

within the plane of the adenine base relative to the C4-C5 bond axis (see Fig. C.1).

The partial charges for the extended dipole model were derived using the relation

|µ| = q|l|, and by representing the adenine base as an ellipse with major diameter (a)

4.6 Å and minor diameter (b) 2.6 Å such that l = 2ab/
[
a2 cos2(δ) + b2 sin2(δ)

] 1
2 .

In addition, to model the spectral line width of all monomer electronic transitions

we assumed the Gaussian standard deviation σk = 0.2 eV. Our selection of these

parameters was based on comparisons between the experimental CD spectrum of

dApdA at room temperature in buffer at pH 7.2 containing 0.01 M NaPO3 and 0.1

M NaClO4, and CD calculations for which we assumed initially that the dApdA

dinucleotide adopts only the B-form.

For comparison, we present in Table C.2 the empirical parameters from Williams

et al.[3]

For all of the parameters that we tested (see Tables C.1 and C.2), we obtained

moderately favorable agreement between experiment and theory. We note that the

sensitivity of the calculated CD to the choice of input parameters was greatest at the
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TABLE C.1. Experimental values for the magnitudes and molecular frame
orientations of the electric dipole transition moments (EDTMs) for 9-methyladenine
obtained by Holmén et al,[2] and which we have used to model adenine mononucleotide
in chapter III.

Transition ν (cm−1) λ (nm) |µ| (D) δ(◦) l( Å ) q(e)

I 36 710 272.4 1.65 +66 ±7 3.96 0.09
II 38 820 257.6 3.63 +19 ±7 2.70 0.28
III 43 370 230.6 1.15 -15 ±6 2.66 0.09
IV 46 840 213.5 2.52 -21 ±7 2.72 0.19
V 48 320 207.0 2.30 -64 ±10 3.87 0.12

TABLE C.2. Empirical spectroscopic parameters from [3] for the adenine monomer.

Transition ν (cm−1) |µ| (D) δ(◦)

I 37 037 1.1 -87
II 38 022 4.0 -3
III 42 553 1.0 -87
IV 46 296 3.7 -87
V 51 282 3.7 -3
VI 53 476 4.2 -87

shortest wavelengths (200 – 250 nm) and least at the longer wavelengths (250 – 300

nm).

To demonstrate the sensitivity of the CD theoretical predictions to the choice of

the empirical parameters selected in the CD modeling, we report first, in Fig. C.2A,

a study of the CD spectrum for the Watson-Crick B-form of dApdA calculated using

two different models: (i) the simple Point Dipole Approximation (PDA); and (ii) the

Extended Dipole Model (EDM). The spectrum of the B-form, predicted by the theory

is similar in both approximations, and shows a good agreement with experiments in

the low energy part of the spectrum. Figure C.2B shows, instead, a study of the

sensitivity of the calculations to the choice of the parameters. It reports results

for the Point Dipole Approximation (PDA) calculation of the CD spectrum for the
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FIGURE C.2. (A) Comparison of the CD spectrum theoretically predicted for the
Watson-Crick B-form of dApdA and the experimental data by Cantor at al.[1] We
show both the spectra calculated using the Point Dipole Approximation (PDA) and
the Extended Dipole Model (EDM). (B) Comparison of the CD spectrum theoretically
predicted for the Watson-Crick B-form of dApdA and the experimental data, using
either the empirical parameters from Holmén et al.[2] or from Williams et al.[3]. The
effect of varying the dielectric constant (from ε = 2 to ε = 10) is also shown. In
both panels, vertical arrows indicate the positions of the uncoupled transitions of the
adenine monomer listed in Table C.1.
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Watson-Crick B-form, while adopting either the empirical spectroscopic parameters

from Holmén et al.[2] or those from Williams et al.[3] As can be seen, the positions and

heights of the peaks change significantly at low wavelengths (high excitation energies),

while they agree reasonably well at high wavelengths (low excitation energies). Thus,

the results are qualitatively consistent with a slightly better agreement with the

experimental values when using parameters from Table C.1. Finally, the figure shows

a study of the variation of the empirical dielectric constant, which is found to produce

just a change in the intensity of the spectrum, without affecting the positions of the

peaks.
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APPENDIX D

DERIVATION OF THE ANISOTROPIC HYDRODYNAMIC INTERACTION

MATRIX AND RELATING THE LE4PD AND LE4PD-XYZ MODELS

Anisotropic Hydrodynamics

In this section, we propose an extension of the traditional derivation of the

preaveraged hydrodynamic interaction while including the anisotropic formalism. The

derivation is straightforward, but it may be useful, as we are not aware that it has

been reported previously.

The system we are modeling is a coarse-grained description of a protein in

solution, where the protein is a chain of beads, or friction points, in an effective

solvent. Each bead represents one amino acid along the protein’s primary sequence.

The equation of motion of the fluctuations for a protein consisting of N beads, while

neglecting hydrodynamic effects, is

ζ∆Ṙα
i (t) = −kBT

∑
β∈{x,y,z}

N∑
j=1

Aαβij ∆Rβ
j (t) + Fα

i (t), (D.1)

where ζ is the average bead friction coefficient, ζ = 1
N

N∑
i=1

ζi, ∆R(t) is the 3N x 1

column vector of Cartesian displacements of each bead from its equilibrium position:

∆R(t) = [x1(t)− 〈x1〉, y1(t)− 〈y1〉, z1(t)− 〈z1〉, x2(t)− 〈x2〉, . . . , zN(t)− 〈zN〉]T ,

(D.2)

with ∆Ṙα
i (t) denoting the fluctuation of the α-component of alpha-carbon i away

from its equilibrium position; kB is Boltzmann’s constant, T is the temperature, A is

a 3N x 3N structural matrix defining the coupling between the fluctuations of each
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component of each alpha-carbon from its average position, and Fα
i (t) is a stochastic

force along the α component that represents the fast collisions between the solvent

and the ith bead that obeys a delta-correlated, white-noise fluctuation-dissipation

theorem:

〈Fα
i (t)〉 = 0

〈Fiα(t)Fj
β(t′)〉 = 2kBTζδ(t− t′)δijδαβ,

(D.3)

with δij, δαβ Kronecker delta symbols and α, β labeling the Cartesian indices of the

force, α, β ∈ {x, y, z}.

Since the protein is surrounded by a solvent, accounting for hydrodynamic effects

is crucial for an accurate prediction of the protein’s dynamic and kinetic behavior.

The presence of the protein in the solvent will perturb the solvent’s velocity; treating

each bead in the protein as a solid sphere of radius si, the velocity of the α component

of the fluid at the location of bead i is given by

vαi = vα,0i + v
′α
i , (D.4)

where vα,0i is the unperturbed α component of the velocity of the solvent (the velocity

it would possess in the absence of the protein) and the perturbation in the velocity

due to the presence of the other j 6= i beads in the protein:

v
′α
i =

∑
β∈{x,y,z}

∑
j

Tαβij Fj
β,ζ . (D.5)

As with ∆R(t), v′ is an 3N x 1 column vector, with v
′α
i describing the perturbed

velocity at alpha-carbon i in along the α component. Tαβij is an element of a 3N×3N
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tensor T that describes the coupling between the force exerted by bead j along the

α component of the solvent and the resulting velocity perturbation experienced by

bead i along the β component, and Fj
α,ζ is the total force exerted on the solvent

along component α by bead j. In equation D.5, the exact solution for Tαβij is (see,

e.g. [186]),

Tαβij =
1

8πηwrij

(
δαβ + (r̂r̂)αβ +

s2
i + s2

j

r2
ij

[
1

3
δαβ − (r̂r̂)αβ

])
, i 6= j

Tαβij = 0, i = j.

(D.6)

In equation D.6, rij is the distance between beads i and j, si is the radius of bead i,

and r̂ is a unit vector in the direction of rij, r̂ = r
rij

=
(
xij
rij
,
yij
rij
,
zij
rij

)T
. Accounting for

the perturbation in the velocity at the location of bead i and the individual friction

coefficient of each bead gives a modified Langevin equation:

ζi

(
∆Ṙα

i (t)− vi0,α − v
′α
i

)
= −kBT

∑
β

∑
k

Aαβik ∆Rβ
k(t) + Fα

i (t)

ζi

(
∆Ṙα

i (t)−
∑
β

∑
j

Tαβij F
β,ζ
j

)
= −kBT

∑
β

∑
k

Aαβik ∆Rβ
k(t) + Fα

i (t). (D.7)

In the second line, it has been assumed that no external force has been applied to the

solvent (e.g. there are no plates at the top and bottom of the box shearing the fluid)

so that v0
i = 0 and, equation D.5 has been used to write v′i in terms of the forces

exerted on the solvent by the beads. In the bead-and-spring-based model presented

here, the beads can exert only two forces on the solvent: a spring force defined by

A, F β
Spring,ij(t) = −kBT

∑
γ

∑
j A

βγ
ij ∆Rγ

j (t), and a stochastic force due to random,
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thermal fluctuations of the solvent moving the beads, Fj(t). Thus,

F β,ζ
i =

∑
j

F β
Spring,ij + F β

i (t)

= −kBT
∑
γ

∑
j

Aβγij ∆Rγ
j (t) + F β

i (t).

(D.8)

Substituting equation D.8 into equation D.7 gives the explicit (anisotropic) equation

of motion for bead i:

ζi

(
∆Ṙα

i (t)−
∑
β

∑
j

Tαβij

[∑
γ

∑
k

−kBTAβγjk∆Rγ
k(t) + F β

j

])
= −kBT

∑
β

∑
k

Aαβik ∆Rβ
k(t)+Fα

i (t).

(D.9)

To formulate a hydrodynamic interaction matrix, H, that describes the effect that

hydrodynamics has on the motions of the other beads in the protein, there are two

cases of equation D.9 to treat:

1. i = j: In this situation, Tαβij = 0, so equation D.9 reduces to

ζi∆Ṙ
α
i (t) = −kBT

∑
β

Aαβik ∆Rβ
k(t) + Fα

i (t)

⇒ ∆Ṙα
i (t) =

ζ

ζi

(
−kBT
ζ

∑
β

∑
k

Aαβik ∆Rβ
k(t)

)
+
Fα
i (t)

ζi
. (D.10)

Equation D.10 implies that the form of the original Langevin equation, equation

D.1, is recovered by defining Hαβ
ii as Hαβ

ii = ζ
ζi
δαβ. In equation D.10, ζi

is the site-specific friction coefficient for residue i, which is the sum of two

contributions. The first contribution is due to the partial exposure of the amino

acid to the solvent, and the second is the friction due to its partial exposure to
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the hydrophobic core of the protein:

ζi = 6π (ηwrw,i + ηprp,i) , (D.11)

where ηw is the bulk viscosity of the solvent, rw,i is the effective radius of residue i

exposed to the solvent, ηp is the viscosity of the protein (the ‘internal’ viscosity),

and rp,i is the effective radius of residue i exposed to the hydrophobic core of

the protein. Both rw,i and rp,i are caclulated from the simulation and ηp is

assumed to be ‘slaved’ to the solvent viscosity, so that it is proportional to

the solvent viscosity. Specifically, it is assumed that the internal viscosity is

the solvent viscosity, rescaled by a local-barrier energy scale of kBT : ηp =

exp[kBT/kBT ]ηw ≈ 2.71828ηw.

2. i 6= j: In this situation, the force terms on the right-hand side (RHS) of equation

D.9 have already been treated in the i = j case, so that, when i 6= j, the equation

of motion reduces to

ζi∆Ṙ
α
i (t)− ζi

∑
β

∑
j

Tαβij

[∑
γ

∑
k

−kBTAβγjk∆Rγ
k(t) + F β

j

]
= 0

⇒ ∆Ṙα
i (t) = ζ

∑
β

∑
j

Tαβij

[∑
γ

∑
k

−kBT
ζ
Aβγjk∆Rγ

k(t) +
F β
j

ζ

]
. (D.12)

Again, by inspection, the form of equation D.1 is recovered by setting Hαβ
ij =

ζTαβij .
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Combing these two cases, the complete hydrodynamic interaction matrix is defined

piecewise as

Hαβ
ij =


ζ
ζi
δαβ, i = j

ζT αβij , i 6= j

(D.13)

The off-diagonal elements of H can be simplified if we assume that only the

portion of each bead exposed to solvent contributes to the hydrodynamic effect; that

is, for each Hαβ
ij , i 6= j, we assume Hαβ

ij = ζwT
αβ
ij , so that

Hαβ
ij = ζwT

αβ
ij = 6πηwrwT

αβ
ij

=
6πηwrw
8πηwrij

(
δαβ + (r̂r̂)αβ +

s2
i + s2

j

r2
ij

[
1

3
δαβ − (r̂r̂)αβ

])
=

3rw
4rij

(
δαβ + (r̂r̂)αβ +

s2
i + s2

j

r2
ij

[
1

3
δαβ − (r̂r̂)αβ

]) (D.14)

When kept in the form given in equation D.14, the hydrodynamic interaction matrix

is referred to as the Rotne-Prager tensor. This form gives the exact solution for the

Stokes flow around a solid sphere moving through a viscous, incompressible fluid,

and is useful because it accounts for the finite size of the beads. The hydrodynamic

interaction matrix can be simplified in the limit of large inter-bead distances, i.e. in

the limit of rij →∞. In this case, the term within the brackets in equation D.14 goes

as 1
r3ij

and is negligible compared to the first term in equation D.14. That is,

lim
rij→∞

Hαβ
ij = lim

rij→∞

3rw
4rij

(
δαβ + (r̂r̂)αβ +

s2
i + s2

j

r2
ij

[
1

3
δαβ − (r̂r̂)αβ

])
=

3rw
4rij

(
δαβ + (r̂r̂)αβ

)
.

(D.15)
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The hydrodynamic interaction matrix defined in equation D.15 is known as the Oseen

tensor and is simpler than what is given in equation D.14. This approximation treats

the beads as point particles, and is accurate for large bead separations. However,

in the case that the beads approach each other to within a bead radius, i.e. when

rij ≤ max (si, sj), the Oseen tensor can give negative, unphysical eigenvalues because,

in that instance, the point particle approximation is not really valid. Regardless if

the off-diagonal elements of H are defined using equation D.14 or D.15, the equation

of motion with the inclusion of hydrodynamic effects is

ζ∆Ṙα
i (t) = −kBT

∑
β,γ

∑
j,k

Hαβ
ij A

βγ
jk∆Rγ

k(t) + Fα
i (t), (D.16)

It should be noted that, up to this point, the pre-averaging approximation of

Kirkwood and Riseman has not been invoked, so that H is still time-dependent.

Averaging the Hydrodynamic Interaction

A difficulty with the hydrodynamic interaction matrix given in equation D.13 is

that it is non-linear in ∆R. Zimm’s original solution to this problem was the use of the

pre-averaging approximation developed by Kirkwood and Riseman in their treatment

of the translational diffusion of polymers. Kirkwood and Riseman’s approximation

assumes that the inter-bead distribution is Gaussian and that

〈Hij〉 =
3rw
4

〈
1

rij

(
Î + r̂ij r̂ij

)〉
|rij |,θ,φ

=
3rw
4

〈
1

rij

〉
|rij |

(
〈Î〉θ,φ + 〈r̂ij r̂ij〉θ,φ

)
, i 6= j;

(D.17)

the second equality follows because the distribution of r̂ij is independent of its

magnitude, rij; the average is taken over the equilibrium distribution of ~rij, Ψ(~rij) =
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(
3

2π|i−j|l2

) 3
2

exp
[
− 3~r2ij

2|i−j|l2

]
, with l the average bond length between beads:

〈· · · 〉|rij |,θ,φ =

2π∫
0

dφ

π∫
0

dθ sin θ

∞∫
0

drij · · ·Ψ(~rij)

=

2π∫
0

dφ

π∫
0

dθ sin θ

∞∫
0

drij · · ·Ψ(rij),

where |rij| = rij. Taking the angular average of r̂ij r̂ij yields 〈r̂ij r̂ij〉θ,φ = 4π
3
Î due to

the tensor identity 〈r̂αij r̂
β
ij〉θ,φ = 4π

3
δαβ, where, as before, α and β index the Cartesian

components of r̂ij. So,

(
〈Î〉θ,φ + 〈r̂ij r̂ij〉θ,φ

)
= 4π

(
Î +

1

3
Î

)
=

16π

3
Î ,

and equation D.17 simplifies to

〈Hij〉 = 4πrw

〈
1

rij

〉
|rij |

Î

= rw

〈
1

rij

〉
Î (D.18)

or

〈Hαβ
ij 〉 = rw

〈
1

rij

〉
δαβ (D.19)

since Ψ(rij) is independent of the angular integral. Because the 3 x 3 blocks of H on

the diagonal are already time-independent (depending only on the individual friction

coefficients of each bead), the complete pre-averaged, hydrodynamic interaction
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matrix between beads i and j is given by

〈Hij〉 =
ζ

ζi
δij Î + (1− δij)

〈
1

rij

〉
Î . (D.20)

or

〈Hαβ
ij 〉 =

ζ

ζi
δijδαβ + (1− δij)

〈
1

rij

〉
δαβ. (D.21)

What equation D.20 means is that pre-averaging the hydrodynamic interaction, while

removing the time-dependence, also removes the anisotropic effects inherent in the

hydrodynamic interactions between beads. Although equation D.20 was derived using

the Oseen tensor in H, since (〈r̂ij r̂ij〉)αβ = 1
3
δαβ, a pre-averaging of the Rotne-Prager

tensor gives the same result as using the Oseen tensor (because the second term on

the RHS of equation D.14 contains 1
3
δαβ − (r̂ij r̂ij)αβ).

Relationship between the Isotropic and Anisotropic LE4PD

In the isotropic case, the relevant structural matrices are given by using the

following definitions of the U and A matrices:[37, 38]

UN,ij =

〈
~li ·~lj

〉
〈
|~li|
〉〈
|~lj|
〉

AN = aTU−1
N a,
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with ~li = (rx,i, ry,i, rz,i)
T the bond vector between beads i and i + 1. Taking the ijth

element of A−1 gives

A−1
N =

MT

 0 0

0 U−1
N

M


−1

=
(
aTU−1

N a)
)−1

= a−1UN

(
aT
)−1

⇒ A−1
N ij ≈ l−2a−1

〈
~li ·~lj

〉
aT
−1

= l−2
〈
~Ri · ~Rj

〉
⇒ tr

(
A−1
N

)
= l−2

∑
i

〈
~Ri · ~Ri

〉
=
N

l2
〈
R2
g

〉
, (D.22)

with ~Ri the distance vector of bead i from the center-of-mass of the polymer, 〈R2
g〉

the average squared radius of gyration, and tr (B) the trace of a matrix B. The

approximation in the fourth line comes from taking all the average square bond

lengths between beads to be equal, which is approximately true due to the stiffness

of the peptide bond between the alpha-carbons in a protein. The trace of A−1
N can

be related to the trace of the 3N x 3N A by noting that A can be written as the

difference of two matrices, since A−1 = C:

A−1 = C =
〈
∆R∆RT

〉
=
〈

(R− 〈R〉) (R− 〈R〉)T
〉

=
〈
RRT

〉
− 〈R〉〈R〉T

= A−1
1 −A−1

2 . (D.23)
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Explicitly,

A−1
1 =



x1x1 x1y1 x1z1 x1x2 · · ·

y1x1 y1y1 y1z1 y1x2 · · ·

z1x1 z1y1 z1z1 z1x2 · · ·
...

...
...

...
. . .


⇒ tr

(
A−1

1

)
= x1x1 + y1y1 + z1z1 + x2x2 + . . .

= ~R1 · ~R1 + ~R2 · ~R2 + . . .

=
∑
i

~Ri · ~Ri = N〈R2
g〉 ⇒ tr

(
A−1

1

)
≈ l2tr

(
A−1
N

)
. (D.24)

Or, the trace of A−1
1 is approximately equal to the trace of A−1

N , with the

approximation the equality of the bond lengths between each bead. The error in this

approximation is about 0.5 %, while the error between l2tr
(
A−1
N

)
and tr (A−1) is of

the order 10−3%; therefore, the equality holds to within the error of the approximation

of equal bond lengths.

The accuracy of the normal modes generated from A can be established by

examining their ability to reproduce the structural properties of the protein chain.

For example, the mean-squared radius of gyration can be written in terms of the

229



eigenvectors and eigenvalues of A1:

〈
R2
g

〉
=

1

N

N∑
i=1

〈
~Ri · ~Ri

〉
=

1

N

N∑
i=1

(〈Ri,xRi,x〉+ 〈Ri,yRi,y〉+ 〈Ri,zRi,z〉)

=
1

N

N∑
i=1

(〈Ri,xRi,x〉+ 〈Ri,yRi,y〉+ 〈Ri,zRi,z〉)

= trA−11 =
3N∑
a=1

λ−1
a , (D.25)

where λa is the ath eigenvalue of A1. Similarly, 〈R2
ete〉 and the individual bond vectors

can be found using the eigenvectors, Q, from A−1:

〈
R2
ete

〉
=

3N∑
a=1

[(
Qx
N,a −Qx

1,a

)2
+
(
Qy
N,a −Q

y
1,a

)2
+
(
Qz
N,a −Qz

1,a

)2
]
λ−1
a

〈
l2i
〉

=
3N∑
a=1

[(
Qx
i+1,a −Qx

i,a

)2
+
(
Qy
i+1,a −Q

y
i,a

)2
+
(
Qz
i+1,a −Qz

i,a

)2
]
λ−1
a ,

where Qx
ia, Q

y
ia, and Qz

ia have the same meaning as in the main text, but for the

eigenvectors of A1 instead of A. The agreement between the structural properties

calculated directly from the simulation and using the modes agree to within the

numerical precision of the simulation data. Analogous expressions can be found for

the modes generated with the inclusion of the hydrodynamic interaction using the

eigenvectors of HA1, but the eigenvalues of A1.
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[36] Christoph Wehmeyer and Frank Noé. Time-lagged autoencoders: Deep learning
of slow collective variables for molecular kinetics. The Journal of Chemical
Physics, 148(24):241703, 2018.

[37] Esther Caballero-Manrique, Jenelle K. Bray, William A. Deutschman,
Frederick W. Dahlquist, and Marina G. Guenza. A theory of protein dynamics
to predict NMR relaxation. Biophysical Journal, 93(12):4128–4140, 2007.

[38] J. Copperman and M. G. Guenza. Coarse-Grained Langevin Equation for
Protein Dynamics: Global Anisotropy and a Mode Approach to Local
Complexity. Journal of Physical Chemistry B, 119(29):9195–9211, 2015.

[39] Robert Zwanzig. Theoretical basis for the rouse-zimm model in polymer solution
dynamics. The Journal of Chemical Physics, 60(7):2717–2720, 1974.

[40] M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Clarendon Press:
Oxford, 1986.

[41] P.G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press,
1979.

[42] Stephen J Hagen. Solvent viscosity and friction in protein folding dynamics.
Current Protein & Peptide Science, 11(5):385–395, 2010.

[43] Diane E. Sagnella, John E. Straub, and D. Thirumalai. Time scales and
pathways for kinetic energy relaxation in solvated proteins: Application to
carbonmonoxy myoglobin. Journal of Chemical Physics, 113(17):7702–7711,
2000.

[44] H. Frauenfelder, P. W. Fenimore, G. Chen, and B. H. McMahon. Protein folding
is slaved to solvent motions. Proceedings of the National Academy of Sciences,
103(42):15469–15472, 2006.

[45] I. Lyubimov and M. G. Guenza. First-principle approach to rescale the
dynamics of simulated coarse-grained macromolecular liquids. Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, 84(3):16–18, 2011.

234



[46] R. Zwanzig. Diffusion in a rough potential. Proceedings of the National Academy
of Sciences, 85(7):2029–2030, 1988.

[47] B. Iglewicz and D.C. Hoaglin. How to Detect and Handle Outliers. ASQC basic
references in quality control. ASQC Quality Press, 1993.

[48] J. Copperman and M. G. Guenza. Mode localization in the cooperative
dynamics of protein recognition. Journal of Chemical Physics, 145(1):015101,
2016.

[49] G.R. Bowman, V.S. Pande, and F. Noé. An Introduction to Markov State
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[101] Susanna Röblitz and Marcus Weber. Fuzzy spectral clustering by PCCA+:
application to Markov state models and data classification. Advances in Data
Analysis and Classification, 7(2):147–179, jun 2013.

[102] Peter H. von Hippel, Neil P. Johnson, and Andrew H. Marcus. Fifty years of
dna ”breathing”: Reflections on old and new approaches. Biopolymers,
99(12):923–954, Dec 2013. 23840028[pmid].

[103] Michel Peyrard, Santiago Cuesta-Lopez, and Guillaume James. Nonlinear
analysis of the dynamics of dna breathing. Journal of biological physics,
35(1):73–89, 2009.

[104] Niklas Bosaeus, Anna Reymer, Tamás Beke-Somfai, Tom Brown, Masayuki
Takahashi, Pernilla Wittung-Stafshede, Sandra Rocha, and Bengt Nordén. A
stretched conformation of dna with a biological role? Quarterly Reviews of
Biophysics, 50, 2017.

239



[105] Bobo Feng, Robert P Sosa, Anna KF Mårtensson, Kai Jiang, Alex Tong,
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and Frank Noé. Variational selection of features for molecular kinetics. The
Journal of Chemical Physics, 150(19):194108, 2019.

[231] William C. Swope, Jed W. Pitera, Frank Suits, Mike Pitman, Maria
Eleftheriou, Blake G. Fitch, Robert S. Germain, Aleksandr Rayshubski,
T. J. C. Ward, Yuriy Zhestkov, and Ruhong Zhou. Describing protein folding
kinetics by molecular dynamics simulations. 2. example applications to alanine
dipeptide and a β-hairpin peptide. The Journal of Physical Chemistry B,
108(21):6582–6594, 2004.

250



[232] Christian R. Schwantes and Vijay S. Pande. Modeling molecular kinetics with
tica and the kernel trick. Journal of Chemical Theory and Computation,
11(2):600–608, Feb 2015.

[233] Wei Chen, Hythem Sidky, and Andrew L. Ferguson. Nonlinear discovery of
slow molecular modes using state-free reversible vampnets. The Journal of
Chemical Physics, 150(21):214114, 2019.

[234] Wei Chen, Hythem Sidky, and Andrew L. Ferguson. Capabilities and
limitations of time-lagged autoencoders for slow mode discovery in dynamical
systems. The Journal of Chemical Physics, 151(6):064123, 2019.

[235] W.C. Brenke. Plane and Spherical Trigonometry. The Dryden Press, 1943.

[236] V. Czikklely, H.D. Forsterling, and H. Kuhn. Extended dipole model for
aggregates of dye molecules. Chemical Physics Letters, 6(3):207–210, 1970.
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