
c© 2012 Shin Hwei Tan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4838946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

@TCOMMENT: TESTING JAVADOC COMMENTS TO DETECT COMMENT-CODE
INCONSISTENCIES

BY

SHIN HWEI TAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Associate Professor Darko Marinov
Assistant Professor Lin Tan, University of Waterloo

Abstract

Code comments are important artifacts in software. Javadoc comments are widely used for

API specifications in Java. API developers write Javadoc comments, and API users often

read these comments to understand the API they use, e.g., an API user can read a Javadoc

comment for a method instead of reading the method body of the method. An inconsistency

between the Javadoc comment and body for a method indicates either a fault in the body or,

effectively, a fault in the comment that can mislead the method callers to introduce faults

in their code.

This thesis presents a novel approach, called @tComment, for testing Javadoc com-

ments, specifically for testing method properties about null values and related exceptions.

Our approach consists of two components. The first component takes as input source files

for a Java project and automatically analyzes the English text in Javadoc comments to infer

a set of likely properties for a method in the files. The second component generates random

tests for these methods, checks the inferred properties, and reports inconsistencies. We eval-

uated @tComment on seven open-source projects and found 28 inconsistencies between

Javadoc comments and method bodies. We reported all inconsistencies, and 12 have already

been confirmed and fixed by the developers.

ii

To my family and friends, for their love and support.

iii

Acknowledgments

I would like to express my deepest gratitude to:

• My parents and my siblings for their love and support.

• My supportive friends who have helped me through my Master’s studies, including

Wei Chieh Wong, Sue Yen Tay, Hui Ean Teh, Harshitha Menon and Nikhil Jain.

• My adviser, Prof. Darko Marinov for exposing me to academic research and for sharing

his knowledge, advice, support.

• My co-adviser, Prof. Lin Tan for sharing her knowledge, experience and advice.

• Prof. Gary T. Leavens for his collaborative support that resulted in this thesis.

• Many great professors under whom I have had the privilege to learn and grow as a

student, including Prof. Darko Marinov, Prof. Madhu Parthasarathy, Prof. Sarita V.

Adve, Prof. Nitin Vaidya, Prof ChengXiang Zhai, and others.

• James Tonyan and Aditya Dasgupta for help in labeling properties inferred by@tCom-

ment and comment-code inconsistencies reported by @tComment.

• My fellow colleagues who have exposed me to other interesting research and domains

of study, including Mathew Alan Kirn, Damion Mitchell, Jurand Nogiec, Brett Daniel,

Vilas Jagannath, Milos Gligoric, Qingzhou Luo, Yu Lin, Adrian Nistor, Steven Lauter-

burg, Rajesh Karmani, and others.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

List of Abbreviations . viii

Chapter 1 Introduction . 1
1.1 Contributions . 2
1.2 Organization . 4

Chapter 2 Background . 5
2.1 Javadoc Comments . 5
2.2 Comment-Code Inconsistency . 7
2.3 Randoop . 8

Chapter 3 Examples . 11
3.1 Any Exception . 11
3.2 Specific Exception and One Null Parameter 13
3.3 Specific Exception and Two Null Parameters 15
3.4 Expected Exception . 15

Chapter 4 @tComment Design . 17
4.1 Inferring Properties from Comments . 17
4.2 Heuristics . 20
4.3 Checking Properties in Test Generation . 21

Chapter 5 Evaluation . 27
5.1 Experimental Setup . 27
5.2 Comment-Code Inconsistency Detection . 28
5.3 Detailed Comment-Code Inconsistency Detection Results 29
5.4 Comment Analysis Results . 32
5.5 Sensitivity of @Randoop Options . 35

Chapter 6 Related Work . 36

Chapter 7 Conclusions and Future Work 39

References . 40

v

List of Tables

2.1 Subject projects and their number of Javadoc comments per method 6

4.1 Properties to be extracted . 18
4.2 Categories of sequences that @Randoop classifies based on matches for pa-

rameters with null values. 23

5.1 Subject projects and their description . 27
5.2 Subject projects and their basic statistics . 28
5.3 Overall results for the default configuration of our @Randoop (nullRatio=0.6,

timeLimit=3600s) . 30
5.4 Comment analysis results . 34

vi

List of Figures

2.1 Example Javadoc comment . 6
2.2 Example comment that led us to find a fault in code 8
2.3 Example comment in which we found a problem 8
2.4 Randoop test-generation algorithm . 9
2.5 Example contract-violating test generated by Randoop 10
2.6 Example regression test generated by Randoop 10

3.1 Example test generated by @Randoop. 12
3.2 Two more example tests generated by @Randoop. 14
3.3 Example test that Randoop would generate. 16
3.4 Null-related Javadoc comment helps identify false alarms that Randoop would

generate . 16

4.1 Integration of @Randoop checking of @tComment-inferred properties into
test generation . 22

vii

List of Abbreviations

API Application Programming Interface

LOC Lines of Codes

NLP Natural Language Processing

RANDOOP RANDom tester for Object-Oriented Programs

viii

Chapter 1

Introduction

Source code comments are important artifacts in software and have been around for as long

as code has been around. While comments are removed by compilers and not executed, they

aid in many software engineering tasks such as code comprehension, reuse, or maintenance.

Comments can be broadly categorized into those that appear in the body of a method to

describe its inner working and those that appear in the header of a method to describe its

specification [29]. Java has standardized the writing of API specifications as Javadoc com-

ments with tags such as @param to describe method parameters and @throws to describe

what exceptions the method could throw. API developers write Javadoc comments to de-

scribe their classes and methods. API users often read these comments to understand the

code, e.g., an API user can read a Javadoc comment for a method instead of reading the

body of the method.

A comment-code inconsistency between the Javadoc comment for a method and the

code of that method’s body is highly indicative of a fault. First, it can be the case that

the comment is correct (in that it properly specifies what the code should do) but the

method body has a fault (in that it improperly implements the specification). Second,

it can be the case that the method body is correct (in that it properly implements the

intended specification) but the comment is incorrect (in that it does not properly describe

the intended specification). While the second case does not by itself have an executable

fault, it can mislead the users of the method to introduce faults in their code [40].

Because comment-code inconsistencies are indicative of faults, it is important to check for

such inconsistencies. However, automating such checking is challenging because it requires

1

automated understanding of the natural-language text in the comments. While natural-

language processing (NLP) techniques have made much progress in the recent decades [30],

they are still challenged by ambiguities that are inherent in understanding general text. For

example, consider the Javadoc snippet “@param chrono Chronology to use, null means

default”, which describes a certain method parameter chrono that is an object of type

Chronology. The part “null means default” is hard to understand because it could spec-

ify that null is treated in some “default” manner (e.g., throwing a NullPointerException)

or that null is used to represent some default value of Chronology.

The only currently viable solution for automated understanding of the natural-language

text in the comments is to build domain-specific analyses. Tan et al. [40, 41] pioneered

automated checking of comment-code inconsistencies based on NLP analysis. Their iCom-

ment [40] and aComment [41] projects focus on systems code written in C/C++ and an-

alyze comments in the domains of locking protocols (e.g., “the caller should grab the

lock”), function calls (e.g., “function f must be called only from function g”), and

interrupts (e.g., “this function must be called with interrupts disabled”). Their

tools extract rules from such comments and use static analysis to check source code against

these rules to detect comment-code inconsistencies.

1.1 Contributions

This thesis presents a novel approach, called @tComment1, for testing comment-code in-

consistencies in Javadoc comments and Java methods. Specifically, the thesis makes the

following contributions.

New Domain: We focus @tComment on a new domain in comment analysis, specifi-

cally method properties for null values and related exceptions in Java libraries/frameworks.

1The name @tComment follows the convention used by prior work (i.e., iComment [40] and aCom-
ment [41]), where the ‘@’ sign represents block tags in Javadoc comments and the word ‘t’ represents
testing. The pronunciation of the word “@tComment” is the same as for “at-comment”.

2

This domain was not studied in the previous work on detecting comment-code inconsisten-

cies, but our inspection of several Java projects showed this domain to be important and

widely represented in well-documented Java code. Detecting comment-code inconsistencies

in this new domain has its unique challenges that require new solutions, as discussed below.

Dynamic Analysis: @tComment uses a dynamic analysis to check comment-code in-

consistencies, unlike previous work that used static analysis. Specifically, our @tComment

implementation builds on the Randoop tool [34] for random test generation of Java code.

Randoop randomly explores method sequences of the code under test, checks if execution

of these sequences violates a set of default contracts such as throwing an uncaught excep-

tion [34], and generates as tests those sequences that violate some constraint. We modify

Randoop to check @tComment-inferred properties during random test generation and to

report violations that correspond to comment-code inconsistencies. We refer to our modified

Randoop as @Randoop.

We chose dynamic analysis to address the following challenges imposed by the new do-

main. First, even widely used tools for static checking of Java code, such as FindBugs [23],

can have a large number of false alarms when checking properties related to null values

and exceptions if these properties are available for only some parts of the code, which is the

case when inferring properties from Javadoc comments that are not available for all meth-

ods. Second, we focus on Java libraries and frameworks, which have few calls to their own

methods from their own code bases. Therefore, an analysis cannot focus on callers to these

methods to see what parameters they pass in. Instead, a dynamic approach such as Ran-

doop, which generates call sequences and parameters to test library methods, is particularly

beneficial.

Improved Testing: @Randoop allows us not only to detect comment-code inconsisten-

cies but also to improve test generation in Randoop. For detecting inconsistencies, @Ran-

doop generates tests that Randoop would not necessarily generate otherwise because these

tests need not violate the default contracts that Randoop checks. For improving test gen-

3

eration, @Randoop identifies some tests as likely false alarms in Randoop and ranks them

lower so that developers can focus on the true faults. A false alarm refers to a test that

Randoop generates but that does not find fault in the code under test, e.g., a test that

causes a method to throw exception, but the exception is expected according to the Javadoc

comment for the method.

Evaluation: We applied @tComment on seven open-source Java projects (Apache

Commons Collections, GlazedLists, JFreeChart, Joda Time, Apache Lucene, Apache

Log4j, and Apache Xalan) that have well-developed, well-documented, and well-tested code.

We found 28 methods with inconsistencies between Javadoc comments and method bodies in

these projects. We reported all inconsistencies, and 12 of them have been already confirmed

and fixed by the developers (some by fixing the code and some by fixing the comment), while

the rest await confirmation by the developers. @tComment automatically inferred 2479

properties regarding null values and their related exceptions from Javadoc comments, with a

high accuracy of 97–100%. The high accuracy was achieved without using NLP techniques,

largely due to the Javadoc null-related comments being well structured with few paraphrases

and variants.

1.2 Organization

The rest of this thesis is organized as follows. Chapter 3 shows example inconsistencies found

with @tComment. Chapter 4 describes in detail how @tComment infers properties from

Javadoc comments and uses our modified Randoop to check comment-code inconsistencies.

Chapter 5 presents our evaluation of @tComment. Chapter 6 reviews related work, and

Chapter 7 concludes the thesis.

4

Chapter 2

Background

This chapter presents the background information necessary for understanding the concepts

and techniques introduced later in this thesis. We begin by describing a special type of API

documentation, Javadoc comments. We then explain the operation of a test generation tool,

Randoop.

2.1 Javadoc Comments

Code comments play an important role in software development. As code comments are

more flexible and easier to understand than code, programmers often write comments along

with code. Programmers write code comments to document the usage of code segments, to

express their assumptions and requirement, and to ease future code maintenance.

Java developers follow a standardized way of writing code comments. These code com-

ments are delimited by /**...*/ (i.e., they start with a double ‘*’) and can be applied to

Java classes, fields, constructors, and methods. They are referred to as Javadoc comments

since they are parsed by the Javadoc tool [8]. The Javadoc tool generates well-formatted

API documentation from Javadoc comments. The basic structure of a Javadoc comment

consists of two parts. The first part is a free-form text that gives an overview description

of the corresponding class, field, constructor, or method. The second part consists of more

structured block tags that allow generating well-formatted API. The work in this thesis

focuses on comments for methods and constructors.

Figure 2.1 shows an example Javadoc comment for a method called chainedIterator.

5

/∗∗
∗ Gets an i t e r a t o r t ha t i t e r a t e s through an array o f {@link
∗ I t e r a t o r } s one a f t e r another .
∗
∗ @param i t e r a t o r s the i t e r a t o r s to use , not n u l l or empty or
∗ conta in n u l l s
∗ @return a combination i t e r a t o r over the i t e r a t o r s
∗ @throws Nu l lPo in terExcep t ion i f i t e r a t o r s array i s n u l l or
∗ conta ins a n u l l
∗/

public stat ic I t e r a t o r cha i n ed I t e r a t o r (I t e r a t o r [] i t e r a t o r s)

Figure 2.1: Example Javadoc comment

This Javadoc comment has a summary (i.e., “Gets an iterator ... another.”) and the tags

@param, @return, and @throws. The summary also contains an inline tag @link that links

to the documentation of the Iterator class. Each @param tag is followed by the parameter

name (i.e., iterators) and the description of the parameter, whereas the @return tag

is followed by the description of the return value. (If a method has several parameters,

then the order of the parameter names for the @param tags should follow the order of the

parameters in the parameter list.) Similarly, each @throws tag has the name of the expected

exception (i.e., NullPointerException) and the description of the condition under which

the exception will be thrown.

Project # Methods # Javadoc Comments Percentage = #Javadoc Comments
Methods

Collections 3,874 2,434 63%
GlazedLists 2,753 1,741 63%
JFreeChart 6,205 6,186 100%
JodaTime 3,887 2,917 75%
Log4j 2,115 958 45%
Lucene 5,222 2,205 42%
Xalan 5,404 3,229 60%
Total 29,460 19,670 64%

Table 2.1: Subject projects and their number of Javadoc comments per method

6

Table 2.1 shows the subject projects that will be used in our evaluation (Chapter 5) and

the number of Javadoc comments per method in these projects. For example, JFreeChart

has almost 100% of methods with Javadoc comments. The total number of Javadoc com-

ments (19,670) and the high percentage (42–100%) of methods with Javadoc comments in-

dicate that Javadoc comments are commonly used by API developers to document methods

in Java libraries such as those used in our evaluation.

2.2 Comment-Code Inconsistency

Code comments are difficult to analyze automatically since many of their parts are written

in a natural language (e.g., English). The variation across programmers in terms of style

of writing and natural languages used also makes comments harder to parse accurately by

a machine. Because code comments are not executed, they could be even more error prone

than code.

In general, there are two types of comments. One type of comments explains the usage of

a code segment, while the other type states programmers’ expectation and constraints [40].

For example, the comment “Gets an iterator that iterates through two Iterators one after

another.” in Figure 2.1 belongs to the first type, while the description in the @throws tag

“throws NullPointerException if either iterator is null” belongs to the second type. Since the

first type of comments only gives a high-level overview of the code segment, it is potentially

less likely to be inconsistent with the code than the second type.

There are several reasons for the cause of inconsistencies between code and comments [40].

One reason could be that software evolves due to changes in requirement or modification to

facilitate bug fixes. Another reason could be that mistakes are made by developers due to

careless programming or misunderstanding of the code usage.

An inconsistency between code and comment could either indicate a fault in the source

code or a bug in the comment. Figure 2.2 shows an example inconsistency between the code

7

/∗∗ . . .
∗ @param anchor the anchor (<code>nu l l </code> not permi t t ed) .
∗/

public void setRotat ionAnchor (TextAnchor anchor)

Figure 2.2: Example comment that led us to find a fault in code

/∗∗ . . .
∗ @param map the map to use to transform the o b j e c t s
∗ @return the trans former
∗ @throws I l l e ga lArgumentExcep t ion i f the map i s n u l l
∗/

public stat ic <I , O> Transformer<I , O>
mapTransformer (Map<? super I , ? extends O> map)

Figure 2.3: Example comment in which we found a problem

and the Javadoc comment that was due to a fault in the code. The comment states that null

is not a valid input, but the code executes normally without throwing any exception. We

further confirmed this bug by looking at the methods with similar Javadoc comments within

the same class which throw IllegalArgumentException when null is passed in. This fault

has been reported and fixed by the developers. Figure 2.3 shows an example inconsistency

between the code and its comments that was due to a bug in the comment. The comment

states that IllegalArgumentException will be thrown if the parameter map is null, whereas

the code returns a NULL INSTANCE object when null is passed in.

2.3 Randoop

Randoop [34] is a test-generation tool that creates a set of test sequences by randomly

choosing methods and their inputs. It takes as input a set of classes and user-specified

options, such as time limit and null ratio, and produces as output a set of unit tests that

either reveal a fault in the classes under test or capture the current behavior of the classes.

8

GenerateSequences(classes, contracts, timeLimit)
errorSeqs ← {} // Their execution violates a contract.
nonErrorSeqs ← {} // Their execution violates no contract.
while timeLimit not reached do

// Create new sequence
m(T1 . . . Tk)← randomPublicMethod(classes)
〈seqs, val〉 ← randomSeqsAndVals(nonErrorSeqs, T1 . . . Tk)
newSeq ← extend(m, seqs, vals)
// Discard duplicates
if newSeq ε nonErrorSeqs

⋃
errorSeqs then

continue
end if

// Execute new sequence and check contracts.
violated ← execute(newSeq, contracts)
// Classify new sequence and outputs.
if violated then
errorSeqs ← errorSeqs

⋃ {newSeq}
else
nonErrorSeqs ← nonErrorSeqs

⋃ {newSeq}
end if

end while
return 〈 nonErrorSeqs, errorSeqs 〉

Figure 2.4: Randoop test-generation algorithm

During the test generation, Randoop first randomly select a method call from the classes

under test. It then generates a sequence to construct an object (or select null as input

with some probability) for each parameter (of non-primitive type) of the selected method.

Figure 2.4 shows the pseudo-code for Randoop test-generation algorithm [34].

As random choices ignore program semantics, they may produce redundant and illegal

test sequences. After the generation of the test sequences, Randoop executes these sequences

and checks them against a set of contracts. The result of the execution is used to determine

if the sequence is contract-violating, redundant, or useful in generating more sequences. This

technique of gathering feedback during execution is called feedback-directed random testing.

Randoop can output two types of test suites. Test suites of the first type contain contract-

9

// In au t oma t i c a l l y genera ted t e s t c l a s s :
void t e s tV i o l a t i o n () {

java . u t i l . I t e r a t o r [] var1 = null ;
java . u t i l . I t e r a t o r var2 =

org . apache . commons . c o l l e c t i o n s . I t e r a t o rU t i l s .
c ha i n ed I t e r a t o r (var1) ;

}

Figure 2.5: Example contract-violating test generated by Randoop

// In au t oma t i c a l l y genera ted t e s t c l a s s :
void t e s tReg r e s s i on () {
java . u t i l . Co l l e c t i o n var0 = null ;
java . lang . Object var2 = null ;
org . apache . commons . c o l l e c t i o n s . Pred i ca te var3 =

org . apache . commons . c o l l e c t i o n s . P r ed i c a t eUt i l s .
equa lPred i ca t e ((java . lang . Object) (byte) 0) ;

org . apache . commons . c o l l e c t i o n s . C o l l e c t i o nU t i l s . f i l t e r (var0 , var3) ;
//Regress ion a s s e r t i on (cap tures the current behav ior o f the code)
as se r tNotNul l (var3) ;
}

Figure 2.6: Example regression test generated by Randoop

violating tests that have some violation of a property that a class, an object, or a method

is expected to preserve. Test suites of the second type contain regression tests that capture

the actual behavior of the current implementation.

Figure 2.5 shows an example contract-violating test generated by Randoop for the method

chainedIterator from Figure 2.1. The test fails due to NullPointerException being

thrown during execution. Figure 2.6 shows an example regression test generated by Randoop.

The assertion in the test captures the current state (i.e., not null) of the Predicate object.

10

Chapter 3

Examples

We illustrate how @tComment can be used by showing three examples of comment-code

inconsistencies that we found with @tComment in two projects, and one example of a

Randoop false alarm identified by @tComment where a method throws an exception but

it is expected according to the relevant comment. The first three examples show progressively

more complex cases: (1) inferring that some exception should be thrown when a method

parameter is null; (2) inferring what type of exception should be thrown when one method

parameter is null; and (3) inferring what type of exception should be thrown when two

method parameters are null. The last example shows a Randoop false alarm.

3.1 Any Exception

Consider first the JodaTime project [10], a widely used Java library for representing dates and

times. JodaTime provides several classes that support multiple calendar systems. JodaTime

code is fairly well commented with Javadoc comments (about 75% of JodaTimemethods have

Javadoc comments as shown in Table 2.1). We ran @tComment to first infer properties for

the methods in the JodaTime code and then to check these properties with our @Randoop.

For each test that @Randoop generates, it marks whether the test, when executed, violated

some @tComment-inferred property or a default Randoop contract.

Figure 3.1 shows an example test that violates an @tComment-inferred property. This

test creates a MutablePeriod object var2 and invokes several methods on it. The executions

of setSeconds and setValue methods finish normally, but for setPeriod, @tComment

11

// In au t oma t i c a l l y genera ted t e s t c l a s s :
void t e s t 1 () {

org . joda . time . MutablePeriod var2 =
new org . joda . time . MutablePeriod (1L , 0L) ;

var2 . se tSeconds (0) ;
var2 . setValue (0 , 0) ;
org . joda . time . Chronology var9 = null ;
try {

var2 . s e tPe r i od (0L , var9) ;
f a i l (‘‘Expected some except ion when chrono==null ’’) ;

} catch (Exception expected) {}
}

// In a c l a s s under t e s t :
/∗∗ . . .
∗ @param durat ion the durat ion , in m i l l i s e c ond s
∗ @param chrono the chrono logy to use , not n u l l
∗ @throws Ari thmet icExcept ion i f the s e t exceeds

the capac i t y o f the per iod
∗/

void s e tPer i od (long durat ion , Chronology chrono)

Figure 3.1: Example test generated by @Randoop. Method under test and its comment.

reports that there is a likely comment-code inconsistency: the parameter var9 is null, but

the method execution throws no exception, which disagrees with the corresponding comment

indicating that some exception should be likely thrown. Note that this test passes if some

exception is thrown and fails otherwise.

Figure 3.1 also shows the relevant parts of the setPeriod method. It has two param-

eters, and the Javadoc comment provides a description for each of them. As discussed in

Section 2.1, a typical Javadoc comment has the main, free-flow text (for brevity omitted in

our examples) and specific tags/clauses such as @param, @throws, @return, etc. We call the

entire block of text before a method one comment with several comment tags. Figure 3.1

shows one Javadoc comment with two @param tags and one @throws tag.

The key part here is “not null” for the chrono parameter. @tComment infers the

12

property that whenever chrono is null, the method should throw some exception (although

it does not know which exception type it should be because the tag for ArithmeticException

is not related to null). @Randoop finds that the shown test violates this property. Note

that it may not be a comment-code inconsistency; the inference could have been wrong,

e.g., “not null” could represent the method precondition—such that if chrono is null, the

method could do anything and is not required to throw an exception—or “not null” could

be a part of a larger phrase, say, “not a problem to be null”—such that the method

must not throw an exception.

In this case, our inspection showed that @tComment performed a correct inference and

detected a real comment-code inconsistency. In fact, @tComment also found a similar

inconsistency for another overloaded setPeriod method. We reported both inconsistencies

in the JodaTime bug database [11], and JodaTime developers fixed them by changing com-

ments. It is important to note that Randoop would have not generated this example test

because it does not throw an exception. More precisely, Randoop internally produces the

method sequence but would not output it to the user as a possibly fault-revealing test. In-

deed, @Randoop generates the test precisely because it does not throw any exception when

some exception is expected according to the comment.

3.2 Specific Exception and One Null Parameter

Consider next the Apache Commons Collections project (which we will call Collections

for short) [1], a popular library for representing collections of objects. Figure 3.2 shows

two example tests, each of which violates an @tComment-inferred property, and the cor-

responding method declarations and their comments.

For the synchronizedMapmethod, @tComment correctly infers that the method should

throw IllegalArgumentException when the parameter map is null; while this is explicit

in the @throws tag, note that the @param map tag could be contradicting by allowing any

13

// In au t oma t i c a l l y genera ted t e s t c l a s s :
void t e s t 2 () {

java . u t i l .Map var0 = null ;
try {

java . u t i l .Map var1 = org . apache . commons . c o l l e c t i o n s . MapUtils .
synchronizedMap (var0) ;

} catch (I l l ega lArgumentExcept ion expected) {return ;}
f a i l (‘‘Expected I l l ega lArgumentExcept ion , ’’ +
‘‘got Nul lPo interExcept ion ’’) ;

}
void t e s t 3 () {

java . u t i l . Co l l e c t i on var0 = null ;
java . u t i l . I t e r a t o r [] var1 = new java . u t i l . I t e r a t o r [] { } ;
try {

org . apache . commons . c o l l e c t i o n s . C o l l e c t i o nU t i l s .
addAll (var0 , (java . lang . Object []) var1) ;

} catch (Nul lPo interExcept ion expected) {return ;}
f a i l (‘‘Expected Nul lPo interExcept ion when c o l l e c t i o n==null ’’) ;

}

// In c l a s s e s under t e s t :
/∗∗ . . .
∗ @param map the map to synchronize , must not be n u l l
∗ @return a synchronized map backed by the g iven map
∗ @throws I l l e ga lArgumentExcep t ion i f the map i s n u l l
∗/

stat ic Map synchronizedMap (Map map)

/∗∗ . . .
∗ @param c o l l e c t i o n the c o l l e c t i o n to add to , must not be n u l l
∗ @param elements the array o f e lements to add , must not be n u l l
∗ @throws Nu l lPo in terExcep t ion i f the c o l l e c t i o n or array i s n u l l
∗/

stat ic void addAll (Co l l e c t i on c o l l e c t i o n , Object [] e lements)

Figure 3.2: Two more example tests generated by @Randoop. Methods under test and their
comments.

behavior when map is null. Inferring a specific type of expected exception is unlike in

the previous example when @tComment could only infer that some exception should be

14

thrown. Indeed, inferring the type in this case is important because, when map is null,

the method does throw an exception but of a different type. In this case, even the original

Randoop generates test2 because it throws an exception. However, Randoop also generates

dozens of others tests that are not fault-revealing, so this comment-code inconsistency would

be proverbially “the needle in a haystack” among the tests generated by Randoop. In

contrast, @Randoop prominently highlights the inconsistency. We reported this comment-

code inconsistency [2], and the Collections developers fixed it by removing the @throws

part of the comment.

3.3 Specific Exception and Two Null Parameters

For the addAll method in the same project, @tComment correctly infers that the method

should throw NullPointerException when either the parameter collection is null or the

parameter elements is null. This is similar to the previous case where the specific exception

type is inferred, but in this case two method parameters are involved. The inconsistency

that @tComment finds is, in fact, related to the situation where only one parameter—

collection—is null (while the array is empty), but the exception is not thrown as expected.

We also reported this comment-code inconsistency [3], and it is under consideration.

3.4 Expected Exception

For all examples presented so far, an exception is expected (according to the Javadoc com-

ments), but the method under test either does not throw an exception or throws an ex-

ception of a different type. We next discuss an example where an exception is thrown

by the method under test, but it is expected as indicated by the relevant comment (Fig-

ure 3.4). This example illustrates a case where Randoop would generate a false alarm,

but @tComment can help remove this false alarm automatically by lowering its ranking

15

// In au t oma t i c a l l y genera ted t e s t c l a s s :
public void t e s t 4 () {

ca . o d e l l . g l a z e d l i s t s . DebugList var0 =
new ca . o d e l l . g l a z e d l i s t s . DebugList () ;

ca . o d e l l . g l a z e d l i s t s . DebugList var1 =
new ca . o d e l l . g l a z e d l i s t s . DebugList () ;

boolean var2 = var0 . r e t a i nA l l ((java . u t i l . Co l l e c t i o n) var1) ;
boolean var4 = var1 . add ((java . lang . Object) (byte) 0) ;
java . lang . Object var5 = null ;
int var6 = var1 . indexOf (var5) ;
java . lang . Object [] var7 = null ;
java . lang . Object [] var8 = var1 . toArray (var7) ;

}

Figure 3.3: Example test that Randoop would generate.

// In a c l a s s under t e s t :
/∗∗ . . .
∗ @param array the array in t o which the . . . purpose .
∗ @return an array con ta in ing the e lements o f t h i s l i s t .
∗ @throws ArrayStoreExcept ion i f the runtime type . . . l i s t .
∗ @throws Nu l lPo in terExcep t ion i f the s p e c i f i e d array i s
∗ <t t>nu l l </t t >.
∗/

public <T> T [] toArray (T [] array)

Figure 3.4: Null-related Javadoc comment helps identify false alarms that Randoop would
generate

through analyzing the comment. @tComment infers that the method toArray should

throw a NullPointerException if null is passed to the array parameter. Randoop gener-

ates a test (Figure 3.3) for toArray when array is null, because the execution of this test

indeed throws a NullPointerException, and Randoop reports as potentially fault-revealing

all tests that throw uncaught exceptions during execution. In contrast, @tComment marks

that the exception is expected according to the comment, which lowers the ranking of this

false alarm to improve the testing accuracy.

16

Chapter 4

@tComment Design

Our@tComment approach consists of two components. The first component takes as input

the source code for a Java project, automatically analyzes the English text in the Javadoc

comments in the project, and outputs a set of inferred likely properties for a method. The

second component takes as input the same code and inferred properties, generates random

tests for the methods in the code, checks the inferred properties, and reports inconsistencies.

Similar to prior work [40, 41], we build a domain-specific comment analysis, due to the

difficulty of inferring arbitrary properties from general comments. In particular, we focus

on null-pointer related comments because null-pointer dereferences are common memory

bugs [18], and a large percentage of Javadoc comments (24.2% in the seven projects we

evaluated) contain the keyword null.

4.1 Inferring Properties from Comments

Our goal is to infer from Javadoc comments null-related properties about method parameters.

For a parameter that is of non-primitive type and can take a null value, @tComment infers

one of these four kinds of properties: (1) Null Normal : if the parameter is null, the method

should execute normally (and throw no exception); (2) Null Any Exception: if the parameter is

null, the method should throw some exception; (3) Null Specific Exception: if the parameter

is null, the method should throw a specific type of exception; or (4) Null Unknown: if the

parameter is null, we do not know the expected behavior of the method.

17

P
ro
p
er
ti
es

M
ea
n
in
g

C
om

m
en
t
E
x
am

p
le

N
ot
at
io
n

N
u
ll
N
o
rm

a
l

If
th
e
p
ar
am

et
er

is
n
u
l
l
,

th
e

m
et
h
o
d

sh
ou

ld
ex
e-

cu
te

n
or
m
al
ly

(a
n
d
th
ro
w

n
o
ex
ce
p
ti
on

).

@
p
a
r
a
m
p
r
e
d
i
c
a
t
e

t
h
e

p
r
e
d
i
c
a
t
e
t
o

u
s
e
,

m
a
y

b
e

n
u
l
l

p
re
d
ic
at
e=

=
n
u
ll
=
>

n
or
m
al

N
u
ll
A
n
y
E
xc
ep
ti
o
n

If
th
e
p
ar
am

et
er

is
n
u
l
l
,

th
e
m
et
h
o
d
sh
ou

ld
th
ro
w

so
m
e
ex
ce
p
ti
on

.

@
p
a
r
a
m
c
o
l
l
e
c
t
i
o
n

t
h
e

c
o
l
l
e
c
t
i
o
n
t
o

a
d
d

t
o
,

m
u
s
t

n
o
t
b
e

n
u
l
l

co
ll
ec
ti
on

=
=
n
u
ll
=
>

ex
ce
p
ti
on

N
u
ll
S
pe
ci
fi
c
E
xc
ep
-

ti
o
n

If
th
e
p
ar
am

et
er

is
n
u
l
l
,

th
e
m
et
h
o
d
sh
ou

ld
th
ro
w

a
sp
ec
ifi
c

ty
p
e

of
ex
ce
p
-

ti
on

.

@
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n

i
f
t
h
e

i
d

i
s

n
u
l
l

id
=
=
n
u
ll
=
>

Il
le
ga
lA

rg
u
m
en
tE

x
ce
p
ti
on

N
u
ll
U
n
kn

o
w
n

W
e
d
o
n
ot

k
n
ow

th
e
ex
-

p
ec
te
d

b
eh
av
io
r

of
th
e

m
et
h
o
d
w
h
en

th
e
p
ar
am

-
et
er

is
n
u
l
l
.

@
p
a
r
a
m
a
r
r
a
y

t
h
e

a
r
r
a
y

o
v
e
r

w
h
i
c
h
t
o

i
t
e
r
a
t
e

ar
ra
y
=
=
n
u
ll
=
>

u
n
k
n
ow

n

T
ab

le
4.
1:

P
ro
p
er
ti
es

to
b
e
ex
tr
ac
te
d
.
T
h
e
co
m
m
en
t
ex
am

p
le
s
ar
e
re
al

co
m
m
en
ts

fr
om

th
e
p
ro
je
ct
s
u
se
d
in

ou
r
ev
al
u
at
io
n
.

18

Table 4.1 shows four examples of comment tags and their corresponding inferred prop-

erties. For example, @tComment infers from the second tag, “@param collection the

collection to add to, must not be null”, that if the method parameter collection

is null, then the method is expected to throw some exception, represented as collection ==

null => exception. Based on our experience with the null-related Javadoc comments,

we found that this interpretation—the method should throw an exception—often matches

developers’ intention, and thus we adopted it for @tComment. The comment-code in-

consistencies that we reported and developers confirmed, as well as the low false-positive

rate of our detection for reported comment-code inconsistencies, confirm our decision. How-

ever, note that we focus on library projects, where the methods need not trust their callers.

The interpretation may differ for applications with more of a design-by-contract mentality

where callers were trusted more. As discussed earlier in the introduction, this example tag

could have another interpretation, describing a precondition such that passing null value

for the parameter collection allows the method to do anything, not necessarily throw an

exception.

Our @tComment implementation leverages the Javadoc doclet [13] to parse Javadoc

comments. For example, consider the above tag for collection; Figure 3.2 shows the

comment for this tag and the corresponding method declaration. The Javadoc doclet

parses this tag and outputs the name of the method parameter (collection), its type

(java.util.Collection), the corresponding method’s full signature (org.apache.commons.

collections.CollectionUtils#addAll(Collection collection,Object[] elements)),

and the free-form comment text (“the collection to add to, must not be null”). The

method parameter, its type, and the full method signature are used later by @Randoop, the

test-generation component of @tComment, to check the generated tests.

@tComment first extracts all Javadoc @param (for parameters of non-primitive types)

and @throws tags that contain a non-empty free-form text, since a Javadoc tag with an empty

free-form text does not describe a Null Normal , Null Any Exception, or Null Specific Exception

19

property. Then, @tComment infers Null Normal and Null Any Exception properties from the

@param comment tags and Null Specific Exception properties from the @throws comment tags.

It assigns Null Unknown to a method parameter if neither its @param tag nor @throws tag

describes any other property. In this thesis, however, we do not count Null Unknown toward

the 2479 inferred properties, since one cannot test against these Null Unknown properties.

4.2 Heuristics

@tComment uses three relatively simple heuristics to analyze the free-form text. While

the heuristics are not perfect, our empirical evaluation shows that they are highly accurate

in practice. First, if negation words, such as “not” or “never”, are found up to three words

before or after the word null—e.g., “the collection to add to, must not be null”

has “not” two words from null—@tComment infers the Null Any Exception property. If

no negation words are found up to three words around the word null—e.g., the first tag in

Table 4.1—@tComment infers the Null Normal property.

Second, for @throws tags—e.g., “@throws IllegalArgumentException if the id is

null”—the Javadoc doclet parses the comment tag and outputs the specific exception

(IllegalArgumentException) and the free-form text (“if the id is null”). If the text

contains the keyword null, @tComment simply splits the text into words and searches

each word in the list of all method parameter names generated by the Javadoc doclet. If a

valid parameter name is found, e.g., id, @tComment infers the property id == null =>

IllegalArgumentException from the comment tag.

Third, if the keyword “or” or “either” is in the @throws comment text, e.g., “@throws

NullPointerException if the collection or array is null” in Figure 3.2, @tCom-

ment generates multiple properties, e.g., collection == null => NullPointerException

and array == null => NullPointerException. If both Null Any Exception and Null Spe-

cific Exception properties are inferred for the same method parameter, e.g., collection,

20

@tComment keeps only the Null Specific Exception property.

4.3 Checking Properties in Test Generation

After @tComment infers likely method properties, it uses our modified Randoop, called

@Randoop, to check these properties using random test generation. Figure 4.1 shows the

simplified pseudo-code of the Randoop test-generation algorithm [34], together with our

extension for checking @tComment-inferred properties.

We briefly summarize how Randoop works. It produces random sequences of method calls

(including constructors) of the code under test. It maintains a set of error sequences (to be

output as generated unit tests that are likely fault revealing) and a set of non-error sequences

(to be used for creating longer sequences). In a loop, it first randomly selects a method m

whose k parameters (including the receiver for non-static methods) have types T1 . . . Tk.

It then selects sequences (previously generated) and values (e.g., “0”, “1L”, or “null”) of

appropriate type to use for the method parameters. It concatenates these sequences and adds

a new call to m. It then executes the new sequence to check contracts (e.g., no uncaught

exception during execution). If there is a violation, it adds the new sequence to the error

sequences; otherwise, it adds the new sequence to the non-error sequences. More details

of the original Randoop algorithm, including discarding duplicates and filtering extensible

sequences, are available elsewhere [34].

21

// inferredProperties is specific to @Randoop
GenerateSequences(classes, contracts, inferredProperties, timeLimit)

errorSeqs ← {} // These will be generated as unit tests
// we add a comment-code inconsistency field to sequences

nonErrorSeqs ← {} // These are used to build longer sequences
while timeLimit not reached do

// Create new sequence
m(T1 . . . Tk)← randomPublicMethod(classes)
〈seqs, val〉 ← randomSeqsAndVals(nonErrorSeqs, T1 . . . Tk)
newSeq ← extend(m, seqs, vals)
// Execute new sequence and check contracts.
violated ← execute(newSeq, contracts)
// Classify new sequence and outputs.
if violated then
errorSeqs ← errorSeqs

⋃ {newSeq}
else
nonErrorSeqs ← nonErrorSeqs

⋃ {newSeq}
end if
// Execute and check @tComment-inferred properties.
match ← execute(newSeq, inferredProperties)
if match = ’Missing Exception’ then
// Add the new sequence, marked as inconsistency
errorSeqs ← errorSeqs

⋃ { newSeq }
newSeq.isCommentCodeInconsistency ← highlyLikely

else if match = ’Different Exception’ or
match = ’Unexpected Exception’ then

// Mark an already added sequence as inconsistency
newSeq.isCommentCodeInconsistency ← likely

else if match = ’Unknown Status’ then
// Unknown inconsistency status
newSeq.isCommentCodeInconsistency ← unknown

else // match = ’Expected Exception’
// Mark the sequence as likely consistent
newSeq.isCommentCodeInconsistency ← unlikely

end if
end while
return 〈 nonErrorSeqs, errorSeqs 〉

Figure 4.1: Integration of @Randoop checking of @tComment-inferred properties into test
generation

22

C
om

m
en
t-
C
o
d
e
In
co
n
si
st
en
t

U
n
k
n
ow

n
C
om

m
en
t-
C
o
d
e

C
on

si
st
en
t

M
is
si
n
g
E
xc
ep
ti
o
n

D
iff
er
en

t
E
xc
ep
ti
o
n

U
n
ex
pe
ct
ed

E
xc
ep
ti
o
n

U
n
kn

o
w
n

S
ta
tu
s

E
xp
ec
te
d
E
xc
ep
ti
o
n

E
x
ce
p
ti
on

T
h
ro
w
n

d
u
ri
n
g
ex
ec
u
ti
on

N
o

Y
es

Y
es

Y
es

Y
es

P
ro
p
er
ti
es

th
at

@
t
C
o
m
m
e
n
t

in
fe
rr
ed

ab
ou

t
ex
-

p
ec
te
d

ex
ce
p
ti
on

s
fo
r
m
et
h
o
d

p
ar
am

-
et
er
s

w
it
h

n
u
l
l

va
lu
es

N
u
ll
A
n
y
E
xc
ep
ti
o
n
or

N
u
ll
S
pe
ci
fi
c
E
xc
ep
ti
o
n

(1
)

at
le
as
t

on
e

is
N
u
ll
S
pe
ci
fi
c
E
xc
ep
ti
o
n

&
(2
)
th
ro
w
n
ex
ce
p
-

ti
on

is
n
ot

in
th
e
se
t

of
al
l
sp
ec
ifi
c
ex
ce
p
-

ti
on

s

(1
)
at

le
as
t
on

e
is
N
u
ll

N
o
rm

a
l
&

(2
)
th
er
e
is

n
o
N
u
ll
S
pe
ci
fi
c
E
xc
ep
-

ti
o
n

or
N
u
ll

A
n
y
E
x-

ce
p
ti
o
n

N
u
ll

U
n
-

kn
o
w
n

fo
r

al
l
m
et
h
o
d

p
ar
am

et
er
s

w
it
h
n
u
l
l

(1
)

at
le
as
t

on
e

is
N
u
ll

S
pe
ci
fi
c

E
xc
ep
ti
o
n

or
N
u
ll

A
n
y

E
xc
ep
ti
o
n

&
(2
)

th
ro
w
n

ex
-

ce
p
ti
on

is
in

th
e

se
t

of
ex
p
ec
te
d

ex
ce
p
ti
on

s

T
ab

le
4.
2:

C
at
eg
or
ie
s
of

se
q
u
en
ce
s
th
at

@
R
an

d
o
op

cl
as
si
fi
es

b
as
ed

on
m
at
ch
es

fo
r
p
ar
am

et
er
s
w
it
h
n
u
ll
va
lu
es
.

23

Our @Randoop modification follows the similar approach that Randoop performs for

checking contracts: @Randoop executes the sequence and checks the @tComment-inferred

properties for method calls where one or more parameter have null values. We distinguish

five kinds of matches between method execution (does it throw an exception and of what

type) and @tComment-inferred properties (is an exception expected and of what type).

Based on the match, @Randoop can (1) generate a sequence that Randoop would not gen-

erate otherwise, (2) generate the same sequence as Randoop but mark the sequence as a

comment-code inconsistency, or (3) generate the same sequence as Randoop but mark the

sequence as comment-code consistent.

Before we describe the five possible kinds of matches, we describe how @Randoop com-

putes the set of expected exceptions. It handles multiple null values, which naturally arise

for methods with several parameters of non-primitive types, e.g., addAll from Figure 3.2

has “Collection collection” and “Object[] elements”. If only one of these parame-

ters is null, @Randoop uses only the property inferred for that parameter. If two or more

parameters are null, @Randoop puts in the set all expected exceptions for these param-

eters, e.g., if we had collection == null => NullPointerException and elements ==

null => IllegalArgumentException, then @Randoop would assume that either of the

two exceptions is expected. If some parameter with null value has the Null Any Excep-

tion property, then all types of exceptions are expected. Finally, @Randoop adds to the

set exceptions that are not null-related but appear in the @throws tags for the Javadoc

comment of the method under test. For example, the method arrayIterator(Object[]

array,int start,int end) has one such tag (“@throws IndexOutOfBoundsException if

array bounds are invalid”) and one null-related tag (“@throws NullPointerException

if array is null”); although IndexOutOfBoundsException does not correspond to a

null input, @tComment always adds it to the set of expected exceptions.

Table 4.2 lists the five kinds of matches, which are discussed below.

Missing Exception sequences throw no exception during execution, but the corresponding

24

inferred properties specify that some exception is expected. These sequences should be

generated as test cases that are likely comment-code inconsistencies (although they could be

false alarms if the inference obtained incorrect properties from the corresponding comments).

To repeat, these test cases would not be generated by the original Randoop because they

throw no exception.

Different Exception sequences throw an exception that is different from the exception(s)

expected according to the inferred properties. These are also likely comment-code incon-

sistencies. These sequences would be generated by Randoop as potentially fault-revealing

test cases, and by inspecting them, the developer might find the inconsistency. However,

these inconsistencies would be hard to identify among a large number of other test cases that

Randoop generates (in our evaluation in Section 5.2, there are only 4 test cases were Different

Exception among 1,285 test cases that Randoop would generate). In contrast, @Randoop

highlights these test cases.

Unexpected Exception sequences throw an exception whereas @tComment explicitly ex-

pects normal execution with no exception. As for Different Exception, Randoop would also

generate these sequences as test cases, but @Randoop highlights them due to the inconsis-

tency between code and properties inferred from comments.

Unknown Status sequences throw an exception but @tComment inferred no property to

tell if the exception is expected or not. Both Randoop and @Randoop generate these as error

sequences. While they may indicate a fault in the code, they do not show an inconsistency

between code and comment (unless the inference incorrectly missed inferring some property

about exceptions).

Expected Exception sequences throw an exception, but this exception is expected according

to the properties inferred by @tComment from the relevant comments. Hence, @Randoop

marks these sequences as consistent. If @tComment inference is correct for these cases,

they are false alarms that Randoop would generate; if the inference is incorrect, @tCom-

ment would increase the time for developers to find the true fault-revealing tests.

25

Our current implementation (Figure 4.1) of @Randoop modifies only the checking and

not the random selection performed by Randoop. Randoop randomly selects methods to

test and parameter values for the methods, and @Randoop does not perform any additional

selection that the original Randoop does not perform. It could be beneficial to additionally

bias the selection based on the properties inferred from comments. For example, if it is

inferred that an exception should be thrown when a method parameter p is null (i.e., Null

Specific Exception or Null Any Exception), but Randoop does not select any sequence where p

is null, @Randoop could be extended to (non-randomly) generate such additional sequences

to check if the inferred property holds. This extension remains as future work.

26

Chapter 5

Evaluation

5.1 Experimental Setup

We evaluate @tComment on seven open-source Java projects. Table 5.1 and Table 5.2 list

information about these projects. We modified Randoop revision 652 to build @Randoop.

Randoop provides several options that control random generation, and we consider two op-

tions that are the most important for @Randoop: (1) nullRatio specifies the frequency that

the null value is randomly chosen as an input for a method parameter of some non-primitive

type (e.g., a nullRatio of 0.6 instructs Randoop to use null 60% of the time, and it never

uses null for method receivers because that would directly lead to NullPointerException);

and (2) timeLimit specifies the number of seconds that Randoop should generate tests for

one project. All experiments were performed on a machine with a 4-core Intel Xeon 2.67GHz

processor and 4GB of main memory, running Linux version 2.6.18, and Java HotSpot 64-Bit

Server VM, version 1.6.0 20.

Project Source Description Version
Collections [1] Collection library and utilities 3.2.1
GlazedLists [7] List transformations in Java 1.8
JFreeChart [9] Chart creator 1.0.13
JodaTime [10] Date and time library 1.6.2
Log4j [4] Logging service 1.2
Lucene [5] Text search engine 2.9.3
Xalan [6] XML transformations 2.7.1

Table 5.1: Subject projects and their description

27

Project # LOC # Classes # Methods
Collections 19,417 274 3,874
GlazedLists 19,203 239 2,753
JFreeChart 51,376 396 6,205
JodaTime 18,428 154 3,887
Log4j 14,425 221 2,115
Lucene 38,051 422 5,222
Xalan 53,642 510 5,404

Table 5.2: Subject projects and their basic statistics

5.2 Comment-Code Inconsistency Detection

Table 5.3 shows the overall results of @tComment with the default values for @Randoop

options. (Section 5.5 discusses the sensitivity of the results to the value of these options and

the selection of the default @Randoop values.) For each project, we tabulate the number of

tests that @Randoop generated based on the five kinds of matches between inferred prop-

erties and method executions (as described in Section 4.3). For three kinds of matches that

could have comment-code inconsistencies, the cells show the split into True Inconsistencies

and False Alarms. The last column also shows the number of @tComment properties that

@Randoop checked during test generation.

In total, @Randoop generated 68 tests with potential comment-code inconsistencies.

Note that Randoop would not generate 30 of those (column ‘Missing Exception’) where

methods execute normally while exceptions are expected as specified by the correspond-

ing comments. @Randoop also generates 4 tests where an exception is thrown but different

than specified by comments (column ‘Different Exception’) and 34 tests where an exception

is thrown but normal execution was expected (column ‘Unexpected Exception’). @Randoop

generates 1507 tests that throw an exception for cases where no null-related properties were

inferred (column ‘Unknown Status’). Last but not least, @Randoop identifies 232 tests as

throwing some exceptions expected by the comments (column ‘Expected Exception’).

28

5.3 Detailed Comment-Code Inconsistency Detection

Results

The cells with sums show the split of comment-code inconsistencies reported by @tCom-

ment into those truly inconsistent (summarized in row ‘True Inconsistencies’) and not (row

‘False Alarms’). We inspected all the reports by carefully reading the comments and the

code to determine if they are indeed inconsistent or not. A subset of reports was also inde-

pendently inspected by two more students. @tComment detected 28 previously unknown

comment-code inconsistencies and had 40 false alarms.

29

P
ro
je
ct

M
is
si
n
g
E
xc
ep
ti
o
n

D
iff
er
en

t
E
xc
ep
ti
o
n

U
n
ex
pe
ct
ed

E
xc
ep
ti
o
n

U
n
kn

o
w
n

E
xp
ec
te
d

T
es
te
d

=
T
I
+

F
A

=
T
I
+

F
A

=
T
I
+

F
A

S
ta
tu
s

E
xc
ep
ti
o
n

P
ro
pe
rt
ie
s

C
o
l
l
e
c
t
i
o
n
s

12
=

12
+

0
4
=

3
+

1
6
=

0
+

6
94

36
11
5

G
l
a
z
e
d
L
i
s
t
s

0
=

0
+

0
0
=

0
+

0
6
=

1
+

5
15
1

1
11

J
F
r
e
e
C
h
a
r
t

1
=

1
+

0
0
=

0
+

0
2
=

2
+

0
12
7

6
42

J
o
d
a
T
i
m
e

3
=

3
+

0
0
=

0
+

0
13

=
0
+

13
37

3
31

L
o
g
4
j

1
=

1
+

0
0
=

0
+

0
3
=

0
+

3
18
6

15
2

17
9

L
u
c
e
n
e

4
=

0
+

4
0
=

0
+

0
2
=

1
+

1
36
8

2
12

X
a
l
a
n

9
=

4
+

5
0
=

0
+

0
2
=

0
+

2
54
4

32
43

T
ot
al

30
=

21
+

9
4
=

3
+

1
34

=
4
+

30
15
07

23
2

43
3

T
ot
al

T
ru
e

In
co
n
si
st
en
ci
es

(T
I)

21
3

4
28

F
al
se

A
la
rm

s
(F
A
)

9
1

30
40

T
ab

le
5.
3:

O
ve
ra
ll
re
su
lt
s
fo
r
th
e
d
ef
au

lt
co
n
fi
gu

ra
ti
on

of
ou

r
@
R
an

d
o
op

(n
u
ll
R
at
io
=
0.
6,

ti
m
eL

im
it
=
36
00
s)

30

The sources of false alarms are incorrectly inferred properties for the method with re-

ported violation itself (11 out of 40), missing properties—‘Null Unknown’— (11 out of 40),

and incorrect/missing properties for another method in the sequence (18 out of 40). As an ex-

ample of the first source, @tComment inferred the property filter == null => exception

from “@param filter if non-null, used to permit documents to be collected”, be-

cause the negation word non is next to null. However, this comment tag does not imply

the parameter filter cannot be null. Advanced NLP analysis may be leveraged to an-

alyze this tag correctly. Section 5.4 discusses inference accuracy in detail. The second

source of false alarm is when a method has several null parameters, at least one parame-

ter missing property (Null Unknown) and at least one not missing (either Null Normal , Null

Any Exception, or Null Specific Exception). @Randoop reports an inconsistency if the method

throws an unexpected exception, even if the parameter with Null Unknown caused it, because

@Randoop does not identify the cause of exception. For instance, @tComment inferred

the properties zone == null => normal and (implicitly) two Null Unknown for the pa-

rameters from the method getInstance(DateTimeZone zone, long gregorianCutover,

int minDaysInFirstWeek). If the execution throws IllegalArgumentException when the

input minDaysInFirstWeek is out of the allowed range, @Randoop still reports this as a

potential violation of Null Normal for zone. The third source results in some null values

propagating through fields. For example, @tComment may not know that a constructor

for some class should not have a null parameter. If a test passes null, the value is set to

some field. Later on, a method can dereference that field and throw an exception; if the

method itself has some null parameters, @Randoop can falsely report an inconsistency (again

because it does not identify the real cause of exception).

It is worth pointing out that we set all @tComment options (e.g., distance of negation

words from null, treating preconditions as requiring exceptions, ignoring Null Unknown,

etc.) by looking only at the first six projects. The experiments with Xalan were performed

with the same options.

31

5.4 Comment Analysis Results

Table 5.4 shows the comment analysis results of @tComment. Columns ‘param’ and

‘param with null’ show, for parameters of non-primitive types, the total number of @param

tags that @tComment analyzed and the number of @param tags that contain the keyword

null, respectively. Similarly, columns ‘throws’ and ‘throws with null’ show the total number

of @throws tags that @tComment and the number of @throws tags that contain the

keyword null, respectively. In total, there are 2713 @param and @throws tags that contain

the keyword null in the seven evaluated projects. @tComment inferred 2479 Null Normal ,

Null Any Exception, and Null Specific Exception properties from these comments. Of these

2479 properties, 433 are tested by @tComment to automatically detect comment-code

inconsistencies and improve testing. As discussed in Section 4.3, it would be beneficial to

modify Randoop’s random selection to actively test more of the inferred properties in the

future. For all other method parameters of non-primitive types that can take a null value,

but for which we cannot infer any of the three null-related properties, we assign them the

Null Unknown properties.

To evaluate the accuracy of our automatic comment-analysis technique, we randomly

sample 100 @param (for parameters of non-primitive types) and @throws tags with non-

empty free-form text from each project, and manually read them and the corresponding

inferred properties to check if the inferred properties are correct. The accuracy is calculated

as the number of correctly analyzed tags in a sample over the total number of tags in

the sample. Note that the manual inspection is purely for evaluating the accuracy of our

comment analysis; @Randoop directly uses the automatically inferred properties to detect

comment-code inconsistencies and improve testing, and no manual inspection of the inferred

properties is required.

In addition, we present the standard precision and recall for Null Normal , Null Any Ex-

ception, and Null Specific Exception respectively. For example, the precision for Null Normal

32

is the proportion of identified Null Normal properties that indeed are Null Normal properties.

The recall for Null Normal is the proportion of true Null Normal properties in our sample

that @tComment identifies.

Our analysis of the free-form comment text achieves a high accuracy of 97–100% (Col-

umn ‘Accuracy %’) without using NLP techniques as iComment did [40]. In addition, the

precisions and recalls are in high nineties to 100% in most cases. One exception is that the

precision for Null Normal in Xalan is only 50%, where only two Null Normal properties are

inferred, and one was inferred incorrectly. The general high performance is partially due

to the Javadoc API comments being much more structured than the comments in systems

code written in C. There is also less variance in paraphrases and sentence structures in the

Javadoc comments than in the C/C++ comments in systems code. While the general idea

of detecting comment-code inconsistencies through testing should be applicable to C/C++

projects, the comment analysis component may need to leverage more advanced techniques

as iComment did [40].

If some null-related properties are described in non-Javadoc style comments, e.g., without

using the @param tag, @tComment would not analyze them. As we do not anticipate many

such comments, this thesis focused on properly tagged Javadoc comments.

33

P
ro
je
ct

@
p
a
r
a
m

@
t
h
r
o
w
s

@
p
a
r
a
m

@
t
h
r
o
w
s

P
ro
p
er
ti
es

P
re
ci
si
on

[%
]

R
ec
al
l
[%

]
A
cc
u
ra
cy

w
it
h
n
u
ll

w
it
h
n
u
ll

=
N

+
A

+
S

N
A

S
N

A
S

[%
]

C
o
l
l
e
c
t
i
o
n
s

70
0

43
1

27
1

20
7

34
7=

81
+
47
+
21
9

75
92

10
0

10
0

10
0

97
97

G
l
a
z
e
d
L
i
s
t
s

11
0

55
14

17
19
=
14
+
0+

5
10
0

10
0

10
0

10
0

10
0

10
0

10
0

J
F
r
e
e
C
h
a
r
t

18
08

75
90
2

3
90
2=

36
2+

53
7+

3
10
0

10
0

10
0

10
0

10
0

10
0

10
0

J
o
d
a
T
i
m
e

80
2

72
6

52
9

96
55
3=

44
5+

23
+
85

10
0

75
10
0

10
0

10
0

78
98

L
o
g
4
j

71
3

0
48
8

0
46
0=

24
3+

21
7+

0
10
0

10
0

10
0

10
0

10
0

10
0

10
0

L
u
c
e
n
e

49
8

37
3

39
15

67
=
13
+
25
+
29

10
0

67
10
0

80
10
0

10
0

99
X
a
l
a
n

69
9

11
0

12
6

6
13
1=

33
+
93
+
5

50
10
0

10
0

10
0

10
0

10
0

99
T
ot
al
/O

ve
ra
ll

53
30

17
70

23
69

34
4

24
79
=
11
91
+
94
2+

34
6

98
98

10
0

99
10
0

93
99

T
ab

le
5.
4:

C
om

m
en
t
an

al
y
si
s
re
su
lt
s.

N
is
fo
r
N
u
ll
N
or
m
al
,
A

fo
r
N
u
ll
A
n
y
E
xc
ep
ti
on

,
an

d
S
fo
r
N
u
ll
S
pe
ci
fi
c
E
xc
ep
ti
on

.

34

5.5 Sensitivity of @Randoop Options

We want to understand how different values for @Randoop options nullRatio and timeLimit

affect our results of comment-code inconsistency detection, which can help us identify good

default values for using @tComment. When time budget allows, users can always run

@tComment with many nullRatios and timeLimits to try to detect more inconsisten-

cies.

We run @Randoop with 5 timeLimits—50sec, 100sec, 200sec, 400sec, and 800sec—and

11 nullRatios—from 0.0 to 1.0 in increments of 0.1—on all seven projects and measured

the most important metric, the number of Missing Exception tests. These are 5*11*7, a

total of 385, sets of experiments. Despite the randomness in @Randoop, it identifies more

Missing Exception tests (thus potentially detects more comment-code inconsistencies) as the

timeLimit increases for all cases but one combination of the value and the project. We

found that when running @Randoop for 800sec, nullRatio 0.6 helps @Randoop identify

the largest number of Missing Exception tests across all seven projects. Therefore, we chose

it as the default nullRatio value. We found that 0.3, 0.5, 0.7, 0.8, and 0.9 are the next best

values for nullRatios for these seven projects based on the same metric. Note that 0.0 is

clearly not good as it never selects null, but also 1.0 is not good as it always selects null

and thus Randoop cannot “grow” bigger objects with non-null parameters.

To further understand the effect of timeLimits, we increased the timeLimits to up to

two hours with nullRatio 0.6. We found that the number of the Missing Exception tests

reaches a plateau at about one-hour mark, which is similar to the fact that the original

Randoop reaches a plateau around one-hour mark [33].

To further understand the effect of nullRatios, we performed additional experiments

with timeLimit one hour and nullRatios from 0.3 to 0.9. The results show that they

produce almost identical numbers for the five kinds of matches, suggesting that if one runs

@Randoop for an hour, one can pick any nullRatio from 0.3 to 0.9 to obtain similar results.

35

Chapter 6

Related Work

Automated Software Testing. Many automated software testing techniques are designed

to detect software faults [15, 19, 20, 24, 32, 34, 46], e.g., based on random generation or using

specifications. @tComment leverages an additional source—code comments—and modifies

Randoop [34] to detect more faults (in both code and comments), and to potentially identify

false alarms generated by Randoop. It is quite conceivable to extend @tComment to

improve other automated testing techniques.

Detecting Comment-Code Inconsistencies. iComment [40] and aComment [41] extract

rules from comments and check source code against these rules statically to detect incon-

sistencies between comments and code. The differences between iComment/aComment and

@tComment have already been discussed in detail in the introduction, so we only sum-

marize them here: (1) @tComment leverages a new type of comments, related to null

values; (2) @tComment employs a dynamic approach to check comments during testing;

and (3) in addition to finding comment-code inconsistencies, @tComment could find false

alarms generated by test-generation tools such as Randoop.

A recent empirical study [26] examines the correlation between code quality and Javadoc

comment-code inconsistencies. It checks only simple issues, e.g., whether the parameter

names, return types, and exceptions mentioned in the @param, @return, and @throws tags

are consistent with the actual parameter names, return types, and exceptions in the method.

Doc Check [12] detects Javadoc errors such as missing and incomplete Javadoc tags. Different

from checking for these style inconsistencies, @tComment detects semantic comment-code

36

inconsistencies related to null values and exceptions.

Empirical Studies of Comments. Several empirical studies aim to understand the con-

ventional usage of comments, the evolution of comments, and the challenges of automatically

understanding comments [25, 29, 44, 45]. None of them automatically analyze comments to

detect comment-code inconsistencies or improve automated testing.

Comment Inference from Source Code. Several recent projects infer comments for

failed test cases [47], exceptions [16], API function cross-references [28], software changes [17],

and semantically related code segments [37, 38]. Comments automatically generated by

these techniques are more structured than developer-written comments; therefore, it may

be easier to leverage such automatically-generated comments for finding inconsistencies.

However, it is still beneficial to improve the analysis of developer-written comments because

(1) millions of lines of developer-written comments are available in modern software; and

(2) these developer-written comments bring in information that is not available in source

code [40] (which is also not available in comments inferred from the source code) to help us

detect more faults. FailureDoc [47] augments a failed test with debugging clues, which could

be extended to help explain why the tests generated by @tComment fail in order to help

developers confirm/fix the faults.

Analysis of Natural-Language Text for Software. Various research projects analyze

natural-language artifacts such as bug reports [14, 22, 27, 31, 36, 39, 42, 43], API documen-

tation [48], and method names [21] for different purposes such as detecting duplicate bug

reports or identifying the appropriate developers to fix bugs. @tComment analyzes com-

ments written in a natural language to detect comment-code inconsistencies and to improve

automated testing. Rubio-González et al. detect error code mismatches between code and

manual pages in the Linux kernel by combining static analysis and heuristics [35]. Different

from some of these studies [21, 48] that use natural-language processing (NLP) techniques

such as part-of-speech tagging and chunking, @tComment does not use NLP techniques

37

because our simple comment analysis can already achieve a high accuracy of 97–100%, par-

tially due to the more structured Javadoc comments with less paraphrases and variants

(Section 5.4).

38

Chapter 7

Conclusions and Future Work

An inconsistency between comment and code is highly indicative of program faults. We have

presented a novel approach, called @tComment, for testing consistency of Java method

bodies and Javadoc comments properties related to null values and exceptions. Our appli-

cation of @tComment on seven open-source projects discovered 28 methods with inconsis-

tencies between Javadoc comments and bodies. We reported all these inconsistencies, and

12 were already confirmed and fixed by the developers.

In the future, @Randoop can be extended to (1) modify the random selection performed

by Randoop such that it biases the selection based on the properties inferred by @tCom-

ment; (2) identify some causes of exceptions to reduce the rate of false alarms; and (3) rank

the reported inconsistencies. @tComment can be extended to handle other types of prop-

erties and to be integrated with other testing or static analysis tools.

39

References

[1] Apache Commons Collections, http://commons.apache.org/collections/.

[2] Apache Commons Collections Bug Report 384, https://issues.apache.org/jira/

browse/COLLECTIONS-384.

[3] Apache Commons Collections Bug Report 385, https://issues.apache.org/jira/

browse/COLLECTIONS-385.

[4] Apache Log4j, http://logging.apache.org/log4j/.

[5] Apache Lucene, http://lucene.apache.org/.

[6] Apache Xalan, http://xml.apache.org/xalan-j/.

[7] Glazed Lists, http://www.glazedlists.com/.

[8] Javadoc Tool, http://java.sun.com/j2se/javadoc.

[9] JFreeChart, http://www.jfree.org/jfreechart/.

[10] Joda Time, http://joda-time.sourceforge.net/.

[11] Joda Time Bug Report, http://sourceforge.net/tracker/?func=detail&

atid=617889&aid=3413869&group_id=97367.

[12] Sun Doc Check Doclet, http://www.oracle.com/technetwork/java/javase/

documentation/index-141437.html.

[13] The Standard Doclet, http://download.oracle.com/javase/1,5.0/docs/guide/

javadoc/standard-doclet.html.

[14] John Anvik, Lyndon Hiew, and Gail C. Murphy, Who should fix this bug?, ICSE, 2006.

[15] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov, Korat: Automated
testing based on java predicates, SIGSOFT Softw. Eng. Notes 27 (2002).

[16] Raymond P.L. Buse and Westley R. Weimer, Automatic documentation inference for
exceptions, ISSTA, 2008.

40

[17] Raymond P.L. Buse and Westley R. Weimer, Automatically documenting program
changes, ASE, 2010.

[18] Maciej Cielecki, Jedrzej Fulara, Krzysztof Jakubczyk, and Lukasz Jancewicz, Propaga-
tion of JML non-null annotations in Java programs, PPPJ, 2006.

[19] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer, ARTOO: Adaptive
random testing for object-oriented software, ICSE, 2008.

[20] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas
Zeller, Generating test cases for specification mining, ISSTA’10.

[21] Zachary P. Fry, David Shepherd, Emily Hill, Lori Pollock, and K. Vijay-Shanker,
Analysing source code: Looking for useful verb-direct object pairs in all the right places,
IET Software Special Issue on Natural Language in Software Development (2008).

[22] Michael Gegick, Pete Rotella, and Tao Xie, Identifying security bug reports via text
mining: An industrial case study, MSR, 2010.

[23] David Hovemeyer and William Pugh, Finding more null pointer bugs, but not too many,
PASTE, 2007.

[24] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang, OCAT: Object capture-based
automated testing, ISSTA, 2010.

[25] Zhen Ming Jiang and Ahmed E. Hassan, Examining the evolution of code comments in
PostgreSQL, MSR, 2006.

[26] Ninus Khamis, René Witte, and Juergen Rilling, Automatic quality assessment of source
code comments: the JavadocMiner, NLDB, 2010.

[27] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai,
Have things changed now? – An empirical study of bug characteristics in modern open
source software, ASID, 2006.

[28] Fan Long, Xi Wang, and Yang Cai, API hyperlinking via structural overlap, ESEC/FSE,
2009.

[29] Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, and Ahmed E.
Hassan, Understanding the rationale for updating a function’s comment, ICSM, 2008.

[30] Christopher D. Manning and Hinrich Schütze, Foundations of statistical natural lan-
guage processing, The MIT Press, 2001.

[31] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz, Assigning bug reports using a
vocabulary-based expertise model of developers, MSR, 2009.

[32] Carlos Pacheco and Michael D. Ernst, Eclat: Automatic Generation and Classification
of Test Inputs, ECOOP, 2005.

41

[33] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball, Finding errors in .net with
feedback-directed random testing, ISSTA, 2008.

[34] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball, Feedback-
Directed Random Test Generation, ICSE, 2007.

[35] Cindy Rubio-González and Ben Liblit, Expect the unexpected: error code mismatches
between documentation and the real world, PASTE, 2010.

[36] Per Runeson, Magnus Alexandersson, and Oskar Nyholm, Detection of duplicate defect
reports using natural language processing, ICSE, 2007.

[37] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker,
Towards automatically generating summary comments for Java methods, ASE, 2010.

[38] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker, Automatically detecting and
describing high level actions within methods, ICSE, 2011.

[39] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo, A dis-
criminative model approach for accurate duplicate bug report retrieval, ICSE, 2010.

[40] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou, /* iComment: Bugs or bad
comments? */, SOSP, 2007.

[41] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau, aComment: Mining annotations from
comments and code to detect interrupt-related concurrency bugs, ICSE, 2011.

[42] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun, An approach to detecting
duplicate bug reports using natural language and execution information, ICSE, 2008.

[43] Jin woo Park, Mu woong Lee, Jinhan Kim, Seung won Hwang, and Sunghun Kim,
CosTriage: A Cost-Aware Triage Algorithm for Bug Reporting Systems, AAAI, 2011.

[44] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, The effect of modularization and
comments on program comprehension, ICSE, 1981.

[45] Annie T. T. Ying, James L. Wright, and Steven Abrams, Source code that talks: An
exploration of Eclipse task comments and their implication to repository mining, MSR,
2005.

[46] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst, Combined static and dynamic
automated test generation, ISSTA, 2011.

[47] Sai Zhang, Cheng Zhang, and Michael D. Ernst, Automated documentation inference
to explain failed tests, ASE, 2011.

[48] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei, Inferring resource specifications from
natural language API documentation, ASE, 2009.

42

