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Highlights 1 

 Carioca beans flour presented high content of protein, total starch, resistant starch, and 2 

dietary fiber  3 

 Cooked and presoaked bean presented low values of peak viscosity, final viscosity, 4 

breakdown, and setback 5 

 Pre-gelatinized bean flour may be useful for food development 6 

  7 
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Abstract 24 

This study verified if cooking presoaked beans in the steam of autoclave improves the pasting properties, 25 

texture profile, water-solubility (WSI), emulsifying capacities of aged carioca bean’ flours. The carioca beans 26 

flour presented high content of protein (20.7 –22.3 g·100g-1), resistant starch (RS) (8.3 – 31.1 g·100g-1), and 27 

dietary fiber (TDF) (18.9 – 23.7 g·100g-1), and the cultivar Notavel presented the highest content of total 28 

dietary fiber and resistant starch for both cooked and raw flour. The pretreatment promoted an increase in 29 

TDF (8.8 %, cultivar Dama) and a decrease in RS (19.5 %, 33.4 %, and 47.0 % for cultivars Imperador, Gol, 30 

and Bola Cheia, respectively). Regarding the pasting properties, the heating process promoted a reduction 31 

in the values of peak viscosity, final viscosity, breakdown, and setback for all carioca bean cultivars. The 32 

other parameters, i.e., gel hardness, WSI, emulsifying capacity, and stability also presented a significant 33 

decrease in the cooked flours. So, the pretreatment promoted a total or/partially starch pre-gelatinization 34 

and the denaturation of the proteins of the flours which might increase their acceptability for food 35 

development. 36 

Keywords 37 

Resistant starch; paste viscosity; hardness; emulsifying capacity; water solubility. 38 

1 Introduction 39 

Dry bean (Phaseolus vulgaris L.) is an important crop worldwide due to their nutritional value and because 40 

they contribute to the food security of low-income people in underdeveloped countries. In 2019, Brazil was 41 

the third of the world's largest producers of dry beans, with an estimated production of 2.9 million tons, in 42 

an area of around 2,600,000 ha (FAO, 2019). Dry beans are a product of great economic and social 43 

importance in Brazil because it is an economic alternative for agricultural exploitation in small farms in a 44 

large amount of Brazilian rural regions. That is, family farming is responsible for the production of 70 % of 45 

national beans (considering all types of beans) (Silva, 2017). The carioca bean - grains with a light cream 46 

color and with the presence of light brown streaks - is the most cultivated in Brazil. They look slightly like 47 

pinto beans, except for the stripes instead of spots in the tegument and the smaller size of the grains. 48 

Due to the seasonality of bean production in Brazil and other countries, the storage of carioca beans is 49 

necessary to maintain bean supply throughout the year. Nevertheless, improper storage conditions cause 50 

undesirable changes of carioca beans, e.g., the browning of the integument (Bento, Ferreira, Bassinello, & 51 

Oomah, 2021c; Bento et al., 2020). So, after harvesting, grains of the carioca type quickly lose their 52 

commercial value because some genotypes darken very quickly due to chemical changes, related to the 53 

oxidation of proanthocyanidin (Bento et al., 2021d; Coelho et al., 2020). This depreciation is because the 54 

consumers reject dark grains since it is associated with old grains and with a long cooking time (Bento et al., 55 

2021c; Bento et al., 2020). The aged carioca beans that quickly darkens and consequently lose their 56 

commercial value can be used as ingredients in food formulation. So, making flour from aged carioca beans 57 

can contribute to the sustainability of the bean production chain since the use of the bean flour could add 58 

value to the aged bean. Similarly, flour from broken beans (i.e., the bean byproduct) is useful for food 59 

development since they present a similar nutritional value compared to the whole grain (Bento et al., 60 

2021b; Gomes et al., 2015). 61 

The heat treatment of pulses to produce flours can change the technological properties of the 62 

flours, for example, it reduces the value of the breaking and final viscosities and the tendency to retrograde 63 

(Sun et al., 2018). In our previous studies we showed that making flour from cooked beans allows the 64 

development of food staff with high sensorial acceptance and depending on the type of bean (e.g., colorful 65 
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beans or black and carioca byproduct) the flour may be adequate for different food development (Bento et 66 

al., 2021a; Bento et al., 2021b). This happens because different bean genotypes present distinct amounts of 67 

protein, dietary fibers, resistant starch, and chemical profile which influence their technological properties, 68 

i.e., water and oil absorption, emulsification, water solubility, and gelation properties (Gupta, Chhabra, Liu, 69 

Bakshi, & Sathe, 2018; Lin & Fernández-Fraguas, 2020; Ramírez-Jiménez, Reynoso-Camacho, Mendoza-Díaz, 70 

& Loarca-Piña, 2014). The flour made from colorful bean presoaked in water (6 h) and cooked in the steam 71 

of autoclave (5 min) presented a higher amount of resistant starch and lower viscosities values (Bento et 72 

al., 2021a). Thus, these flours from pretreated beans were advantageous for food systems application 73 

when high levels of supplementation with pulse components are desired without causing a major texture 74 

discrepancy (Bento et al., 2021a; Felker, Kenar, Byars, Singh, & Liu, 2018). Unfortunately, there is limited 75 

research on the impact of their major elements on the functional characteristics of flours and the 76 

physicochemical properties of carioca bean flours, which are primordial for the further development of 77 

food products made with bean flours (Romero & Zhang, 2019). 78 

Considering the importance of the technological properties of flour for the further development of food 79 

products made with carioca bean flours, studies that propose the development of aged carioca bean flours 80 

from cooked grains and their physicochemical evaluation are justified. They would provide information 81 

about technological properties changes and help with the use of bean flours by industries, improving the 82 

nutritional quality of processed foods, and still would attend to specific consumer's demands. Therefore, 83 

the present study aimed to verify if cooking presoaked beans in the steam of autoclave improve the pasting 84 

properties, texture profile, water-solubility, emulsifying capacities of aged carioca bean flours. 85 

2 MATERIAL AND METHODS 86 

2.1 Plant material 87 

Dry bean from the commercial carioca group were selected from the Active Germplasm Bank of Embrapa 88 

Arroz e Feijão, in Santo Antônio de Goiás, Goiás State, Brazil: BRSMG Madrepérola (Ma), TAA Dama (Da), 89 

BRS Notável (No), IAC Imperador (Im), TAA Gol (Gol) and TAA Bola Cheia (BC). The grains were cultivated in 90 

the experimental fields of Embrapa Arroz e Feijão, on the Capivara farm, in the same municipality. After 91 

harvesting and drying of beans in an oven with forced air circulation (40 °C) (final moisture ± 12.0 %) (the 92 

moisture was determined using a dielectric moisture analyzer (Grainer II PM-300, Kett Electric Laboratory)), 93 

the beans underwent cleaning operations, purge, and manual selection of grains. After quartering for 94 

sample homogenization, they were stored in low-density polyethylene bags, in portions of 1 kg (triplicate, 95 

three biological samples for each bean cultivars) for 3 months, in a place with ambient lighting at 25°C. 96 

2.2 Flour preparation 97 

To obtain the flour from raw grains, the beans were washed into running water and then dried, in an oven 98 

(Nova Ética, 400/5, Brazil) at 60 °C with air circulation, for 1 - 2 hours (until final moisture of 10-12%). 99 
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Afterward, the beans were ground in a hammer mill with a sieve of 20 mesh. For cooked flour, the washed 100 

grains were soaked for 6 hours in water (1:2 w/v), and then the washed beans were placed in 1 L beakers 101 

without the addition of water and then cooked with the steam from the autoclave (121 °C·at 1.1 kg·cm2) 102 

(Prismatec, CS, Brazil) for 5 min (Bento et al., 2021a). After that, the cooked grains were dried in an oven 103 

(60 °C) with air circulation for 8 - 12 hours (until final moisture of 10-12%), and then it was ground in a 104 

hammer mill. Three repetitions of each carioca bean flour were obtained (raw and cooked) and showed 105 

similar granulometry, with particle sizes between 106 µm and 425 µm. A flowchart describing the flour 106 

preparation is presented in Supplementary figure 1.  107 

2.3 Protein content, total dietary fiber (TDF), and resistant starch (RS) 108 

The nitrogen content by the micro-Kjeldahl method and then multiplied by a factor of 6.25 to obtain the 109 

crude protein content, according to AOAC (2016), method number 979.09. The TDF was determined using a 110 

standardized enzymatic-gravimetric method (K-TDFR Kit, obtained from Megazyme International Ireland, 111 

Bray, Ireland), according to method number 985.29 (AOAC, 2016). RS content of bean flour was determined 112 

using an RS assay kit (cat. no. K-RSTAR, obtained from Megazyme International Ireland, Bray, Ireland), with 113 

some modifications. Briefly, pancreatic α-amylase and amyloglucosidase were added directly to 100 mg of 114 

bean flour in 50 mL test tubes, and tubes were incubated at 37 °C for 16 h with shaking (100 rpm). After the 115 

addition of ethanol and centrifugation, the supernatant (nonresistant starch - NRS) was removed and the 116 

precipitate was homogenized using a magnetic stirrer. To solubilize RS, 2 M KOH was added to the 117 

homogenized precipitate on the ice bath. Sodium acetate buffer (1.2 M, pH 3.8) was added and incubated 118 

with amyloglucosidase to convert the solubilized RS to glucose. The glucose content of the RS fraction was 119 

determined by the glucose oxidase/peroxidase reagent (GOPOD) method. 120 

2.4 Pasting properties and gel hardness 121 

The sample (3.5 g with adjusted moisture of 14 g·100g-1) with 25.0 mL of distilled water were analyzed in a 122 

Rapid Visco Analyser (Perten Instruments, RVA 4500, Macquarie Park, Australia), using the flour method 123 

(RVA Method 5, Version 4, March 2010). The suspension was kept at 25 °C for 2 min, heated (14 °C·min-1) at 124 

95 °C and kept at this temperature for 3 min, and cooled (14 °C·min-1) at 25 °C. The pasting properties 125 

evaluated were paste temperature, peak viscosity, final viscosity, breakdown, and setback, expressed in 126 

centipoise (cP). After being subjected to the Rapid Visco Analyzer, the samples were kept refrigerated (7 °C) 127 

overnight, and later they were analyzed with a texturometer (TA HD Plus Stable Micro Systems, Surrey, 128 

England). The gel hardness was measured with a 20 mm cylindrical probe at a temperature of 25 °C 129 

according to Wani, Sogi, Wani, Gill, and Shivhare (2010), with a test speed of 0.5 mm·s-1, a pre-test speed of 130 

1.0 mm·s-1, a post-test speed of 10.0 mm·s-1, with force contact depth of 10 gf, and with probe penetration 131 

distance/depth of 6 mm. 132 

2.5 Thermal properties 133 
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The thermal properties were determined using a differential scanning calorimeter (TA Instruments, Q20, 134 

New Castle, UK). The samples (2 mg, dry weight) were weighed in aluminum containers, suitable for the 135 

equipment. Distilled water (6 μL) was added, and the sample holders were sealed in a specific press. These 136 

were kept for 12 h at room temperature and heated in the range between 35 and 120 °C, at a heating rate 137 

of 10 °C·min-1. From the obtained curve, the temperature of peak gelatinization and vitrea transition was 138 

calculated using the TA Universal Analysis application (TA Instruments, New Castle, UK). 139 

2.6 Water solubility index and the water and oil absorption index 140 

The water solubility index (WSI) and the water absorption index (WAI) were determined according to the 141 

method described by Anderson, Conway, Pfeifer, and Griffin Junior (1969). The samples (2.5 g) were 142 

weighed into previously tared centrifuge tubes and 30 mL of distilled water was added. The tubes were 143 

shaken in a water bath for 30 min at 25 °C and then centrifuged at 3000 g for 15 min. The supernatants 144 

were carefully removed into 10 mL volumetric flasks. The WAI was calculated using equation 1, and the 145 

result was expressed in g of precipitate per g of dry matter. To determine the oil absorption index (OAI), the 146 

same methodology with adaptations was also used, since the water was replaced by soybean oil. The WSI 147 

was calculated from the ratio between the mass of the dry residue of the supernatant (evaporation 148 

residue) and the sample weight multiplied by 3 (indicating the correction for the total supernatant volume 149 

since only 10 mL of the 30 mL was used) and the result expressed in g·100 g-1 (Equation 2). 150 

      
                  

                    
                                                                                (1) 151 

WSI ={[
                    

                    
]  }                                                                      (2) 152 

2.7 Emulsifying capacity and stability 153 

The sample (0.35 g) was weighed into a graduated centrifuge tube (10 mL) and 2.5 mL of distilled water was 154 

added. The tubes were shaken in a vortex for 30 seconds and then 2.5 mL of corn oil was added. After, the 155 

tubes were vortex for 90 s and then centrifuged at 500 g for 5 min (Kaur & Singh, 2005). The emulsifying 156 

activity was calculated by dividing the volume of the emulsified layer by the total volume before 157 

centrifugation. The stability of the emulsion was determined, following the same procedure to determine 158 

the emulsifying activity. However, before centrifuging the samples, they were subjected to heat treatment 159 

at 85 °C for 15 min and centrifuged after cooling. Emulsion stability was expressed as the percentage of the 160 

remaining emulsifying activity after heating. 161 

2.8 Statistical analyses 162 

All results were obtained in triplicate, are presented as means ± standard deviation. Levene test was 163 

applied to verify the variance homogeneity (normality test), and the data were evaluated by the ANOVA 164 

(analysis of variance), followed by the Tukey test (p < 0.05). A general description of the data was obtained 165 

by Principal Component Analysis (PCA) of the normalized data based on Pearson’s correlation matrix 166 

provided by XLSTAT software (Addinsoft, 2021).  167 
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3 Results and discussion 168 

3.1 Protein, dietary fiber, total starch, and resistant starch content 169 

The protein content presented a slight variation between the cultivars. The flours of the cultivar Ma 170 

showed the highest value of protein (22.31 g·100g-1), while the cultivar No was the lowest one (20.90 g 100 171 

g-1) (Table 1). Bean’s protein content is comparable to pea (18.7–22.3 g·100g-1), lentil (25.1 g·100g-1), and 172 

faba bean (26.5 g·100g-1) (Abdel-Aal, Ragaee, Rabalski, Warkentin, & Vandenberg, 2018; Byanju, Hojilla-173 

Evangelista, & Lamsal, 2021; Young et al., 2020). Besides, bean protein provides health benefits due to the 174 

presence of bioactive peptides that acts in anti-inflammatory responses, metabolism of protein and 175 

carbohydrate, antioxidant, and immune system modulation (Alves et al., 2021; Luna-Vital, Mojica, González 176 

de Mejía, Mendoza, & Loarca-Piña, 2015). 177 

Carioca beans also presented high content of dietary fiber, between 18.89 to 23.7 g·100g-1. The 178 

flour of beans is a source of fiber, and it had more fiber than lentil (4.11 g·100g-1), green pea (6.51 g·100g-1) 179 

(Byanju et al., 2021), and yellow pea (16.5 g·100g-1) (Setia et al., 2019). The thermal pretreatment did not 180 

influence the TDF, with exception of the flours of cultivar Da that presented an increase in TDF in the 181 

cooked flour (Table 1). This increase in dietary fiber is due to protein–fiber complexes formed by chemical 182 

modification caused by the cooking process (Wang, Hatcher, Toews, & Gawalko, 2009). Many of the 183 

nutritional benefits from consuming beans have been largely accredited to their dietary fiber content 184 

(Vergara-Castañeda et al., 2010). 185 

The flours of the cultivar Da showed the highest content of resistant starch (29 g·100g-1), whereas 186 

the cultivar Ma had the lowest one (9 g·100g-1) (Table 1). These results are low than those found for Pinto 187 

bean and black bean (around 35 g·100g-1) (Escobedo, Mora, & Mojica, 2019). However, most of the flour of 188 

raw beans presented more resistant starch than the yellow pea (2 g·100g-1) (Vatansever, Rao, & Hall, 2020), 189 

and cooked lentils (3.0 g·100g-1) (Johnson et al., 2015). The content of RS starch may be influenced by 190 

several factors, such as the composition of the bean flour (e.g., the fibers content) and the starch 191 

characteristics (i.e., the crystallinity of starch) since starch with high content of amylose tends to make the 192 

major amount of RS related to their chain-length. Additionally, the enzymatic content of the bean flour 193 

influences the content of RS since the natural RS present in plant material is due to the enzymatic de-194 

branching of the amylose and amylopectin branch (Hung, Vien, & Lan Phi, 2016). RS present low 195 

digestibility and are composed of soluble and insoluble fibers and non-digestible sugars which is fermented 196 

by gut microbiota in the colon. The fermentation of RS by these microorganisms produces short-chain fatty 197 

acids, such as butyric acid. These acids are known to improve several biological mechanisms such as 198 

modulate postprandial lipemia and blood pressure control (Barber, Kabisch, Pfeiffer, & Weickert, 2020; 199 

Mullins & Arjmandi, 2021; Reverri et al., 2015; Vergara-Castañeda et al., 2010).  200 

The pretreatments decreased the RS content of the flours of cultivars Im, Gol, and BC. Other 201 

research also observed a reduction in the RS when the grains were soaked before cooking (Santiago-Ramos, 202 

Figueroa-Cárdenas, Véles-Medina, & Salazar, 2018). The cooking process of beans causes starch 203 

gelatinization which increases the starch digestibility and upon cooling they form retrograded starch (less 204 

digestible) (Liu, Ragaee, Marcone, & Abdel‐Aal, 2020). However, the formation of less digestible starch is 205 

dependent on the starch composition (i.e., amylose and amylopectin ratio) of the bean cultivar. Moreover, 206 

the formation of RS due the recrystallisation of the starch fractions can be improved by an additional 207 

heating/cooling treatment (Ramírez-Jiménez et al., 2014; Ramírez-Jiménez, Reynoso-Camacho, Tejero, 208 

León-Galván, & Loarca-Piña, 2015).  209 

3.2 Pasting properties and gel hardness 210 
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The pasting temperature of the raw bean flours was between 80.7 – 84.1 °C and the flour of cultivar BC 211 

presented the highest one (Table 2). Other flours of pulses also presented high pasting temperatures, e.g., 212 

yellow pea (79.3 °C) (Waduge et al., 2017), and kidney bean (89.4 – 94.9 °C) (Wani, Andrabi, Sogi, & Hassan, 213 

2020). The high pasting temperatures are due to the presence of non-starch components (i.e., proteins, 214 

oligosaccharides, cellulose, etc.). These compounds compete with the starch for water, which reduces the 215 

water availability increasing the pasting temperature. Besides, the RS contributes to a higher resistance to 216 

swelling and rupturing (Lin & Fernández-Fraguas, 2020; Romero & Zhang, 2019). Additionally, flours of 217 

pulses contain a high amount of amylose (around 30 %) compared to cereal (around 10 %). The high 218 

content of amylose might result in a high gelatinization temperature due to the orientation of amylose 219 

chains relative to one another, or strong interactions between starch chains, which increases the stability of 220 

the granules to rupture under mechanical agitation (Frohlich et al., 2021; Li, Prakash, Nicholson, Fitzgerald, 221 

& Gilbert, 2016; Lin & Fernández-Fraguas, 2020). These aforementioned factors raise the minimum 222 

temperature to cook the bean flours as well as the temperature at which the viscosity begins to increase 223 

during the heating process.  224 

The pretreatment of the grains promoted a starch pre-gelatinization, and this phenomenon was 225 

more evident on the flours of Da_C, Ma_C, Gol_C, and BC_C because it did not present a paste temperature 226 

(Table 2). The flours of cultivar No_C and Im_C presented a paste temperature, which indicates that these 227 

grains were not completely cooked during the heat pretreatment. Therefore, its flour retains part of the 228 

native starch granules since it was not completely pregelatinized.  229 

The beans flours presented a range for peak viscosity between 48.3 - 1376.7 cP, and the raw flour 230 

presented the highest one compared to the flours of cooked beans (Table 2). This result is comparable to 231 

the peak viscosity of fava bean (1152 cP), yellow pea (1544 cP), and pea (1542 cP) flours (Frohlich et al., 232 

2021; Vatansever et al., 2020; Young et al., 2020). The breakdown, the difference between the maximum 233 

and minimum viscosities at constant temperature (95 °C), is associated with gel stability. Therefore, lower 234 

breakdown suggested that the paste is more stable during cooking (Zhang et al., 2019). The content of 235 

amylose and the extent of amylose leaching also influence the breakdown of pulses flours. Thus, the raw 236 

flour of cultivars Ma, Im, and Gol might show a high amount of amylose since these presented the highest 237 

viscosity values (Table 2). The final viscosity presented a range between 1204 – 1987 cP for raw bean flour, 238 

and between 74 – 672 cP for cooked bean flours. The setback oscillated between 28 and 695 cP, where the 239 

raw flour presented the highest values (e.g., Ma, Im, and Gol). Low values of setback represent a small 240 

tendency to retrogradation, i.e., the starch molecules have low mobility which retains the water into the 241 

gel matrix (Demiate et al., 2016; Li et al., 2016). The differences observed in pasting properties between the 242 

bean cultivars are a result of their starch composition (ratio of amylose and amylopectin), starch 243 

crystallinity, and the content of non-starch components (Frohlich et al., 2021; Lin & Fernández-Fraguas, 244 

2020; Romero & Zhang, 2019). 245 

In general, the flours of cooked beans presented low values of viscosity compared with the raw ones (Table 246 

2, Supplementary figure 2). This is because the starch granules of these samples were previously 247 

gelatinized, at least part of them (Simons & Hall Iii, 2018). Consequently, the partial depolymerization of 248 

amylose and amylopectin promoted by the heating process produces short linear and branched chains. This 249 

happens in both crystalline and amorphous regions of the granule starch reducing the gel-forming power, 250 

swelling capacity, and viscosity values (Hung et al., 2016).  251 

The gel hardness, which represents the compressive strength, presented a variation between 0.01 – 252 

3.04 N, where the highest values were observed in the raw flour (Table 2). This property is related to the 253 

retrogradation of the flour. Thus, flours with high content of amylose present a high setback and gel 254 

hardness due to the recrystallization of amylose molecules (Weber, Collares-Queiroz, & Chang, 2009). So, 255 
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the high gel hardness of cultivars Ma, Im, and Gol also suggest that these cultivars present a high amount of 256 

amylose. The heat pretreatment reduced the gel hardness due to starch pre-gelatinization.  257 

3.3 Thermal properties 258 

The flours from raw beans exhibited two endotherm peaks (Table 3, Supplementary Figure 3), the first one 259 

corresponding to starch gelatinization and the second one to protein denaturation and the melting of 260 

amylose-lipid complexes (Santiago-Ramos et al., 2018). The peak temperatures (around 80 °C) of raw flours 261 

were higher than those reported for other pulses, i.e., faba bean (73 – 75 °C), lentil (70 – 71 °C), and pea (72 262 

– 73 °C) (Abdel-Aal et al., 2018). The temperature of gelatinization is influenced by the starch composition 263 

and the presence of non-starch compounds. Which explains the difference between the beans with the 264 

other pulses as well as between different bean cultivars. The presence of the non-starch compound in the 265 

bean flour is responsible for the low enthalpy energy (Table 3) compared to the isolate bean starch (13 - 15 266 

J·g-1) (Demiate et al., 2016). Some cooked flours did not present the first endotherm peak, which is 267 

following the paste properties results, showing that the starch of the flours from cultivars Da_C, Ma_C, 268 

Gol_C, and BC_C were pregelatinized during the cooking process (Table 2 and 3, Supplementary Figure 4). 269 

For the cooked flours Im_C and Da_C the first endothermic peak presented an increase of temperature 270 

compared to their raw flours. This occurred due to the presence of retrograded starch which usually needs 271 

more temperature to start forming a gel.  272 

Both sorts of flours (raw and cooked) from all studied bean cultivars presented the second 273 

endothermic peak (between 90 and 108 °C) (Table 3), which is due to the melting of amylose-lipid 274 

complexes due to the existence of them in flour from beans (Santiago-Ramos et al., 2018; Wani et al., 275 

2020). At this range of temperature also occurs the denaturation of proteins since the peak denaturation 276 

temperatures of albumins and vicilin are 87 – 98 °C and 98.8 °C, respectively (Santiago-Ramos et al., 2018). 277 

Therefore, the differences between the bean cultivars in the temperature and the enthalpy energy may be 278 

due to the protein composition of the cultivars as well as the contents of amylose and lipids.  279 

3.4 Water and oil absorption and water solubility 280 

The water solubility index (WSI) varied between 27 – 30 g·100g-1 and the flours from cultivars Ma presented 281 

the maximum value and the cultivar No had the lowest one (Figure 1). The bean flour solubility is mainly 282 

influenced by their protein composition and is related to the hydrophobicity of their amino acids (Boye, 283 

Zare, & Pletch, 2010; Los, Demiate, Prestes Dornelles, & Lamsal, 2020). The heat treatment promoted a 284 

reduction in the WSI for all bean cultivars (Figure 1). These reductions might be due to the protein 285 

denaturation which changes the protein solubility, as well as to the starch gelatinization that modifies the 286 

cellular medium which might entrap the protein fraction (Alfaro-Diaz et al., 2021). Solubility is a critical 287 

factor to consider when developing products based on beans since some bean proteins have low solubility 288 

in their original state. Proteins with low solubility promote the formation of very thick suspensions after 289 

hydration, which are not suitable for making soups nor for producing low viscosity drinks such as milk 290 

substitutes (Vogelsang-O’Dwyer, Zannini, & Arendt, 2021). On the other hand, flours with low values of WSI 291 

are appropriate for pasta and baked products development (Bento et al., 2021b). 292 

The water absorption index (WAI) is the ability of the flour to entrap water into its molecular 293 

structure. The WAI varied between 3.9 – 5.1 g·g-1 and the flours from cultivar No presented the maximum 294 

value and the cultivars Ma, Da, and BC the lowest ones (Figure 1). The results were higher than those found 295 

for raw kidney bean flour (1.21–1.53 g·g-1) (Wani et al., 2020). The WAI is affected by the ratio of 296 

hydrophilic proteins and carbohydrates amounts in the flours since their strong bonds of the hydrogens of 297 

the polar or charged side chains are responsible for contributing to the increased capacity to absorb water 298 
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(Prasad, Singh, & Anil, 2012). The pretreatment increases the WAI, except for the flour from No_C which 299 

presented a reduction in WAI (Figure 1). The increase in WAI observed in the flour of cooked beans is a 300 

consequence of the protein denaturation, which exposes some earlier hidden peptide bonds and polar side 301 

chains resulting in an increased ability to trap and keep hold water molecules. Additionally, the heat 302 

process promotes starch gelatinization, which also could increase WAI due to the greater loss of molecular 303 

order and crystalline structure (Lin & Fernández-Fraguas, 2020). 304 

The oil absorption index (OAI) varied between 2.1 – 1.9 g·g-1 and the flours from cultivars BC presented the 305 

maximum value and the cultivar Gol had the lowest one (Figure 2). These results were higher than those 306 

found for chickpea flour (0.62 g·g-1) (Gupta et al., 2018). The OAI of the flour is related to the ability of the 307 

protein to link with the fat molecules, which is a very important characteristic, since the fat acts as a flavor 308 

retainer and increases the food palatability. Electrostatic and hydrogen bonds are the forces involved in the 309 

lipid-protein interaction. The water and oil binding capacity of food proteins depends on intrinsic factors 310 

such as amino acid composition, protein conformation, and surface polarity or hydrophobicity (Vaidya, 311 

Solanke, & Gaware, 2016). The heat treatment promoted a slight reduction in OAI on the flour from BC and 312 

Ma cultivars, a slight increase in OAI on the flours of Gol and Im, and it was not able to affect the OAI of the 313 

flours from No and Da cultivars (Figure 2). An enhanced OAI would be due to a higher amount of non-polar 314 

groups at the protein surface in contact with the neighboring oil (Lin & Fernández-Fraguas, 2020). The 315 

reduction of OAI observed in the cooked flours from BC and Ma can be interesting in the point of health 316 

since they may be used in fried products to provide reduced fat content and calories (Gupta et al., 2018). 317 

3.5 Emulsifying properties 318 

The emulsifying capacity (EC) ranged between 51 to 64 %, with the raw flour from cultivar No presenting 319 

the highest value and the cooked flour Da_C the lowest EC (Figure 3). The formation of emulsions is mainly 320 

due to the reduction in the interfacial tension of oil droplets in aqueous systems and electrostatic repulsion 321 

among them (Wani et al., 2020). The dissimilarity for EC among the cultivars is due to the 322 

hydrophilic/hydrophobic proportions of amino acids in the major storage proteins present in these seeds 323 

(Foschia, Horstmann, Arendt, & Zannini, 2017; Gupta et al., 2018). The polysaccharides help to stabilize it 324 

by increasing viscosity. So usually, pulses proteins with high solubility have high foaming capacity, 325 

emulsification, and gelatinization (Boye et al., 2010; Los et al., 2020). Therefore, the reduction of EC 326 

observed in most of the flours is related to the reduction of viscosity of these flours due to starch 327 

gelatinization.  328 

The flours from cultivars No and Im presented the highest emulsion stability (ES) (60 %) (Figure 3). 329 

Pulses with excellent emulsifying properties allow the development of emulsion-based drinks and milk 330 

alternative drinks without emulsifiers (Alavi, Chen, & Emam-Djomeh, 2021; Vogelsang-O’Dwyer et al., 331 

2021). The heat pretreatment reduced their ES with exception of the flours from cultivar Ma_C (Figure 3). 332 

This reduction may be related to the protein denaturation which reduces the degree of the folded structure 333 

resulting in an unstable interfacial layer due to the low molecular interactions into the sub-surface. Another 334 

point that explains the reduction or even the increase in the ES is the protein profile of the flour. For 335 

example, globular proteins, like globulin (~ 70 % of bean proteins), present more conformational 336 

limitations, therefore it adsorbs slowly and only partially unfold at the interface, hence exhibiting poor 337 

emulsification power (Lin & Fernández-Fraguas, 2020). 338 

The cooked flours compared with the native material (raw flours) presented a reduction in the values of 339 

WSI, pasting properties (peak viscosity, final viscosity, breakdown, and seatback), hardness, emulsifying 340 

capacity, and emulsifying stability (Figure 4). This happens because of starch pre-gelatinization and the 341 
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denaturation of the proteins present in the flours during the cooking step. For instance, precooked flours 342 

may be suitable for biscuits development since the heat process contributes to the formation of complexes 343 

between amylose and lipids improving the functional properties of the flours, such as lowering the 344 

stickiness of biscuits and modifying viscosity profiles (reducing it). Moreover, the flours of pretreated beans 345 

may present more fragmentation of their components as a resulting of denaturation and gelatinization 346 

which has been related to a desirable smooth texture and also may be responsible for the stable 347 

suspensions in thin porridge (Kamau, Nkhata, & Ayua, 2020).  348 

4 Conclusion 349 

The carioca beans flour presented high content of protein, resistant starch, and dietary fiber, and the flour 350 

from cultivar Notavel presented the highest content of total dietary fiber and resistant starch for both 351 

cooked and raw flours. Additionally, the protein, resistant starch, and dietary fiber content of bean flour 352 

are higher than other pulses flours such as pea and lentil, which efforts the high nutritional value of bean 353 

flours. The bean flours made from cooked beans presented a reduction in the values of pasting properties 354 

(peak viscosity, final viscosity, breakdown, and setback), hardness, water-solubility, emulsifying capacity, 355 

and emulsification stability in all carioca bean flours. Hence, the proposed method (i.e., soaking the beans 356 

in water for 6 h followed by cooking it under the steam of autoclave for 5 min) was able to promote starch 357 

pre-gelatinization and the denaturation of the proteins of the flours (at least part of it). Pre-gelatinized 358 

bean flour processed from presoaked beans in the steam of autoclave may be useful for food development 359 

(such as snacks, soups, cakes, pasta, etc.) increasing their acceptability as a base ingredient since it might 360 

present appropriate functional properties. Therefore, the application of cooked flour in the preparation of 361 

new food products still needs more study. Also, there is a gap in information about the nutritional value of 362 

cooked carioca bean flour (e.g., the bioavailability of minerals and protein digestibility). So, both application 363 

and nutritional studies are needed for better use of this pulse flour.   364 
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Table 1. Protein, total dietary fiber, resistant starch, and total starch content in dry weight (g‧100g
-1

) of 540 

different raw and cooked carioca bean flour. 541 

Flours Protein Total dietary fibers Resistant starch 

Da 20.76 ± 0.58 b 18.89 ± 0.17 e 29.00 ± 1.48 ab 

Da_C - 20.55 ± 0.06 cd 31.11 ± 1.59 a 

No 20.90 ± 0.15 b 23.05 ± 0.33 a 27.60 ± 1.41 ab 

No_C - 23.72 ± 0.37 a 29.63 ± 1.51 ab 

Ma 22.31 ± 0.34 a 21.49 ± 0.53 bcd 9.10 ± 0.46 f 

Ma_C - 20.88 ± 0.45 cd 8.30 ± 0.42 f 

Im 21.52 ± 0.44 ab 21.20 ± 0.40 bcd 27.76 ± 1.40 ab 

Im_C - 20.80 ± 0.44 cd 22.34 ± 1.14 c 

Gol 21.39 ± 0.29 ab 21.72 ± 0.61 bc 26.14 ± 1.33 b 

Gol_C - 22.50 ± 0.55 ab 17.41 ± 0.89 d 

BC 21.28 ± 0.28 ab 20.37 ± 0.74 cd 26.76 ± 1.36 b 

BC_C - 20.93 ± 0.29 d 14.18 ± 0.21 e 

*Means of three determinations ± standard deviation. Different letters on the same column represent the statistical 542 

difference (p <0.05). Beans are described as No and No_C (Notavel), Im and Im_C (Imperador), Gol and Gol_C (Gol), 543 

BC and BC_C (Bola Cheia), Da and Da_C (Dama) and Ma and Ma_C (Madreperola), where the ‘C’ indicates cooked 544 

flours.545 
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Table 2. Pasting properties and gel hardness of different raw and cooked carioca bean flour. 546 

Flours 

Paste 

temperature 

(°C) 

Peak viscosity 

(cP) 

Breakdown 

(cP) 

Final viscosity 

(cP) 
Setback (cP) 

Gel hardness 

(N) 

Da 83.90 ± 0.15b 944.0 ± 30.5b 18.7 ± 7.3c 1274.0 ± 36.6de 348.7 ± 3.2c 1.76 ± 0.26bc 

Da_C - 48.3 ± 1.5g 2.7 ± 0.5d 74.3 ± 1.5j 28.7 ± 0.6g 0.03 ± 0.00e 

No 83.72 ± 0.63b 952.0 ± 6.6b 22.0 ± 4.4c 1282.7 ± 10.4d 352.7 ± 10.7c 1.85 ± 0.32bc 

No_C 87.37 ± 0.38a 245.0 ± 11.8de 20.0 ± 3.0c 507.3 ± 17.9g 282.3 ± 9.1d 0.72 ± 0.03d 

Ma 82.32 ± 0.26c 1005.3 ± 37.2b 35.3 ± 9.9bc 1363.7 ± 29.2c 393.7 ± 23.1c 2.09 ± 0.15b 

Ma_C - 93.0 ± 3.0fg 11.3 ± 2.3d 189.3 ± 2.5i 107.7 ± 1.1f 0.01 ± 0.00e 

Im 80.73 ± 0.04d 932.5 ± 0.7bc 49.5 ± 0.7b 1450.5 ± 4.9b 567.5 ± 6.4b 2.05 ± 0.12bc 

Im_C 83.17 ± 0.60bc 304.3 ± 15.6d 25.3 ± 3.2c 672.0 ± 34.2f 393.0 ± 19.7c 0.84 ± 0.01d 

Gol 78.77 ± 0.60e 1376.7 ± 107.5a 65.0 ± 13.5a 1987.3 ± 35.4a 695.7 ± 30.4a 3.04 ± 0.05a 

Gol_C - 190.2 ± 14.8ef 21.0 ± 7.0c 385.0 ± 62.9h 192.0 ± 55.1e 0.05 ± 0.00e 

BC 84.10 ± 0.35b 832.5 ± 3.5c 36.5 ± 2.1b 1204.0 ± 1.4e 408.0 ± 1.3c 1.68 ± 0.13c 

BC_C - 67.0 ± 1.0g 5.0 ± 0.8d 118.0 ± 5.0ij 56.0 ± 4.0fg 0.02 ± 0.00e 

*Means of three determinations ± standard deviation. Different letters on the same column represent the statistical 547 

difference (p <0.05). Beans are described as No and No_C (Notavel), Im and Im_C (Imperador), Gol and Gol_C (Gol), 548 

BC and BC_C (Bola Cheia), Da and Da_C (Dama) and Ma and Ma_C (Madreperola), where the ‘C’ indicates cooked 549 

flours. 550 
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Table 3. Thermal properties of flour of raw and cooked beans from different cultivars: No and No_C (Notavel), Im and Im_C (Imperador), Gol and Gol_C (Gol), BC 551 

and BC_C (Bola Cheia), Da and Da_C (Dama), and Ma and Ma_C (Madreperola), where the ‘C’ indicates cooked flours. 552 

Flours
1 

Peak 1 Peak 2 

Tonset (°C) Tpeak (°C) Tend (°C) ΔH (J g
-1

) Tonset (°C) Tpeak (°C) Tend (°C) ΔH (J g
-1

) 

Da 75.56 ± 0.15 b 80.34 ± 0.08 bc 88.03 ± 1.74 b 2.43 ± 0.63 abc 92.79 ± 0.08 b 97.14 ± 0.07 b 102.25 ± 0.01 b 1.17 ± 0.05 b 

Da_C - - - 0.00 ± 0.00 f 91.46 ± 0.24 b 96.29 ± 0.48 b 103.01 ± 2.37 b 1.66 ± 0.78 ab 

No 75.70 ± 0.03 b 80.47 ± 0.33 bc 85.91 ± 0.96 c 1.68 ± 0.58 cd 99.84 ± 0.23 a 102.30 ± 0.10 a 107.47 ± 0.15 a 1.87 ± 0.01 ab 

No_C 78.33 ± 0.15 a 85.26 ± 0.18 a 94.60 ± 0.95 a 1.32 ± 0.01 de 94.69 ± 1.59 b 98.86 ± 1.64 b 103.79 ± 1.38 b 0.62 ± 0.12 c 

Ma 74.25 ± 0.22 c 79.84 ± 0.05 c 86.46 ± 0.43 b 2.41 ± 0.43 abc 93.21 ± 0.10 b 96.23 ± 0.01 102.67 ± 0.27 b 2.14 ± 0.20 a 

Ma_C - - - 0.00 ± 0.00 f 92.55 ± 1.21 b 97.25 ± 1.16 b 101.83 ± 2.04 b 1.13 ± 0.24 b 

Im 77.01 ± 1.14 a 80.17 ± 0.64 bc 87.77 ± 0.15 b 2.98 ± 0.55 ab 99.96 ± 0.01 a 102.52 ± 0.10 a 107.30 ± 0.05 a 1.56 ± 0.01 b 

Im_C 76.76 ± 0.14 ab 81.55 ± 0.63 b 89.80 ± 2.18 b 1.96 ± 0.23 bcd 92.74 ± 0.78 b 97.19 ± 0.20 b 102.66 ± 0.61 b 1.53 ± 0.24 b 

Gol 74.77 ± 0.59 bc 79.57 ± 0.98 c 87.36 ± 0.87 b 2.92 ± 0.28 a 93.33 ± 1.23 b 97.38 ± 2.70 b 102.52 ± 2.25 b 1.29 ± 0.16 b 

Gol_C    0.00 ± 0.00 f 93.20 ± 0.87 b 97.27 ± 0.91 b 102.54 ± 1.11 b 0.72 ± 0.06 c 

BC 76.34 ± 0.24 ab 80.36 ± 0.37 bc 86.21 ± 0.37 b 1.45 ± 0.19 de 99.74 ± 0.33 a 102.43 ± 0.47 a 107.27 ± 0.51 a 1.72 ± 0.24 ab 

BC_C - - - 0.00 ± 0.00 f 92.09 ± 1.06 b 96.16 ± 0.84  100.99 ± 1.36 b 0.77 ± 0.15 c 

Results are presented as the mean of three replicates ± standard deviation;
1
Flours: raw and cooked (presoaked beans cooked for 5 min). Tonset: Onset temperature; Tpeak: Peak 553 

temperature; Tend: Conclusion temperature. Different letters in the columns show statistical differences between the preparation method (p<0.05). 554 
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 555 

 556 

Figure 1. Water solubility index (WSI) and water absorption index (WAI) of raw and cooked flours of 557 

different carioca bean cultivars. Beans are described as No and No_C (Notavel), Im and Im_C (Imperador), 558 

Gol and Gol_C (Gol), BC and BC_C (Bola Cheia), Da and Da_C (Dama), and Ma and Ma_C (Madreperola), 559 

where the ‘C’ indicates cooked flours. 560 
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Figure 2. Oil absorption index (OAI) of raw and cooked flours of different carioca bean cultivars. Beans are 563 

described as No and No_C (Notavel), Im and Im_C (Imperador), Gol and Gol_C (Gol), BC and BC_C (Bola 564 

Cheia), Da and Da_C (Dama) and Ma and Ma_C (Madreperola), where the ‘C’ indicates cooked flours.  565 
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 566 

 567 

Figure 3. Emulsify capacity (EC) (A) and emulsion stability (ES) (B) of raw and cooked flours of different carioca bean cultivars. Beans are described as No and No_C 568 

(Notavel), Im and Im_C (Imperador), Gol and Gol_C (Gol), BC and BC_C (Bola Cheia), Da and Da_C (Dama), and Ma and Ma_C (Madreperola), where the ‘C’ 569 

indicates cooked flours. 570 
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 571 

 572 

Figure 4. Principal component analyses of the technological properties of raw and cooked flours of different 573 

carioca bean cultivars. Beans are described as No and No_C (Notavel), Im and Im_C (Imperador), Gol and 574 

Gol_C (Gol), BC and BC_C (Bola Cheia), Da and Da_C (Dama) and Ma and Ma_C (Madreperola), where the 575 

‘C’ indicates cooked flours. OAI: oil absorption index; WSI: water solubility index; ***: peak viscosity, final 576 

viscosity, and setback; ES: emulsion stability; WAI: water absorption index.  577 
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