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Liquid analysis is key to track conformity with the strict process quality standards of

sectors like food, beverage, and chemical manufacturing. In order to analyse product

qualities online and at the very point of interest, automated monitoring systems must

satisfy strong requirements in terms of miniaturization, energy autonomy, and real

time operation. Toward this goal, we present the first implementation of artificial taste

running on neuromorphic hardware for continuous edge monitoring applications. We

used a solid-state electrochemical microsensor array to acquire multivariate, time-

varying chemical measurements, employed temporal filtering to enhance sensor readout

dynamics, and deployed a rate-based, deep convolutional spiking neural network to

efficiently fuse the electrochemical sensor data. To evaluate performance we created

MicroBeTa (Microsensor Beverage Tasting), a new dataset for beverage classification

incorporating 7 h of temporal recordings performed over 3 days, including sensor drifts

and sensor replacements. Our implementation of artificial taste is 15× more energy

efficient on inference tasks than similar convolutional architectures running on other

commercial, low power edge-AI inference devices, achieving over 178× lower latencies

than the sampling period of the sensor readout, and high accuracy (97%) on a single

Intel Loihi neuromorphic research processor included in a USB stick form factor.

Keywords: deep convolutional neural networks, spiking neural networks (SNNs), electrochemical sensors, sensor

fusion, neuromorphic engineering, electronic tongue (E-Tongue)

1. INTRODUCTION

Liquid analysis systems that assess process quality in sectors like food, beverage, and chemical
manufacturing are in rising demand. Driven by increasingly strict regulations, and by the need
to boost productivity and to reduce costs, industry has promoted the development of automated
systems for monitoring physicochemical properties of products in their manufacturing cycle. To
allow process control when and wherever required, such systems must be small, energetically
autonomous, and able to operate in real time.

In this context, the use of chemical multisensor arrays as “electronic tongues” stands out due
to their capability of recognizing quantitative and qualitative composition of complex solutions.
Inspired by human taste, artificial tongues use an array of chemical sensors (i.e., the artificial
taste cells) selective—but not specific—to different solution properties. The multivariate sensor
responses are then read out in the electrical domain and modeled by appropriate Machine
Learning methods.
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To manufacture the arrays, microsensors fabricated in
semiconductor technologies present advantages such as
miniaturization, robustness, high reproducibility, mass
fabrication, and ease of integration with readout electronic
circuitry, making them particularly suitable for on-site
measurements. Fusion algorithms can then be applied to
multisensor readouts in order to automatize the analyses. By
exploiting the extended coverage of the sensor array, sensor
fusion allows to increase the amount of relevant chemical
information inferred in the system. Embedded implementations
of these algorithms are, nonetheless, still incipient: most of
them are constrained by linear modeling, manual definition, or
predefined measurement durations.

In the state of the art, taste inference is delayed until finishing
voltammetric cycles or transient measurements when recording
from the sensor array. To facilitate pattern recognition and
prevent overfitting, input data is often mapped into a lower-
dimensional space using methods such as principal component
analysis (PCA) (Li et al., 2015; Gutiérrez-Capitán et al., 2019)
or partial least squares (PLS) (Qiu et al., 2014; Giménez-
Gómez et al., 2016; Gutiérrez-Capitán et al., 2019). Subsequent
steps then use linear and non-linear algorithms including
discriminant analysis (DA) (Escriche et al., 2012), hierarchical
cluster analysis (HCA) (Kundu and Kundu, 2013), and support
vector machines (SVMs) (Domínguez et al., 2014) for qualitative
or quantitative evaluation.

Deep neural networks (DNNs) offer flexible and scalable
representations to suit the complexity of representing dynamic
data with one single model. In particular, convolutional neural
networks (CNNs), are well suited to fuse data from a large
number of sensor channels simultaneously—and to learn
useful classification functions on this information—while using
fewer, shared connection weights than other neural network
architectures. DNN implementations running on conventional
digital hardware exhibit, however, strong computational
requirements that limit their incorporation in mobile and/or
compact analytical devices. Spiking neural networks (SNNs) can
offer a significant advantage in power efficiency over continuous-
valued architectures when implemented on appropriate
hardware (Esser et al., 2016). While they are poorly served
by conventional von Neumann processors due to both their
highly parallel nature and the asynchronous character of sparse
spiking sequences, SNNs can attain high energy efficiency on
neuromorphic hardware such as IBM’s TrueNorth or Intel’s
Loihi (Akopyan et al., 2015; Davies et al., 2018).

In this study, we pre-trained continuous-valued CNNs and
converted them to SNNs following the rate-based approach
developed by Rueckauer et al. (2017). This framework allows
direct mapping of deep neural network structures, offering
accuracies equivalent to non-spiking Artificial Neural Networks
(ANNs) and sparse event-driven computation alike to the
aforementioned neuromorphic processors. Once converted,
computational efficiency can more easily be optimized: zero
activations are natively skipped in the activity-driven operation
of spiking networks, and accuracy can be tailored to a
given latency and power budget in terms of number of
additive operations.

In Margarit-Taulé et al. (2019) we demonstrated a preliminary
implementation of a portable electronic tongue analyzing
temporal microsensor data via PLS-DA and SVMs. This work
builds on these results to introduce SNNs as accurate and power
efficient models to perform chemometric data fusion on the edge
for liquid analysis. To that end, we:

• present the first spiking, near-sensor implementation of taste
running on neuromorphic hardware via deep learning models;

• introduce MicroBeTa, a new dataset with temporal readings
from a chemical microsensor array acquired in commercial
beverages exemplifying industrial solutions. MicroBeTa was
created for training and testing the classification performance
of machine learning classifiers, and can be used to assess other
future neuromorphic implementations for this task;

• propose a small spiking CNN that achieved high accuracy
on the MicroBeTa dataset, and that fits on a single Intel
neuromorphic research processor;

• compare the performance of the spiking CNN against that of
a k-nearest neighbors (k-NN) classifier, a simple method that
was recently deployed on the Loihi;

• determine the contribution of each sensor to beverage
classification via the random forest algorithm, and
demonstrate the relevance of sensor fusion for different
combinations of the sensors processed by the algorithms;

• benchmark the neuromorphic implementation against two
commercial inference devices—a GPU and a Neural Compute
Stick—and validate the implementation in terms of accuracy,
energy efficiency, and inference time when processing the
dynamic sensor recordings of the MicroBeTa dataset.

These contributions are discussed in detail below.

2. MATERIALS AND METHODS

2.1. Electronic Tongue Setup
The electronic tongue described in this work aims to combine
two core hardware components—solid-state electrochemical
microsensors and a neuromorphic processor—in a novel system
for electrochemical inference. The use of machine learning
algorithms facilitates fusion of multivariate sensor readings and
modeling of structure within the data while exploiting cross-
sensitivity between individual sensors to increase classification
accuracy. Figure 1 illustrates the hardware configuration used to
acquire the electrochemical readings and to discriminate between
beverages. The system employs a chemical sensor array immersed
in the beverage under test, two USB readout boards (Giménez-
Gómez et al., 2015, 2016), and Intel’s Kapoho Bay (KB)—a
mobile, USB form factor of the Loihi SNN accelerator —locally
attached to a laptop together with the readout boards.

2.1.1. Chemical Sensors and Readout
The sensor array shown in Figure 1 comprises one sensor each
for electrical conductivity, temperature, oxidation-reduction
potential (ORP), and six ion-sensitive field-effect transistor
(ISFET) sensors selective to specific ions (H+, Na+, K+, Ca2+,
Cl−, and NO−

3 ). The silicon-based electrochemical sensors were
monolithically integrated at the clean room of the Institute
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of Microelectronics of Barcelona (IMB-CNM). Their technical
specifications are given in Table 1. We combined electrochemical
measurement techniques of different nature (conductometry,
ion-selective potentiometry, reducing or oxidizing (redox)
potentiometry) in a hybrid electronic tongue. Merging stable—
but general—sensors like conductivity and ORP with more
specific ones—but also more unreliable—like the ISFETs allows
one to achieve a certain degree of operative independence with
respect to unexpected ISFET failure or drift. This approach has
already been reported in the literature (Giménez-Gómez et al.,
2016; Gutiérrez-Capitán et al., 2019; Margarit-Taulé et al., 2019)
as successfully improving the performance of electrochemical
microsensor technologies in the chemometric analysis of water
and wine.

ORP and conductivity sensors both use chemically-inert Pt
microelectrodes. The former measures redox potential between
a working and a Dri-Ref reference electrode (World Precision
Instruments, Sarasota, Florida, USA); the latter employs a 4-bar
configuration, where an alternating current is applied between
outer electrodes, and conductivity is measured between inner
electrodes. ISFETs use a modified metal-oxide-semiconductor
field-effect transistor (MOSFET) structure to obtain sensitivity to
ion concentrations in an electrolyte. When placed in a solution,

FIGURE 1 | Major components of the neuromorphic electronic tongue used in

this work. Detail of sensors and electrodes: 1× temperature Pt-100 (a), 2× Pt

microelectrodes (ORP and conductivity, b), 2× reference electrodes (c), 6×
ISFET microsensors (d). Adapted from Margarit-Taulé et al. (2019).

the channel conductivity of a MOSFET with the metal gate
electrode omitted can be modulated by ion activity. Depositing
an ion-selective polymeric membrane on top of the gate oxide
and in contact with the electrolyte solution allows the sensor
to measure concentrations of particular ions in combination
with a (second) Dri-ref reference electrode. While the polymeric
membranes are selective to one ion in particular, they do exhibit
cross-responses to other ion types. Sensor fusion can then be
applied to exploit such cross-sensitivity for higher performance.

As charge-sensing devices, ISFETs are susceptible to the
buildup of residual charge, which can affect the measurement
reading. While this drift effect may be tolerable and compensated
within certain limits, excessive trapped charge may drive
sensor biasing close to or beyond supply voltage levels. Either
this effect or the sensitivity loss to changing ion activities
due to aging of the sensing membranes may necessitate the
replacement of the sensor. A temperature readout was also
included because the sensors can be themselves influenced by
temperature changes. Such variations may be encountered after
transferring the sensor array through the air between beverage
samples. By providing this information, the classifier is given
the opportunity to compensate for—or otherwise exploit—the
temperature dependence of the individual sensors.

Two readout custom boards connected the microsensors
to the host system through a USB interface and handled
sensor biasing, analog readout, and digitization. The six
silicon microsensor channels were interfaced with a dedicated
ISFET meter, while the other board provided integrated
support for the conductivity, temperature, and ORP sensors
(Giménez-Gómez et al., 2016).

2.1.2. Intel Loihi Neuromorphic Processor
To demonstrate low-power edge tasting in real time, we trained
our beverage classification models on the MicroBeTa dataset, and
deployed them on one of the Intel Loihi neuromorphic chips
(Davies et al., 2018) of the Kapoho Bay USB stick form factor (see
Figure 1). Loihi is a digital multi-core processor optimized for
running spiking neural networks. A single Loihi chip consists of
128 asynchronous neuro-cores with 1,024 current based (CUBA)
Leaky Integrate and Fire (LIF) neurons each. Neural states and
configurations are locally stored in the cores. Three synchronous
×86 processors are also included for handling input/output

TABLE 1 | Technical specifications of the IMB-CNM’s electrochemical microsensors used in this work.

Parameter Sensor Sensitivity Range Channel label

Conductivity Pt µelectrode 900 mV·cm/mS 0.35–12 mS/cm COND

Redox potential Pt µelectrode – 160–650 mV ORP

pH ISFET 54 mV/dec pH 2–13 ISF1

K+ ISFET 52 mV/dec 1 · 10−5–1 · 10−2 M ISF2

Na+ ISFET 54 mV/dec 1 · 10−5–1 · 10−1 M ISF3

Cl− ISFET −61 mV/dec 1 · 10−5–1 · 10−1 M ISF4

NO−
3 ISFET −59 mV/dec 6 · 10−5–2 · 10−1 M ISF5

Ca2+ ISFET 29 mV/dec 6 · 10−7–1 · 10−1 M ISF6
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TABLE 2 | Beverages represented in the MicroBeTa dataset, along with the label

values they were assigned.

Beverage Commercial brand Label

White wine Macabeu Celler Mas Bella 2017 0

Red wine Merlot Duc de Foix 2015 1

Still water Veri5 2

Sparkling water San Pellegrino 3

Cava Chardonnay Martí Serdà 4

spikes and other general tasks such as monitoring and setting up
the neural network.

2.2. The MicroBeTa Dataset
2.2.1. Beverage Types
The beverage types selected for the MicroBeTa dataset are
given in Table 2. This beverage selection covers a wide range
of characteristics within a limited set of classes, with several
semi-overlapping sets of attributes that could be expected to
provide insight into how the data from various sensors could
be used by the classifier: The red and white wine samples
might be expected to be chemically similar due to sharing
broadly analogous production processes, with the most obvious
differences arising from complex organic chemicals rather than
the simple measurements made by each separate sensor channel.
The subgroup of still and sparkling water, red wine and cava
covers four general cases arising from the presence or absence
of carbonation and fermentation byproducts, respectively.

The number of different beverage samples was limited by the
time requirements and manual interaction necessary to obtain
representative data from each additional beverage.

2.2.2. Recordings
MicroBeTa comprises 7 h of temporal multivariate readings
obtained from the electrochemical microsensor array described
in section 2.1.1 when immersed in the various beverages
(Table 2). The recordings were conducted at IMB-CNM during
three sessions performed over the course of 3 days. Data from
all sensors was read out continuously and simultaneously during
each session, while the sensor array was moved from one
beverage sample to another at fixed intervals of 5 min. During
each transfer, the sensor array was washed with deionized water
before being placed in the next sample to avoid unnecessary
cross-contamination of subsequent beverages in the series.

The sequence of transitions between beverage samples was
chosen to cover all combinations from one beverage to another.
In this way, a dataset made up of complete measurement cycles—
that is, cycles containing approximately 300 s of sensor readings
from each beverage sample and following a predetermined
sequence of transitions between beverages—remains balanced
with respect to the number and types of beverages, the total
and individual measurement time per beverage, and any effects
due to contamination of the sensors with traces of the previous
beverage. Yet several cycles from the second and third recording
sessions were incomplete due to charge buildup or accidental

contact between a sensor and the reference electrodes, needing
the recording to be interrupted prematurely.

Data from each recording session was labeled manually, with
the washing and transfer periods as well as transient instabilities
of individual sensors assigned to a “non-beverage” class that was
later discarded. Signals from all sensor channels were recorded
at a rate of 1 Hz, resulting in approximately 26,000 labeled
measurements across all three sessions. Figure 2 shows raw data
from a complete measurement cycle of the first recording session
used in this work. The number of measurements and data
samples in relevant subsets of the data is listed in Table 3.

2.3. Dataset Preparation
2.3.1. Preprocessing
Several preprocessing steps were performed on the measurement
data before it was used to train a classifier model. Incomplete
measurement cycles in which not all beverages were recorded,
or measurements of specific beverage samples that were much
shorter than others, were removed entirely to preserve statistical
balance with respect to both the total recording time per
beverage and also the sequence of transitions between individual
beverages. Any measurements lasting significantly longer than 5
minutes were truncated to that length.

The data from each recording session was filtered and
normalized independently for several reasons. Not only were
sensor offsets and sensitivities observed to change from one
acquisition session to the next, but several sensors were
replaced for the second (Na+, Cl−, Ca2+) and third (H+, Cl−)
recording sessions due to performance degradation. Independent
normalization additionally allowed to compensate for biases due
to changes in ambient conditions between sessions. We removed
any data points with corrupted beverage readings from one or
more sensors, e.g., during transfer from one beverage to the next,
sensor cleaning in deionized water, or accidental contact with
reference electrodes.

The sensor readouts typically show large offsets corresponding
to the various beverage types. The rate-based encoding scheme
used when converting the trained classifier to a spiking network
translates the constant offsets into dense spike trains, reducing
the energy efficiency of the spiking model andmasking the sparse
dynamic signals which are more appropriate for neuromorphic
processing. Encoding such high-magnitude offset components
would also limit the range of signals that can be represented on
low bit resolution systems commonly used in edge applications.
Therefore, a configurable high-pass filter was used to attenuate
level offsets in the input signals while emphasizing their dynamic
components. Its transfer function was adapted to the MicroBeTa
dataset by setting a pole at 0.5 mHz, a zero at the origin (i.e., at 0
Hz), and unity gain. In practice, values between 0.5 and 0.8 mHz
were found to give accuracies higher than 90% in both ANNs and
SNNs. Figure 3 illustrates the effects of the filter when applied to
the dataset.

Outliers were removed following the filtering operation,
and the resulting signal was subsequently normalized. Both
operations were performed according to the statistics of
training data only. Outlier values were deleted by excluding all
measurements in which at least one sensor channel contained
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FIGURE 2 | Raw time series data (Z-score-normalized) from the first recording session, showing traces from the Cl−, NO−
3 , redox potential, conductivity and

temperature sensors over the first full measurement cycle. The remaining ISFET channels are omitted for clarity. Individual sensor signals and the associated labels are

plotted against the sample index (corresponding to seconds of valid measurements). Note the predominance of constant-offset components over transient dynamics

in the signals.

TABLE 3 | Measurement (sensor readings) and sample (overlapping time windows

of length 16) counts in the MicroBeTa dataset and relevant subsets thereof.

Session Raw measurements Samples (window length 16)

1st 11,931 11,673

2nd 8,535 5,355

3rd 5,579 4,169

Total 26,045 21,197

Sample counts indicate the number of time windows available for learning, after

preprocessing.

a value further than four standard deviations from the mean
of that channel. Each sensor channel was then normalized
independently using quantile normalization (Bolstad et al.,
2003), which transforms the data to a normal distribution
before nonlinearly mapping it to a uniform distribution on
[0, 1]. Quantile-normalized data was found to preserve a high
correlation between the ANN and the converted SNN, because
the initial mapping to a normal distribution prevents a large

fraction of input values from being pushed close to zero. Figure 3
shows the effects of this normalization method on the data.

2.3.2. Sample Generation
Following normalization, the corresponding time series from
each recording session were concatenated to produce a single,
piecewise-normalized series for each sensor, from which samples
could be drawn for training and validating a classifier model. The
data samples used in this work are fixed-length time windows
containing the signal values from all sensors over a contiguous
range of timestamps.

The length of the time window may be chosen arbitrarily to
correspond to a time scale of interest. To preserve causality, the
label that corresponds to a given time window is defined as the
label assigned to the latest measurement in the window. In this
context, a sample is an array with shape T × N, where T is
the length of a time window that slides over the multivariate
time series, and N is the number of sensors. Therefore, the i-th
labeled sample (xi, li) in the dataset comprises the sample xi =⋃N

k=1[Ck(ti−T) . . .Ck(ti)] and label li = L(ti) with Ck indicating
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FIGURE 3 | Dataset preprocessing transforms when using a high-pass filter with a cutoff frequency of 0.5mHz, shown for the first 1,500 measurements in the dataset

for a single ISFET sensor channel (Cl−). Note the nonlinear enhancement of near-zero signals by the quantile scaler. Signal traces are not continuous in time

everywhere due to the removal of invalid measurements and edge discontinuities between labels.

FIGURE 4 | Scheme used for sampling a multivariate time series with

channels C1 . . .Cn for the n = 9 sensors, and label L. Two consecutive,

overlapping samples (time windows) and their corresponding labels are shown

in green and blue, respectively. A third time window, shown in red, would be

discarded because the measurements it contains span multiple labels.

the time series of the k-th channel (sensor) and L indicating the
time series of labels. Note that the channel order is not relevant
for the model architectures used in this work, and changing this
order would not be expected to affect final performance.

Because labels were available for every measurement,
overlapping time windows were used to make the most of
the available data. Time windows that contained measurements

with multiple labels were discarded, as in these cases the
beginning and end of the window contain measurements from
different beverages with an implicit discontinuity between them.
Therefore, two consecutive samples share all but the first and last
values in each sensor time series. Figure 4 shows a diagram of the
sampling scheme used in this work.

Shorter time windows are preferable to longer ones for several
reasons: Firstly, the number of time windows discarded due
to spanning several labels increases with the window’s length,
allowing a system using shorter time windows to make better
use of a limited dataset. Secondly, they afford the trained
system a shorter response time during online inference. Lastly,
longer time windows require networks with a greater number
of connections than would otherwise be necessary. The shortest
sample length that suffices to capture the input signal’s relevant
dynamics should thus be preferred. A window length of 16
measurements (i.e., window length 16) was used throughout this
work, corresponding to 16 s of sensor recordings.

2.3.3. Other Practical Considerations
Most of the available samples from all recording sessions were
used for training the ANN models, with the last complete
measurement cycle from the final session reserved for testing.
Our motivation not to sample the dataset randomly was twofold:
On the one hand, the use of overlapping time windows means
that if the dataset were sampled randomly, a large fraction of the
measurements from each sample in the test set would be identical
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FIGURE 5 | Causal CNN architectures implemented in the work. Opaque

channels depict the final seven-sensor configuration deployed on all

benchmarked systems. Transparent channels the additional sensor inputs

originally used to classify the beverages from all nine sensors.

withmeasurements from several other samples in the training set;
on the other hand, from the point of view of a given test sample,
random sampling would allow themodel to train on data samples
subsequent to those used for test. This is not a condition that will
happen in practice.

The recordings in the MicroBeTa dataset pose several
potential challenges for a classification algorithm. In particular,
three ISFET sensors had to be replaced before the second
recording session; and two more sensors had to be replaced
before the third session, as mentioned above. Furthermore, the
first session contains significantly more data than either of the
subsequent sessions after preprocessing, comprising 55% of the
dataset as shown in Table 3. Because of the sequential sampling
strategy and difference in session lengths, using all sessionsmeans
that the network is trained primarily on data from the first
session, while the test set contains measurements from the third.
Nonetheless, the models were ultimately found to generalize well.
Such a good generalization could be favored by the small number
of sensors replaced along the third session of recordings, and to
the presence of full measurement cycles from that session in the
training set.

2.4. Fusing Sensor Readings
2.4.1. Neural Network Model
We aimed for a small, energy-efficient model size that fits in one
of the two chips included in the Kapoho Bay platform, avoiding
any overheads in terms of latency and power consumption that
might be added in inter-chip communication.

The results described below were obtained with networks
consisting of three convolutional layers followed by a fully-
connected Softmax classifier stage, where every sensor used
corresponds to an input channel as depicted in Figure 5. We
chose a deep convolutional architecture with the intent of

incorporating future features such as learning new sensor
inclusions or replacements in a continual manner. All
convolutional layers in each model implement one-dimensional,
causal convolutions along the time dimension of the input
sample. A kernel size of four was used throughout, and each
layer learned 32 convolutional kernels. No intermediate pooling
operations were used, and appropriate padding ensured that the
dimensions of the sample did not decrease as it passed through
the network. Multi-layer classifiers were also explored to map
the signal from the last convolutional layer to the target classes,
but they were not found to provide sufficient improvement to
offset their significant added complexity. All hyperparameters
were swept through realizable ranges during training. No biases
were used in the network as they can lead to reduced accuracy in
the converted SNN unless carefully regularized during training
(Rückauer et al., 2019).

While including a batch normalization layer following each
convolutional step improved ANN performance and reduced
training time significantly, it also increased variance in the SNN
accuracy. For this reason, no normalization layers were used,
and the training duration was increased from 200 to 1,500
epochs. Networks were trained with the AdaBound optimizer
on categorical cross-entropy loss, with norm clipping and L2
regularization. A batch size of 128 samples was chosen.

2.4.2. ANN-SNN Conversion and Mapping to Loihi
The classification models were initially trained in Keras and then
converted to rate-based spiking networks using the SNNToolbox
(Rueckauer et al., 2017). The networks were then deployed on
Loihi via the NxTF framework (Rueckauer et al., 2021), which
provides a Keras-like API to instantiate neural networks on
Loihi, and includes a compiler to optimally apply Loihi’s resource
sharing features while mapping convolutional topologies to the
multi-core hardware.

The SNN Toolbox configuration used for the experiments
in this paper was made available together with the dataset.
Sensor readings were mapped as bias currents of the input
SNN layer, and membrane potentials were reset by subtraction
via 2-compartment neurons after spiking. The weights of the
neural network were normalized setting the maximum ReLU
activations in each layer to the 99-th percentile of their total
activity distribution. Finally, the output softmax layer was
converted to spiking by computing spike rates according to the
membrane potentials of the output neurons (Rueckauer et al.,
2017). Keeping the CNN depth to three layers helped mitigating
the accumulation of discretization errors across the hierarchy, an
effect deeper rate-based converted SNNs are more prone to. Each
of the test samples was ran for 50 algorithmic time steps on the
Loihi (Davies et al., 2018).

2.4.3. Selecting Informative Sensors
We determined the contribution of each sensor to beverage
classification via the random forest (RF) (Breiman, 2001)
algorithm with Gini impurity. RF is an efficient dimension
reductionmethod that uses a simple bagging ensemble technique.
RF models comprise many decision trees, and each decision
tree learns how to split the input into smaller subsets to predict
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the beverage class. Sensor importance is assessed by looking at
how much each sensor contributes to each tree, then taking an
average value over all the decision trees, and finally comparing
the contributions of each sensor. The Gini impurity is the default
metric used in the scikit-learn toolbox to determine how the
trees are split at the different nodes. For a decision forest (in this
work, we used 1,000 trees), it is possible to calculate the average
reduction in the impurity of each sensor and use the average
reduction as the criterion for sensor selection.

2.5. Benchmarking Accuracy and Energy
Efficiency
ANN and SNN performance statistics were obtained from
five models per ANN input configuration, independently
trained varying only the initialization seed value. All other
hyperparameters were held constant for all experiments. As a
baseline, we studied the accuracy of the k-NN algorithm over a
sweep from 1 to 2

√
N nearest neighbors, where N is equal to the

19,844 training samples of the dataset.
We estimated energy efficiency from the dynamic power

consumption and the inference time measured when running the
SNN on one of the Kapoho Bay’s Loihi chips. Dynamic power
was obtained as the additional cost of performing inference
with respect to the baseline idle power, i.e., when the device is
powered and clocked, but idling. Its relative performance in these
same terms was compared with the results obtained from ANNs
deployed on two other devices for DNN acceleration: an Nvidia
GeForce GTX TITAN X GPU, and an Intel Movidius Neural
Compute Stick 2 (NCS2) for low power edge-AI inference. A
batch size of 1 was used for all power measurements.

Power consumption on the NCS2 was monitored by means
of an external UM34C USB power meter. In order to account
for I/O power consumption, we evaluated an upper bound of the
I/O power by running a single-layer softmax perceptron with the
same number of inputs and outputs, and by subtracting inference
power from the power consumption measured after allocating
the models on the device. This upper bound of I/O power was
then deducted from the dynamic power exhibited by the NCS2
when running the neural network models.

3. RESULTS

3.1. Classification Accuracies vs. Sensor
Selection
We evaluated both k-NN and CNN accuracies initially using all
nine sensor readings from the test dataset. The first row ofTable 4
shows the accuracies reached for this sensor combination using
a rolling window of 16 readings. Accuracy values refer to the
per-class accuracy, averaged over all time windows of the test
set. The ANN outperforms the top scoring k-NN (i.e., a 201-
NN) by a 3%. Compared to the ANN, the SNN accuracy dropped
approximately 1% on average, with similar standard deviation.

We also tested the performance of every sensor channel on the
k-NN algorithm. In all cases, the accuracy of a single sensor does
not exceed 63% (see Table 5). When fusing the outputs of each
readout board via the k-NN method, using ISFETs alone (93.8%)

TABLE 4 | Average classification performance of ANN and converted SNN

models on the MicroBeTa dataset.

Dataset
Test accuracy

k-NN ANN SNN

9 Sensors 88.8% 91.3 ± 0.9% 90.7 ± 0.8%

7 Sensors 98.2% 98.6 ± 0.6% 97.0 ± 1.6%

Statistics were obtained by training each configuration independently five times and

varying only the initialization seed value. All other hyperparameters were held constant

for all experiments. Error intervals are given as the standard deviation.

increases the accuracy by 5% compared to the accuracy (88.8%)
from using all the sensors of the array. Combining conductivity,
ORP, and temperature sensors gives 85.6% accuracy. The high
accuracy of using only ISFETS could be due to the fact that the
training set already contained data from all the replaced sensors
and the day-to-day drifts that were present in the test data, thus
obviating the need for more stable sensors to compensate for
these effects.

To validate the effectiveness of choosing the most informative
sensors, we computed the importance value of the nine sensors
using the RF algorithm. The results in Table 6 show that two of
the sensors (TEMP and ISF5) are least informative. All models
were retrained for the seven sensor combination, achieving the
results shown in the second row of Table 4. The k-NN (a 1-
NN in this case), ANN and SNNs are on average 11, 8, and 7%
more accurate, respectively, than the nine-sensor configurations.
Selecting the seven most informative sensors helped boosting
performance in these terms.

For the selected sensor combination, the ANN still exhibits
higher accuracy than the 98.2% achieved by the 1-NN. It also
surpasses the 97.5% accuracy of a perceptron similar to the model
used to estimate I/O power on the Movidius. When training the
CNN, the variability of SNN accuracies was found to worsen
considerably with lower model complexities. The models tended
to overfit when increasing the number of kernels beyond the
chosen value of 32. Besides its suitability for fusing data from
multiple channels with a reduced number of weights, the small
convolutional architecture of Figure 5 was chosen for two more
reasons: for its translational invariance, which would help to
pick up relevant input features even in dynamically changing
sensor readings; and for having a low but enough dynamic energy
consumption to allow external metering of inference power,
distinguishable from I/O power on the Movidius. Figure 6 shows
confusion matrices of test accuracies averaged over the five final
CNN model results.

3.2. Time Delay Response
We computed the online accuracy classification vs. time delay
fixing window length to 16 for the two sensor combinations. The
results are shown in Figure 7. A prediction is done at every time
step. The dots indicate the average accuracy over 10 time steps.
The accuracy varies between 80 and 100% for the seven-sensor
combination and between 58.8 and 100% for the nine-sensor
combination throughout this period of 10 s. The online accuracy
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TABLE 5 | Individual accuracies reached by a k-NN classifier when using single sensor channels.

Sensor type TEMP ISF1 ISF2 ISF3 ISF4 ISF5 ISF6 COND ORP

Accuracy 21.4% 53.5% 35.6% 57.2% 61.6% 38.0% 34.0% 58.5% 62.7%

TABLE 6 | Sensor importance values estimated using the random forest algorithm.

Sensor Type TEMP ISF1 ISF2 ISF3 ISF4 ISF5 ISF6 COND ORP

Importance value 0.025 0.092 0.176 0.126 0.124 0.044 0.119 0.185 0.109

TEMP and ISF5 channels in particular contribute little information.

FIGURE 6 | Confusion matrices summarizing the CNN prediction results for the nine (left) and seven (right) sensor combinations. Classification performance is

averaged over five independent runs of CNNs trained with random initialization seeds.

using seven sensors is higher than using nine sensors at almost
every time step.

The length of the time window is important because it affects
the accuracy and the response latency. We investigated how
the online accuracy of a network trained on the seven-sensor
combination changed with the time window length. From the
results in Figure 7, it is clear that a larger time window leads
to a higher network accuracy but also results in a longer latency
response. The choice of the window length is thus dependent on
the desired accuracy-latency trade-off.

3.3. Dynamic Energy Consumption
Table 7 compares dynamic power, inference time, and dynamic
energy per inference across hardware devices for the selected
seven-sensor combination. Our neuromorphic implementation
of the CNN for artificial taste consumes 15 mW of dynamic
power on the Kapoho Bay, 49× and 643× lower than the same

TABLE 7 | Average dynamic power consumption, inference time, and dynamic

energy cost per inference across hardware devices when using a combination of

seven sensors.

Hardware Dyn. power Inf. time Dyn. energy

(mW) (ms) (mJ/Inf)

GPU (Titan X) 9,649 3.0 29.0

Movidius (NCS2) 736 2.0 1.5

Loihi (KB) 15 5.6 0.1

model running as non-spiking ANN on the NCS2 and the GPU,
respectively. Power efficiency came at the cost of increasing
the inference time to allow the spiking rates to converge; our
SNN runs almost 2× and 3× slower on the Loihi than the
ANNs deployed on the other two devices. Notably, the SNN still
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FIGURE 7 | Classification accuracy vs. time delay for the seven and nine

sensor combinations (left) and accuracy for the seven sensor combination for

different time window lengths (right). The dots indicate the mean and the

shadowed regions indicate the standard deviation over five runs of ANNs

independently trained with random initialization seeds.

achieves remarkable gains in terms of dynamic energy cost—
15× lower than the NCS2 and 290× lower than the GPU—
requiring only 0.1 mJ per inference. This value is one order of
magnitude lower than the dynamic energy reported on the k-
NN implementations of Frady et al. (2020), when processing
76,800-sample datasets on Loihi.

4. DISCUSSION

This work introduces the first neuromorphic implementation
of artificial taste. Our electronic tongue uses rate-based, deep
spiking convolutional networks to fuse dynamic, electrochemical
microsensor readings. It performs with high accuracy (97%)
and high energy efficiency (0.1 mJ per inference), and it can
run the neural networks in real time (5.6 ms, over 178×
lower than the sampling period of the sensor readout employed
by the system) on a single Loihi chip. The system exploits
sparse spiking computation and the particular latency budget
of chemical sensor dynamics to trade off inference time for
power consumption, achieving energy efficiency gains of 15×
and 290× when compared to the same CNN architecture
running with continuous values on the low-power Intel Movidius
Neural Compute Stick 2, and on an Nvidia GeForce GTX
TITAN X GPU, respectively. According to Frady et al. (2020),
the proposed CNN would be an order of magnitude more
energy efficient than the k-NN when classifying from 76,800
training examples on the Loihi; the approximate k-NN algorithm
would distribute the training set among multiple chips. In
contrast to the convolutional network, both k-NN power
consumption and chip occupancy would scale up substantially
with the addition of more temporal samples in the dataset.
Furthermore, the CNN is better suited for extensions such as
learning online from dynamically changing data due to e.g.,
sensor replacements.

Neuromorphic computing is advantageous in electrochemical
monitoring, as sensors follow slow dynamics that relax inference
speed requirements. This allows for the 2×-3× increase in

latency needed by the SNNs to reach accuracies comparable
to the ANNs without noticeable lags. Contrary to previous
implementations of electronic tongues found in literature,
our system is capable of classifying solutions accurately and
continuously over transient sensor responses, with no need to
delay inference until steady state is reached. This characteristic
may be crucial in preventing critical risks (e.g., product
contamination, process malfunction) early, when incidence is
still low.

Domain-optimized CNN architectures for sequential
data offer efficient training and representation of time-
invariant features in a conceptually and computationally
straightforward manner. Furthermore, this class of architectures
is well understood and widely supported, affording easier
integration with existing systems, and allowing more
direct translation into the physically-constrained synaptic
connections of neuromorphic hardware. While Recurrent
Neural Network (RNN) models can be more efficient on such
hardware by operating on instantaneous measurements—
instead of on sequential values of the data stored with
fixed-time window lengths—it still remains challenging to
train and achieve the same levels of accuracy with spiking
recurrent architectures.

To evaluate system performance (Davies, 2019), we
created MicroBeTa: a beverage tasting, benchmark dataset
to discriminate between five commercial beverage varieties using
temporal readings acquired from a solid-state electrochemical
microsensor array. The dataset covers every combination of
transitions from one beverage to another, including all water,
wine, and cava types in each arrangement to balance the set.
It extends to 26 ksamples (about 7 h) of dynamic multivariate
data, including sensor drifts and replacements. As the first
open dataset of its kind, we believe that it will be useful for
the research community to explore and compare different
spike encoding or processing approaches applied to this new
sensory domain. This benchmark can be used in a real-time,
non-batched regime as a preliminary workload to assess the
latency, throughput, accuracy, energy, or resource consumption
of alternative neuromorphic implementations for chemical
monitoring applications.

Our studies show that accuracy can be improved by
fusing readings from all input channels except for the
temperature and NO−

3 ISFET sensors. Excluding these last
two sensors makes sense given the negligible thermal effects
on sensor readings, and the erratic response exhibited by
FET sensor in some measurement cycles. These results
corroborate the complementarity of all the remaining
microsensors of the array toward generating a unique
fingerprint for each beverage of the dataset (Legin et al.,
1999).

When miniaturizing an autonomous electrochemical
monitoring system, power consumption becomes one of the
main technical challenges limiting the inclusion of embedded
intelligence. Our spiking taste implementation curtails inference
costs to an average of 100 µW at the 1-Hz multisensor sampling
frequency used in this work. This power budget is close to
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that of state-of-the-art smart electrochemical sensing devices,
which integrate the chemical sensors and the CMOS readout
circuitry with a power consumption of tens of µW per sensor
(Li et al., 2017; Miscourides and Georgiou, 2019). For the
number of sensors selected in the work, power requirements
could be satisfied up to several months by a single CR2032 coin
cell. Such an energy autonomy opens the door for deploying
chemosensory integration directly on the edge, avoiding the
communication bottlenecks, delays, and privacy concerns
inherent to cloud computing. The results also indicate good
robustness to sensor non-idealities, using dynamic readings
in an architecture manufacturable at wafer level. Once the
functionality of our neuromorphic tasting approach is verified,
the SNN could be applied to continuous monitoring in
remote and compact locations, providing an appropriate
environment to study incremental learning of new classes or
sensor channels.
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