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ABSTRACT

In this thesis we analyze some of the opinion dynamics in both discrete and continuous

cases. In the discrete case, we will find some criteria under which we can say more about

the behavior of the dynamics such as convergence of the agents to the same opinion, or

consensus. For this purpose, we first consider the agent-based bounded confidence model of

the Hegselmann-Krause where multiple agents want to agree on a common scalar, or they

can be divided in several subgroups, with each subgroup having its own agreement value.

In this model, we restrict ourselves to the case when all the agents have the same bound of

confidence, often referred to as homogeneous case. We are interested to study the number

of iterations which is enough for the termination of the Hegselmann-Krause algorithm. In

other words, we want to give an upper bound on the number of iterations which guarantees

the termination of the algorithm independently of reaching a consensus or not. Assuming

the consensus is achieved in the Hegselmann-Krause model, we first give an upper bound on

the number of iterations and then we provide another upper bound without any assumption.

In chapter 3 we use some analysis based on Lyapunov function theory to improve our

upper bound substantially. In our analysis we use two differnt type of Lyapunov functions

which each of them gives us a polynomial upper bound for the termination time. In chapter

4 we consider the Hegselmann-Krause model in higher dimensions. We will see that in higher

dimensions we don’t have lots of nice properties which exist in the scalar case. Then, we

will find some upper bounds for the termination time. Also, at the end we will consider

an extension of the Hegselmann-Krause model to continuous case such that the time is

discrete but the density of the agents is continuous over the real line. In chapter 5 we use

the matrix representation for the discrete dynamics and we provide some conditions on a

chain of stochastic matrices based on their decomposition by permutation matrices such
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that it can guarantee the convergence of the chain to a consensus matrix. Also, we provide

some examples and one necessary condition for finite time convergence of an especial case

of averaging gossip algorithms.
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CHAPTER 1

INTRODUCTION

In this chapter we bring some of the notation that we will use through the thesis. After

that, we discuss some of the known results, as the background material, and we use them

later to prove our results.

1.1 Notation and Terminology

We consider all the vectors as column vectors. For a vector x we write xi to denote its ith

entry. We use I for the identity matrix. Also for a matrix A, we write Ai and Aj to denote

its ith row and jth column, respectively. We use Rm×m to denote the set of m×m matrices

with real entries. Also we denote the real numbers and integers by R and Z, respectively.

For a set S we write diam(S) = max{|a − b| : a, b ∈ S}. For a matrix A = (aij) with

non-negative entries we define min+(A) to be min{aij|aij > 0}. We use ei to denote a vector

which all of its entries equal to zero except for the ith entry which is equal to 1. Also, we

use e and J to denote a vector and a matrix with all of their entries equal to 1, respectively.

We use x′ for the transpose of vector x. Also, for two vectors x and y we use x′y for the

inner product of these two vectors. For an arbitrary vector x, We use ‖x‖ to denote the

euclidian norm of x, i.e. ‖x‖ =
√

x2
1 + x2

2 + . . .+ x2
n. A matrix is said stochastic if all of

its entries are non-negative and the sum of entries in each row is equal 1. A scrambling

matrix is a stochastic matrix such that the inner product of each pair of its rows is positive.

A matrix A is doubly stochastic if A and A′ are both stochastic. Suppose that we have a

chain of stochastic matrices A(1), A(2), . . .. Then, with left product of this chain we mean

. . . A(2)A(1). We usually refer to the left product of this chain from time t0 to time t1 > t0

by A(t0, t1) = A(t1) . . . A(t0). A permutation matrix is a doubly stochastic matrix which
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has exactly one 1 in each row and column. We say that a column of a matrix is positive

if all entries in that column are positive. We denote the set of all the n × n permutation

matrices with Gn×n. Since we usually consider the dimension of the matrices to be n, for

simplicity we often use G instead of Gn×n. The set of permutation matrices with ordinary

product of matrices is an algebraic group which identity element being I. Since the number

of permutation matrices of size n is n!, thus the cardinality of G is n!. Let f : (Rm×Z+)→ R

be a function and assume that x(t0) ∈ Rm for an arbitrary integer t0 ∈ Z+. We say that

{x(k)}, defined by:

x(k + 1) = f(x(k), k) ∀k ≥ t0 (1.1)

is a dynamic at starting time t0. Also, we say that a point x ∈ Rm is an equilibrium poind

for the dynamic (1.1), if x = f(x, k) for any k ≥ t0.

1.1.1 Graph theory and matrix representation

A simple graph T (n, E) is a set of n nodes with indices from {1, 2, . . . , n} such that the node

i is connected to node j if and only if {i, j} ∈ E . We say E is the set of edges of the graph.

We say that the vertex i is neighbor with j if and only if {i, j} ∈ E . We denote the set

of all the neighbors of i with Ni(T ). A directed graph is a graph that the set of its edges

is composed of ordered pairs. In other words, in a directed graph H(n, E) there is an edge

from i to j if and only if (i, j) ∈ E . A path in a graph is an ordered sequence of vertices

such that there is an edge between every two consecutive vertices. We say that a simple

graph is connected if there is a path between every two vertices of the graph, and, similarly

we say a directed graph is strongly connected if there exists a directed path between every

two nodes in the graph. For every n× n symmetric matrix A with non-negative entries we

can consider a graph with n nodes such that node i is connected to node j if and only if the

Aij = Aji > 0. Similarly for a n × n matrix B with non-negative entries we can assign a

directed graph such that the link (i, j) is in the graph if and only if Bij > 0.
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1.1.2 Group theory

A finite group (G,×) of order m is a set of m elements with a product induced on it such

that has three properties:

1. G is closed the product ×.

2. There exists an identity element e0 in G such that the product of e0 with every element

from left and right is the same element.

3. Every element x ∈ G has its inverse, it means that the multiplication of every element

with its inverse is identity (e0).

The order of an element a ∈ G is the smallest positive integer k such that the multiplication

of a with itself k times is identity, i.e. ak = e. We usually denote this number by O(a). A

subgroup is a proper subset of a group which satisfies all the conditions of a group, (it means

that a subgroup is a group itself). A cyclic group is a group which is generated by different

powers of an element. Therefor, for an arbitrary element a in a group G, the cardinality

of the cyclic group which is generated by a is O(a). We usually refer to this cyclic group

by < a>= {e0, a, a
2, . . . , aO(a)−1}. For a positive integer k the number of positive integers

which are less than k and are prime with respect to k is denoted by ϕ(k).

1.1.3 Real Analysis

A scalar function f is convex if it has the following property:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ Df , ∀λ ∈ [0, 1],

where Df is the domain of f . If in the above relation the inequality is strict whenever x 6= y

and λ ∈ (0, 1), we say that the function is strictly convex. Moreover, we say that a function

is strongly convex with parameter µ > 0 if:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)−
µ

2
λ(1− λ)‖x− y‖2, ∀x, y ∈ Df .

3



We say that a sequence of functions fn(x) : R→ R, n = 1, 2, . . . converges uniformly to a

function f(x) if:

∀ε > 0 ∃N : ∀n ≥ N, ∀x ∈ R |fn(x)− f(x)| < ε.

Also, we say a function f : Df ⊂ R→ R is uniformly continuous on Df if:

∀ε > 0 ∃δ > 0 : |x− y| < δ ⇒ |fn(x)− f(x)| < ε.

1.2 Basic Results

In this part we present some basic facts which we use in the subsequent chapters to prove

our main results.

1.2.1 Matrix analysis

Lemma 1.1. (Birkhof-von Neumann, [1], p. 185) Every doubly stochastic matrix can be

represented by a convex combination of permutation matrices.

Suppose that we show all the n × n permutation matrices by P1, P2, . . . , Pn!. The above

lemma states that for a n× n doubly stochastic matrix A, there exist scalars λ1, λ2, . . . , λn!

in [0,1] such that:

A =

n!
∑

k=1

λkPk.

Theorem 1.1. ([2]) Suppose C ∈ Rn×n is a stochastic matrix and x and y be two vectors

such that y = Cx. Then,

diam(y) ≤ (1− µ(C))diam(x).

Where µ(C) = mini 6=j(
∑n

k=1 min(cik, cjk)). Furthermore, when C is a scrambling matrix
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with min+ C ≥ δ, then we have µ(C) ≥ δ and, thus,

diam(y) ≤ (1− δ)diam(x).

A short proof of the above theorem can be found in [2]. Stochastic and scrambling matrices

are so applicable and you can find some more properties of them in [3], [4], [5] and [6].

Lemma 1.2. ([7], p. 112) Suppose {A(t)} is a sequence of stochastic matrices such that

in each A(t) has at least one positive column. Furthermore, suppose there exists a positive

δ such that min+(A(t)) > δ for all t. Then, the product of this sequence will converge to a

consensus matrix.

Lemma 1.3. Suppose A and B are two matrices with non-negative entries such that their

diagonal entries are all positive. If the inner product of two rows of either A or B is positive,

then the inner product of the corresponding rows in both AB and BA are also positive.

Proof. Let us assume that the inner product of ith and jth rows of A is positive, i.e. A′i.Aj >

0. Then,

(AB)′i = (A′iB
1, A′iB

2, . . . , A′iB
n)

(AB)′j = (A′jB
1, A′jB

2, . . . , A′jB
n).

Therefore, the inner product of ith and jth rows in AB is equal to:

R =

n
∑

k=1

(A′iB
k)(A′jB

k).

For all k = 1, . . . , n we have:

(A′iB
k).(A′jB

k) = (

n
∑

t=1

aitbtk)(
n

∑

t=1

ajtbtk) ≥
n

∑

t=1

aitajtb
2
tk.
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Therefore, we can write:

R ≥

n
∑

k=1

n
∑

t=1

aitajtb
2
tk =

n
∑

t=1

aitajt

n
∑

k=1

b2tk. (1.2)

Now if we let cB = mink=1,...,n{bkk} (and similarly cA = mink=1,...,n{akk}), because of posi-

tivity of the diagonal entries in B and A we have cB, cA > 0, implying
∑n

k=1 b
2
tk ≥ c2B. Thus,

from (1.2) we obtain:

R ≥ c2B

n
∑

t=1

aitajt = c2B(A
′
iAj) > 0.

Therefore the inner product of the (AB)i and (AB)j is also positive. For the other statement

we want to show that the inner product of (BA)i and (BA)j is also positive. For this, it

suffices to (AB)′i(AB)j > 0 with the assumption that B′iBj > 0. therefore we can again,

work with AB instead of BA but this time we suppose B′iBj > 0 and we don’t have any

assumption on positivity of A′iAj > 0. Therefore the inner product of these two rows is equal

to:

L =

n
∑

k=1

(A′iB
k)(A′jB

k)

=

n
∑

k=1

(

n
∑

`=1

ai`b`k)(
n

∑

t=1

ajtbtk)

≥ (

n
∑

k=1

aiibik.ajjbjk = aiiajj

n
∑

k=1

bikbjk

= aiiajj(B
′
iBj) ≥ c2A(B

′
iBj).

Again since the diagonal elements of A are all positive and since B′iBj > 0, we have L > 0.

This completes the proof. Q.E.D.
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1.2.2 Group theory

Lemma 1.4. (Zorn Lemma, [8]) Suppose that (P,≤) is a partially ordered set such that

every chain in P has a maximal element. Then, there exists an element in P which is

maximal.

Lemma 1.5. ([9], p. 123) In a cyclic group < a > with cardinality n the number of different

generators is ϕ(n).

Theorem 1.2. ([9], p. 89-96) The cardinality of each subgroup of a finite group divides the

cardinality of the group.

Since the cardinality of a cyclic group which is generated by an particular element is equal

to the order of that element, from above theorem we have the following corollary.

Corollary 1.1. The order of every element in an arbitrary finite group divides the cardinality

of the group.

1.2.3 Convex functions and measure theory

Lemma 1.6. [10] Consider a sequence of nested sets A1 ⊂ A2 ⊂ . . . which are all measurable

with respect to a given measure µ. Then, we have:

lim
k→∞

µ(Ak) = µ(
∞
⋃

k=1

Ak).

Furthermore, if we have . . . ⊂ A2 ⊂ A1 and µ(A1) <∞, then:

lim
k→∞

µ(Ak) = µ(
∞
⋂

k=1

Ak).

Lemma 1.7. [11]. Every convex function is continuous in relative interior of its domain.

Therefore, a convex function which is defined over the real line is continuous.

Lemma 1.8. Suppose {fk(x)}
∞
k=1 is a sequence of convex functions over R which converges

to f(x) point-wise. Then, f(x) is also convex.
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Proof. Choose x and y arbitrary and fix λ ∈ [0, 1]. We have:

f(λx+ (1− λ)y) = lim
k→∞

fk(λx+ (1− λ)y)

≤ lim
k→∞

(λfk(x) + (1− λ)fk(y))

= λf(x) + (1− λ)f(y).

Q.E.D.

Lemma 1.9. (Jensen Inequality, [11]) Suppose that f(·) is a convex function and X is a

random variable, then f(E (X)) ≤ E (f(X)). In particular, if a = (a1, a2, . . . , an) is a

stochastic vector and xj ≥ 0, ∀j = 1, 2, . . . n, then,

n
∑

j=1

ajxj ≥ Πn
j=1x

aj
j .
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CHAPTER 2

UPPER BOUND ON THE TERMINATION TIME OF

THE HEGSELMANN-KRAUSE MODEL

2.1 General Concepts

One of the important questions in the network problems is the concept of consensus or

agreement among agents. In these kind of problems we have a set of agents which want to

share their individual information so that they agree on a same opinion. There have been

developed many of local algorithms such that guarantee convergence to consensus under

certain conditions [7], [12], [5], [13]. In some of these iterative algorithms the opinion of

the agents in the next step depends on the opinion of the agents at the past stages. In

other words, not only their opinion profiles depend on the time steps, but also the dynamic

of the algorithm changes at every stage based on the past opinion profiles. In this section

we describe an opinion dynamics model which was introduced earlier by Hegselmann and

Krause and provide some basic concepts for the model. Let us assume we have n agents and

we want to survey the interactions among their opinions. Specially we consider the following

matrix representation form for the dynamic:

x(t+ 1) = A(t, x(t), ε(t))x(t), (2.1)

which A is a n by n matrix. The entries of A are function of time step t, current profile x(t)

and communication regime ε(t). This dynamics model is general and therefore we confine

ourselves to a typical class of these dynamics which was introduced earlier as an agent-based

bounded confidence [14]. This dynamics usually comes to the account when the agents

are more conservative about their opinions. In this case, every agent will interact with

agents which have opinions closer to its own opinion. We will continue with the definition
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of homogenous Hegselmann-Krause model which can be considered under the framework of

(2.1). Suppose we have n ∈ N agents and a static bound of confidence ε > 0. Given an

initial profile x(0) define the matrix A(t, x(t), ε(t)) in (2.1) in the following way:

xi(t+ 1) = |Ni(x(t))|
−1

∑

j∈Ni(x(t))

xj(t)

Aij(t) =











1
|Ni(x(t))|

, if j ∈ Ni(x(t))

0, else

(2.2)

where Ni(x(t)) = {1 ≤ j ≤ n : ‖xi(t) − xj(t)‖ ≤ ε}. Also, we use |Ni(x(t))| to show the

number of elements in Ni(x(t)). Therefore we notice that according to the above definition

we can write x(t+ 1) = A(t)x(t), where A(t) is a stochastic matrix and the positive entries

in each row are the same. Furthermore, we can say that the positive entry in jth row is

equal to 1
|Nj(x(t))|

. It has proven before that for any initial profile and any positive bound

of confidence the Hegselmann-Krause model will terminate after finitely many steps [14].

However, depending on the initial profile and the bound of confidence, the final state could

be consensus or not. It has been shown that the final state is a function of initial profile x(0)

and bound of confidence ε [15]. More insight about the behavior of the Hegselmann-Krause

model can be found in [7]. Also, note that in this chapter our focus is only on the scalar case

of the Hegselmann-Krause model where each agent has a real value as her opinion and we

will postpone the higher dimensions to the next chapter. We next list some of the properties

of Hegselmann-Krause model in one dimension which we use frequently in the rest of this

chapter. We refer to the set of opinions of agents in time step t as the tth profile. Given

an initial profile, without loss of generality we can relabel our agents such that the initial

profile values are non decreasing. In other words: x1(0) ≤ x2(0) ≤ . . . ≤ xn(0). We note

that Hegselmann-Krause model has these two following properties ( as shown in [14]).

• The Hegselmann-Krause model preserves the order of the agents, it means that if in

the initial profile we rearrange the agents opinion as a non decreasing sequence, then

this order will be preserved in the next profiles as well.
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• If the difference between opinions of two subsequent agents in a profile is greater than

ε, then this difference will remain more than ε in all the next profiles. We usually

refer to this fact as a ”break” between agents. As a result, a necessary condition for

consensus is that there is no break in the initial profile. Furthermore, if we assume

that consensus is reachable, then we have break in non of the profiles.

2.2 A Loose Upper Bound

In this section we will develop an upper bound on the number of iterations in Hegselmann-

Krause model needed to reach an equilibrium point. For this purpose, we first assume that

consensus is reachable and provide an upper bound under this assumption. Later we will

find an upper bound in the general sense without assuming that consensus is reached.

2.2.1 Upper Bound Under Consensus Assumption

First, notice that we can formulate the Hegselmann-Krause model as x(m+1) = A(m)x(m)

where A is a stochastic matrix with the same positive entries in each row. The positive entries

in jth row are equal to 1
|Nj(x(m))|

at instant m. Next lemma shows that in the Hegselmann-

Krause model the information can be transferred from each agent to another agent after not

more than n+1
2

time steps. Here, We assume n ≥ 2 (otherwise the case is not interesting).

We consider the matrix representation of the Hegselmann-Krause model and interpret

the entry changes when this algorithm is applying on the agents. In every stage we can

consider the Hegselmann-Krause matrix composed of multiplication of two matrices; One is

a diagonal matrix which carries the weights and the second is an incident 0-1 matrix which

describes the neighborhood connections and the existence of link among agents. In other

words, A(m) = D(m)C(m), such that:

Dij(m) =











0, i 6= j

1
|Ni(x(m))|

, i = j

Cij(m) =











1, j ∈ Ni(x(m))

0, j /∈ Ni(x(m))

11



Lemma 2.1. Suppose that Q is a n× n which is defined as following:

Qij =











1, i = j, i = j + 1, j = i− 1

0, else

. Then, Q[n+1
2

] has at least one positive column, where [n+1
2
] denotes the integer part of n+1

2
.

Proof. It can be seen easily that Q is the adjacency matrix of an undirected path of length

n− 1 such that each node has self loop. On the other side, we know that for every k ∈ Z+,

Qk
ij shows the number of tours of length k between nodes i and j in the corresponding graph.

Now by focusing on the middle node in the path, it can bee seen that there is always a tour

of length [n+1
2
] between this middle node and every other node in the path. (note that the

graph has self loops on each vertex). This means that each entry in the middle column of

Q[n+1
2

] ([n+1
2
]th column) is at least one and hence is positive. Q.E.D.

Lemma 2.2. Suppose that we consensus is reached in the Hegselmann-Krause model. Then,

the consecutive left product of at most every [n+1
2
] of the matrices A(m) is a scrambling

matrix.

Proof. We show that for every k ∈ Z+, A(k, k + [n+1
2
]) has at least one positive column

where, by the definition we can write:

A(k, k+[
n+1

2
])=A(k+[

n+1

2
]) . . . A(k + 1)A(k)

=D(k+[
n+1

2
])C(k+[

n+1

2
]) . . . D(k+1)C(k+1)D(k)C(k).

Also, we note that the existence of diagonal matrices D(m),m = k . . . k + [n+1
2
] doesn’t

affect the positivity of the entries A(k, k + [n+1
2
]). However, they affect the amount of the

entries. Since we are interested to the scrambling property of A(k, k + [n+1
2
]), thus, simply

we can remove the diagonal matrices D(m),m = k . . . k+ [n+1
2
] from the above product and

just survey the scrambling property of the C(k + [n+1
2
]) . . . C(k + 1)C(k). Now, since we

assumed that consensus is reached, therefore in each time step, every middle agent has at

least one neighbor before and one neighbor after herself. Otherwise, based on the facts that
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we mentioned earlier there would be a break in one of the profiles and this is contradiction

with this fact that consensus is reached. In the other words, every C(t), t = k, . . . , k + [n+1
2
]

has the following configuration:

Cn×n(t) =























1 1 ∗ ∗ ∗ · · · ∗ ∗

1 1 1 ∗ ∗ · · · ∗ ∗

∗ 1 1 1 ∗ · · · ∗ ∗
...

...
...

... · · ·
...

...
...

∗ ∗ ∗ ∗ ∗ · · · 1 1























. (2.3)

Note that in the above configuration we assumed that the initial profile x(0) has been

ordered. Also, each ”*” shows that the corresponding entry can admit 0 or 1 depends on its

situation. Therefore, for every t = k, . . . , k + [n+1
2
], we can write C(t) = Q+R(t), where Q

is the same matrix introduced in lemma (2.1). Also, R(t) is a 0-1 matrix which captures the

entries corresponding to *’s in (2.3). Now, let us show the set of positive entries of a matrix

A by P (A). Then, we have:

P (A(k, k + [
n+ 1

2
])) = P (

[n+1
2

]
∏

j=0

C(k + j)) = P (

[n+1
2

]
∏

j=0

(Q+R(k + j)). (2.4)

Therefore, we can write
∏[n+1

2
]

j=0 (Q + R(k + j) = Q[n+1
2

] + T which T is some matrix with

non-negative entries. Thus,

P (

[n+1
2

]
∏

j=0

(Q+R(k + j))) = P (Q[n+1
2

] + T ) ⊇ P (Q[n+1
2

]). (2.5)

By comparing (2.4) and (2.5) and using lemma (2.1) we get that A(k, k+ [n+1
2
]) has at least

one positive column and thus is a scrambling matrix. Q.E.D.

Lemma (2.2) guarantees that in the worst case the product of at most [n+1
2
] consequent

matrices of Hegselmann-Krause model is a scrambling matrix. However, it may happen that
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product of less than [n+1
2
] of the consecutive matrices has also the scrambling property. Now,

let us assume d ≤ [n+1
2
] is the number of steps such that A(k, k+ d) is a scrambling matrix.

Therefore, since min+(A(t)) ≥ 1
n
, ∀t = 0, 1, . . . , then we have:

+

minA(k, k + d) ≥ (
1

n
)d. (2.6)

Theorem 2.1. Suppose in the Hegselmann-Krause model consensus is reached, then an

upper bound for the number of iterations is:

(
ln( ε

D
)

ln(1− ( 1
n
)[

n+1
2

])
)
(n+ 1)

2

which can be estimated by:

ln(
D

ε
)
√
n
n+3

,

where D = diam(x(0)).

Proof. Let us assume T is a particular time step. Then, we can write:

A
(

0, [
n+1

2
][

T
n+1
2

]−1
)

=

[ T
n+1
2

]

∏

i=1

A
(

(i−1)[
n+ 1

2
], i[

n+ 1

2
]− 1

)

.

By using (2.6) we have:

+

minA
(

(i−1)[
n+ 1

2
], i[

n+ 1

2
]− 1

)

≥ (
1

n
)[

n+1
2

], ∀i = 1, 2, . . . , [
T
n+1
2

].

Furthermore, according to lemma (2.2), each of the A
(

(i−1)[n+1
2
], i[n+1

2
]−1

)

is a scrambling

matrix. On the other side one can write:

x([
n+1

2
][

T
n+1
2

]−1) = A
(

0, [
n+1

2
][

T
n+1
2

]− 1
)

x(0), [
n+ 1

2
][

T
n+1
2

]−1 ≤ T−1.
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Therefore, by applying theorem (1.1) [ T
n+1
2

] times we get:

diam(x(T−1)) ≤ diam
(

x([
n+ 1

2
][

T
n+1
2

]−1)
)

≤
(

1−(
1

n
)[

n+1
2

]
)[ T

n+1
2

]

diam(x(0)). (2.7)

Therefore, if we let T to be [
ln( ε

D
)

ln(1−( 1
n
)[

n+1
2 ])

(n+1)
2

], by using the first and last term in (2.7) we

get:

diam(x(T−1)) ≤
ε

D
diam(x(0)) = ε

This shows that after running T = [
ln( ε

D
)

ln(1−( 1
n
)[

n+1
2 ])

(n+1)
2

] steps all the agents would be in

the ε-neighborhood of each other and thus, in the next iteration the dynamic will reaches

to consensus. Therefore, [
ln( ε

D
)

ln(1−( 1
n
)[

n+1
2 ])

(n+1)
2

] is an upper bound for the termination time.

Finally, if we estimate ln(1−( 1
n
)[

n+1
2

]) by a larger amount −( 1
n
)
n+1
2 , then, we get the following

upper bound:

ln(
D

ε
)
√
n
n+3

.

Q.E.D.

2.2.2 An Upper Bound in General Case

In this section with a complementary discussion we give an upper bound on the termination

time of the Hegselmann-Krause model independent of any knowledge about the existence

of consensus. This upper bound is almost the same as the previous upper bound with an

additional term which is negligible in compare to the dominated term. First, we start with

two definitions.

Definition 1. For a given r ∈ {1, 2, . . . , n−1}, we say that rth break happens in a particular

profile for the first time if the number of breaks is r in that particular profile but it is less

than r for all the previous profiles.

Definition 2. Suppose we have a profile that rth breaks happens in it for the first time.
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These breaks divide that profile to r + 1 sub profiles and therefore, every sub profile has its

own diameter. We define Dr to be The maximum value among all of these r + 1 diameters.

Theorem 2.2. Let Tn be the termination time for the Hegselmann-Krause model in one

dimension. Then,

Tn ≤ ln(
D

ε
)
√
n
n+3

+
n(n+ 1)

2

where, D = diam(x(0)).

Proof. Let T = (
ln( ε

D
)

ln(1−( 1
n
)[

n+1
2 ])

+ n) (n+1)
2

and consider A(0, [T ]). If there is not any break in

all of the profiles, then we will reach to consensus and according to theorem (2.1), T steps is

enough for the termination of the dynamics. Otherwise, assume that the first break occurs

in the tth profile such that t = i[n+1
2
] + j for some i ≥ 0 and 0 ≤ j < [n+1

2
]. Therefore,

according to lemma (2.2) we can write A(0, i[n+1
2
]) as the product of i scrambling matrices

such that each of them includes [n+1
2
] matrices. Since before the first break there exist at

least i[n+1
2
] time steps which we can look at them as the product of i scrambling matrices,

therefore, by using theorem (1.1) i times we can see easily that D1 satisfies to the following

inequality:

D1 ≤
(

1− (
1

n
)[

n+1
2

]
)i

D (2.8)

In fact, the above inequality says that the product of these scrambling matrices decreases

the diameter of the initial profile by a factor of
(

1 − ( 1
n
)[

n+1
2

]
)i

. Now, assume that we are

running the algorithm T times, then after t = i[n+1
2
] + j steps, we still have

S =
ln( ε

D
)

ln(1− ( 1
n+1
2

)
n+1
2 )

n+ 1

2
+

n(n+ 1)

2
− (i

n+ 1

2
+ j) (2.9)
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more steps. By combining (2.8) and (2.9) we get:

S =
n+ 1

2

( ln( ε
D
)

ln(1− ( 1
n
)[

n+1
2

])
− i

)

+
n(n+ 1)

2
− j

≥
n+ 1

2

( ln( ε
D1

)

ln(1− ( 1
n
)[

n+1
2

])

)

+
n(n+ 1)

2
− j

≥
n+ 1

2

( ln( ε
D1

)

ln(1− ( 1
n
)[

n+1
2

])

)

+
(n− 1)(n+ 1)

2
. (2.10)

Now we can imagine that we just start the Hegselmann-Krause algorithm with this difference

that we apply this algorithm on more than one profile (sub profiles) simultaneously and such

that the diameter of each sub profile is less than or equal to D1.

To complete the proof, suppose that we have totally ` breaks in the steady state or

equivalently `+ 1 subgroups. It is clear that ` ≤ n− 1. With repeating the same argument

we can see that after `th break the diameter each subprofile is less than D`. But the

remaining steps is more than or equal to:

n+ 1

2

( ln( ε
D`
)

ln(1− ( 1
n
)[

n+1
2

])

)

+
(n− `)(n+ 1)

2

≥
n+ 1

2

( ln( ε
D`
)

ln(1− ( 1
n
)[

n+1
2

])

)

.

On the other side, we know that after `th break there is no any other break and all the

separated sub profiles have diameter less than or equal to D`. Therefore, according to

theorem (2.1) the remaining steps n+1
2

(

ln( ε
Dl

)

ln(1−( 1
n+1
2

)
n+1
2 )

)

is enough for termination of the

dynamics in each of the sub profiles. Therefore, T is an upper bound for the termination

time. Finally, by applying the same approximation in theorem (2.1) we get the proper result.

Q.E.D.

In this chapter, we studied the behavior of the Hegselmann-Krause model in scalar case

and we gave a loose upper bound on the number of iterations. In this work we considered the

homogenous case of the dynamic, but most of the ideas can be applied for inhomogeneous

case as well. We first came up with an upper bound for the termination time as a function
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of number of the agents n, bound of confidence ε and diameter of the initial profile D, condi-

tioned that consensus is reached, then we generalized it for the arbitrary case. Furthermore,

one can get an upper bound explicitly as a function of n by using D ≤ nε.
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CHAPTER 3

POLYNOMIAL UPPER BOUND FOR THE

TERMINATION TIME OF THE

HEGSELMANN-KRAUSE MODEL

In this section, we again consider the scalar case of the Hegselmann-Krause model on the

real line. The same as before, let us assume n to be the number of agents. Once again, we

assume that the agents are sorted in an increasing order. Also, without loss of generality we

assume that the initial profile is positive, i.e. x(0) = (x1(0), x2(0), . . . , xn(0)). Otherwise, we

can translate all the agents by a positive constant to move them to the positive side of the

real line. It is not hard to see that this translation does not change the dynamic. Moreover,

let us show the dynamic by in its close form the same as following:

x(t+ 1) = A(t)x(t), ∀t ≥ 0, (3.1)

where,

Aij(t) =











1
|Ni(x(t))|

, if j ∈ Ni(x(t))

0, else

.

We next discuss the adjoint dynamics for the Hegselmann- Krause dynamics. It has been

shown in [16] and [17] that, for the Hegselmann-Krause dynamics, there exists a sequence

of stochastic vectors {π(t)}, t ≥ 0, backward in time, such that:

π′(t+ 1)A(t) = π′(t). (3.2)

This dynamics is the adjoint for the original dynamics (3.1). Furthermore, It can be seen
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easily from (3.1) and (3.2) that:

π′(t+ 1)x(t+ 1) = π′(t)x(t), ∀t ≥ 0. (3.3)

Our analysis in this section uses a Lyapunov comparison function that can be constructed

by using the adjoint dynamics [16]. First, we use the Entropy function to construct such

a comparison, and in the next section we improve the results slightly by using a quadratic

comparison function.

3.1 Entropy Comparison Function

Based on the adjoint dynamics which was introduced in (3.2), one can define:

Hπ(t)(x(t)) = −
n

∑

i=1

πi(t) ln(xi(t)), t ≥ 0. (3.4)

Note that since we already assumed that the agents are sorted in the increasing order, thus

0 < x1(0) ≤ x1(1) ≤ x1(2) ≤ . . .. Therefore, all the profiles at each time step will remain

positive and the above function is well defined at each time step.

Lemma 3.1. Suppose that {π(t)}t≥0 is a sequence of stochastic vectors which satisfies in

the adjoint dynamics (3.2), then,

Hπ(t+1)(x(t+ 1)) ≤ Hπ(t)(x(t)).

Proof.

Hπ(t+1)(x(t+ 1))−Hπ(t)(x(t)) = ln[
Πn

i=1xi(t)
πi(t)

Πn
i=1xi(t+ 1)πi(t+1)

]

= ln[
Πn

i=1xi(t)
πi(t)

Πn
i=1(A(t)x(t))

πi(t+1)
i

]. (3.5)
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On the over side, by using Jensen inequality (1.9), we have:

(A(t)x(t))
πi(t+1)
i =

(

n
∑

j=1

Aij(t)xj(t)
)πi(t+1)

≥
(

Πn
j=1xj(t)

Aij(t)
)πi(t+1)

⇒ Πn
i=1(A(t)x(t))

πi(t+1)
i ≥ Πn

i=1

(

Πn
j=1xj(t)

Aij(t)
)πi(t+1)

= Πn
i=1

(

Πn
j=1xj(t)

Aij(t)πi(t+1)
)

. (3.6)

Now, by using (3.2) in (3.6) we get:

(A(t)x(t))
πi(t+1)
i ≥ Πn

i=1

(

Πn
j=1xj(t)

Aij(t)πi(t+1)
)

= Πn
j=1xj(t)

∑n
i=1 Aij(t)πi(t+1) = Πn

i=1xi(t)
πi(t). (3.7)

Finally, applying (3.7) in (3.5) gives us the proper result. Q.E.D.

The above lemma tells us that the amount of Entropy function is non-increasing by passing

the time and thus, a natural question is to figure out how large the amount of decrease would

be. Therefore, In the next, our goal is to find a lower bound on the amount of decrease of

the Entropy Function. We begin our analysis by the following definition.

Definition 3. We say that a merging time happens at the time instant t if there are at least

two agents i and j such that xi(t− 1) 6= xj(t− 1) and xi(t) = xj(t).

The following lemma tells us that if there is no merging time at some time instant, then,

the disjoint agents can not be so close to each other. In other words, if the agents are

sufficiently close to each other, then we will have a merging time in the next iteration.

Theorem 3.1. Consider the Hegselmann-Krause model with n agents and the bound of

confidence ε > 0. Also, let us show the t-th ordered profile by x(t). Then, we have either t

is a merging time or every two separated agents in x(t) have a distance at least ε
n2 .

Proof. Let us assume that t is not a merging time. Choose an arbitrary agent i and assume

that xi+1(t) 6= xi(t) to be one of her closest neighbors. Since t is not a merging time,

therefore, Ni(t) 6= Ni+1(t). Otherwise, in the next iteration agents i and i + 1 will merge.
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Also, assume that |Ni+1(t) \ Ni(t)| = x, |Ni(t) \ Ni+1(t)| = y and |Ni(t) ∩ Ni+1(t)| = m.

Furthermore, let A =
∑

j∈Ni+1(k)∩Ni(k)
xj(k) and xi+1(k) − xi(k) = d < ε. Therefore, we

notice that:

• xi(t) + ε ≤ xj(t) < xi+1(t) + ε, ∀j ∈ Ni+1(t) \Ni(t)

• xi(t)− ε < xj(t) ≤ xi+1(t)− ε, ∀j ∈ Ni(t) \Ni+1(t).

Then, by the definition of Hegselmann-Krause model and using two above inequalities, one

can write:

A+ x(xi+1(t)− ε)

m+ x
≤ xi(t+ 1) ≤

A+ x(xi+1(t)− ε)

m+ x
A+ y(xi(t)− ε)

m+ y
≤ xi+1(t+ 1) ≤

A+ y(xi+1(t) + ε)

m+ y
. (3.8)

Moreover, we can get the following range of changes for A.

A ≤ (m− 2)(xi(t) + ε) + xi(t) + xi+1(t)

= (m− 2)(xi(t) + ε) + xi(t) + xi(t) + d

= mxi(t) + d+ (m− 2)ε.

A ≥ (m− 2)(xi+1(t)− ε) + xi(t) + xi+1(t)

= (m− 2)(xi(t) + d− ε) + xi(t) + xi(t) + d

= mxi(t) + d+ (m− 2)(d− ε),

or, simply we can write:

A−mxi(k) ∈ [d+ (m− 2)(d− ε), d+ (m− 2)ε]. (3.9)
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Now we show that xi+1(t)− xi(t) ≥
ε
n2 . For this purpose, let us define:

f(x, y) =
A+ y(xi(t)− ε)

m+ y
−

A+ x(xi+1(t)− ε)

m+ x

=
(x− y)(A−mxi(t)) +m(x+ y)ε−mdx+ xy(2ε− d)

(m+ x)(m+ y)
,

where, in the last equality we have used xi+1(t) = xi(t) + d. By using (3.8), it is clear that

xi+1(t)− xi(t) ≥ f(x, y). We consider two different cases:

• Case 1: x > y and (A−mxi(t)) ≤ 0.

Since (A−mxi(t)) ≤ 0 by using (3.9) we get d+ (m− 2)(d− ε) ≤ (A−mxi(t)) ≤ 0 and

therefore, (x− y)[d+ (m− 2)(d− ε)] ≤ (x− y)(A−mxi(t)). Thus, we can write:

f(x, y) =
(x− y)(A−mxi(t)) +m(x+ y)ε−mdx+ xy(2ε− d)

(m+ x)(m+ y)

≥
(x− y)[d+ (m− 2)(d− ε)] +m(x+ y)ε−mdx+ xy(2ε− d)

(m+ x)(m+ y)

=
2xε+ 2(m− 1)yε− dx+ 2xyε− (m− 1)yd− dxy

(m+ x)(m+ y)

=
(2ε− d)(x+ xy + (m− 1)y)

(m+ x)(m+ y)
≥

(2ε− d)(x− y)

(m+ x)(m+ y)

≥ ε(
1

(m+ y)
−

1

(m+ x)
) >

ε

n2
.

Where in the last inequality we have used this fact that m+ x+ y ≤ n.

• Case 2: y ≥ x and (A−mxi(t)) ≥ 0

Again, by using (3.9) we have d + (m − 2)ε ≥ (A −mxi(t)) ≥ 0 and therefore, (x − y)[d +
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(m− 2)ε] ≤ (x− y)(A−mxi(t)). Thus, we can write:

f(x, y) =
(x− y)(A−mxi(t)) +m(x+ y)ε−mdx+ xy(2ε− d)

(m+ x)(m+ y)

≥
(x− y)[d+ (m− 2)ε] +m(x+ y)ε−mdx+ xy(2ε− d)

(m+ x)(m+ y)

=
2yε+ 2(m− 1)xε− dx+ 2xyε− (m− 1)xd− dxy

(m+ x)(m+ y)

=
(2ε− d)(y + xy + (m− 1)x)

(m+ x)(m+ y)
≥

(2ε− d)(y − x)

(m+ x)(m+ y)

≥ ε(
1

(m+ x)
−

1

(m+ y)
) >

ε

n2
.

Note that if non of the above cases happens, then, f(x, y) is even larger than the previous

cases, because in the nominator of f(x, y) we are adding one extra positive term and therefore

the results still hold. This completes the proof. Q.E.D.

Lemma 3.2. Suppose that f(·) is a strongly convex function with parameter µ and α =

(α1, α2, . . . , αn) is a stochastic vector, then:

f(

n
∑

i=1

αixi)≤

n
∑

j=1

αif(xi)−
µ

2

n−2
∑

j=0

αn−j

(
∑n−j

`=1 α`)(
∑n−j−1

`=1 α`)

∥

∥

∥

n−j−1
∑

i=1

αi

(

xn−j − xi

)∥

∥

∥

2

.

Proof. We start from the left hand side of the above inequality and with an inductively

argument extract the terms of the right hand side. By applying the strong convexity of f
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we have:

f(

n
∑

i=1

αixi) = f(αnxn + (1− αn)(

n−1
∑

i=1

αi

1− αn

xi))

≤ αnf(xn) + (1− αn)f(
n−1
∑

i=1

αi

1− αn

xi)

−
µ

2
αn(1− αn)‖xn −

∑n−1
i=1 αixi

1− αn

‖2

= αnf(xn) + (1− αn)f(
n−1
∑

i=1

αi

1− αn

xi)

−
µ

2

αn

1− αn

‖

n−1
∑

i=1

αi(xn − xi)‖
2. (3.10)

Since
∑n−1

i=1
αi

1−αn
= 1, therefore, we can apply (3.10) on f(

∑n−1
i=1

αi

1−αn
xi) and we get:

f(
n−1
∑

i=1

αi

1− αn

xi) ≤
αn−1

1− αn

f(xn−1) + (1−
αn−1

1− αn

)f(
n−2
∑

i=1

αi

1− αn − αn−1

xi)

−
µ

2

αn−1

1−αn

1−
αn−1

1−αn

‖

n−2
∑

i=1

αi

1− αn

(xn−1 − xi)‖
2 =

αn−1

1− αn

f(xn−1)

+
(1− αn − αn−1)

1− αn

f(
n−2
∑

i=1

αi

1− αn − αn−1

xi)

−
αn−1

(1− αn − αn−1)
‖

n−2
∑

i=1

αi

1− αn

(xn−1 − xi)‖
2. (3.11)

By replacing (3.11) in (3.10) and repeating this process we get:

f(

n
∑

i=1

αixi) ≤

n
∑

i=1

αif(xi)−
µ

2

[ αn

1− αn

‖

n−1
∑

i=1

αi(xn − xi)‖
2

+
αn−1(1− αn)

(1− αn − αn−1)
‖

n−2
∑

i=1

αi

1− αn

(xn−1 − xi)‖
2

+
αn−2(1− αn − αn−1)

(1− αn − αn−1 − αn−2)
‖

n−3
∑

i=1

αi

1− αn − αn−1

(xn−2 − xi)‖
2 + . . .

]

,

which can be written in the form of lemma (3.2). Q.E.D.
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Now, we have enough tools to find a lower bound on the decreasing amount of the Entropy

function.

Theorem 3.2. In the Hegselmann-Krause model we have:

Hπ(t)(x(t))−Hπ(t+1)(x(t+ 1)) ≥
µ

2|Nk(t)|2

n
∑

i=1

πi(t+ 1)di(t)
2,

where, di(t) = max{‖xr(t)− xs(t)‖ : r, s ∈ Ni(t)} and µ is a positive constant.

Proof. First of all, note that we can rescale the initial profile and assume that all the agents

are in [θ, 1] for some θ > 0. Also, we know that − ln(·) is a strongly convex function on [θ, 1].

Once again, let us show the parameter of the strong convexity by µ. According to (3.1), for

an arbitrary k ∈ {1, . . . n} we can write xk(t + 1) = A′k(t)x(t). Since Ak(t) is a stochastic

vector, hence, we can apply lemma (3.2) for A(t)′kx(t). Let us define δk(t) to be:

δk(t) =
µ

2

n−2
∑

j=0

A(t)k(n−j)

(
∑n−j

`=1 A(t)k`)(
∑n−j−1

`=1 A(t)k`)

∥

∥

∥

n−j−1
∑

i=1

A(t)ki

(

xn−j(t)− xi(t)
)∥

∥

∥

2

. (3.12)

Let us show the smallest and the largest indices in Nj(k) by r and s, respectively. Therefore,

by the definition of A(t) we have:

Ak`(t) =











1
|Nk(t)|

, if ` ∈ {r, r + 1, . . . , s}

0, else

. (3.13)

By using (3.13) in (3.12) and simplifying we get:

δk(t) =
µ

2|Nk(t)|

n−r−1
∑

j=n−s

1

(n− j − r)(n− j − r + 1)

∥

∥

∥

n−j−1
∑

i=r

(xn−j(t)− xi(t))
∥

∥

∥

2

=
µ

2|Nk(t)|

S
∑

m=r+1

1

(m− r)(m− r + 1)

∥

∥

∥

m−1
∑

i=r

(xm(t)− xi(t))
∥

∥

∥

2

≥
µ

2|Nk(t)|3

S
∑

m=r+1

∥

∥

∥

m−1
∑

i=r

(xm(t)− xi(t))
∥

∥

∥

2

≥
µ

2|Ni(k)|3

(

|Nk(t)|d
2
k(t)

)

=
µ

2|Ni(k)|2
d2k(t).

26



Therefore,

δk(t) ≥
µ

2|Ni(k)|2
d2k(t). (3.14)

On the other side:

Hπ(t)(x(t))−Hπ(t+1)(x(t+ 1)) =

n
∑

k=1

πk(t+ 1) ln(xk(t+ 1))−

n
∑

k=1

πk(t) ln(xk(t))

=

n
∑

k=1

πk(t+ 1) ln(A′k(t)x(t))−

n
∑

k=1

πk(t) ln(xk(t))

≥

n
∑

k=1

(

πk(t+ 1)[

n
∑

j=1

Akj(t) ln(xj(t)) + δk(t)]
)

−

n
∑

k=1

πk(t) ln(xk(t))

=

n
∑

j=1

(

n
∑

k=1

πk(t+ 1)Akj(t)
)

ln(xj(t))+

+

n
∑

k=1

πk(t+ 1)δk(t)−
n

∑

k=1

πk(t) ln(xk(t))

=

n
∑

j=1

πj(t) ln(xj(t))) +
n

∑

k=1

πk(t+ 1)δk(t)−
n

∑

k=1

πk(t) ln(xk(t))

=

n
∑

k=1

πk(t+ 1)δk(t), (3.15)

where, in the second last equality we have used (3.2). Finally by using (3.14) in (3.15) we

get:

Hπ(t)(x(t))−Hπ(t+1)(x(t+ 1)) ≥

n
∑

k=1

πk(t+ 1)δk(t)≥
µ

2|Ni(k)|2

n
∑

k=1

πk(t+ 1)d2k(t).

Q.E.D.
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3.2 Polynomial Upper Bound by Using Entropy Function

Theorem 3.3. The Hegselmann-Krause dynamics in one dimension reaches to its steady

state no more than

−
2n6

µε2
ln(x1(0)) + n

steps, where, x(0) denotes the initial profile and µ is a positive constant.

Proof. By taking summation on the relation given in theorem (3.2), we obtain:

Hπ(0)(x(0))−Hπ(T )(x(T )) ≥
T−1
∑

t=0

µ

2|Nk(t)|2

n
∑

i=1

πi(t+ 1)di(t)
2

≥
µ

2n2

T−1
∑

t=0

n
∑

i=1

πi(t+ 1)di(t)
2.

Now, by using theorem (3.1) we know that if at time instant t we don’t have any merging,

then, di(t) ≥
ε
n2 . Hence if we don’t have any merging time in the time interval [0, T ], then,

Hπ(0)(x(0))−Hπ(T )(x(T )) ≥
µε2

2n6

T−1
∑

t=0

n
∑

i=1

πi(t+ 1) =
µε2

2n6
T

⇒ Hπ(0)(x(0))−
µε2

2n6
T ≥ Hπ(T )(x(T )) ≥ 0

⇒ T ≤
2n6

µε2
Hπ(0)(x(0)) ≤ −

2n6

µε2
ln(x1(0)).

Furthermore, since the total number of merging times can not exceed the number of agents

(n), hence, −2n6

µε2
ln(x1(0)) + n is an upper bound for the termination time. Q.E.D.

3.3 Quadratic Comparison Function

In this part, we use another type of comparison functions in our analysis to come up with

an improvement upper bound on the termination time of the Hegselmann-Krause model.

This comparison function V (·) which is constructed by using the adjoint dynamics in (3.2)
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is defined by:

V (t) =

n
∑

i=1

πi(t)(xi(t)− π′(t)x(t))2.

This function was introduced earlier in [17] and [16]. In particular, the decrease of this

comparison function plays a critical role in our analysis. The following result which was

shown in [16] gives us an exact and also a lower bound on the amount of decrease at each

time step.

Theorem 3.4. For any t ≥ 0, we have

V (t)− V (t+ 1) =
1

2

n
∑

i,j=1

Hij(t)(xi(t)− xj(t))
2 ≥

1

2n

n
∑

i=1

πi(t+ 1)d2i (t)

|Ni(t)|
,

where H(t) = A′(t)diag(π(t+ 1))A(t) and di(t) = max{|xp(t)− xq(t)| : p, q ∈ Ni(t)}.

To start our analysis, we state some lemmas which we are going to use them through our

main theorem.

Lemma 3.3. Suppose that t is not a merging time. Then, for every arbitrary agent i such

that |Ni(t)| > 1 (it means that agent i is not singleton at time t), we have:

πi(t+ 1) ≤
∑

`∈Ni(t)\{i}

π`(t+ 1).

Proof. let xr(t) and xs(t) to be the neighbors right before and after xi(t) which are different

from it, i.e. xr(t) 6= xi(t) and xr(t) 6= xi(t). It may happen that one of them doesn’t exist,

but since we assumed that t is not a merging time, therefore, the other one has to exist.

Also, since the order of agents will be preserved during the dynamics and since t is not a

merging time, therefore, in the next time step t + 1, these agents will still remain as the

neighbors right before and after xi(t+1). This shows that Ni(t+1) ⊆ Nr(t+1)∪Ns(t+1) ⊆
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∪`∈Ni(t)\{i}N`(t+ 1). Now by using the definition of adjoint dynamics (3.2) we can write:

πi(t+ 1) = π′(t+ 2)Ai(t+ 1)=
∑

j∈Ni(t+1)

πj(t+ 2)

|Nj(t+ 1)|

≤
∑

j∈Nr(t+1)∪Ns(t+1)

πj(t+ 2)

|Nj(t+ 1)|

≤
∑

j∈Nr(t+1)

πj(t+ 2)

|Nj(t+ 1)|
+

∑

j∈Ns(t+1)

πj(t+ 2)

|Nj(t+ 1)|

= πr(t+ 1) + πs(t+ 1) ≤
∑

`∈Ni(t)\{i}

π`(t+ 1).

Q.E.D.

Lemma 3.4. Suppose that t is not a merging time. Moreover, assume that for two different

p and q we have dp(t) <
ε
2
and dq(t) <

ε
2
, then, Np(t) ∩Nq(t) = ∅.

Proof. Suppose that the lemma is not true. Therefore, there exists at least a r ∈ Np(t) ∩

Nq(t). But in this case:

|xp(t)− xq(t)| ≤ |xp(t)− xr(t)|+ |xr(t)− xq(t)| <
ε

2
+

ε

2
= ε.

This mean that q ∈ Np(t). Since we know that dp(t) < ε
2
, therefore, |xp(t) − xq(t)| ≤

ε
2
.

Now, for every agent j ∈ Nq(t) we have:

|xp(t)− xj(t)| ≤ |xp(t)− xq(t)|+ |xq(t)− xj(t)| <
ε

2
+

ε

2
= ε.

This shows that j ∈ Np(t) and hence, Nq(t) ⊆ Np(t). With a similar argumentNp(t) ⊆ Nq(t).

Therefore, Np(t) = Nq(t). This shows that we will have a merging time at time t which is a

contradiction. Q.E.D.
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3.4 Polynomial Upper Bound by Using Quadratic Function

Theorem 3.5. Let us assume that ti denotes the number of time steps between the (i− 1)th

and ith merging times. Then,

V (

n−1
∑

i=1

ti) ≤ V (0)−
ε2

8n

n−1
∑

i=1

ti
i+ 1

.

Proof. First of all note that since the number of merging times cab be at most n − 1,

therefore, tn = tn+1 = . . . = 0. Pick an arbitrary time t ≥ 0 such that it is not a merging

time. Therefore, there exists k ∈ {1, 2, . . . , n− 2} such that
∑k

i=1 ti ≤ t <
∑k+1

i=1 ti. We will

show that the amount of decrease in V (·) between time steps t and t+ 1 is at least ε2

nk
.

Let us define T = {` : d`(t) <
ε
2
} and A = ∪`∈TN`(t). Also, let A

c to be the complement

of A. As a result of lemma (3.4) we can rewrite A as the union of some disjoint sets, i.e.

A = ∪m
j=1N`j(t) for some m and indices `j. Now we have:

V (t)− V (t+ 1) ≥
1

2n

n
∑

i=1

πi(t+ 1)d2i (t)

=
1

2n

∑

i∈A

πi(t+ 1)d2i (t) +
1

2n

∑

i∈Ac

πi(t+ 1)d2i (t)

≥
1

2n

∑

i∈A

πi(t+ 1)d2i (t) +
ε2

8n

∑

i∈Ac

πi(t+ 1). (3.16)

Next, we will find a lower bound for 1
2n

∑

i∈A πi(t + 1)d2i (t). For this purpose, we define

N0
`j
= {` : x`(t) = x`j(t)}. Now, it can bee seen that:

1

2n

∑

i∈A

πi(t+ 1)d2i (t) =
1

2n

m
∑

j=1

∑

i∈N`j

πi(t+ 1)d2i (t)

=
1

2n

m
∑

j=1

(

∑

i∈N`j
\N0

`j

πi(t+ 1)d2i (t)+
∑

i∈N0
`j

πi(t+ 1)d2i (t)
)

≥
1

2n

m
∑

j=1

(ε2

4

∑

i∈N`j
\N0

`j

πi(t+ 1)+
∑

i∈N0
`j

πi(t+ 1)d2i (t)
)

, (3.17)
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where in the last inequality we have used lemma this property that if i ∈ N`j \ N
0
`j
, then

di(t) ≥
ε
2
. Otherwise, the same as what we showed in the proof of lemma (3.4) we will have

a merging time at time t which is a contradiction.

Furthermore, since we assumed that
∑k

i=1 ti ≤ t <
∑k+1

i=1 ti, therefore, we had k merging

time before and hence, the number of agents which could be equal to x`j(t) is at most k. In

other words, |N0
`j
| ≤ k. By using (3.17) we can write:

1

2n

∑

i∈A

πi(t+ 1)d2i (t)≥
1

2n

m
∑

j=1

(ε2

4

∑

i∈N`j
\N0

`j

πi(t+ 1)+
∑

i∈N0
`j

πi(t+ 1)d2i (t)
)

≥
1

2n

m
∑

j=1

(ε2

4

∑

i∈N`j
\N0

`j

πi(t+ 1)
)

=
1

2n

m
∑

j=1

( ε2

4(|N0
`j
|+ 1)

|N0
`j
|
∑

i∈N`j
\N0

`j

πi(t+ 1)

+
ε2

4(|N0
`j
|+ 1)

∑

i∈N`j
\N0

`j

πi(t+ 1)
)

≥
1

2n

m
∑

j=1

( ε2

4(|N0
`j
|+1)

|N0
`j
|π`j(t+ 1)+

ε2

4(|N0
`j
|+1)

∑

i∈N`j
\N0

`j

πi(t+ 1)
)

=
1

2n

m
∑

j=1

( ε2

4(|N0
`j
|+1)

∑

i∈N0
`j

πi(t+ 1)+
ε2

4(|N0
`j
|+1)

∑

i∈N`j
\N0

`j

πi(t+ 1)
)

,

where in the last inequality we have used lemma (3.3). Also, in the last equality we used

this fact that if two agent have the same opinion at time t, then they will have the same

πi(t+ 1). Finally, by replacing all the |N0
`j
| by a larger amount k in the last equality of the
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above relation, we get:

1

2n

∑

i∈A

πi(t+ 1)d2i (t) ≥
ε2

8n(k + 1)

m
∑

j=1

(

∑

i∈N0
`j

πi(t+ 1)+
∑

i∈N`j
\N0

`j

πi(t+ 1)
)

=
ε2

8n(k + 1)

m
∑

j=1

∑

i∈N`j

πi(t+ 1)

=
ε2

8n(k + 1)

∑

i∈A

πi(t+ 1) (3.18)

Therefore, by using (3.18) in (3.16) we get:

V (t)− V (t+ 1) ≥
ε2

8n(k + 1)

∑

i∈A

πi(t+ 1) +
ε2

8n

∑

i∈Ac

πi(t+ 1)

≥
ε2

8n(k + 1)

(

∑

i∈A

πi(t+ 1) +
∑

i∈Ac

πi(t+ 1)
)

=
ε2

8n(k + 1)
.

Therefore, we have shown that for every t in the time interval [
∑k

i=1 ti,
∑k+1

i=1 ti),

V (t)− V (t+ 1) ≥
ε2

8n(k + 1)
.

By taking summation of the above inequality over [0,
∑n−1

i=1 ti] we get:

V (

n−1
∑

i=1

ti) ≤ V (0)−
ε2

8n

n−1
∑

i=1

ti
i+ 1

.

Q.E.D.

As a result of theorem (3.5), we always have to have:

V (0) ≥
ε2

8n

n−1
∑

i=1

ti
i+ 1

⇒

n−1
∑

i=1

ti
i+ 1

≤
8nV (0)

ε2
≤ 8n3 (3.19)
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where in the above inequality we used this fact that V (0) ≤ n2ε2. Therefore, we have the

following corollary.

Corollary 3.1. In the Hegselmann-Krause model with n agents, the first merging time takes

no more than 16n3 steps.

Proof. It is a direct result of relation (3.19). Q.E.D.

Now, If we let Tn to be the termination time for the Hegselmann-Krause dynamics, ac-

cording to the definition of ti, we can write Tn =
∑n−1

i=1 ti. Therefore, we are interested to

find an upper bound for Tn =
∑n−1

i=1 ti under the constraint given in (3.19). In other words,

the worst upper bound is given by:

max Tn =

n−1
∑

i=1

ti

s.t

n−1
∑

i=1

ti
i+ 1

≤ 8n3,

which has a solution Tn ≤ 8n3. Therefore, we have the following theorem.

Theorem 3.6. In the Hegselmann-Krause model with n agents the termination time is

bounded from above by:

Tn ≤ 8n4.
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CHAPTER 4

TERMINATION TIME OF THE

HEGSELMANN-KRAUSE MODEL IN HIGHER

DIMENSIONS

In this section, we consider the Hegselmann-Krause model in higher dimensions. Once again,

the same as the scalar case, we have a set of agents and a bound of confidence (ε > 0), which

in this chapter we assume to be the same for all the agents (homogenous case). In this model

at each time instant, all of the agents update their value by taking the average of their own

value and all the other agents which are in their ε-neighborhood. But this time, each agents

has a vector as her opinion. For instance, if we assume that the dimension is d, each agents’

opinion is a vector in Rd. It has been proven before that as in the scalar case, the dynamics

will reach its steady state after finite time [17]. This motivates us to consider these dynamics

and to look for an upper bound for its termination time. Therefore, our goal in this chapter

is to get an upper bound for the termination time as a function of number of agents (n) and

bound of confidence (ε). But before we start our analysis we are going to illustrate some of

the differences between the dynamics in higher dimension and the dynamics in scalar case

and show that these differences make our analysis much more complicated than the scalar

case.

4.1 Properties and Numerical Analysis

We saw in the previous chapter that when all the agents take values on the real line, running

the dynamics will not change their order. In other words, the dynamics preserves the order

of the agents. In fact, this is not the case in higher dimensions because in higher dimensions

each opinion is a vector and therefore we cannot consider an order for them anymore.

Another important property that was used frequently in the scalar case was that if there

exists a break between two agents, then, this break will remain until the end. But this
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property doesn’t hold in higher dimensions any more. In other words, it may happen that

an agent is isolated from a group of agents by a distance more than ε, but after some time

this agent will get back to the group again. Figure 4.1 shows an example of this type of

situation in two dimensions. Note that the agent in the middle is isolated from the rest of the

agents, but as the dynamics run, the other agents will get closer and closer to each other such

that after some time they will capture the isolated. Figure 4.2 is an other example in three

dimensions after running the dynamics 10 times and 50 times (steady state), respectively.

Note that in Figure 4.2, the red points show the current location of agents after 10 and

50 iterations, respectively. Now that we have some intuition about how bad the situation

can be, we are going to start our analysis. Our analysis in this chapter is again based on

the Lyapunov comparison functions. Once again, in this chapter we use almost the same

quadratic Lyapunov function which is defined by

V (t) =
n

∑

i=1

πi(t)‖xi(t)− π′(t)X(t)‖2, (4.1)

. The only difference here is that instead of absolute value we use Euclidian norm. According

to [17] we have the following result.

Lemma 4.1. For the quadratic comparison function defined in (4.1) we have:

V (t)− V (t+ 1) =
1

2

n
∑

i,j=1

Hij(t)‖xi(t)− xj(t)‖
2 ≥

1

2n

n
∑

i=1

πi(t+ 1)d2i (t)

|Ni(t)|
,

where H(t) = A′(t)diag(π(t+ 1))A(t) and di(t) = max{‖xp(t)− xq(t)‖ : p, q ∈ Ni(t)}.
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Figure 4.1: 2D, n=30. In the left Figure ε = 0.4, t=100 and in the right Figure ε = 0.55,
t=10.

4.2 Definitions and Basic Lemmas

Here, we list some of the notation which we use to prove some of the results in this section.

Definition 4. Suppose that we have a bound of confidence ε and a set of n agents. At each

time instant t ≥ 0 we define the following sets to be:

• Ni(t) = {j : ‖xj(t)− xi(t)‖ < ε},

• di(t) = max{‖xp(t)− xq(t)‖ : p, q ∈ Ni(t)},

• S2(t) = {i : di(t) ≥
ε
n
},

• S1(t) = {i : 0 6= di(t) <
ε
n
},

• S0(t) = {i : di(t) = 0}.

Lemma 4.2. If di(t) ≤
ε
n
for some time instant t, then, Ni(t) ⊆ Ni(t+ 1).

Proof. Consider an arbitrary element j ∈ Ni(t). We show that j ∈ Ni(t+1). First, note that

since di(t) ≤
ε
n
, thus Ni(t) ⊆ Nj(t). Now let us assume that Ni(t)\Nj(t) has r elements and

we show these agents by x1(t), x2(t), . . . , xr(t). Furthermore, assume |Ni(t)| = m and we
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Figure 4.2: 3D, n=60, ε = 0.4. In the left Figure t=10 and in the right Figure t=50.

show these agents by xi(t), xj(t), xr+1(t), . . . , xr+m−2(t). Therefore, by applying the dynamic

rule we get:

xi(t+ 1) =
xi(t) + xj(t) +

∑r+m−2
k=r+1 xk(t)

m
,

xj(t+ 1) =
xi(t) + xj(t) +

∑r+m−2
k=1 xk(t)

m+ r
.

Now, we claim that ‖xj(t+1)− xi(t+1)‖ < ε which shows that j ∈ Ni(t+1). To show our

claim, we have:

‖xj(t+ 1)− xi(t+ 1)‖ =
‖r(xi(t) + xj(t) +

∑r+m−2
k=r+1 xk(t))−m

∑r

k=1 xk(t)‖

m(m+ r)

=
1

m(m+ r)

∥

∥

∥

r
∑

`=1

(xi(t)− x`(t)) +
r

∑

`=1

(xj(t)− x`(t))+

+

r+m−2
∑

k=r+1

r
∑

`=1

(xp(t)− xq(t))
∥

∥

∥. (4.2)
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On the other side, we have:

r
∑

`=1

‖(xi(t)− x`(t))‖ ≤ r(ε+
ε

n
),

r
∑

`=1

‖(xj(t)− x`(t))‖ < ε,

r+m−2
∑

k=r+1

r
∑

`=1

‖(xp(t)− xq(t))‖ ≤ (m− 2)r(ε+
2ε

n
). (4.3)

Therefore, by applying the triangle inequality on the right hand side of (4.2) and using the

above inequalities (4.3), we obtain:

‖xj(t+ 1)− xi(t+ 1)‖ ≤
1

m(m+ r)
[r(ε+

ε

n
) + rε+ (m− 2)r(ε+

2ε

n
)]

= [
rm+ r

n
(1 +

2(m−2)
n

)

rm+m2
]ε < ε.

Q.E.D.

In the next few lemmas, we will see some of the relations among the sets S0, S1 and S2.

Lemma 4.3. Suppose that `0 ∈ S0(t) and `0 /∈ S0(t+ 1), then, `0 ∈ S2(t+ 1).

Proof. Since by assumption `0 ∈ S0(t), thus, x`0(t + 1) = x`0(t). Moreover, since `0 /∈

S0(t + 1), hence, it has at least one neighbor at time t + 1. Let us choose one of them

arbitrarily and show it by `1. Now we can write:

‖x`1(t+ 1)− x`0(t+ 1)‖ = ‖x`1(t+ 1)− x`0(t)‖ = ‖

∑

k∈N`1
(t) xk(t)

|N`1(t)|
− x`0(t)‖

=
‖
∑

k∈N`1
(t)(xk(t)− x`0(t))‖

|N`1(t)|

≥
‖x`1(t)− x`0(t)‖

|N`1(t)|
>

ε

|N`1(t)|
≥

ε

n
.

where, in the second last inequality we have used this fact that since `0 ∈ S0(t), thus, all

of its neighbors have a distance more than ε from it. This shows that d`0(t + 1) ≥ ε
n
, i.e.

`0 ∈ S2(t+ 1). Q.E.D.

39



Lemma 4.4. Suppose that there is no merging at time step t. Then, for every j ∈ S1(t) we

have:

Nj(t+ 1) ⊂ {S0(t) ∩ S2(t+ 1)} ∪ {∪i∈S2(t)Ni(t+ 1)}. (4.4)

Proof. Assume that r ∈ Nj(t+ 1), then, there are two possibilities:

• Case 1)

r ∈ S0(t) and at time t + 1 we have r ∈ Nj(t + 1). It means that r /∈ S0(t + 1). Hence,

by using lemma (4.3) we can see that r ∈ S2(t + 1) and therefore, r ∈ {S0(t) ∩ S2(t + 1)}.

Thus, in this case r appears in both sides and the lemma (4.4) holds.

• Case 2)

r /∈ S0(t). Therefore, r ∈ S1(t)∪S2(t). If r ∈ S2(t), again, the case is trivial and it can be

seen that r appears in the right hand side of (4.4). But, if r ∈ S1(t), since we don’t have any

merging at time step t, therefore, for every q ∈ Nr(t), q 6= r we have q ∈ S2(t). Furthermore,

by using lemma (4.2) we see that q will remain as a neighbor of r at time t+ 1. It means:

q ∈ Nr(t+ 1), q ∈ S2(t)⇒ r ∈ Nq(t+ 1), q ∈ S2(t)⇒ r ∈ ∪i∈S2(t)Ni(t+ 1).

Therefore, we showed that in both cases r would be in the right hand side of (4.4). This

completes the proof. Q.E.D.

In the rest of this chapter, the same as scalar case, we assume that {π(t)}t≥0 is a sequence

of stochastic vectors which are defined backward in time by using the adjoint dynamic (3.2).

The following lemma gives us a necessary tool to evaluate the amount of decrease in our

quadratic comparison function.

Theorem 4.1. Suppose that there is no merging at time step t, then,

∑

j∈S1(t)

πj(t+ 1) ≤ |S1(t)|
(

∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2)
)

.
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Proof. By using lemma (4.4) we can write:

πj(t+ 1) =
∑

k∈Nj(t+1)

πk(t+ 2)

|Nk(t+ 1)|

≤
∑

k∈S0(t)∩S2(t+1)∪i∈S2(t)
Ni(t+1)

πk(t+ 2)

|Nk(t+ 1)|

≤
∑

k∈S0(t)∩S2(t+1)

πk(t+ 2)

|Nk(t+ 1)|
+

∑

k∈∪i∈S2(t)
Ni(t+1)

πk(t+ 2)

|Nk(t+ 1)|

≤
∑

k∈S0(t)∩S2(t+1)

πk(t+ 2)

|Nk(t+ 1)|
+

∑

i∈S2(t)

∑

k∈Ni(t+1)

πk(t+ 2)

|Nk(t+ 1)|

=
∑

k∈S0(t)∩S2(t+1)

πk(t+ 2)

|Nk(t+ 1)|
+

∑

i∈S2(t)

πi(t+ 1), (4.5)

where in the last equality we have used the property of adjoint dynamics (3.2). On the other

side we have:

∑

k∈S0(t)∩S2(t+1)

πk(t+ 2) ≥
∑

k∈S0(t)∩S2(t+1)

πk(t+ 2)

|Nk(t+ 1)|
(4.6)

By combining (4.5) and (4.6) we can write:

πj(t+ 1) ≤
∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S0(t)∩S2(t+1)

πi(t+ 2)

≤
∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2).

Since the above inequality is true for every arbitrary j ∈ S1(t), therefore, by taking summa-

tion over all the j ∈ S1(t), we can write:

∑

j∈S1(t)

πj(t+ 1) ≤ |S1(t)|
(

∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2)
)

. (4.7)

Q.E.D.

In order to analyze the Hegselmann-Krause dynamics, once again, we consider the quadratic
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Lyapunov function defined by:

V (t) =

n
∑

i=1

πi(t)‖xi(t)− π′(t)X(t)‖2, (4.8)

where, X(t) = (x1(t), x2(t), . . . , xn(t))
′. We have seen before that:

V (t)− V (t+ 1) =

n
∑

i=1

πi(t+ 1)

|Ni(t)|2

∑

p,q∈Ni(t)

‖xp(t)− xq(t)‖
2

≥
1

2

n
∑

i=1

πi(t+ 1)

|Ni(t)|
d2i (t) ≥

1

2n

n
∑

i=1

πi(t+ 1)d2i (t). (4.9)

On the other side, one can write:

n
∑

i=1

πi(t+ 1)d2i (t) ≥
ε2

n2

∑

i∈S2(t)

πi(t+ 1) + 0
∑

i∈S0(t)

πi(t+ 1) +
∑

i∈S1(t)

πi(t+ 1)d2i (t)

≥
ε2

n2

∑

i∈S2(t)

πi(t+ 1). (4.10)

Therefore, by combining (4.9) and (4.10) together we have the following corollary.

Corollary 4.1. Suppose that V (t) is the Lyapunov function defined in (4.8), then,

V (t)− V (t+ 1) ≥
ε2

2n3

∑

i∈S2(t)

πi(t+ 1).

4.3 Estimation on the Comparison Function Decrease

In the rest of this chapter, our goal is to find a lower bound for
∑

i∈S2(t)
πi(t + 1) and thus

for V (t)− V (t+ 1).

Theorem 4.2. Let T ≥ 2 to be an integer and t0 to be an arbitrary time step such that there

is no merging time in the time interval [t0, t0 + T ]. Also, assume that n ≥ 2, then, we have:

V (t0)− V (t0 + T ) ≥
ε2

4n4

(

T−2
∑

j=0

(1−
∑

i∈S0(t0+j)

πi(t0 + j))
)

.
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Proof. We prove the theorem by induction. Choose t ∈ [t0, T − 2] and T ≥ 2 arbitrarily and

then fix them. By using the above corollary two times and adding them together, we get:

V (t)−V (t+2)≥
ε2

2n3

(

∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2)
)

=
ε2

2n3(1 + |S1(t)|)

(

∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2)+

+ |S1(t)|[
∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2)]
)

≥
ε2

2n3(1 + |S1(t)|)

(

∑

i∈S2(t)

πi(t+ 1) +
∑

i∈S2(t+1)

πi(t+ 2) +
∑

i∈S1(t)

πi(t+ 1)
)

≥
ε2

2n4

(

(1−
∑

i∈S0(t)

πi(t+ 1)) +
∑

i∈S2(t+1)

πi(t+ 2)
)

,

where, in the second last inequality we have used theorem (4.1). Moreover, the last inequality

holds because of stochastisity of the vector π(t+1) and also since (1+|S1(t)|) ≤ n. Therefore,

we have shown so far that:

V (t)− V (t+ 2) ≥
ε2

2n4
(1−

∑

i∈S0(t)

πi(t+ 1)).

By taking summation on the above inequality, we get:

2(V (t0)− V (t0 + T )) ≥
(

V (t0)−V (t0 + T−1)
)

+
(

V (t0 + 1)−V (t0 + T )
)

=

t0+T−2
∑

t=t0

(V (t)− V (t+ 2))

≥

t0+T−2
∑

t=t0

ε2

2n4
(1−

∑

i∈S0(t)

πi(t+ 1))

=
ε2

2n4

(

T−2
∑

j=0

(1−
∑

i∈S0(t0+j)

πi(t0 + j + 1))
)

. (4.11)

Also, we know that if r ∈ S0(t+ j), then, πr(t+ j) = πr(t+ j + 1). Therefore, by using this
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fact in (4.11) we get:

V (t0)− V (t0 + T ) ≥
ε2

4n4

(

T−2
∑

j=0

(1−
∑

i∈S0(t0+j)

πi(t0 + j))
)

.

Q.E.D.

4.4 An Upper Bound for the Termination Time

Now we are ready to prove the main theorem of this chapter.

Theorem 4.3. Let T ≥ 2 to be an integer and t to be an arbitrary time step such that there

is no merging time in the time interval [t, t+ T ]. Then,

V (t)− V (t+ T ) ≥
ε2

2n4

(

1−
∑

i∈
⋂t+T−2

t′=t
S0(t′)

πi(t)
)

.

Proof. By using theorem (4.2), one can write:

V (t)− V (t+ T ) ≥
ε2

4n4

(

T−2
∑

j=0

(1−
∑

i∈S0(t+j)

πi(t+ j))
)

=
ε2

4n4

(

1−
∑

i∈
⋂t+T−2

t′=t
S0(t′)

πi(t)
)

+
ε2

4n4

(

T−2
∑

j=1

(1−
∑

i∈S0(t+j)

πi(t+ j))−
∑

i∈S0(t)\
⋂t+T−2

t′=t
S0(t′)

πi(t)
)

. (4.12)

Now, we show that the second term in right hand side of the above inequality is always

non-negative. Let us assume that ` ∈ S0(t) \
⋂t+T−2

t′=t S0(t
′). It means that there exists a

1 ≤ j ≤ T − 2, such that ` ∈
⋂t+j−1

t′=t S0(t
′), ` /∈ S0(t+ j). Since ` ∈

⋂t+j−1
t′=t S0(t

′), thus,

π`(t) = π`(t+ 1) = . . . = π`(t+ j − 1) = π`(t+ j). (4.13)

Also, since ` /∈ S0(t+j), therefore, (1−
∑

k∈S0(t+j) πk(t+j)) which is equal to
∑

k∈S1(t+j)∪S2(t+j) πk(t+
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j) has π`(t + j) in its body. But note that by (4.13), π`(t + j) = π`(t), hence, we can say

that (1−
∑

k∈S0(t+j) πk(t+ j)) has π`(t) in its body. Therefore, with putting all together, we

have shown so far that for every ` ∈ S0(t)\
⋂t+T−2

t′=t S0(t
′), π`(t) appears in at least one of the

terms of the
∑T−2

j=1 (1−
∑

i∈S0(t+j) πi(t + j)) and of course they don’t have overlap, because

they have different indices. In other words:

T−2
∑

j=1

(1−
∑

i∈S0(t+j)

πi(t+ j)) ≥
∑

i∈S0(t)\
⋂t+T−2

t′=t
S0(t′)

πi(t). (4.14)

Using (4.14) in (4.12) gives us the proper result. Q.E.D.

Here, it is important to note that there is not only way of choosing the sequence of

{π(t)}t≥0. In other words, to construct the sequence of {π(t)}t≥0, it is enough to choose an

arbitrary stochastic vector π(Tn) at the termination time Tn and then the rest of sequence

will be constructed backward in time by π′(t)A(t) = π′(t − 1). One of the strong aspects

of theorem (4.3) is that it holds true, independent of the choice of {π(t)}t≥0. However, the

way that the dynamics acts is independent of the choices of this stochastic sequence. But,

in fact a smart choice of {π(t)}Tn

t=0 will lead us to a better approximation of the decrease

in V (·) function and hence a better estimation of termination time based on our analysis.

Now, let us define:

µn = max{T :

t+T−2
⋂

t′=t

S0(t
′) 6= ∅, ∀t = 0, . . . , Tn}. (4.15)

From the above definition it can be seen that:

t+µn
⋂

t′=t

S0(t
′) = ∅, ∀t = 0, . . . , Tn. (4.16)

For instant a naive upper bound for µn would be Tn−1. Because, as long as
⋂t+T−2

t′=t S0(t
′) 6=

∅, then, the number of agents which are not in this intersection is at most n− 1. But, since

a set of (n− 1) agents can move at most Tn−1 times, therefore, we have µn ≤ Tn−1.
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Now, by using theorem (4.3) and relation (4.16) we can write:

V (0)− V (n6µn) =

n6−1
∑

j=0

(

V (jµn)− V ((j + 1)µn)
)

≥

n6−1
∑

j=0

ε2

4n4
[1−

∑

i∈
⋂(j+1)µn−2

t′=jµn
S0(t′)

πi(t)]

=

n6−1
∑

j=0

ε2

4n4
[1− 0] =

1

4
n2ε2.

On the other side, a simple calculation shows that V (0) ≤ 1
4
n2ε2, hence, it means that

V (n6µn) ≤ 0. Therefore, we have the following theorem:

Theorem 4.4. Suppose that Tn is the termination time for the Hegselmann-Krause model

in multi dimensions with n agents, then,

Tn ≤ n6µn,

where, µn was defined in (4.15).

From the above theorem and using the naive approximation of µn ≤ Tn−1, we get:

Tn ≤ n6Tn−1 ≤ n6(n− 1)6Tn−2 ≤ . . . ≤ (n!)6T1 = (n!)6

⇒ Tn ≤ (n!)6.

Corollary 4.2. The termination time for the Hegselmann-Krause model in multi dimensions

with n agents is bounded by

Tn ≤ (n!)6.
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4.5 On the Continuous-Opinion Hegselmann-Krause Model

In this section we consider the continuous case of the Hegselmann-Krause dynamics which

was introduced earlier in [18]. In this model the density of the agents is suppose to be a

continuous index set I, while the time step t is discrete. Also, in this model, it is assumed

that the opinion profile on the agent set I at tth time step is a function which is usually

denoted by xt. According to this notation the continuous form of the Hegselmann-Krause is

defined by:

xt+1(α) =

∫

β:(α,β)∈Cxt
xt(β)d(β)

∫

β:(α,β)∈Cxt
d(β)

, (4.17)

where,

Cxt
= {(α, β) ∈ I2 : |xt(α)− xt(β)| ≤ 1}.

Definition 5. For a measure µ and a measurable function xt and set S, we define:

µxt
(S) = µ({b : xt(b) ∈ S}).

Our goal in section is to show that applying the dynamics (4.17) on a particular profile will

give us more smooth opinion profiles. In other words, we show that applying the dynamics

(4.17) will not increase the points of discontinuity.

Lemma 4.5. Suppose that xt is a bounded function on the interval [0, 1] such that µxt
(a) =

µ({b ∈ [0, 1] : xt(b) = a}) = 0 for every a in the range of xt. Then, if we show the points of

continuity of xt by Dt, we will have: Dt ⊆ Dt+1.

Proof. Suppose α ∈ Dt. Also, assume {αn}
∞
n=1 is an arbitrary sequence which converges to
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α. We will show that:

lim
n→∞

∫

β:(αn,β)∈Cxt

d(β) =

∫

β:(α,β)∈Cxt

d(β),

lim
n→∞

∫

β:(αn,β)∈Cxt

xt(β)d(β) =

∫

β:(α,β)∈Cxt

xt(β)d(β). (4.18)

For this purpose, we partition {αn}
∞
n=1 to two sub-sequences {α1

n}
∞
n=1 and {α

2
n}
∞
n=1 such that

xt(α
1
n) ≤ xt(α) and xt(α

2
n) > xt(α). Since we know that xt is continuous at α, therefore,

limn→∞ xt(α
1
n) = limn→∞ xt(α

2
n) = xt(α). We next show

lim
n→∞

∫

β:(α1
n,β)∈Cxt

d(β) =

∫

β:(α,β)∈Cxt

d(β), (4.19)

and

lim
n→∞

∫

β:(α1
n,β)∈Cxt

xt(β)d(β) =

∫

β:(α,β)∈Cxt

xt(β)d(β). (4.20)

Choose a sub-sequence of {α1
n}
∞
n=1 and let us show that by {α1

in
}∞n=1 such that xt(α

1
in
) ≤

xt(α
1
in+1

). Note that choosing such a subsequence is possible because xt(α
1
n) ≤ xt(α) and

also limn→∞ xt(α
1
n) = xt(α). Now, we have:

|

∫

β:(α1
in

,β)∈Cxt

d(β)−

∫

β:(α,β)∈Cxt

d(β)|

≤

∫

{

β: xt(β)∈(xt(α1
in

)−1,xt(α)−1]
}

∪
{

β: xt(β)∈[xt(α1
in

)+1,xt(α)+1)
}
d(β)

≤ µxt

(

(xt(α
1
in
)− 1, xt(α)− 1]

)

+ µxt

(

[xt(α
1
in
) + 1, xt(α) + 1)

)

. (4.21)

But we note that µxt
((xt(α

1
in
)− 1, xt(α)− 1]) ≤ µ[0, 1] = 1 and also (xt(α

1
in+1

)− 1, xt(α)−

1] ⊆ (xt(α
1
in
)− 1, xt(α)− 1], ∀n = 1, 2, . . ., therefore, by continuity of the measure (1.6), we
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get:

lim
n→∞

µxt

(

(xt(α
1
in
)− 1, xt(α)− 1]

)

= µxt

(

∩∞n=1 (xt(α
1
in
)− 1, xt(α)− 1]

)

= µxt
(xt(α)− 1) = 0,

where in the last equality we have used the lemma assumption. Similarly we can see that

limn→∞ µxt
([xt(α

1
in
) + 1, xt(α) + 1)) = 0. Now fix an arbitrary ε > 0. According to what we

have shown so far, there exists M > 0 such that if n > M , the amount of relation (4.21) is

less than ε. Also, since limn→∞ xt(α
1
n) = xt(α) thus, there exists a N such that if n > N

then xt(α
1
n) is sufficiently close to xt(α) and hence, xt(α

1
iM
) ≤ xt(α

1
n) ≤ xt(α). Thus,

{

β : xt(β) ∈ (xt(α
1
n)− 1, xt(α)− 1]

}

⊆
{

β : xt(β) ∈ (xt(α
1
iM
)− 1, xt(α)− 1]

}

,

{

β : xt(β) ∈ [xt(α
1
n) + 1, xt(α) + 1)}⊆

{

β : xt(β) ∈ [xt(α
1
iM
) + 1, xt(α) + 1)

}

. (4.22)

Therefore, if n > max{M,N} by combining (4.21) and (4.22) we can write:

|

∫

β:(α1
n,β)∈Cxt

d(β)−

∫

β:(α,β)∈Cxt

d(β)|

≤

∫

{

β:(α1
n,β)∈Cxt

}

∆
{

β:(α,β)∈Cxt

}
d(β)

≤

∫

{

β: xt(β)∈(xt(α1
n)−1,xt(α)−1]

}

∪
{

β: xt(β)∈[xt(α1
n)+1,xt(α)+1)

}
d(β)

≤

∫

{

β: xt(β)∈(xt(α1
iM

)−1,xt(α)−1]
}

∪
{

β: xt(β)∈[xt(α1
iM

)+1,xt(α)+1)
}
d(β)

≤ µxt

(

(xt(α
1
in
)− 1, xt(α)− 1]

)

+ µxt

(

[xt(α
1
in
) + 1, xt(α) + 1)

)

< ε.

This proves (4.19).

On the other side, since xt is bounded, therefore there is a K such that |xt| ≤ K. Now by
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a similar argument, for every n > max{M,N} we have :

∣

∣

∣

∫

β:(α1
n,β)∈Cxt

xt(β)d(β)−

∫

β:(α,β)∈Cxt

xt(β)d(β)
∣

∣

∣

≤

∫

{

β:(α1
n,β)∈Cxt

}

∆
{

β:(α,β)∈Cxt

}
|xt(β)|d(β)

≤ K

∫

{

β:(α1
n,β)∈Cxt

}

∆
{

β:(α,β)∈Cxt

}
d(β) < Kε.

Since K is a constant and ε > 0 was arbitrary, hence, we get (4.20).

Finally, by repeating all the above argument for the sequence {α2
n} we get (4.18). This

completes the proof. Q.E.D.
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CHAPTER 5

NECESSARY CONDITIONS FOR FINITE

CONVERGENCE, SUFFICIENT CONDITIONS FOR

CONSENSUS

One of the basic questions in averaging dynamics is to answer this question that when and

under which conditions the agents can reach to an agreement and this motivate us to design

some algorithms which guarantee the consensus. However, sometimes because of shortage of

memory or because of some time limitations, not only we are interested in agreement of the

agents but also in finiteness of the operation time. This brings us to some sort of questions

that under which conditions designing a finite time algorithm is possible.

5.1 Finite Time Consensus

Suppose that we have a network of n nodes such that at each time instant each node updates

her value to be the weighted average of her own previous value and those of her neighbors.

It has been shown before that under this assumption, there exists an appropriate weight

matrix such that reaching to consensus is possible in finitely many steps [19]. In this case

the number of iterations can be estimated by the degree of the minimal polynomial of the

weight matrix. Furthermore, if we show this degree by D, then every node has to have a

memory of size at least D, such that it can update its current value by its previous values.

Here, a natural question is that for which kind of networks we can find a weight matrix such

that without memory agents are still able to reach an agreement in finitely many steps or

equivalently suppose A is a weight matrix for the network, we are interested to know for

which kind of networks there exists a m such that Am is a consensus matrix, i.e. all of its

rows are identical.

Lemma 5.1. Suppose that for a stochastic weight matrix A we have Am is a consensus

matrix, then, it has 1 as a simple eigenvalue and all of its other eigenvalues are zero.
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Proof. Suppose that the stochastic matrix A has this property that there exists am such that

Am = (A1, A1, . . . , A1)
′ whereA1 is a column vector of size n. Consider the Jordan form of the

matrix A and suppose A = B−1JB. Therefore we have to have B−1JmB = (A1, A1, . . . , A1)
′.

Now suppose B−1i is the ith column of B−1 and
∑

Bi is the summation of all the elements

of the ith row of B. Therefore, a simple computation shows that Jm has the following form:

Jm =

















(A′1B
−1
1 )

∑

B1 (A′1B
−1
2 )

∑

B1 · · · (A′1B
−1
n )

∑

B1

(A′1B
−1
1 )

∑

B2 (A′1B
−1
2 )

∑

B2 · · · (A′1B
−1
n )

∑

B2

...
...

. . .
...

(A′1B
−1
1 )

∑

Bn (A′1B
−1
2 )

∑

Bn · · · (A′1B
−1
n )

∑

Bn

















. (5.1)

On the other side we know that since J is the Jordan form of the matrix A, therefore, Jm

has the following block diagonal form:

Jm =

















Jm
1 0 · · · 0

0 Jm
2 · · · 0

...
...

. . .
...

0 0 · · · Jm
k

















, (5.2)

where J1, J2, . . . Jk are the appropriate Jordan blocks of the matrix A. Also, since we assumed

that A is a stochastic matrix, therefore it has 1 as an eigenvalue and thus, in the Jordan

representation of A one of the blocks contains this eigenvalue. Without loss of generality

we can assume that the first block contains eigenvalue 1. But according to the matrix

representation in (5.1), we know that if one element in Jm is zero then either all the elements

in the corresponding row or the corresponding column are zero. By comparing (5.1) and

(5.2) we can conclude that all the elements in Jm are zeros except the first block which is

related to eigenvalue 1. Therefore, Jm has just one nonzero block in its Jordan form which

is related to the eigenvalue 1. With a similar argument it can be seen that the size of this

block is also one. Therefore, Jm has just one nonzero entry which is 1 and hence, this shows

that A has just one simple eigenvalue at 1 and all of its other eigenvalues are zero. Q.E.D.

Finiteness of the algorithm sometimes impose hard conditions on the properties of the
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network. To be more precise, let us consider an averaging gossip algorithm. Suppose that

we run a gossip algorithm in a following way that in each time instant, two neighbors nodes

i and j wake up and update their information according to the following rule:

xi(k + 1) = xj(k + 1) =
xi(k) + xj(k)

2

xr(k + 1) = xr(k), r 6= i, j (5.3)

In order to know more about gossip and broadcast algorithms one can refer to [20], [5], [21],

[22]. In the next lemma, we show that if the above algorithm terminates in finite time in a

connected network, then the number of nodes has to be some power of 2.

Lemma 5.2. If the gossip algorithm described in (5.3) reaches to its steady state in finite

time on a connected network with n nodes, then, n = 2k for some k ∈ Z+.

Proof. First of all we notice that if the algorithm reaches to its steady state, then, it must

be consensus. Otherwise, there are two nodes p and q such that their values are not equal.

Since we assumed that the network is connected, therefore, there is a path between these

two nodes. But the ending points of this path have different values, therefore, we can find

two neighbors in this path such that they have different values. Thus, if these two nodes

wake up in some time step, then their value would be different from the previous step and

this is in contradiction that we have already reached to the steady state.

Let us assume x1(0), x2(0), . . . , xn(0) are the initial amounts of the agents and suppose

that consensus is reached. According to the updating rule (5.3) the consensus amount has

to be of the following form:

xave(∞) =

n
∑

j=1

rjxj(0)

2ij
,

for some non-negative integers ij, j = 1, . . . , n and some odd numbers rj > 0. On the other

side since the average value of the agents at each time step t, (xave(t)) is the same and equal
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to
∑n

j=1 xj(0)

n
, therefore, we get:

xave(∞) =

n
∑

j=1

rjxj(0)

2ij
=

∑n

j=1 xj(0)

n
.

By comparing the sides of the above equation we get n = 2ij

rj
. Furthermore, since n is integer

and rj, j = 1, 2, . . . , n are odd numbers, this shows that r1 = r2 = . . . = rn = 1. Thus, there

exists a k such that ij = k, ∀j = 1, 2, . . . , n, i.e. n = 2k. Q.E.D.

Definition 6. A k-cube graph is a graph which has all the o-1 sequences of length k as its

nodes and there is a link between two nodes if and only if their corresponding sequences differ

only in position.

Proposition 5.1. Suppose that a network has 2k nodes. If the graph of this network has a

k-cube as its subgraph, then there is a method which agents can wake up and update their

information by (5.3) such that after finite time they all reach to agreement.

Proof. We will show it by induction. For n = 2 the result is trivial. Suppose for n = 2k−1

the proposition is correct and let n = 2k. We just focus on the k-cube inside the network

and ignore all the other links. By partitioning the nodes to two subsets:

A = {(0, a1, . . . , ak−1)| ai ∈ {0, 1}}

B = {(1, a1, . . . , ak−1)| ai ∈ {0, 1}},

It can be seen that the induced graphs on each of A and B are (k−1)-cube as well. By using

the induction assumption, the agents in each of these sub graphs can reach to consensus in

finite step. After that in the next time steps we let each node in A talk to her corresponding

node in B (a node which is different with it just in the first coordinate). Therefore, it can be

seen easily that after additional 2k−1 steps all the agents will have the same value. Q.E.D.
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5.1.1 Sufficient condition for consensus of stochastic chains

In this subsection we are about to answer to this question that under which conditions we

can decide about the consensus of the agents with this difference that this time we want to

relay more on the configuration of the network than the weights. In other words, existence

of a link in network can play a critical role in determining a consensus. We will see that

if the number of links are large enough then, consensus is guaranteed under some mild

assumptions. We start this part with the following definition:

Definition 7. Suppose that Q is a non-negative matrix. We say that a permutation - matrix

P exists in Q, if Pij = 1 results that Qij > 0.

As an example let assume Q to be:

Q =











0 1 0

1 0 0.5

0.2 0 0.8











,

In this matrix, there exist two permutation matrices which are:

P1 =











0 1 0

0 0 1

1 0 0











, P2 =











0 1 0

1 0 0

0 0 1











.

According to the above definition we have the following lemma.

Lemma 5.3. For every integer n let D(n) = n!(
∑n

i=0
(−1)i

i!
). Then, the summation of every

D(n) number of different permutation matrices (n by n) will give us a matrix which has at

least one positive column.

Proof. Let An×n be a matrix which is generated by summation of at least D(n) number

of permutation matrices. In other words, there are permutation matrices P1, P2, . . . , PD(n)

such that A =
∑Dn

i=1 Pi. Since only the positivity of the entries is important, therefore, for

easily when we have a positive entry we replace it by 1. Now, Suppose that the lemma is
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not correct. Thus, we can assume that every column of A includes at least one zero. Among

all of these matrices such as A that doesn’t satisfy in lemma (5.3), we assume B to be a

matrix which has the minimum number of zeros and the maximum number of permutations

in it. The first observation is that B has exactly one zero in each column. Otherwise, we

can keep one zero in each column of B and change the other zeroes to 1. With this job, we

still keep non-positivity of the columns of B and also the number of permutations in B is

not decreasing. Also, note that switching the rows with each other and columns with each

other doesn’t change the number of permutations in B nor the positivity of the columns.

Next, we show that we can assume that each row of B has exactly one zero. Otherwise,

by switching the rows and columns we can assume that B has the following representation:

B =



































1 1 . . . 1 i1 zeros

1 1 . . . i2 zeros 1

...
...

. . . 1 1

ik zeros 1 . . . 1 1

1 1 . . . 1 1

...
...

. . . 1 1

1 1 . . . 1 1



































. (5.4)

Note that in the above matrix each 1 shows a block of ones of appropriate size and
∑k

`=1 i` =

n. Furthermore, we can assume that the last zero block with length ik has at least two zeros.

Let us show the entries of the last zero block by bk1, bk2, . . . , bkik . We define matrix B̂ based

on B (5.4) by:

B̂rs =



























1, (r, s) = (k, 1)

0, (r, s) = (k + 1, 1)

Brs, else

(5.5)

It can be seen that B̂ differs from B only in two entries. Also, assume that T and T̂ denotes

all the permutation matrices which are in B and B̂, respectively. Our goal is to show that the
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cardinality of T̂ is not less than the cardinality of T . This shows that instead of considering

representation (5.4) for B we can consider B̂ (5.5). But, B̂ has zero in one more row in

compare with B. With repeating this argument we can consider a representation for B

which has exactly one zero in each row.

To show that |T | ≤ |T̂ |, we define a one-to-one mapping F from T to T̂ . Let us Suppose

that C is an arbitrary permutation matrix in T such that C(k+1)1 = 1. Since C is a permu-

tation matrix, thus, Ck1 = 0 and there exists a j such that Ckj = 1 and C(k+1)j = 0. Now

we define another permutation matrix Ĉ to be the same as matrix C with this difference

that we switch Ckj = 1 and C(k+1)j = 0 with Ck1 = 0 and C(k+1)1 = 1, respectively. In other

words:

Ĉrs =























































Ckj, (r, s) = (k, 1)

C(k+1)j, (r, s) = (k + 1, 1)

Ck1, (r, s) = (k, j)

C(k+1)1, (r, s) = (k + 1, j)

Crs, else

(5.6)

It can be seen that if C ∈ T , then, Ĉ ∈ T̂ . By defining:

F : T → T̂

F (C) =











C, C(k+1)1 = 0

Ĉ, C(k+1)1 = 1

,

it is not hard to see that F is a one-to-one mapping from T to T̂ and this shows that

|T̂ | ≥ |T |.

So far we have shown that we can consider B to be a matrix which has exactly one zero

in each row and each column. By switching the rows together and columns together we can

put all the zeros on the diagonal. Therefore, we have the following configuration for the
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matrix B:

















1 1 . . . 1 0

1 1 . . . 0 1

...
...

. . .
...

...

0 1
... 1 1

















, (5.7)

and its not hard to see that the number of permutations which are in (5.7) is equal to D(n).

But B was a matrix which had the most number of permutations in it and didn’t satisfy to

lemma (5.3). Therefore, every matrix with more than D(n) permutation in it has at least

one positive column. This completes the proof. Q.E.D.

Lemma 5.4. Suppose that A1 and A2 are two subsets of a finite group G. If 1 + ϕ(|A1|) <

|A2| then, |A1A2| = |{r1r2|r1 ∈ A1, r2 ∈ A2}| > |A1|, where ϕ is the Euler function.

Proof. Let A1 = {a1, a2, . . . , ak} and A2 = {b1, b2, . . . , bs}. It is clear that |A1A2| ≥ |A1b1| =

|{aib1|ai ∈ A1}| = k. To show that |A1A2| > |A1|, we will show that A1A2 6= A1. Otherwise

for every two arbitrary elements of A2 such as b1 and b2 we have: {aib1|ai ∈ A1} = {aib2|ai ∈

A1}. Without loss of generality we can assume that

a1b1 = a2b2, a2b1 = a3b2, . . . , ak−1b1 = akb2, akb1 = a1b2,

and therefore,

a−11 a2 = a−12 a3 = . . . = a−1k−1ak = a−1k a1 = b1b
−1
2 = c, (5.8)

which for easily we show all of the above equal elements by c. According to (5.8) we can
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write:

a−11 a2 = c

a−11 a3 = a−11 a2a
−1
2 a3 = c2

a−11 a4 = a−11 a2a
−1
2 a3a

−1
3 a4 = c3

...

a−11 ak = a−11 a2a
−1
2 a3 . . . a

−1
k−1ak = ck−1

a−11 a1 = a−11 a2a
−1
2 a3 . . . a

−1
k−1aka

−1
k a1 = ck = e

Therefore c is an element of order k and according to the above equalities we can write

a−11 A1 =< c > such that < c > shows the cyclic group with generator c. Because of the

symmetry by repeating the same argument we get: a−11 A1 = a−12 A1 = . . . = a−1k A1 =< c >.

Also, from (5.8) we had c = b1b
−1
2 . Since b1 and b2 had been chosen arbitrarily, therefore,

with the same discussion we can say that all the different elements b1b
−1
2 , b1b

−1
2 , . . . , b1b

−1
s

have to be a generator for the cyclic group a−11 A1 of order k. On the other side by lemma

(1.5) we know that the number of different generators of a cyclic group of order k is ϕ(k).

Therefore, s−1 ≤ ϕ(k) or |A2| ≤ 1+ϕ(|A1|) which is a contradiction. Therefore, A1A2 6= A1

and this completes the proof. Q.E.D.

Now let us consider a chain of stochastic matrices, namely A1, A2, A3, . . .. Also, let

Tr be the set of permutations which exists in A(1, r) = ArAr−1 . . . A1. Furthermore, as-

sume that σA denotes the set of permutation matrices which exists in A. Therefore, Tr =

σAr
σAr−1 . . . σA1 . Also, note that σAj

, ∀j = 1, 2, . . . are subsets of the permutations group,

thus, by multiplying subsets of a group the cardinality of them will not decrease and we

have |T1| ≤ |T2| ≤ . . . ≤ |Tr|. Now, we have enough tools to prove the following theorem.

Theorem 5.2. Suppose that Σ is a set of n by n stochastic matrices. Also, suppose that there

exists a δ > 0 such that min+ A > δ ∀A ∈ Σ. If for every A ∈ Σ, we have |σA| > 1+ϕ(D(n)),

then every infinite product of the elements from Σ will converge to consensus.

Proof. For every r ∈ N we have either |Tr| > D(n) which by lemma (5.3), A(1, r) has at
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least one positive column or |Tr| ≤ D(n). In the second case we have:

1 + ϕ(|Tr|) ≤ 1 + ϕ(D(n)) < |σAr+1 |.

Now according to lemma (5.4), |Tr+1| = |TrσAr+1 | > |Tr|. Therefore, by increasing r, |Tr|

will keep increasing until |Tr| > D(n). It means that there exists a sequence of time steps

{ts}, s ∈ N such that ts+1−ts < D(n), ∀s ∈ N and A(ts, ts+1) = Ats . . . Ats+1 has at least one

positive column. Also, since the length of time steps is bounded by D(n) and min+ A > δ,

for all A ∈ Σ, therefore, all the conditions of lemma (1.2) are satisfied for {A(ts, ts+1)}
∞
s=1

and this shows that the chain will converge to consensus. Q.E.D.

Theorem 5.3. Suppose that we have a chain of stochastic matrices and a sequence of time

steps (ts)s∈N and T ∈ N such that ts+1 − ts ≤ T log(log(s + 2)). If the number of matrices

which satisfy |σA| > ϕ(D(n)) + 1 is greater than D(n) in every time slot [ts, ts+1], then, the

consequent product of the chain will converge to consensus.

Proof. This theorem is a direct result of the theorem (5.2) and theorem 3.2.37 in [15].

Q.E.D.

5.1.2 Sufficient condition for consensus of stochastic chains with prime

dimension

We saw before in lemma (5.4) that if A1 and A2 are two subsets of a group such that

|A2| > 1 + ϕ(|A1|), then, |A1A2| > |A1|. What we are going to show next is that when

the dimension of the matrices in the chain is a prime number, then, we have additional

advantages such that with even less knowledge about the network links we can have the

same results. To show that, we first prove another version of the lemma (5.4).

Lemma 5.5. Suppose that p is a prime number and < a > is a cyclic group of order p.

Also, assume that A1 and A2 are two proper subsets of < a > such |A1| > 1 and |A2| > 1.

Then, |A2A1| > |A1|.

Proof. Let A1 = {ai1 , ai2 , . . . , aik}, where, 0 ≤ i1 < i2 < . . . < ik < p. Also, since |A2| > 1

we can pick two different elements aj1 , aj2 ∈ A2. Now, if we assume that |A2A1| ≯ |A1|,
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therefore, we must have |A2A1| = |A1|. In particular, aj1A1 = aj2A1, i.e.

{ai1+j1 , ai2+j1 , . . . , aik+j1} = {ai1+j2 , ai2+j2 , . . . , aik+jk}.

But the above equation is equivalent to show that:

{i1 + j1, i2 + j1, . . . , ik + j1} = {i1 + j2, i2 + j2, . . . , ik + j2} mode p,

which is impossible. Otherwise, we will have:

k
∑

`=1

(i` + j1) =
k

∑

`=1

(i` + j2) mode p

⇒ j1 = j2 mode p,

which is in contradiction with this fact that aj1 and aj2 are two different elements. This

shows that |A2A1| > |A1|. Q.E.D.

Theorem 5.4. Suppose that p is a prime number. Let us consider a chain of p by p stochastic

matrices {A(t)}∞t=1 such than min+(A(t)) > δ > 0 for all t ∈ N . Also, assume that G is a

subgroup of permutations of size p. If every A(t) has more than one permutation from G,

then, the left product of
∏∞

t=1 A(t) will converge to a consensus matrix.

Proof. Let σi to be the set of permutations in Ai which lie in G. Note that since G is a

cyclic group of order p, therefore, the sum of all the matrices in G will give us a matrix with

positive entries. Therefore, if a stochastic matrix has all the elements of G in it, then it

has to be a positive matrix. We show that for every j, A(j, j + p) = Aj+pAj+p−1 . . . Aj is a

scrambling matrix. For this purpose we show that σj+pσj+p−1 . . . σj is equal to G .

If σj is equal to G, then obviously σj+pσj+p−1 . . . σj = G. Otherwise, by using lemma

(5.5), |σj+1σj| > |σj|. Therefore, after every step the number of permutations will increase

by at least 1 and hence, σj+pσj+p−1 . . . σj has cardinality at least equal to p. It means

σjσj+1 . . . σj+p = G. Therefore, since min+(A(t)) > δ > 0 and also A(j, j + p) is scrambling

for all j ∈ N , then lemma (1.2) can be applied. Q.E.D.
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